JP3596536B2 - 磁気メモリ装置およびその製造方法 - Google Patents

磁気メモリ装置およびその製造方法 Download PDF

Info

Publication number
JP3596536B2
JP3596536B2 JP2002085095A JP2002085095A JP3596536B2 JP 3596536 B2 JP3596536 B2 JP 3596536B2 JP 2002085095 A JP2002085095 A JP 2002085095A JP 2002085095 A JP2002085095 A JP 2002085095A JP 3596536 B2 JP3596536 B2 JP 3596536B2
Authority
JP
Japan
Prior art keywords
wiring
forming
flux concentrator
memory device
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002085095A
Other languages
English (en)
Other versions
JP2003282836A (ja
Inventor
真 元吉
実 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002085095A priority Critical patent/JP3596536B2/ja
Priority to KR1020047015345A priority patent/KR100980917B1/ko
Priority to EP03715413A priority patent/EP1489660A4/en
Priority to US10/508,924 priority patent/US7345367B2/en
Priority to PCT/JP2003/003712 priority patent/WO2003081672A1/ja
Publication of JP2003282836A publication Critical patent/JP2003282836A/ja
Application granted granted Critical
Publication of JP3596536B2 publication Critical patent/JP3596536B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1657Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1655Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気メモリ装置およびその製造方法に関し、詳しくは、トンネル磁気抵抗素子を構成する強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記録する不揮発性の磁気メモリ装置およびその製造方法に関する。
【0002】
【従来の技術】
情報通信機器、特に携帯端末などの個人用小型機器の飛躍的な普及にともない、これを構成するメモリ素子やロジック素子等の素子には、高集積化、高速化、低消費電力化など、一層の高性能化が要求されている。特に不揮発性メモリはユビキタス時代に必要不可欠の素子と考えられている。
【0003】
例えば、電源の消耗やトラブル、サーバーとネットワークが何らかの障害により切断された場合であっても、不揮発性メモリは個人の重要な情報を保護することができる。そして、不揮発性メモリの高密度化、大容量化は、可動部分の存在により本質的に小型化が不可能なハードディスクや光ディスクを置き換える技術としてますます重要になってきている。
【0004】
また、最近の携帯機器は不要な回路ブロックをスタンバイ状態にしてでき得る限り消費電力を抑えようと設計されているが、高速ネットワークメモリと大容量ストレージメモリを兼ねることができる不揮発性メモリが実現できれば、消費電力とメモリとの無駄を無くすことができる。また、電源を入れると瞬時に起動できる、いわゆるインスタント・オン機能も高速の大容量不揮発性メモリが実現できれば可能になってくる。
【0005】
不揮発性メモリとしては、半導体を用いたフラッシュメモリや、強誘電体を用いたFRAM(Ferro electric Random Access Memory)などがあげられる。しかしながら、フラッシュメモリは、書き込み速度がμ秒の桁であるため遅いという欠点がある。一方、FRAMにおいては、書き換え可能回数が1012〜1014で完全にスタティックランダムアクセスメモリやダイナミックランダムアクセスメモリに置き換えるには耐久性が低いという問題が指摘されている。また、強誘電体キャパシタの微細加工が難しいという課題も指摘されている。
【0006】
これらの欠点を有さない不揮発性メモリとして注目されているのが、MRAM(Magnetic Random Access Memory)とよばれる磁気メモリである。初期のMRAMはJ.M.Daughton,“Thin Solid Films”Vol.216(1992),p.162−168で報告されているAMR(Anisotropic Magneto Resistive)効果やD.D.Tang et al.,“IEDM Technical Digest”(1997),p.995−997で報告されているGMR(Giant Magneto Resistance)効果を使ったスピンバルブを基にしたものであった。しかし、負荷のメモリセル抵抗が10Ω〜100Ωと低いため、読み出し時のビットあたりの消費電力が大きく大容量化が難しいという欠点があった。
【0007】
一方TMR(Tunnel Magneto Resistance)効果はR.Meservey et al.,“Pysics Reports”Vol.238(1994),p.214−217で報告されているように抵抗変化率が室温で1%〜2%しかなかったが、近年T.Miyazaki et al.,“J.Magnetism & Magnetic Material”Vol.139(1995),L231で報告されているように抵抗変化率20%近く得られるようになり、TMR効果を使ったMRAMに注目が集まるようになってきている。
【0008】
MRAMは、構造が単純であるため高集積化が容易であり、また磁気モーメントの回転により記録を行うために、書き換え回数が大であると予測されている。またアクセス時間についても、非常に高速であることが予想され、既に100MHzで動作可能であることが、R.Scheuerlein et al.,“ISSCC Digest of Technical Papers”(Feb. 2000),p.128−129で報告されている。
【0009】
【発明が解決しようとする課題】
上述の通り、高速化・高集積化が容易という長所を有するMRAMではあるが、書き込みは、TMR素子に近接させて設けられた書き込みビット線と書き込み書き込みワード線に電流を流し、その発生磁界によって行う。TMR素子の記憶層(記憶層)の反転磁界は材料にもよるが、20Oe〜200Oeが必要であり、このときの電流は数mAから数十mAになる。これは消費電流の増大につながり、携帯機器の低消費電力化に対して大きな課題となる。
【0010】
また、高集積化の面からは、ビット線および書き込みワード線は、リソグラフィー技術から決定される最小線幅に近いサイズが要求される。仮に、ビット線幅/書き込みワード線幅が0.6μmとして、配線の膜厚を500nmとすると、3MA/cmになり、銅配線を用いた場合(実用電流密度:0.5MA/cm)もエレクトロマイグレーションに対する寿命は大きな課題となる。さらに微細化していくと、強誘電体の反転磁界は増加し、配線の次元も縮小しなければならないため、この配線信頼性の課題はより大きくなってくる。
【0011】
さらに、大電流駆動用のドライバーをビット線、書き込みワード線に対して持つためこの部分の占有面積が大きくなるので、高集積化を阻害することになる。また、素子の微細化により、磁束の漏れによって隣接ビットにまで磁界が発生し、ディスターブの問題が発生する。この対策としては、米国特許第5940319号明細書のなかで、TMR素子の下側および上側のいずれか一方もしくは両方にある配線のTMR素子に対向している面部分以外を磁束集中させる材料で覆うという内容が記載されているが、磁束集中効果が不十分で消費電流が十分に下がらないという問題があった。
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされた磁気メモリ装置およびその製造方法である。
【0013】
本発明の第1の磁気メモリ装置は、第1配線と、前記第1配線と立体的に交差する第2配線と、前記第1配線と電気的に絶縁され、前記第2配線と電気的に接続されたもので、前記第1配線と前記第2配線との交差領域にトンネル絶縁層を強磁性体で挟んで構成されるトンネル磁気抵抗素子とを備えたもので、前記強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記憶する不揮発性の磁気メモリ装置において、前記第1配線に、少なくとも、前記第1配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられ、前記第1配線の側面に形成された前記高透磁率層の少なくとも一方は前記第1配線より前記トンネル磁気抵抗素子側に突き出した状態に形成されているものである。
【0014】
上記第1磁気メモリ装置では、第1配線は、少なくとも、第1配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられ、第1配線の側面に形成された高透磁率層の少なくとも一方は第1配線よりトンネル磁気抵抗素子側に突き出した状態に形成されていることから、第1配線から発する電流磁界は磁束集中器のトンネル磁気抵抗素子側に突き出した部分によってトンネル磁気抵抗素子の記憶層に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第1配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0015】
本発明の第2の磁気メモリ装置は、第1配線と、前記第1配線と立体的に交差する第2配線と、前記第1配線と電気的に絶縁され、前記第2配線と電気的に接続されたもので、前記第1配線と前記第2配線との交差領域にトンネル絶縁層を強磁性体で挟んで構成されるトンネル磁気抵抗素子とを備えたもので、前記強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記憶する不揮発性の磁気メモリ装置において、前記第2配線に、少なくとも、前記第2配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられていて、前記第2配線の両側面および前記トンネル磁気抵抗素子側の表面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられていて、前記第2配線の側面に形成された前記高透磁率層の少なくとも一方は前記第2配線より前記トンネル磁気抵抗素子側に突き出した状態に形成されているものである。
【0016】
上記第2磁気メモリ装置では、第2配線に、少なくとも、第2配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられていて、第2配線の側面に形成された高透磁率層の少なくとも一方は第2配線よりトンネル磁気抵抗素子側に突き出した状態に形成されていることから、第2配線から発する電流磁界は磁束集中器のトンネル磁気抵抗素子側に突き出した部分によってトンネル磁気抵抗素子の記憶層に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第2配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0017】
本発明の第3の磁気メモリ装置は、第1配線と、前記第1配線と立体的に交差する第2配線と、前記第1配線と電気的に絶縁され、前記第2配線と電気的に接続されたもので、前記第1配線と前記第2配線との交差領域にトンネル絶縁層を強磁性体で挟んで構成されるトンネル磁気抵抗素子とを備えたもので、前記強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記憶する不揮発性の磁気メモリ装置において、前記第1配線と前記トンネル磁気抵抗素子との間および前記トンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる磁束集中器が設けられているものである。
【0018】
上記第3磁気メモリ装置では、第1配線とトンネル磁気抵抗素子との間およびトンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる磁束集中器が設けられていることから、第1配線から発する電流磁界はトンネル磁気抵抗素子の側面下部側の磁束集中器によってトンネル磁気抵抗素子の記憶層に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第1配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0019】
本発明の第4の磁気メモリ装置は、第1配線と、前記第1配線と立体的に交差する第2配線と、前記第1配線と電気的に絶縁され、前記第2配線と電気的に接続されたもので、前記第1配線と前記第2配線との交差領域にトンネル絶縁層を強磁性体で挟んで構成されるトンネル磁気抵抗素子とを備えたもので、前記強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記憶する不揮発性の磁気メモリ装置において、前記第1配線には、少なくとも、前記第1配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる第1磁束集中器が設けられ、前記第1配線と前記トンネル磁気抵抗素子との間および前記トンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる第2磁束集中器が設けられているものである。
【0020】
上記第4磁気メモリ装置では、第1配線には、少なくとも、第1配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる第1磁束集中器が設けられ、第1配線とトンネル磁気抵抗素子との間およびトンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる第2磁束集中器が設けられていることから、第1配線から発する電流磁界は第1磁束集中器から第2磁束集中器に伝達されてトンネル磁気抵抗素子の記憶層に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第1配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0021】
本発明の第5の磁気メモリ装置は、第1配線と、前記第1配線と立体的に交差する第2配線と、前記第1配線とスイッチング素子を介して電気的に接続され、前記第2配線と電気的に接続されたもので、前記第1配線と前記第2配線との交差領域にトンネル絶縁層を強磁性体で挟んで構成されるトンネル磁気抵抗素子とを備えたもので、前記強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記憶する不揮発性の磁気メモリ装置において、前記第1配線に、少なくとも、前記第1配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられ、前記第1配線の側面に形成された前記高透磁率層の少なくとも一方は前記第1配線より前記トンネル磁気抵抗素子側に突き出した状態に形成されているものである。
【0022】
上記第5磁気メモリ装置では、第1配線に、少なくとも、第1配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられ、第1配線の側面に形成された高透磁率層の少なくとも一方は第1配線より前記トンネル磁気抵抗素子側に突き出した状態に形成されていることから、前記第1磁気メモリ装置と同様に、第1配線から発する電流磁界はトンネル磁気抵抗素子の記憶層に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第1配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0023】
本発明の第6の磁気メモリ装置は、第1配線と、前記第1配線と立体的に交差する第2配線と、前記第1配線とスイッチング素子を介して電気的に接続され、前記第2配線と電気的に接続されたもので、前記第1配線と前記第2配線との交差領域にトンネル絶縁層を強磁性体で挟んで構成されるトンネル磁気抵抗素子とを備えたもので、前記強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記憶する不揮発性の磁気メモリ装置において、前記第2配線の両側面および前記トンネル磁気抵抗素子側の表面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられていて、前記第2配線の側面に形成された前記高透磁率層の少なくとも一方は前記第2配線より前記トンネル磁気抵抗素子側に突き出した状態に形成されているものである。
【0024】
上記第6磁気メモリ装置では、第2配線の両側面および前記トンネル磁気抵抗素子側の表面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられていて、第2配線の側面に形成された高透磁率層の少なくとも一方は第2配線よりトンネル磁気抵抗素子側に突き出した状態に形成されていることから、前記第2磁気メモリ装置と同様に、第2配線から発する電流磁界はトンネル磁気抵抗素子の記憶層に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第2配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0025】
また、上記第1、第2および第4ないし第6磁気メモリ装置においては、高透磁率層と第1配線もしくは第2配線との間に絶縁膜が形成されているものであっても、上記それぞれの磁気メモリ装置と同様なる作用、効果が得られる。
【0026】
本発明の第1磁気メモリ装置の製造方法は、第1配線を形成する工程と、トンネル絶縁層を強磁性体で挟んでなるもので前記第1配線と電気的に絶縁されたトンネル磁気抵抗素子を形成する工程と、前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程とを備えた不揮発性の磁気メモリ装置の製造方法において、少なくとも、前記第1配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、前記第1配線の両側面に形成される前記高透磁率層の少なくとも一方を前記第1配線より前記トンネル磁気抵抗素子側に突き出した状態に形成する。
【0027】
上記第1磁気メモリ装置の製造方法では、少なくとも、第1配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、第1配線の両側面に形成される高透磁率層の少なくとも一方を第1配線よりトンネル磁気抵抗素子側に突き出した状態に形成することから、第1配線に電流を流した際に発せられる電流磁界は、第1配線の両側面に形成される高透磁率層によって、トンネル磁気抵抗素子の記憶層(記録層ともいう)に効率よく集中されるようになる。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第1配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0028】
本発明の第2磁気メモリ装置の製造方法は、第1配線を形成する工程と、トンネル絶縁層を強磁性体で挟んでなるもので前記第1配線と電気的に絶縁されたトンネル磁気抵抗素子を形成する工程と、前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程とを備えた不揮発性の磁気メモリ装置の製造方法において、前記第2配線の両側面および前記トンネル磁気抵抗素子側の表面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなり、前記第2配線の両側面に形成される前記高透磁率層の少なくとも一方を前記第2配線より前記トンネル磁気抵抗素子側に突き出した状態に磁束集中器を形成する工程を備え、前記磁束集中器を形成する工程は、前記第2配線を形成する際に前記第2配線上に高透磁率層を載せた状態で形成した後、前記第2配線の両側下部の前記トンネル磁気抵抗素子が埋め込まれるように形成された絶縁膜を前記トンネル磁気抵抗素子の記憶層の深さまでエッチングし、その後前記第2配線の側面に前記第2配線上に形成された高透磁率層に接続する高透磁率サイドウォールを形成する。または前記磁束集中器を形成する工程は、前記トンネル磁気抵抗素子を形成した後、前記トンネル磁気抵抗素子を埋め込むように絶縁膜を形成し、前記トンネル磁気抵抗素子上の前記絶縁膜に前記第2配線を形成するための配線溝を形成し、その配線溝の側壁に高透磁率サイドウォールを形成し、その後は溝を埋め込むように前記第2配線を形成し、その後前記高透磁率サイドウォールに接続するように前記第2配線上に高透磁率層を形成する。または、前記磁束集中器を形成する工程は、前記第2配線を形成する際に前記第2配線上に絶縁膜を介して高透磁率層を載せた状態で形成した後、前記第2配線の両側下部の前記トンネル磁気抵抗素子が埋め込まれるように形成された絶縁膜を前記トンネル磁気抵抗素子の記憶層の深さまでエッチングし、その後前記第2配線の両側面に前記第2配線上に形成された絶縁膜に接続する絶縁膜サイドウォールを形成し、さらに前記第2配線の両側面に前記第2配線上に形成された高透磁率層に接続する高透磁率サイドウォールを形成する。または、前記第2配線の両側面および前記トンネル磁気抵抗素子側の表面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、前記第2配線の両側面に形成される前記高透磁率層の少なくとも一方を前記第2配線より前記トンネル磁気抵抗素子側に突き出した状態に形成する
【0029】
上記第2磁気メモリ装置の製造方法では、少なくとも、第2配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、第2配線の両側面に形成される高透磁率層の少なくとも一方を第2配線よりトンネル磁気抵抗素子側に突き出した状態に形成することから、第2配線に電流を流した際に発せられる電流磁界がトンネル磁気抵抗素子の記憶層(記録層ともいう)に効率よく集中されるようになる。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第2配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0030】
本発明の第3磁気メモリ装置の製造方法は、第1配線を形成する工程と、トンネル絶縁層を強磁性体で挟んでなるもので前記第1配線と電気的に絶縁されたトンネル磁気抵抗素子を形成する工程と、前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程とを備えた不揮発性の磁気メモリ装置の製造方法において、前記第1配線を形成した後に、前記第1配線と前記トンネル磁気抵抗素子との間および前記トンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる磁束集中器を形成する工程を備えている。
【0031】
上記第3磁気メモリ装置の製造方法では、第1配線を形成した後に、第1配線とトンネル磁気抵抗素子との間およびトンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる磁束集中器を形成する工程を備えていることから、第1配線に電流を流した際に発せられる電流磁界がトンネル磁気抵抗素子の側面下部側の磁束集中器によって、トンネル磁気抵抗素子の記憶層(記録層ともいう)に効率よく集中されるようになる。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第1配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0032】
