WO2008072421A1 - 磁気抵抗効果素子及びmram - Google Patents

磁気抵抗効果素子及びmram Download PDF

Info

Publication number
WO2008072421A1
WO2008072421A1 PCT/JP2007/070571 JP2007070571W WO2008072421A1 WO 2008072421 A1 WO2008072421 A1 WO 2008072421A1 JP 2007070571 W JP2007070571 W JP 2007070571W WO 2008072421 A1 WO2008072421 A1 WO 2008072421A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetization
region
fixed
effect element
layer
Prior art date
Application number
PCT/JP2007/070571
Other languages
English (en)
French (fr)
Inventor
Shunsuke Fukami
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US12/518,532 priority Critical patent/US7936627B2/en
Priority to JP2008549224A priority patent/JP5201536B2/ja
Publication of WO2008072421A1 publication Critical patent/WO2008072421A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1655Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/74Array wherein each memory cell has more than one access device

Definitions

  • the present invention relates to a magnetoresistance effect element and a magnetic random access memory (MRAM) that uses the magnetoresistance effect element as a memory cell.
  • MRAM magnetic random access memory
  • the present invention relates to an MRAM based on a domain wall displacement method, and a magnetoresistance effect element used in the MRAM.
  • MRAM is a promising nonvolatile memory in terms of high integration and high speed operation.
  • a “magnetoresistive element” exhibiting a magnetoresistance effect such as a TMR (Tunnel Magneto Resistance) effect is used as a memory cell.
  • a magnetic tunnel junction (MTJ: Magnetic Tunnel Junction) sandwiched between ferromagnetic layers of a tunnel barrier layer is formed.
  • the two ferromagnetic layers consist of a magnetization fixed layer (pinned layer) in which the magnetization direction is fixed and a magnetization free layer (free layer) in which the magnetization direction is reversible. Be done.
  • the resistance value (R + AR) of the MTJ in the case of antiparallel "of the magnetizations of the magnetization fixed layer and the magnetization free layer is the resistance value in the case of their forces being" parallel "by the magnetoresistance effect.
  • R is known to be larger.
  • the memory cell of the MRAM stores data in a non-volatile manner by utilizing the change in its resistance value. Data is read out by passing a read current through the MTJ and measuring the resistance of MTJ. On the other hand, writing of data is performed by reversing the direction of magnetization of the magnetization free layer.
  • a "current magnetic field method” is known.
  • the write current is applied to the write wiring disposed in the vicinity of the magnetoresistive element. The flow is made to flow. Then, a write magnetic field generated by the write current is applied to the magnetization free layer, whereby the magnetization direction of the magnetization free layer is changed. At this time, the magnetic field generated by the write current of 1 mA is about several Oe to several tens Oe.
  • the reversal magnetic field necessary for the magnetization reversal of the magnetization free layer be designed to be several tens of Oe or so. Therefore, it is very difficult to realize data writing with a write current of 1 mA or less.
  • current magnetic field type MRAM is more disadvantageous than other RAMs.
  • the switching magnetic field required for the magnetization switching of the magnetization free layer becomes larger in inverse proportion to the size of the magnetoresistance effect element. That is, there is a problem that the write current increases as the memory cell is miniaturized.
  • Japanese Patent Application Laid-Open No. 2005-150303 describes a technique aimed at improving the thermal disturbance resistance and reducing the reversal magnetic field in the current magnetic field type MRAM.
  • the magnetoresistive effect element according to the art has a ferromagnetic tunnel junction including a three-layer structure of a first ferromagnetic layer / tunneling barrier layer / second ferromagnetic layer.
  • the first ferromagnetic layer has a coercivity greater than that of the second ferromagnetic layer.
  • the magnetization of the end portion of the second ferromagnetic layer is fixed in a direction having a component orthogonal to the magnetization easy axis direction of the second ferromagnetic layer.
  • spin injection method using spin transfer (spin transfer) has been proposed as a data writing method to replace the current magnetic field method.
  • spin transfer spin transfer
  • spin injection method spin-polarized current is injected into the magnetization free layer, and the spin and conductor of the conduction electron responsible for the current.
  • the direct interaction between the magnetic moment and the magnetic moment inverts the magnetization, which is more likely to occur as the current density increases, so that the write current can be reduced as the memory cell size is reduced.
  • the magnetization of the magnetization free layer is reversed due to the spin transfer effect.
  • the magnetization direction of the magnetization free layer can be defined by the direction of the write current passing through the MTJ. Furthermore, with the miniaturization of memory cells, it is also possible to reduce the write current.
  • the write current larger than the read current passes through the MTJ, the following problem is considered to occur.
  • an insulating film is used as a tunnel barrier layer of the MTJ, and the upper limit value of the write current is determined from the limit of the withstand voltage of the insulating film. This is not preferable from the point of view of writing.
  • the resistance value of the tunnel barrier layer is lowered to increase the upper limit value, the read signal becomes small. This is not preferable from the viewpoint of reading. That is, the writing must be performed within the margin of the withstand voltage of the insulating film satisfying the read restriction and above the current at which magnetization reversal occurs, which is disadvantageous.
  • the magnetization free layer includes a junction overlapping the tunnel barrier layer, a neck adjacent to both ends of the junction, and a pair of magnetization fixed portions formed adjacent to the neck. Fixed magnetizations in opposite directions are given to the pair of magnetization fixed parts. As a result, the magnetization free layer has a domain wall in the above junction.
  • the write current flows in a planar manner.
  • the pair of magnetization fixed portions serve as a source of different spin-polarized electrons.
  • the direction of the write current is controlled according to the write data, and depending on the direction, spin-polarized electrons are supplied to the junction from any of the magnetization fixed portions.
  • the magnetization of the magnetization free layer is reversed by the Sfar effect.
  • This magnetization reversal means the change of the position of the domain wall described above. That is, the domain wall moves between the pair of constricted portions in accordance with the direction of the write current.
  • the horizontal spin injection method as described in Japanese Patent Laid-Open No. 2005-191032 can also be referred to as the “domain wall displacement method”.
  • the magnetization free layer has a pair of magnetization fixed portions on both sides of the junction whose magnetization direction is variable.
  • the pair of magnetization fixed parts are introduction sources of different spin polarized electrons, and fixed magnetizations in opposite directions are given to each other.
  • the junctions and the pair of magnetization fixed portions are arranged in a straight line. Therefore, when the spin-polarized electrons are excessively introduced at the time of data writing, the domain wall may intrude into one of the magnetization fixed portions. That means that the magnetization direction of one magnetization fixed portion is disturbed. In the worst case, the magnetization direction of one magnetization fixed portion is completely reversed, and the domain wall disappears.
  • the magnetization of the magnetization fixed portion may become unstable.
  • One object of the present invention is to provide a novel magnetoresistance effect element and MR based on a domain wall displacement method.
  • Another object of the present invention is to provide a technology capable of holding the magnetization of the magnetization fixed region in the magnetization free layer more stably when the write current is supplied to the magnetization free layer. It is.
  • a magnetoresistance effect element based on a domain wall displacement system.
  • the magnetoresistive element comprises a magnetization free layer and a magnetization fixed layer connected to the magnetization free layer via the nonmagnetic layer.
  • the magnetization free layer includes a magnetization switching region, a first magnetization fixed region, and a second magnetization fixed region.
  • the magnetization inversion region overlaps the magnetization fixed layer, and also has reversible magnetization.
  • the first magnetization fixed region is connected to one end in the magnetization easy axis direction of the magnetization switching region, and has a first fixed magnetization.
  • the second magnetization fixed region is connected to the other end of the magnetization inversion region in the easy magnetization axis direction, and has a second fixed magnetization.
  • the first magnetization fixed region and the magnetization switching region form one three-fork, and the second magnetization fixed region and the magnetization switching region form another three-fork.
  • an MRAM based on a domain wall displacement system comprises a plurality of magnetic memory cells arranged in an array. Each of the plurality of magnetic memory cells supplies the magnetoresistive effect element and the write current to the magnetization free layer.
  • the magnetoresistive effect element and the MRAM according to the present invention when a write current is supplied to the magnetization free layer, it is possible to stably hold the magnetization of the magnetization fixed region in the magnetization free layer. It becomes. As a result, the upper limit of the magnitude of the write current is increased, and the write margin is expanded.
  • FIG. 1 is a side view schematically showing the structure of a magnetoresistive element according to a first embodiment of the present invention.
  • FIG. 2A is a plan view showing the structure of the magnetization free layer of the magnetoresistance effect element according to the first example.
  • FIG. 2B is a plan view showing the structure of the magnetization free layer of the magnetoresistance effect element according to the first example.
  • FIG. 3 is a diagram for explaining data writing to the magnetoresistive element according to the first embodiment.
  • FIG. 4A is a plan view showing a modification of the magnetization free layer according to the first embodiment.
  • FIG. 4B is a plan view showing another modification of the magnetization free layer according to the first embodiment.
  • FIG. 4C is a plan view showing still another modification of the magnetization free layer according to the first embodiment.
  • FIG. 4D is a plan view showing still another modification of the magnetization free layer according to the first embodiment.
  • FIG. 5A is a plan view showing an example of the shape of the magnetization switching region included in the magnetization free layer.
  • FIG. 5B is a plan view showing another example of the shape of the magnetization switching region included in the magnetization free layer.
  • FIG. 5C is a plan view showing still another example of the shape of the magnetization switching region included in the magnetization free layer.
  • FIG. 6 is a plan view showing the structure of the magnetization free layer of the magnetoresistance effect element according to the second example of the present invention.
  • FIG. 7 is a diagram for explaining data writing to the magnetoresistive element according to the second embodiment.
  • FIG. 8 is a side view schematically showing the structure of a magnetoresistance effect element according to a third example of the present invention.
  • FIG. 9 is a plan view showing an arrangement example of magnetoresistive effect element groups according to a fourth example of the present invention.
  • FIG. 10 is a side view schematically showing a structure of a magnetoresistance effect element according to a fifth example of the present invention.
  • FIG. 11A is a side view showing a modified example of the magnetoresistance effect element according to the fifth example.
  • FIG. 11B is a side view showing another modification of the magnetoresistance effect element according to the fifth example.
  • FIG. 12 is a side view schematically showing a structure of a magnetoresistance effect element according to a sixth example of the present invention.
  • FIG. 13A is a side view showing a modification of the magnetoresistance effect element according to the sixth example. It is.
  • FIG. 13B is a side view showing another modification of the magnetoresistance effect element according to the sixth example.
  • FIG. 14 is a circuit diagram showing an example of a magnetic memory cell according to an embodiment of the present invention.
  • FIG. 15 is a circuit diagram schematically showing a configuration of an MRAM according to an embodiment of the present invention.
  • FIG. 1 is a side view schematically showing the structure of the magnetoresistance effect element according to the first embodiment.
  • the magnetoresistive element has a laminated structure in which a magnetization free layer 1, a tunnel barrier layer 2 and a magnetization fixed layer 3 are sequentially laminated.
  • the stacking direction is defined as “Z direction”. That is, the direction perpendicular to the main surface of each layer is the Z direction.
  • Each layer is formed on an XY plane perpendicular to the Z direction.
  • the magnetization free layer (free layer) 1 includes a ferromagnetic layer. Also, as will be described in detail later, the magnetization free layer 1 has a region in which the direction of magnetization can be reversed.
  • the tunnel barrier layer 2 is a nonmagnetic layer.
  • the tunnel barrier layer 2 is formed of an insulating film.
  • the tunnel barrier layer 2 is sandwiched between the magnetization free layer 1 and the magnetization fixed layer 3.
  • the tunnel barrier layer 2 may have a force S having the same width as the magnetization free layer 1 and the same width as the magnetization fixed layer 3.
  • the width of the tunnel barrier layer 2 may be changed halfway from the same width as the magnetization fixed layer 3 to the same width as the magnetization free layer 1.
  • the magnetization fixed layer (pin layer) 3 includes a ferromagnetic layer in contact with the tunnel barrier layer 2, and the direction of the magnetization is fixed in one in-plane direction by an antiferromagnetic layer or the like (not shown). It is done.
  • the magnetization direction of the magnetization fixed layer 3 in contact with the tunnel barrier layer 2 is fixed in the + X direction.
  • the magnetization fixed layer 3 may have a laminated structure in which a plurality of ferromagnetic layers are magnetically coupled via the nonmagnetic layer. In that case, for example, adjacent The ferromagnetic layers are antiferromagnetically coupled via the nonmagnetic layer. Thereby, the leakage magnetic field from the magnetization fixed layer 3 is reduced, and the fixed magnetization also becomes stronger.
  • the magnetization free layer 1 and the magnetization fixed layer 3 are connected via the tunnel barrier layer 2.
