WO2008068967A1 - 磁気ランダムアクセスメモリ及びその製造方法 - Google Patents

磁気ランダムアクセスメモリ及びその製造方法 Download PDF

Info

Publication number
WO2008068967A1
WO2008068967A1 PCT/JP2007/070553 JP2007070553W WO2008068967A1 WO 2008068967 A1 WO2008068967 A1 WO 2008068967A1 JP 2007070553 W JP2007070553 W JP 2007070553W WO 2008068967 A1 WO2008068967 A1 WO 2008068967A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetization
layer
region
free layer
switching region
Prior art date
Application number
PCT/JP2007/070553
Other languages
English (en)
French (fr)
Inventor
Hiroaki Honjou
Tetsuhiro Suzuki
Norikazu Ohshima
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2008548197A priority Critical patent/JP5146836B2/ja
Priority to US12/517,981 priority patent/US8300456B2/en
Publication of WO2008068967A1 publication Critical patent/WO2008068967A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic random access memory (MRAM).
  • MRAM magnetic random access memory
  • the present invention relates to a spin injection MRAM and a manufacturing method thereof.
  • MRAM is a promising nonvolatile memory from the viewpoint of high integration and high-speed operation.
  • a magnetoresistive element exhibiting a “magnetoresistance effect” such as a TMR (Tunnel MagnetoResistance) effect is used.
  • TMR Tunnelnel MagnetoResistance
  • the magnetoresistive element for example, a magnetic tunnel junction (MTJ) in which a tunnel barrier layer is sandwiched between two ferromagnetic layers is formed. The two ferromagnetic layers are a pinned layer whose magnetization direction is fixed and a free layer whose magnetization direction can be reversed.
  • MTJ magnetic tunnel junction
  • MTJ resistance value (R + AR) when the magnetization direction force of the pinned layer and the free layer is antiparallel is due to the magnetoresistive effect than the resistance value (R) when they are "parallel".
  • MRAM uses a magnetoresistive element having this MTJ as a memory cell, and stores data in a non-volatile manner by utilizing the change in the resistance value. This writing is performed by reversing the magnetization direction of the free layer.
  • spin transfer method As a writing method capable of suppressing an increase in write current due to miniaturization, “ A “spin transfer method” has been proposed. See, for example, JP 2005-93488 Koyuki! 3 ⁇ 4, gami (Fugami ana Suzuki, Research frenas in Spin Transfer Magnetization Switching, Journal of Japan Society of Applied Magnetics, Vol. 28, No. 9, 2004) According to the spin injection method, a spin-polarized current is injected into the ferromagnetic conductor, and the direct interaction between the spin of the conduction electron that carries the current and the magnetic moment of the conductor. Magnetization is reversed (hereinafter referred to as “Spin Transfer Magnetization Switching”) The outline of spin transfer magnetization reversal will be explained with reference to FIG.
  • the magnetoresistive element includes a free layer 101, a pinned layer 103, and a tunnel barrier layer 102 that is a nonmagnetic layer sandwiched between the free layer 101 and the pinned layer 103.
  • the pinned layer 103 whose magnetization direction is fixed is formed so as to be thicker than the free layer 101, and plays a role as a mechanism (spin filter) for creating a spin-polarized current.
  • the state where the magnetization directions of the free layer 101 and the pinned layer 103 are parallel is associated with data “0”, and the state where they are antiparallel is associated with data “1”.
  • the spin transfer magnetization reversal shown in FIG. 1 is realized by a CPP (Current Perpendicular to Plane) method, and a write current is injected perpendicularly to the film surface. Specifically, at the transition from data “0” force to data “1”, the current flows from the pinned layer 103 to the free layer 101. In this case, the spin state is the same as that of the pinned layer 103 as the spin filter. Electron force The free layer 101 force also moves to the pinned layer 103. And the spin transfer (spin angular momentum transfer) effect reverses the magnetization of the free layer 101. On the other hand, from the data ";! To the data "0" In the transition, current flows from the free layer 101 to the pinned layer 103. In this case, the electron force having the same spin state as the spin filter 103 as the spin filter moves from the pinned layer 103 to the free layer 101. Due to the spin transfer effect The magnetization of the free layer 101 is reversed.
  • CPP Current Perpendicular to Plan
  • spin injection magnetization reversal data is written by the movement of spin electrons.
  • the direction of magnetization of the free layer 101 can be defined by the direction of the spin-polarized current injected perpendicular to the film surface. It is known that the write (magnetization reversal) threshold at this time depends on the current density. Therefore, as the memory cell size is reduced, the write current required for magnetization reversal decreases. Write with memory cell miniaturization Since the current decreases, spin transfer magnetization reversal is important for the realization of large capacity MRAM.
  • a magnetic memory element described in Japanese Patent Application Laid-Open No. 2006-73930 has a first magnetic layer, an intermediate layer, and a second magnetic layer. Information is recorded based on the relationship between the magnetization direction of the first magnetic layer and the magnetization direction of the second magnetic layer.
  • magnetic domains that are antiparallel to each other and domain walls that separate these magnetic domains are constantly formed. By moving the domain wall in the magnetic layer, the position of adjacent magnetic domains is controlled, and information recording is performed.
  • a magnetic memory device described in Japanese Patent Application Laid-Open No. 2005-191032 has a magnetization fixed layer with fixed magnetization, a tunnel insulating layer stacked on the magnetization fixed layer, and a layer stacked on the tunnel insulating layer. And a magnetization free layer.
  • the magnetization free layer has a junction overlapping the tunnel insulating layer and the magnetization fixed layer, a constriction adjacent to both ends of the junction, and a pair of magnetization fixed portions formed adjacent to the constriction. Fixed magnetizations in opposite directions are given to the pair of magnetization fixed portions.
  • the magnetic memory device includes a pair of magnetic information writing terminals electrically connected to the pair of magnetization fixed portions. The pair of magnetic information writing terminal, the junction of the magnetization free layer, - may it is current passing through the pair of constricted portions and a pair of magnetization fixed portion 0
  • An object of the present invention is to provide a new MRAM that uses domain wall motion by spin injection.
  • Another object of the present invention is to provide a technique capable of improving the mobility of a domain wall in an MRAM using domain wall motion by spin injection.
  • Still another object of the present invention is to provide a technique capable of improving both the write characteristics and the read characteristics of an MRAM using domain wall motion by spin injection.
  • an MRAM domain wall motion type MR AM
  • the MRAM according to the present invention includes a pinned layer having a fixed magnetization direction and a magnetic recording layer connected to the pinned layer via a first nonmagnetic layer.
  • the magnetic recording layer has a first free layer, a second free layer, and a second nonmagnetic layer provided between the first free layer and the second free layer.
  • the second free layer is in contact with the first nonmagnetic layer and has reversible magnetization. That is, the MTJ is composed of the pinned layer, the first nonmagnetic layer, and the second free layer.
  • the first free layer includes a magnetization switching region, a first magnetization fixed region, and a second magnetization fixed region.
  • the magnetization switching region has reversible magnetization and overlaps the second free layer.
  • the first magnetization fixed region is connected to the first boundary of the magnetization switching region, and the magnetization direction is fixed in the first direction.
  • the second magnetization fixed region is connected to the second boundary of the magnetization switching region, and the magnetization direction is fixed in the second direction. Both the first direction and the second direction are directions toward the magnetization switching region or away from the magnetization switching region.
  • the magnetization of the magnetization switching region is directed to either the first boundary or the second boundary. Therefore, in the first free layer, the domain wall is formed on either the first boundary or the second boundary.
  • the second nonmagnetic layer is formed so as to cover at least the magnetization switching region.
  • the magnetization switching region of the first free layer and the second free layer are magnetically coupled via the second nonmagnetic layer. That is, when the magnetization direction of the magnetization switching region changes, the magnetization direction of the second free layer also changes according to the change. Depending on the relationship between the magnetization direction of the second free layer and the fixed magnetization direction of the pinned layer, data “0” or “;!” Is recorded. When rewriting data, the magnetization direction of the magnetization switching region of the first free layer may be changed.
  • the reversal of the magnetization direction of the magnetization reversal region is performed by a spin injection method.
  • the spin injection can be realized by a write current that flows in a plane in the first free layer. This is because the first free layer has the structure as described above.
  • the first magnetization fixed region serves to supply spin electrons in a certain direction to the magnetization switching region. We play a part.
  • the second magnetization fixed region serves to supply spin electrons in the reverse direction to the magnetization reversal region. Therefore, the force S can be used to change the magnetization direction of the magnetization switching region to a desired direction by flowing a write current in the first free layer in a direction corresponding to the data.
  • the first write current flows from the first magnetization fixed region to the second magnetization fixed region through the magnetization inversion region.
  • spin injection is performed from the second magnetization fixed region to the magnetization switching region.
  • the domain wall moves from the second boundary to the first boundary in the magnetization switching region.
  • the second write current flows from the second magnetization fixed region through the magnetization switching region to the first magnetization fixed region.
  • spin injection is performed from the first magnetization fixed region to the magnetization switching region.
  • the domain wall moves from the first boundary to the second boundary in the magnetization switching region.
  • data writing is realized by the movement of the domain wall.
  • the write current flows in a plane in the first free layer that does not penetrate the MTJ. Since the write current does not penetrate MTJ, degradation of the first nonmagnetic layer in MTJ is suppressed.
  • the second nonmagnetic layer is formed to cover at least the magnetization switching region.
  • This second non-magnetic layer serves to protect the damage reversal region due to oxidation or etching during the manufacturing process. If there is no second nonmagnetic layer covering the magnetization reversal region, the surface of the magnetization reversal region will be damaged by reactive gases, ions, radicals, etc. during etching. Then, the domain wall force S does not move smoothly in the magnetization switching region.
  • the second nonmagnetic layer serves to protect the damage reversal region due to oxidation or etching during the manufacturing process. If there is no second nonmagnetic layer covering the magnetization reversal region, the surface of the magnetization reversal region will be damaged by reactive gases, ions, radicals, etc. during etching. Then, the domain wall force S does not move smoothly in the magnetization switching region.
  • the second nonmagnetic layer is formed to cover at least the magnetization switching region.
  • the magnetization reversal region is protected from damage. Therefore, the domain wall movement in the magnetization switching region is performed smoothly, that is, the domain wall mobility is improved. As a result, the reliability and yield of the domain wall motion type MRAM are improved.
  • the magnetic recording layer has the first free layer and the second free layer separately.
  • the first free layer is a layer in which the domain wall moves, and greatly contributes to the write characteristics (such as the magnitude of the write current).
  • the second free layer in contact with the first nonmagnetic layer Is a layer that constitutes MTJ together with the pinned layer and greatly contributes to read characteristics (MR ratio, etc.). Therefore, according to the structure of the present invention, it is possible to independently control the write characteristics and the read characteristics.
  • the write current required for magnetization reversal can be reduced as the saturation magnetization of the magnetic layer decreases.
  • the saturation magnetization of the magnetic layer decreases, the polarizability of the magnetic layer decreases.
  • the MR ratio decreases because the TMR effect decreases.
  • the first free layer and the second free layer can be designed independently. Therefore, the force S can be designed to design the saturation magnetization of the first free layer to be relatively small and to design the saturation magnetization of the second free layer to be relatively large. This makes it possible to achieve both an increase in MR ratio (read margin) and a reduction in write current.
  • the present invention it is possible to freely control the characteristics of the first free layer and the second free layer independently. This means an improvement in the degree of freedom in device design, and it is possible to improve both the write characteristics and the read characteristics.
  • This advantage cannot be obtained by the CPP spin injection method. This is because in the case of the CPP spin injection method, both the write characteristics and the read characteristics are dominated by the ferromagnetic layer adjacent to the tunnel barrier layer. Even if the spin injection method uses a planar write current, the above advantage cannot be obtained if there is only one free layer (no second free layer). This is because the first free layer where the domain wall moves simultaneously becomes one end of the MTJ and affects both the write characteristics and the read characteristics.
  • a domain wall motion type MRAM using domain wall motion by spin injection is provided.
  • damage to the layer (domain wall motion layer) in which the domain wall moves is prevented. Therefore, the domain wall is moved smoothly in the domain wall moving layer, that is, the domain wall mobility is improved. As a result, the reliability and yield of the domain wall motion type MRAM are improved.
  • the domain wall motion type MRAM according to the present invention it is possible to achieve both an increase in read margin and a decrease in write current. In other words, it is possible to improve both the write characteristics and the read characteristics.
  • FIG. 1 is a diagram for explaining data writing by a spin injection method.
  • FIG. 2 is an overall view showing an example of the structure of a magnetic memory cell according to an embodiment of the present invention.
  • FIG. 3 is a plan view showing an example of a domain wall motion layer according to an example of the present invention.
  • FIG. 4 is a conceptual diagram showing domain wall movement in the domain wall moving layer shown in FIG.
  • FIG. 5 is a conceptual diagram showing another example of a domain wall motion layer according to an embodiment of the present invention and domain wall motion in the domain wall motion layer.
  • FIG. 6 is a plan view showing still another example of the domain wall motion layer according to the example of the present invention.
  • FIG. 7 is a conceptual diagram showing domain wall motion in the domain wall motion layer shown in FIG.
  • FIG. 8 is a conceptual diagram showing still another example of the domain wall motion layer according to the embodiment of the present invention and the domain wall motion in the domain wall motion layer.
  • FIG. 9 is a side view showing an example of the structure of the magnetic memory cell according to the embodiment of the present invention.
  • FIG. 10 is another example of the structure of the magnetic memory cell according to the embodiment of the present invention. It is a side view which shows the example of.
  • FIG. 11 is a side view of still another example of the structure of the magnetic memory cell according to the example of the present invention.
  • FIG. 12 is a cross-sectional view showing the manufacturing process of the magnetic memory cell according to the example of the present invention.