本発明の第4磁気メモリ装置の製造方法は、第1配線を形成する工程と、トンネル絶縁層を強磁性体で挟んでなるもので前記第1配線と電気的に絶縁されたトンネル磁気抵抗素子を形成する工程と、前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程とを備えた不揮発性の磁気メモリ装置の製造方法において、少なくとも、前記第1配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる第1磁束集中器を形成する工程と、前記第1配線を形成した後に、前記第1配線と前記トンネル磁気抵抗素子との間および前記トンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる第2磁束集中器を形成する工程とを備えている。
【0033】
上記第4磁気メモリ装置の製造方法では、少なくとも、第1配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる第1磁束集中器を形成する工程と、第1配線を形成した後に、第1配線とトンネル磁気抵抗素子との間およびトンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる第2磁束集中器を形成する工程とを備えていることから、第1配線に電流を流した際に発せられる電流磁界は第1磁束集中器から第2磁束集中器に伝達されてトンネル磁気抵抗素子の記憶層(記録層ともいう)に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第1配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0034】
本発明の第5磁気メモリ装置の製造方法は、第1配線を形成する工程と、前記第1配線上にスイッチング素子を形成する工程と、トンネル絶縁層を強磁性体で挟んでなるもので前記第1配線上に前記スイッチング素子を介して接続されるトンネル磁気抵抗素子を形成する工程と、前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程とを備えた不揮発性の磁気メモリ装置の製造方法において、少なくとも、前記第1配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、前記第1配線の両側面に形成される前記高透磁率層の少なくとも一方を前記第1配線より前記トンネル磁気抵抗素子側に突き出した状態に形成する。
【0035】
上記第5磁気メモリ装置の製造方法では、少なくとも、第1配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、第1配線の両側面に形成される高透磁率層の少なくとも一方を第1配線よりトンネル磁気抵抗素子側に突き出した状態に形成することから、前記第1磁気メモリ装置の製造方法と同様に、第1配線に電流を流した際に発せられる電流磁界がトンネル磁気抵抗素子の記憶層(記録層ともいう)に効率よく集中されるようになる。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第1配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0036】
本発明の第6磁気メモリ装置の製造方法は、第1配線を形成する工程と、前記第1配線上にスイッチング素子を形成する工程と、トンネル絶縁層を強磁性体で挟んでなるもので前記第1配線とスイッチング素子を介して接続されるトンネル磁気抵抗素子を形成する工程と、前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程とを備えた不揮発性の磁気メモリ装置の製造方法において、前記第2配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなり、前記第2配線の両側面に形成される前記高透磁率層の少なくとも一方を前記第2配線より前記トンネル磁気抵抗素子側に突き出した状態に形成する磁束集中器を形成する工程を備え、前記磁束集中器を形成する工程は、前記第2配線を形成する際に前記第2配線上に高透磁率層を載せた状態で形成した後、前記第2配線の両側下部の前記トンネル磁気抵抗素子が埋め込まれるように形成された絶縁膜を前記トンネル磁気抵抗素子の記憶層の深さまでエッチングし、その後前記第2配線の側面に前記第2配線上に形成された高透磁率層に接続する高透磁率サイドウォールを形成する。または、前記磁束集中器を形成する工程は、前記第2配線を形成する際に前記第2配線上に絶縁膜を介して高透磁率層を載せた状態で形成した後、前記第2配線の両側下部の前記トンネル磁気抵抗素子が埋め込まれるように形成された絶縁膜を前記トンネル磁気抵抗素子の記憶層の深さまでエッチングし、その後前記第2配線の両側面に前記第2配線上に形成された絶縁膜に接続する絶縁膜サイドウォールを形成し、さらに前記第2配線の両側面に前記第2配線上に形成された高透磁率層に接続する高透磁率サイドウォールを形成する。または、前記第2配線の両側面および前記トンネル磁気抵抗素子側の表面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、前記第2配線の両側面に形成される前記高透磁率層の少なくとも一方を前記第2配線より前記トンネル磁気抵抗素子側に突き出した状態に形成する
【0037】
上記第6磁気メモリ装置の製造方法では、少なくとも、第2配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、第2配線の両側面に形成される高透磁率層の少なくとも一方を第2配線よりトンネル磁気抵抗素子側に突き出した状態に形成することから、前記第2磁気メモリ装置の製造方法と同様に、第2配線に電流を流した際に発せられる電流磁界がトンネル磁気抵抗素子の記憶層(記録層ともいう)に効率よく集中されるようになる。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第2配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0038】
また、上記第1、第2および第4ないし第6磁気メモリ装置の製造方法においては、高透磁率層と第1配線もしくは第2配線との間に絶縁膜が形成されているものであっても、上記それぞれの磁気メモリ装置の製造方法と同様なる作用、効果が得られる。
【0039】
【発明の実施の形態】
まず、一般的なMRAM(Magnetic Random Access Memory)を、図2の主要部を簡略化して示した概略構成斜視図によって説明する。図2では、簡略化して示したため、読み出し回路部分の図示は省略されている。
【0040】
図2に示すように、9個のメモリセルを含み、相互に交差する書き込みワード線11(111、112、113)およびビット線12(121、122、123)を有する。それらの書き込みワード線11とビット線12の各交差領域には、書き込みワード線11上に絶縁膜(図示せず)を介して形成されているとともにビット線12に接続されている磁気抵抗効果(TMR)素子13(131〜139)が配置されている。TMR素子13への書き込みは、ビット線12および書き込みワード線11に電流を流し、それから発生する合成磁界によってビット線12と書き込みワード線11との交差領域に形成されたTMR素子13の記憶層304(詳細は図5参照)の磁化方向を磁化固定層302(詳細は図5参照)に対して平行または反平行にして行う。
【0041】
図3に示すアステロイド曲線は、印加された容易軸方向磁界HEA および困難軸方向磁界HHA による記憶層磁化方向の反転しきい値を示している。アステロイド曲線外部に相当する合成磁界ベクトルが発生すると、磁界反転が生じる。アステロイド曲線内部の合成磁界ベクトルは、その電流双安定状態の一方からセルを反転させることはない。また、電流を流しているワード線およびビット線の交点以外のセルにおいても、ワード線もしくはビット線単独で発生する磁界が印加されるため、それらの大きさが一方向反転磁界H以上の場合は、交点以外のセルの磁化方向も反転するので、合成磁界が斜線で示す部分401にある場合のみ、選択されたセルを選択書き込みが可能となる。
【0042】
以上のように、MRAMのアレイでは、ビット線および書き込みワード線からなる格子の交点にメモリセルが配置されている。MRAMの場合、書き込みワード線とビット線とを使用することで、アステロイド磁化反転特性を利用し、選択的に個々のメモリセルに書き込むことが一般的である。
【0043】
単一の記憶領域における合成磁化は、それに印加された容易軸方向磁界HEA と困難軸方向磁界HHA とのベクトル合成によって決まる。ビット線を流れる電流はセルに容易軸方向の磁界(HEA )を印加し、書き込みワード線を流れる電流はセルに困難軸方向の磁界(HHA )を印加する。
【0044】
次に、本発明の第1磁気メモリ装置に係る第1実施の形態を、図1の概略構成断面図によって説明する。本発明の第1実施の形態は、上記図2によって説明した磁気メモリ装置において、書き込みワード線から発する電流磁界を効率よく記憶層に集中させることができるようにしたものである。
【0045】
その基本構成は、図1の(1)に示すように、第1磁気メモリ装置1(1a)は、書き込みワード線11を備え、この書き込みワード線11の上方でかつ書き込みワード線11に交差(例えば直交)するようにビット線12が形成され、その交差領域で書き込みワード線11の上方には絶縁膜46を介してトンネル磁気抵抗素子(以下TMRという)13が形成され、このTMR素子13はビット線12に接続されている。
【0046】
上記書き込みワード線11には、少なくとも、この書き込みワード線11の両側面およびTMR13に対向する面とは反対側の面を囲むように、高透磁率層からなる磁束集中器51(51a)が設けられている。しかも書き込みワード線11の側面に形成された上記磁束集中器51の少なくとも一方(図面では両方)は、書き込みワード線11よりTMR素子13側に突き出した状態に形成されている。すなわち、上記磁束集中器51のTMR素子13側に突き出した状態に形成されている部分は、上記TMR素子13の側面に絶縁膜46を介して延長形成されている。この磁束集中器51の側壁部分の先端部51sは、TMR素子13の記憶層304とキャップ層(図示せず)との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜303と記憶層304との界面から記憶層304とキャップ層313との界面までの高さとすることが好ましい。また、磁束集中器51の先端部51sとTMR素子13との距離xは、磁束集中器51の先端部51sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。
【0047】
また磁束集中器51を構成する高透磁率材料としては、例えば最大透磁率μが100以上の軟磁性体を用いることができ、具体的には、一例としてニッケル・鉄・コバルトを含む合金、鉄・アルミニウム(FeAl)合金、フェライト合金、等を用いることができる。
【0048】
なお、図示したように、書き込みワード線11と磁束集中器51の間に電気的絶縁層を設けない場合、磁束集中器51には電流損を防ぐため比抵抗率の高い軟磁性膜を用いることが望ましい。また図示したように、上記磁束集中器51は書き込みワード線11の両側面に形成された部分は書き込みワード線11よりTMR素子13側に突き出した状態に形成されているが、その突き出した状態に形成される部分は書き込みワード線11の片方の側面に形成されているもののみでも良い。
【0049】
次いで、上記基本構成を組み込んだ第1磁気メモリ装置1の具体的構成例を、図1の(2)によって説明する。
【0050】
図1の(2)に示すように、半導体基板(例えばp型半導体基板)21の表面側にはp型ウエル領域22が形成されている。このp型ウエル領域22には、トランジスタ形成領域を分離する素子分離領域23が、いわゆるSTI(Shallow Trench Isolation)で形成されている。上記p型ウエル領域22上には、ゲート絶縁膜25を介してゲート電極(ワード線)26が形成され、ゲート電極26の両側におけるp型ウエル領域22には拡散層領域(例えばN拡散層領域)27、28が形成され、選択用の電界効果型トランジスタ24が構成されている。
【0051】
上記電界効果トランジスタ24は読み出しのためのスイッチング素子として機能する。これは、n型またはp型電界効果トランジスタの他に、ダイオード、バイポーラトランジスタ等の各種スイッチング素子を用いることも可能である。
【0052】
上記電界効果型トランジスタ24を覆う状態に第1絶縁膜41が形成されている。この第1絶縁膜41には上記拡散層領域27、28に接続するコンタクト(例えばタングステンプラグ)29、30が形成されている。さらに第1絶縁膜41上にはコンタクト29に接続するセンス線15、コンタクト30に接続する第1ランディングパッド31等が形成されている。
【0053】
上記第1絶縁膜41上には、上記センス線15、第1ランディングパッド31等を覆う第2絶縁膜42が形成されている。この第2絶縁膜42には上記第1ランディングパッド31に接続するコンタクト(例えばタングステンプラグ)32が形成されている。さらに上記第2絶縁膜42上には、コンタクト32に接続する第2ランディングパッド33、第1配線の書き込みワード線11等が形成されている。
【0054】
上記書き込みワード線11には、少なくとも、書き込みワード線11の両側面およびトンネル磁気抵抗素子(以下TMRという)13に対向する面とは反対側の面を囲むように、前記図1の(1)によって説明したのと同様な構成を有する磁束集中器51が設けられている。しかも書き込みワード線11の側面に形成された上記磁束集中器51の少なくとも一方(図面では両方)は、書き込みワード線11よりTMR素子13側に突き出した状態に形成されている。
【0055】
上記図1では、上記突き出した状態に形成されている部分の磁束集中器51は、上記TMR素子13に対して絶縁膜43、44を介してTMR素子13の側面に延長形成されている。延長形成された磁束集中器51の側壁部分の先端部51sは、例えばTMR素子13の記憶層304とほぼ同等の高さに形成される。また、磁束集中器51の先端部51sとTMR素子13との距離は、磁束集中器51の先端部51sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えば200nm以下に形成されている。
【0056】
また磁束集中器51を構成する高透磁率材料には、例えば最大透磁率μが100以上の軟磁性体を用いることができ、具体的には、一例としてニッケル・鉄・コバルトを含む合金、鉄・アルミニウム(FeAl)合金もしくはフェライト合金を用いている。
【0057】
上記第2絶縁膜42上には、上記書き込みワード線11、磁束集中器51、第2ランディングパッド33等を覆う第3絶縁膜43が形成されている。この第3絶縁膜43には、上記第2ランディングパッド33に達する開口部43h形成されている。
【0058】
さらに、上記第3絶縁膜43上には、上記書き込みワード線11上方から上記開口部43hにかけて反強磁性体層305が形成され、この反強磁性体層305上でかつ上記書き込みワード線11の上方には、トンネル絶縁層303を挟んで強磁性体層からなる磁化固定層302と磁化が比較的容易に回転する記憶層304が形成され、さらにキャップ層313が形成されている。この反強磁性体層305からキャップ層313によって情報記憶素子(以下、TMR素子という)13が構成されている。このTMR素子13については一例を後に詳述する。なお、この図面では、バイパス線16は反強磁性体層305上に磁化固定層302を延長した状態で構成されている。
【0059】
上記第3の絶縁膜43上には上記バイパス線16、TMR素子13等を覆う第4の絶縁膜44が形成されている。この第4の絶縁膜44は表面が平坦化され、上記TMR素子13の最上層のキャップ層313表面が露出されている。上記第4の絶縁膜44上には、上記TMR素子13の上面に接続するものでかつ上記書き込みワード線11と上記TMR素子13を間にして立体的に交差(例えば直交)する第2配線のビット線12が形成されている。
【0060】
次に、上記TMR素子13の一例を、図4の概略構成斜視図によって説明する。図4に示すように、上記反強磁性体層305上に、第1の磁化固定層306と磁性層が反強磁性的に結合するような導電体層307と第2の磁化固定層308とを順に積層してなる磁化固定層302、トンネル絶縁層303、記憶層304、さらにキャップ層313を順に積層して構成されている。ここでは磁化固定層302を積層構造としたが、強磁性体層の単層構造であってもよく、もしくは3層以上の強磁性体層を、導電体層を挟んで積層させた構造であってもよい。また上記反強磁性体層305の下地に、TMR素子と直列に接続されるスイッチング素子との接続に用いられる下地導電層(図示せず)を形成することも可能である。また、下地導電層を反強磁性体層305によって兼ねることも可能である。
【0061】
上記記憶層304、上記第1の磁化固定層306、308は、例えば、ニッケル、鉄もしくはコバルト、またはニッケル、鉄およびコバルトのうちの少なくとも2種からなる合金のような、強磁性体からなる。
【0062】
上記導電体層307は、例えば、ルテニウム、銅、クロム、金、銀等で形成されている。
【0063】
上記第1の磁化固定層306は、反強磁性体層305と接する状態に形成されていて、これらの層間に働く交換相互作用によって、第1の磁化固定層306は、強い一方向の磁気異方性を有している。
【0064】
上記反強磁性体層305は、例えば、鉄・マンガン合金、ニッケル・マンガン合金、白金マンガン合金、イリジウム・マンガン合金、ロジウム・マンガン合金、コバルト酸化物およびニッケル酸化物のうちの1種を用いることができる。
【0065】
上記トンネル絶縁層303は、例えば、酸化アルミニウム、酸化マグネシウム、酸化シリコン、窒化アルミニウム、窒化マグネシウム、窒化シリコン、酸化窒化アルミニウム、酸化窒化マグネシウムもしくは酸化窒化シリコンからなる。
【0066】
上記トンネル絶縁層303は、上記記憶層304と上記磁化固定層302との磁気的結合を切るとともに、トンネル電流を流すための機能を有する。これらの磁性膜および導電体膜は、主に、スパッタリング法によって形成される。トンネル絶縁層は、スパッタリング法によって形成された金属膜を酸化、窒化もしくは酸化窒化させることにより得ることができる。
【0067】
さらに最上層にはキャップ層313が形成されている。このキャップ層313は、TMR素子13と別のTMR素子13とを接続する配線との相互拡散防止、接触抵抗低減および記憶層304の酸化防止という機能を有する。通常、銅、窒化タンタル、タンタル、窒化チタン等の材料により形成されている。
【0068】
次に上記磁気メモリ装置1の動作を説明する。上記TMR素子13では、磁気抵抗効果によるトンネル電流変化を検出して情報を読み出すが、その効果は記憶層304と第1、第2の磁化固定層306、308との相対磁化方向に依存する。
【0069】
また上記TMR素子13では、ビット線12および書き込みワード線11に電流を流し、その合成磁界で記憶層304の磁化の方向を変えて「1」または「0」を記録する。読み出しは磁気抵抗効果によるトンネル電流変化を検出して行う。記憶層304と磁化固定層30の磁化方向が等しい場合を低抵抗(これを例えば「0」とする)とし、記憶層304と磁化固定層30の磁化方向が反平行の場合を高抵抗(これを例えば「1」とする)とする。
【0070】
次に、上記構成の磁気メモリ装置1の書き込みワード線11が発する電流磁界の分布を調べたシミュレーション結果を、図5によって説明する。図5では、書き込みワード線11、TMR素子13および磁束集中器51を簡単化して示す。シミュレーションでは、書き込みワード線11の側面に形成された磁束集中器51の先端部51sの厚さtを0.21μmとし、上記書き込みワード線11の両側面に形成された先端部51sの間隔dを0.59μmとした。また電流磁界を矢印で示し、矢印の長さは電流磁界の強さを示し、矢印の方向は電流磁界の方向を示す。
【0071】
図5の電流磁界の分布図に示すように、上記磁気メモリ装置1は、書き込みワード線11から発せられる電流磁界は磁束集中器51に伝達され、その先端部51sより効率よくTMR素子13の記憶層304〔前記図1および図4参照〕に集中させることができる。
【0072】
次に、本発明の第1磁気メモリ装置に係る第2実施の形態を、図6の概略構成断面図によって説明する。本発明の第2実施の形態は、上記図1、図5によって説明した磁気メモリ装置1において、書き込みワード線から発する電流磁界をさらに効率よく記憶層に集中させることができるようにしたものである。なお、図面では、書き込みワード線、TMR素子および磁束集中器の関係のみを示し、絶縁膜やその他の構成部品の図示は省略した。また電流磁界を矢印で示し、矢印の長さは電流磁界の強さを示し、矢印の方向は電流磁界の方向を示す。
【0073】
図6に示すように、磁気メモリ装置1(1b)は、以下の構成を有する。書き込みワード線11が形成され、この書き込みワード線11上方にはこの書き込みワード線11と立体的に交差するビット線12が形成されている。また交差領域における書き込みワード線11の上方にはTMR素子13が形成され、その上面はビット線12に接続されている。上記書き込みワード線11の両側面およびTMR素子13に対向する面とは反対側の書き込みワード線11の面には、高透磁率層からなる磁束集中器55が形成されている。しかも書き込みワード線11の側面に形成された上記磁束集中器55の少なくとも一方は書き込みワード線11よりTMR素子13側に突き出した状態に形成されている。さらに先端部55sを厚さ方向に拡張した張り出し部55atが設けられている。ここでは、一例として張り出し部55atを含めた先端部55sの厚さttは0.328μmとし、先端部55sの内側に形成された張り出し部55at、55atの間隔dtは0.472μmとした。
【0074】
また図6では先端部55sの両側に張り出し部55atを設けたが、一方側だけでもよい。さらに図示したように、上記磁束集中器55は書き込みワード線11の両側面に形成された部分は書き込みワード線11よりTMR素子13側に突き出した状態に形成されているが、その突き出した状態に形成される部分は書き込みワード線11の片方の側面に形成されているもののみでも良い。
【0075】
上記第2実施の形態に示した構成の磁束集中器55では、第1実施の形態で説明した磁束集中器51よりも電流磁束の漏れを減少させることができるため、書き込みワード線11から発せられる電流磁束を第1実施の形態の磁束集中器51よりもさらに効率よくTMR素子13の記憶層304に集中させることができる。
【0076】
次に、比較例1として、従来構造のMRAMセルにおける書き込みワード線およびその周囲構造の断面を図7によって説明する。また同図7によって、書き込みワード線およびその周囲の電流磁界の分布状態を説明する。図7では、電流磁界を矢印で示し、矢印の長さは電流磁界の強さを示し、矢印の方向は電流磁界の方向を示す。
【0077】
図7に示すように、書き込みワード線11上方には、この書き込みワード線11に対して立体的に直交するビット線12が形成されている。この書き込みワード線11とビット線12との交差領域には、例えば0.4μm×0.8μmの大きさを有するTMR素子13が形成されている。このTMR素子13は、書き込みワード線11上に300nmの厚さの絶縁膜47を介して形成され、その上面にはビット線12に接続されている。
【0078】
次に、上記書き込みワード線11に電流を流すことにより発生する電流磁界のシミュレーションを行った。その結果、図7に示すように、書き込みワード線11、TMR素子13、ビット線12のみ示す電流磁界は書き込みワード線11を取り巻くように分布する。したがって、磁束集中器51もしくは磁束集中器55を設けた実施の形態のように、書き込みワード線11から発せられる電流磁界をTMR素子13に集中させることができない。また書き込みワード線11の電流が誘起する電流磁界は、TMR素子13と書き込みワード線11との距離が大きくなるにしたがい急速に減少している。
【0079】
次に、比較例2として、米国特許第5940319号明細書に記載されたのと同様の構成の書き込みワード線およびその周囲構造の断面を、図8によって説明する。また同図8によって、書き込みワード線およびその周囲の電流磁界の分布を説明する。図8では、電流磁界を矢印で示し、矢印の長さは電流磁界の強さを示し、矢印の方向は電流磁界の方向を示す。
【0080】