  • An MT J is formed by the magnetization free layer 1, the tunnel barrier layer 2, and the magnetization fixed layer 3.
  • an electrode layer and a cap layer are provided in the magnetoresistance effect element.
  • FIG. 2A is a plan view showing in detail the structure of the magnetization free layer 1 according to the present embodiment.
  • the magnetization free layer 1 according to the present embodiment includes a first magnetization fixed region 11, a second magnetization fixed region 12, and a magnetization switching region 13.
  • the first magnetization fixed region 11, the second magnetization fixed region 12, and the magnetization switching region 13 are formed on the same XY plane.
  • the magnetization switching region 13 is a region in contact with the tunnel barrier layer 2 and overlaps the magnetization fixed layer 3 (shown by a broken line in FIG. 2A). That is, an MTJ is formed by the magnetization switching region 13 of the magnetization free layer 1, the tunnel barrier layer 2, and the magnetization fixed layer 3.
  • the longitudinal direction of the magnetization switching region 13, that is, the easy magnetization axis coincides with the X direction.
  • the magnetization direction of the magnetization switching region 13 can be reversed, and the force S can be + X direction or ⁇ X direction. In other words, the magnetization direction of the magnetization switching region 13 can be “anti-parallel” that is “parallel” to the magnetization direction of the magnetization fixed layer 3.
  • the first magnetization fixed region 11 is one end of the magnetization switching region 13 in the X direction (direction of easy magnetization axis)
  • the second magnetization fixed region 12 is connected to the other end (second end) 13 b in the X direction of the magnetization inversion region 13.
  • the side of the second magnetization fixed region 12 is in contact with the second end 13 b of the magnetization switching region 13. That is, another triple junction is formed by the second magnetization fixed region 12 and the magnetization switching region 13.
  • the first magnetization fixed region 11 is formed along the S 1 axis that intersects the X axis. At this time, a wide angle and a narrow angle are formed at the intersection of the X-axis and the S-axis in the above-mentioned three-way junction.
  • the portion of the first magnetization fixed region 11 extending to the wide angle side is hereinafter referred to as “first wide angle portion l la”, and the portion extending to the narrow angle side is hereinafter referred to as “first narrow angle portion l lb” Referenced.
  • the first wide angle portion 11 a forms an angle of 90 degrees or more with respect to the magnetization easy axis of the magnetization switching region 13.
  • the first narrow corner portion l ib forms an angle of 90 degrees or less with respect to the magnetization easy axis of the magnetization switching region 13.
  • the second magnetization fixed region 12 is formed along the T axis intersecting the X axis. At this time, a wide angle and a narrow angle are formed by the intersection of the X axis and the ⁇ axis in the above-mentioned trifurcated road.
  • the portion of the second magnetization fixed region 12 extending to the wide angle side is hereinafter referred to as "second wide angle portion 12a", and the portion extending to the narrow angle side is hereinafter referred to as "second narrow angle portion 12b".
  • the second wide angle portion 12 a forms an angle of 90 degrees or more with respect to the magnetization easy axis of the magnetization switching region 13.
  • the second narrow corner portion 12 b forms an angle of 90 degrees or less with respect to the magnetization easy axis of the magnetization switching region 13.
  • the magnetizations of the first magnetization fixed region 11 and the second magnetization fixed region 12 are fixed along the longitudinal direction by magnetic anisotropy.
  • the magnetization (first fixed magnetization) of the first magnetization fixed region 11 is fixed in the direction from the first wide-angle portion 11a toward the first narrow corner lib.
  • the magnetization (second fixed magnetization) of the region 12 is fixed in the direction from the second wide-angle portion 12a to the second narrow angle portion 12b.
  • the magnetization of the first magnetization fixed region 11 is fixed in the direction from the first narrow angle portion l ib to the first wide angle portion 11a
  • the magnetization of the second magnetization fixed region 12 is the second narrow. It may be fixed in the direction from the corner 12b to the second wide angle part 12a.
  • the X component of the fixed magnetization is reversed between the first magnetization fixed region 11 and the second magnetization fixed region 12.
  • a pigging layer not shown may be used.
  • the first piging layer is provided in the vicinity of the first magnetization fixed region 11 or adjacent to the first magnetization fixed region 11.
  • the first pinned layer is formed of a ferromagnetic or antiferromagnetic material and is magnetically coupled to the first magnetization fixed region 11.
  • it is provided in the vicinity of the second pigeon layer force S, the second magnetization fixed region 12 or adjacent to the second magnetization fixed region 12.
  • the second pinned layer is formed of a ferromagnetic material or an antiferromagnetic material and is magnetically coupled to the second magnetization fixed region 12.
  • Magnetic coupling includes exchange coupling and magnetostatic coupling.
  • FIG. 3 shows two possible magnetization states of the magnetization free layer 1 according to the present embodiment.
  • the magnetization direction of the magnetization switching region 13 is the X direction, that is, the direction is antiparallel to the magnetization direction (+ X direction) of the magnetization fixed layer 3
  • the resistance value of the MTJ is relatively large.
  • This antiparallel state is associated with, for example, data “1”.
  • the magnetization direction of the magnetization switching region 13 is in the + X direction, that is, when the direction is parallel to the magnetization direction (+ X direction) of the magnetization fixed layer 3
  • the resistance value of the MTJ is compared Small.
  • This parallel state is associated with, for example, data "0".
  • the magnetization (-X direction) of the magnetization switching region 13 is continuously connected from the second wide-angle portion 12a of the second magnetization fixed region 12.
  • the magnetization of the first magnetization fixed region 11 is Since the three-way junction has a component in the + X direction, the domain wall DW is present at the first end 13a of the magnetization switching region 13.
  • the magnetization switching region is The 13 magnetizations (in the + X direction) are continuously connected from the first wide-angle portion 11a of the first magnetization fixed region 11.
  • the magnetization of the second magnetization fixed region 12 has a component in the X direction in the three-way junction.
  • the domain wall DW is present at the second end 13b of the magnetization switching region 13.
  • the X component of the fixed magnetization is reversed between the first magnetization fixed region 11 and the second magnetization fixed region 12 Therefore, the domain wall DW is introduced into the magnetization free layer 1.
  • data “1” and “0” can be distinguished. These two states are equivalent in energy.
  • Data is read out by detecting the resistance value of the MTJ. Specifically, a read current is caused to flow between the magnetization fixed layer 3 and the magnetization free layer 1 so as to penetrate the MTJ. The resistance value of the MTJ is detected based on the read current, and data "!" or "0" is sensed.
  • Data writing is performed by the “horizontal spin injection method”. That is, the write current does not penetrate the MTJ but flows in a planar manner in the magnetization free layer 1.
  • the write current flows from the wide-angle portion of one magnetization fixed region, through the magnetization switching region 13 and to the wide-angle portion of the other magnetization fixed region.
  • the first wide-angle portion 11a of the first magnetization fixed region 11 serves as a spin supply source for supplying electrons having a magnetic moment in the + X direction (+ X direction spin polarized electrons) to the magnetization switching region 13. Play a role.
  • the second wide-angle portion 12a of the second magnetization fixed region 12 has a magnetic moment in the -X direction. It serves as a spin source that supplies electrons (one spin-polarized electron in the X direction) to the magnetization switching region 13.
  • Data writing can also be described in terms of domain wall motion.
  • the domain wall DW moves from the first end 13a in the + X direction, and reaches the second end 13b.
  • the domain wall DW moves from the first end 13a in the + X direction, and reaches the second end 13b.
  • the domain wall DW moves from the second end 13 b in the X direction to reach the first end 13 a.
  • the data writing is realized by the “domain wall displacement method”.
  • the above-mentioned writing is possible even when the angle formed by the magnetization reversal region 13 between the wide angle part l la, 12 a or the narrow angle part l lb, 12 b and the magnetization switching region 13 is 90 degrees.
  • the angle between the wide-angle portion l la, 12 a and the magnetization switching region 13 increases within the range of 90 to 180 degrees, the spin component contributing to the domain wall movement increases. As a result, the write efficiency is improved, and the write current can be further reduced. In that sense, it is preferable that the angle between the wide angle part l la, 12a and the magnetization inversion area 13 be larger than 90 degrees as shown in the drawing.
  • a three-way junction is formed by each of the magnetization fixed regions 11 and 12 and the magnetization switching region 13.
  • the magnetization free layer 1 has narrow corners 1 lb and 12 b in which the write current does not flow.
  • the effects ij of these narrow corners l lb and 12 b are as follows.
  • the wide-angle portion 11a of the first magnetization fixed region 11 is magnetically affected by the narrow angle portion l ib where the write current does not flow.
  • the magnetization of the wide-angle portion 11a is continuously connected to the magnetization of the narrow corner l ib and stabilized by the magnetization of the narrow corner l ib. Therefore, at the time of data writing, the domain wall DW intrudes into the wide-angle portion 11 a and stops near the end of the magnetization switching region 13.
  • the narrow angle portion l ib prevents the domain wall movement at the wide angle portion 11a. The same applies to the narrow corner 12b.
  • the magnetization free layer 1 includes the first magnetization fixed region 11, the second magnetization fixed region 12, and the magnetization switching region 13.
  • the first magnetization fixed region 11 and the magnetization switching region 13 form a three-way junction, and the first magnetization fixed region 11 includes the wide angle portion 11 a and the narrow corner portion l ib.
  • the second magnetization fixed region 12 and the magnetization switching region 13 also form a three-fork path, and the second magnetization fixed region 12 includes a wide angle portion 12a and a narrow angle portion 12b.
  • the width, length, and angle of each region can be designed arbitrarily. As in the example shown in FIG.
  • the X component of fixed magnetization in the three-way junction is reversed at the first wide-angle portion 11a and the second wide-angle portion 12a. Therefore, it is possible to realize data writing by the method shown in FIG.
  • the first magnetization fixed region 11 and the second magnetization fixed region 12 are mirror symmetric with the magnetization inversion region 13 interposed therebetween. This is preferable in that the injection efficiency of spin-polarized electrons is balanced between the data “!!” “write” and the data “0” write, and variations in the write efficiency can be suppressed.
  • the magnetization switching region 13 has a first region B1 located closer to the first end 13a than the central portion, and a second region B2 located closer to the second end 13b than the central portion. And contains.
  • the cross-sectional areas of the first region B1 and the second region B2 are different from the cross-sectional area of the central portion. From the viewpoint of energy, the smaller the area of the domain wall DW, the more stable the domain wall DW.
  • the domain wall DW tends to stop in front of the first area B1 or the second area B2.
  • the central portion is thicker than the first region B1 and the second region B2.
  • the domain wall DW is prevented from stopping near the central portion.
  • the magnetization free layer 1 and the magnetization fixed layer 3 for example, Fe (iron), Co (cobalt), Ni (nickel), or an alloy containing any of these as a main component can be used.
  • Fe Ni, Fe-Co-Ni and Fe-Co are desirable.
  • nonmagnetic elements to these magnetic substances properties such as magnetic properties, crystallinity, mechanical properties, and chemical properties may be adjusted. .
  • the nonmagnetic elements to be added include Ag (silver), Cu (copper), Au (gold), B (boron), C (carbon), N (nitrogen), O (oxygen), Mg (magnesium), A1.
  • the magnetization free layer 1 is a layer in which the domain wall moves, and preferably has a crystal structure that can realize smooth domain wall movement. Lattice defects, grain boundaries, etc. become piungsites that prevent smooth domain wall movement. Therefore, it is desirable that the magnetization free layer 1 have a structure such as an amorphous structure or a single crystal structure that does not contain much pin Jung site.
  • amorphous structure P, Si, B, C, etc. are added to the magnetic material, film formation is performed in a nitrogen atmosphere, film formation rate is controlled, or film formation is performed by cooling the substrate. And so on.
  • the magnetization fixed layer 3 in order to prevent magnetization reversal, it is desirable to use a material having a large coercivity.
  • a magnetic material that can obtain a high MR ratio.
  • Fe, Co, Ni, or an alloy made of them may be selected as the material of the magnetization fixed layer 3.
  • the magnetic properties can be adjusted by adding 4d, 5d transition metal elements, rare earth elements and the like to such magnetic materials.
  • tunnel barrier layer 2 As a material of tunnel barrier layer 2, Al 2 O 3 (aluminum oxide), SiO 2 (silicon oxide),
  • An insulator such as MgO (magnesium oxide) or A1N (aluminum nitride) can be used.
  • nonmagnetic metals such as Cu, Cr, Al, Zn (zinc) can also be used as the material of the tunnel barrier layer 2.
  • the write current does not penetrate MTJ. Since it is not necessary to pass a write current to the tunnel barrier layer 2 for each write, deterioration of the tunnel barrier layer 2 is suppressed.
  • the read characteristics depend on the properties of the MTJ including the tunnel barrier layer 2, while the write properties depend only on the properties of the magnetization free layer 1. Therefore, it becomes possible to design the read characteristic and the write characteristic almost independently. In other words, it becomes possible to design the write characteristic which is not greatly restricted by the read characteristic. That is, the design freedom of the write characteristics is improved. This also contributes to the expansion of the write margin.