  • FIG. 13 is a cross-sectional view showing the manufacturing process of the magnetic memory cell according to the example of the present invention.
  • FIG. 14 is a cross-sectional view showing the manufacturing process of the magnetic memory cell according to the example of the present invention.
  • the MRAM according to this embodiment is a “domain wall motion type MRAM” that uses domain wall motion by spin injection.
  • the MRAM according to the present embodiment has a plurality of magnetic memory cells arranged in an array, and each magnetic memory cell has an MTJ.
  • FIG. 2 shows an example of the structure of the magnetic memory cell 1 (magnetoresistance element) according to the present example.
  • the magnetic memory cell 1 has a magnetic recording layer 40, a tunnel barrier layer 50, and a pinned layer 60.
  • the tunnel barrier layer 50 is sandwiched between the magnetic recording layer 40 and the pinned layer 60.
  • the pinned layer 60 is a ferromagnetic layer, and its magnetization orientation is fixed.
  • the pinned layer 60 includes a ferromagnetic film adjacent to the tunnel barrier layer 50, and the magnetization orientation of the ferromagnetic film is substantially fixed in one direction.
  • the pinned layer 60 includes a CoFe film as a ferromagnetic film.
  • the pinned layer 60 is a laminated film of Co 2 Fe / Ru / CoFe / PtMn.
  • the tunnel barrier layer 50 is a nonmagnetic layer.
  • the tunnel barrier layer 50 is a thin insulating film.
  • the insulating film include an Al 2 O film, an SiO film, an MgO film, and an A1N film.
  • a nonmagnetic metal such as Cu, Zn, Au, Ag, or Al is used for the tunnel barrier layer 50.
  • the magnetic recording layer 40 is connected to the pinned layer 60 via the tunnel barrier layer 50. More specifically, the magnetic recording layer 40 includes a first free layer 10, an intermediate layer 20, and a second free layer 30.
  • the intermediate layer 20 is provided between the first free layer 10 and the second free layer 30.
  • the second free layer 30 is in contact with the tunnel barrier layer 50.
  • the first free layer 10 and the second free layer 30 are ferromagnetic layers and have reversible magnetization.
  • the first free layer 10 and the second free layer 30 are made of a ferromagnetic metal such as NiFe, CoFe, NiFeCo, for example.
  • the first free layer 10 and the second free layer 30 may contain nonmagnetic elements such as B, C, 0, and Zr as additives.
  • the intermediate layer 20 is a nonmagnetic layer and is formed of a nonmagnetic metal such as Ru, Cu, Ir, or Rh, for example.
  • the intermediate layer 20 is formed on the first free layer 10 so as to cover at least a part of the first free layer 10.
  • This intermediate layer 20 serves to protect the first free layer 10 from damage caused by oxidation or etching during the manufacturing process described later. Plays. Therefore, it is preferable that the intermediate layer 20 be formed so as to cover the entire first free layer 10.
  • the intermediate layer 20 preferably has the same shape as the first free layer 10 in the XY plane.
  • the first free layer 10 and the second free layer 30 are magnetically coupled via the intermediate layer 20.
  • the magnetic coupling includes anti-ferromagnetic coupling, ferromagnetic coupling, static coupling, and static coupling.
  • the type of the 5 ⁇ 1 day bond is determined by adjusting the thickness of the intermediate layer 20. Since the first free layer 10 and the second free layer 30 are magnetically coupled, when the magnetization direction of the first free layer 10 changes, the magnetization of the second free layer 30 changes according to the change. The direction of changes.
  • the second free layer 30 is in contact with the tunnel barrier layer 50. That is, the MTJ is composed of the second free layer 30, the tunnel barrier layer 50 and the pinned layer 60. By detecting the resistance value of the MTJ, the data recorded in the magnetic memory cell 1 is read out. In that sense, the second free layer 30 may be referred to as a “sense layer”.
  • the second free layer 30 as the sense layer greatly contributes to the read characteristics (MR ratio, etc.) of the magnetic memory cell 1.
  • the first free layer 10 has a domain wall, and magnetization reversal in the first free layer 10 is realized by movement of the domain wall.
  • the first free layer 10 may be referred to as a “domain wall moving layer”.
  • the first free layer 10 plays the role of reversing the magnetization of the second free layer 30 and greatly contributes to the write characteristics (such as the magnitude of the write current).
  • the first free layer 10 as the domain wall motion layer will be described in detail.
  • FIG. 3 is a plan view showing an example of the structure of the first free layer 10 according to the present embodiment.
  • the first free layer 10 has a first magnetization fixed region 11, a second magnetization fixed region 12, and a magnetization switching region 13 which are three different regions. Those first magnetization fixed regions 1 1, the second magnetization fixed region 12 and the magnetization switching region 13 are formed on the same plane (XY plane).
  • the first magnetization fixed region 11 and the second magnetization fixed region 12 are formed to extend in the Y direction.
  • the magnetization switching region 13 is formed so as to extend in the X direction, and connects the first magnetization fixed region 11 and the second magnetization fixed region 12.
  • the first magnetization fixed region 11 and the magnetization switching region 13 are connected to each other at the first boundary B1, and the second magnetization fixed region 12 and the magnetization switching region 13 are connected to each other at the opposing second boundary B2.
  • the first and second magnetization fixed regions 11 and 12 and the magnetization switching region 13 are formed in a “U-shape” or a “concave shape”.
  • the direction of magnetization in each region is also indicated by arrows.
  • the magnetization directions of the first magnetization fixed region 11 and the second magnetization fixed region 12 are fixed. Specifically, the magnetization direction of the first magnetization fixed region 11 is fixed in the + Y direction. The direction is the direction away from the first boundary B1 (Away). Further, the magnetization direction of the second magnetization fixed region 12 is also fixed in the + Y direction. The direction is the direction away from the second boundary B2 (Away). That is, both the first magnetization fixed region 11 and the second magnetization fixed region 12 are formed such that their magnetization directions are separated from the magnetization reversal region 13. This means that the direction of magnetization of the first magnetization fixed region 11 and the direction force of magnetization of the second magnetization fixed region 12 are opposite to each other along the shape of the first free layer 10.
  • the magnetization direction of the magnetization switching region 13 is reversible and is the + X direction or the X direction.
  • the magnetization direction of the magnetization switching region 13 is in the + X direction, that is, when the magnetization is directed to the second boundary B2
  • the first magnetization fixed region 11 forms one magnetic domain
  • the inversion region 13 and the second magnetization fixed region 12 form separate magnetic domains. That is, a “domain wall” is formed at the first boundary B1.
  • the magnetization direction of the magnetization switching region 13 is the X direction, that is, when the magnetization is directed to the first boundary B1
  • the first magnetization fixed region 11 and the magnetization switching region 13 form one magnetic domain
  • the second magnetization fixed region 12 forms another magnetic domain. That is, a domain wall is formed at the second boundary B2.
  • the magnetization switching region 13 overlaps the second free layer 30.
  • the magnetization switching region 13 and the second free layer 30 are magnetically coupled via the intermediate layer 20. That is, if the magnetization direction of the magnetization switching region 13 changes, the change The magnetization direction of the second free layer 30 also changes according to the change. Data “0” or “1” is recorded depending on the relationship between the magnetization direction of the second free layer 30 and the fixed magnetization direction of the pinned layer 60. Therefore, at the time of data rewriting, it is only necessary to change the magnetization direction of the magnetization switching region 13.
  • the first write current IW1 flows to the second magnetization fixed region 12 through the first magnetization fixed region 11 and the magnetization switching region 13.
  • electrons spin electrons
  • the spin of the injected electrons affects the magnetic moment of the magnetization switching region 13.
  • the magnetization direction of the magnetization switching region 13 switches to the direction of the second boundary B2.
  • the magnetization of the magnetization switching region 13 is reversed and the direction of the magnetization is changed to the + X direction (spin injection magnetization switching).
  • the domain wall DW moves in the magnetization switching region 13 from the second boundary B2 to the first boundary B1 in accordance with the moving direction of the electrons.
  • the second write current IW 2 flows from the second magnetization fixed region 12 through the magnetization switching region 13 to the first magnetization fixed region 11.
  • electrons are injected from the first magnetization fixed region 11 into the magnetization switching region 13.
  • the magnetization of the magnetization switching region 13 is reversed and the magnetization direction is changed to the X direction.
  • the domain wall DW moves in the magnetization switching region 13 from the first boundary B1 to the second boundary B2 in accordance with the moving direction of the electrons.
  • the first magnetization fixed region 11 plays a role of supplying spin electrons in a certain direction to the magnetization switching region 13.
  • the second magnetization fixed region 12 plays a role of supplying spin electrons in the reverse direction to the magnetization switching region 13. Therefore, the magnetization direction of the magnetization switching region 13 can be changed to a desired direction by flowing a write current in the first free layer 10 in a direction corresponding to the data. This is It can also be described from the viewpoint of “Domain Wall Motion”. That is, the domain wall DW in the first free layer 10 goes back and forth between the first boundary B1 and the second boundary B2 like a “seesaw or flow meter” according to the moving direction of the electrons. The domain wall DW moves in the magnetization switching region 13, and the magnetization switching region 13 can also be referred to as a “domain wall moving region”. It can be said that the magnetic memory cell 1 according to the present embodiment stores data according to the position of the domain wall DW.
  • the spin injection is realized by a current flowing in the first free layer 10 in a plane.
  • the write currents FW1 and FW2 flow in a plane in the first free layer 10 that does not pass through the MTJ. Since the write currents I Wl and IW2 do not penetrate the MTJ, deterioration of the tunnel barrier layer 50 in the MTJ is suppressed.
  • the magnetization directions of the first magnetization fixed region 11 and the second magnetization fixed region 12 are not limited to the directions shown in FIG. 3 and FIG.
  • the magnetization direction of the first magnetization fixed region 11 and the magnetization direction of the second magnetization fixed region 12 may be opposite to each other along the shape of the first free layer 10.
  • FIG. 5 shows another example of the first free layer 10.
  • FIG. 5 is a diagram corresponding to FIG. 4, and redundant description will be omitted as appropriate.
  • the magnetization direction of the first magnetization fixed region 11 is fixed in the Y direction.
  • the direction is the direction toward the first boundary B1, the forward direction. Further, the magnetization direction of the second magnetization fixed region 12 is also fixed in the Y direction. The direction is the direction toward the second boundary B2. That is, the magnetization of the first magnetization fixed region 11 and the magnetization of the second magnetization fixed region 12 are both fixed to the magnetization reversal region 13 in the direction opposite to the magnetization direction, and are reversed along the shape of the first free layer 10. Facing the direction.
  • the magnetization direction of the magnetization switching region 13 is the + ⁇ direction, and the domain wall DW exists at the second boundary ⁇ 2.
  • the magnetization direction of the magnetization switching region 13 is the X direction, and the domain wall DW exists at the first boundary B 1.
  • the first write current IW1 flows to the second magnetization fixed region 12 through the first magnetization fixed region 11 and the magnetization switching region 13.
  • magnetization reversal Electrons are injected into the region 13 from the second magnetization fixed region 12.
  • the magnetization of the magnetization reversal region 13 is reversed and the magnetization direction is changed to the ⁇ X direction.
  • the domain wall DW moves from the second boundary B2 to the first boundary B1 in accordance with the moving direction of the electrons.
  • the second write current IW2 flows from the second magnetization fixed region 12 through the magnetization switching region 13 to the first magnetization fixed region 11.
  • electrons are injected into the magnetization switching region 13 from the first magnetization fixed region 11.
  • the magnetization of the magnetization switching region 13 is reversed, and the magnetization direction is changed to the + X direction.
  • the domain wall DW moves from the first boundary B1 to the second boundary B2.
  • FIG. 6 is a plan view showing still another example of the structure of the first free layer 10.
  • the first and second magnetization fixed regions 11 and 12 and the magnetization switching region 13 are formed in a “linear shape” along the X direction.
  • the magnetization direction of the first magnetization fixed region 11 is fixed in the X direction.
  • the direction is the direction away from the first boundary B1 (Away).
  • the magnetization direction of the second magnetization fixed region 12 is fixed in the + X direction.
  • the direction is the direction away from the second boundary B2 (Away).
  • the magnetization of the first magnetization fixed region 11 and the magnetization of the second magnetization fixed region 12 are both fixed in a direction away from the magnetization switching region 13 and are directed in opposite directions.
  • the magnetization direction of the magnetization reversal region 13 can be reversed, and is in the + X direction or the ⁇ X direction.
  • FIG. 7 shows magnetization reversal in the magnetization reversal region 13.
  • the magnetization direction of the magnetization switching region 13 is the X direction, and the domain wall DW exists at the second boundary B2.
  • the magnetization direction of the magnetization switching region 13 is the + X direction, and the domain wall DW exists at the first boundary B1.
  • the first write current IW1 flows through the first magnetization fixed region 11 and the magnetization switching region 13 to the second magnetization fixed region 12.
  • electrons are injected from the second magnetization fixed region 12 into the magnetization switching region 13.
  • the domain wall DW moves from the second boundary B2 to the first boundary B1 in accordance with the moving direction of the electrons.
  • the second write current IW2 is changed from the second magnetization fixed region 12 to the magnetization inversion region.
  • FIG. 8 shows still another example of the first free layer 10.
  • FIG. 8 is a diagram corresponding to FIG. 7, and redundant description is omitted as appropriate.
  • the magnetization direction of the first magnetization fixed region 11 is fixed in the + X direction.
  • the direction is the direction toward the first boundary B 1 and the forward direction. Further, the magnetization direction of the second magnetization fixed region 12 is fixed in the ⁇ X direction. The direction is the direction toward the second boundary B2. In other words, the magnetization of the first magnetization fixed region 11 and the magnetization of the second magnetization fixed region 12 are both fixed in the direction opposite to the magnetization reversal region 13 and are directed in opposite directions.
  • the magnetization direction of the magnetization switching region 13 is the + X direction, and the domain wall DW exists at the second boundary B2.
  • the magnetization direction of the magnetization switching region 13 is the X direction, and the domain wall DW exists at the first boundary B 1.
  • the first write current IW1 flows to the second magnetization fixed region 12 through the first magnetization fixed region 1 1 force and the magnetization switching region 13.
  • electrons are injected from the second magnetization fixed region 12 into the magnetization switching region 13.