図8に示すように、書き込みワード線11が形成され、この書き込みワード線11上方にはこの書き込みワード線11と立体的に交差するビット線12が形成されている。また交差領域における書き込みワード線11の上方にはTMR素子13が形成され、その上面はビット線12に接続されている。書き込みワード線11の周囲にはTMR素子13側を除いて、軟磁性膜からなる磁束集中器57が形成されている。書き込みワード線11の側面に形成された磁束集中器57の先端部57sは書き込みワード線11のTMR素子13側の面と同等の高さに形成されている。すなわち、書き込みワード線11よりTMR素子13側に突出した状態には形成されていない。
【0081】
次いで、上記構成において書き込みワード線11より発せられる電流磁界のシミュレーションを行った。この比較例2におけるシミュレーションでは、書き込みワード線11の側面に形成された磁束集中器57の先端部57sの各厚さtは0.21μmとし、磁束集中器57の先端部57sの間隔dは0.59μmとした。
【0082】
この結果、書き込みワード線11より発せられた電流磁界は、磁束集中器57によってその先端部57sに伝達され、書き込みワード線11の側面に形成された磁束集中器57の先端部57s、57s間で最も強くなる。しかしながら、磁束集中器57の先端部57sとTMR素子13との距離が開いているため、電流磁束が十分TMR素子13に伝達されないことがわかった。
【0083】
次に、上記第1実施の形態、第2実施の形態、比較例1、比較例2について、磁化方向に対して直行する方向に配置した磁化を反転させるため必要なビット線電流の書き込みワード線電流依存性を、図9の磁化容易軸方向の磁界を与える電流と磁化難易軸方向の磁界を与える電流との関係図によって説明する。
【0084】
図9に示すように、磁化難易軸方向の磁界を与える電流に対する磁化容易軸方向の磁界を与える電流との関係は、第1実施の形態、第2実施の形態ともに、比較例1、比較例2よりも、大きく改善していることが分かる。すはわち、第1実施の形態、第2実施の形態ともに、比較例1、比較例2よりも、磁化難易軸方向の磁界を与える電流の絶対値が大きくなるにしたがい磁化容易軸方向の磁界を与える電流は小さくなっている。
【0085】
次に、本発明の第1磁気メモリ装置に係わる第3実施の形態を、図10に示す概略構成断面図によって説明する。図10では、第1磁気メモリ装置の第3実施の形態に係わる要部を示し、書き込みワード線、TMR素子、磁束集中器、一部絶縁膜以外の図示は省略した。また、前記第1磁気メモリ装置に係わる第1実施の形態と同様の構成部品には同一符号を付与する。
【0086】
図10に示すように、第3実施の形態の第1磁気メモリ装置1(1c)は、図1の(1)によって説明した磁束集中器51において、TMR素子13に対向する側の書き込みワード線11表面にも高透磁率層71が形成されているものである。すなわち、高透磁率層71を含めて磁束集中器51(51c)が構成されている。また第1実施の形態の第1磁気メモリ装置1aと同様に、書き込みワード線11の側面に形成された高透磁率層の少なくとも一方はTMR素子13側の書き込みワード線11表面に形成されている高透磁率層よりTMR素子13側に突き出した状態に形成されている。すなわち、この磁束集中器51の側壁部分の先端部51sは、TMR素子13の側面と絶縁膜46を介して、TMR素子13の記憶層304とキャップ層313との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜303と記憶層304との界面から記憶層304とキャップ層313との界面までの高さとすることが好ましい。また、磁束集中器51の先端部51sとTMR素子13との距離は、磁束集中器51の先端部51sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。この第3実施の形態の基本構成は、前記第1磁気メモリ装置の第1実施の形態の基本構成に代えて、前記図1の(2)によって説明した磁気メモリ装置の構成に組み込むことができる。
【0087】
次に、本発明の第1磁気メモリ装置に係わる第4実施の形態を、図11に示す概略構成断面図によって説明する。図11では、第1磁気メモリ装置に係わる第4実施の形態の要部を示し、書き込みワード線、TMR素子、磁束集中器、一部絶縁膜以外の図示は省略した。また、前記第1磁気メモリ装置に係わる第1実施の形態と同様の構成部品には同一符号を付与する。なお、図面では、書き込みワード線、TMR素子および磁束集中器の関係のみを示し、絶縁膜の図示は省略した。
【0088】
図11に示すように、第4実施の形態の第1磁気メモリ装置1(1d)は、前記図1の(1)によって説明した第1実施の形態の磁束集中器51において、書き込みワード線11の底部側および側面側と高透磁率層からなる磁束集中器51(51d)との間に絶縁膜61が形成されているものである。この構成でも、書き込みワード線11の側面に形成された上記磁束集中器51の少なくとも一方(図面では両方)は、書き込みワード線11よりTMR素子13側に突き出した状態に形成されている。すなわち、この磁束集中器51の側壁部分の先端部51sは、TMR素子13の側面と絶縁膜46を介して、TMR素子13の記憶層304とキャップ層313との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜303と記憶層304との界面から記憶層304とキャップ層313との界面までの高さとすることが好ましい。また、磁束集中器51の先端部51sとTMR素子13との距離は、磁束集中器51の先端部51sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。この第4実施の形態の基本構成は、前記第1磁気メモリ装置の第1実施の形態の基本構成に代えて、前記図1の(2)によって説明した磁気メモリ装置の構成に組み込むことができる。
【0089】
次に、本発明の第1磁気メモリ装置に係わる第5実施の形態を、図12に示す概略構成断面図によって説明する。図12では、第1磁気メモリ装置に係わる第5実施の形態の要部を示し、書き込みワード線、TMR素子、磁束集中器、一部絶縁膜以外の図示は省略した。また、前記第1磁気メモリ装置に係わる第1実施の形態と同様の構成部品には同一符号を付与する。
【0090】
図12に示すように、第5実施の形態の第1磁気メモリ装置1(1e)は、前記図11によって説明した磁束集中器51cにおいて、書き込みワード線11の周囲に絶縁膜62を形成し、その絶縁膜62を介して高透磁率層からなる磁束集中器51(51d)が形成されているものである。この構成でも、書き込みワード線11の側面に形成された上記磁束集中器51の少なくとも一方(図面では両方)は、書き込みワード線11上に絶縁膜62を介して形成されている高透磁率層71よりTMR素子13側に突き出した状態に形成されている。すなわち、この磁束集中器51の側壁部分の先端部51sは、TMR素子13の側面と絶縁膜46を介して、TMR素子13の記憶層304とキャップ層313との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜303と記憶層304との界面から記憶層304とキャップ層313との界面までの高さとすることが好ましい。また、磁束集中器51の先端部51sとTMR素子13との距離は、磁束集中器51の先端部51sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。
【0091】
言いかえれば、第5実施の形態の高透磁率層からなる磁束集中器51eは、前記図11によって説明した第4実施の形態の磁束集中器51dにおいて、TMR素子13側の書き込みワード線11表面に絶縁膜を介して高透磁率層を形成したものである。すなわち、書き込みワード線11の周囲に絶縁膜62を介して高透磁率層からなる磁束集中器51eが形成されているものである。しかもこの構成でも、書き込みワード線11の側面に形成された上記磁束集中器51の少なくとも一方(図面では両方)は、書き込みワード線11よりTMR素子13側に突き出した状態に形成されている。この第5実施の形態の基本構成は、前記第1磁気メモリ装置の第1実施の形態の基本構成に代えて、前記図1の(2)によって説明した磁気メモリ装置の構成に組み込むことができる。
【0092】
上記第1磁気メモリ装置1(1a〜1e)では、書き込みワード線11は、少なくとも、TMR素子13に対向する面とは反対側の面および両側面が高透磁率層からなる磁束集中器51で囲まれ、書き込みワード線11の側面に形成された高透磁率層からなる磁束集中器51の少なくとも一方は、書き込みワード線11よりTMR素子13側に突き出した状態に形成されていて、実施の形態1の側壁部分の先端部51sは記憶層304の高さに形成されていることから、書き込みワード線11から発する電流磁界は、磁束集中器51の先端部51sまで伝達され、先端部51s、51s間で最も強くなる。したがって、電流磁界はTMR素子13の記憶層304に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに書き込みワード線11のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0093】
次に、本発明の第2磁気メモリ装置に係わる基本の形態を、図13に示す概略構成断面図によって説明する。図13では、第2磁気メモリ装置の基本の形態に係わる要部を示し、スイッチング素子、書き込みワード線、センス線等の図示は省略した。また、前記第1磁気メモリ装置と同様の構成部品には同一符号を付与する。
【0094】
図13に示すように、第2磁気メモリ装置2(2a)の基本の形態は、キャップ層313を介してTMR素子13に接続されるビット線12の両側面およびこのビット線12のTMR素子13に対向する面とは反対側の面に、高透磁率層からなる磁束集中器52(52a)が形成されているものであり、ビット線12の側面に形成された高透磁率層からなる磁束集中器52の少なくとも一方(図面では両方)はビット線12よりTMR素子13側に突き出した状態に形成されているものである。この磁束集中器52の側壁部分はTMR素子13と絶縁膜63を介して形成されている。
【0095】
磁束集中器52の側壁部分の先端部52sは、TMR素子13の記憶層304とトンネル絶縁膜303との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜303と記憶層304との界面から記憶層304とキャップ層313との界面までの高さとすることが好ましい。また、磁束集中器52の先端部52sとTMR素子13との距離xは、磁束集中器52の先端部52sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。そして図示はしないが、磁束集中器52の先端部52s側がTMR素子13側に張り出すように形成することが好ましい。
【0096】
また、上記磁束集中器52を構成する高透磁率材料としては、例えば最大透磁率μが100以上の軟磁性体を用いることができ、具体的には、一例としてニッケル・鉄・コバルトを含む合金、鉄・アルミニウム(FeAl)合金、フェライト合金、等を用いる。
【0097】
この第2磁気メモリ装置2(2a)の他の構成部品は、前記図1によって説明した構成と同様である。なお、前記図1によって説明した磁束集中器51は、形成されていなくてもよいが、TMR素子13へ電流磁界をより効果的に集中できることから磁束集中器51は形成されているほうが好ましい。この場合、磁束集中器51の先端部51sと磁束集中器52の先端部52sとは離間された状態に形成される必要がある。
【0098】
次に、本発明の第2磁気メモリ装置に係わる第1実施の形態を、図14に示す概略構成断面図によって説明する。図14では、第2磁気メモリ装置の第1実施の形態に係わる要部を示し、スイッチング素子、書き込みワード線、センス線等の図示は省略した。また、前記第1磁気メモリ装置と同様の構成部品には同一符号を付与する。
【0099】
図14に示すように、第2磁気メモリ装置2(2b)の第1実施の形態は、図13によって説明した磁束集中器52aにおいて、TMR素子13がキャップ層313を介して接続される側のビット線12表面にも磁束集中器52(52b)の側壁部分に接続される高透磁率層72が形成されているものである。すなわち、キャップ層313とビット線12とは高透磁率層72を介して接続されている。上記ビット線12の側面に形成された高透磁率層の少なくとも一方(図面では両方)は上記高透磁率層72よりTMR素子13側に突き出した状態に形成されている。この磁束集中器52の側壁部分はTMR素子13と絶縁膜63を介して形成されている。その先端部52sは、TMR素子13の記憶層304とトンネル絶縁膜303との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜303と記憶層304との界面から記憶層304とキャップ層313との界面までの高さとすることが好ましい。また、磁束集中器52の先端部52sとTMR素子13との距離は、磁束集中器52の先端部52sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。またこの第1実施の形態における上記磁束集中器52を構成する高透磁率材料には、前記基本の形態の磁束集中器52と同様の材料を用いる。
【0100】
この第2磁気メモリ装置2bの他の構成部品は、前記図1によって説明した構成と同様である。なお、前記図1によって説明した磁束集中器51は、形成されていなくてもよいが、TMR素子13へ電流磁界をより効果的に集中できることから磁束集中器51は形成されているほうが好ましい。この場合、磁束集中器51の先端部51sと磁束集中器52の先端部52sとは離間された状態に形成される必要がある。
【0101】
次に、本発明の第2磁気メモリ装置に係わる第2実施の形態を、図15に示す概略構成断面図によって説明する。図15では、第2磁気メモリ装置の第2実施の形態に係わる要部を示し、スイッチング素子、書き込みワード線、センス線等の図示は省略した。また、前記第1磁気メモリ装置と同様の構成部品には同一符号を付与する。
【0102】
図15に示すように、第2磁気メモリ装置2(2c)第2実施の形態は、図13によって説明した基本の形態の磁束集中器52aにおいて、ビット線12の上面(TMR素子13側とは反対側の面)およびビット線12の側面と磁束集中器52(52c)との間に絶縁膜64が形成されていて、前記図14によって説明したような高透磁率層72が形成されているものである。またこの磁束集中器52の側壁部分はキャップ層313を介してビット線12を接続するTMR素子13と絶縁膜63を介して形成されている。その先端部52sは、TMR素子13の記憶層304とトンネル絶縁膜303との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜303と記憶層304との界面から記憶層304とキャップ層313との界面までの高さとすることが好ましい。また、磁束集中器52の先端部52sとTMR素子13との距離は、磁束集中器52の先端部52sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。そして図示はしないが、磁束集中器52の先端部52s側がTMR素子13側面に形成された絶縁膜64下部に張り出すように形成することが好ましい。また、この第3第2実施の形態における上記磁束集中器52を構成する高透磁率材料には、前記基本の形態の磁束集中器52と同様の材料を用いる。
【0103】
この第2磁気メモリ装置2cの他の構成部品は、図1で説明したのと同様である。なお、前記図1によって説明した磁束集中器51は、形成されていなくてもよいが、TMR素子13へ電流磁界をより効果的に集中できることから磁束集中器51は形成されているほうが好ましい。この場合、磁束集中器51の先端部51sと磁束集中器52の先端部52sとは離間された状態に形成される必要がある。
【0104】
上記第2磁気メモリ装置2(2〜2c)では、ビット線12は、少なくとも、TMR素子13に対向する面とは反対側の面およびビット線12の両側面が高透磁率層からなる磁束集中器52で囲まれ、ビット線12の側面に形成された高透磁率層からなる磁束集中器52の少なくとも一方はビット線12よりTMR素子13側に突き出した状態に形成されていることから、ビット線12から発する電流磁界はTMR素子13の記憶層304に効率よく集中される。このため、書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともにビット線12のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0105】
次に、本発明の第3磁気メモリ装置に係わる一実施の形態を、図16に示す概略構成断面図によって説明する。図16では、第3磁気メモリ装置の一実施の形態に係わる要部を示し、スイッチング素子、センス線、ビット線等の図示は省略した。また、前記第1磁気メモリ装置と同様の構成部品には同一符号を付与する。
【0106】
図16に示すように、第3磁気メモリ装置3は、書き込みワード線11上に絶縁膜65を介して高透磁率層からなる磁束集中器53が設けられていて、磁束集中器53上に絶縁膜66を介してTMR素子13が設けられているものである。
【0107】
この磁束集中器53の側壁部分はTMR素子13の側面方向に絶縁膜66を介して延長形成されていて、その先端部53sは、TMR素子13の記憶層304とキャップ層313との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜303と記憶層304との界面から記憶層304とキャップ層313との界面までの高さとすることが好ましい。また、磁束集中器53の先端部53sとTMR素子13との距離xは、磁束集中器53の先端部53sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。
【0108】
また、上記磁束集中器53を構成する高透磁率材料としては、例えば最大透磁率μが100以上の軟磁性体を用いることができ、具体的には、一例としてニッケル・鉄・コバルトを含む合金、鉄・アルミニウム(FeAl)合金、フェライト合金、等を用いることができる。
【0109】
磁気メモリ装置3の他の構成部品は、前記図1で説明したのと同様である。なお、前記図1によって説明した磁束集中器51は、形成されていなくてもよいが、TMR素子13へ電流磁界をより効果的に集中できることから磁束集中器51は形成されているほうが好ましい。この構成については後述する。また、上記図16によって説明した構成において、磁束集中器53は書き込みワード線11の上面に接続する状態に形成されていてもよい。
【0110】
上記第3磁気メモリ装置3では、書き込みワード線11とTMR素子13との間およびTMR素子13の側面側に、絶縁膜65を介して、高透磁率層からなる磁束集中器53が設けられていることから、書き込みワード線11から発する電流磁界はTMR素子13の側面下部側の磁束集中器53によってTMR素子13の記憶層304に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに書き込みワード線11のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0111】
次に、本発明の第4磁気メモリ装置に係わる第1実施の形態を、図17に示す概略構成断面図によって説明する。図17では、第4磁気メモリ装置の第1実施の形態に係わる要部を示し、書き込みワード線、TMR素子、磁束集中器、一部絶縁膜以外の図示は省略した。また、前記第1磁気メモリ装置と同様の構成部品には同一符号を付与する。
【0112】
第1実施の形態の第4磁気メモリ装置4(4a)の基本構成は、前記図8と前記図16によって説明した構成を組み合わせたものである。すなわち、図17に示すように、第1実施の形態第4磁気メモリ装置4(4a)は、書き込みワード線11に、少なくとも、この書き込みワード線11の両側面およびこの書き込みワード線11上に絶縁膜65、66を介して形成されるTMR素子13に対向する面とは反対側の面を囲むように、高透磁率層からなる磁束集中器(第1磁束集中器)57が設けられている。この磁束集中器57の側壁部分(書き込みワード線11の側壁に形成された部分)は、書き込みワード線11上面(TMR素子13側の面)と同等の高さに形成されている。
【0113】
さらに、前記図16によって説明したのと同様の磁束集中器(第2磁束集中器)53が書き込みワード線11とTMR素子13との間に設けられている。上記磁束集中器53の両側壁部分はTMR素子13の側壁近傍に絶縁膜66を介して延長形成されていて、その先端部53sは、TMR素子13の記憶層304とキャップ層313との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜303と記憶層304との界面から記憶層304とキャップ層313との界面までの高さとすることが好ましい。また、磁束集中器53の先端部53sとTMR素子13との距離xは、磁束集中器53の先端部53sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。
【0114】
また、上記磁束集中器53、57を構成する高透磁率材料としては、例えば最大透磁率μが100以上の軟磁性体を用いることができ、具体的には、一例としてニッケル・鉄・コバルトを含む合金、鉄・アルミニウム(FeAl)合金、フェライト合金、等を用いることができる。
【0115】
次に、本発明の第4磁気メモリ装置に係わる第2実施の形態を、図18に示す概略構成断面図によって説明する。図18では、第4磁気メモリ装置の第2実施の形態に係わる要部を示し、書き込みワード線、TMR素子、磁束集中器、一部絶縁膜以外の図示は省略した。また、前記第1磁気メモリ装置と同様の構成部品には同一符号を付与する。
【0116】
図18に示すように、第2実施の形態の磁気メモリ装置4(4b)は、前記図17によって説明した磁気メモリ装置4aにおいて、磁束集中器(第1磁束集中器)57と書き込みワード線11との間に絶縁膜61を設けたものであり、その他の構成は、前記図17によって説明した構成と同様である。
【0117】
次に、本発明の第4磁気メモリ装置に係わる第3実施の形態を、図19に示す概略構成断面図によって説明する。図19では、第4磁気メモリ装置の第3実施の形態に係わる要部を示し、書き込みワード線、TMR素子、磁束集中器、一部絶縁膜以外の図示は省略した。また、前記第1磁気メモリ装置と同様の構成部品には同一符号を付与する。
【0118】
図19に示すように、第3実施の形態の磁気メモリ装置4(4c)は、書き込みワード線11の底部側および両側面に前記図1の(1)によって説明した磁束集中器(第1磁束集中器)51を備え、さらに書き込みワード線11とTMR素子13との間に前記図16によって説明した磁束集中器(第2磁束集中器)53を備えたものである。上記磁束集中器51の側壁部分の先端部51sと上記磁束集中器53とは、絶縁膜65を介して離間された状態に形成されている。なお、図示はしないが、上記磁束集中器51の側壁部分の先端部51sと上記磁束集中器53とが接続されていてもよい。
【0119】
次に、本発明の第4磁気メモリ装置に係わる第4実施の形態を、図20に示す概略構成断面図によって説明する。図20では、第4磁気メモリ装置の第4実施の形態に係わる要部を示し、書き込みワード線、TMR素子、磁束集中器、一部絶縁膜以外の図示は省略した。また、前記第1磁気メモリ装置と同様の構成部品には同一符号を付与する。
【0120】
図20に示すように、第4実施の形態の磁気メモリ装置4(4d)は、書き込みワード線11の底部側および両側面に絶縁膜61を介して前記図11によって説明した磁束集中器(第1磁束集中器)51を備え、さらに書き込みワード線11とTMR素子13との間に前記図16によって説明した磁束集中器(第2磁束集中器)53を備えたものである。上記磁束集中器51の側壁部分の先端部51sと上記磁束集中器53とは、絶縁膜65を介して離間された状態に形成されている。なお、図示はしないが、上記磁束集中器51の側壁部分の先端部51sと上記磁束集中器53とが接続されていてもよい。
【0121】
上記第4磁気メモリ装置の第1実施の形態〜第4実施の形態は、例えば前記図1の(2)によって説明した磁気メモリ装置において、磁束集中器51に代えて適用することができる。
【0122】