  • the magnetization free layer 1 has narrow corners 1 lb and 12 b.
  • the narrow corners l lb and 12 b play a role of stabilizing the magnetization of the wide angle portions l la and 12 a, and prevent the domain wall DW from invading the wide angle portions l la and 12 a. That is, when the write current is supplied to the magnetization free layer 1, the magnetization of the magnetization fixed regions 11 and 12 can be stably held. This means that the upper limit of the magnitude of the write current is increased, and the write margin is expanded.
  • FIG. 6 is a plan view showing the structure of the magnetization free layer 1 according to the second embodiment.
  • the S axis in which the first magnetization fixed region 11 is formed and the T axis in which the second magnetization fixed region 12 is formed are substantially parallel.
  • the first magnetization fixed region 11 and the second magnetization fixed region 12 are rotationally symmetric about the magnetization switching region 13.
  • the wide angle portion 11 a of the first magnetization fixed region 11 faces the narrow angle portion 12 b of the second magnetization fixed region 12, and the narrow angle portion l ib of the first magnetization fixed region 11 is the wide angle portion of the second magnetization fixed region 12. It is facing 12a.
  • the fixed direction of the magnetization (first fixed magnetization) of the first magnetization fixed region 11 and the fixed direction of the magnetization (second fixed magnetization) of the second magnetization fixed region 12 are the same as in the first embodiment. is there. That is, the first fixed magnetization is fixed in the direction from the first wide-angle portion 11a to the first narrow corner portion l ib, and the second fixed magnetization is fixed. Is fixed in the direction from the second wide angle part 12a to the second narrow angle part 12b (see FIG. 6). Alternatively, the first fixed magnetization is fixed in the direction from the first narrow angle portion l ib to the first wide angle portion 11a, and the second fixed magnetization is in the direction from the second narrow angle portion 12b to the second wide angle portion 12a.
  • the X component of the fixed magnetization in the three-way junction is reversed at the first wide-angle portion 1 la and the second wide-angle portion 12a.
  • the direction of the first fixed magnetization and the direction of the second fixed magnetization are antiparallel.
  • FIG. 7 shows two possible magnetization states of the magnetization free layer 1 according to this example.
  • Data writing is performed in the same manner as in the first embodiment. That is, the write current flows from one wide-angle portion to the other wide-angle portion in the magnetization free layer 1.
  • the storage data S'T ' is rewritten to "0”
  • electrons flow from the first wide angle portion 11a to the second wide angle portion 12a.
  • the domain wall DW moves from the first end 13a in the + X direction to reach the second end 13b.
  • the domain wall DW moves from the second end 13 b to ⁇ X Move to reach the first end 13a.
  • the same effect as that of the first embodiment can be obtained.
  • a shape of the magnetization free layer 1 a modification similar to the modification shown in FIG. 4A to FIG. 4D can be considered.
  • various modifications shown in FIGS. 5A to 5C may be applied as the magnetization switching region 13.
  • FIG. 8 is a side view schematically showing the structure of the magnetoresistance effect element according to the third example.
  • the magnetization free layer 1 is provided with a plurality of magnetically coupled ferromagnetic layers.
  • the magnetization free layer 1 has a stacked structure in which a first magnetization free layer la, a nonmagnetic layer 20, and a second magnetization free layer lb are sequentially stacked. Of these, the second magnetization free layer lb is in contact with the tunnel insulating layer 2.
  • the first magnetization free layer la and the second magnetization free layer lb are connected via the nonmagnetic layer 20, and are ferromagnetically or antiferromagnetically coupled to each other.
  • Magnetization Free Layer At least one force of la and lb has the magnetization fixed regions 11 and 12 and the magnetization switching region 13 shown in the above-described embodiment.
  • both of the magnetization free layers la and lb may have the magnetization fixed regions 11 and 12 and the magnetization switching region 13.
  • the write current may be applied to both of the magnetization free layers la and lb, or may be applied to only one of them. When the write current is supplied to only one magnetization free layer, when the magnetization of the magnetization switching region 13 is reversed, the magnetization of the magnetization switching region 13 of the other magnetization free layer is simultaneously reversed.
  • the first magnetization free layer la has the magnetization fixed regions 11 and 12 and the magnetization inversion region 13, and the second magnetization free layer lb is only the magnetization inversion region 13. have.
  • the write current is caused to flow only to the first magnetization free layer la.
  • the magnetization of the magnetization switching region 13 of the first magnetization free layer la is reversed, the magnetization of the magnetization switching region 13 of the second magnetization free layer lb is simultaneously reversed.
  • the write characteristics depend only on the first magnetization free layer la.
  • the second magnetization free layer lb forms an MTJ together with the tunnel barrier layer 2 and the magnetization fixed layer 3 and contributes to the read characteristics.
  • the write characteristics can be optimized by forming the first magnetization free layer la with a material suitable for domain wall movement.
  • the second magnetization free layer lb of a material having a large MR ratio, the read-out characteristics can be improved.
  • the nonmagnetic layer 20 has the same width as the first magnetization free layer la, but may have the same width as the second magnetization free layer lb. Alternatively, the width of the nonmagnetic layer 20 may change halfway from the same width as the second magnetization free layer lb to the same width as the first magnetization free layer la.
  • the nonmagnetic layer 20 can play a role of protecting the first magnetization free layer la, in which the domain wall moves, from damage due to oxidation or etching in the manufacturing process. From that point of view, it is preferable that the nonmagnetic layer 20 be formed so as to completely cover the surface of the first magnetization free layer la, as shown in FIG.
  • FIG. 9 is a plan view showing an example of the arrangement of a plurality of magnetoresistance effect elements.
  • a plurality of magnetoresistance effect elements are arranged in an array.
  • the magnetization fixed regions of the magnetization free layer 1 are magnetically coupled to each other between adjacent magnetoresistive elements. There is. This makes it possible to further stabilize the fixed magnetization of the magnetization fixed regions 11 and 12.
  • FIG. 10 is a side view schematically showing the structure of the magnetoresistance effect element according to the fifth example.
  • the magnetization free layer 1 is not planar but has a three-dimensional shape, and the magnetization fixed regions 11 and 12 and the magnetization switching region 13 are not formed on the same plane.
  • the magnetization reversal region 13 is formed on the XY plane, and the magnetization fixed regions 11 and 12 are formed on a plane close to the YZ plane.
  • the XZ-plane shape of the magnetization free layer 1 shown in FIG. 10 various modifications can be considered as the XZ-plane shape, as in the embodiments described above.
  • the magnetization free layer 1 according to this example can have the same XZ plane shape as the XY plane shape of the magnetization free layer 1 shown in FIGS. 2A, 2B, 4A to 4D, and 6.
  • various modifications shown in FIGS. 5A to 5C may be applied as the magnetization switching region 13.
  • the fixing direction of the magnetization (first fixed magnetization) of the first magnetization fixed region 11 and the fixing direction of the magnetization (second fixed magnetization) of the second magnetization fixed region 12 have already been described.
  • the first fixed magnetization is fixed in the direction from the first wide-angle portion 11a to the first narrow corner portion l ib
  • the second fixed magnetization is in the direction from the second wide-angle portion 12a to the second narrow corner portion 12b. It is fixed.
  • the first fixed magnetization is fixed in the direction from the first narrow corner portion l ib to the first wide angle portion 11a
  • the second fixed magnetization is the second narrow angle.
  • the X component of the fixed magnetization in the three-way junction is reversed at the first wide-angle portion 11a and the second wide-angle portion 12a.
  • the first fixed magnetization and the second fixed magnetization include the Z component.
  • FIGS. 11A and 11B show modified examples of the magnetoresistance effect element according to this example.
  • an antiferromagnetic layer 30 is provided outside the magnetization fixed regions 11 and 12.
  • an antiferromagnetic layer 30 is provided inside the magnetization fixed regions 11 and 12. These antiferromagnetic layers 30 are magnetized so as to fix the direction of magnetization of the magnetization fixed regions 11 and 12. It is magnetically coupled to each of the fixed regions 11 and 12. Such a configuration makes it possible to easily fix the magnetization directions of the magnetization fixed regions 11 and 12.
  • the same effect as that of the first embodiment can be obtained. Furthermore, since the magnetization fixed regions 11 and 12 are arranged in the perpendicular direction, the area of the magnetoresistive element can be reduced.
  • FIG. 12 is a side view schematically showing the structure of the magnetoresistance effect element according to the sixth example.
  • the assist wiring 40 is provided in the vicinity of the magnetoresistance effect element.
  • a predetermined current flows through the assist wiring, whereby an assist magnetic field is generated.
  • the assist magnetic field is applied to the magnetization free layer 1 to assist the movement of the domain wall. That is, at the time of data writing, a current is caused to flow through the assist wiring such that an assist magnetic field directed to assist domain wall movement in the magnetization free layer 1 is generated.
  • the assist wiring 40 extending in the Y direction is disposed below the magnetization reversal region 13 of the magnetoresistive effect element.
  • a current in the + Y direction flows in the assist wiring 40.
  • the assist magnetic field force S in the + X direction is applied to the magnetization switching region 13 of the magnetization free layer 1.
  • the assist magnetic field facilitates magnetization of the magnetization switching region 13 in the + X direction, that is, the assist magnetic field assists the domain wall movement in the + X direction.
  • a current in the Y direction flows through the assist wiring 40.
  • the positions and the number of assist interconnections 40 are not limited to those shown in FIG.
  • the assist magnetic field force generated by the assist wiring 40 and the magnetization reversal region 13 are applied simultaneously with the supply of the write current to the magnetization free layer 1. Since the domain wall movement is assisted by the assist magnetic field, the amount of the write current to be supplied to the magnetization free layer 1 can be reduced. That is, the value of the minimum write current required for domain wall movement is further reduced. This means that the write margin is further broadened.
  • the assist wiring 40 shown in FIG. 12 is preferably a wiring for supplying a write current to the magnetization free layer 1. That is, it is preferable that a wire for supplying the write current to the magnetization free layer 1 be used in combination as the assist wire 40.
  • the assist wire 40 is connected to the wide angle portion 11 a or 12 a of the magnetization free layer 1.
  • the write current is supplied to or withdrawn from the wide-angle portion 11a or 12a through the assist wire 40.
  • an assist magnetic field generated by the write current is applied to the magnetization switching region 13.
  • FIGS. 13A and 13B show a modified example of the assist wiring 40.
  • FIG. The assist wiring 40 shown in FIGS. 13A and 13B has a yoke structure. That is, a part of the surface of the assist wiring 40 which is not opposed to the magnetization switching region 13 is covered with the magnetic force substance 41.
  • the bottom surface of the assist wiring 40 is covered with the magnetic body 41
  • the side surface and the bottom surface of the assist wiring 40 are covered with the magnetic body 41.
  • Such a yoke structure increases the assist magnetic field, and the write current can be further reduced.
  • FIG. 14 is a circuit diagram showing an example of a magnetic memory cell using the magnetoresistive effect element described above.
  • selection transistors 50a, 50b 1S for supplying a write current are connected to the magnetization free layer 1.
  • one of the source / drain of the selection transistor 50a is connected to the first wide-angle portion 11a of the first magnetization fixed region 11, and the other is connected to the first bit line 51a.
  • one of the source / drain of the select transistor 50b is connected to the second wide-angle portion 12a of the second magnetization fixed region 12, and the other is connected to the second bit line 51b.
  • the gates of the select transistors 50 a and 50 b are connected to the word line 52.
  • the magnetization fixed layer 3 is connected to the ground wire 53.
  • the word line 52 is turned on, the ground line 53 is turned off, and a predetermined potential difference is applied between the bit lines 51a and 51b.
  • the write current is, for example, "first bit line 51a-selection transistor 50a-first wide angle portion 11a of first magnetization fixed region 11-magnetization inversion region 13-second wide angle portion 12a of second magnetization fixed region 12". —Select transistor 50b-second bit Flow along the line 51b ". Reverse current paths are also possible. Thereby, the data writing shown in the above-described embodiment is realized.
  • the word line 52 is turned on, the ground line 53 is turned on, and the bit lines 51a and 5 lb are set to the same potential.
  • the read current flows in the path of "bit line 51a, 51b-selected transistor 50a, 50b-magnetization free layer 1-tunnel barrier layer 2-magnetization fixed layer 3-ground line 53".
  • the stored data can be sensed based on the read current.
  • FIG. 15 shows an example of the configuration of an MRAM 100 in which a plurality of magnetic memory cells 110 are arranged in an array.
  • Each magnetic memory cell 110 has the configuration shown in FIG.
  • the word line 52 is connected to the X selector 120, and the X selector 120 selects the word line 52 connected to the magnetic memory cell 110 to be accessed.
  • the bit lines 51 a and 51 b are connected to the Y selector 130 and the Y side current termination circuit 140.
  • the Y selector 130 selects the bit line 51a (or 51b) connected to the magnetic memory cell 110 to be accessed.
  • Write current is supplied to or withdrawn from the magnetic memory cell 110 to be accessed through the selected bit line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