  • the magnetization of the magnetization reversal region 13 is reversed and the magnetization direction is changed to the ⁇ X direction.
  • the domain wall DW moves from the second boundary B2 to the first boundary B1 in accordance with the moving direction of the electrons.
  • the second write current IW2 flows from the second magnetization fixed region 12 through the magnetization switching region 13 to the first magnetization fixed region 11.
  • electrons are injected into the magnetization switching region 13 from the first magnetization fixed region 11.
  • the magnetization of the magnetization switching region 13 is reversed, and the magnetization direction is changed to the + X direction.
  • the domain wall DW moves from the first boundary B 1 to the second boundary 2 in accordance with the electron moving direction.
  • a pinning layer (not shown) made of a magnetic material is provided in the vicinity of the magnetization fixed regions 11 and 12. Provided. Magnetization is fixed by magnetostatic coupling between the pinning layer and the magnetization fixed regions 11 and 12. Further, the pinning layer may be provided so as to be in close contact with the magnetization fixed regions 11 and 12. In that case, the magnetization is fixed by exchange coupling.
  • the magnetization may be fixed by utilizing magnetic anisotropy.
  • Figure 3 to Figure 3
  • the longitudinal direction of the first magnetization fixed region 11 and the second magnetization fixed region 12 is the Y direction
  • the longitudinal direction of the magnetization switching region 13 is the X direction. Therefore, the magnetization fixed regions 11 and 12 have magnetic anisotropy in the same direction, and the magnetization switching region 13 has magnetic anisotropy in a direction different from those of the magnetization fixed regions 11 and 12. Therefore, when the initial annealing process is performed, a magnetic field in the + Y direction or the Y direction is applied. As a result, the magnetization directions of the magnetization fixed regions 11 and 12 are maintained in the + Y direction or the Y direction due to magnetic anisotropy. In this case, there is no need to provide a peeling layer. That is, the “U-shape” shown in FIGS. 3 to 5 is a preferable shape from the viewpoint of magnetization fixation.
  • the magnetization switching region 13 of the first free layer 10 and the second free layer 30 are magnetically coupled via the intermediate layer 20.
  • the magnetic coupling include antiferromagnetic coupling, ferromagnetic coupling, and magnetostatic coupling.
  • the type of magnetic coupling is determined by adjusting the thickness of the intermediate layer 20.
  • FIG. 9 is a side view schematically showing the magnetic memory cell 1 in the case of antiferromagnetic coupling.
  • the magnetization switching region 13 and the second free layer 30 are antiferromagnetically coupled via the intermediate layer 20. Therefore, the magnetization direction of the second free layer 30 is opposite to the magnetization direction of the magnetization switching region 13.
  • the magnetization direction of the pinned layer 60 is fixed in the X direction.
  • Data “0” is associated when the magnetization direction of the second free layer 30 is in the —X direction.
  • the magnetization direction of the magnetization switching region 13 is the + X direction.
  • data “1” is associated when the magnetization direction of the second free layer 30 is the + X direction.
  • the magnetization direction of the magnetization switching region 13 is the X direction.
  • the MTJ resistance value is better when the data is “1”. It becomes larger than the case of data “0”.
  • a write current flows in a plane in the first free layer 10.
  • the magnetization direction of the magnetization switching region 13 is reversed.
  • the magnetization direction of the second free layer 30 is also reversed.
  • a read current is supplied so as to flow between the pinned layer 60 and the second free layer 30.
  • the read current is transferred from the pinned layer 60 to the first magnetization fixed region 11 and the second magnetization fixed region 12 via the tunnel barrier layer 50, the second free layer 30, the intermediate layer 20, and the magnetization switching region 13. Flow to either.
  • the MTJ resistance value is detected, and the direction of magnetization of the second free layer 30 (sense layer) is sensed.
  • FIG. 10 is a side view schematically showing the magnetic memory cell 1 in the case of ferromagnetic coupling.
  • the magnetization switching region 13 and the second free layer 30 are ferromagnetically coupled via the intermediate layer 20. Therefore, the magnetization direction of the second free layer 30 is the same as the magnetization direction of the magnetization switching region 13.
  • the magnetization direction of the pinned layer 60 is fixed in the X direction.
  • Data “0” is associated when the magnetization direction of the second free layer 30 is in the —X direction. At this time, the magnetization direction of the magnetization switching region 13 is the ⁇ X direction.
  • data “1” is associated when the magnetization direction of the second free layer 30 is the + X direction. At this time, the magnetization direction of the magnetization switching region 13 is the + X direction.
  • the MTJ resistance value is greater for data “1” than for data “0”.
  • FIG. 11 is a side view schematically showing the magnetic memory cell 1 in the case of magnetostatic coupling.
  • the magnetization switching region 13 and the second free layer 30 have neither antiferromagnetic coupling nor ferromagnetic coupling.
  • the magnetization switching region 13 and the second free layer 30 are mutually connected by a leakage magnetic field from the domain wall. Is magnetically coupled to Therefore, the magnetization direction of the second free layer 30 is opposite to the magnetization direction of the magnetization switching region 13.
  • the magnetization direction of the pinned layer 60 is fixed in the X direction.
  • Data “0” is associated when the magnetization direction of the second free layer 30 is in the —X direction.
  • the magnetization direction of the magnetization switching region 13 is the + X direction.
  • data “1” is associated when the magnetization direction of the second free layer 30 is the + X direction.
  • the magnetization direction of the magnetization switching region 13 is the X direction.
  • the MTJ resistance value is greater for data “1” than for data “0”.
  • the first ferromagnetic layer 10 as the first free layer 10 is formed on the seed layer 5.
  • the seed layer 5 is a layer for controlling crystal growth when the first ferromagnetic layer 10 is formed.
  • the material of the seed layer 5 a material having high electrical resistance is used.
  • the first ferromagnetic layer 10 include ferromagnetic metal layers such as NiFe, CoFe, and NiFeCo.
  • the first ferromagnetic layer 10 may contain a nonmagnetic element such as B, C, 0, or Zr as an additive.
  • the intermediate layer 20 is formed on the first ferromagnetic layer 10.
  • the intermediate layer 20 is a nonmagnetic layer, and is formed of a nonmagnetic metal such as Ru, Cu, Ir, or Rh, for example.
  • the thickness of this intermediate layer 20 is designed to achieve the desired magnetic coupling between the first free layer 10 and the second free layer 30.
  • the intermediate layer 20 serves to protect the first ferromagnetic layer 10 from damage caused by oxidation or etching.
  • the second ferromagnetic layer 30 as the second free layer 30 is formed on the intermediate layer 20.
  • Examples of the second ferromagnetic layer 30 include ferromagnetic metal layers such as NiFe, CoFe, and NiFeCo.
  • the second ferromagnetic layer 30 may contain nonmagnetic elements such as B, C, 0, and Zr as additives. good.
  • the tunnel barrier layer 50 is a thin insulating film.
  • the insulation film Al O film, SiO
  • Examples include 2 3 2 films, MgO films, and A1N films.
  • a nonmagnetic metal such as Cu, Zn, Au, Ag, or Al can also be used as the tunnel barrier layer 50.
  • the third ferromagnetic layer 60 as the pinned layer 60 is formed on the tunnel barrier layer 50.
  • An example of the third ferromagnetic layer 60 is a CoFe film.
  • an antiferromagnetic layer 70 for fixing the magnetization direction of the third ferromagnetic layer 60 is formed on the third ferromagnetic layer 60.
  • a cap layer 75 is formed on the antiferromagnetic layer 70. In this way, the laminated structure shown in FIG. 12 is obtained.
  • a mask 80 having a predetermined pattern is formed on the laminated structure by photolithography.
  • etching using the mask 80 is performed.
  • the etching for example, reactive gas etching (RIE) or ion milling is performed.
  • the intermediate layer 20 is used as an “etching stop layer”. That is, the cap layer 75, the antiferromagnetic layer 70, the third ferromagnetic layer 60, the tunnel barrier layer 50, and the second free layer 30 are sequentially etched until the intermediate layer 20 is exposed.
  • the domain wall DW moves in the magnetization switching region 13 of the first free layer 10 during the write operation. If the surface of the magnetization switching region 13 is damaged by reactive gas, ions, radicals, etc. during etching, the domain wall will not move smoothly in the magnetization switching region 13.
  • the first ferromagnetic layer 10 is protected from damage by the etching stop layer 20 (intermediate layer 20). Accordingly, during the write operation, the domain wall movement in the magnetization switching region 13 is performed smoothly, that is, the domain wall mobility is improved.
  • the intermediate layer 20 and the first ferromagnetic layer 10 are patterned. As a result, the structure of the first free layer 10 according to this embodiment is obtained (see FIGS. 2 to 8).
  • the intermediate layer 20 may have the same planar shape as the first free layer 10. For the above reason, it is preferable that the intermediate layer 20 covers at least the magnetization switching region 13 of the first free layer 10. In addition, the first The magnetization directions of the first magnetization fixed region 11 and the second magnetization fixed region 12 of the single layer 10 are fixed. Magnetization is fixed as described in Sections 2-5 above.
  • an interlayer insulating film 85 is formed on the entire surface, and CMP (Chemical Mechanical Polishing) is performed. Subsequently, a via hole is formed so as to reach the cap layer 75, and a via 90 is formed by burying a metal in the via hole. Further, an upper electrode 95 connected to the via 90 is formed. In this way, the magnetic memory cell 1 according to this example is manufactured.
  • CMP Chemical Mechanical Polishing
  • the write current scaling is improved as compared to the asteroid method and the toggle method.
  • the reversal magnetic field necessary for reversing the magnetization of the magnetization reversal region is substantially in inverse proportion to the memory cell size. That is, the write current tends to increase as the memory cell is miniaturized.
  • the magnetization reversal threshold depends on the current density. Since the current density increases as the memory cell size is reduced, the write current can be reduced as the memory cell size is reduced. In other words, it is not necessary to increase the write current even if the memory cell size is reduced. In this sense, the write current scaling is improved. This is important for realizing large-capacity MRAM.
  • the current magnetic field conversion efficiency increases as compared with the asteroid method and the toggle method.
  • the write current is consumed by Joule heat.
  • it was necessary to provide dedicated wiring such as a flux keeper or yoke structure. This can lead to complex manufacturing processes and wiring inductance. Increases the chances.
  • the write current directly contributes to the spin transfer. Therefore, the current magnetic field conversion efficiency increases. This prevents the manufacturing process from becoming complicated and the wiring inductance from increasing.
  • the degradation of MTJ is suppressed.
  • the write current is injected perpendicular to the film surface.
  • the write current at the time of data writing may destroy the large current force S tunnel barrier layer 50 which is much larger than the read current.
  • the current path for reading and the current path for writing are separated. Specifically, when writing data, the write currents IW 1 and IW 2 do not pass through the MTJ and flow in the plane of the first free layer 10. When writing data, it is not necessary to inject a large current perpendicular to the MTJ film surface. Therefore, deterioration of the tunnel barrier layer 50 in the MTJ is suppressed.
  • the writing speed increases with the miniaturization of the memory cell. This is because in this embodiment, data writing is realized by domain wall motion in the first free layer 10.
  • the reduction in the memory cell size means that the moving distance of the domain wall DW is reduced. Therefore, the writing speed increases with the reduction of the memory cell size.
  • the magnetic recording layer 40 of the domain wall motion type MRAM includes a plurality (two or more) of free layers that are magnetically coupled.
  • the effects of such a structure are as follows:
  • the domain wall moves in the magnetization switching region 13 of the first free layer 10.
  • the intermediate layer 20 is formed so as to cover at least the magnetization switching region 13.
  • the intermediate layer 20 serves to protect the magnetization reversal region 13 from damage caused by oxidation or etching during the manufacturing process. If there is no intermediate layer 20 covering the magnetization switching region 13, the surface of the magnetization switching region 13 is damaged by reactive gases, ions, radicals, and the like during etching. Then, the domain wall does not move smoothly in the magnetization switching region 13. However, according to the present embodiment, the magnetization switching region 13 is protected from damage by the intermediate layer 20. Accordingly, the domain wall moving force S in the magnetization switching region 13 is performed smoothly, that is, the domain wall mobility is improved. As a result, domain wall motion Improved reliability and yield of type MRAM.
  • the magnetic recording layer 40 has the first free layer 10 and the second free layer 30 separately.
  • the first free layer 10 is a domain wall moving layer in which the domain wall moves, and greatly contributes to the write characteristics (the magnitude of the write current).
  • the second free layer 30 in contact with the tunnel barrier layer 50 is a sense layer that forms an MTJ together with the pinned layer 60, and greatly contributes to read characteristics (MR ratio, etc.). Therefore, according to the structure of this embodiment, it is possible to independently control the write characteristics and the read characteristics.
  • the write characteristics are mainly governed by the first free layer 10
  • a material NiFe or the like
  • the read characteristics are mainly controlled by the second free layer 30, it is necessary to use a material S (CoFe, CoFeB, etc.) that enhances the read characteristics as the material of the second free layer 30.
  • the write current required for magnetization reversal can be reduced.
  • the saturation magnetization of the magnetic layer decreases, the polarizability of the magnetic layer decreases.
  • the MR ratio decreases.
  • the first free layer 10 and the second free layer 30 can be designed independently. Therefore, it is possible to design the saturation magnetization of the first free layer 10 to be relatively small and to design the saturation magnetization of the second free layer 30 to be relatively large. This makes it possible to achieve both an increase in MR ratio (read margin) and a reduction in write current.
  • the characteristics of the first free layer 10 and the second free layer 30 can be controlled independently and freely. This means an improvement in the degree of freedom in device design, and it is possible to improve both the write and read characteristics. And this merit is not obtained by CPP spin injection method.
  • both the write and read characteristics are governed by the ferromagnetic layer adjacent to the tunnel barrier layer.
  • the spin injection method uses a planar write current, the above advantage cannot be obtained if there is only one free layer (when there is no second free layer 30). That This is because the first free layer 10 in which the domain wall moves simultaneously becomes one end of the MTJ and affects both the write characteristics and the read characteristics.
  • the above-described effects can be obtained simultaneously.
  • the technology according to this embodiment is extremely useful for realizing high-integration, high-speed operation, and low power consumption MRAM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 本発明に係るMRAMは、ピン層60と、トンネルバリヤ層50を介してピン層60に接続された磁気記録層40とを備える。磁気記録層40は、第1フリー層10と、トンネルバリヤ層50に接触する第2フリー層30と、第1フリー層10と第2フリー層30との間に設けられた中間層20とを有する。第1フリー層10は、磁化反転領域13と、第1磁化固定領域11と、第2磁化固定領域12とを含む。磁化反転領域13は、反転可能な磁化を有し、第2フリー層30とオーバーラップする。第1磁化固定領域11は、磁化反転領域13の第1境界B1に接続され、その磁化の向きは第1方向に固定される。一方、第2磁化固定領域12は、磁化反転領域13の第2境界B2に接続され、その磁化の向きは第2方向に固定される。第1方向及び第2方向は共に、磁化反転領域13へ向かう方向、又は、磁化反転領域13から離れる方向である。中間層20は、少なくとも磁化反転領域13を覆うように形成される。その磁化反転領域13と第2フリー層30は、中間層20を介して磁気的に結合している。