上記第4磁気メモリ装置4(4a〜4d)では、書き込みワード線11には、少なくとも、書き込みワード線11の両側面およびTMR素子13に対向する面とは反対側の面に高透磁率層からなる磁束集中器(第1磁束集中器)51もしくは磁束集中器(第1磁束集中器)57が設けられ、書き込みワード線11とTMR素子13との間およびTMR素子13の側面側に絶縁膜66を介して高透磁率層からなる磁束集中器(第2磁束集中器)53が設けられていて、その先端部53sが記憶層304の高さに形成されていることから、書き込みワード線11から発する電流磁界は磁束集中器51もしくは磁束集中器57から磁束集中器53に伝達されてTMR素子13の記憶層304に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに書き込みワード線11のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0123】
次に、本発明の第5磁気メモリ装置を説明する前に、一般的なクロスポイント型のMRAM(Magnetic Random Access Memory)を、図21の主要部を簡略化して示した概略構成斜視図によって説明する。
【0124】
図21に示すように、9個のメモリセルを含み、相互に交差する書き込みワード線11(111、112、113)およびビット線12(121、122、123)を有する。それらの書き込みワード線11とビット線12の交差領域には、書き込みワード線11に接続するスイッチング素子14(141〜149)とこのスイッチング素子14に接続するとともにビット線12に接続するトンネル磁気抵抗(TMR)素子13(131〜139)が配置されている。上記TMR素子13は、トンネル絶縁膜を強磁性体で挟んだ基本構成を有するものからなる。また、上記スイッチング素子14は、例えばPN接合素子からなる。
【0125】
TMR素子13への書き込みは、ビット線12および書き込みワード線11に電流を流し、それから発生する合成磁界によってビット線12と書き込みワード線11との交差領域に形成されたTMR素子13の記憶層304(詳細は図5参照)の磁化方向を磁化固定層302(詳細は図5参照)に対して平行または反平行にして行う。
【0126】
次に、本発明の第5磁気メモリ装置に係る第1実施の形態を、図22の(1)の概略構成断面図および(2)の概略構成斜視図によって説明する。本発明の第1実施の形態は、上記図21によって説明した磁気メモリ装置において、書き込みワード線から発する電流磁界を効率よく記憶層に集中させることができるようにしたものである。図22では、本発明の主要部である書き込みワード線、スイッチング素子、TMR素子、ビット線および一部の絶縁膜を示し、その他の構成部品の図示は省略した。なお、図22の(1)および(2)図は構成の概略を示す図であり、各構成部品の縮尺は一致させてはいない。
【0127】
すなわち、その基本構成は、図22に示すように、第5磁気メモリ装置5(5a)は、書き込みワード線11とビット線12とが立体的に交差(ここでは直交)する状態に形成されている。この書き込みワード線11とビット線12との交差領域における書き込みワード線11上には、スイッチング素子14を介して上記ビット線12に接続するTMR素子13が形成されている。このスイッチング素子14には、例えばpn接合が用いられる。TMR素子13とビット線12とは、TMR素子の最上層に形成されるキャップ層313によって接続されている。
【0128】
さらに書き込みワード線11には、少なくとも、この書き込みワード線11の両側面およびこの書き込みワード線11上に絶縁膜46を介して形成されるTMR素子13に対向する面とは反対側の面を囲むように、高透磁率層からなる磁束集中器51が設けられている。しかも書き込みワード線11の側面に形成された上記磁束集中器51の少なくとも一方(この図面では両方)は書き込みワード線11よりTMR素子13側方に突き出した状態に形成されている。
【0129】
すなわち、上記磁束集中器51のTMR素子13側に突き出した状態に形成されている部分は、上記TMR素子13に対し、絶縁膜46を介してTMR素子13の側面近傍に延長形成されている。磁束集中器51の側壁部分の先端部51sは、TMR素子13の記憶層304とキャップ層313との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜303と記憶層304との界面から記憶層304とキャップ層313との界面までの高さとすることが好ましい。また、磁束集中器51の先端部51sとTMR素子13との距離は、磁束集中器51の先端部51sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。
【0130】
また磁束集中器51を構成する高透磁率材料としては、例えば最大透磁率μが100以上の軟磁性体を用いることができ、具体的には、一例としてニッケル・鉄・コバルトを含む合金、鉄・アルミニウム(FeAl)合金、フェライト合金、等を用いることができる。
【0131】
なお、図示したように、書き込みワード線11と磁束集中器51の間に電気的絶縁層を設けない場合、磁束集中器51には電流損を防ぐため比抵抗率の高い軟磁性膜を用いることが望ましい。また図示したように、上記磁束集中器51は書き込みワード線11の両側面に形成された部分は書き込みワード線11よりTMR素子13側に突き出した状態に形成されているが、その突き出した状態に形成される部分は書き込みワード線11の片方の側面に形成されているもののみでも良い。
【0132】
次に、本発明の第5磁気メモリ装置に係わる第2実施の形態を、図23に示す概略構成断面図によって説明する。図23では、第5磁気メモリ装置の第2実施の形態に係わる要部を示し、書き込みワード線、TMR素子、磁束集中器および一部の絶縁膜以外の図示は省略した。また、前記第1磁気メモリ装置と同様の構成部品には同一符号を付与する。
【0133】
図23に示すように、第2実施の形態に係わる第5磁気メモリ装置5(5b)は、前記図21の構成に対して前記図10によって説明したのと同様なる磁束集中器51を形成したものである。すなわち、前記図22によって説明した磁束集中器51と書き込みワード線11との間に絶縁膜61が設けられているものである。言い換えれば、前記図11の構成において、書き込みワード線11とTMR素子13との間にスイッチング素子14が形成され、このスイッチング素子14によって書き込みワード線11とTMR素子13が接続されているものである。
【0134】
上記第5磁気メモリ装置の第1実施の形態および第2実施の形態においても、各磁束集中器51の先端部51sは、前記第1磁気メモリ装置1の第2実施の形態で示したものと同様な構成となっている。
【0135】
上記第5磁気メモリ装置5では、書き込みワード線11に、少なくとも、書き込みワード線11の両側面およびTMR素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器51が設けられ、書き込みワード線11の側面に形成された高透磁率層の少なくとも一方は書き込みワード線11よりTMR素子13側に突き出した状態に形成されていて、好ましくは記憶層奥層304の高さに形成されていることから、第1磁気メモリ装置1と同様に、書き込みワード線11から発する電流磁界は、磁束集中器51の先端部51sまで伝達され、先端部51s、51s間で最も強くなる。したがって、電流磁界はTMR素子13の記憶層304に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第1配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0136】
次に、本発明の第6磁気メモリ装置に係る実施の形態を、図24および図25の概略構成断面図によって説明する。本発明の実施の形態は、上記図21によって説明した磁気メモリ装置において、ビット線から発する電流磁界を効率よく記憶層に集中させることができるようにしたものである。図24および図25では、本発明の主要部であるスイッチング素子、TMR素子、ビット線および一部の絶縁膜を示し、その他の構成部品の図示は省略した。また、前記第2磁気メモリ装置と同様の構成部品には同一符号を付与する。
【0137】
図24に示すように、磁気メモリ装置6(6a)の基本構成は、書き込みワード線11とビット線12とが立体的に交差(例えば直交)する状態に形成されている。この書き込みワード線11とビット線12との交差領域における書き込みワード線11上には、スイッチング素子14を介してTMR素子13が接続するように形成され、TMR素子13のキャップ層313がビット線12に接続されている。さらにビット線12には、少なくとも、このビット線12の両側面およびこのビット線12に接続されるTMR素子13に対向する面とは反対側の面を囲むように、高透磁率層からなる磁束集中器52が設けられている。しかもビット線12の側面に形成された上記磁束集中器52の少なくとも一方(図面では両方)はビット線12よりTMR素子13側に突き出した状態に形成されている。
【0138】
上記突き出した状態に形成されている部分の磁束集中器52は、上記TMR素子13に対して絶縁膜63を介してTMR素子13の側方に延長形成されている。その先端部52sは、TMR素子13の記憶層304とトンネル絶縁層303との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜303と記憶層304との界面から記憶層304とキャップ層313との界面までの高さとすることが好ましい。また、磁束集中器53の先端部52sとTMR素子13との距離は、磁束集中器52の先端部52sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。
【0139】
また、上記磁束集中器52を構成する高透磁率材料としては、例えば最大透磁率μが100以上の軟磁性体を用いることができ、具体的には、一例としてニッケル・鉄・コバルトを含む合金、鉄・アルミニウム(FeAl)合金、フェライト合金、等を用いることができる。
【0140】
なお、図示したように、ビット線12と磁束集中器52の間に電気的絶縁層を設けない場合、磁束集中器52には電流損を防ぐため比抵抗率の高い軟磁性膜を用いることが望ましい。また図示したように、上記磁束集中器52はビット線12の両側面に形成された部分はビット線12よりTMR素子13側に突き出した状態に形成されているが、その突き出した状態に形成される部分はビット線12の片方の側面に形成されているもののみでも良い。
【0141】
この第6磁気メモリ装置6(6a)の他の構成部品は、前記図1によって説明した構成と同様である。なお、前記図1によって説明した磁束集中器51は、形成されていなくてもよいが、TMR素子13へ電流磁界をより効果的に集中できることから磁束集中器51は形成されているほうが好ましい。この場合、磁束集中器51の先端部51sと磁束集中器52の先端部52sとは離間された状態に形成される必要がある。
【0142】
次に、図25に示す概略構成断面図によって説明する。図25では、第6磁気メモリ装置の実施の形態に係わる要部を示し、スイッチング素子、TMR素子、ビット線および一部の絶縁膜を示し、その他の構成部品の図示は省略し、前記図24と同様の構成部品には同一符号を付与する。
【0143】
そして図25に示すように、実施の形態の第6磁気メモリ装置6(6b)は、前記図24の構成に対して前記図14によって説明したのと同様なる磁束集中器52を形成したものである。すなわち、前記図24によって説明した第1実施の形態の磁束集中器52において、TMR素子13側のビット線12表面にも高透磁率層72が形成されているものである。すなわち、高透磁率層72は、TMR素子13の最上層のキャップ層313とビット線12とを接続するように形成されている。またTMR素子13の下面側は、スイッチング素子14を介して、上記ビット線12と立体的に交差(例えば直交)するもので図示はしない書き込みワード線に接続されている。
【0144】
上記磁束集中器52は、前記図14によって説明したのと同様に、上記ビット線12の側面に形成された高透磁率層の少なくとも一方(図面では両方)は上記高透磁率層72よりTMR素子13側に突き出した状態に形成されている。この磁束集中器52の側壁部分はTMR素子13と絶縁膜63を介して形成されている。その先端部52sは、TMR素子13の記憶層304とトンネル絶縁層303との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜303と記憶層304との界面から記憶層304とキャップ層313との界面までの高さとすることが好ましい。また、磁束集中器52の先端部52sとTMR素子13との距離xは、磁束集中器52の先端部52sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。
【0145】
次に、本発明の第6磁気メモリ装置に係わる変形例を、図26に示す概略構成断面図によって説明する。図26では、第6磁気メモリ装置の変形例に係わる要部を示し、スイッチング素子、TMR素子、ビット線および一部の絶縁膜を示し、その他の構成部品の図示は省略した。また、前記第1磁気メモリ装置に係わる第1実施の形態と同様の構成部品には同一符号を付与する。
【0146】
図26に示すように、変形例の第6磁気メモリ装置6(6c)は、前記図24の構成に対して前記図15によって説明したのと同様なる磁束集中器52を形成したものである。すなわち、前記図24によって説明した磁束集中器52とビット線12との間に絶縁膜64を設けたものである。またTMR素子13の下面側は、スイッチング素子14を介して、上記ビット線12と立体的に交差(例えば直交)するもので図示はしない書き込みワード線に接続されている。
【0147】
上記磁束集中器52は、前記図15によって説明したのと同様に、上記ビット線12の側面に形成された高透磁率層の少なくとも一方(図面では両方)は上記ビット線12よりTMR素子13の側方に突き出した状態に形成されている。この磁束集中器52の側壁部分はTMR素子13と絶縁膜63を介して形成されている。その先端部52sは、TMR素子13の記憶層304とトンネル絶縁層303との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜303と記憶層304との界面から記憶層304とキャップ層313との界面までの高さとすることが好ましい。また、磁束集中器52の先端部52sとTMR素子13との距離は、磁束集中器52の先端部52sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。
【0148】
上記第6磁気メモリ装置6(6a〜6c)では、ビット線12に、少なくとも、ビット線12の両側面およびTMR素子13に対向する面とは反対側の面に高透磁率層からなる磁束集中器52が設けられている。この磁束集中器52は、ビット線12側方に形成されたこの磁束集中器52の高透磁率層の少なくとも一方(各図面では両方)が、ビット線12よりTMR素子13側に突き出した状態に形成されている。例えば磁束集中器52の側壁部分の先端部52sが記憶層304の高さに形成されていることから、前記第2磁気メモリ装置2と同様に、ビット線12から発する電流磁界は、先端部52sまで伝達され、その先端部52s、52s間で最も強くなる。したがって、電流磁界はTMR素子13の記憶層304に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともにビット線12のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0149】
次に、本発明の第1磁気メモリ装置の製造方法に係る第1実施の形態を、図27の製造工程断面図によって説明する。ここでは、書き込みワード線より下層の配線および読み出し用素子(例えば絶縁ゲート型電界効果トランジスタ)は従来の方法で作製されるため、説明の記載は省略する。
【0150】
図27の(1)に示すように、第1絶縁膜41上にはセンス線15、第1ランディングパッド31等が形成されている。これらの配線は、例えば600nmの厚さの金属膜もしくは導電性金属化合物膜もしくは導電性ポリシリコン膜で形成されている。また、第1絶縁膜41には、図示していない読み出しトランジスタの拡散層に接続されるもので第1ランディングパッド31に接続するコンタクト30が形成されている。なお、センス線15より読み出しトランジスタの別の拡散層に接続されるコンタクトの図示は省略した。
【0151】
上記第1絶縁膜41上に、上記センス線15、第1ランディングパッド31等を覆う第2絶縁膜42を形成する。この第2絶縁膜42は、例えば高密度プラズマCVD(Chemical Vapor Deposition )法によりHDP膜を例えば800nmの厚さに形成し、さらに、プラズマTEOS(テトラエトキシシラン)−CVD法によって、P−TEOS膜を例えば1200nmの厚さに形成する。その後、化学的機械研磨によって、第2絶縁膜42を研磨、平坦化し、センス線15、第1ランディングパッド31上に例えば700nmの厚さの第2絶縁膜42を残す。
【0152】
次に、リソグラフィ技術とエッチング技術とを用いて、第2絶縁膜42にセンス線15、第1ランディングパッド31等に達するビアホール42hを形成する。図面ではセンス線15に達するビアホールの図示は省略した。
【0153】
次いで通常のタングステンプラグ形成技術によって、上記ビアホール42h内にタングステンを埋め込み、タングステンプラグからなるコンタクト32を形成する。なお、タングステンの成膜は例えば化学的気相成長法、スパッタリング等の既存の成膜技術により行い、第2絶縁膜42上に形成される余剰なタングステン膜の除去は、例えば化学的機械研磨もしくはエッチバックにより行えばよい。
【0154】
次に、第2絶縁膜42上に第3絶縁膜の一部となる絶縁膜431を形成する。この絶縁膜431には、P−TEOS膜を例えば500nmの厚さに形成したものを用いる。上記絶縁膜431の膜厚は、後に形成する磁束集中器の側壁部分の高さを決定することになるので、磁束集中器の側壁部分の先端部が後に形成するTMR素子の記憶層の高さとなるように決定される。次いで、リソグラフィ技術とエッチング技術とにより、絶縁膜431に書き込みワード線を形成するための配線溝43t1と第2ランディングパッドを形成するための配線溝43t2を形成する。
【0155】
次に、図27の(2)に示すように、PVD(Physical Vapor Deposition)法によって、上記配線溝43t1、43t2内面および絶縁膜431表面に、バリアメタル(図示せず)、高透磁率層73、配線材料層81を順に成膜する。
【0156】
上記バリアメタルは、例えばチタン(Ti)を5nmの厚さに堆積した後、窒化チタン(TiN)を20nmの厚さに堆積して形成する。
【0157】
上記高透磁率層73は、例えば最大透磁率μが100以上の軟磁性体を用いることができ、具体的には、一例としてニッケル・鉄・コバルトを含む合金、鉄・アルミニウム(FeAl)合金、フェライト合金、等を用いることができ、例えば100nmの厚さに形成する。その他にも、例えば最大透磁率μが100以上であれば、例えばコバルト(Co)、鉄(Fe)、ニッケル(Ni)のいずれかを含む金属化合物、金属酸化物もしくは金属窒化物を用いることができる。
【0158】
上記配線材料層81は、アルミニウム(Al)、銅(Cu)もしくはアルミニウム−銅(Al−Cu)合金を例えば450nmの厚さに形成する。
【0159】
その後、化学的機械研磨によって、絶縁膜431上の余剰な上記配線材料層81ないしバリアメタル(図示せず)を除去して、各配線溝43t1、43t2内に上記配線材料層81ないしバリアメタル(図示せず)を残し、書き込みワード線11および第2ランディングパッド33を形成する。さらにエッチバックにより、各配線溝溝43t1、43t2内の配線材料層81のみを例えば100nmの深さに後退させ、書き込みワード線11の側面上方に高透磁率層73が露出するようにする。このようにして、高透磁率層73からなる磁束集中器51が形成される。
【0160】
次に、図27の(3)に示すように、上記絶縁膜431上に、第3絶縁膜43の一部となる絶縁膜432を、例えば酸化アルミニウム(Al)膜を20nmの厚さに堆積して形成する。これによって、第3絶縁膜43が形成される。その後、リソグラフィ技術とエッチング技術とによって、フォトレジストをマスクにして絶縁膜432のエッチングを行い、第2ランディングパッド33上の絶縁膜432に、これから形成されるTMR素子と第2ランディングパッド33との接続を図るビアホール432hを形成する。なお、上記絶縁膜432は、酸化アルミニウム以外の絶縁材料(例えば酸化シリコン、窒化シリコン等)により形成することも可能である。
【0161】
続いて、PVD法によって、上記開口部432h内を含む第3絶縁膜43上に、バリア層(図示せず)、反強磁性体層305、強磁性体からなる磁化固定層302、トンネル絶縁層303、強磁性体からなる記憶層304、キャップ層313を順次形成する。
【0162】
上記バリア層には、窒化チタン、タンタルもしくは窒化タンタルを用いる。
【0163】
上記反強磁性体層305には、例えば、鉄・マンガン合金、ニッケル・マンガン合金、白金マンガン合金、イリジウム・マンガン合金、ロジウム・マンガン合金、コバルト酸化物およびニッケル酸化物のうちの1種を用いる。この反強磁性体層305は、TMR素子13と直列に接続されるスイッチング素子との接続に用いられる下地導電層を兼ねることも可能である。したがって、本実施の形態では、反強磁性体層305をTMR素子13と図示はしていないスイッチング素子との接続配線の一部として用いている。
【0164】
上記磁化固定層302には、例えば、ニッケル、鉄もしくはコバルト、またはニッケル、鉄およびコバルトのうちの少なくとも2種からなる合金のような、強磁性体を用いる。この磁化固定層302は、反強磁性体層305と接する状態に形成されていて、磁化固定層302と反強磁性体層305との層間に働く交換相互作用によって、磁化固定層302は、強い一方向の磁気異方性を有している。すなわち、磁化固定層302は反強磁性体層305との交換結合によって磁化の方向がピニング(pinning)される。
【0165】
なお、上記磁化固定層302は、導電層を挟んで磁性層を積層した構成としてもよい。例えば、反強磁性体層305側から、第1の磁化固定層と磁性層が反強磁性的に結合するような導電体層と第2の磁化固定層とを順に積層した光製造としてもよい。この磁化固定層302は、3層以上の強磁性体層を、導電体層を挟んで積層させた構造であってもよい。上記導電体層には、例えば、ルテニウム、銅、クロム、金、銀等を用いることができる。
【0166】
上記トンネル絶縁層303は、上記記憶層304と上記磁化固定層302との磁気的結合を切るとともに、トンネル電流を流すための機能を有する。そのため、通常は厚さが0.5nm〜5nmの酸化アルミニウムが使われるが、例えば、酸化マグネシウム、酸化シリコン、窒化アルミニウム、窒化マグネシウム、窒化シリコン、酸化窒化アルミニウム、酸化窒化マグネシウムもしくは酸化窒化シリコンを用いてもよい。上記したようにトンネル絶縁層303の膜厚は、0.5nm〜5nmと非常に薄いため、ALD(Atomic Layer Deposition)法により形成する。もしくはスパッタリングによってアルミニウム等の金属膜を堆積した後にプラズマ酸化もしくは窒化を行って形成する。
【0167】
上記記憶層304には、例えば、ニッケル、鉄もしくはコバルト、またはニッケル、鉄およびコバルトのうちの少なくとも2種からなる合金のような、強磁性体を用いる。この記憶層304は外部印加磁場によって磁化の方向が下層の磁化か固定層304に対して、平行又は反平行に変えることができる。
【0168】
上記キャップ層313は、TMR素子と別のTMR素子とを接続する配線との相互拡散防止、接触抵抗低減および記憶層304の酸化防止という機能を有する。通常、銅、窒化タンタル、タンタル、窒化チタン等の材料により形成されている。
【0169】
次に、図27の(4)に示すように、リソグラフィ技術とエッチング(例えば反応性イオンエッチング)技術とにより、フォトレジストをマスクにして、TMR素子13を形成するための積層膜(キャップ層313〜反強磁性体層305)をエッチングし、まずキャップ層313〜磁化固定層302の積層膜でTMR素子13を形成する。このエッチングでは、例えばトンネル絶縁層303から磁化固定層302の途中でエッチングが終わるように終点を設定する。エッチングガスには塩素(Cl)を含んだハロゲンガスもしくは一酸化炭素(CO)にアンモニア(NH)を添加したガス系を用いる。その後、上記フォトレジストを除去する。
【0170】
次いで、リソグラフィ技術とエッチング(例えば反応性イオンエッチング)技術とにより、フォトレジストをマスクにして、TMR素子13と第2ランディングパッド33とを接続するためのバイパス線16を、例えば磁化固定層302と反強磁性体層305とにより形成する。この構成では、書き込みワード線11の下部および側面側に形成した高透磁率層73が書き込みワード線11の上面よりもTMR素子13側に張り出しているため、書き込みワード線11により発生される電流磁界がTMR素子13の記憶層304に効率良く印加される。