 本発明に係る磁気抵抗効果素子は、磁化自由層1と、非磁性層2を介して磁化自由層1に接続された磁化固定層3とを備える。磁化自由層1は、磁化反転領域13と、第1磁化固定領域11と、第2磁化固定領域12とを含む。反転可能な磁化を有する磁化反転領域13は、磁化固定層3とオーバーラップする。第1固定磁化を有する第1磁化固定領域11は、磁化反転領域13の一端13aに接続される。第2固定磁化を有する第2磁化固定領域12は、磁化反転領域13の他端13bに接続される。第1磁化固定領域11と磁化反転領域13は1つの三叉路を形成し、第2磁化固定領域12と磁化反転領域13は他の三叉路を形成する。

Description

明 細 書
磁気抵抗効果素子及び MRAM
技術分野
[0001] 本出願は、 2006年 12月 12日に出願された日本国特許出願 2006— 334259に 基づいており、優先権の利益を主張する。当該特許出願の開示内容は全て、参照す ることによりここに糸且み込まれる。
[0002] 本発明は、磁気抵抗効果素子、及び磁気抵抗効果素子をメモリセルとして用いる フンダムァゾセス モリ (MRAM: Magnetic Random Access Memory)に関する。 特に、本発明は、磁壁移動方式に基づく MRAM、及びその MRAMで用いられる磁 気抵抗効果素子に関する。
背景技術
[0003] MRAMは、高集積 ·高速動作の観点から有望な不揮発性メモリである。 MRAMに おいては、 TMR (Tunnel MagnetoResistance)効果などの磁気抵抗効果を示す「磁 気抵抗効果素子」が、メモリセルとして利用される。その磁気抵抗効果素子には、例 えばトンネルバリヤ層力 ¾層の強磁性体層で挟まれた磁気トンネル接合(MTJ: Magne tic Tunnel Junction)が形成される。その 2層の強磁性体層は、磁化の向きが固定さ れた磁化固定層(ピン層: pinned layer)と、磁化の向きが反転可能な磁化自由層(フ リー層: free layer)から構成される。
[0004] 磁化固定層と磁化自由層の磁化の向き力 反平行"である場合の MTJの抵抗値 (R + A R)は、磁気抵抗効果により、それら力 '平行"である場合の抵抗値 (R)よりも大き くなることが知られている。室温での MR比(= A R/R)は、数 10〜数 100%になる。
MRAMのメモリセルは、その抵抗値の変化を利用することによってデータを不揮発 的に記憶する。データの読み出しは、 MTJを貫通するように読み出し電流を流し、 M TJの抵抗値を測定することにより行なわれる。一方、データの書き込みは、磁化自由 層の磁化の向きを反転させることによって行われる。
[0005] 代表的なデータ書き込み方式として、「電流磁界方式」が知られている。電流磁界 方式によれば、磁気抵抗効果素子の近傍に配置された書き込み配線に書き込み電 流が流される。そして、その書き込み電流により発生する書き込み磁界が磁化自由 層に印加され、それにより磁化自由層の磁化の向きが変化させられる。この時、 1mA の書き込み電流により発生する磁界は、数 Oe〜十数 Oe程度である。一方、熱擾乱( ディスターバンス)による記憶データの書き換えを防止するためには、磁化自由層の 磁化反転に必要な反転磁界は、数十 Oe程度に設計されることが望ましい。従って、 1mA以下の書き込み電流でデータ書き込みを実現することは非常に難しい。この点 において、電流磁界方式の MRAMは、他の RAMよりも不利である。更に、磁気抵 抗効果素子のサイズにほぼ反比例して、磁化自由層の磁化反転に必要な反転磁界 は大きくなる。つまり、メモリセルが微細化されるにつれて、書き込み電流が増加して しまうという問題点がある。
[0006] 特開 2005— 150303号公報には、電流磁界方式の MRAMに関して、熱擾乱耐 性を向上させ、且つ、反転磁界を低減することを目的とした技術が記載されている。 当該技術に係る磁気抵抗効果素子は、第 1の強磁性層/トンネルバリヤ層/第 2の 強磁性層の 3層構造を含む強磁性トンネル接合を有する。第 1の強磁性層は、第 2の 強磁性層よりも保磁力が大きい。更に、第 2の強磁性層の端部の磁化力 第 2の強磁 性層の磁化容易軸方向と直交する成分を持つ方向に固着されている。
[0007] 最近、電流磁界方式に代わるデータ書き込み方式として、スピン注入 (spin transfer )を利用した「スピン注入方式」が提案されている。例えば、特開 2005— 191032号 公幸! ¾ 文 Ι¾ (Μ. Hosomi et al., A Novel Nonvolatile Memory with Spin Torque Tran sfer Magnetization Switching: Spin-RAM", International Electron Devices Meeting (I EDM), Technical Digest, pp.459-562, 2005·)を参照されたい。スピン注入方式によ れば、磁化自由層にスピン偏極電流(spin-polarized current)が注入され、その電流 を担う伝導電子のスピンと導体の磁気モーメントとの間の直接相互作用によって磁化 が反転する。その磁化反転は電流密度が大きいほど起こりやすくなるため、メモリセ ルサイズが縮小されるにつれ、書き込み電流を低減させることが可能となる。
[0008] 文 l¾ (M. Hosomi et al., A Novel Nonvolatile Memory with Spin Torque Transfer Magnetization Switching: Spin-RAM", International Electron Devices Meeting (IED M), Technical Digest, pp.459-562, 2005·)に記載されたスピン注入方式によれば、 M TJを貫通するように書き込み電流が流される。つまり、当該技術に係るスピン注入方 式は、所謂 CPP (Current Perpendicular to Plane)方式により実現されており、以下「 垂直スピン注入方式」と参照される。垂直スピン注入方式では、磁化固定層と同じス ピン状態を有するスピン偏極電子が、磁化固定層から磁化自由層へ供給される、あ るいは、磁化自由層から磁化固定層に引き抜かれる。その結果、スピントランスファー 効果により、磁化自由層の磁化が反転する。このように、 MTJを貫通する書き込み電 流の方向により、磁化自由層の磁化方向を規定することができる。更に、メモリセルの 微細化に伴い、書き込み電流を小さくすることも可能である。
[0009] 但し、垂直スピン注入方式では、読み出し電流より大きい書き込み電流が MTJを貫 通するため、次のような問題が生ずると考えられる。 MTJのトンネルバリヤ層としては 一般的には絶縁膜が用いられ、その絶縁膜の耐圧の限界から書き込み電流の上限 値が決まってしまう。このことは、書き込みの観点から好ましくない。一方で、その上限 値を増加させるためにトンネルバリヤ層の抵抗値を低くすると、読み出し信号が小さく なってしまう。このことは、読み出しの観点から好ましくない。すなわち、書き込みは、 磁化反転が起こる電流以上、読み出しの制約を満たす絶縁膜の耐圧以下というマー ジン内で行わなければならず、これは不利である。更に、書き込み動作のたびに絶 縁膜に書き込み電流を流すことは、素子の耐久性の観点からも好ましくなレ、。
[0010] 一方、特開 2005— 191032号公報に記載されたスピン注入方式によれば、書き込 み電流は MTJを貫通せず、磁化自由層内で平面的に流される。このようなスピン注 入方式は、以下「水平スピン注入方式」と参照される。より詳細には、当該技術に係る 磁化自由層は、トンネルバリヤ層と重なる接合部、接合部の両端に隣接するくびれ部 、及びくびれ部に隣接形成された一対の磁化固定部を有する。一対の磁化固定部 には、互いに反対向きの固定磁化が付与されている。その結果、磁化自由層は、上 記接合部内に磁壁(Domain Wall)を有することになる。
[0011] このように構成された磁化自由層内で、書き込み電流が平面的に流される。この時 、一対の磁化固定部は、異なるスピン偏極電子の供給源としての役割を果たす。書 き込み電流の方向は書き込みデータに応じて制御され、その方向に応じて、いずれ かの磁化固定部から接合部にスピン偏極電子が供給される。その結果、スピントラン スファー効果により、磁化自由層の磁化が反転する。この磁化反転は、上述の磁壁 の位置の変化を意味する。すなわち、書き込み電流の方向に応じて、磁壁が一対の くびれ部間を移動する。その意味で、特開 2005— 191032号公報に記載されたよう な水平スピン注入方式を、「磁壁移動方式」と呼ぶこともできる。
[0012] このような電流駆動磁壁移動(Current-Driven Domain Wall Motion)は、強磁性体 細線中で実際に観測されている(Yamaguchi et. al., "Real-Space Observation of Cur rent-Driven Domain Wall Motion in Submicron Magnetic Wires, PRL, vol. 92, pp. 077205-1, 2004、参照)。磁壁を有する幅数十ナノメートル〜数マイクロメートルの磁 性細線に磁壁を横切るような電流が流れたとき、伝導電子の持つスピン磁気モーメン トによって磁壁が動かされる。磁壁移動に必要な電流値も、素子の微細化に伴い小 さくなる。従って、磁壁移動を利用した水平スピン注入方式 (磁壁移動方式)は、大容 量 ·低電流動作 MRAMを実現するために非常に重要な技術である。
発明の開示
[0013] 本願発明者は、次の点に着目した。特開 2005— 191032号公報に記載された技 術によれば、磁化自由層は、磁化方向が可変な接合部の両側に一対の磁化固定部 を有している。それら一対の磁化固定部は、異なるスピン偏極電子の導入源であり、 互いに反対向きの固定磁化が付与されている。そして、それら接合部と一対の磁化 固定部は、直線状に配置されている。そのため、データ書き込み時、スピン偏極電子 が過剰に導入されると、磁壁が一方の磁化固定部に侵入してしまう可能性がある。そ れは、一方の磁化固定部の磁化方向が乱れることを意味する。最悪の場合、一方の 磁化固定部の磁化方向が完全に反転してしまい、磁壁が消滅してしまう。このように 、上記技術では、書き込み電流が供給される際に、磁化固定部の磁化が不安定にな る可能性があった。
[0014] 本発明の 1つの目的は、磁壁移動方式に基づく新たな磁気抵抗効果素子及び MR
AMを提供することにある。
[0015] 本発明の他の目的は、磁化自由層に書き込み電流が供給される際に、その磁化自 由層中の磁化固定領域の磁化をより安定的に保持することができる技術を提供する ことにある。 [0016] 本発明の第 1の観点において、磁壁移動方式に基づく磁気抵抗効果素子が提供さ れる。その磁気抵抗効果素子は、磁化自由層と、非磁性層を介して磁化自由層に接 続された磁化固定層とを備える。磁化自由層は、磁化反転領域と、第 1磁化固定領 域と、第 2磁化固定領域とを含む。磁化反転領域は、磁化固定層とオーバーラップし ており、また、反転可能な磁化を有する。第 1磁化固定領域は、磁化反転領域の磁 化容易軸方向の一端に接続され、第 1固定磁化を有する。第 2磁化固定領域は、磁 化反転領域の磁化容易軸方向の他端に接続され、第 2固定磁化を有する。第 1磁化 固定領域と磁化反転領域は 1つの三叉路を形成し、第 2磁化固定領域と磁化反転領 域は他の三叉路を形成する。
[0017] 本発明の第 2の観点において、磁壁移動方式に基づく MRAMが提供される。その MRAMは、アレイ状に配置された複数の磁気メモリセルを具備する。複数の磁気メ モリセルの各々は、上記磁気抵抗効果素子と、書き込み電流を磁化自由層に供給
Figure imgf000006_0001
[0018] 本発明に係る磁気抵抗効果素子及び MRAMによれば、磁化自由層に書き込み 電流が供給される際に、その磁化自由層中の磁化固定領域の磁化を安定的に保持 することが可能となる。その結果、書き込み電流の大きさとして許される上限値が上昇 し、書き込みマージンが広がる。
図面の簡単な説明
[0019] [図 1]図 1は、本発明の第 1の実施例に係る磁気抵抗効果素子の構造を概略的に示 す側面図である。
[図 2A]図 2Aは、第 1の実施例に係る磁気抵抗効果素子の磁化自由層の構造を示す 平面図である。
[図 2B]図 2Bは、第 1の実施例に係る磁気抵抗効果素子の磁化自由層の構造を示す 平面図である。
[図 3]図 3は、第 1の実施例に係る磁気抵抗効果素子に対するデータ書き込みを説明 するための図である。
[図 4A]図 4Aは、第 1の実施例に係る磁化自由層の変形例を示す平面図である。