Description

明 細 書
磁気ランダムアクセスメモリ及びその製造方法
技術分野
[0001] 本出願は、 2006年 12月 6日に出願された日本国特許出願 2006— 329810に基 づいており、優先権の利益を主張する。当該特許出願の開示内容は全て、参照する ことによりここに糸且み込まれる。
[0002] 本発明は、磁気ランダムアクセスメモリ(MRAM: Magnetic Random Access Memor y)に関する。特に、本発明は、スピン注入方式の MRAM及びその製造方法に関す 背景技術
[0003] MRAMは、高集積 ·高速動作の観点から有望な不揮発性メモリである。 MRAMに おいては、 TMR (Tunnel MagnetoResistance)効果などの「磁気抵抗効果」を示す磁 気抵抗素子が利用される。その磁気抵抗素子には、例えばトンネルバリヤ層が 2層の 強磁性層で挟まれた磁気トンネル接合(MTJ; Magnetic Tunnel Junction)が形成され る。その 2層の強磁性層は、磁化の向きが固定されたピン層(pinned layer)と、磁化の 向きが反転可能なフリー層(free layer)である。
[0004] ピン層とフリー層の磁化の向き力 反平行"である場合の MTJの抵抗値 (R+ A R) は、磁気抵抗効果により、それらが"平行"である場合の抵抗値 (R)よりも大きくなるこ とが知られている。 MRAMは、この MTJを有する磁気抵抗素子をメモリセルとして用 い、その抵抗値の変化を利用することによってデータを不揮発的に記憶する。メモリ セルに対するデータの書き込みは、フリー層の磁化の向きを反転させることによって 行われる。
[0005] MRAMに対するデータの書き込み方法として、従来、「ァステロイド方式」や「トグ ル方式」が知られている。これらの書き込み方式によれば、メモリセルサイズにほぼ反 比例して、フリー層の磁化を反転させるために必要な反転磁界が大きくなる。つまり、 メモリセルが微細化されるにつれて、書き込み電流が増加する傾向にある。
[0006] 微細化に伴う書き込み電流の増加を抑制することができる書き込み方式として、「ス ピン注入(spin transfer)方式」が提案されている。例えば、特開 2005— 93488号公 幸! ¾、ある ヽ (ュ、 fagami ana Suzuki, Research frenas in Spin Transfer Magnetization S witching, 日本応用磁気学会誌, Vol. 28, No. 9, 2004、を参照されたい。スピン注入 方式によれば、強磁性導体にスピン偏極電流(spin-polarized current)が注入され、 その電流を担う伝導電子のスピンと導体の磁気モーメントとの間の直接相互作用によ つて磁化が反転する(以下、「スピン注入磁化反転: Spin Transfer Magnetization Swit ching」と参照される)。スピン注入磁化反転の概略を、図 1を参照することによって説 明する。
[0007] 図 1において、磁気抵抗素子は、フリー層 101、ピン層 103、及びフリー層 101とピ ン層 103に挟まれた非磁性層であるトンネルバリヤ層 102を備えている。ここで、磁化 の向きが固定されたピン層 103は、フリー層 101よりも厚くなるように形成されており、 スピン偏極電流を作る機構 (スピンフィルター)としての役割を果たす。フリー層 101と ピン層 103の磁化の向きが平行である状態は、データ" 0"に対応付けられ、それらが 反平行である状態は、データ" 1 "に対応付けられている。
[0008] 図 1に示されるスピン注入磁化反転は、 CPP (Current Perpendicular to Plane)方式 により実現され、書き込み電流は膜面に垂直に注入される。具体的には、データ" 0" 力、らデータ' ' 1"への遷移時、電流はピン層 103からフリー層 101へ流れる。この場合 、スピンフィルターとしてのピン層 103と同じスピン状態を有する電子力 フリー層 101 力もピン層 103に移動する。そして、スピントランスファー(スピン角運動量の授受)効 果により、フリー層 101の磁化が反転する。一方、データ";! "からデータ" 0"への遷移 時、電流はフリー層 101からピン層 103へ流れる。この場合、スピンフィルタ一として のピン層 103と同じスピン状態を有する電子力 ピン層 103からフリー層 101に移動 する。スピントランスファー効果により、フリー層 101の磁化が反転する。
[0009] このように、スピン注入磁化反転では、スピン電子の移動によりデータの書き込みが 行われる。膜面に垂直に注入されるスピン偏極電流の方向により、フリー層 101の磁 化の向きを規定することが可能である。この時の書き込み (磁化反転)の閾値は電流 密度に依存することが知られている。従って、メモリセルサイズが縮小されるにつれ、 磁化反転に必要な書き込み電流が減少する。メモリセルの微細化に伴って書き込み 電流が減少するため、スピン注入磁化反転は、 MRAMの大容量化の実現にとって 重要である。
[0010] 関連する技術として、スピン注入による磁性体中の磁壁の移動力 特開 2006— 73 930号公報及び特開 2005— 191032号公報に記載されている。
[0011] 特開 2006— 73930号公報に記載された磁気メモリ素子は、第 1の磁性層と、中間 層と、第 2の磁性層とを有する。第 1の磁性層の磁化の方向と第 2の磁性層の磁化の 方向との関係に基づいて、情報が記録される。ここで、少なくとも一方の磁性層内に、 互いに反平行磁化となる磁区とそれらの磁区を隔てる磁壁が定常的に形成される。 その磁壁を磁性層内で移動させることにより、隣り合う磁区の位置が制御され、情報 の記録が fiわれる。
[0012] 特開 2005— 191032号公報に記載された磁気記憶装置は、磁化が固定された磁 化固定層と、磁化固定層上に積層されたトンネル絶縁層と、トンネル絶縁層に積層さ れた磁化自由層とを備える。磁化自由層は、トンネル絶縁層及び磁化固定層と重な る接合部、接合部の両端に隣接するくびれ部、及びくびれ部に隣接形成された一対 の磁化固定部を有する。一対の磁化固定部には、互いに反対向きの固定磁化が付 与されている。更に、磁気記憶装置は、一対の磁化固定部に電気的に接続された一 対の磁気情報書き込み用端子を備える。この一対の磁気情報書き込み用端子により 、磁化自由層の接合部、一対のくびれ部及び一対の磁化固定部を貫通する電流が ィしれ · 0
[0013] 更に、磁性体中の磁壁の移動は、特開 2005— 150303号公報や、 Yamaguchi et al., PRし, Vol. 92, pp. 077205-1, 2004、などにも記載されている。
発明の開示
[0014] 本発明の目的は、スピン注入による磁壁移動(Domain Wall Motion)を用いた新た な MRAMを提供することにある。
[0015] 本発明の他の目的は、スピン注入による磁壁移動を用いた MRAMにおいて、その 磁壁の移動度を向上させることができる技術を提供することにある。
[0016] 本発明の更に他の目的は、スピン注入による磁壁移動を用いた MRAMに関して、 書き込み特性と読み出し特性を共に向上させることができる技術を提供することにあ [0017] 本発明によれば、スピン注入による磁壁の移動を用いた MRAM (磁壁移動型 MR AM)が提供される。本発明に係る MRAMは、磁化の向きが固定されたピン層と、第 1非磁性層を介してピン層に接続された磁気記録層とを備えている。磁気記録層は、 第 1フリー層と、第 2フリー層と、第 1フリー層と第 2フリー層との間に設けられた第 2非 磁性層とを有している。第 2フリー層は、第 1非磁性層に接触しており、また、反転可 能な磁化を有している。つまり、ピン層と第 1非磁性層と第 2フリー層によって、 MTJが 構成されている。
[0018] 第 1フリー層は、磁化反転領域と、第 1磁化固定領域と、第 2磁化固定領域とを含ん でいる。磁化反転領域は、反転可能な磁化を有し、また、第 2フリー層とオーバーラッ プしている。第 1磁化固定領域は、磁化反転領域の第 1境界に接続されており、その 磁化の向きは第 1方向に固定されている。一方、第 2磁化固定領域は、磁化反転領 域の第 2境界に接続されており、その磁化の向きは第 2方向に固定されている。第 1 方向及び第 2方向は共に、磁化反転領域 向かう方向、又は、磁化反転領域から離 れる方向である。磁化反転領域の磁化は、第 1境界及び第 2境界のいずれか 向く 。よって、第 1フリー層において、磁壁が第 1境界及び第 2境界のいずれかに形成さ れる。
[0019] 本発明によれば、第 2非磁性層は、少なくとも磁化反転領域を覆うように形成されて いる。そして、第 1フリー層の磁化反転領域と第 2フリー層は、第 2非磁性層を介して 磁気的に結合している。つまり、磁化反転領域の磁化の向きが変化した場合、その 変化に応じて、第 2フリー層の磁化の向きも変化する。その第 2フリー層の磁化の向き とピン層の固定磁化の向きとの関係によって、データ" 0"あるいは";! "が記録される。 データの書き換え時には、第 1フリー層の磁化反転領域の磁化の向きを変化させれ ばよい。
[0020] 磁化反転領域の磁化の向きの反転は、スピン注入方式により行われる。そのスピン 注入は、第 1フリー層内を平面的に流れる書き込み電流により実現可能である。それ は、第 1フリー層が上述のような構造を有しているからである。上述の第 1フリー層に おいて、第 1磁化固定領域は、ある方向のスピン電子を磁化反転領域に供給する役 割を果たしている。一方、第 2磁化固定領域は、逆方向のスピン電子を磁化反転領 域に供給する役割を果たしている。よって、第 1フリー層内に書き込み電流をデータ に応じた方向で流すことによって、磁化反転領域の磁化の向きを所望の向きに変え ること力 Sでさる。
[0021] 具体的には、第 1書き込み動作時、第 1書き込み電流が、第 1磁化固定領域から磁 化反転領域を通って第 2磁化固定領域に流される。これにより、第 2磁化固定領域か ら磁化反転領域に向けてスピン注入が行われる。その結果、磁化反転領域において 磁壁が第 2境界から第 1境界に移動する。一方、第 2書き込み動作時、第 2書き込み 電流が、第 2磁化固定領域から磁化反転領域を通って第 1磁化固定領域に流される 。これにより、第 1磁化固定領域から磁化反転領域に向けてスピン注入が行われる。 その結果、磁化反転領域において磁壁が第 1境界から第 2境界に移動する。このよう に、磁壁の移動によってデータ書き込みが実現される。
[0022] 以上に説明されたように、本発明に係る書き込み方式によれば、書き込み電流は、 MTJを貫通する方向ではなぐ第 1フリー層内を平面的に流れる。書き込み電流が M TJを貫通しないため、 MTJにおける第 1非磁性層の劣化が抑制される。
[0023] また、書き込み動作時、上述の通り、磁壁は第 1フリー層の磁化反転領域中を移動 する。本発明によれば、第 2非磁性層は、その磁化反転領域を少なくとも覆うように形 成されている。この第 2非磁性層は、製造プロセス中の酸化やエッチングによるダメー ジ力 磁化反転領域を保護する役割を果たしている。もし、磁化反転領域を覆う第 2 非磁性層がなければ、エッチングの際の反応性ガス、イオン、ラジカルなどによって、 磁化反転領域の表面はダメージを受けてしまう。そうなると、磁化反転領域中で磁壁 力 Sスムーズに移動しなくなる。しかしながら、本発明によれば、第 2非磁性層によって
、磁化反転領域はダメージから保護される。従って、磁化反転領域における磁壁移 動がスムーズに行われる、すなわち、磁壁の移動度が向上する。結果として、磁壁移 動型 MRAMの信頼性及び歩留まりが向上する。
[0024] 更に、本発明によれば、磁気記録層は、第 1フリー層と第 2フリー層を別々に有して いる。このうち第 1フリー層は、磁壁が移動する層であり、書き込み特性(書き込み電 流の大きさなど)に大きく寄与している。一方、第 1非磁性層に接触する第 2フリー層 は、ピン層と共に MTJを構成する層であり、読み出し特性 (MR比など)に大きく寄与 している。従って、本発明に係る構造によれば、書き込み特性と読み出し特性をそれ ぞれ独立に制御することが可能である。
[0025] 例えば、スピン注入方式の場合、磁性層の飽和磁化が小さくなるにつれて、磁化反 転に必要な書き込み電流を低減することができる。一方で、磁性層の飽和磁化が減 少すると、その磁性層の分極率が低下する。その場合、 TMR効果が減少するため、 MR比が低下してしまう。すなわち、 MR比の向上と書き込み電流の低減との間には 、一般的にトレードオフの関係が存在する。し力、しながら、本発明によれば、第 1フリ 一層と第 2フリー層をそれぞれ独立に設計することが可能である。よって、第 1フリー 層の飽和磁化を比較的小さく設計し、第 2フリー層の飽和磁化を比較的大きく設計す ること力 Sできる。それにより、 MR比(読み出しマージン)の増加と書き込み電流の低減 とを両立させることが可能となる。
[0026] このように、本発明によれば、第 1フリー層と第 2フリー層の特性を独立して自由にコ ントロールすること力 Sできる。これは、素子設計の自由度の向上を意味し、書き込み特 性と読み出し特性を共に向上させることが可能となる。そして、このメリットは、 CPPス ピン注入方式では得られない。それは、 CPPスピン注入方式の場合、書き込み特性 も読み出し特性も、トンネルバリヤ層に隣接する強磁性層によって支配されるからで ある。また、平面的な書き込み電流によるスピン注入方式であっても、フリー層が 1層 だけの場合(第 2フリー層が無い場合)、上記メリットは得られない。それは、磁壁が移 動する第 1フリー層が、同時に MTJの一端となり、書き込み特性と読み出し特性の両 方に影響を与えてしまうからである。
[0027] 本発明によれば、スピン注入による磁壁移動を用いた磁壁移動型 MRAMが提供 される。その磁壁移動型 MRAMの製造プロセスにおいて、磁壁が移動する層(磁壁 移動層)に対するダメージが防止される。従って、磁壁移動層における磁壁の移動が スムーズに行われる、すなわち、磁壁の移動度が向上する。結果として、磁壁移動型 MRAMの信頼性及び歩留まりが向上する。更に、本発明に係る磁壁移動型 MRA Mによれば、読み出しマージンの増加と書き込み電流の低減とを両立させることが可 能となる。すなわち、書き込み特性と読み出し特性を共に向上させることが可能となる 図面の簡単な説明
[0028] [図 1]図 1は、スピン注入方式によるデータ書き込みを説明するための図である。
[図 2]図 2は、本発明の実施例に係る磁気メモリセルの構造の一例を示す全体図であ
[図 3]図 3は、本発明の実施例に係る磁壁移動層の一例を示す平面図である。
[図 4]図 4は、図 3に示された磁壁移動層における磁壁移動を示す概念図である。
[図 5]図 5は、本発明の実施例に係る磁壁移動層の他の例と、その磁壁移動層にお ける磁壁移動を示す概念図である。
[図 6]図 6は、本発明の実施例に係る磁壁移動層の更に他の例を示す平面図である
[図 7]図 7は、図 6に示された磁壁移動層における磁壁移動を示す概念図である。
[図 8]図 8は、本発明の実施例に係る磁壁移動層の更に他の例と、その磁壁移動層 における磁壁移動を示す概念図である。
[図 9]図 9は、本発明の実施例に係る磁気メモリセルの構造の一例を示す側面図であ [図 10]図 10は、本発明の実施例に係る磁気メモリセルの構造の他の例を示す側面 図である。
[図 11]図 11は、本発明の実施例に係る磁気メモリセルの構造の更に他の例を側面 図である。
[図 12]図 12は、本発明の実施例に係る磁気メモリセルの製造工程を示す断面図で ある。
[図 13]図 13は、本発明の実施例に係る磁気メモリセルの製造工程を示す断面図で ある。
[図 14]図 14は、本発明の実施例に係る磁気メモリセルの製造工程を示す断面図で ある。
発明を実施するための最良の形態
[0029] 添付図面を参照して、本発明の実施例に係る MRAM及びその製造方法を説明す る。本実施例に係る MRAMは、スピン注入による磁壁移動を用いる「磁壁移動型の MRAM」である。また、本実施例に係る MRAMは、アレイ状に配置された複数の磁 気メモリセルを有しており、各磁気メモリセルが MTJを有している。
[0030] 1.磁気メモリセルの全体構造
図 2は、本実施例に係る磁気メモリセル 1 (磁気抵抗素子)の構造の一例を示してい る。磁気メモリセル 1は、磁気記録層 40、トンネルバリヤ層 50、及びピン層 60を有し ている。トンネルバリヤ層 50は、磁気記録層 40とピン層 60に挟まれている。
[0031] ピン層 60は強磁性層であり、その磁化の向き(orientation)は固定されている。具体 的には、ピン層 60は、トンネルバリヤ層 50に隣接した強磁性体膜を含んでおり、その 強磁性体膜の磁化の向き(orientation)は実質的に一方向に固定されている。例え ば、ピン層 60は、強磁性体膜として CoFe膜を含んでいる。例えば、ピン層 60は、 Co Fe/Ru/CoFe/PtMnの積層膜である。