【0171】
次に、図27の(5)に示すように、第3絶縁膜43上に、TMR素子13、バイパス線16等を覆う第4絶縁膜44を形成する。この第4絶縁膜44は、例えばCVD法もしくはPVD法によって、酸化シリコンもしくは酸化アルミニウム等で形成される。その後、化学的機械研磨によって第4絶縁膜44表面を平坦化研磨して、TMR素子13のキャップ層313上面を露出させる。
【0172】
次に標準的な配線形成技術によって、ビット線12および周辺回路の配線(図示せず)、ボンディングパッド領域(図示せず)を形成する。さらに全面に保護膜となる第5絶縁膜(図示せず)を、例えばプラズマ窒化シリコン膜で形成した後、ボンディングパッド部を開口して磁気メモリ装置のウエハプロセスを完了させる。なお、磁束集中器51側壁部分の先端部51sの高さは、配線溝43t1の深さを深く形成することにより、TMR素子13の記憶層304と同程度の高さに形成することは可能である。
【0173】
次に、本発明の第1磁気メモリ装置の製造方法に係る第2実施の形態を、図28の製造工程断面図によって説明する。ここでは、書き込みワード線より下層の配線および読み出し用素子(例えば絶縁ゲート型電界効果トランジスタ)は従来の方法で作製されるため、説明は省略する。
【0174】
図28の(1)に示すように、第1絶縁膜41上にはセンス線15、第1ランディングパッド31等が形成されている。これらの配線は、例えば600nmの厚さの金属膜もしくは導電性金属化合物膜もしくは導電性ポリシリコン膜で形成されている。また、第1絶縁膜41には、図示していない読み出しトランジスタの拡散層に接続されるもので第1ランディングパッド31に接続するコンタクト30が形成されている。なお、センス線15より読み出しトランジスタの別の拡散層に接続されるコンタクトの図示は省略した。上記第1絶縁膜41上に、上記センス線15、第1ランディングパッド31頭を覆う第2絶縁膜42を形成する。この第2絶縁膜42は、例えば高密度プラズマCVD法によりHDP膜を例えば800nmの厚さに形成し、さらに、プラズマTEOS(テトラエトキシシラン)−CVD法によって、P−TEOS膜を例えば1200nmの厚さに形成する。その後、化学的機械研磨によって、第2絶縁膜42を研磨、平坦化し、センス線15、第1ランディングパッド31上に例えば700nmの厚さの第2絶縁膜42を残す。
【0175】
次に、リソグラフィ技術とエッチング技術とを用いて、第2絶縁膜42にセンス線15、第1ランディングパッド31等に達するビアホール42hを形成する。図面ではセンス線15に達するビアホールの図示は省略した。次いで通常のタングステンプラグ形成技術によって、上記ビアホール42h内にタングステンを埋め込み、タングステンプラグからなるコンタクト32を形成する。なお、タングステンの成膜は例えば化学的気相成長法、スパッタリング等の既存の成膜技術により行い、第2絶縁膜42上に形成される余剰なタングステン膜の除去は、例えば化学的機械研磨もしくはエッチバックにより行えばよい。
【0176】
次に、PVD法によって、上記第2絶縁膜42表面に、バリアメタル(図示せず)、高透磁率層73、書き込みワード線やランディングパッドを形成するための配線材料層81を成膜する。
【0177】
上記バリアメタルは、例えばチタン(Ti)を5nmの厚さに堆積した後、窒化チタン(TiN)を20nmの厚さに堆積して形成する。
【0178】
上記高透磁率層73は、例えば最大透磁率μが100以上の軟磁性体を用いることができ、具体的には、一例としてニッケル・鉄・コバルトを含む合金、フェライト合金、等を用いることができ、例えば100nmの厚さに形成する。その他にも、例えば最大透磁率μが100以上であれば、例えばコバルト(Co)、鉄(Fe)、ニッケル(Ni)のいずれかを含む金属化合物、金属酸化物もしくは金属窒化物を用いることができる。
【0179】
上記配線材料層81は、アルミニウム(Al)、銅(Cu)もしくはアルミニウム−銅(Al−Cu)合金を例えば300nmの厚さに形成する。
【0180】
続いて、ダミー膜82を、例えばプラズマ窒化シリコン膜を例えば40nmの厚さに堆積して形成する。
【0181】
次に、リソグラフィ技術とエッチング技術とによって、フォトレジストをマスクに用いて、上記ダミー膜82、配線材料層81、高透磁率層73、バリアメタル(図示せず)を順次エッチングして、上記ダミー膜82を載せた状態で、書き込みワード線11、コンタクト32に接続する第2ランディングパッド33を形成する。
【0182】
次に、図28の(2)に示すように、PVD法によって、上記第2絶縁膜42上に上記ダミー膜82〔前記図28の(1)参照〕を覆う高透磁率層を形成した後、高透磁率層の全面をエッチバックして、ダミー膜82を載せた書き込みワード線11、第2ランディングパッド33の各側壁に高透磁率サイドウォール74Sを形成する。このようにして、高透磁率層73と高透磁率サイドウォール74Sとからなる磁束集中器51が形成される。続いて、選択的エッチングによりダミー膜82のみを除去する。なお、この工程では、第2ランディングパッド33の側壁にも書き込みワード線11の側壁と同様な高透磁率サイドウォール74Sが形成される。この高透磁率サイドウォール74Sは、磁束集中器51の側壁部分となるため、その先端部51sの高さは、上記ダミー膜82の膜厚によって調整される。その先端部51sは、後に形成されるTMR素子の記憶層とキャップ層との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜と記憶層との界面から記憶層とキャップ層との界面までの高さとすることが好ましい。また、高透磁率サイドウォール74SとTMR素子13との距離は、先端部51sに集中させた電流磁束が記憶層に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。
【0183】
次に、図28の(3)に示すように、第2絶縁膜42上に書き込みワード線11、第2ランディングパッド33、磁束集中器51等を覆う第3絶縁膜43を、例えば酸化アルミニウム(Al)を例えば20nmの厚さに堆積して形成した後、リソグラフィ技術とエッチング技術とによって、フォトレジストをマスクにして第3絶縁膜43のエッチングを行い、これから形成されるTMR素子と第2ランディングパッド33との接続を図るビアホール43hを形成する。
【0184】
続いて、PVD法によって、上記開口部43hを含む第3絶縁膜43上に、バリア層(図示せず)、反強磁性体層305、強磁性体からなる磁化固定層302、トンネル絶縁層303、強磁性体からなる記憶層304、キャップ層313を順次形成する。
【0185】
バリア層(図示せず)、反強磁性体層305、磁化固定層302、トンネル絶縁層303、強磁性体からなる記憶層304およびキャップ層313は、前記第1実施の形態で説明したのと同様の材料を用いて形成することができる。
【0186】
次に、図28の(4)に示すように、リソグラフィ技術とエッチング(例えば反応性イオンエッチング)技術とにより、フォトレジストをマスクにして、TMR素子13を形成するための積層膜(キャップ層313〜反強磁性体層305)をエッチングし、まずキャップ層313〜磁化固定層302の積層膜でTMR素子13を形成する。このエッチングでは、例えばトンネル絶縁層303から磁化固定層302の途中でエッチングが終わるように終点を設定する。エッチングガスには塩素(Cl)を含んだハロゲンガスもしくは一酸化炭素(CO)にアンモニア(NH)を添加したガス系を用いる。その後、上記フォトレジストを除去する。
【0187】
次いで、リソグラフィ技術とエッチング(例えば反応性イオンエッチング)技術とにより、フォトレジストをマスクにして、TMR素子13と第2ランディングパッド33とを接続するためのバイパス線16を、例えば磁化固定層304と反強磁性体層305とにより形成する。この構成では、書き込みワード線11の下部および側面側に形成した磁束集中器51がTMR素子13の側面近傍に張り出しているため、書き込みワード線11により発生される電流磁界がTMR素子13の記憶層304に効率良く印加される。
【0188】
次に、図28の(5)に示すように、第3絶縁膜43上に、TMR素子13、バイパス線16等を覆う第4絶縁膜44を形成する。この第4絶縁膜44は、例えばCVD法もしくはPVD法によって、酸化シリコンもしくは酸化アルミニウム等で形成される。その後、化学的機械研磨によって第4絶縁膜44表面を平坦化研磨して、TMR素子13のキャップ層313上面を露出させる。
【0189】
次に標準的な配線形成技術によって、ビット線12および周辺回路の配線(図示せず)、ボンディングパッド領域(図示せず)を形成する。さらに全面に保護膜となる第5絶縁膜(図示せず)を、例えばプラズマ窒化シリコン膜で形成した後、ボンディングパッド部を開口して磁気メモリ装置のウエハプロセスを完了させる。
【0190】
次に、本発明の第1磁気メモリ装置の製造方法に係る第3実施の形態を、図29の製造工程断面図によって説明する。ここでは、書き込みワード線より下層の配線および読み出し用素子(例えば絶縁ゲート型電界効果トランジスタ)は従来の方法で作製されるため、説明は省略する。
【0191】
図29の(1)に示すように、第1絶縁膜41上にはセンス線15、第1ランディングパッド31等が形成されている。これらの配線は、例えば600nmの厚さの金属膜もしくは導電性金属化合物膜もしくは導電性ポリシリコン膜で形成されている。また、第1絶縁膜41には、図示していない読み出しトランジスタの拡散層に接続されるもので第1ランディングパッド31に接続するコンタクト30が形成されている。なお、センス線15より読み出しトランジスタの別の拡散層に接続されるコンタクトの図示は省略した。上記第1絶縁膜41上に、上記センス線15、第1ランディングパッド31頭を覆う第2絶縁膜42を形成する。この第2絶縁膜42は、例えば高密度プラズマCVD法によりHDP膜を例えば800nmの厚さに形成し、さらに、プラズマTEOS(テトラエトキシシラン)−CVD法によって、P−TEOS膜を例えば1200nmの厚さに形成する。その後、化学的機械研磨によって、第2絶縁膜42を研磨、平坦化し、センス線15、第1ランディングパッド31上に例えば700nmの厚さの第2絶縁膜42を残す。
【0192】
次に、リソグラフィ技術とエッチング技術とを用いて、第2絶縁膜42にセンス線15、第1ランディングパッド31等に達するビアホール42hを形成する。図面ではセンス線15に達するビアホールの図示は省略した。次いで通常のタングステンプラグ形成技術によって、上記ビアホール42h内にタングステンを埋め込み、タングステンプラグからなるコンタクト32を形成する。なお、タングステンの成膜は例えば化学的気相成長法、スパッタリング等の既存の成膜技術により行い、第2絶縁膜42上に形成される余剰なタングステン膜の除去は、例えば化学的機械研磨もしくはエッチバックにより行えばよい。
【0193】
次に、第2絶縁膜42上に第3絶縁膜43を形成する。この第3絶縁膜43には、P−TEOS膜を例えば400nmの厚さに形成したものを用いる。次いで、リソグラフィ技術とエッチング技術とにより、第3絶縁膜43に書き込みワード線を形成するための配線溝43t1と第2ランディングパッドを形成するための配線溝43t2を形成する。
【0194】
次に、図29の(2)に示すように、PVD法によって、上記配線溝43t1、43t2内面および第3絶縁膜43表面に、バリアメタル(図示せず)、高透磁率層73、配線材料層81を順に成膜する。バリアメタル(図示せず)、高透磁率層73、配線材料層81は、前記第1実施の形態で説明したのと同様な材料を用いて形成することができる。
【0195】
その後、化学的機械研磨によって、第3絶縁膜43上の余剰な上記配線材料層81ないしバリアメタル(図示せず)を除去して、各配線溝43t1、43t2内に上記配線材料層81ないしバリアメタル(図示せず)を残し、書き込みワード線11および第2ランディングパッド33を形成する。
【0196】
次に、図29の(3)に示すように、第3絶縁膜43の一部となる絶縁膜432を、例えば酸化アルミニウム(Al)膜を例えば20nmの厚さに堆積して形成する。その後、リソグラフィ技術とエッチング技術とによって、フォトレジストをマスクにして絶縁膜432のエッチングを行い、第2ランディングパッド33上の絶縁膜432に、これから形成されるTMR素子と第2ランディングパッド33との接続を図るビアホール432hを形成する。なお、上記絶縁膜432は、酸化アルミニウム以外の絶縁材料(例えば酸化シリコン、窒化シリコン等)により形成することも可能である。
【0197】
続いて、PVD法によって、上記開口部432h内を含む第3絶縁膜43上に、バリア層(図示せず)、反強磁性体層305、強磁性体からなる磁化固定層302、トンネル絶縁層303、強磁性体からなる記憶層304、キャップ層313を順次形成する。上記トンネル絶縁層303は、上記記憶層304と上記磁化固定層302との磁気的結合を切るとともに、トンネル電流を流すための機能を有する。そのため、0.5nm〜5nm程度の厚さに形成される。
【0198】
バリア層(図示せず)、反強磁性体層305、磁化固定層302、トンネル絶縁層303、強磁性体からなる記憶層304およびキャップ層313は、前記第1実施の形態で説明したのと同様の材料を用いて形成することができる。
【0199】
次に、図29の(4)に示すように、リソグラフィ技術とエッチング(例えば反応性イオンエッチング)技術とにより、フォトレジストをマスクにして、その後形成するTMR素子と第2ランディングパッド33とを接続するためのバイパス線となるパターン17を、例えばキャップ層313ないし絶縁膜432からなる積層膜により形成する。次に、上記パターン17を覆う絶縁膜を、例えば30nm程度の厚さのプラズマ窒化シリコン膜、酸化シリコン膜もしくは酸化アルミニウム膜で形成した後、異方性エッチングによりこの絶縁膜をエッチバックしてサイドウォール絶縁膜91Sを形成する。さらに、PVD法によって、高透磁率層を形成した後、この高透磁率層をエッチバックして、サイドウォール絶縁膜91Sの側面に高透磁率サイドウォール75Sを形成する。このようにして、高透磁率層73と高透磁率サイドウォール75Sとからなる磁束集中器51が構成される。この磁束集中器51の高透磁率サイドウォール75Sの先端部75sの高さは、上記記憶層304とキャップ層313との界面以下とし、好ましくは、トンネル絶縁層303と記憶層304との界面から記憶層304とキャップ層313との界面との間とする。
【0200】
次に、図29の(5)に示すように、リソグラフィ技術とエッチング(例えば反応性イオンエッチング)技術とにより、フォトレジストをマスクにして、TMR素子を形成するための積層膜(キャップ層313〜反強磁性体層305)をエッチングして、TMR素子13を形成する。このエッチングでは、例えばトンネル絶縁層303から磁化固定層302の途中でエッチングが終わるように終点を設定する。エッチングガスには塩素(Cl)を含んだハロゲンガスもしくは一酸化炭素(CO)にアンモニア(NH)を添加したガス系を用いる。この結果、TMR素子13が形成されるとともに、TMR素子13と第2ランディングパッド33とを接続するためのバイパス線16が反強磁性体層305と磁化固定層302とで形成される。
【0201】
次に、図29の(6)に示すように、第3絶縁膜43上に、TMR素子13、バイパス線16等を覆う第4絶縁膜44を形成する。この第4絶縁膜44は、例えばCVD法もしくはPVD法によって、酸化シリコンもしくは酸化アルミニウム等で形成される。その後、化学的機械研磨によって第4絶縁膜44表面を平坦化研磨して、TMR素子13のキャップ層313上面を露出させる。
【0202】
次に標準的な配線形成技術によって、ビット線12および周辺回路の配線(図示せず)、ボンディングパッド領域(図示せず)を形成する。さらに全面に保護膜となる第5絶縁膜(図示せず)を、例えばプラズマ窒化シリコン膜で形成した後、ボンディングパッド部を開口して磁気メモリ装置のウエハプロセスを完了させる。
【0203】
上記製造方法では、書き込みワード線11の周囲に形成された高透磁率層73と高透磁率サイドウォール75Sとが接続されて磁束集中器51が形成されるとともに、この磁束集中器51の高透磁率サイドウォール75SがTMR素子13の側面近傍に張り出した状態に形成されるため、書き込みワード線11により発生される電流磁界がTMR素子13の記憶層304に効率良く印加されることになる。
【0204】
次に、本発明の第1磁気メモリ装置の製造方法に係る第4実施の形態を、図30の製造工程断面図によって説明する。ここでは、前記図10によって説明した第1磁気メモリ装置の第3実施の形態の基本構成を得る製造方法を示す。
【0205】
図30の(1)に示すように、この製造方法は、前記図28の(1)によって説明した製造方法において、PVD法によって、第2絶縁膜42表面に、バリアメタル(図示せず)、高透磁率層73、書き込みワード線やランディングパッドを形成するための配線材料層81を成膜した後、高透磁率層76を成膜する。次いで、ダミー膜82を例えばプラズマ窒化シリコンを例えば40nmの厚さに堆積して形成する。その後の工程は、前記図28によって説明したのと同様である。
【0206】
この結果、図30の(2)に示すように、書き込みワード線11の周囲を、高透磁率層73、高透磁率サイドウォール74Sおよび高透磁率層76によって取り囲むとともにTMR素子13の側方に高透磁率サイドウォール74Sが延長形成された磁束集中器51(51b)が形成される。この磁束集中器51の側壁部分となる高透磁率サイドウォール74Sの先端部51sは、上記第1磁気メモリ装置の製造方法に係る第2実施の形態と同様に設定されて形成される。その後の製造工程は、前記図28の(3)以降によって説明した製造方法により行えば良い。
【0207】
次に、本発明の第1磁気メモリ装置の製造方法に係る第5実施の形態を、図31の概略構成断面図によって説明する。ここでは、前記図11によって説明した第1磁気メモリ装置の第3実施の形態の製造方法を示す。
【0208】
図31の(1)に示すように、この製造方法は、前記図28の(1)によって説明した製造方法において、PVD法によって、第2絶縁膜42表面に、バリアメタル(図示せず)、高透磁率層73、絶縁膜92を成膜する。その後、リソグラフィ技術とエッチング技術とを用いて、絶縁膜92を貫通して高透磁率層73もしくはコンタクト32に達する開口部92hを形成する。
【0209】
次いで、上記開口部92h内も含めて上記絶縁膜92上に、書き込みワード線やランディングパッドを形成するための配線材料層81を形成し、さらにダミー膜82を例えばプラズマ窒化シリコンを40nmの厚さに堆積して形成する。
【0210】
次に、リソグラフィ技術とエッチング技術とによって、フォトレジストをマスクに用いて、上記ダミー膜82、配線材料層71、絶縁膜92を順次エッチングして、上記ダミー膜82を載せた状態で、配線材料層81からなる書き込みワード線11、コンタクト32に接続する第2ランディングパッド33を形成する。
【0211】
次に、図31の(2)に示すように、CVD法によって、上記第2絶縁膜42上に上記ダミー膜82を覆う絶縁膜を形成した後、絶縁膜の全面をエッチバックして、ダミー膜82を載せた書き込みワード線11、第2ランディングパッド33の各側壁に絶縁膜サイドウォール91Sを形成する。この絶縁膜サイドウォール91Sは、少なくとも上記絶縁膜92に接続され、かつ上記ダミー膜82の側壁を覆う状態に形成される。
【0212】
続いてPVD法によって、上記第2絶縁膜42上に上記プラズマ窒化シリコン膜や絶縁膜サイドウォール91Sを覆う高透磁率層を形成した後、高透磁率層の全面をエッチバックして、ダミー膜82を載せた書き込みワード線11、第2ランディングパッド33の各側壁に高透磁率サイドウォール75Sを形成する。この際、この磁束集中器51の側壁部分となる高透磁率サイドウォール75Sの先端部75sは、上記第1磁気メモリ装置の製造方法に係る第2実施の形態の高透磁率サイドウォール74Sと同様に設定されて形成される。このようにして、書き込みワード線11の周囲を、絶縁膜92、絶縁膜サイドウォール91Sを介して、高透磁率層73、高透磁率サイドウォール75Sおよび高透磁率層76によって囲むとともにTMR素子13側に高透磁率サイドウォール75Sが延長形成された磁束集中器51(51c)が形成される
【0213】
続いて、選択的エッチングによりダミー膜82のみを除去する。なお、上記高透磁率サイドウォール75Sを形成するエッチバック時に、上記高透磁率層73、バリアメタル(図示せず)を除去する。なお、高透磁率層73およびバリアメタルの不要部分の除去は、絶縁膜サイドウォール91Sの形成後に行うこともできる。その後の工程は、前記図28の(3)以降によって説明した工程と同様である。
【0214】
次に、本発明の第1磁気メモリ装置の製造方法に係る第6実施の形態を、図32の概略構成断面図によって説明する。ここでは、前記図12によって説明した第1磁気メモリ装置の第4実施の形態の製造方法を示す。
【0215】
図32の(1)に示すように、この製造方法は、前記図31の(1)によって説明した製造方法において、PVD法によって、第2絶縁膜42表面に、バリアメタル(図示せず)、高透磁率層73、絶縁膜92、書き込みワード線やランディングパッドを形成するための配線材料層81を成膜した後、絶縁膜93を形成してから高透磁率層71を成膜する。次いで、ダミー膜82を例えばプラズマ窒化シリコンを40nmの厚さに堆積して形成する。その後の工程は、前記図31によって説明したのと同様である。
【0216】
この結果、図32の(2)に示すように、配線材料層81からなる書き込みワード線11の周囲を、絶縁膜92、93、絶縁膜サイドウォール91Sを介して、高透磁率層73、高透磁率サイドウォール75Sおよび高透磁率層71によって取り囲むとともに、TMR素子13側方に高透磁率サイドウォール75Sが延長形成された磁束集中器51(51d)が形成される。上記絶縁膜サイドウォール91Sは、少なくとも上記絶縁膜92、93に接続する状態に形成される。この磁束集中器51の側壁部分となる高透磁率サイドウォール75Sの先端部75sは、上記第1磁気メモリ装置の製造方法に係る第2実施の形態と同様に設定されて形成される。
【0217】
上記第1磁気メモリ装置の製造方法では、少なくとも、書き込みワード線11の両側面およびTMR素子13に対向する面とは反対側の面に高透磁率層61、62、63等からなる磁束集中器51(51a〜51d)を形成する工程を備え、書き込みワード線11の両側面に形成される高透磁率サイドウォール62Sの少なくとも一方を書き込みワード線11よりTMR素子13側に突き出した状態に形成する。このことから、書き込みワード線11に電流を流した際に発せられる電流磁界は、書き込みワード線の両側面に形成される高透磁率サイドウォール75Sもしくは高透磁率サイドウォール75Sによって、TMR素子13の記憶層に効率よく集中されるようになる。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに書き込みワード線11のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0218】
次に、本発明の第2磁気メモリ装置の製造方法に係る第1実施の形態を、図33の製造工程断面図によって説明する。ここでTMR素子13、第4絶縁膜44等より下層の構成は、従来技術もしくは上記第1磁気メモリ装置の製造方法によって形成されるので、ここでの説明は省略する。
【0219】
図33の(1)に示すように、第4絶縁膜44の表面にTMR素子13のキャップ層313が露出された状態に形成されている。上記第4絶縁膜44の表面は平坦化されている。上記TMR素子13は、従来の磁気メモリ装置の製造方法もしくは前記説明した第1磁気メモリ装置の製造方法によって形成されている。
【0220】
次に、図33の(2)に示すように、PVD法によって、第4絶縁膜44表面に、バリアメタル(図示せず)を、例えばチタン(Ti)を5nmの厚さに堆積した後、窒化チタン(TiN)を20nmの厚さに堆積して形成する。次いで、PVD法によって、ビット線を形成するための配線材料層83を例えばアルミニウム、銅もしくはアルミニウム銅合金を500nmの厚さに堆積して形成する。さらにPVD法によって、高透磁率層77を30nmの厚さに形成する。
【0221】