[図 4B]図 4Bは、第 1の実施例に係る磁化自由層の他の変形例を示す平面図である [図 4C]図 4Cは、第 1の実施例に係る磁化自由層の更に他の変形例を示す平面図で める。
[図 4D]図 4Dは、第 1の実施例に係る磁化自由層の更に他の変形例を示す平面図で める。
[図 5A]図 5Aは、磁化自由層に含まれる磁化反転領域の形状の一例を示す平面図 である。
[図 5B]図 5Bは、磁化自由層に含まれる磁化反転領域の形状の他の例を示す平面 図である。
[図 5C]図 5Cは、磁化自由層に含まれる磁化反転領域の形状の更に他の例を示す 平面図である。
[図 6]図 6は、本発明の第 2の実施例に係る磁気抵抗効果素子の磁化自由層の構造 を示す平面図である。
[図 7]図 7は、第 2の実施例に係る磁気抵抗効果素子に対するデータ書き込みを説明 するための図である。
[図 8]図 8は、本発明の第 3の実施例に係る磁気抵抗効果素子の構造を概略的に示 す側面図である。
[図 9]図 9は、本発明の第 4の実施例に係る磁気抵抗効果素子群の配置例を示す平 面図である。
[図 10]図 10は、本発明の第 5の実施例に係る磁気抵抗効果素子の構造を概略的に 示す側面図である。
[図 11A]図 11 Aは、第 5の実施例に係る磁気抵抗効果素子の変形例を示す側面図 である。
[図 11B]図 11Bは、第 5の実施例に係る磁気抵抗効果素子の他の変形例を示す側面 図である。
[図 12]図 12は、本発明の第 6の実施例に係る磁気抵抗効果素子の構造を概略的に 示す側面図である。
[図 13A]図 13Aは、第 6の実施例に係る磁気抵抗効果素子の変形例を示す側面図 である。
[図 13B]図 13Bは、第 6の実施例に係る磁気抵抗効果素子の他の変形例を示す側面 図である。
[図 14]図 14は、本発明の実施例に係る磁気メモリセルの一例を示す回路図である。
[図 15]図 15は、本発明の実施例に係る MRAMの構成を概略的に示す回路図であ
発明を実施するための最良の形態
[0020] 添付図面を参照して、本発明の実施例に係る磁気抵抗効果素子及び MRAMを説 明する。
[0021] 1.第 1の実施例
1 - 1.構造
図 1は、第 1の実施例に係る磁気抵抗効果素子の構造を概略的に示す側面図であ る。磁気抵抗効果素子は、磁化自由層 1、トンネルバリヤ層 2、及び磁化固定層 3が 順に積層された積層構造を有している。図 1において、その積層方向が「Z方向」とし て定義されている。つまり、各層の主面に直角な方向が Z方向である。各層は、 Z方 向に直角な XY面上に形成されている。
[0022] 磁化自由層(フリー層) 1は、強磁性層を含んでいる。また、後に詳しく説明されるよ うに、磁化自由層 1は、磁化の向きが反転可能な領域を有している。
[0023] トンネルバリヤ層 2は、非磁性層である。例えば、トンネルバリヤ層 2は、絶縁膜で形 成されている。このトンネルバリヤ層 2は、磁化自由層 1と磁化固定層 3に挟まれてい る。図 1において、トンネルバリヤ層 2は、磁化自由層 1と同じ幅を有している力 S、磁化 固定層 3と同じ幅を有していてもよい。あるいは、トンネルバリヤ層 2の幅は、磁化固 定層 3と同じ幅から磁化自由層 1と同じ幅に途中で変化していてもよい。
[0024] 磁化固定層(ピン層) 3は、トンネルバリヤ層 2に接触する強磁性層を含んでおり、そ の磁化の向きは、図示されない反強磁性層等によって面内の一方向に固定されてい る。例えば図 1において、トンネルバリヤ層 2に接触する磁化固定層 3の磁化の向きは 、 +X方向に固定されている。尚、磁化固定層 3は、複数の強磁性層が非磁性層を 介して磁気的に結合した積層構造を有していてもよい。その場合、例えば、隣接する 強磁性層同士は非磁性層を介して反強磁性的に結合している。これにより、磁化固 定層 3からの漏れ磁界が低減され、また、固定磁化もより強固となる。
[0025] このように、磁化自由層 1及び磁化固定層 3は、トンネルバリヤ層 2を介して接続さ れている。それら磁化自由層 1、トンネルバリヤ層 2、及び磁化固定層 3によって、 MT Jが形成されている。このような MTJに加え、電極層やキャップ層(図示されない)が磁 気抵抗効果素子に設けられる。
[0026] 図 2Aは、本実施例に係る磁化自由層 1の構造を詳細に示す平面図である。図 2A に示されるように、本実施例に係る磁化自由層 1は、第 1磁化固定領域 11、第 2磁化 固定領域 12、及び磁化反転領域 13を含んでいる。それら第 1磁化固定領域 11、第 2磁化固定領域 12、及び磁化反転領域 13は、同一の XY面上に形成されている。
[0027] 磁化反転領域 13は、トンネルバリヤ層 2に接触する領域であり、磁化固定層 3 (図 2 A中、破線で示されている)とオーバーラップしている。すなわち、磁化自由層 1の磁 化反転領域 13、トンネルバリヤ層 2、及び磁化固定層 3によって、 MTJが形成されて いる。この磁化反転領域 13の長手方向、すなわち、磁化容易軸は、 X方向に一致し ている。磁化反転領域 13の磁化の向きは反転可能であり、 +X方向あるいは—X方 向になること力 S許される。言い換えれば、磁化反転領域 13の磁化方向は、磁化固定 層 3の磁化方向と「平行」ある!/、は「反平行」になることができる。
[0028] 第 1磁化固定領域 11は、磁化反転領域 13の X方向(磁化容易軸方向)の一端 (第
1端) 13aに接続されている。言い換えれば、第 1磁化固定領域 11の側部と、磁化反 転領域 13の第 1端 13aが接触している。すなわち、第 1磁化固定領域 11と磁化反転 領域 13により、 1つの三叉路が形成されている。一方、第 2磁化固定領域 12は、磁 化反転領域 13の X方向の他端(第 2端) 13bに接続されている。言い換えれば、第 2 磁化固定領域 12の側部と、磁化反転領域 13の第 2端 13bが接触している。すなわ ち、第 2磁化固定領域 12と磁化反転領域 13により、別の三叉路が形成されている。
[0029] より詳細には、図 2Bに示されるように、第 1磁化固定領域 11は、 X軸に交差する S 軸に沿って形成されている。このとき、上記三叉路において、 X軸と S軸との交差によ り広角と狭角が形成される。第 1磁化固定領域 11のうち広角側に延びる部分は、以 下「第 1広角部 l la」と参照され、狭角側に延びる部分は、以下「第 1狭角部 l lb」と 参照される。第 1広角部 11aは、磁化反転領域 13の磁化容易軸に対して、 90度以上 の角度をなしている。一方、第 1狭角部 l ibは、磁化反転領域 13の磁化容易軸に対 して、 90度以下の角度をなしている。
[0030] 同様に、第 2磁化固定領域 12は、 X軸に交差する T軸に沿って形成されている。こ のとき、上記三叉路において、 X軸と τ軸との交差により広角と狭角が形成される。第 2磁化固定領域 12のうち広角側に延びる部分は、以下「第 2広角部 12a」と参照され 、狭角側に延びる部分は、以下「第 2狭角部 12b」と参照される。第 2広角部 12aは、 磁化反転領域 13の磁化容易軸に対して、 90度以上の角度をなしている。一方、第 2 狭角部 12bは、磁化反転領域 13の磁化容易軸に対して、 90度以下の角度をなして いる。
[0031] 第 1磁化固定領域 11及び第 2磁化固定領域 12の磁化は、磁気異方性により、それ ぞれ長手方向に沿って固定されている。例えば図 2A及び図 2Bにおいて、第 1磁化 固定領域 11の磁化(第 1固定磁化)は、第 1広角部 11aから第 1狭角部 l ibへ向かう 方向に固定されており、第 2磁化固定領域 12の磁化(第 2固定磁化)は、第 2広角部 12aから第 2狭角部 12bへ向力、う方向に固定されている。あるいは、第 1磁化固定領 域 11の磁化は、第 1狭角部 l ibから第 1広角部 11aへ向力、う方向に固定され、第 2磁 化固定領域 12の磁化は、第 2狭角部 12bから第 2広角部 12aへ向かう方向に固定さ れてもよい。いずれの場合でも、固定磁化の X成分は、第 1磁化固定領域 11と第 2磁 化固定領域 12とで逆になつている。
[0032] 尚、第 1磁化固定領域 11及び第 2磁化固定領域 12の磁化の向きを安定的に固定 するために、図示されないピユング層が用いられてもよい。その場合、第 1ピユング層 、第 1磁化固定領域 11の近傍に、あるいは、第 1磁化固定領域 11に隣接して設け られる。第 1ピユング層は、強磁性体あるいは反強磁性体で形成され、第 1磁化固定 領域 11と磁気的に結合している。また、第 2ピユング層力 S、第 2磁化固定領域 12の近 傍に、あるいは、第 2磁化固定領域 12に隣接して設けられる。第 2ピユング層は、強 磁性体あるいは反強磁性体で形成され、第 2磁化固定領域 12と磁気的に結合して いる。磁気的な結合としては、交換結合ゃ静磁結合が挙げられる。
[0033] 1 2.動作原理 図 3は、本実施例に係る磁化自由層 1が取り得る 2種類の磁化状態を示している。 磁化反転領域 13の磁化の向きが X方向である場合、つまり、その向きが磁化固定 層 3の磁化の向き(+ X方向)と反平行である場合、 MTJの抵抗値は比較的大きい。 この反平行状態が、例えばデータ" 1"に対応付けられている。一方、磁化反転領域 1 3の磁化の向きが + X方向である場合、つまり、その向きが磁化固定層 3の磁化の向 き(+ X方向)と平行である場合、 MTJの抵抗値は比較的小さい。この平行状態が、 例えばデータ" 0"に対応付けられている。
[0034] デーダ '1"の場合、磁化反転領域 13の磁化(-X方向)は、第 2磁化固定領域 12 の第 2広角部 12aから連続的につながる。第 1磁化固定領域 11の磁化は、三叉路に おいて + X方向の成分を有しているため、磁壁 DWが、磁化反転領域 13の第 1端 13 aに存在することになる。一方、データ" 0"の場合、磁化反転領域 13の磁化(+ X方 向)は、第 1磁化固定領域 11の第 1広角部 11aから連続的につながる。第 2磁化固定 領域 12の磁化は、三叉路において X方向の成分を有しているため、磁壁 DWが、 磁化反転領域 13の第 2端 13bに存在することになる。このように、第 1磁化固定領域 11と第 2磁化固定領域 12とで固定磁化の X成分が逆になつているため、磁化自由層 1内に磁壁 DWが導入される。そして、その磁壁 DWの位置によって、データ" 1 "ど' 0 "が区別され得る。尚、それら 2つの状態は、エネルギー的には等価である。
[0035] データの読み出しは、 MTJの抵抗値を検出することによって行なわれる。具体的に は、 MTJを貫通するように、読み出し電流が磁化固定層 3と磁化自由層 1との間に流 される。その読み出し電流に基づいて MTJの抵抗値が検出され、データ";! "あるい は" 0"がセンスされる。
[0036] データの書き込みは、「水平スピン注入方式」により行なわれる。すなわち、書き込 み電流は、 MTJを貫通せず、磁化自由層 1内で平面的に流される。具体的には、本 実施例によれば、書き込み電流は、一方の磁化固定領域の広角部から、磁化反転 領域 13を通って、他方の磁化固定領域の広角部へと流される。この時、第 1磁化固 定領域 11の第 1広角部 11aは、 +X方向の磁気モーメントを有する電子(+ X方向ス ピン偏極電子)を磁化反転領域 13に供給するスピン供給源としての役割を果たす。 一方、第 2磁化固定領域 12の第 2広角部 12aは、—X方向の磁気モーメントを有する 電子(一 X方向スピン偏極電子)を磁化反転領域 13に供給するスピン供給源としての 役割を果たす。
[0037] 例えば、記憶データ力 S'T'から" 0"へ書き換えられる時、書き込み電流が、第 2広角 部 12aから第 1広角部 11aへ流される。この場合、図 3に示されるように、電子は、第 1 広角部 11aから第 2広角部 12aに流れる。この時、第 1広角部 1 laから磁化反転領域 13に、 +X方向スピン偏極電子が流れ込む。その結果、スピントランスファー効果に より、磁化反転領域 13の磁化が + X方向に反転する。一方、記憶データが" 0"から" 1"へ書き換えられる時、書き込み電流が、第 1広角部 11aから第 2広角部 12aへ流さ れる。この場合、電子は、第 2広角部 12aから第 1広角部 11aに流れる。この時、第 2 広角部 12aから磁化反転領域 13に、—X方向スピン偏極電子が流れ込む。その結 果、スピントランスファー効果により、磁化反転領域 13の磁化が—X方向に反転する 。このように、磁化自由層 1中を流れる書き込み電流の方向を制御することにより、デ ータ書き込みを実現することが可能である。