[0032] トンネルバリヤ層 50は、非磁性層である。例えば、トンネルバリヤ層 50は、薄い絶縁 膜である。その絶縁膜として、 Al O膜、 SiO膜、 MgO膜、 A1N膜が例示される。ま
2 3 2
たその他に、トンネノレバリヤ層 50として、 Cu, Zn, Au, Ag, Alなどの非磁性金属を 用いることあでさる。
[0033] 磁気記録層 40は、トンネルバリヤ層 50を介してピン層 60に接続されている。より詳 細には、磁気記録層 40は、第 1フリー層 10、中間層 20、及び第 2フリー層 30を含ん でいる。中間層 20は、第 1フリー層 10と第 2フリー層 30との間に設けられている。この うち、第 2フリー層 30がトンネルバリヤ層 50に接触している。
[0034] 第 1フリー層 10及び第 2フリー層 30は、強磁性層であり、反転可能な磁化を有して いる。第 1フリー層 10及び第 2フリー層 30は、例えば NiFe、 CoFe, NiFeCoなどの 強磁性金属で形成されている。第 1フリー層 10及び第 2フリー層 30は、添加物として B、 C、 0、 Zrなどの非磁性元素を含んでいても良い。
[0035] 一方、中間層 20は、非磁性層であり、例えば Ru、 Cu、 Ir、 Rhなどの非磁性金属で 形成されている。本実施例において、中間層 20は、第 1フリー層 10上に、第 1フリー 層 10の少なくとも一部を覆うように形成されている。この中間層 20は、後述される製 造プロセス中の酸化やエッチングによるダメージから第 1フリー層 10を保護する役割 を果たしている。そのため、中間層 20は、第 1フリー層 10の全体を覆うように形成され ること力 S好ましい。言い換えれば、中間層 20は、 XY平面において、第 1フリー層 10と 同じ形状を有していることが好適である。
[0036] 第 1フリー層 10と第 2フリー層 30は、中間層 20を介して磁気的に結合している。そ の磁気的結合としては、反強磁性結合(anti-ferromagnetic coupling)、強磁性結合(f erromagnetic coupling)ゝ青 ¾&結合、 static couplingリカ、孕 られ ό。その揪 5^1日勺結合 の種類は、中間層 20の厚さを調整することにより決定される。第 1フリー層 10と第 2フ リー層 30が磁気的に結合しているため、第 1フリー層 10の磁化の向きが変化した場 合、その変化に応じて、第 2フリー層 30の磁化の向きも変化する。
[0037] 上述の通り、第 2フリー層 30はトンネルバリヤ層 50に接触している。つまり、第 2フリ 一層 30とトンネノレバリヤ層 50とピン層 60によって、 MTJが構成されている。その MTJ の抵抗値を検出することによって、磁気メモリセル 1に記録されたデータが読み出さ れる。その意味で、第 2フリー層 30は「センス層」と参照される場合がある。センス層と しての第 2フリー層 30は、磁気メモリセル 1の読み出し特性 (MR比など)に大きく寄与 する。
[0038] 一方、データの書き込みは、第 2フリー層 30の磁化の向きを反転させることにより行 われる。第 2フリー層 30の磁化の向きを変えるためには、第 1フリー層 10の磁化を反 転させればよい。次節で示されるように、本実施例に係る第 1フリー層 10は、磁壁を 有しており、第 1フリー層 10における磁化反転は、その磁壁の移動により実現される 。その意味で、第 1フリー層 10は「磁壁移動層」と参照される場合がある。第 1フリー 層 10は、第 2フリー層 30の磁化を反転させる役割を果たしており、書き込み特性(書 き込み電流の大きさなど)に大きく寄与する。以下、磁壁移動層としての第 1フリー層 10を詳細に説明する。
[0039] 2.磁壁移動層
2 - 1.構造例 1
図 3は、本実施例に係る第 1フリー層 10の構造の一例を示す平面図である。図 3に 示されるように、第 1フリー層 10は、 3つの異なる領域である第 1磁化固定領域 11、第 2磁化固定領域 12、及び磁化反転領域 13を有している。それら第 1磁化固定領域 1 1、第 2磁化固定領域 12、及び磁化反転領域 13は、同一平面 (XY面)上に形成され ている。第 1磁化固定領域 11及び第 2磁化固定領域 12は、 Y方向に延びるように形 成されている。一方、磁化反転領域 13は、 X方向に延びるように形成されており、第 1磁化固定領域 11と第 2磁化固定領域 12との間をつないでいる。第 1磁化固定領域 11と磁化反転領域 13は、第 1境界 B1において互いに接続しており、第 2磁化固定 領域 12と磁化反転領域 13は、対向する第 2境界 B2において互いに接続している。 言い換えれば、図 3において、第 1、第 2磁化固定領域 11、 12、及び磁化反転領域 1 3は、 "U字型"、又は、 "凹型"に形成されている。
[0040] 図 3には、各領域の磁化の向きも矢印によって示されている。第 1磁化固定領域 11 及び第 2磁化固定領域 12の磁化の向きは固定されている。具体的には、第 1磁化固 定領域 11の磁化の向きは、 +Y方向に固定されている。その向きは、第 1境界 B1か ら離れる (Away)方向である。また、第 2磁化固定領域 12の磁化の向きも、 +Y方向 に固定されている。その向きは、第 2境界 B2から離れる(Away)方向である。つまり、 第 1磁化固定領域 11と第 2磁化固定領域 12は共に、それらの磁化の向きが磁化反 転領域 13から離れるように形成されている。これは、第 1磁化固定領域 11の磁化の 向きと第 2磁化固定領域 12の磁化の向き力 第 1フリー層 10の形状に沿って逆向き であることを意味する。
[0041] 一方、磁化反転領域 13の磁化の向きは反転可能であり、 +X方向あるいは X方 向である。磁化反転領域 13の磁化の向きが + X方向の場合、すなわち、その磁化が 第 2境界 B2へ向いている場合、第 1磁化固定領域 11が 1つの磁区(magnetic domai n)を形成し、磁化反転領域 13と第 2磁化固定領域 12が別の磁区を形成する。つまり 、第 1境界 B1に「磁壁(domain wall)」が形成される。一方、磁化反転領域 13の磁化 の向きが X方向の場合、すなわち、その磁化が第 1境界 B1へ向いている場合、第 1磁化固定領域 11と磁化反転領域 13が 1つの磁区を形成し、第 2磁化固定領域 12 が別の磁区を形成する。つまり、第 2境界 B2に磁壁が形成される。
[0042] 本実施例によれば、この磁化反転領域 13が、上記第 2フリー層 30とオーバーラッ プしている。そして、磁化反転領域 13と第 2フリー層 30は、中間層 20を介して磁気 的に結合している。つまり、磁化反転領域 13の磁化の向きが変化した場合、その変 化に応じて、第 2フリー層 30の磁化の向きも変化する。その第 2フリー層 30の磁化の 向きとピン層 60の固定磁化の向きとの関係によって、データ" 0"あるいは" 1"が記録 される。よって、データの書き換え時には、磁化反転領域 13の磁化の向きを変化させ れば'よい。
[0043] 磁化反転領域 13の磁化の向きの反転、すなわち、データ書き込みは、スピン注入 方式により行われる。以下、データ書き込みの原理を、図 4を参照して説明する。図 4 において、状態(a)の場合、磁化反転領域 13の磁化の向きは— X方向であり、磁壁 DWは第 2境界 Β2に存在する。一方、状態 (b)の場合、磁化反転領域 13の磁化の 向きは + X方向であり、磁壁 DWは第 1境界 B1に存在する。
[0044] 状態(a)から状態 (b) の遷移時、第 1書き込み電流 IW1が、第 1磁化固定領域 11 力、ら磁化反転領域 13を通って第 2磁化固定領域 12に流れる。この場合、磁化反転 領域 13には、第 2磁化固定領域 12から電子 (スピン電子)が注入される。注入された 電子のスピンは、磁化反転領域 13の磁気モーメントに影響を及ぼす。その結果、磁 化反転領域 13の磁化の向きは、第 2境界 B2の方向へスィッチする。つまり、スピント ランスファー効果により、磁化反転領域 13の磁化が反転し、その磁化の向きが + X方 向に変わる (スピン注入磁化反転)。またこの時、磁壁 DWは、電子の移動方向と一 致して、磁化反転領域 13中を第 2境界 B2から第 1境界 B1へ移動している。
[0045] 一方、状態 (b)から状態(a) の遷移時、第 2書き込み電流 IW2が、第 2磁化固定 領域 12から磁化反転領域 13を通って第 1磁化固定領域 11に流れる。この場合、磁 化反転領域 13には、第 1磁化固定領域 11から電子が注入される。その結果、磁化 反転領域 13の磁化が反転し、その磁化の向きが X方向に変わる。またこの時、磁 壁 DWは、電子の移動方向と一致して、磁化反転領域 13中を第 1境界 B1から第 2境 界 B2へ移動している。
[0046] このように、スピン注入による磁化反転が実現される。第 1磁化固定領域 11は、ある 方向のスピン電子を磁化反転領域 13に供給する役割を果たしている。一方、第 2磁 化固定領域 12は、逆方向のスピン電子を磁化反転領域 13に供給する役割を果たし ている。よって、第 1フリー層 10内に書き込み電流をデータに応じた方向で流すこと によって、磁化反転領域 13の磁化の向きを所望の向きに変えることができる。これは 、「磁壁の移動(Domain Wall Motion)」という観点から述べることもできる。つまり、第 1 フリー層 10中の磁壁 DWは、電子の移動方向に応じて、第 1境界 B1と第 2境界 B2の 間を"シーソーあるいはフローメータ"のように行き来する。磁壁 DWは磁化反転領域 13内を移動しており、磁化反転領域 13を「磁壁移動領域」と呼ぶことも可能である。 本実施例に係る磁気メモリセル 1は、磁壁 DWの位置によってデータを記憶している とあ言; ^る。
[0047] ここで着目すべきは、スピン注入が、第 1フリー層 10内を平面的に流れる電流により 実現されている点である。つまり、書き込み動作において、 MTJを貫通するような書き 込み電流を供給する必要がない。本実施例において、書き込み電流 FW1、 FW2は、 MTJを貫通する方向ではなぐ第 1フリー層 10内を平面的に流れる。書き込み電流 I Wl , IW2が MTJを貫通しないため、 MTJにおけるトンネルバリヤ層 50の劣化が抑 制される。
[0048] 2- 2.構造例 2
第 1磁化固定領域 11と第 2磁化固定領域 12の磁化の向きは、図 3や図 4で示され た方向に限られない。第 1磁化固定領域 11の磁化の向きと第 2磁化固定領域 12の 磁化の向きは、第 1フリー層 10の形状に沿って逆向きであればよい。図 5は、第 1フリ 一層 10の他の例を示している。図 5は図 4に相当する図であり、重複する説明は適宜 省略される。
[0049] 図 5において、第 1磁化固定領域 11の磁化の向きは、 Y方向に固定されている。
その向きは、第 1境界 B1へ向力、う(Toward)方向である。また、第 2磁化固定領域 12 の磁化の向きも、 Y方向に固定されている。その向きは、第 2境界 B2へ向かう(To ward)方向である。つまり、第 1磁化固定領域 11の磁化と第 2磁化固定領域 12の磁 化は、共に磁化反転領域 13へ向力、う方向に固定されており、第 1フリー層 10の形状 に沿って逆方向を向いている。状態(a)において、磁化反転領域 13の磁化の向きは + Χ方向であり、磁壁 DWは第 2境界 Β2に存在する。一方、状態 (b)において、磁化 反転領域 13の磁化の向きは X方向であり、磁壁 DWは第 1境界 B 1に存在する。
[0050] 状態(a)から状態 (b) の遷移時、第 1書き込み電流 IW1が、第 1磁化固定領域 11 力、ら磁化反転領域 13を通って第 2磁化固定領域 12に流れる。この場合、磁化反転 領域 13には、第 2磁化固定領域 12から電子が注入される。その結果、磁化反転領 域 13の磁化が反転し、その磁化の向きが—X方向に変わる。電子の移動方向に一 致して、磁壁 DWは、第 2境界 B2から第 1境界 B1へ移動する。一方、状態 (b)から状 態(a)への遷移時、第 2書き込み電流 IW2が、第 2磁化固定領域 12から磁化反転領 域 13を通って第 1磁化固定領域 11に流れる。この場合、磁化反転領域 13には、第 1 磁化固定領域 11から電子が注入される。その結果、磁化反転領域 13の磁化が反転 し、その磁化の向きが + X方向に変わる。電子の移動方向に一致して、磁壁 DWは、 第 1境界 B1から第 2境界 B2 移動する。
[0051] 2 - 3.構造例 3
第 1フリー層 10の平面形状は、上述の平面形状に限られない。図 6は、第 1フリー 層 10の構造の更に他の例を示す平面図である。図 6において、第 1、第 2磁化固定 領域 11、 12、及び磁化反転領域 13は、 X方向に沿って"直線状"に形成されている 。第 1磁化固定領域 11の磁化の向きは、 X方向に固定されている。その向きは、第 1境界 B1から離れる (Away)方向である。また、第 2磁化固定領域 12の磁化の向き は、 +X方向に固定されている。その向きは、第 2境界 B2から離れる (Away)方向で ある。つまり、第 1磁化固定領域 11の磁化と第 2磁化固定領域 12の磁化は、共に磁 化反転領域 13から離れる方向に固定されており、逆方向を向いている。磁化反転領 域 13の磁化の向きは反転可能であり、 +X方向あるいは—X方向である。
[0052] 図 7は、磁化反転領域 13における磁化反転を示している。状態(a)において、磁化 反転領域 13の磁化の向きは X方向であり、磁壁 DWは第 2境界 B2に存在する。一 方、状態(b)の場合、磁化反転領域 13の磁化の向きは + X方向であり、磁壁 DWは 第 1境界 B1に存在する。
[0053] 状態(a)から状態 (b) の遷移時、第 1書き込み電流 IW1が、第 1磁化固定領域 11 力、ら磁化反転領域 13を通って第 2磁化固定領域 12に流れる。この場合、磁化反転 領域 13には、第 2磁化固定領域 12から電子が注入される。その結果、磁化反転領 域 13の磁化が反転し、その磁化の向きが + X方向に変わる。電子の移動方向に一 致して、磁壁 DWは、第 2境界 B2から第 1境界 B1へ移動する。一方、状態 (b)から状 態(a)への遷移時、第 2書き込み電流 IW2が、第 2磁化固定領域 12から磁化反転領 域 13を通って第 1磁化固定領域 1 1に流れる。この場合、磁化反転領域 13には、第 1 磁化固定領域 1 1から電子が注入される。その結果、磁化反転領域 13の磁化が反転 し、その磁化の向きが X方向に変わる。電子の移動方向に一致して、磁壁 DWは、 第 1境界 B 1から第 2境界 2 移動する。
[0054] 2 - 4.構造例 4
図 8は、第 1フリー層 10の更に他の例を示している。図 8は図 7に相当する図であり 、重複する説明は適宜省略される。
[0055] 図 8において、第 1磁化固定領域 1 1の磁化の向きは、 + X方向に固定されている。
その向きは、第 1境界 B 1へ向力、う(Toward)方向である。また、第 2磁化固定領域 12 の磁化の向きは、—X方向に固定されている。その向きは、第 2境界 B2へ向かう(To ward)方向である。つまり、第 1磁化固定領域 1 1の磁化と第 2磁化固定領域 12の磁 化は、共に磁化反転領域 1 3へ向力、う方向に固定されており、逆方向を向いている。 状態(a)において、磁化反転領域 13の磁化の向きは + X方向であり、磁壁 DWは第 2境界 B2に存在する。一方、状態 (b)において、磁化反転領域 13の磁化の向きは X方向であり、磁壁 DWは第 1境界 B 1に存在する。
[0056] 状態(a)から状態 (b) の遷移時、第 1書き込み電流 IW1が、第 1磁化固定領域 1 1 力、ら磁化反転領域 13を通って第 2磁化固定領域 12に流れる。この場合、磁化反転 領域 13には、第 2磁化固定領域 12から電子が注入される。その結果、磁化反転領 域 13の磁化が反転し、その磁化の向きが—X方向に変わる。電子の移動方向に一 致して、磁壁 DWは、第 2境界 B2から第 1境界 B 1へ移動する。一方、状態 (b)から状 態(a)への遷移時、第 2書き込み電流 IW2が、第 2磁化固定領域 12から磁化反転領 域 13を通って第 1磁化固定領域 1 1に流れる。この場合、磁化反転領域 13には、第 1 磁化固定領域 1 1から電子が注入される。その結果、磁化反転領域 13の磁化が反転 し、その磁化の向きが + X方向に変わる。電子の移動方向に一致して、磁壁 DWは、 第 1境界 B 1から第 2境界 2 移動する。
[0057] 2— 5.磁化の固定
磁化固定領域 1 1、 12の磁化を固定する手法としては、様々考えられる。例えば、 磁化固定領域 1 1、 12の近傍に、磁性体で作製されたピユング層(図示されない)が 設けられる。そのピユング層と磁化固定領域 11、 12との静磁結合により、磁化が固 定される。また、ピユング層は、磁化固定領域 11、 12に密着するように設けられても よい。その場合、交換結合により磁化が固定される。
[0058] また、磁気異方性を利用することにより磁化が固定されてもよい。例えば、図 3〜図