次いでリソグラフィ技術とエッチング技術とによって、ビット線を形成するためのレジストマスク94を形成し、それを用いて、上記高透磁率層77、配線材料層83、バリアメタル(図示せず)、第4絶縁膜44を順次エッチングして、上記高透磁率層77を載せたビット線12を形成する。このエッチングでは、第4絶縁膜44の途中までエッチングを進める。その深さは、例えばTMR素子の記憶層304とトンネル絶縁層303との境界までの深さとする。好ましくは、記憶層304とトンネル絶縁層303との境界から記憶層304とキャップ層313との境界までの深さとする。このように深さを設定することによって、後に形成される磁束集中器52側壁部分の先端部の位置が、TMR素子の記憶層に電流磁界を集中しやすい位置に形成されることになる。
【0222】
次に図33の(3)に示すように、PVD法によって、高透磁率層77を含むビット線12を覆う高透磁率層を形成した後、この高透磁率層をエッチバックして、ビット線12の側壁に高透磁率層からなる高透磁率サイドウォール78Sを形成する。このようにして、高透磁率層77とこれに接続される高透磁率サイドウォール78Sとからなる磁束集中器52(52a)が形成される。
【0223】
上記製造方法によれば、高透磁率層77と高透磁率サイドウォール78Sとからなる磁束集中器51により磁気回路が形成され、ビット線12による磁場を効果的にTMR素子13の記憶層304に集中させることができる。
【0224】
次に、本発明の第2磁気メモリ装置の製造方法に係る第2実施の形態を、図34の製造工程断面図によって説明する。ここでは、前記図13によって説明した第2磁気メモリ装置の基本の形態に係る別の製造方法を示す。また、TMR素子13、第4絶縁膜44等より下層の構成は、従来技術もしくは上記第1磁気メモリ装置の製造方法によって形成されるので、ここでの説明は省略する。
【0225】
図34の(1)に示すように、既存の製造方法によって、もしくは前記第1磁気メモリ装置の製造方法によって、書き込みワード線11上に第3絶縁膜43の一部を介して、最上層にキャップ層313を設けたTMR素子13が形成されている。なお、TMR素子13を構成する反強磁性体層305および磁化固定層302で形成されるバイパス線16は紙面垂直方向に延び、幅方向においてTMR素子13とバイパス線16とが一致しているように形成されている。TMR素子13の構成およびその製造方法は、前記説明した構成およびその製造方法を用いることが可能であり、もちろん、従来から知られている構成および製造方法を用いることも可能である。
【0226】
次に、図34の(2)に示すように、CVD法もしくはPVD法によって、上記第3絶縁膜43上に上記TMR素子13、バイパス線(図示せず)等を覆う絶縁膜を例えばプラズマ窒化シリコンもしくは酸化アルミニウムにより形成する。その後、この絶縁膜のエッチバックを行い、TMR素子13の側壁に絶縁膜サイドウォール95Sを形成する。次いで、CVD法もしくはPVD法によって、上記TMR素子13等を覆う第4絶縁膜44を例えば酸化シリコン膜で形成する。その後、化学的機械研磨によって、上記第4絶縁膜44の表面を平坦化研磨するとともに、TMR素子13の最上層に形成されているキャップ層313を露出させる。
【0227】
次いで、図34の(3)に示すように、さらに上記第4絶縁膜44上に第5絶縁膜45を、例えば400nmの厚さの酸化シリコン膜で形成する。その後、リソグラフィ技術とエッチング技術とによって、TMR素子13よりも幅が広くなるようにビット線用溝パターンを形成する開口部を有するレジストマスク(図示せず)を形成し、それを用いて、TMR素子13上の第5絶縁膜45にビット線用の配線溝45tを形成する。さらにエッチングを進めて、絶縁膜サイドウォール95Sの側部の第4絶縁膜44に溝44tを形成する。このエッチングでは、酸化シリコンとプラズマ窒化シリコンもしくは酸化アルミニウムとの選択比の高い条件で異方性エッチングを行いTMR素子13の側面、例えばTMR素子13のキャップ層313と記憶層304との界面と同等の高さ付近でエッチングを止める。
【0228】
次いで、図34の(4)に示すように、PVD法によって、溝44tを埋め込むとともに配線溝45tの内面に高透磁率層を形成した後、エッチバックにより溝44t内部に残すとともに配線溝45tの側面に高透磁率層を残すことで高透磁率サイドウォール78Sを形成する。
【0229】
次いで、PVD法によって、上記配線溝45tの内面および第5絶縁膜45表面に、バリアメタル(図示せず)を、例えばチタン(Ti)を5nmの厚さに堆積した後、窒化チタン(TiN)を20nmの厚さに堆積して形成する。続いて、PVD法によって、上記バリアメタル上に、上記配線溝45t内を埋め込むようにビット線を形成するための配線材料層83を、例えばアルミニウム、銅もしくはアルミニウム銅合金を500nmの厚さに堆積して形成する。その後、化学的機械研磨によって、第5絶縁膜45上の余剰な配線材料層83およびバリアメタルを研磨除去して、配線溝45t内にバリアメタルを介して配線材料層からなるビット線12を形成する。
【0230】
次に、図34の(5)に示すように、PVD法によって、上記第5絶縁膜45上にビット線12を覆う高透磁率層77を50nmの厚さに形成する。その後、リソグラフィ技術とエッチング技術とにより、ビット線12上を覆うようなレジストマスク(図示せず)を形成した後、それを用いて高透磁率層77のエッチングを行う。この結果、ビット線12の上面および側面を覆う高透磁率層77と高透磁率サイドウォール78Sとからなる磁束集中器52(52a)が形成される。このように磁束集中器52による磁気回路によって、ビット線12によって作られる電流磁界をTMR素子13の記憶層304に集中させることができるので、高い効率で書き込みが行えるようになる。
【0231】
次に、本発明の第2磁気メモリ装置の製造方法に係る第3実施の形態を、図35の製造工程断面図によって説明する。ここでは、前記図14によって説明した第2磁気メモリ装置の第1実施の形態の製造方法を示す。
【0232】
図35の(1)に示すように、前記図33の(1)に示す工程において、第4絶縁膜を化学的機械研磨してTMR素子13のキャップ層313を露出させた後、PVD法によって、第4絶縁膜44表面に高透磁率層72を形成する。次いで、上記高透磁率層72上に、前記図33の(2)によって説明したのと同様にして、バリアメタル(図示せず)、ビット線を形成するための配線材料層81、高透磁率層77を順に形成すればよい。
【0233】
その後の工程は、前記図33の(3)によって説明したプロセスと同様である。このプロセスにおいて、ビット線を形成するエッチングでは、上記高透磁率層72も同時にエッチングする。その結果、図35の(2)に示すように、配線材料層81でビット線12が形成されるとともに、ビット線12を高透磁率層72、77および高透磁率サイドウォール78Sで覆う磁束集中器52(52b)が形成される。この高透磁率サイドウォール78Sの先端部の位置は、前記第2磁気メモリ装置の製造方法に係る第1実施の形態と同様に設定される。
【0234】
次に、本発明の第2磁気メモリ装置の製造方法に係る第4実施の形態を、図36の製造工程断面図によって説明する。ここでは、前記図15によって説明した第2磁気メモリ装置の第2実施の形態の製造方法を示す。
【0235】
図36の(1)に示すように、前記図33の(2)に示す工程において、バリアメタル(図示せず)、ビット線を形成するための配線材料層81を形成した後、絶縁膜96を形成し、その後高透磁率層77を形成する。
【0236】
次いでリソグラフィ技術とエッチング技術とによって、TMR素子13のキャップ層313に接続するビット線を形成するためのレジストマスク(図示せず)を形成し、それを用いて、上記高透磁率層77、絶縁膜96、配線材料層81、バリアメタル(図示せず)、第4絶縁膜44を順次エッチングして、上記絶縁膜96を介して高透磁率層77を載せたビット線12を上記配線材料層81で形成する。このエッチングでは、第4絶縁膜44の途中までエッチングを進める。その深さは、例えばTMR素子のキャップ層313もしくは記憶層304とほぼ同等に高さとする。
【0237】
次いで、図36の(2)に示すように、CVD法によって、上記高透磁率層77上を覆う絶縁膜を形成した後、この絶縁膜の全面をエッチバックして、ビット線12の側壁に絶縁膜サイドウォール97Sを形成する。この絶縁膜サイドウォール97Sは、少なくとも上記絶縁膜96の側壁を覆い、高透磁率層77の側壁を露出させる状態に形成される。
【0238】
続いてPVD法によって、上記第4絶縁膜44上に上記高透磁率層77や絶縁膜サイドウォール97Sを覆う高透磁率層を形成した後、この高透磁率層の全面をエッチバックして、ビット線12の側壁に絶縁膜サイドウォール97Sを介して高透磁率サイドウォール78Sを形成する。その際、高透磁率サイドウォール78Sは高透磁率層77に接続するように形成される。このようにして、高透磁率層77と高透磁率サイドウォール78Sとからなる磁束集中器52(52c)が形成される。この高透磁率サイドウォール78Sの先端部の位置は、前記第2磁気メモリ装置の製造方法に係る第1実施の形態と同様に設定される。
【0239】
この第4実施の形態においては、ビット線12を形成する際に第4絶縁膜44のエッチバックを行わずに、絶縁膜サイドウォール97Sを形成し、その後第4絶縁膜44のエッチバックを行ってもよい。この第4絶縁膜44のエッチバックと絶縁膜サイドウォール97Sを形成するエッチバックを同時に行うことも可能である。
【0240】
次に、本発明の第2磁気メモリ装置の製造方法に係る第5実施の形態を、図37の製造工程断面図によって説明する。
【0241】
図37の(1)に示すように、前記図33の(2)に示す工程において、ビット線12はTMR素子13よりも幅広く形成し、第4絶縁膜44をエッチングした後、さらに、ビット線12下の第4絶縁膜44のサイドエッチングを行う。
【0242】
次いで、図37の(2)に示すように、前記図33の(3)によって説明したのと同様に、高透磁率サイドウォール78Sを形成すれば、高透磁率サイドウォール78Sは、前記図33によって説明した第1実施の形態よりもTMR素子13側に近づく状態に形成される。このようにして、ビット線12に高透磁率層77と高透磁率サイドウォール78Sとからなる磁束集中器52(52d)が形成される。
【0243】
上記製造方法で形成される磁束集中器52dは、第1実施の形態で説明した製造方法によって形成される磁束集中器52aよりも電流磁束の漏れを減少させることができるため、ビット線12から発せられる電流磁束を第1実施の形態の磁束集中器52aよりもさらに効率よくTMR素子13の記憶層304に集中させることができる。
【0244】
また、上記第5実施の形態のビット線12下をサイドエッチングする方法は、前記図35によって説明した第3実施の形態にも適用することができる。また、前記第2磁気メモリ装置の製造方法における第4実施の形態において、磁束集中器52b、52cの各先端部52sを幅広く形成するには、ビット線12を形成する際に第4絶縁膜44のエッチングは行わずに、絶縁膜サイドウォール97Sを形成する。その後、第4絶縁膜44のエッチバックを行ってから、絶縁膜サイドウォール97S下の第4絶縁膜44のサイドエッチングを行い、その後、高透磁率サイドウォール78Sを形成することにより可能になる。この高透磁率サイドウォール78Sの先端部の位置は、前記第2磁気メモリ装置の製造方法に係る第1実施の形態と同様に設定される。
【0245】
次に、本発明の第3磁気メモリ装置の製造方法に係る実施の形態を、図38の製造工程断面図によって説明する。ここでは、前記図16によって説明した第3磁気メモリ装置の実施の形態の製造方法を示す。
【0246】
図38の(1)に示すように、前記図27の(1)によって説明したように、コンタクト32が形成された第2絶縁膜42上に、第3絶縁膜の一部となる絶縁膜431を形成する。次いで、この絶縁膜431に書き込みワード線を形成するための溝43t1とコンタクト32に接続する第2ランディングパッドを形成するための溝43t2とを形成する。その後、この溝43t1、43t2内を含む絶縁膜431上に、前記図27の(2)によって説明したのと同様のバリアメタル(図示せず)を介して配線材料層を形成する。ここでは、図27によって説明したような高透磁率層は形成しない。その後、絶縁膜431上の余剰な配線材料層とバリアメタルとを除去して、溝43t1内を埋め込む書き込みワード線11と、溝43t2内を埋め込む第2ランディングパッド33とを形成する。
【0247】
次いで、図38の(2)に示すように、上記書き込みワード線11、第2ランディングパッド33等が形成された絶縁膜431上に第3絶縁膜の一部となる絶縁膜432を、例えば酸化アルミニウムもしくは酸化シリコンもしくは窒化シリコンで形成する。さらに上記絶縁膜432とエッチング選択性を有する絶縁材料で第3絶縁膜の一部となる絶縁膜433を形成する。この絶縁膜433は、後に形成される磁束集中器の側壁部分の高さを決定する。そのため、磁束集中器の側壁部分が所望の高さとなるような膜厚に形成する。その後、リソグラフィ技術とエッチング技術とによって、TMR素子を形成する領域上にそれよりも広めに形成した開口部を有するレジストマスク(図示せず)を形成して、絶縁膜433のエッチングを行い、書き込みワード線12上の絶縁膜433に開口部433hを形成する。その後、上記レジストマスクを除去する。
【0248】
次いで、上記開口部433h内を含む上記絶縁膜433上に、高透磁率層79を形成し、平坦化絶縁膜を形成する。その後、化学的機械研磨によって、絶縁膜433上の余剰な平坦化絶縁膜、高透磁率層79を除去する。その際、開口部433h内の平坦化絶縁膜は完全に除去することが望ましい。このエッチングでは、絶縁膜433がエッチングされても良い。ここでは、絶縁膜433はエッチング除去される。この結果、開口部433h内に高透磁率層79からなる磁束集中器53が形成される。この磁束集中器53の側壁部分の先端部53sは、後に形成されるTMR素子の記憶層とキャップ層との界面の高さ以下に設定され、好ましくは、トンネル絶縁層と記憶層との界面の高さから記憶層とキャップ層との界面の高さの範囲に形成される。
【0249】
次いで、前記図28の(3)によって説明したのと同様にして、上記絶縁膜432上に上記磁束集中器53を覆う絶縁膜434を形成する。このように、絶縁膜431〜434によって第3絶縁膜43が構成される。続いて第3絶縁膜43に第2ランディングパッド33に達する開口部43hを形成する。その後、反強磁性体層305、磁化固定層302、トンネル絶縁層303、記憶層304、キャップ層313を下層より順に積層して形成する。その後、前記図28の(4)、(5)によって説明したのと同様のプロセスを行うことによって、TMR素子13、TMR素子13と第2ランディングパッド33とを接続するバイパス線16、第4絶縁膜44、TMR素子13のキャップ層313に接続するビット線12等が形成される。
【0250】
なお、磁束集中器53を書き込みワード線11上に接続する状態に形成する場合には、上記絶縁膜432を形成しなければよい。その他のプロセスは上記説明した通りである。
【0251】
次に、本発明の第4磁気メモリ装置の製造方法に係る第1実施の形態を、図39の製造工程断面図によって説明する。ここでは、前記図17によって説明した第4磁気メモリ装置の第1実施の形態の製造方法を示す。
【0252】
前記図27の(1)、(2)によって説明したように、第3絶縁膜43の一部となる絶縁膜431に書き込みワード線11と第2ランディングパッド33とを形成する。その際、書き込みワード線11のエッチバックは行わない。したがって、磁束集中器(第1磁束集中器)51は、書き込みワード線11の底部および側壁のみに形成される。その後、前記図38の(2)、(3)で説明したのと同様に絶縁膜432を形成する工程以後の工程を行えばよい。
【0253】
その結果、図39に示すように、書き込みワード線11の下面および側面に高透磁率層からなる磁束集中器(第1磁束集中器)51が形成され、書き込みワード線11とTMR素子13との間に磁束集中器(第2磁束集中器)53が形成される。上記第1磁束集中器51の側壁は書き込みワード線11上面と同等の高さに形成される。上記第2磁束集中器53の側壁部分はTMR素子13の側壁側に第3絶縁膜43を介して形成され、その先端部53sは前記第3磁気メモリ装置の製造方法で説明した磁束集中器53と同様に形成される。なお、絶縁膜432を形成しなくともよい。この場合は、第1磁束集中器51の側壁部分の51sに第2磁束集中器53の底部が接続された状態に形成される。
【0254】
次に、本発明の第4磁気メモリ装置の製造方法に係る第2実施の形態を、図40の製造工程断面図によって説明する。ここでは、前記図18によって説明した第4磁気メモリ装置の第2実施の形態の製造方法を示す。
【0255】
前記図27の(1)、(2)によって説明したように、第3絶縁膜43の一部となる絶縁膜431に書き込みワード線11と第2ランディングパッド33とを形成する。その際、高透磁率層73を形成した後、絶縁膜61を形成し、その後第2ランディングパッド33が形成される溝内の絶縁膜61にコンタクト32に通じる開口部61hを形成する。この開口部61hは、高透磁率層73を貫通して形成されることが望ましいが、高透磁率層73を貫通しなくてもよい。その後、書き込みワード線を形成するための配線材料層81を形成する。ここでは前記図27によって説明したように書き込みワード線11のエッチバックは行わない。したがって、磁束集中器(第1磁束集中器)51は、書き込みワード線11の底部および側壁のみに絶縁膜61を介して形成される。一方、絶縁膜61が形成されていても、第2ランディングパッド33は開口部61hを通じてコンタクト32に接続される。なお、開口部62hが高透磁率層73を貫通しない場合には、第2ランディングパッド33は高透磁率層73を介してコンタクト32に接続される。その後、前記図38の(2)、(3)で説明したのと同様に絶縁膜432を形成する工程以後の工程を行えばよい。
【0256】
その結果、図40に示すように、書き込みワード線11の下面および側面に絶縁膜61を介して高透磁率層からなる磁束集中器(第1磁束集中器)51が形成され、書き込みワード線11とTMR素子13との間に磁束集中器(第2磁束集中器)53が形成される。上記第1磁束集中器51の側壁は書き込みワード線11上面と同等の高さに形成される。上記第2磁束集中器53の側壁部分はTMR素子13の側壁側に第3絶縁膜43を介して形成され、その先端部53sは前記第3磁気メモリ装置の製造方法で説明した磁束集中器と同様に形成される。なお、絶縁膜432を形成しなくともよい。この場合は、第1磁束集中器51の側壁部分の先端部51sに第2磁束集中器53の底部が接続された状態に形成される。
【0257】
次に、本発明の第4磁気メモリ装置の製造方法に係る第3実施の形態を、図41の製造工程断面図によって説明する。ここでは、前記図19によって説明した第4磁気メモリ装置の第3実施の形態の製造方法を示す。
【0258】
図41の(1)に示すように、前記図28の(1)および(2)によって説明した工程を行って、第2絶縁膜42上に高透磁率層からなる磁束集中器(第1磁束集中器)51に底部および側面を囲まれた書き込みワード線11とコンタクト32に高透磁率層73を介して接続する第2ランディングパッド33を形成する。その後、第2絶縁膜42上に、書き込みワード線11、第1磁束集中器51、第2ランディングパッド33等を覆う第3絶縁膜の一部となる絶縁膜431を形成する。ここでは、この絶縁膜431は、第1磁束集中器51よりも高くなるような厚さに形成する。その後、化学的機械研磨によって、この絶縁膜431表面を平坦化する。その際、第1磁束集中器51の側壁部分の先端部51sが絶縁膜431表面に露出されてもよい。
【0259】
その後図41の(2)に示すように、図38の(2)によって説明した絶縁膜432を形成する以後の工程を行えばよい。なお、絶縁膜432は形成しなくともよい。その結果書き込みワード線11の下面および側面に高透磁率層からなる磁束集中器(第1磁束集中器)51が形成され、書き込みワード線11とTMR素子13との間に磁束集中器(第2磁束集中器)53が形成される。第1磁束集中器51の側壁部分は、書き込みワード線11上面よりTMR素子13側に突き出した状態に形成され、第2磁束集中器53の側壁の先端部53sは、前記第3磁気メモリ装置の製造方法で説明した磁束集中器53と同様に形成される。
【0260】
次に、本発明の第4磁気メモリ装置の製造方法に係る第4実施の形態を、図42の製造工程断面図によって説明する。ここでは、前記図20によって説明した第4磁気メモリ装置の第4実施の形態の製造方法を示す。
【0261】
前記図31の(1)および(2)によって説明したのと同様に、第2絶縁膜42上に、高透磁率層73と高透磁率サイドウォール75Sとからなる磁束集中器(第1磁束集中器)51とともに、この第1磁束集中器51に底部と側壁を絶縁膜92と絶縁膜サイドウォール91Sを介して囲まれる書き込みワード線11およびコンタクト32に接続する第2ランディングパッド33を形成する。その後、ダミー膜82を除去する。さらに、第2絶縁膜42上に、書き込みワード線11、第1磁束集中器51、第2ランディングパッド33等を覆う第3絶縁膜の一部となる絶縁膜431を形成する。ここでは、この絶縁膜431は、第1磁束集中器51よりも高くなるような厚さに形成する。その後、化学的機械研磨によって、この絶縁膜431表面を平坦化する。その際、第1磁束集中器51の側壁部分の先端部51sが絶縁膜431表面に露出されてもよい。
【0262】
その後、図38の(2)によって説明した絶縁膜432を形成する以後の工程を行えばよい。なお、絶縁膜432は形成しなくともよい。その結果、図42に示すように、書き込みワード線11の下面および側面に高透磁率層からなる磁束集中器(第1磁束集中器)51が形成され、書き込みワード線11とTMR素子13との間に磁束集中器(第2磁束集中器)53が形成される。第1磁束集中器51の側壁部分は、書き込みワード線11上面よりTMR素子13側に突き出した状態に形成され、第2磁束集中器53の側壁の先端部53sは、前記第3磁気メモリ装置の製造方法で説明した磁束集中器53と同様に形成される。
【0263】
次に、本発明の第5磁気メモリ装置の製造方法に係る第1実施の形態を、図43の製造工程断面図によって説明する。ここでは、前記図22によって説明した第5磁気メモリ装置の第1実施の形態の製造方法を示す。
【0264】
図43に示すように、前記図27、前記図28等によって説明したのと同様にして、書き込みワード線11の周囲に磁束集中器51を形成する。その後、書き込みワード線11上に、スイッチング素子14、TMR素子13を、例えば既存の製造方法によって形成すればよい。
【0265】
この製造方法の場合も、磁束集中器51の側壁部分は、書き込みワード線11上面よりTMR素子13側に突き出した状態に形成され、その先端部51sは、TMR素子13の記憶層304とキャップ層313の界面の高さまで形成することが可能であり、例えばトンネル絶縁膜303と記憶層304との界面から記憶層304とキャップ層313との界面までの高さとすることが好ましい。また、磁束集中器51の先端部51sとTMR素子13との距離は、磁束集中器51の先端部51sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。
【0266】
次に、本発明の第5磁気メモリ装置の製造方法に係る第2実施の形態を、図44の製造工程断面図によって説明する。ここでは、前記図23によって説明した第5磁気メモリ装置の第2実施の形態の製造方法を示す。
【0267】
図44に示すように、書き込みワード線11および磁束集中器51を、前記図31によって説明したのと同様にして形成する。その結果、第2絶縁膜42上に高透磁率層73および絶縁膜92を介して書き込みワード線12が形成されるとともに、書き込みワード線12の底部に絶縁膜92を介し、書き込みワード線11の側壁に絶縁膜サイドウォール91Sを介して磁束集中器51が形成される。なお、書き込みワード線11上にスイッチング素子14が形成されるため、その後、書き込みワード線11上に、スイッチング素子14、TMR素子13を、例えば既存の製造方法によって形成すればよい。
【0268】
この製造方法の場合も、磁束集中器51の側壁の先端部51sは、上記第5磁気メモリ装置の製造方法における第1実施の形態と同様の位置に形成される。
【0269】
次に、本発明の第6磁気メモリ装置の製造方法に係る第1実施の形態を説明する。ここでは、前記図24によって説明した第6磁気メモリ装置の第1実施の形態の製造方法を説明する。なお、前記第1〜第5磁気メモリ装置の製造方法で説明した構成部品と同様なるものには同一符号を付与した。
【0270】
書き込みワード線11、スイッチング素子14、TMR素子13、TMR素子14を覆う第4絶縁膜44等を、例えば既存の方法で形成した後、もしくは前記図42、図43等によって説明した製造方法で形成した後、前記図33の(2)、(3)によって説明した製造方法により、ビット線12を形成するとともにビット線12の上面に高透磁率層77を形成し、さらにビット線12の側面に高透磁率サイドウォール78Sを形成して、高透磁率層77とこれに接続される高透磁率サイドウォール78Sとからなる磁束集中器52を形成する。