[0038] データ書き込みは、磁壁移動の観点から述べることもできる。データ" 1 "から" 0"へ の書き換え時、 +X方向スピン偏極電子力 磁壁 DWを通って磁化反転領域 13に流 れ込む。その結果、磁壁 DWは、第 1端 13aから + X方向に移動し、第 2端 13bへ到 達する。一方、データ" 0"から";!"への書き換え時、—X方向スピン偏極電子力 磁 壁 DWを通って磁化反転領域 13に流れ込む。その結果、磁壁 DWは、第 2端 13bか らー X方向に移動し、第 1端 13aへ到達する。本実施例において、データ書き込みは 、「磁壁移動方式」によって実現されていると言える。
[0039] 尚、広角部 l la、 12aや狭角部 l lb、 12bと磁化反転領域 13とのなす角度が 90度 であっても、上述の書き込みが可能であることが確認されている。但し、広角部 l la、 12aと磁化反転領域 13とのなす角度が 90〜; 180度の範囲内で大きくなるにつれて、 磁壁移動に寄与するスピン成分が増加する。その結果、書き込み効率が向上し、書 き込み電流をより低減することが可能となる。その意味で、広角部 l la、 12aと磁化反 転領域 13とのなす角度は、図面で示されているように 90度より大きいことが好適であ
[0040] 本実施例によれば、磁化固定領域 11、 12の各々と磁化反転領域 13とで三叉路が 形成されるため、磁化自由層 1は、書き込み電流の流れない狭角部 l lb、 12bを有し ている。これら狭角部 l lb、 12bの役害 ijは、次の通りである。
[0041] その説明のため、狭角部 l lb、 12bが存在しない場合を考える。その場合、スピン 偏極電子が過剰に供給されると、磁壁 DWが、磁化反転領域 13の端部を超えて、一 方の磁化固定領域の広角部に侵入してしまう可能性がある。最悪の場合、磁壁 DW 1S 一方の磁化固定領域の端部にまで到達し、広角部の磁化の向きが完全に反転 しまう。つまり、磁化自由層 1の磁化力 一方の広角部から磁化反転領域 13を通って 他方の広角部まで連続的につながってしまう。そうなると、逆方向に電子を流しても、 磁化反転領域 13はもはや反転しなくなる。このように、狭角部 l lb、 12bが存在しな い場合、書き込み電流が供給される際に、磁化固定領域 11、 12の固定磁化が不安 定になる可能性がある。
[0042] 本実施例によれば、第 1磁化固定領域 11の広角部 11aは、書き込み電流の流れな い狭角部 l ibから磁気的な影響を受ける。広角部 11aの磁化は、狭角部 l ibの磁化 と連続的につながつており、その狭角部 l ibの磁化によって安定化されている。従つ て、データ書き込み時、磁壁 DWは、広角部 11aに侵入しに《なり、磁化反転領域 1 3の端部付近で停止する。言い換えれば、狭角部 l ibにより、広角部 11aにおける磁 壁移動が防止される。狭角部 12bに関しても同様である。このように、磁化固定領域 1 1、 12の各々と磁化反転領域 13とで三叉路を形成することによって、磁化固定領域 1 1、 12の磁化を安定的に保持することが可能となる。このことは、書き込み電流の大き さとして許される上限値が上昇し、書き込みマージンが広がることを意味する。
[0043] 1 3.磁化自由層の様々な形状
図 4A〜図 4Dは、既出の図 2Bに対応する図であり、磁化自由層 1の様々な変形例 を示している。いずれの変形例においても、磁化自由層 1は、第 1磁化固定領域 11、 第 2磁化固定領域 12、及び磁化反転領域 13を有している。第 1磁化固定領域 11と 磁化反転領域 13は三叉路を形成しており、第 1磁化固定領域 11は、広角部 11aと 狭角部 l ibを含んでいる。また、第 2磁化固定領域 12と磁化反転領域 13も三叉路を 形成しており、第 2磁化固定領域 12は、広角部 12aと狭角部 12bを含んでいる。各領 域の幅や長さ、角度は、任意に設計され得る。 [0044] 図 2Aで示された例と同様に、いずれの変形例においても、三叉路における固定磁 化の X成分は、第 1広角部 11aと第 2広角部 12aとで逆になつている。従って、図 3で 示された手法により、データ書き込みを実現することが可能である。尚、図 2A、図 4A 〜図 4Dに示された例では、第 1磁化固定領域 11と第 2磁化固定領域 12は、磁化反 転領域 13を挟んで鏡面対称となっている。このことは、データ";! "書き込み時とデー タ" 0"書き込み時との間で、スピン偏極電子の注入効率がバランスし、書き込み効率 のばらつきが抑えられるという点で好適である。
[0045] 1 4.磁化反転領域の様々な形状
図 5A〜図 5Cは、磁化自由層 1の磁化反転領域 13の様々な変形例を示している。 いずれの変形例においても、磁化反転領域 13は、中央部に対して第 1端 13a側に位 置する第 1領域 B1と、中央部に対して第 2端 13b側に位置する第 2領域 B2とを含ん でいる。第 1領域 B1及び第 2領域 B2の断面積は、中央部の断面積と異なっている。 エネルギーの観点から言えば、磁壁 DWは、その面積が小さいほど安定となる。
[0046] 図 5Aに示された例では、第 1領域 B1と第 2領域 B2の側部に凹部が形成されてい る。そのため、第 1領域 B1と第 2領域 B2の断面積は、中央部の断面積よりも小さい。 結果として、データ書き込み時、磁壁 DWは、第 1領域 B1あるいは第 2領域 B2で止 まりやすくなる。図 5Bに示された例では、第 1領域 B1と第 2領域 B2の側部に凸部が 形成されている。そのため、第 1領域 B1と第 2領域 B2の断面積は、中央部の断面積 よりも大きい。結果として、データ書き込み時、磁壁 DWは、第 1領域 B1あるいは第 2 領域 B2の手前で止まりやすくなる。図 5Cに示された例では、中央部が、第 1領域 B1 及び第 2領域 B2よりも太くなつている。この場合、磁壁 DWが中央部付近で停止する ことが防止される。このように、磁化反転領域 13に第 1領域 B1と第 2領域 B2を設ける ことによって、動作特性が向上する。
[0047] 1 5.材料
磁化自由層 1及び磁化固定層 3の材料として、例えば、 Fe (鉄)、 Co (コバルト)、 Ni (ニッケル)、またはそれらを主成分とする合金を用いることができる。特に、 Fe Ni、 Fe-Co-Ni, Fe— Coが望ましい。また、これら磁性体に非磁性元素を添加するこ とにより、磁気特性、結晶性、機械的特性、化学的特性などの特性を調整してもよい 。添加される非磁性元素としては、 Ag (銀)、 Cu (銅)、 Au (金)、 B (ボロン)、 C (炭素 )、 N (窒素)、 O (酸素)、 Mg (マグネシウム)、 A1 (アルミユウム)、 Si (シリコン)、 P (リン )、 Ti (チタン)、 Cr (クロム)、 Zr (ジルコニウム)、 Nb (ニオブ)、 Mo (モリブテン)、 Hf ( ハフニウム)、 Ta (タンタル)、 W (タングステン)、 Pd (パラジウム)、 Pt (白金)などが挙 げられる。その場合、 Ni-Fe-Zr, Co— Fe— Bなどの材料が例示される。
[0048] 磁化自由層 1は、磁壁が移動する層であり、スムーズな磁壁移動を実現できる結晶 構造を有することが好適である。格子欠陥や粒界等は、スムーズな磁壁移動を妨げ るピユングサイトとなる。従って、磁化自由層 1は、アモルファス構造や単結晶構造と いった、ピンユングサイトを多く含まない構造を有することが望ましい。アモルファス構 造は、磁性材料に P、 Si、 B、 Cなどを添加したり、窒素雰囲気中で成膜を行ったり、 成膜レートをコントロールしたり、あるいは基板を冷却して成膜したりするなどして実現 できる。また、基板を加熱して成膜したり、結晶成長のためのシード層を適切に選択 したりすることによって、単結晶性を高めることも可能である。
[0049] 一方、磁化固定層 3に関しては、磁化反転を防止するために、保持力の大きな材 料が用いられることが望ましい。また、読み出し動作時に広い動作マージン、高い信 号雑音比(SN比)を得るためには、高い MR比が得られる磁性材料を選択することが 望ましい。具体的には、磁化固定層 3の材料として、 Fe、 Co、 Ni、またはそれらから なる合金が選択されるとよい。そのような磁性材料に 4d、 5d遷移金属元素や希土類 元素などを添加することにより、その磁気特性を調整することができる。
[0050] トンネルバリヤ層 2の材料として、 Al O (酸化アルミニウム)、 SiO (酸化シリコン)、
2 3 2
MgO (酸化マグネシウム)、 A1N (窒化アルミニウム)などの絶縁体を用いることができ る。また、トンネルバリヤ層 2の材料として、 Cu、 Cr、 Al、 Zn (亜鉛)などの非磁性金属 を用いることもできる。
[0051] 1 6.効果
本実施例により得られる主な効果は、次の通りである。
[0052] まず、データ書き込みがスピン注入方式で行われるため、素子の微細化に伴って、 書き込み電流をより小さくすることが可能である。言い換えれば、データ書き込みに 必要な最低限の電流値がより小さくなる。これは、書き込みマージンが広くなることを 意味する。
[0053] また、データ書き込みが水平スピン注入方式で行われるため、書き込み電流は MT Jを貫通しない。書き込み毎に書き込み電流をトンネルバリヤ層 2に流す必要がない ため、トンネルバリヤ層 2の劣化が抑制される。更に、読み出し特性がトンネルバリヤ 層 2を含む MTJの性質に依存するのに対し、書き込み特性は磁化自由層 1の性質だ けに依存する。従って、読み出し特性と書き込み特性をほぼ独立して設計することが 可能となる。言い換えれば、読み出し特性に大きく制約されることなぐ書き込み特性 を設計することが可能となる。すなわち、書き込み特性の設計自由度が向上する。こ のことも、書き込みマージンの拡大に寄与する。
[0054] 更に、本実施例によれば、磁化固定領域 11、 12の各々と磁化反転領域 13とにより 三叉路が形成されている。そのため、磁化自由層 1は、狭角部 l lb、 12bを有するこ とになる。上述の通り、それら狭角部 l lb、 12bは、広角部 l la、 12aの磁化を安定化 させる役割を果たし、磁壁 DWが広角部 l la、 12aに侵入することを防止する。すな わち、磁化自由層 1に書き込み電流が供給される際に、磁化固定領域 11、 12の磁 化を安定的に保持することが可能となる。このことは、書き込み電流の大きさとして許 される上限値が上昇し、書き込みマージンが広がることを意味する。
[0055] 2.第 2の実施例
第 2の実施例において、第 1の実施例における構成と同じ構成には同一の符号が 付され、重複する説明は適宜省略される。
[0056] 図 6は、第 2の実施例に係る磁化自由層 1の構造を示す平面図である。本実施例に おいて、第 1磁化固定領域 11が形成される S軸と、第 2磁化固定領域 12が形成され る T軸はほぼ平行である。そして、第 1磁化固定領域 11と第 2磁化固定領域 12は、 磁化反転領域 13を中心として回転対称である。第 1磁化固定領域 11の広角部 11a が第 2磁化固定領域 12の狭角部 12bと対向しており、第 1磁化固定領域 11の狭角 部 l ibが第 2磁化固定領域 12の広角部 12aと対向している。
[0057] 第 1磁化固定領域 11の磁化(第 1固定磁化)の固定方向、及び第 2磁化固定領域 1 2の磁化(第 2固定磁化)の固定方向は、第 1の実施例と同様である。つまり、第 1固 定磁化は、第 1広角部 11aから第 1狭角部 l ibへ向力、う方向に固定され、第 2固定磁 化は、第 2広角部 12aから第 2狭角部 12bへ向かう方向に固定されている(図 6参照) 。あるいは、第 1固定磁化は、第 1狭角部 l ibから第 1広角部 11aへ向かう方向に固 定され、第 2固定磁化は、第 2狭角部 12bから第 2広角部 12aへ向かう方向に固定さ れてもよい。いずれの場合でも、三叉路における固定磁化の X成分は、第 1広角部 1 laと第 2広角部 12aとで逆になつている。但し、第 1の実施例はと異なり、第 1固定磁 化の向きと第 2固定磁化の向きは反平行である。
[0058] 図 7は、本実施例に係る磁化自由層 1が取り得る 2種類の磁化状態を示している。
データ書き込みは、第 1の実施例と同様に行われる。すなわち、書き込み電流は、磁 化自由層 1内で、一方の広角部から他方の広角部へと流される。例えば、記憶デー タカ S'T'から" 0"へ書き換えられる時、電子は、第 1広角部 11aから第 2広角部 12aに 流れる。これにより、磁壁 DWが第 1端 13aから + X方向に移動し、第 2端 13bへ到達 する。一方、記憶データ力 0"から";! "へ書き換えられる時、電子は、第 2広角部 12a 力も第 1広角部 11aに流れる。これにより、磁壁 DWは、第 2端 13bから—X方向に移 動し、第 1端 13aへ到達する。
[0059] 本実施例に係る構造によっても、第 1の実施例の場合と同じ効果が得られる。尚、 磁化自由層 1の形状として、図 4A〜図 4Dで示された変形例に類似した変形例が考 えられる。また、磁化反転領域 13として、図 5A〜図 5Cで示された様々な変形例が 適用されてもよい。
[0060] 3.第 3の実施例
第 3の実施例において、既出の実施例における構成と同じ構成には同一の符号が 付され、重複する説明は適宜省略される。
[0061] 図 8は、第 3の実施例に係る磁気抵抗効果素子の構造を概略的に示す側面図であ る。本実施例によれば、磁化自由層 1は、磁気的に結合した複数の強磁性層を備え ている。例えば図 8において、磁化自由層 1は、第 1磁化自由層 la、非磁性層 20、及 び第 2磁化自由層 lbが順に積層された積層構造を有している。このうち第 2磁化自 由層 lbが、トンネル絶縁層 2と接触している。第 1磁化自由層 laと第 2磁化自由層 lb は、非磁性層 20を介して接続されており、互いに強磁性的あるいは反強磁性的に結 合している。 [0062] 磁化自由層 la、 lbのうち少なくとも 1つ力 既出の実施例で示された磁化固定領域 11、 12及び磁化反転領域 13を有している。例えば、磁化自由層 la、 lbの両方が、 磁化固定領域 11、 12及び磁化反転領域 13を有していてもよい。書き込み電流は、 磁化自由層 la、 lbの両方に流されてもよいし、一方にだけ流されてもよい。一方の 磁化自由層にだけ書き込み電流が流される場合、その磁化反転領域 13の磁化が反 転すると、他方の磁化自由層の磁化反転領域 13の磁化も同時に反転する。
[0063] 図 8に示された例では、第 1磁化自由層 laが、磁化固定領域 11、 12及び磁化反 転領域 13を有しており、第 2磁化自由層 lbは磁化反転領域 13だけを有している。そ の場合、書き込み電流は、第 1磁化自由層 laにだけ流される。第 1磁化自由層 laの 磁化反転領域 13の磁化が反転すると、第 2磁化自由層 lbの磁化反転領域 13の磁 化も同時に反転する。書き込み特性は、第 1磁化自由層 laにだけ依存する。一方、 第 2磁化自由層 lbは、トンネルバリヤ層 2及び磁化固定層 3と共に MTJを形成してお り、読み出し特性に寄与する。従って、書き込み特性と読み出し特性をそれぞれ独立 に制御することが可能である。第 1磁化自由層 laを磁壁移動に適した材料で形成す ることにより、書き込み特性を最適化することができる。一方、第 2磁化自由層 lbを M R比の大きい材料で形成することにより、読み出し特性を向上させることができる。こ れらは、水平スピン注入方式だからこそ得られる効果である。
[0064] また、図 8において、非磁性層 20は、第 1磁化自由層 laと同じ幅を有しているが、 第 2磁化自由層 lbと同じ幅を有していてもよい。あるいは、非磁性層 20の幅は、第 2 磁化自由層 lbと同じ幅から第 1磁化自由層 laと同じ幅に途中で変化していてもよい 。この非磁性層 20は、磁壁が移動する第 1磁化自由層 laを、製造プロセス中の酸化 やエッチングによるダメージから保護する役割を果たし得る。その観点からは、図 8に 示されたように、非磁性層 20が第 1磁化自由層 laの表面を完全に覆うように形成さ れることが好適である。
[0065] 4.第 4の実施例
図 9は、複数の磁気抵抗効果素子の配置の一例を示す平面図である。図 9におい て、複数の磁気抵抗効果素子(ビット)がアレイ状に配置されている。また、隣接する 磁気抵抗効果素子の間で、磁化自由層 1の磁化固定領域同士が磁気的に結合して いる。これにより、磁化固定領域 11、 12の固定磁化を更に安定化することが可能とな
[0066] 5.第 5の実施例
第 5の実施例において、既出の実施例における構成と同じ構成には同一の符号が 付され、重複する説明は適宜省略される。
[0067] 図 10は、第 5の実施例に係る磁気抵抗効果素子の構造を概略的に示す側面図で ある。本実施例において、磁化自由層 1は平面的ではなく立体的な形状を有しており 、磁化固定領域 11、 12及び磁化反転領域 13は、同一平面上に形成されていない。 例えば図 10において、磁化反転領域 13は XY面上に形成されている力 磁化固定 領域 11、 12は、 YZ面に近い面上に形成されている。
[0068] 図 10には、磁化自由層 1の XZ面形状の一例が示されている力 その XZ面形状と しては、既出の実施例と同様に、様々な変形例が考えられ得る。本実施例に係る磁 化自由層 1は、図 2A、図 2B、図 4A〜図 4D、図 6で示された磁化自由層 1の XY面 形状と同様の XZ面形状を持ち得る。また、磁化反転領域 13として、図 5A〜図 5Cで 示された様々な変形例が適用されてもよい。
[0069] このような構成においても、第 1磁化固定領域 11の磁化(第 1固定磁化)の固定方 向、及び第 2磁化固定領域 12の磁化(第 2固定磁化)の固定方向は、既出の実施例 と同様である。つまり、第 1固定磁化は、第 1広角部 11aから第 1狭角部 l ibへ向かう 方向に固定され、第 2固定磁化は、第 2広角部 12aから第 2狭角部 12bへ向かう方向 に固定される。あるいは、図 10に示されるように、第 1固定磁化は、第 1狭角部 l ibか ら第 1広角部 11aへ向力、う方向に固定され、第 2固定磁化は、第 2狭角部 12bから第 2広角部 12aへ向かう方向に固定される。いずれの場合でも、三叉路における固定 磁化の X成分は、第 1広角部 11aと第 2広角部 12aとで逆になつている。但し、既出の 実施例はと異なり、第 1固定磁化と第 2固定磁化は、 Z成分を含んでいる。
[0070] 図 11A及び図 11Bは、本実施例に係る磁気抵抗効果素子の変形例を示している。
図 11Aにおいて、磁化固定領域 11 , 12の外側に反強磁性層 30が設けられている。 図 11Bにおいて、磁化固定領域 11 , 12の内側に反強磁性層 30が設けられている。 これら反強磁性層 30は、磁化固定領域 11 , 12の磁化の向きを固定するように、磁化 固定領域 11 , 12のそれぞれと磁気的に結合している。このような構成により、磁化固 定領域 11 , 12の磁化方向を容易に固定することが可能である。
[0071] 本実施例に係る構造によっても、第 1の実施例の場合と同じ効果が得られる。更に 、磁化固定領域 11 , 12が垂直方向に配置されるため、磁気抵抗効果素子の面積を 縮小することが可能となる。
[0072] 6.第 6の実施例
第 6の実施例において、既出の実施例における構成と同じ構成には同一の符号が 付され、重複する説明は適宜省略される。
[0073] 図 12は、第 6の実施例に係る磁気抵抗効果素子の構造を概略的に示す側面図で ある。本実施例によれば、磁気抵抗効果素子の近傍にアシスト配線 40が設けられて いる。データ書き込み時、このアシスト配線には所定の電流が流れ、それによりアシス ト磁界が発生する。そのアシスト磁界は、磁化自由層 1に印加され、磁壁の移動をァ シストする。すなわち、データ書き込み時、磁化自由層 1における磁壁移動をアシスト するような向きのアシスト磁界が発生するように、アシスト配線に電流が流される。
[0074] 例えば図 12において、 Y方向に延びるアシスト配線 40が、磁気抵抗効果素子の磁 化反転領域 13の下方に配置されている。磁壁を + X方向に移動させる際、アシスト 配線 40には + Y方向の電流が流される。その結果、 +X方向のアシスト磁界力 S、磁 化自由層 1の磁化反転領域 13に印加されることになる。そのアシスト磁界により磁化 反転領域 13の磁化は + X方向に向きやすくなる、すなわち、アシスト磁界によって + X方向への磁壁移動がアシストされる。逆に、磁壁を X方向に移動させる際、ァシ スト配線 40には Y方向の電流が流される。尚、アシスト配線 40の位置や本数は、 図 12に示されたものに限られない。
[0075] このように、本実施例によれば、磁化自由層 1に対する書き込み電流の供給と同時 に、アシスト配線 40により生成されるアシスト磁界力、磁化反転領域 13に印加される 。そのアシスト磁界によって磁壁移動がアシストされるため、磁化自由層 1に供給す べき書き込み電流の量を低減することが可能となる。すなわち、磁壁移動に最低限 必要な書き込み電流の値が更に小さくなる。これは、書き込みマージンが更に広くな ることを意味する。 [0076] また、図 12に示されたアシスト配線 40は、磁化自由層 1に書き込み電流を供給す るための配線であることが好適である。つまり、磁化自由層 1に書き込み電流を供給 するための配線が、アシスト配線 40として併用されることが好適である。この場合、ァ シスト配線 40は、磁化自由層 1の広角部 11aあるいは 12aに接続される。データ書き 込み時、書き込み電流は、アシスト配線 40を通して広角部 11aあるいは 12aに供給さ れる、又は、そこから引き抜かれる。同時に、その書き込み電流によって生成されたァ シスト磁界が、磁化反転領域 13に印加される。このような構成により、配線数を削減 し、回路面積を縮小することが可能となる。
[0077] 図 13A及び図 13Bは、アシスト配線 40の変形例を示している。図 13A及び図 13B に示されるアシスト配線 40は、ヨーク構造を有している。すなわち、アシスト配線 40の 面のうち、磁化反転領域 13と対向していない面の一部力 磁性体 41によって覆われ ている。図 13Aにおいては、アシスト配線 40の底面が磁性体 41で覆われており、図 13Bにおいては、アシスト配線 40の側面及び底面が磁性体 41で覆われている。この ようなヨーク構造によってアシスト磁界が増大し、書き込み電流を更に低減することが 可能となる。
[0078] 7.回路構成
図 14は、上述の磁気抵抗効果素子を用いた磁気メモリセルの一例を示す回路図 である。図 14において、書き込み電流を供給するための選択トランジスタ 50a、 50b 1S 磁化自由層 1に接続されている。具体的には、選択トランジスタ 50aのソース/ド レインの一方は、第 1磁化固定領域 11の第 1広角部 11aに接続され、その他方は、 第 1ビット線 51aに接続されている。同様に、選択トランジスタ 50bのソース/ドレイン の一方は、第 2磁化固定領域 12の第 2広角部 12aに接続され、その他方は、第 2ビッ ト線 51bに接続されている。選択トランジスタ 50a、 50bのゲートは、ワード線 52に接 続されている。更に、磁化固定層 3は、アース線 53に接続されている。
[0079] データ書き込み時、ワード線 52が ONされ、アース線 53が OFFされ、ビット線 51a、 51b間に所定の電位差が与えられる。その結果、書き込み電流は、例えば「第 1ビット 線 51 a—選択トランジスタ 50a—第 1磁化固定領域 11の第 1広角部 11a—磁化反転 領域 13 -第 2磁化固定領域 12の第 2広角部 12a—選択トランジスタ 50b -第 2ビット 線 51b」の経路を流れる。逆の電流経路も可能である。これにより、既出の実施例で 示されたデータ書き込みが実現される。
[0080] データ読み出し時、ワード線 52が ONされ、アース線 53が ONされ、ビット線 51a、 5 lbが等電位に設定される。その結果、読み出し電流は、「ビット線 51a、 51b—選択ト ランジスタ 50a、 50b—磁化自由層 1—トンネルバリヤ層 2—磁化固定層 3—アース線 53」の経路を流れる。その読み出し電流に基づいて、記憶データをセンスすることが できる。
[0081] 図 15は、複数の磁気メモリセル 110がアレイ状に配置された MRAM100の構成の 一例を示している。各磁気メモリセル 110は、図 14に示された構成を有している。ヮ ード線 52は Xセレクタ 120に接続されており、 Xセレクタ 120は、アクセス対象の磁気 メモリセル 110につながるワード線 52を選択する。ビット線 51a、 51bは、 Yセレクタ 1 30、 Y側電流終端回路 140に接続されている。 Yセレクタ 130は、アクセス対象の磁 気メモリセル 110につながるビット線 51a (あるいは 51b)を選択する。選択されたビッ ト線を通して、書き込み電流が、アクセス対象の磁気メモリセル 110に供給される、あ るいは、引き抜かれる。
[0082] 以上、本発明の実施例が添付の図面を参照することにより説明された。但し、本発 明は、既出の実施例に限定されず、要旨を逸脱しない範囲で当業者により適宜変更 され得る。