5に示された構造の場合、第 1磁化固定領域 11及び第 2磁化固定領域 12の長手方 向は Y方向であり、磁化反転領域 13の長手方向は X方向である。従って、磁化固定 領域 11、 12は、等しい向きの磁気異方性(magnetic anisotropy)を有し、磁化反転領 域 13は、それら磁化固定領域 11、 12と異なる向きの磁気異方性を有する。よって、 初期ァニール工程にぉレ、て、 +Y方向あるいは Y方向の磁場が印加されるとょレ、。 その結果、磁化固定領域 11、 12の磁化の向きは、磁気異方性によって + Y方向ある いは Y方向に保持される。この場合、ピユング層を設ける必要がなぐ好適である。 すなわち、図 3〜図 5に示された "U字状"の形状は、磁化固定の観点から言えば、好 ましい形状である。
[0059] 3.磁気記録層
本実施例に係る磁気記録層 40において、第 1フリー層 10の磁化反転領域 13と第 2 フリー層 30は、中間層 20を介して磁気的に結合している。その磁気的結合としては 、反強磁性結合、強磁性結合、静磁結合が挙げられる。その磁気的結合の種類は、 中間層 20の厚さを調整することにより決定される。
[0060] 3— 1.反強磁性結合
図 9は、反強磁性結合の場合の磁気メモリセル 1を概略的に示す側面図である。図 9において、磁化反転領域 13と第 2フリー層 30は、中間層 20を介して反強磁性結合 している。よって、第 2フリー層 30の磁化の向きは、磁化反転領域 13の磁化の向きの 逆になる。
[0061] 図 9において、ピン層 60の磁化の向きは、 X方向に固定されている。データ「0」 は、第 2フリー層 30の磁化の向きが— X方向の場合に対応付けられている。この時、 磁化反転領域 13の磁化の向きは + X方向である。一方、データ「1」は、第 2フリー層 30の磁化の向きが + X方向の場合に対応付けられている。この時、磁化反転領域 1 3の磁化の向きは X方向である。 MTJの抵抗値は、データ「1」の場合の方がデー タ「0」の場合よりも大きくなる。
[0062] データ書き込み時、第 1フリー層 10内で書き込み電流が平面的に流される。その結 果、第 2節で示されたように、磁化反転領域 13の磁化の向きが反転する。それに応じ て、第 2フリー層 30の磁化の向きも反転する。データ読み出し時、読み出し電流は、 ピン層 60と第 2フリー層 30との間を流れるように供給される。例えば、読み出し電流 は、ピン層 60から、トンネルバリヤ層 50、第 2フリー層 30、中間層 20、及び磁化反転 領域 13を経由して、第 1磁化固定領域 11と第 2磁化固定領域 12のいずれかへ流れ る。その読み出し電流あるいは読み出し電位に基づいて、 MTJの抵抗値が検出され 、第 2フリー層 30 (センス層)の磁化の向きがセンスされる。
[0063] 3- 2.強磁性結合
図 10は、強磁性結合の場合の磁気メモリセル 1を概略的に示す側面図である。図 1 0において、磁化反転領域 13と第 2フリー層 30は、中間層 20を介して強磁性結合し ている。よって、第 2フリー層 30の磁化の向きは、磁化反転領域 13の磁化の向きと同 じになる。
[0064] 図 10において、ピン層 60の磁化の向きは、 X方向に固定されている。データ「0」 は、第 2フリー層 30の磁化の向きが— X方向の場合に対応付けられている。この時、 磁化反転領域 13の磁化の向きは—X方向である。一方、データ「1」は、第 2フリー層 30の磁化の向きが + X方向の場合に対応付けられている。この時、磁化反転領域 1 3の磁化の向きは + X方向である。 MTJの抵抗値は、データ「1」の場合の方がデー タ「0」の場合よりも大きくなる。
[0065] データ書き込み時、第 1フリー層 10内で書き込み電流が平面的に流される。その結 果、第 2節で示されたように、磁化反転領域 13の磁化の向きが反転する。それに応じ て、第 2フリー層 30の磁化の向きも反転する。データ読み出しは、上述の方法と同様 の方法で行われる。
[0066] 3- 3.静磁結合
図 11は、静磁結合の場合の磁気メモリセル 1を概略的に示す側面図である。図 11 において、磁化反転領域 13と第 2フリー層 30は、反強磁性結合も強磁性結合もして いない。磁化反転領域 13と第 2フリー層 30は、磁壁からの漏れ磁場によって、互い に磁気的に結合している。よって、第 2フリー層 30の磁化の向きは、磁化反転領域 1 3の磁化の向きの逆になる。
[0067] 図 11において、ピン層 60の磁化の向きは、 X方向に固定されている。データ「0」 は、第 2フリー層 30の磁化の向きが— X方向の場合に対応付けられている。この時、 磁化反転領域 13の磁化の向きは + X方向である。一方、データ「1」は、第 2フリー層 30の磁化の向きが + X方向の場合に対応付けられている。この時、磁化反転領域 1 3の磁化の向きは X方向である。 MTJの抵抗値は、データ「1」の場合の方がデー タ「0」の場合よりも大きくなる。
[0068] データ書き込み時、第 1フリー層 10内で書き込み電流が平面的に流される。その結 果、第 2節で示されたように、磁化反転領域 13の磁化の向きが反転する。それに応じ て、第 2フリー層 30の磁化の向きも反転する。データ読み出しは、上述の方法と同様 の方法で行われる。
[0069] 4.製造方法
次に、本実施例に係る磁気メモリセル 1の製造工程の一例を説明する。
[0070] まず、図 12に示されるように、シード層 5の上に、上記第 1フリー層 10としての第 1強 磁性層 10が形成される。シード層 5は、第 1強磁性層 10の形成時の結晶成長をコン トロールするための層である。シード層 5の材料としては、電気抵抗の高い材料が用 いられる。第 1強磁性層 10としては、 NiFe、 CoFe、 NiFeCoなどの強磁性金属層が 例示される。第 1強磁性層 10は、添加物として B、 C、 0、 Zrなどの非磁性元素を含ん でいても良い。
[0071] 次に、第 1強磁性層 10の上に、中間層 20が形成される。中間層 20は、非磁性層で あり、例えば Ru、 Cu、 Ir、 Rhなどの非磁性金属で形成されている。この中間層 20の 厚さは、第 1フリー層 10と第 2フリー層 30との間の所望の磁気的結合を実現するよう に設計される。尚、後述されるように、中間層 20は、酸化やエッチングによるダメージ から第 1強磁性層 10を保護する役割を果たす。
[0072] 次に、中間層 20上に、上記第 2フリー層 30としての第 2強磁性層 30が形成される。
第 2強磁性層 30としては、 NiFe、 CoFe、 NiFeCoなどの強磁性金属層が例示され る。第 2強磁性層 30は、添加物として B、 C、 0、 Zrなどの非磁性元素を含んでいても 良い。
[0073] 次に、第 2強磁性層 30上に、非磁性層であるトンネルバリヤ層 50が形成される。例 えば、トンネルバリヤ層 50は、薄い絶縁膜である。その絶縁膜として、 Al O膜、 SiO
2 3 2 膜、 MgO膜、 A1N膜が例示される。またその他に、トンネルバリヤ層 50として、 Cu, Z n, Au, Ag, Alなどの非磁性金属を用いることもできる。
[0074] 次に、トンネルバリヤ層 50上に、上記ピン層 60としての第 3強磁性層 60が形成され る。第 3強磁性層 60としては、 CoFe膜が例示される。更に、第 3強磁性層 60上に、 その第 3強磁性層 60の磁化の向きを固定するための反強磁性層 70が形成される。 更に、反強磁性層 70上にキャップ層 75が形成される。このようにして、図 12に示され る積層構造が得られる。
[0075] 次に、図 13に示されるように、フォトリソグラフィ技術により、所定のパターンを有す るマスク 80が上記積層構造上に形成される。続いて、そのマスク 80を用いたエッチ ングが実行される。エッチングとしては、例えば、反応性ガスエッチング (RIE)あるい はイオンミリングが行われる。また、そのエッチングにおいて、中間層 20が「エツチン グストップ層」として用いられる。つまり、中間層 20が露出するまで、キャップ層 75、反 強磁性層 70、第 3強磁性層 60、トンネルバリヤ層 50、及び第 2フリー層 30が順番に エッチングされる。
[0076] 上述の通り、書き込み動作時、磁壁 DWは、第 1フリー層 10の磁化反転領域 13中 を移動する。もし、エッチングの際の反応性ガス、イオン、ラジカルなどによって、磁化 反転領域 13の表面がダメージを受けたら、磁化反転領域 13中で磁壁がスムーズに 移動しなくなる。本実施例によれば、エッチングストップ層 20 (中間層 20)によって、 第 1強磁性層 10はダメージから保護される。従って、書き込み動作時、磁化反転領 域 13における磁壁移動はスムーズに行われる、すなわち、磁壁の移動度が向上する 次に、中間層 20及び第 1強磁性層 10のパターユングが行われる。その結果、本実 施例に係る第 1フリー層 10の構造が得られる(図 2〜図 8参照)。中間層 20は、第 1フ リー層 10と同じ平面形状を有していてもよい。上記理由から、中間層 20は、少なくと も第 1フリー層 10の磁化反転領域 13を覆っていることが好適である。更に、第 1フリ 一層 10の第 1磁化固定領域 11及び第 2磁化固定領域 12の磁化の向きが固定され る。磁化の固定は、既出の第 2— 5節で述べられた通りである。
[0078] 次に、図 14に示されるように、層間絶縁膜 85が全面に形成され、 CMP (Chemical Mechanical Polishing)が行われる。続いて、キャップ層 75に到達するようにビアホー ルが形成され、そのビアホールに金属を埋め込むことによってビア 90が形成される。 更に、ビア 90に接続される上部電極 95が形成される。このようにして、本実施例に係 る磁気メモリセル 1が作製される。
[0079] 5.効果
本実施例に係る磁壁移動型 MRAMの書き込み方式による効果は、次の通りであ
[0080] まず、ァステロイド方式と比較して、優れたメモリセルの選択性が確保される。ァステ ロイド方式の場合、書き込み磁界の閾値のばらつきが、 2次元メモリセルアレイにおけ るメモリセルの選択性を低下させる。し力、しながら、スピン注入方式によれば、書き込 み電流が対象メモリセルだけに作用する。従って、ディスターバンスが大幅に低減さ れる。すなわち、選択書き込み性が向上する。
[0081] また、ァステロイド方式やトグル方式と比較して、書き込み電流のスケーリング性が 向上する。ァステロイド方式やトグル方式の場合、メモリセルサイズにほぼ反比例して 、磁化反転領域の磁化を反転させるために必要な反転磁界が大きくなる。つまり、メ モリセルが微細化されるにつれて、書き込み電流が増加する傾向にある。し力、しなが ら、スピン注入方式によれば、磁化反転の閾値は電流密度に依存する。メモリセルサ ィズが縮小されるにつれて電流密度は増加するので、メモリセルの微細化に伴い書 き込み電流を低減することが可能である。言い換えれば、メモリセルサイズが縮小さ れても、書き込み電流を大きくする必要がなくなる。その意味で、書き込み電流のスケ 一リング性が向上する。このことは、大容量の MRAMを実現にとって重要である。
[0082] また、ァステロイド方式やトグル方式と比較して、電流磁界変換効率が増加する。ァ ステロイド方式やトグル方式の場合、書き込み電流はジュール熱で消費される。電流 磁界変換効率を向上させるためには、フラックスキーパーやヨーク構造といった書き 込み専用配線を設ける必要があった。これは、製造プロセスの複雑化や配線インダク タンスの増加を招く。し力、しながら、スピン注入方式によれば、書き込み電流が、スピ ントランスファーに直接寄与する。従って、電流磁界変換効率が増加する。これにより 、製造プロセスの複雑化や配線インダクタンスの増加が防止される。
[0083] 更に、 CPP (Current Perpendicular to Plane)方式のスピン注入方式と比較して、 M TJ (トンネルバリヤ層 50)の劣化が抑制される。 CPP方式の場合、書き込み電流は膜 面に垂直に注入される。データ書き込み時の書き込み電流は、読み出し電流よりも はるかに大きぐその大電流力 Sトンネルバリヤ層 50を破壊する恐れがあった。しかし ながら、本実施例に係る書き込み方式によれば、読み出し時の電流経路と書き込み 時の電流経路が分離されている。具体的には、データ書き込み時、書き込み電流 IW 1 , IW2は、 MTJを貫通せず、第 1フリー層 10の面内を流れる。データ書き込み時、 大電流を MTJ膜面に垂直に注入する必要がない。従って、 MTJにおけるトンネルバ リャ層 50の劣化が抑制される。
[0084] 更に、メモリセルの微細化に伴い、書き込み速度が増加する。それは、本実施例に おいて、データ書き込みが第 1フリー層 10内の磁壁移動によって実現されるからであ る。メモリセルサイズが縮小されることは、磁壁 DWの移動距離が小さくなることを意味 する。従って、メモリセルサイズの縮小に伴い、書き込み速度が増加する。
[0085] また、本実施例に係る磁壁移動型 MRAMの磁気記録層 40は、磁気的に結合した 複数(2以上)のフリー層を含んでいる。そのような構造による効果は、次の通りである
[0086] 書き込み動作時、磁壁は第 1フリー層 10の磁化反転領域 13中を移動する。本実施 例によれば、中間層 20は、その磁化反転領域 13を少なくとも覆うように形成されてい る。この中間層 20は、製造プロセス中の酸化やエッチングによるダメージから磁化反 転領域 13を保護する役割を果たしている。もし、磁化反転領域 13を覆う中間層 20が なければ、エッチングの際の反応性ガス、イオン、ラジカルなどによって、磁化反転領 域 13の表面はダメージを受けてしまう。そうなると、磁化反転領域 13中で磁壁がスム ーズに移動しなくなる。し力もながら、本実施例によれば、中間層 20によって、磁化 反転領域 13はダメージから保護される。従って、磁化反転領域 13における磁壁移動 力 Sスムーズに行われる、すなわち、磁壁の移動度が向上する。結果として、磁壁移動 型 MRAMの信頼性及び歩留まりが向上する。
[0087] 更に、本実施例によれば、磁気記録層 40は、第 1フリー層 10と第 2フリー層 30を別 々に有している。このうち第 1フリー層 10は、磁壁が移動する磁壁移動層であり、書き 込み特性(書き込み電流の大きさ)などに大きく寄与している。一方、トンネルバリヤ 層 50に接触する第 2フリー層 30は、ピン層 60と共に MTJを構成するセンス層であり 、読み出し特性 (MR比など)に大きく寄与している。従って、本実施例に係る構造に よれば、書き込み特性と読み出し特性をそれぞれ独立に制御することが可能である。
[0088] 例えば、書き込み特性が主に第 1フリー層 10によって支配されるため、その第 1フリ 一層 10の材料として、書き込み特性を高めるような材料 (NiFeなど)を用いることが できる。一方、読み出し特性が主に第 2フリー層 30によって支配されるため、その第 2 フリー層 30の材料として、読み出し特性を高めるような材料(CoFe、 CoFeBなど)を 用いること力 Sでさる。
[0089] また、スピン注入方式の場合、磁性層の飽和磁化が小さくなるにつれて、磁化反転 に必要な書き込み電流を低減することができる。一方で、磁性層の飽和磁化が減少 すると、その磁性層の分極率が低下する。その場合、 TMR効果が減少するため、 M R比が低下してしまう。すなわち、 MR比の向上と書き込み電流の低減との間には、 一般的にトレードオフの関係が存在する。し力、しながら、本実施例によれば、第 1フリ 一層 10と第 2フリー層 30をそれぞれ独立に設計することが可能である。よって、第 1 フリー層 10の飽和磁化を比較的小さく設計し、第 2フリー層 30の飽和磁化を比較的 大きく設計すること力できる。それにより、 MR比(読み出しマージン)の増加と書き込 み電流の低減とを両立させることが可能となる。
[0090] このように、本実施例によれば、第 1フリー層 10と第 2フリー層 30の特性を独立して 自由にコントロールすることができる。これは、素子設計の自由度の向上を意味し、書 き込み特性と読み出し特性を共に向上させることが可能となる。そして、このメリットは 、 CPPスピン注入方式では得られない。それは、 CPPスピン注入方式の場合、書き 込み特性も読み出し特性も、トンネルバリヤ層に隣接する強磁性層によって支配され る力、らである。また、平面的な書き込み電流によるスピン注入方式であっても、フリー 層が 1層だけの場合(第 2フリー層 30が無い場合)、上記メリットは得られない。それ は、磁壁が移動する第 1フリー層 10が、同時に MTJの一端となり、書き込み特性と読 み出し特性の両方に影響を与えてしまうからである。
[0091] 本実施例によれば、上述の効果が同時に得られる。高集積 ·高速動作 ·低消費電 力の MRAMを実現するために、本実施例に係る技術は極めて有用である。
[0092] 以上、本発明の実施例が添付の図面を参照することにより説明された。但し、本発 明は、既出の実施例に限定されず、要旨を逸脱しない範囲で当業者により適宜変更 され得る。