【0271】
この製造方法の場合も、第2磁気メモリ装置の製造方法と同様に、磁束集中器52の側壁部分は、ビット線12よりTMR素子13側に突き出した状態に形成され、その先端部52sは、TMR素子13の記憶層304とトンネル絶縁層303との界面の高さまで形成することが可能であり、例えばトンネル絶縁膜303と記憶層304との界面から記憶層304とキャップ層313との界面までの高さとすることが好ましい。また、磁束集中器52の先端部52sとTMR素子13との距離は、磁束集中器52の先端部52sに集中させた電流磁束が記憶層304に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。
【0272】
上記製造方法によれば、高透磁率層77と高透磁率サイドウォール78Sとからなる磁束集中器52により磁気回路が形成され、ビット線12による磁場を効果的にTMR素子13の記憶層304に集中させることができる。
【0273】
または、前記図34によって説明した製造方法により磁束集中器52を形成してもよい。
【0274】
次に、本発明の第6磁気メモリ装置の製造方法に係る第2実施の形態を説明する。ここでは、前記図25によって説明した第6磁気メモリ装置の第2実施の形態の製造方法を説明する。なお、前記第1〜第5磁気メモリ装置の製造方法で説明した構成部品と同様なるものには同一符号を付与した。
【0275】
書き込みワード線11、スイッチング素子14、TMR素子13、TMR素子14を覆う第4絶縁膜44等を、例えば既存の方法で形成した後、もしくは前記図42、図43等によって説明した製造方法で形成した後、前記図35の(1)、(2)によって説明した製造方法により、ビット線12を形成するとともに、ビット線12の下面に高透磁率層72、ビット線12の上面に高透磁率層77を形成し、さらにビット線12の側面に高透磁率サイドウォール78Sを形成する。このようにして、高透磁率層72、77とこれらに接続される高透磁率サイドウォール78Sとからなる磁束集中器52(52b)を形成する。
【0276】
この製造方法の場合も、磁束集中器52の側壁の先端部52sは、上記第6磁気メモリ装置の製造方法における第1実施の形態と同様の位置に形成される。
【0277】
上記製造方法によれば、高透磁率層72、77と高透磁率サイドウォール78Sとからなる磁束集中器52により磁気回路が形成され、ビット線12による電流磁場を効果的にTMR素子13の記憶層304に集中させることができる。
【0278】
次に、本発明の第6磁気メモリ装置の製造方法に係る第3実施の形態を説明する。ここでは、前記図26によって説明した第6磁気メモリ装置の第3実施の形態の製造方法を説明する。なお、前記第1〜第5磁気メモリ装置の製造方法で説明した構成部品と同様なるものには同一符号を付与した。
【0279】
書き込みワード線11、スイッチング素子14、TMR素子13、TMR素子14を覆う第4絶縁膜44等を、例えば既存の方法で形成した後、もしくは前記図42、図43等によって説明した製造方法で形成した後、前記図36の(1)、(2)によって説明した製造方法により、ビット線12を形成するとともに、ビット線12の上面に絶縁膜96を介して高透磁率層77を形成し、さらにビット線12の側面に絶縁膜サイドウォール97Sを介して高透磁率サイドウォール78Sを形成する。このようにして、高透磁率層77とこれに接続される高透磁率サイドウォール78Sとからなる磁束集中器52(52c)を形成する。
【0280】
この製造方法の場合も、磁束集中器52の側壁の先端部52sは、上記第6磁気メモリ装置の製造方法における第1実施の形態と同様の位置に形成される。
【0281】
上記製造方法によれば、高透磁率層77と高透磁率サイドウォール78Sとからなる磁束集中器52により磁気回路が形成され、ビット線12による磁場を効果的にTMR素子13の記憶層304に集中させることができる。
【0282】
【発明の効果】
以上、説明したように本発明の第1磁気メモリ装置によれば、第1配線は、少なくとも、第1配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられていて、第1配線の側面に形成された高透磁率層の少なくとも一方は第1配線よりトンネル磁気抵抗素子側に突き出した状態に形成されているので、第1配線から発する電流磁界はトンネル磁気抵抗素子側に突き出した状態に形成されている磁束集中器の先端部によりトンネル磁気抵抗素子の記憶層に効率よく集中的に印加することができる。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第1配線のエレクトロマイグレーションに対する寿命が高めることができる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができるので、素子の高集積化を図ることができる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果を低減することができるので、書き込みの信頼性の向上が図れる。
【0283】
本発明の第2磁気メモリ装置によれば、第2配線は、少なくとも、第2配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられていて、第2配線の側面に形成された高透磁率層の少なくとも一方は第2配線よりトンネル磁気抵抗素子側に突き出した状態に形成されているので、第2配線から発する電流磁界はトンネル磁気抵抗素子側に突き出した状態に形成されている磁束集中器の先端部によりトンネル磁気抵抗素子の記憶層に効率よく集中的に印加することができる。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第2配線のエレクトロマイグレーションに対する寿命が高めることができる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができるので、素子の高集積化を図ることができる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果を低減することができるので、書き込みの信頼性の向上が図れる。
【0284】
本発明の第3磁気メモリ装置によれば、第1配線とトンネル磁気抵抗素子との間およびトンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる磁束集中器が設けられているので、第1磁気メモリ装置と同様なる効果が得られる。
【0285】
上記第4磁気メモリ装置では、第1配線は、少なくとも、第1配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる第1磁束集中器が設けられ、第1配線とトンネル磁気抵抗素子との間およびトンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる第2磁束集中器が設けられているので、第1磁気メモリ装置と同様なる効果が得られる。
【0286】
上記第5磁気メモリ装置では、第1配線は、少なくとも、第1配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられ、第1配線の側面に形成された高透磁率層の少なくとも一方は第1配線より前記トンネル磁気抵抗素子側に突き出した状態に形成されているので、いわゆるクロスポイント型磁気メモリ装置においても前記第1磁気メモリ装置と同様なる効果が得られる。
【0287】
上記第6磁気メモリ装置では、第2配線に、少なくとも、第2配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられていて、第2配線の側面に形成された高透磁率層の少なくとも一方は第2配線よりトンネル磁気抵抗素子側に突き出した状態に形成されているので、いわゆるクロスポイント型磁気メモリ装置においても前記第2磁気メモリ装置と同様なる効果が得られる。
【0288】
また、第1、第2および第4ないし第6磁気メモリ装置においては、高透磁率層と第1配線もしくは第2配線との間に絶縁膜が形成されているものであっても、それぞれの磁気メモリ装置と同様なる効果を得ることができる。
【0289】
本発明の第1磁気メモリ装置の製造方法によれば、少なくとも、第1配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、第1配線の両側面に形成される高透磁率層の少なくとも一方を第1配線よりトンネル磁気抵抗素子側に突き出した状態に形成するので、第1配線に電流を流した際に発せられる電流磁界をトンネル磁気抵抗素子の記憶層に効率よく集中することができる構成の磁束集中器に形成することができる。このように形成された磁束集中器によって、第1磁気メモリ装置は、書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第1配線のエレクトロマイグレーションに対する寿命を高めることができる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、素子の高集積化を図ることができる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果を低減することができる。
【0290】
本発明の第2磁気メモリ装置の製造方法によれば、少なくとも、第2配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、第2配線の両側面に形成される高透磁率層の少なくとも一方を第2配線よりトンネル磁気抵抗素子側に突き出した状態に形成するので、第2配線に電流を流した際に発せられる電流磁界がトンネル磁気抵抗素子の記憶層に効率よく集中することができる構成の磁束集中器に形成することができる。このように形成された磁束集中器によって、第2磁気メモリ装置は、書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第2配線のエレクトロマイグレーションに対する寿命を高めることができる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、素子の高集積化を図ることができる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果を低減することができる。
【0291】
本発明の第3磁気メモリ装置の製造方法によれば、第1配線を形成した後に、第1配線とトンネル磁気抵抗素子との間およびトンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる磁束集中器を形成する工程を備えているので、第1配線に電流を流した際に発せられる電流磁界がトンネル磁気抵抗素子の記憶層に効率よく集中することができる構成の磁束集中器を形成することができる。よって、第1磁気メモリ装置の製造方法と同様なる効果が得られる。
【0292】
本発明の第4磁気メモリ装置の製造方法では、少なくとも、第1配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる第1磁束集中器を形成する工程と、第1配線を形成した後に、第1配線とトンネル磁気抵抗素子との間およびトンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる第2磁束集中器を形成する工程とを備えているので、第1配線に電流を流した際に発せられる電流磁界を第2磁束集中器に効率よく集中することができる構成の第1磁束集中器を形成することができる。それとともに、第1磁束集中器を介して伝達された電流磁界をトンネル磁気抵抗素子の記憶層に効率よく集中することができる構成の第2磁束集中器を形成することができる。よって、第1磁気メモリ装置の製造方法と同様なる効果が得られる。
【0293】
上記第5磁気メモリ装置の製造方法では、少なくとも、第1配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、第1配線の両側面に形成される高透磁率層の少なくとも一方を第1配線よりトンネル磁気抵抗素子側に突き出した状態に形成するので、いわゆるクロスポイント型の磁気メモリ装置においても、前記第1磁気メモリ装置の製造方法と同様なる効果を得ることができる。
【0294】
上記第6磁気メモリ装置の製造方法では、少なくとも、第2配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、第2配線の両側面に形成される高透磁率層の少なくとも一方を第2配線よりトンネル磁気抵抗素子側に突き出した状態に形成するので、いわゆるクロスポイント型の磁気メモリ装置においても、前記第2磁気メモリ装置の製造方法と同様なる効果を得ることができる。
【0295】
また、第1、第2および第4ないし第6磁気メモリ装置の製造方法においては、高透磁率層と第1配線もしくは第2配線との間に絶縁膜を形成する場合であっても、それぞれの磁気メモリ装置の製造方法と同様なる効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1磁気メモリ装置に係る第1実施の形態を示す概略構成断面図である。
【図2】一般的なMRAMの主要部を簡略化して示した概略構成斜視図である。
【図3】容易軸方向磁界HEA および困難軸方向磁界HHA による記憶層磁化方向の反転しきい値を示すアステロイド曲線である。
【図4】TMR素子の一例を示す概略構成斜視図である。
【図5】本発明の第1磁気メモリ装置に係る第1実施の形態の書き込みワード線が発する電流磁界の分布を調べたシミュレーション結果である。
【図6】本発明の第1磁気メモリ装置に係る第2実施の形態を示す概略構成断面図である。
【図7】比較例1として、従来構造のMRAMセルにおける書き込みワード線およびその周囲構造および書き込みワード線周囲の電流磁界の分布状態を示す概略構成断面図である。
【図8】比較例2として、従来構造のMRAMセルにおける書き込みワード線およびその周囲構造および書き込みワード線周囲の電流磁界の分布状態を示す概略構成断面図である。
【図9】本発明の第1磁気メモリ装置に係る第1実施の形態、第2実施の形態、比較例1および比較例2について、磁化方向に対して直行する方向に配置した磁化を反転させるため必要なビット線電流の書き込みワード線電流依存性を示す、磁化容易軸方向の磁界を与える電流と磁化難易軸方向の磁界を与える電流との関係図である。
【図10】本発明の第1磁気メモリ装置に係る第3実施の形態を示す概略構成断面図である。
【図11】本発明の第1磁気メモリ装置に係る第4実施の形態を示す概略構成断面図である。
【図12】本発明の第1磁気メモリ装置に係る第5実施の形態を示す概略構成断面図である。
【図13】本発明の第2磁気メモリ装置に係る基本の形態を示す概略構成断面図である。
【図14】本発明の第2磁気メモリ装置に係る第1実施の形態を示す概略構成断面図である。
【図15】本発明の第2磁気メモリ装置に係る第2実施の形態を示す概略構成断面図である。
【図16】本発明の第3磁気メモリ装置に係る実施の形態を示す概略構成断面図である。
【図17】本発明の第4磁気メモリ装置に係る第1実施の形態を示す概略構成断面図である。
【図18】本発明の第4磁気メモリ装置に係る第2実施の形態を示す概略構成断面図である。
【図19】本発明の第4磁気メモリ装置に係る第3実施の形態を示す概略構成断面図である。
【図20】本発明の第4磁気メモリ装置に係る第4実施の形態を示す概略構成断面図である。
【図21】一般的なクロスポイント型のMRAMの主要部を簡略化して示した概略構成斜視図である。
【図22】本発明の第5磁気メモリ装置に係る第1実施の形態を示す概略構成断面図である。
【図23】本発明の第5磁気メモリ装置に係る第2実施の形態を示す概略構成断面図である。
【図24】本発明の第6磁気メモリ装置に係る実施の形態を示す概略構成断面図である。
【図25】本発明の第6磁気メモリ装置に係る実施の形態を示す概略構成断面図である。
【図26】本発明の第6磁気メモリ装置に係る変形例を示す概略構成断面図である。
【図27】本発明の第1磁気メモリ装置の製造方法に係る第1実施の形態を示す製造工程断面図である。
【図28】本発明の第1磁気メモリ装置の製造方法に係る第2実施の形態を示す製造工程断面図である。
【図29】本発明の第1磁気メモリ装置の製造方法に係る第3実施の形態を示す製造工程断面図である。
【図30】本発明の第1磁気メモリ装置の製造方法に係る第4実施の形態を示す概略構成断面図である。
【図31】本発明の第1磁気メモリ装置の製造方法に係る第5実施の形態を示す概略構成断面図である。
【図32】本発明の第1磁気メモリ装置の製造方法に係る第6実施の形態を示す概略構成断面図である。
【図33】本発明の第2磁気メモリ装置の製造方法に係る第1実施の形態を示す製造工程断面図である。
【図34】本発明の第2磁気メモリ装置の製造方法に係る第2実施の形態を示す概略構成断面図である。
【図35】本発明の第2磁気メモリ装置の製造方法に係る第3実施の形態を示す概略構成断面図である。
【図36】本発明の第2磁気メモリ装置の製造方法に係る第4実施の形態を示す概略構成断面図である。
【図37】本発明の第2磁気メモリ装置の製造方法に係る第5実施の形態を示す概略構成断面図である。
【図38】本発明の第3磁気メモリ装置の製造方法に係る実施の形態を示す概略構成断面図である。
【図39】本発明の第4磁気メモリ装置の製造方法に係る第1実施の形態を示す概略構成断面図である。
【図40】本発明の第4磁気メモリ装置の製造方法に係る第2実施の形態を示す概略構成断面図である。
【図41】本発明の第4磁気メモリ装置の製造方法に係る第3実施の形態を示す概略構成断面図である。
【図42】本発明の第4磁気メモリ装置の製造方法に係る第4実施の形態を示す概略構成断面図である。
【図43】本発明の第5磁気メモリ装置の製造方法に係る第1実施の形態を示す概略構成断面図である。
【図44】本発明の第5磁気メモリ装置の製造方法に係る第2実施の形態を示す概略構成断面図である。
【符号の説明】
1…磁気メモリ装置、11…書き込みワード線、12…ビット線、13…TMR素子、51…磁束集中器、302…磁化固定層、303…トンネル絶縁層、304…記憶層

Claims (32)

  1. 第1配線と、
    前記第1配線と立体的に交差する第2配線と、
    前記第1配線と電気的に絶縁され、前記第2配線と電気的に接続されたもので、前記第1配線と前記第2配線との交差領域にトンネル絶縁層を強磁性体で挟んで構成されるトンネル磁気抵抗素子とを備えたもので、
    前記強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記憶する不揮発性の磁気メモリ装置において、
    前記第1配線に、少なくとも、前記第1配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられ、
    前記第1配線の側面に形成された前記高透磁率層の少なくとも一方は前記第1配線より前記トンネル磁気抵抗素子側に突き出した状態に形成されている
    ことを特徴とする磁気メモリ装置。
  2. 前記磁束集中器は、前記トンネル磁気抵抗素子側の前記第1配線表面にも高透磁率層が形成されている
    ことを特徴とする請求項1記載の磁気メモリ装置。
  3. 前記磁束集中器と前記第1配線との間に絶縁膜が形成されている
    ことを特徴とする請求項1記載の磁気メモリ装置。
  4. 前記磁束集中器は、前記トンネル磁気抵抗素子側の前記第1配線表面にも絶縁膜を介して高透磁率層が形成されている
    ことを特徴とする請求項3記載の磁気メモリ装置。
  5. 第1配線と、
    前記第1配線と立体的に交差する第2配線と、
    前記第1配線と電気的に絶縁され、前記第2配線と電気的に接続されたもので、前記第1配線と前記第2配線との交差領域にトンネル絶縁層を強磁性体で挟んで構成されるトンネル磁気抵抗素子とを備えたもので、
    前記強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記憶する不揮発性の磁気メモリ装置において、
    前記第2配線の両側面および前記トンネル磁気抵抗素子側の表面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられていて、
    前記第2配線の側面に形成された前記高透磁率層の少なくとも一方は前記第2配線より前記トンネル磁気抵抗素子側に突き出した状態に形成されている
    ことを特徴とする磁気メモリ装置。
  6. 前記磁束集中器は、前記トンネル磁気抵抗素子側の前記第2配線表面にも高透磁率層が形成されている
    ことを特徴とする請求項記載の磁気メモリ装置。
  7. 第1配線と、
    前記第1配線と立体的に交差する第2配線と、
    前記第1配線と電気的に絶縁され、前記第2配線と電気的に接続されたもので、前記第1配線と前記第2配線との交差領域にトンネル絶縁層を強磁性体で挟んで構成されるトンネル磁気抵抗素子とを備えたもので、
    前記強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記憶する不揮発性の磁気メモリ装置において、
    前記第1配線と前記トンネル磁気抵抗素子との間および前記トンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる磁束集中器が設けられている
    ことを特徴とする磁気メモリ装置。
  8. 第1配線と、
    前記第1配線と立体的に交差する第2配線と、
    前記第1配線と電気的に絶縁され、前記第2配線と電気的に接続されたもので、前記第1配線と前記第2配線との交差領域にトンネル絶縁層を強磁性体で挟んで構成されるトンネル磁気抵抗素子とを備えたもので、
    前記強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記憶する不揮発性の磁気メモリ装置において、
    前記第1配線には、少なくとも、前記第1配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に、高透磁率層からなる第1磁束集中器が設けられ、
    前記第1配線と前記トンネル磁気抵抗素子との間および前記トンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる第2磁束集中器が設けられている
    ことを特徴とする磁気メモリ装置。
  9. 前記第1磁束集中器と前記第1配線との間に絶縁膜が形成されている
    ことを特徴とする請求項記載の磁気メモリ装置。
  10. 前記第1配線の側面に形成された前記高透磁率層の少なくとも一方は前記第1配線より前記トンネル磁気抵抗素子側に突き出した状態に形成されている
    ことを特徴とする請求項記載の磁気メモリ装置。
  11. 前記第1磁束集中器と前記第1配線との間に絶縁膜が形成されている
    ことを特徴とする請求項10記載の磁気メモリ装置。
  12. 第1配線と、
    前記第1配線と立体的に交差する第2配線と、
    前記第1配線とスイッチング素子を介して電気的に接続され、前記第2配線と電気的に接続されたもので、前記第1配線と前記第2配線との交差領域にトンネル絶縁層を強磁性体で挟んで構成されるトンネル磁気抵抗素子とを備えたもので、
    前記強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記憶する不揮発性の磁気メモリ装置において、
    前記第1配線に、少なくとも、前記第1配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられ、
    前記第1配線の側面に形成された前記高透磁率層の少なくとも一方は前記第1配線より前記トンネル磁気抵抗素子側に突き出した状態に形成されている
    ことを特徴とする磁気メモリ装置。
  13. 前記磁束集中器と前記トンネル磁気抵抗素子との間に絶縁膜が形成されている
    ことを特徴とする請求項12記載の磁気メモリ装置。
  14. 第1配線と、
    前記第1配線と立体的に交差する第2配線と、
    前記第1配線とスイッチング素子を介して電気的に接続され、前記第2配線と電気的に接続されたもので、前記第1配線と前記第2配線との交差領域にトンネル絶縁層を強磁性体で挟んで構成されるトンネル磁気抵抗素子とを備えたもので、
    前記強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記憶する不揮発性の磁気メモリ装置において、