Claims

請求の範囲
[1] 磁化自由層と、
非磁性層を介して前記磁化自由層に接続され、磁化の向きが固定された磁化固定 層と
を備え、
前記磁化自由層は、
前記磁化固定層とオーバーラップし、反転可能な磁化を有する磁化反転領域と、 前記磁化反転領域の磁化容易軸方向の一端に接続され、第 1固定磁化を有する 第 1磁化固定領域と、
前記磁化反転領域の磁化容易軸方向の他端に接続され、第 2固定磁化を有する 第 2磁化固定領域と
を含み、
前記第 1磁化固定領域と前記磁化反転領域は 1つの三叉路を形成し、 前記第 2磁化固定領域と前記磁化反転領域は他の三叉路を形成する 磁気抵抗効果素子。
[2] 請求の範囲 1に記載の磁気抵抗効果素子であって、
前記第 1磁化固定領域は、
前記磁化容易軸に対して 90度以上の角度をなす第 1広角部と、
前記磁化容易軸に対して 90度以下の角度をなす第 1狭角部と
を有し、
前記第 2磁化固定領域は、
前記磁化容易軸に対して 90度以上の角度をなす第 2広角部と、
前記磁化容易軸に対して 90度以下の角度をなす第 2狭角部と
を有する
磁気抵抗効果素子。
[3] 請求の範囲 2に記載の磁気抵抗効果素子であって、
前記第 1固定磁化は、前記第 1広角部から前記第 1狭角部へ向かう方向に固定さ れ、 前記第 2固定磁化は、前記第 2広角部から前記第 2狭角部へ向かう方向に固定さ れた
磁気抵抗効果素子。
[4] 請求の範囲 2に記載の磁気抵抗効果素子であって、
前記第 1固定磁化は、前記第 1狭角部から前記第 1広角部へ向かう方向に固定さ れ、
前記第 2固定磁化は、前記第 2狭角部から前記第 2広角部へ向かう方向に固定さ れた
磁気抵抗効果素子。
[5] 請求の範囲 3又は 4に記載の磁気抵抗効果素子であって、
前記第 1磁化固定領域と前記第 2磁化固定領域は、前記磁化反転領域を挟んで 鏡面対称である
磁気抵抗効果素子。
[6] 請求の範囲 2に記載の磁気抵抗効果素子であって、
前記第 1磁化固定領域と前記第 2磁化固定領域は、前記磁化反転領域を中心とし て回転対称である
磁気抵抗効果素子。
[7] 請求の範囲 2乃至 6の!/、ずれかに記載の磁気抵抗効果素子であって、
データ書き込み時、書き込み電流が、前記磁化自由層内において、前記第 1広角 部から前記磁化反転領域を通って前記第 2広角部に流される
磁気抵抗効果素子。
[8] 請求の範囲 1乃至 7のいずれかに記載の磁気抵抗効果素子であって、
前記磁化反転領域、前記非磁性層、及び前記磁化固定層の積層方向は、第 1方 向であり、
前記磁化反転領域、前記第 1磁化固定領域、及び前記第 2磁化固定領域は、前記 第 1方向に直角な同一平面上に形成された
磁気抵抗効果素子。
[9] 請求の範囲 1乃至 7のいずれかに記載の磁気抵抗効果素子であって、 前記磁化反転領域、前記非磁性層、及び前記磁化固定層の積層方向は、第 1方 向であり、
前記磁化反転領域は、前記第 1方向に直角な第 1平面上に形成され、 前記第 1磁化固定領域及び前記第 2磁化固定領域は、それぞれ前記第 1平面とは 異なる平面上に形成された
磁気抵抗効果素子。
[10] 請求の範囲 1乃至 9のいずれかに記載の磁気抵抗効果素子であって、
前記第 1固定磁化の向きを固定するように前記第 1磁化固定領域と磁気的に結合 する第 1強磁性体と、
前記第 2固定磁化の向きを固定するように前記第 2磁化固定領域と磁気的に結合 する第 2強磁性体と
を更に備える
磁気抵抗効果素子。
[11] 請求の範囲 1乃至 10のいずれかに記載の磁気抵抗効果素子であって、
前記磁化反転領域は、
前記一端と前記他端との中央に対して前記一端側に位置し、前記中央での断面積 と異なる断面積を有する第 1領域と、
前記中央に対して前記他端側に位置し、前記中央での断面積と異なる断面積を有 する第 2領域と
を含む
磁気抵抗効果素子。
[12] 請求の範囲 1乃至 11のいずれかに記載の磁気抵抗効果素子であって、
前記磁化自由層は、磁気的に結合した複数の強磁性層を備えており、 前記複数の強磁性層のうち少なくとも 1つが、前記磁化反転領域、前記第 1磁化固 定領域、及び前記第 2磁化固定領域を有する
磁気抵抗効果素子。
[13] アレイ状に配置された複数の磁気メモリセルを具備し、
前記複数の磁気メモリセルの各々は、 請求の範囲 1乃至 12のいずれかに記載の磁気抵抗効果素子と、
データ書き込み時、書き込み電流を前記磁化自由層に供給するためのトランジスタ と
を備える
MRAM。
[14] 請求の範囲 13に記載の MRAMであって、
前記データ書き込み時、前記書き込み電流の供給と同時に、外部磁界が前記磁化 反転領域に印加される
MRAM。
[15] 請求の範囲 14に記載の MRAMであって、
前記磁化自由層に対して前記書き込み電流を供給するための配線を更に具備し、 前記データ書き込み時、前記配線を流れる前記書き込み電流により、前記外部磁 界が同時に生成される
MRAM。
PCT/JP2007/070571 2006-12-12 2007-10-22 磁気抵抗効果素子及びmram WO2008072421A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/518,532 US7936627B2 (en) 2006-12-12 2007-10-22 Magnetoresistance effect element and MRAM
JP2008549224A JP5201536B2 (ja) 2006-12-12 2007-10-22 磁気抵抗効果素子及びmram

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-334259 2006-12-12
JP2006334259 2006-12-12

Publications (1)

Publication Number Publication Date
WO2008072421A1 true WO2008072421A1 (ja) 2008-06-19

Family

ID=39511450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070571 WO2008072421A1 (ja) 2006-12-12 2007-10-22 磁気抵抗効果素子及びmram

Country Status (3)

Country Link
US (1) US7936627B2 (ja)
JP (1) JP5201536B2 (ja)
WO (1) WO2008072421A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472821B2 (ja) * 2008-12-19 2014-04-16 日本電気株式会社 磁気抵抗素子の初期化方法、及び磁気抵抗素子

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8351249B2 (en) 2006-04-11 2013-01-08 Nec Corporation Magnetic random access memory
US8300456B2 (en) * 2006-12-06 2012-10-30 Nec Corporation Magnetic random access memory and method of manufacturing the same
US8238135B2 (en) * 2007-03-07 2012-08-07 Nec Corporation MRAM utilizing free layer having fixed magnetization regions with larger damping coefficient than the switching region
US8315087B2 (en) 2007-03-29 2012-11-20 Nec Corporation Magnetic random access memory
JP5366014B2 (ja) * 2008-01-25 2013-12-11 日本電気株式会社 磁気ランダムアクセスメモリ及びその初期化方法
JP5299643B2 (ja) * 2008-02-19 2013-09-25 日本電気株式会社 磁気ランダムアクセスメモリ
US20110163400A1 (en) * 2008-03-06 2011-07-07 Fuji Electric Holdings Co., Ltd. Ferromagnetic tunnel junction element and method of driving ferromagnetic tunnel junction element
KR101566407B1 (ko) * 2009-03-25 2015-11-05 삼성전자주식회사 적층 메모리 소자
US8592927B2 (en) * 2011-05-04 2013-11-26 Magic Technologies, Inc. Multilayers having reduced perpendicular demagnetizing field using moment dilution for spintronic applications
US9196825B2 (en) * 2013-09-03 2015-11-24 Taiwan Semiconductor Manufacturing Co., Ltd. Reversed stack MTJ
US9966529B1 (en) 2017-03-17 2018-05-08 Headway Technologies, Inc. MgO insertion into free layer for magnetic memory applications
US10665773B2 (en) 2018-01-26 2020-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride capping layer for spin torque transfer (STT)-magnetoresistive random access memory (MRAM)
CN111279351B (zh) * 2018-03-16 2023-08-25 Tdk株式会社 积和运算器、神经形态器件以及积和运算器的使用方法
US10950782B2 (en) 2019-02-14 2021-03-16 Headway Technologies, Inc. Nitride diffusion barrier structure for spintronic applications
US11264560B2 (en) 2019-06-21 2022-03-01 Headway Technologies, Inc. Minimal thickness, low switching voltage magnetic free layers using an oxidation control layer and magnetic moment tuning layer for spintronic applications
US11264566B2 (en) 2019-06-21 2022-03-01 Headway Technologies, Inc. Magnetic element with perpendicular magnetic anisotropy (PMA) and improved coercivity field (Hc)/switching current ratio

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056665A (ja) * 2000-06-20 2002-02-22 Hewlett Packard Co <Hp> 磁気的に安定な磁気抵抗メモリ素子
JP2005150303A (ja) * 2003-11-13 2005-06-09 Toshiba Corp 磁気抵抗効果素子および磁気メモリ
JP2005191032A (ja) * 2003-12-24 2005-07-14 Toshiba Corp 磁気記憶装置及び磁気情報の書込み方法
WO2006090656A1 (ja) * 2005-02-23 2006-08-31 Osaka University パルス電流による磁壁移動に基づいた磁気抵抗効果素子および高速磁気記録装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3596536B2 (ja) * 2002-03-26 2004-12-02 ソニー株式会社 磁気メモリ装置およびその製造方法
US6888742B1 (en) * 2002-08-28 2005-05-03 Grandis, Inc. Off-axis pinned layer magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US7064974B2 (en) * 2002-09-12 2006-06-20 Nec Corporation Magnetic random access memory and method for manufacturing the same
JP4400037B2 (ja) * 2002-10-31 2010-01-20 日本電気株式会社 磁気ランダムアクセスメモリ,及びその製造方法
US7184301B2 (en) * 2002-11-27 2007-02-27 Nec Corporation Magnetic memory cell and magnetic random access memory using the same
JP4031451B2 (ja) * 2004-03-18 2008-01-09 株式会社東芝 半導体集積回路装置
JPWO2007119446A1 (ja) * 2006-03-24 2009-08-27 日本電気株式会社 Mram、及びmramのデータ読み書き方法
JP2008066479A (ja) * 2006-09-06 2008-03-21 Osaka Univ スピントランジスタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056665A (ja) * 2000-06-20 2002-02-22 Hewlett Packard Co <Hp> 磁気的に安定な磁気抵抗メモリ素子
JP2005150303A (ja) * 2003-11-13 2005-06-09 Toshiba Corp 磁気抵抗効果素子および磁気メモリ
JP2005191032A (ja) * 2003-12-24 2005-07-14 Toshiba Corp 磁気記憶装置及び磁気情報の書込み方法
WO2006090656A1 (ja) * 2005-02-23 2006-08-31 Osaka University パルス電流による磁壁移動に基づいた磁気抵抗効果素子および高速磁気記録装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472821B2 (ja) * 2008-12-19 2014-04-16 日本電気株式会社 磁気抵抗素子の初期化方法、及び磁気抵抗素子

Also Published As

Publication number Publication date
JP5201536B2 (ja) 2013-06-05
US20100008131A1 (en) 2010-01-14
JPWO2008072421A1 (ja) 2010-03-25
US7936627B2 (en) 2011-05-03

Similar Documents

Publication Publication Date Title
JP5201536B2 (ja) 磁気抵抗効果素子及びmram
US7929342B2 (en) Magnetic memory cell, magnetic random access memory, and data read/write method for magnetic random access memory
JP5623507B2 (ja) スピントルクの切換を補助する層を有する、スピントルクの切換を持つ磁気積層体
JP6090800B2 (ja) 磁気抵抗効果素子および磁気メモリ
US7821086B2 (en) Semiconductor memory device
US6970376B1 (en) Magnetic random access memory and method of writing data in magnetic random access memory
JP5360599B2 (ja) 磁気抵抗効果素子及び磁気ランダムアクセスメモリ
US7848137B2 (en) MRAM and data read/write method for MRAM
US20110149647A1 (en) Perpendicular magnetic tunnel junctions, magnetic devices including the same and method of manufacturing a perpendicular magnetic tunnel junction
EP1085586A2 (en) Magnetoresistive element and magnetic memory device
JP6244617B2 (ja) 記憶素子、記憶装置、磁気ヘッド
JP2008147488A (ja) 磁気抵抗効果素子及びmram
JP2010034153A (ja) 磁気ランダムアクセスメモリおよびその書き込み方法
JP2013118417A (ja) 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
TW200306024A (en) Magnetic memory
JP2013115413A (ja) 記憶素子、記憶装置
KR20120080532A (ko) 기억 소자 및 기억 장치
WO2008068967A1 (ja) 磁気ランダムアクセスメモリ及びその製造方法
CN102280136A (zh) 磁存储器元件和磁存储器器件
JP2013115399A (ja) 記憶素子、記憶装置
JP2014072394A (ja) 記憶素子、記憶装置、磁気ヘッド
US20100032737A1 (en) Nano-magnetic memory device and method of manufacturing the device
JP2013115412A (ja) 記憶素子、記憶装置
TWI324770B (ja)
JP3949900B2 (ja) 磁気記憶素子、磁気記憶装置および携帯端末装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830305

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12518532

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008549224

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830305

Country of ref document: EP

Kind code of ref document: A1