Claims

請求の範囲
[1] 磁化の向きが固定されたピン層と、
第 1非磁性層を介して前記ピン層に接続された磁気記録層と
を備え、
前記磁気記録層は、
第 1フリー層と、
前記第 1非磁性層に接触し、反転可能な磁化を有する第 2フリー層と、 前記第 1フリー層と前記第 2フリー層との間に設けられた第 2非磁性層と、 を有し、
前記第 1フリー層は、
反転可能な磁化を有し前記第 2フリー層とオーバーラップする磁化反転領域と、 前記磁化反転領域の第 1境界に接続され、磁化の向きが第 1方向に固定された第 1磁化固定領域と、
前記磁化反転領域の第 2境界に接続され、磁化の向きが第 2方向に固定された第 2磁化固定領域と
を含み、
前記第 1方向及び前記第 2方向は共に、前記磁化反転領域 向かう方向、又は、 前記磁化反転領域から離れる方向であり、
前記第 2非磁性層は、少なくとも前記磁化反転領域を覆うように形成され、 前記第 1フリー層の前記磁化反転領域と前記第 2フリー層は、前記第 2非磁性層を 介して磁気的に結合している
磁気ランダムアクセスメモリ。
[2] 請求の範囲 1に記載の磁気ランダムアクセスメモリであって、
前記第 2非磁性層は、前記第 1フリー層の全体を覆うように形成された
磁気ランダムアクセスメモリ。
[3] 請求の範囲 1に記載の磁気ランダムアクセスメモリであって、
前記第 2非磁性層は、前記第 1フリー層と同じ平面形状を有する
磁気ランダムアクセスメモリ。
[4] 請求の範囲 1乃至 3のいずれかに記載の磁気ランダムアクセスメモリであって、 前記磁化反転領域と前記第 2フリー層は、前記第 2非磁性層を介して、反強磁性結 合している
磁気ランダムアクセスメモリ。
[5] 請求の範囲 1乃至 3のいずれかに記載の磁気ランダムアクセスメモリであって、 前記磁化反転領域と前記第 2フリー層は、前記第 2非磁性層を介して、強磁性結合 している
磁気ランダムアクセスメモリ。
[6] 請求の範囲 1乃至 3のいずれかに記載の磁気ランダムアクセスメモリであって、 前記磁化反転領域と前記第 2フリー層は、前記第 2非磁性層を介して、静磁結合し ている
磁気ランダムアクセスメモリ。
[7] 請求の範囲 1乃至 6のいずれかに記載の磁気ランダムアクセスメモリであって、 前記磁化反転領域、前記第 1磁化固定領域、及び前記第 2磁化固定領域は、同一 平面上に形成された
磁気ランダムアクセスメモリ。
[8] 請求の範囲 1乃至 7のいずれかに記載の磁気ランダムアクセスメモリであって、 前記磁化反転領域の磁化は、前記第 1境界及び前記第 2境界の V、ずれか 向き、 前記第 1フリー層において、磁壁が前記第 1境界及び前記第 2境界のいずれかに 形成され、
データ書き込みは、前記磁壁の移動により行われる
磁気ランダムアクセスメモリ。
[9] 請求の範囲 1乃至 7のいずれかに記載の磁気ランダムアクセスメモリであって、 第 1書き込み動作時、第 1書き込み電流が、前記第 1磁化固定領域から前記磁化 反転領域を通って前記第 2磁化固定領域に流され、前記磁化反転領域にお V、て磁 壁が前記第 2境界から前記第 1境界に移動し、
第 2書き込み動作時、第 2書き込み電流が、前記第 2磁化固定領域から前記磁化 反転領域を通って前記第 1磁化固定領域に流され、前記磁化反転領域にお V、て磁 壁が前記第 1境界から前記第 2境界に移動する
磁気ランダムアクセスメモリ。
(a)第 1強磁性層上にエッチングストップ層を形成する工程と、
(b)前記第 1強磁性層と磁気的に結合する第 2強磁性層を、前記エッチングストップ 層上に形成する工程と、
(c)前記第 2強磁性層上に非磁性層を介して第 3強磁性層を形成する工程と、
(d)前記第 3強磁性層の磁化の向きを固定する反強磁性層を、前記第 3強磁性層 上に形成する工程と、
(e)所定のマスクを用いることにより、前記エッチングストップ層が露出するまで、前 記反強磁性層、前記第 3強磁性層、前記非磁性層、及び前記第 2強磁性層をエッチ ングする工程と、
(f)前記第 1強磁性層のパターユングにより、フリー層を形成する工程と を有し、
前記フリー層は、反転可能な磁化を有し前記エッチング後の前記第 2強磁性層とォ 一バーラップする磁化反転領域を含み、
前記 (f)工程は、
(fl)前記フリー層中に、前記磁化反転領域の第 1境界に接続され磁化の向きが第 1方向に固定された第 1磁化固定領域を形成する工程と、
(f2)前記フリー層中に、前記磁化反転領域の第 2境界に接続され磁化の向きが第 2方向に固定された第 2磁化固定領域を形成する工程と
を含み、
前記第 1方向及び前記第 2方向は共に、前記磁化反転領域 向かう方向、又は、 前記磁化反転領域から離れる方向である
PCT/JP2007/070553 2006-12-06 2007-10-22 磁気ランダムアクセスメモリ及びその製造方法 WO2008068967A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008548197A JP5146836B2 (ja) 2006-12-06 2007-10-22 磁気ランダムアクセスメモリ及びその製造方法
US12/517,981 US8300456B2 (en) 2006-12-06 2007-10-22 Magnetic random access memory and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006329810 2006-12-06
JP2006-329810 2006-12-06

Publications (1)

Publication Number Publication Date
WO2008068967A1 true WO2008068967A1 (ja) 2008-06-12

Family

ID=39491877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070553 WO2008068967A1 (ja) 2006-12-06 2007-10-22 磁気ランダムアクセスメモリ及びその製造方法

Country Status (3)

Country Link
US (1) US8300456B2 (ja)
JP (1) JP5146836B2 (ja)
WO (1) WO2008068967A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007893A1 (ja) * 2008-07-15 2010-01-21 日本電気株式会社 磁気ランダムアクセスメモリ及びその初期化方法
WO2010087389A1 (ja) * 2009-01-30 2010-08-05 日本電気株式会社 磁気メモリ素子、磁気メモリ
WO2010095589A1 (ja) * 2009-02-17 2010-08-26 日本電気株式会社 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ
WO2012160937A1 (ja) * 2011-05-20 2012-11-29 日本電気株式会社 磁気メモリ素子および磁気メモリ
US8351249B2 (en) 2006-04-11 2013-01-08 Nec Corporation Magnetic random access memory
JP5505312B2 (ja) * 2008-12-25 2014-05-28 日本電気株式会社 磁気メモリ素子及び磁気ランダムアクセスメモリ
JP2016111042A (ja) * 2014-12-02 2016-06-20 株式会社東芝 磁気記憶素子および磁気メモリ
KR20210021228A (ko) * 2019-08-16 2021-02-25 삼성전자주식회사 자기 메모리 장치
JP7555200B2 (ja) 2020-06-04 2024-09-24 三星電子株式会社 磁気抵抗素子,磁気メモリ及び磁気抵抗素子の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8300456B2 (en) 2006-12-06 2012-10-30 Nec Corporation Magnetic random access memory and method of manufacturing the same
US8829901B2 (en) * 2011-11-04 2014-09-09 Honeywell International Inc. Method of using a magnetoresistive sensor in second harmonic detection mode for sensing weak magnetic fields
JP6096762B2 (ja) * 2012-04-26 2017-03-15 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
EP2741296B1 (en) * 2012-12-07 2019-01-30 Crocus Technology S.A. Self-referenced magnetic random access memory (MRAM) and method for writing to the MRAM cell with increased reliability and reduced power consumption
JP6219200B2 (ja) 2014-02-27 2017-10-25 株式会社東芝 磁気装置
JP6193190B2 (ja) 2014-08-25 2017-09-06 株式会社東芝 磁気記憶素子および磁気メモリ
JP2017162970A (ja) * 2016-03-09 2017-09-14 株式会社東芝 磁気記憶装置
US10510390B2 (en) * 2017-06-07 2019-12-17 International Business Machines Corporation Magnetic exchange coupled MTJ free layer having low switching current and high data retention
US10332576B2 (en) * 2017-06-07 2019-06-25 International Business Machines Corporation Magnetic exchange coupled MTJ free layer with double tunnel barriers having low switching current and high data retention
US10056126B1 (en) 2017-10-27 2018-08-21 Honeywell International Inc. Magnetic tunnel junction based memory device
US10374148B1 (en) * 2018-02-08 2019-08-06 Sandisk Technologies Llc Multi-resistance MRAM

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073930A (ja) * 2004-09-06 2006-03-16 Canon Inc 磁壁移動を利用した磁気抵抗効果素子の磁化状態の変化方法及び該方法を用いた磁気メモリ素子、固体磁気メモリ
JP2006093578A (ja) * 2004-09-27 2006-04-06 Hitachi Ltd 低消費電力磁気メモリ及び磁化情報書き込み装置
JP2007258460A (ja) * 2006-03-23 2007-10-04 Nec Corp 磁気メモリセル、磁気ランダムアクセスメモリ、半導体装置及び半導体装置の製造方法
JP2007317895A (ja) * 2006-05-26 2007-12-06 Fujitsu Ltd 磁気抵抗メモリ装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640343A (en) * 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
JPH11195824A (ja) 1997-11-10 1999-07-21 Matsushita Electric Ind Co Ltd 磁気抵抗効果素子及び磁気抵抗効果型ヘッド
JP2000195250A (ja) 1998-12-24 2000-07-14 Toshiba Corp 磁気メモリ装置
JP2001156357A (ja) * 1999-09-16 2001-06-08 Toshiba Corp 磁気抵抗効果素子および磁気記録素子
US6767655B2 (en) * 2000-08-21 2004-07-27 Matsushita Electric Industrial Co., Ltd. Magneto-resistive element
JP2002170937A (ja) 2000-11-30 2002-06-14 Canon Inc 半導体記憶装置及びその駆動方法
JP4666774B2 (ja) 2001-01-11 2011-04-06 キヤノン株式会社 磁気薄膜メモリ素子、磁気薄膜メモリおよび情報記録再生方法
US6545906B1 (en) 2001-10-16 2003-04-08 Motorola, Inc. Method of writing to scalable magnetoresistance random access memory element
KR100450794B1 (ko) * 2001-12-13 2004-10-01 삼성전자주식회사 마그네틱 랜덤 엑세스 메모리 및 그 작동 방법
US6728132B2 (en) * 2002-04-03 2004-04-27 Micron Technology, Inc. Synthetic-ferrimagnet sense-layer for high density MRAM applications
US7064974B2 (en) * 2002-09-12 2006-06-20 Nec Corporation Magnetic random access memory and method for manufacturing the same
JP2006502594A (ja) * 2002-10-03 2006-01-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ プログラム化磁気メモリ装置
US6775183B2 (en) * 2002-10-22 2004-08-10 Btg International Ltd. Magnetic memory device employing giant magnetoresistance effect
JP4400037B2 (ja) * 2002-10-31 2010-01-20 日本電気株式会社 磁気ランダムアクセスメモリ,及びその製造方法
US7184301B2 (en) * 2002-11-27 2007-02-27 Nec Corporation Magnetic memory cell and magnetic random access memory using the same
US6834005B1 (en) * 2003-06-10 2004-12-21 International Business Machines Corporation Shiftable magnetic shift register and method of using the same
US7064934B2 (en) * 2003-06-12 2006-06-20 Seagate Technology Llc Magnetoresistive sensor with reduced operating temperature
JP2005093488A (ja) 2003-09-12 2005-04-07 Sony Corp 磁気抵抗効果素子とその製造方法、および磁気メモリ装置とその製造方法
US6970379B2 (en) 2003-10-14 2005-11-29 International Business Machines Corporation System and method for storing data in an unpatterned, continuous magnetic layer
JP4143020B2 (ja) 2003-11-13 2008-09-03 株式会社東芝 磁気抵抗効果素子および磁気メモリ
JP4413603B2 (ja) * 2003-12-24 2010-02-10 株式会社東芝 磁気記憶装置及び磁気情報の書込み方法
JP2005223086A (ja) * 2004-02-04 2005-08-18 Sony Corp 磁気記憶素子及びその駆動方法、磁気メモリ
JP2006005308A (ja) 2004-06-21 2006-01-05 Victor Co Of Japan Ltd 不揮発性磁気メモリ
US7193259B2 (en) * 2004-07-23 2007-03-20 Hewlett-Packard Development Company, L.P. Thermally written magnetic memory device
JP2006073960A (ja) 2004-09-06 2006-03-16 Yamaha Motor Co Ltd 部品認識装置及び表面実装機並びに部品試験装置
JP4932275B2 (ja) 2005-02-23 2012-05-16 株式会社日立製作所 磁気抵抗効果素子
JP2006269885A (ja) * 2005-03-25 2006-10-05 Sony Corp スピン注入型磁気抵抗効果素子
JP2006303159A (ja) * 2005-04-20 2006-11-02 Fuji Electric Holdings Co Ltd スピン注入磁区移動素子およびこれを用いた装置
WO2006115275A1 (ja) 2005-04-26 2006-11-02 Kyoto University Mramおよびその書き込み方法
JP4962889B2 (ja) 2005-08-01 2012-06-27 独立行政法人科学技術振興機構 磁気メモリー
JP4817148B2 (ja) 2005-08-02 2011-11-16 独立行政法人科学技術振興機構 ナノ構造体を有する磁気及び電気エネルギーの相互変換素子
US7929342B2 (en) * 2005-08-15 2011-04-19 Nec Corporation Magnetic memory cell, magnetic random access memory, and data read/write method for magnetic random access memory
JP4444241B2 (ja) * 2005-10-19 2010-03-31 株式会社東芝 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
KR100763910B1 (ko) * 2006-02-23 2007-10-05 삼성전자주식회사 마그네틱 도메인 드래깅을 이용하는 자성 메모리 소자
KR100923302B1 (ko) * 2006-02-27 2009-10-27 삼성전자주식회사 자기 메모리 소자
JP4969981B2 (ja) * 2006-10-03 2012-07-04 株式会社東芝 磁気記憶装置
US8300456B2 (en) 2006-12-06 2012-10-30 Nec Corporation Magnetic random access memory and method of manufacturing the same
WO2008072421A1 (ja) * 2006-12-12 2008-06-19 Nec Corporation 磁気抵抗効果素子及びmram
WO2008099626A1 (ja) * 2007-02-13 2008-08-21 Nec Corporation 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
US8310866B2 (en) * 2008-07-07 2012-11-13 Qimonda Ag MRAM device structure employing thermally-assisted write operations and thermally-unassisted self-referencing operations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073930A (ja) * 2004-09-06 2006-03-16 Canon Inc 磁壁移動を利用した磁気抵抗効果素子の磁化状態の変化方法及び該方法を用いた磁気メモリ素子、固体磁気メモリ
JP2006093578A (ja) * 2004-09-27 2006-04-06 Hitachi Ltd 低消費電力磁気メモリ及び磁化情報書き込み装置
JP2007258460A (ja) * 2006-03-23 2007-10-04 Nec Corp 磁気メモリセル、磁気ランダムアクセスメモリ、半導体装置及び半導体装置の製造方法
JP2007317895A (ja) * 2006-05-26 2007-12-06 Fujitsu Ltd 磁気抵抗メモリ装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8526222B2 (en) 2006-04-11 2013-09-03 Nec Corporation Magnetic random access memory
US8923042B2 (en) 2006-04-11 2014-12-30 Nec Corporation Magnetic random access memory
US8351249B2 (en) 2006-04-11 2013-01-08 Nec Corporation Magnetic random access memory
US8547733B2 (en) 2006-04-11 2013-10-01 Nec Corporation Magnetic random access memory
JP5545213B2 (ja) * 2008-07-15 2014-07-09 日本電気株式会社 磁気ランダムアクセスメモリ及びその初期化方法
WO2010007893A1 (ja) * 2008-07-15 2010-01-21 日本電気株式会社 磁気ランダムアクセスメモリ及びその初期化方法
US8625327B2 (en) 2008-07-15 2014-01-07 Nec Corporation Magnetic random access memory and initializing method for the same
JP5505312B2 (ja) * 2008-12-25 2014-05-28 日本電気株式会社 磁気メモリ素子及び磁気ランダムアクセスメモリ
WO2010087389A1 (ja) * 2009-01-30 2010-08-05 日本電気株式会社 磁気メモリ素子、磁気メモリ
US8994130B2 (en) 2009-01-30 2015-03-31 Nec Corporation Magnetic memory element and magnetic memory
US8514616B2 (en) 2009-02-17 2013-08-20 Nec Corporation Magnetic memory element and magnetic memory
JPWO2010095589A1 (ja) * 2009-02-17 2012-08-23 日本電気株式会社 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ
WO2010095589A1 (ja) * 2009-02-17 2010-08-26 日本電気株式会社 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ
WO2012160937A1 (ja) * 2011-05-20 2012-11-29 日本電気株式会社 磁気メモリ素子および磁気メモリ
JP6029020B2 (ja) * 2011-05-20 2016-11-24 国立大学法人東北大学 磁気メモリ素子および磁気メモリ
US9799822B2 (en) 2011-05-20 2017-10-24 Nec Corporation Magnetic memory element and magnetic memory
JP2016111042A (ja) * 2014-12-02 2016-06-20 株式会社東芝 磁気記憶素子および磁気メモリ
KR20210021228A (ko) * 2019-08-16 2021-02-25 삼성전자주식회사 자기 메모리 장치
KR102662153B1 (ko) 2019-08-16 2024-05-03 삼성전자주식회사 자기 메모리 장치
JP7555200B2 (ja) 2020-06-04 2024-09-24 三星電子株式会社 磁気抵抗素子,磁気メモリ及び磁気抵抗素子の製造方法

Also Published As

Publication number Publication date
JP5146836B2 (ja) 2013-02-20
US20100046288A1 (en) 2010-02-25
US8300456B2 (en) 2012-10-30
JPWO2008068967A1 (ja) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5146836B2 (ja) 磁気ランダムアクセスメモリ及びその製造方法
US7929342B2 (en) Magnetic memory cell, magnetic random access memory, and data read/write method for magnetic random access memory
JP5338666B2 (ja) 磁壁ランダムアクセスメモリ
JP5470602B2 (ja) 磁気記憶装置
US7848137B2 (en) MRAM and data read/write method for MRAM
JP5201539B2 (ja) 磁気ランダムアクセスメモリ
JP2007273495A (ja) 磁気メモリ装置及びその駆動方法
WO2008047536A1 (fr) Cellule mémoire magnétique et mémoire vive magnétique
JP2008211008A (ja) 磁気抵抗効果素子及び磁気メモリ装置
JP4076197B2 (ja) 磁性素子、記憶装置、磁気再生ヘッド、3端子素子、及び磁気ディスク装置
US7796419B2 (en) Magnetic memory
WO2010026861A1 (ja) 磁気メモリ及びその製造方法
US8625327B2 (en) Magnetic random access memory and initializing method for the same
JP2011210830A (ja) 磁気記憶素子および磁気記憶装置
KR101958420B1 (ko) 자기 메모리소자 및 그 동작방법
JP2009081390A (ja) 磁壁移動型mram及びその製造方法
JP2008171862A (ja) 磁気抵抗効果素子及びmram
US7683446B2 (en) Magnetic memory using spin injection flux reversal
JP2007095765A (ja) 多値記録スピン注入磁化反転素子およびこれを用いた装置
JP5625380B2 (ja) 磁気抵抗記憶素子及び磁気ランダムアクセスメモリ
JP2009146995A (ja) 磁気記憶装置
WO2011118461A1 (ja) 磁気メモリ
JP2007123512A (ja) 磁気記憶装置
WO2006035943A1 (ja) 磁気メモリ
JP2013168667A (ja) 磁気抵抗効果素子及びmram

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830287

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548197

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12517981

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07830287

Country of ref document: EP

Kind code of ref document: A1