    前記第2配線の両側面および前記トンネル磁気抵抗素子側の表面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器が設けられていて、
    前記第2配線の側面に形成された前記高透磁率層の少なくとも一方は前記第2配線より前記トンネル磁気抵抗素子側に突き出した状態に形成されている
    ことを特徴とする磁気メモリ装置。
  15. 第1配線を形成する工程と、
    トンネル絶縁層を強磁性体で挟んでなるもので前記第1配線と電気的に絶縁されたトンネル磁気抵抗素子を形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えた不揮発性の磁気メモリ装置の製造方法において、
    少なくとも、前記第1配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、
    前記第1配線の両側面に形成される前記高透磁率層の少なくとも一方を前記第1配線より前記トンネル磁気抵抗素子側に突き出した状態に形成する
    ことを特徴とする磁気メモリ装置の製造方法。
  16. 前記高透磁率層を前記トンネル磁気抵抗素子側の前記第1配線表面にも形成する
    ことを特徴とする請求項15記載の磁気メモリ装置の製造方法。
  17. 前記高透磁率層を、前記第1配線に対して絶縁膜を介して形成する
    ことを特徴とする請求項15記載の磁気メモリ装置の製造方法。
  18. 前記高透磁率層を、前記トンネル磁気抵抗素子側の前記第1配線表面にも絶縁膜を介して形成する
    ことを特徴とする請求項17記載の磁気メモリ装置の製造方法。
  19. 第1の配線を形成する工程と、
    トンネル絶縁層を強磁性体で挟んでなるもので前記第1の配線と電気的に絶縁されたトンネル磁気抵抗素子を形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えた不揮発性の磁気メモリ装置の製造方法において、
    前記第2配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなり、
    前記第2配線の両側面に形成される前記高透磁率層の少なくとも一方を前記第2配線より前記トンネル磁気抵抗素子側に突き出した状態に形成する磁束集中器を形成する工程を備え、
    前記磁束集中器を形成する工程は、前記第2配線を形成する際に前記第2配線上に高透磁率層を載せた状態で形成した後、前記第2配線の両側下部の前記トンネル磁気抵抗素子が埋め込まれるように形成された絶縁膜を前記トンネル磁気抵抗素子の記憶層の深さまでエッチングし、その後前記第2配線の側面に前記第2配線上に形成された高透磁率層に接続する高透磁率サイドウォールを形成する
    ことを特徴とする磁気メモリ装置の製造方法。
  20. 第1の配線を形成する工程と、
    トンネル絶縁層を強磁性体で挟んでなるもので前記第1の配線と電気的に絶縁されたトンネル磁気抵抗素子を形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えた不揮発性の磁気メモリ装置の製造方法において、
    前記第2配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなり、前記第2配線の両側面に形成される前記高透磁率層の少なくとも一方を前記第2配線より前記トンネル磁気抵抗素子側に突き出した状態に形成する磁束集中器を形成する工程を備え、
    前記磁束集中器を形成する工程は、前記トンネル磁気抵抗素子を形成した後、前記トンネル磁気抵抗素子を埋め込むように絶縁膜を形成し、前記トンネル磁気抵抗素子上の前記絶縁膜に前記第2配線を形成するための配線溝を形成し、その配線溝の側壁に高透磁率サイドウォールを形成し、その後は溝を埋め込むように前記第2配線を形成し、その後前記高透磁率サイドウォールに接続するように前記第2配線上に高透磁率層を形成する
    ことを特徴とする磁気メモリ装置の製造方法。
  21. 第1配線を形成する工程と、
    トンネル絶縁層を強磁性体で挟んでなるもので前記第1配線と電気的に絶縁されたトンネル磁気抵抗素子を形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えた不揮発性の磁気メモリ装置の製造方法において、
    前記第2配線の両側面および前記トンネル磁気抵抗素子側の表面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、
    前記第2配線の両側面に形成される前記高透磁率層の少なくとも一方を前記第2配線より前記トンネル磁気抵抗素子側に突き出した状態に形成する
    ことを特徴とする磁気メモリ装置の製造方法。
  22. 第1の配線を形成する工程と、
    トンネル絶縁層を強磁性体で挟んでなるもので前記第1の配線と電気的に絶縁されたトンネル磁気抵抗素子を形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えた不揮発性の磁気メモリ装置の製造方法において、
    前記第2配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなり、
    前記第2配線の両側面に形成される前記高透磁率層の少なくとも一方を前記第2配線より前記トンネル磁気抵抗素子側に突き出した状態に形成する磁束集中器を形成する工程を備え、
    前記磁束集中器を形成する工程は、前記第2配線を形成する際に前記第2配線上に絶縁膜を介して高透磁率層を載せた状態で形成した後、前記第2配線の両側下部の前記トンネル磁気抵抗素子が埋め込まれるように形成された絶縁膜を前記トンネル磁気抵抗素子の記憶層の深さまでエッチングし、その後前記第2配線の両側面に前記第2配線上に形成された絶縁膜に接続する絶縁膜サイドウォールを形成し、さらに前記第2配線の両側面に前記第2配線上に形成された高透磁率層に接続する高透磁率サイドウォールを形成する
    ことを特徴とする磁気メモリ装置の製造方法。
  23. 第1配線を形成する工程と、
    トンネル絶縁層を強磁性体で挟んでなるもので前記第1配線と電気的に絶縁されたトンネル磁気抵抗素子を形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えた不揮発性の磁気メモリ装置の製造方法において、
    前記第1配線を形成した後に、
    前記第1配線と前記トンネル磁気抵抗素子との間および前記トンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる磁束集中器を形成する工程
    を備えたことを特徴とする磁気メモリ装置の製造方法。
  24. 第1配線を形成する工程と、
    トンネル絶縁層を強磁性体で挟んでなるもので前記第1配線と電気的に絶縁されたトンネル磁気抵抗素子を形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えた不揮発性の磁気メモリ装置の製造方法において、
    少なくとも、前記第1配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる第1磁束集中器を形成する工程と、
    前記第1配線を形成した後に、
    前記第1配線と前記トンネル磁気抵抗素子との間および前記トンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率層からなる第2磁束集中器を形成する工程と
    を備えたことを特徴とする磁気メモリ装置の製造方法。
  25. 前記第1磁束集中器の高透磁率層を、前記第1配線に対して絶縁膜を介して形成する
    ことを特徴とする請求項24記載の磁気メモリ装置の製造方法。
  26. 前記第1配線の両側面に形成される前記第1磁束集中器の高透磁率層の少なくとも一方を前記トンネル磁気抵抗素子側の前記第1配線表面より前記トンネル磁気抵抗素子側に突き出した状態に形成する
    ことを特徴とする請求項24記載の磁気メモリ装置の製造方法。
  27. 前記第1磁束集中器の高透磁率層を、前記第1配線に対して絶縁膜を介して形成する
    ことを特徴とする請求項26記載の磁気メモリ装置の製造方法。
  28. 第1配線を形成する工程と、
    前記第1配線上にスイッチング素子を形成する工程と、
    トンネル絶縁層を強磁性体で挟んでなるもので前記第1配線上に前記スイッチング素子を介して接続されるトンネル磁気抵抗素子を形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えた不揮発性の磁気メモリ装置の製造方法において、
    少なくとも、前記第1配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、
    前記第1配線の両側面に形成される前記高透磁率層の少なくとも一方を前記第1配線より前記トンネル磁気抵抗素子側に突き出した状態に形成する
    ことを特徴とする磁気メモリ装置の製造方法。
  29. 前記高透磁率層を前記トンネル磁気抵抗素子側の前記第1配線表面にも形成する
    ことを特徴とする請求項28記載の磁気メモリ装置の製造方法。
  30. 第1の配線を形成する工程と、
    前記第1配線上にスイッチング素子を形成する工程と、
    トンネル絶縁層を強磁性体で挟んでなるもので前記第1の配線とスイッチング素子を介して接続されるトンネル磁気抵抗素子を形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えた不揮発性の磁気メモリ装置の製造方法において、
    前記第2配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなり、
    前記第2配線の両側面に形成される前記高透磁率層の少なくとも一方を前記第2配線より前記トンネル磁気抵抗素子側に突き出した状態に形成する磁束集中器を形成する工程を備え、
    前記磁束集中器を形成する工程は、前記第2配線を形成する際に前記第2配線上に高透磁率層を載せた状態で形成した後、前記第2配線の両側下部の前記トンネル磁気抵抗素子が埋め込まれるように形成された絶縁膜を前記トンネル磁気抵抗素子の記憶層の深さまでエッチングし、その後前記第2配線の側面に前記第2配線上に形成された高透磁率層に接続する高透磁率サイドウォールを形成する
    ことを特徴とする磁気メモリ装置の製造方法。
  31. 第1の配線を形成する工程と、
    前記第1配線上にスイッチング素子を形成する工程と、
    トンネル絶縁層を強磁性体で挟んでなるもので前記第1の配線とスイッチング素子を介して接続されるトンネル磁気抵抗素子を形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えた不揮発性の磁気メモリ装置の製造方法において、
    前記第2配線の両側面および前記トンネル磁気抵抗素子側の表面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなる磁束集中器を形成する工程を備え、
    前記第2配線の両側面に形成される前記高透磁率層の少なくとも一方を前記第2配線より前記トンネル磁気抵抗素子側に突き出した状態に形成する
    ことを特徴とする磁気メモリ装置の製造方法。
  32. 第1の配線を形成する工程と、
    前記第1配線上にスイッチング素子を形成する工程と、
    トンネル絶縁層を強磁性体で挟んでなるもので前記第1の配線とスイッチング素子を介して接続されるトンネル磁気抵抗素子を形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えた不揮発性の磁気メモリ装置の製造方法において、
    前記第2配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率層からなり、
    前記第2配線の両側面に形成される前記高透磁率層の少なくとも一方を前記第2配線より前記トンネル磁気抵抗素子側に突き出した状態に形成する磁束集中器を形成する工程を備え、
    前記磁束集中器を形成する工程は、前記第2配線を形成する際に前記第2配線上に絶縁膜を介して高透磁率層を載せた状態で形成した後、前記第2配線の両側下部の前記トンネル磁気抵抗素子が埋め込まれるように形成された絶縁膜を前記トンネル磁気抵抗素子の記憶層の深さまでエッチングし、その後前記第2配線の両側面に前記第2配線上に形成された絶縁膜に接続する絶縁膜サイドウォールを形成し、さらに前記第2配線の両側面に前記第2配線上に形成された高透磁率層に接続する高透磁率サイドウォールを形成する
    ことを特徴とする磁気メモリ装置の製造方法。
JP2002085095A 2002-03-26 2002-03-26 磁気メモリ装置およびその製造方法 Expired - Fee Related JP3596536B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002085095A JP3596536B2 (ja) 2002-03-26 2002-03-26 磁気メモリ装置およびその製造方法
KR1020047015345A KR100980917B1 (ko) 2002-03-26 2003-03-26 자기 메모리 장치 및 그 제조 방법
EP03715413A EP1489660A4 (en) 2002-03-26 2003-03-26 MAGNETIC MEMORY DEVICE AND METHOD FOR PRODUCING THE SAME
US10/508,924 US7345367B2 (en) 2002-03-26 2003-03-26 Magnetic memory device and producing method thereof
PCT/JP2003/003712 WO2003081672A1 (en) 2002-03-26 2003-03-26 Magnetic memory device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002085095A JP3596536B2 (ja) 2002-03-26 2002-03-26 磁気メモリ装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2003282836A JP2003282836A (ja) 2003-10-03
JP3596536B2 true JP3596536B2 (ja) 2004-12-02

Family

ID=28449242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002085095A Expired - Fee Related JP3596536B2 (ja) 2002-03-26 2002-03-26 磁気メモリ装置およびその製造方法

Country Status (5)

Country Link
US (1) US7345367B2 (ja)
EP (1) EP1489660A4 (ja)
JP (1) JP3596536B2 (ja)
KR (1) KR100980917B1 (ja)
WO (1) WO2003081672A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3906145B2 (ja) * 2002-11-22 2007-04-18 株式会社東芝 磁気ランダムアクセスメモリ
US6864551B2 (en) * 2003-02-05 2005-03-08 Applied Spintronics Technology, Inc. High density and high programming efficiency MRAM design
US20060069850A1 (en) * 2004-09-30 2006-03-30 Rudelic John C Methods and apparatus to perform a reclaim operation in a nonvolatile memory
US20060069849A1 (en) * 2004-09-30 2006-03-30 Rudelic John C Methods and apparatus to update information in a memory
US7285835B2 (en) * 2005-02-24 2007-10-23 Freescale Semiconductor, Inc. Low power magnetoelectronic device structures utilizing enhanced permeability materials
JP2006344750A (ja) * 2005-06-08 2006-12-21 Tdk Corp 磁気メモリ
WO2007020823A1 (ja) * 2005-08-15 2007-02-22 Nec Corporation 磁気メモリセル、磁気ランダムアクセスメモリ、及び磁気ランダムアクセスメモリへのデータ読み書き方法
US7936627B2 (en) * 2006-12-12 2011-05-03 Nec Corporation Magnetoresistance effect element and MRAM

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659499A (en) 1995-11-24 1997-08-19 Motorola Magnetic memory and method therefor
DE19836567C2 (de) * 1998-08-12 2000-12-07 Siemens Ag Speicherzellenanordnung mit Speicherelementen mit magnetoresistivem Effekt und Verfahren zu deren Herstellung
US6165803A (en) * 1999-05-17 2000-12-26 Motorola, Inc. Magnetic random access memory and fabricating method thereof
US20020055190A1 (en) 2000-01-27 2002-05-09 Anthony Thomas C. Magnetic memory with structures that prevent disruptions to magnetization in sense layer
US6211090B1 (en) * 2000-03-21 2001-04-03 Motorola, Inc. Method of fabricating flux concentrating layer for use with magnetoresistive random access memories
JP4309075B2 (ja) * 2000-07-27 2009-08-05 株式会社東芝 磁気記憶装置
JP2002246566A (ja) 2001-02-14 2002-08-30 Sony Corp 磁気メモリ装置
JP2003031773A (ja) 2001-07-13 2003-01-31 Canon Inc 磁気メモリ素子及びその記録方法、並びにその磁気メモリ素子を用いたメモリ
US6812040B2 (en) * 2002-03-12 2004-11-02 Freescale Semiconductor, Inc. Method of fabricating a self-aligned via contact for a magnetic memory element
US6783994B2 (en) * 2002-04-26 2004-08-31 Freescale Semiconductor, Inc. Method of fabricating a self-aligned magnetic tunneling junction and via contact
US6724652B2 (en) * 2002-05-02 2004-04-20 Micron Technology, Inc. Low remanence flux concentrator for MRAM devices
JP2004040006A (ja) * 2002-07-08 2004-02-05 Sony Corp 磁気メモリ装置およびその製造方法
US6885074B2 (en) * 2002-11-27 2005-04-26 Freescale Semiconductor, Inc. Cladded conductor for use in a magnetoelectronics device and method for fabricating the same
US6798004B1 (en) * 2003-04-22 2004-09-28 Freescale Semiconductor, Inc. Magnetoresistive random access memory devices and methods for fabricating the same
KR100781563B1 (ko) * 2005-08-31 2007-12-03 삼성전자주식회사 비휘발성 메모리 소자 및 그 제조 방법.

Also Published As

Publication number Publication date
US7345367B2 (en) 2008-03-18
US20050162970A1 (en) 2005-07-28
EP1489660A1 (en) 2004-12-22
EP1489660A4 (en) 2005-09-28
WO2003081672A1 (en) 2003-10-02
JP2003282836A (ja) 2003-10-03
KR100980917B1 (ko) 2010-09-07
KR20040091776A (ko) 2004-10-28

Similar Documents

Publication Publication Date Title
KR100608248B1 (ko) 엠램 전극용 키퍼
US7247506B2 (en) Method for producing magnetic memory device
JP3906139B2 (ja) 磁気ランダムアクセスメモリ
JP2004040006A (ja) 磁気メモリ装置およびその製造方法
JP2007273493A (ja) 磁気メモリ装置及びその製造方法
US20050270828A1 (en) Magnetic memory device and manufacturing method thereof
JP5686626B2 (ja) 磁気メモリ及びその製造方法
US6841820B2 (en) Information storage apparatus and manufacturing method therefor
JP5472830B2 (ja) 強磁性ランダムアクセスメモリ
EP2255361B1 (en) Magnetically de-coupling magnetic memory cells and bit/word lines for reducing bit selection errors
JP2006278645A (ja) 磁気メモリ装置
JP2004363411A (ja) 磁気記憶装置および磁気記憶装置の製造方法
JP2003218326A (ja) 磁気記憶装置およびその製造方法
US6958503B2 (en) Nonvolatile magnetic memory device
JP3596536B2 (ja) 磁気メモリ装置およびその製造方法
JP2009081390A (ja) 磁壁移動型mram及びその製造方法
JP4341355B2 (ja) 磁気記憶装置、磁気記憶装置の書き込み方法および磁気記憶装置の製造方法
JP2003282837A (ja) 磁気メモリ装置およびその製造方法
JP2004235512A (ja) 磁気記憶装置およびその製造方法
JP2006173472A (ja) 磁気記憶装置およびその製造方法
JP2005175374A (ja) 磁気メモリ装置及びその製造方法
JP2004235510A (ja) 磁気記憶装置およびその製造方法
JP2005340715A (ja) 磁気メモリ装置及びその製造方法
JP2007123512A (ja) 磁気記憶装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees