KR100980917B1 - 자기 메모리 장치 및 그 제조 방법 - Google Patents
자기 메모리 장치 및 그 제조 방법 Download PDFInfo
- Publication number
- KR100980917B1 KR100980917B1 KR1020047015345A KR20047015345A KR100980917B1 KR 100980917 B1 KR100980917 B1 KR 100980917B1 KR 1020047015345 A KR1020047015345 A KR 1020047015345A KR 20047015345 A KR20047015345 A KR 20047015345A KR 100980917 B1 KR100980917 B1 KR 100980917B1
- Authority
- KR
- South Korea
- Prior art keywords
- wiring
- magnetoresistive element
- tunnel magnetoresistive
- high permeability
- magnetic flux
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 890
- 238000004519 manufacturing process Methods 0.000 title claims description 177
- 230000004907 flux Effects 0.000 claims abstract description 430
- 230000035699 permeability Effects 0.000 claims abstract description 322
- 238000000034 method Methods 0.000 claims description 97
- 239000003302 ferromagnetic material Substances 0.000 claims description 53
- 238000009413 insulation Methods 0.000 claims description 29
- 230000008859 change Effects 0.000 claims description 15
- 230000005389 magnetism Effects 0.000 claims description 5
- 238000003860 storage Methods 0.000 abstract description 84
- 230000005415 magnetization Effects 0.000 abstract description 51
- 239000010410 layer Substances 0.000 description 590
- 238000005530 etching Methods 0.000 description 54
- 239000000463 material Substances 0.000 description 49
- 230000000694 effects Effects 0.000 description 43
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 36
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 34
- 229910052751 metal Inorganic materials 0.000 description 34
- 239000002184 metal Substances 0.000 description 34
- 230000004888 barrier function Effects 0.000 description 33
- 229910045601 alloy Inorganic materials 0.000 description 31
- 239000000956 alloy Substances 0.000 description 31
- 230000005290 antiferromagnetic effect Effects 0.000 description 28
- 238000005240 physical vapour deposition Methods 0.000 description 27
- 230000010354 integration Effects 0.000 description 26
- 238000001459 lithography Methods 0.000 description 23
- 229910017052 cobalt Inorganic materials 0.000 description 19
- 239000010941 cobalt Substances 0.000 description 19
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 19
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 17
- 229910052721 tungsten Inorganic materials 0.000 description 17
- 239000010937 tungsten Substances 0.000 description 17
- 229910052581 Si3N4 Inorganic materials 0.000 description 16
- 238000005498 polishing Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 16
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 16
- 239000000126 substance Substances 0.000 description 16
- 229910052759 nickel Inorganic materials 0.000 description 15
- 238000005229 chemical vapour deposition Methods 0.000 description 14
- 229910052742 iron Inorganic materials 0.000 description 14
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 14
- 229920002120 photoresistant polymer Polymers 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 229910052814 silicon oxide Inorganic materials 0.000 description 12
- 239000010949 copper Substances 0.000 description 11
- 238000000151 deposition Methods 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 11
- 229910000914 Mn alloy Inorganic materials 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000000696 magnetic material Substances 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 229910015372 FeAl Inorganic materials 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910000859 α-Fe Inorganic materials 0.000 description 8
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 7
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 description 7
- 239000012141 concentrate Substances 0.000 description 7
- 239000004020 conductor Substances 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 230000005669 field effect Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 6
- 238000001020 plasma etching Methods 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- -1 magnesium nitride Chemical class 0.000 description 5
- 150000002736 metal compounds Chemical class 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910000575 Ir alloy Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 229910000629 Rh alloy Inorganic materials 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- KGWWEXORQXHJJQ-UHFFFAOYSA-N [Fe].[Co].[Ni] Chemical compound [Fe].[Co].[Ni] KGWWEXORQXHJJQ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- IGOJMROYPFZEOR-UHFFFAOYSA-N manganese platinum Chemical compound [Mn].[Pt] IGOJMROYPFZEOR-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000002885 antiferromagnetic material Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1653—Address circuits or decoders
- G11C11/1657—Word-line or row circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1653—Address circuits or decoders
- G11C11/1655—Bit-line or column circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/10—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/20—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
- H10B61/22—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Hall/Mr Elements (AREA)
- Semiconductor Memories (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Thin Magnetic Films (AREA)
Abstract
기입워드선이 발생하는 전류 자계를 효율적으로 TMR 소자의 기억층에 인가할 수 있는 자속 집중기를 제공함으로써, 기입 특성의 향상을 도모할 수 있는 자화 메모리 장치이다. TMR 소자(13)와, TMR 소자(13)와 전기적으로 절연된 기입워드선(제1 배선)(11)과, TMR 소자(13)와 전기적으로 접속되는 것이고 TMR 소자(13)를 사이에 두고 기입워드선(11)과 입체적으로 교차하는 비트선(제2 배선)(12)을 구비한 자기 메모리 장치(1)에 있어서, 적어도 기입워드선(11)의 양 측면 및 TMR 소자(13)에 대향하는 면과는 반대측의 기입워드선(11) 면을 따라서, 고 투자율층으로 이루어지는 자속 집중기(51)가 형성되고, 자속 집중기(51)의 측벽 중 적어도 한쪽은 기입워드선(11)보다 TMR 소자(13)측으로 돌출한 상태로 형성되어 있는 것이다.
터널자기저항소자, 자속 집중기, TMR 소자, 기입워드선, 비트선, 고투자율층
Description
본 발명은 자기 메모리 장치 및 그 제조 방법에 관한 것으로, 특히, 터널 자기 저항 소자를 구성하는 강자성체의 스핀 방향이 평행 혹은 반평행에 따라서 저항값이 변화하는 것을 이용하여 정보를 기록하는 불휘발성의 자기 메모리 장치 및 그 제조 방법에 관한 것이다.
정보 통신 기기, 특히 휴대 단말기 등의 개인용 소형 기기의 비약적인 보급에 따라, 이것을 구성하는 메모리 소자나 로직 소자 등의 소자에는, 고집적화, 고속화, 저소비 전력화 등, 한층 고성능화가 요구되고 있다. 특히 불휘발성 메모리는 유비쿼터스 시대에 필요 불가결의 소자로 생각되고 있다.
예를 들면, 전원의 소모나 트러블, 서버와 네트워크가 어떠한 장해에 의해 절단된 경우라도, 불휘발성 메모리는 개인의 중요한 정보를 보호할 수 있다. 그리고, 불휘발성 메모리의 고밀도화, 대용량화는, 가동 부분의 존재에 의해 본질적으로 소형화가 불가능한 하드디스크나 광 디스크를 치환하는 기술로서 점점 더 중요하게 되고 있다.
또한, 최근의 휴대 기기는 불필요한 회로 블록을 스탠바이 상태로 하여 될 수 있는 한 소비 전력을 억제하고자 설계되어 있지만, 고속 네트워크 메모리와 대용량 스토리지 메모리를 겸할 수 있는 불휘발성 메모리가 실현 가능하면, 소비 전력과 메모리의 낭비를 없앨 수 있다. 또한, 전원을 켜면 순간적으로 기동할 수 있는, 소위 인스턴트·온 기능도 고속의 대용량 불휘발성 메모리를 실현할 수 있으면 가능하게 된다.
불휘발성 메모리로서는, 반도체를 이용한 플래시 메모리나, 강유전체를 이용한 FRAM(Ferroelectric Random Access Memory) 등을 예로 들 수 있다. 그러나, 플래시 메모리는, 기입 속도가 ㎲의 자릿수이기 때문에 느리다고 하는 결점이 있다. 한편, FRAM에 있어서는, 재기입 가능 횟수가 1012∼1014로 완전히 스태틱 랜덤 액세스 메모리나 다이내믹 랜덤 액세스 메모리로 치환하기에는 내구성이 낮다고 하는 문제가 지적되고 있다. 또한, 강유전체 캐패시터의 미세 가공이 어렵다고 하는 과제도 지적되고 있다.
이들 결점을 갖지 않는 불휘발성 메모리로서 주목받고 있는 것이, MRAM(Magnetic Random Access Memory)이라고 불리는 자기 메모리이다. 초기의 MRAM은 J.M.Daughton, "Thin Solid Films" Vol.216(1992), p.162-168에 보고되어 있는 AMR(Anisotropic Magneto Resistive) 효과나 D.D.Tang et al., "IEDM Technical Digest"(1997), p.995-997에 보고되어 있는 GMR(Giant Magneto Resistance) 효과를 사용한 스핀 밸브를 기초로 한 것이었다. 그러나, 부하의 메모리 셀 저항이 10Ω 내지 100Ω로 낮기 때문에, 판독 시의 비트당 소비 전력이 커 서 대용량화하기 어렵다고 하는 결점이 있었다.
한편 TMR(Tunnel Magneto Resistance) 효과는 R.Meservey et al., "pysics Reports" Vol.238(1994), p.214-217에 보고되어 있는 바와 같이 저항 변화율이 실온에서 1%∼2%밖에 되지 않았지만, 최근 T.Miyazaki et al., "J.Magnetism & Magnetic Material" Vol.139(1995), L231에 보고되어 있는 바와 같이 저항 변화율이 20% 가까이 얻어지게 되어, TMR 효과를 사용한 MRAM에 주목이 모아져 가고 있다.
MRAM은 구조가 단순하기 때문에 고집적화가 용이하고, 또한 자기 모멘트의 회전에 의해 기록을 행하기 때문에, 재기입 횟수가 크다고 예측되고 있다. 또한 액세스 시간에 대해서도 매우 고속일 것으로 예상되고, 이미 100MHz에서 동작 가능하다는 것이, R.Scheuerlein et al., "ISSCC Digest of Technical Papers"(Feb.2000), p.128-129에 보고되어 있다.
상술한 바와 같이, 고속화·고집적화가 용이하다고 하는 장점을 갖는 MRAM이기는 하지만, 기입은 TMR 소자에 근접시켜 형성된 기입 비트선과 기입 워드선에 전류를 흘리고, 그 발생 자계에 의해서 행한다. TMR 소자의 기억층(기억층)의 반전 자계는 재료에도 의하지만, 20 Oe∼200 Oe가 필요하며, 이 때의 전류는 수 mA 내지 수십 mA로 된다. 이것은 소비 전류의 증대로 이어져, 휴대 기기의 저소비 전력화에 대하여 큰 과제로 된다.
또한 고집적화의 면에서는, 비트선 및 기입 워드선은 리소그래피 기술로 결정되는 최소 선 폭에 가까운 사이즈가 요구된다. 가령, 비트선 폭/기입 워드선 폭 이 0.6㎛로 하고, 배선의 막 두께를 500㎚로 하면, 3MA/㎠로 되고, 구리 배선을 이용한 경우에도(실용 전류 밀도: 0.5 MA/㎠), 일렉트로 마이그레이션에 대한 수명은 큰 과제로 된다. 더욱 미세화해 가면, 강유전체의 반전 자계는 증가하고, 배선의 차원도 축소해야만 하기 때문에, 이 배선 신뢰성의 과제는 보다 커진다.
또한, 대전류 구동용의 드라이버를 비트선, 기입 워드선에 대하여 갖기 때문에 이 부분의 점유 면적이 커지므로, 고집적화를 저해하게 된다. 또한, 소자의 미세화에 의해, 자속의 누설에 의해서 인접 비트로까지 자계가 발생하여, 간섭의 문제가 발생한다. 이 대책으로서는, 미국 특허 제5940319호 명세서 중에, TMR 소자의 하측 및 상측 중 어느 한쪽 혹은 양방에 있는 배선의 TMR 소자에 대향하고 있는 면 부분 이외를 자속 집중시키는 재료로 피복한다고 하는 내용이 기재되어 있지만, 자속 집중 효과가 불충분하여 소비 전류가 충분히 내려가지 않는다고 하는 문제가 있었다.
〈발명의 개시〉
본 발명은 상기 과제를 해결하기 위해서 이루어진 자기 메모리 장치 및 그 제조 방법이다.
본 발명의 제1 자기 메모리 장치는, 제1 배선과, 상기 제1 배선과 입체적으로 교차하는 제2 배선과, 상기 제1 배선과 전기적으로 절연되고, 상기 제2 배선과 전기적으로 접속되고, 상기 제1 배선과 상기 제2 배선의 교차 영역에 터널 절연층을 강자성체로 협지하여 구성되는 터널 자기 저항 소자를 구비하며, 상기 강자성체의 스핀 방향이 평행 혹은 반평행에 따라서 저항값이 변화하는 것을 이용하여 정보 를 기억하는 불휘발성의 자기 메모리 장치로서, 상기 제1 배선에, 적어도, 상기 제1 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되고, 상기 제1 배선의 측면에 형성된 상기 고 투자율층 중 적어도 한쪽은 상기 제1 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있는 것이다.
상기 제1 자기 메모리 장치에서는, 제1 배선은, 적어도, 제1 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되고, 제1 배선의 측면에 형성된 고 투자율층 중 적어도 한쪽은 제1 배선보다 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있기 때문에, 제1 배선으로부터 발생하는 전류 자계가 자속 집중기의 터널 자기 저항 소자 측으로 돌출한 부분에 의해서 터널 자기 저항 소자의 기억층에 효율적으로 집중된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 제1 배선의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
본 발명의 제2 자기 메모리 장치는, 제1 배선과, 상기 제1 배선과 입체적으로 교차하는 제2 배선과, 상기 제1 배선과 전기적으로 절연되고, 상기 제2 배선과 전기적으로 접속되고, 상기 제1 배선과 상기 제2 배선의 교차 영역에 터널 절연층을 강자성체로 협지하여 구성되는 터널 자기 저항 소자를 구비하며, 상기 강자성체 의 스핀 방향이 평행 혹은 반평행에 따라서 저항값이 변화하는 것을 이용하여 정보를 기억하는 불휘발성의 자기 메모리 장치로서, 상기 제2 배선에, 적어도, 상기 제2 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되어 있고, 상기 제2 배선의 측면에 형성된 상기 고 투자율층 중 적어도 한쪽은 상기 제2 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있는 것이다.
상기 제2 자기 메모리 장치에서는, 제2 배선에, 적어도, 제2 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되어 있고, 제2 배선의 측면에 형성된 고 투자율층 중 적어도 한쪽은 제2 배선보다 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있기 때문에, 제2 배선으로부터 발생하는 전류 자계가 자속 집중기의 터널 자기 저항 소자 측으로 돌출한 부분에 의해서 터널 자기 저항 소자의 기억층에 효율적으로 집중된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께, 제2 배선의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
본 발명의 제3 자기 메모리 장치는, 제1 배선과, 상기 제1 배선과 입체적으로 교차하는 제2 배선과, 상기 제1 배선과 전기적으로 절연되고, 상기 제2 배선과 전기적으로 접속되고, 상기 제1 배선과 상기 제2 배선의 교차 영역에 터널 절연층 을 강자성체로 협지하여 구성되는 터널 자기 저항 소자를 구비하며, 상기 강자성체의 스핀 방향이 평행 혹은 반평행에 따라서 저항값이 변화하는 것을 이용하여 정보를 기억하는 불휘발성의 자기 메모리 장치로서, 상기 제1 배선과 상기 터널 자기 저항 소자의 사이 및 상기 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 자속 집중기가 형성되어 있는 것이다.
상기 제3 자기 메모리 장치에서는, 제1 배선과 터널 자기 저항 소자의 사이 및 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 자속 집중기가 형성되어 있기 때문에, 제1 배선으로부터 발생하는 전류 자계는 터널 자기 저항 소자의 측면 하부측의 자속 집중기에 의해서 터널 자기 저항 소자의 기억층에 효율적으로 집중된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 제1 배선의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
본 발명의 제4 자기 메모리 장치는, 제1 배선과, 상기 제1 배선과 입체적으로 교차하는 제2 배선과, 상기 제1 배선과 전기적으로 절연되고, 상기 제2 배선과 전기적으로 접속되고, 상기 제1 배선과 상기 제2 배선의 교차 영역에 터널 절연층을 강자성체로 협지하여 구성되는 터널 자기 저항 소자를 구비하며, 상기 강자성체의 스핀 방향이 평행 혹은 반평행에 따라서 저항값이 변화하는 것을 이용하여 정보를 기억하는 불휘발성의 자기 메모리 장치로서, 상기 제1 배선에는, 적어도, 상기 제1 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 제1 자속 집중기가 형성되고, 상기 제1 배선과 상기 터널 자기 저항 소자의 사이 및 상기 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 제2 자속 집중기가 형성되어 있는 것이다.
상기 제4 자기 메모리 장치에서는, 제1 배선에는, 적어도, 제1 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 제1 자속 집중기가 형성되고, 제1 배선과 터널 자기 저항 소자의 사이 및 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 제2 자속 집중기가 형성되어 있기 때문에, 제1 배선으로부터 발생하는 전류 자계는 제1 자속 집중기로부터 제2 자속 집중기에 전달되어 터널 자기 저항 소자의 기억층에 효율적으로 집중된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 제1 배선의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
본 발명의 제5 자기 메모리 장치는, 제1 배선과, 상기 제1 배선과 입체적으로 교차하는 제2 배선과, 상기 제1 배선과 스위칭 소자를 개재하여 전기적으로 접속되고, 상기 제2 배선과 전기적으로 접속되고, 상기 제1 배선과 상기 제2 배선의 교차 영역에 터널 절연층을 강자성체로 협지하여 구성되는 터널 자기 저항 소자를 구비하며, 상기 강자성체의 스핀 방향이 평행 혹은 반평행에 따라서 저항값이 변화하는 것을 이용하여 정보를 기억하는 불휘발성의 자기 메모리 장치로서, 상기 제1 배선에, 적어도, 상기 제1 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되고, 상기 제1 배선의 측면에 형성된 상기 고 투자율층 중 적어도 한쪽은 상기 제1 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있는 것이다.
상기 제5 자기 메모리 장치에서는, 제1 배선에, 적어도, 제1 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되고, 제1 배선의 측면에 형성된 고 투자율층 중 적어도 한쪽은 제1 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있기 때문에, 상기 제1 자기 메모리 장치와 마찬가지로, 제1 배선으로부터 발생하는 전류 자계는 터널 자기 저항 소자의 기억층에 효율적으로 집중된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 제1 배선의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
본 발명의 제6 자기 메모리 장치는, 제1 배선과, 상기 제1 배선과 입체적으로 교차하는 제2 배선과, 상기 제1 배선과 스위칭 소자를 개재하여 전기적으로 접속되고, 상기 제2 배선과 전기적으로 접속되고, 상기 제1 배선과 상기 제2 배선의 교차 영역에 터널 절연층을 강자성체로 협지하여 구성되는 터널 자기 저항 소자를 구비하며, 상기 강자성체의 스핀 방향이 평행 혹은 반평행에 따라서 저항값이 변화하는 것을 이용하여 정보를 기억하는 불휘발성의 자기 메모리 장치로서, 상기 제2 배선에, 적어도, 상기 제2 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되어 있고, 상기 제2 배선의 측면에 형성된 상기 고 투자율층 중 적어도 한쪽은 상기 제2 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있는 것이다.
상기 제6 자기 메모리 장치에서는, 제2 배선에, 적어도, 제2 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되어 있고, 제2 배선의 측면에 형성된 고 투자율층 중 적어도 한쪽은 제2 배선보다 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있기 때문에, 상기 제2 자기 메모리 장치와 마찬가지로, 제2 배선으로부터 발생하는 전류 자계는 터널 자기 저항 소자의 기억층에 효율적으로 집중된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 제2 배선의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
또한, 상기 제1, 제2 및 제4 내지 제6 자기 메모리 장치에서는, 고 투자율층과 제1 배선 혹은 제2 배선과의 사이에 절연막이 형성되어 있는 것이어도, 상기 각각의 자기 메모리 장치와 마찬가지의 작용, 효과가 얻어진다.
본 발명의 제1 자기 메모리 장치의 제조 방법은, 제1 배선을 형성하는 공정 과, 터널 절연층을 강자성체로 협지하여 이루어지고 상기 제1 배선과 전기적으로 절연된 터널 자기 저항 소자를 형성하는 공정과, 상기 터널 자기 저항 소자와 전기적으로 접속하고 상기 터널 자기 저항 소자를 사이에 두고 상기 제1 배선과 입체적으로 교차하는 제2 배선을 형성하는 공정을 포함한 불휘발성의 자기 메모리 장치의 제조 방법으로서, 적어도, 상기 제1 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고, 상기 제1 배선의 양 측면에 형성되는 상기 고 투자율층 중 적어도 한쪽을 상기 제1 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성한다.
상기 제1 자기 메모리 장치의 제조 방법에서는, 적어도, 제1 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고, 제1 배선의 양 측면에 형성되는 고 투자율층 중 적어도 한쪽을 제1 배선보다 터널 자기 저항 소자 측으로 돌출한 상태로 형성하기 때문에, 제1 배선에 전류를 흘렸을 때에 발생하는 전류 자계는, 제1 배선의 양 측면에 형성되는 고 투자율층에 의해서, 터널 자기 저항 소자의 기억층(기록층이라고도 함)에 효율적으로 집중되도록 된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 제1 배선의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
본 발명의 제2 자기 메모리 장치의 제조 방법은, 제1 배선을 형성하는 공정과, 터널 절연층을 강자성체로 협지하여 이루어지고 상기 제1 배선과 전기적으로 절연된 터널 자기 저항 소자를 형성하는 공정과, 상기 터널 자기 저항 소자와 전기적으로 접속하고 상기 터널 자기 저항 소자를 사이에 두고 상기 제1 배선과 입체적으로 교차하는 제2 배선을 형성하는 공정을 포함한 불휘발성의 자기 메모리 장치의 제조 방법으로서, 적어도, 상기 제2 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고, 상기 제2 배선의 양 측면에 형성되는 상기 고 투자율층 중 적어도 한쪽을 상기 제2 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성한다.
상기 제2 자기 메모리 장치의 제조 방법에서는, 적어도, 제2 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고, 제2 배선의 양 측면에 형성되는 고 투자율층 중 적어도 한쪽을 제2 배선보다 터널 자기 저항 소자 측으로 돌출한 상태로 형성하기 때문에, 제2 배선에 전류를 흘렸을 때에 발생하는 전류 자계가 터널 자기 저항 소자의 기억층(기록층이라고도 함)에 효율적으로 집중되도록 된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 제2 배선의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과 가 저감된다.
본 발명의 제3 자기 메모리 장치의 제조 방법은, 제1 배선을 형성하는 공정과, 터널 절연층을 강자성체로 협지하여 이루어지고 상기 제1 배선과 전기적으로 절연된 터널 자기 저항 소자를 형성하는 공정과, 상기 터널 자기 저항 소자와 전기적으로 접속하고 상기 터널 자기 저항 소자를 사이에 두고 상기 제1 배선과 입체적으로 교차하는 제2 배선을 형성하는 공정을 포함한 불휘발성의 자기 메모리 장치의 제조 방법으로서, 상기 제1 배선을 형성한 후에, 상기 제1 배선과 상기 터널 자기 저항 소자의 사이 및 상기 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 포함하고 있다.
상기 제3 자기 메모리 장치의 제조 방법에서는, 제1 배선을 형성한 후에, 제1 배선과 터널 자기 저항 소자의 사이 및 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 포함하기 때문에, 제1 배선에 전류를 흘렸을 때에 발생하는 전류 자계가 터널 자기 저항 소자의 측면 하부측의 자속 집중기에 의해서, 터널 자기 저항 소자의 기억층(기록층이라고도 함)에 효율적으로 집중되도록 된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 제1 배선의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
본 발명의 제4 자기 메모리 장치의 제조 방법은, 제1 배선을 형성하는 공정 과, 터널 절연층을 강자성체로 협지하여 이루어지고 상기 제1 배선과 전기적으로 절연된 터널 자기 저항 소자를 형성하는 공정과, 상기 터널 자기 저항 소자와 전기적으로 접속하고 상기 터널 자기 저항 소자를 사이에 두고 상기 제1 배선과 입체적으로 교차하는 제2 배선을 형성하는 공정을 포함한 불휘발성의 자기 메모리 장치의 제조 방법으로서, 적어도, 상기 제1 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 제1 자속 집중기를 형성하는 공정과, 상기 제1 배선을 형성한 후에, 상기 제1 배선과 상기 터널 자기 저항 소자의 사이 및 상기 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 제2 자속 집중기를 형성하는 공정을 포함하고 있다.
상기 제4 자기 메모리 장치의 제조 방법에서는, 적어도, 제1 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 제1 자속 집중기를 형성하는 공정과, 제1 배선을 형성한 후에, 제1 배선과 터널 자기 저항 소자의 사이 및 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 제2 자속 집중기를 형성하는 공정을 포함하기 때문에, 제1 배선에 전류를 흘렸을 때에 발생하는 전류 자계는 제1 자속 집중기로부터 제2 자속 집중기에 전달되고 터널 자기 저항 소자의 기억층(기록층이라고도 함)에 효율적으로 집중된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 제1 배선의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
본 발명의 제5 자기 메모리 장치의 제조 방법은, 제1 배선을 형성하는 공정과, 상기 제1 배선 상에 스위칭 소자를 형성하는 공정과, 터널 절연층을 강자성체로 협지하여 이루어지고 상기 제1 배선 상에 상기 스위칭 소자를 개재하여 접속되는 터널 자기 저항 소자를 형성하는 공정과, 상기 터널 자기 저항 소자와 전기적으로 접속하고 상기 터널 자기 저항 소자를 사이에 두고 상기 제1 배선과 입체적으로 교차하는 제2 배선을 형성하는 공정을 포함한 불휘발성의 자기 메모리 장치의 제조 방법으로서, 적어도, 상기 제1 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고, 상기 제1 배선의 양 측면에 형성되는 상기 고 투자율층 중 적어도 한쪽을 상기 제1 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성한다.
상기 제5 자기 메모리 장치의 제조 방법에서는, 적어도, 제1 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고, 제1 배선의 양 측면에 형성되는 고 투자율층 중 적어도 한쪽을 제1 배선보다 터널 자기 저항 소자 측으로 돌출한 상태로 형성하기 때문에, 상기 제1 자기 메모리 장치의 제조 방법과 마찬가지로, 제1 배선에 전류를 흘렸을 때에 발생하는 전류 자계가 터널 자기 저항 소자의 기억층(기록층이라고도 함)에 효율적으로 집중되도록 된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 제1 배 선의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
본 발명의 제6 자기 메모리 장치의 제조 방법은, 제1 배선을 형성하는 공정과, 상기 제1 배선 상에 스위칭 소자를 형성하는 공정과, 터널 절연층을 강자성체로 협지하여 이루어지고 상기 제1 배선과 스위칭 소자를 개재하여 접속되는 터널 자기 저항 소자를 형성하는 공정과, 상기 터널 자기 저항 소자와 전기적으로 접속하고 상기 터널 자기 저항 소자를 사이에 두고 상기 제1 배선과 입체적으로 교차하는 제2 배선을 형성하는 공정을 포함한 불휘발성의 자기 메모리 장치의 제조 방법으로서, 적어도, 상기 제2 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고, 상기 제2 배선의 양 측면에 형성되는 상기 고 투자율층 중 적어도 한쪽을 상기 제2 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성한다.
상기 제6 자기 메모리 장치의 제조 방법에서는, 적어도, 제2 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고, 제2 배선의 양 측면에 형성되는 고 투자율층 중 적어도 한쪽을 제2 배선보다 터널 자기 저항 소자 측으로 돌출한 상태로 형성하기 때문에, 상기 제2 자기 메모리 장치의 제조 방법과 마찬가지로, 제2 배선에 전류를 흘렸을 때에 발생하는 전류 자계가 터널 자기 저항 소자의 기억 층(기록층이라고도 함)에 효율적으로 집중되도록 된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 제2 배선의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있어, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
또한, 상기 제1, 제2 및 제4 내지 제6 자기 메모리 장치의 제조 방법에 있어서는, 고 투자율층과 제1 배선 혹은 제2 배선의 사이에 절연막이 형성되어 있는 것이어도, 상기 각각의 자기 메모리 장치의 제조 방법과 마찬가지의 작용, 효과가 얻어진다.
도 1A 내지 도 1B는 본 발명의 제1 자기 메모리 장치에 따른 제1 실시예를 도시하는 개략 구성 단면도.
도 2는 일반적인 MRAM의 주요부를 간략화하여 도시한 개략 구성 사시도.
도 3은 용이축 방향 자계 HEA 및 곤란축 방향 자계 HHA에 의한 기억층 자화 방향의 반전 임계값을 도시하는 아스테로이드 곡선.
도 4는 TMR 소자의 일례를 도시하는 개략 구성 사시도.
도 5는 본 발명의 제1 자기 메모리 장치에 따른 제1 실시예의 기입 워드선이 발생하는 전류 자계의 분포를 조사한 시뮬레이션 결과.
도 6은 본 발명의 제1 자기 메모리 장치에 따른 제2 실시예를 도시하는 개략 구성 단면도.
도 7은 제1 비교예로서, 종래 구조의 MRAM 셀에 있어서의 기입 워드선 및 그 주위 구조 및 기입 워드선 주위의 전류 자계의 분포 상태를 도시하는 개략 구성 단면도.
도 8은 제2 비교예로서, 종래 구조의 MRAM 셀에 있어서의 기입 워드선 및 그 주위 구조 및 기입 워드선 주위의 전류 자계의 분포 상태를 도시하는 개략 구성 단면도.
도 9는 본 발명의 제1 자기 메모리 장치에 따른 제1 실시예, 제2 실시예, 제1 비교예 및 제2 비교예에 대하여, 자화 방향에 대하여 직행하는 방향으로 배치한 자화를 반전시키기 위해서 필요한 비트선 전류의 기입 워드선 전류 의존성을 나타내는, 자화 용이축 방향의 자계를 공급하는 전류와 자화 곤란축 방향의 자계를 공급하는 전류의 관계도.
도 10은 본 발명의 제1 자기 메모리 장치에 따른 제3 실시예를 도시하는 개략 구성 단면도.
도 11은 본 발명의 제1 자기 메모리 장치에 따른 제4 실시예를 도시하는 개략 구성 단면도.
도 12는 본 발명의 제1 자기 메모리 장치에 따른 제5 실시예를 도시하는 개략 구성 단면도.
도 13은 본 발명의 제2 자기 메모리 장치에 따른 제1 실시예를 도시하는 개략 구성 단면도.
도 14는 본 발명의 제2 자기 메모리 장치에 따른 제2 실시예를 도시하는 개략 구성 단면도.
도 15는 본 발명의 제2 자기 메모리 장치에 따른 제3 실시예를 도시하는 개략 구성 단면도.
도 16은 본 발명의 제3 자기 메모리 장치에 따른 실시예를 도시하는 개략 구성 단면도.
도 17은 본 발명의 제4 자기 메모리 장치에 따른 제1 실시예를 도시하는 개략 구성 단면도.
도 18은 본 발명의 제4 자기 메모리 장치에 따른 제2 실시예를 도시하는 개략 구성 단면도.
도 19는 본 발명의 제4 자기 메모리 장치에 따른 제3 실시예를 도시하는 개략 구성 단면도.
도 20은 본 발명의 제4 자기 메모리 장치에 따른 제4 실시예를 도시하는 개략 구성 단면도.
도 21은 일반적인 크로스 포인트형의 MRAM의 주요부를 간략화하여 도시한 개략 구성 사시도.
도 22는 본 발명의 제5 자기 메모리 장치에 따른 제1 실시예를 도시하는 개략 구성 단면도.
도 23은 본 발명의 제5 자기 메모리 장치에 따른 제2 실시예를 도시하는 개략 구성 단면도.
도 24는 본 발명의 제6 자기 메모리 장치에 따른 제1 실시예를 도시하는 개략 구성 단면도.
도 25는 본 발명의 제6 자기 메모리 장치에 따른 제2 실시예를 도시하는 개략 구성 단면도.
도 26은 본 발명의 제6 자기 메모리 장치에 따른 제3 실시예를 도시하는 개략 구성 단면도.
도 27A 내지 도 27E는 본 발명의 제1 자기 메모리 장치의 제조 방법에 따른 제1 실시예를 도시하는 제조 공정 단면도.
도 28A 내지 도 28E는 본 발명의 제1 자기 메모리 장치의 제조 방법에 따른 제2 실시예를 도시하는 제조 공정 단면도.
도 29A 내지 도 29F는 본 발명의 제1 자기 메모리 장치의 제조 방법에 따른 제3 실시예를 도시하는 제조 공정 단면도.
도 30A 내지 도 30B는 본 발명의 제1 자기 메모리 장치의 제조 방법에 따른 제4 실시예를 도시하는 개략 구성 단면도.
도 31A 내지 도 31B는 본 발명의 제1 자기 메모리 장치의 제조 방법에 따른 제5 실시예를 도시하는 개략 구성 단면도.
도 32A 내지 도 32B는 본 발명의 제1 자기 메모리 장치의 제조 방법에 따른 제6 실시예를 도시하는 개략 구성 단면도.
도 33A 내지 도 33C는 본 발명의 제2 자기 메모리 장치의 제조 방법에 따른 제1 실시예를 도시하는 제조 공정 단면도.
도 34A 내지 도 34E는 본 발명의 제2 자기 메모리 장치의 제조 방법에 따른 제2 실시예를 도시하는 개략 구성 단면도.
도 35A 내지 도 35B는 본 발명의 제2 자기 메모리 장치의 제조 방법에 따른 제3 실시예를 도시하는 개략 구성 단면도.
도 36A 내지 도 36B는 본 발명의 제2 자기 메모리 장치의 제조 방법에 따른 제4 실시예를 도시하는 개략 구성 단면도.
도 37A 내지 도 37B는 본 발명의 제2 자기 메모리 장치의 제조 방법에 따른 제5 실시예를 도시하는 개략 구성 단면도.
도 38A 내지 도 38C는 본 발명의 제3 자기 메모리 장치의 제조 방법에 따른 실시예를 도시하는 개략 구성 단면도.
도 39는 본 발명의 제4 자기 메모리 장치의 제조 방법에 따른 제1 실시예를 도시하는 개략 구성 단면도.
도 40은 본 발명의 제4 자기 메모리 장치의 제조 방법에 따른 제2 실시예를 도시하는 개략 구성 단면도.
도 41A 내지 도 41B는 본 발명의 제4 자기 메모리 장치의 제조 방법에 따른 제3 실시예를 도시하는 개략 구성 단면도.
도 42는 본 발명의 제4 자기 메모리 장치의 제조 방법에 따른 제4 실시예를 도시하는 개략 구성 단면도.
도 43은 본 발명의 제5 자기 메모리 장치의 제조 방법에 따른 제1 실시예를 도시하는 개략 구성 단면도.
도 44는 본 발명의 제5 자기 메모리 장치의 제조 방법에 따른 제2 실시예를 도시하는 개략 구성 단면도.
〈발명을 실시하기 위한 최량의 형태〉
우선, 일반적인 MRAM(Magnetic Random Access Memory)을, 도 2의 주요부를 간략화하여 도시한 개략 구성 사시도에 의해서 설명한다. 도 2에서는 간략화하여 도시했기 때문에, 판독 회로 부분의 도시는 생략되어 있다.
도 2에 도시한 바와 같이, 9개의 메모리 셀을 포함하고, 서로 교차하는 기입 워드선(11)(111, 112, 113) 및 비트선(12)(121, 122, 123)을 갖는다. 이들 기입 워드선(11)과 비트선(12)의 각 교차 영역에는, 기입 워드선(11) 상에 절연막(도시하지 않음)을 개재하여 형성되어 있음과 함께 비트선(12)에 접속되어 있는 자기 저항 효과(TMR) 소자(13)(131∼139)가 배치되어 있다. TMR 소자(13)에의 기입은, 비트선(12) 및 기입 워드선(11)에 전류를 흘려 보내고, 그 다음에 발생하는 합성 자계에 의해서 비트선(12)과 기입 워드선(11)의 교차 영역에 형성된 TMR 소자(13)의 기억층(304)(상세 내용은 도 5 참조)의 자화 방향을 자화 고정층(302)(상세 내용은 도 5 참조)에 대하여 평행 또는 반평행으로 하여 행한다.
도 3에 도시하는 아스테로이드 곡선은, 인가된 용이축 방향 자계 HEA 및 곤란축 방향 자계 HHA에 의한 기억층 자화 방향의 반전 임계값을 나타내고 있다. 아스테로이드 곡선 외부에 상당하는 합성 자계 벡터가 발생하면, 자계 반전이 발생한다. 아스테로이드 곡선 내부의 합성 자계 벡터는, 그 전류 쌍 안정 상태의 한쪽으 로부터 셀을 반전시키지는 않는다. 또한, 전류를 흘리고 있는 워드선 및 비트선의 교점 이외의 셀에 있어서도, 워드선 혹은 비트선 단독으로 발생하는 자계가 인가되기 때문에, 이들 크기가 한 방향 반전 자계 HK 이상인 경우에는, 교점 이외의 셀의 자화 방향도 반전하기 때문에, 합성 자계가 사선으로 도시하는 부분(401)에 있는 경우에만, 선택된 셀을 선택 기입이 가능하게 된다.
이상과 같이, MRAM의 어레이에서는, 비트선 및 기입 워드선으로 이루어지는 격자의 교점에 메모리 셀이 배치되어 있다. MRAM인 경우, 기입 워드선과 비트선을 사용함으로써, 아스테로이드 자화 반전 특성을 이용하여 선택적으로 개개의 메모리 셀에 기입하는 것이 일반적이다.
단일 기억 영역에 있어서의 합성 자화는, 그것에 인가된 용이축 방향 자계 HEA와 곤란축 방향 자계 HHA의 벡터 합성에 의해서 결정된다. 비트선을 흐르는 전류는 셀에 용이축 방향의 자계(HEA)를 인가하고, 기입 워드선을 흐르는 전류는 셀에 곤란축 방향의 자계(HHA)를 인가한다.
다음으로, 본 발명의 제1 자기 메모리 장치에 따른 제1 실시예를, 도 1A 내지 도 1B의 개략 구성 단면도에 의해서 설명한다. 본 발명의 제1 실시예는, 상기 도 2에 의해서 설명한 자기 메모리 장치에 있어서, 기입 워드선으로부터 발생하는 전류 자계를 효율적으로 기억층에 집중시킬 수 있도록 한 것이다.
그 기본 구성은 도 1A에 도시한 바와 같이, 제1 자기 메모리 장치(1)(1a)는, 기입 워드선(11)을 구비하고, 이 기입 워드선(11)의 상방이고 또한 기입 워드선 (11)에 교차(예를 들면 직교)하도록 비트선(12)이 형성되고, 그 교차 영역에서 기입 워드선(11)의 상방에는 절연막(46)을 개재하여 터널 자기 저항 소자(이하 TMR 소자라고 함)(13)가 형성되고, 이 TMR 소자(13)는 비트선(12)에 접속되어 있다.
상기 기입 워드선(11)에는 적어도, 이 기입 워드선(11)의 양 측면 및 TMR(13)에 대향하는 면과는 반대측의 면을 둘러싸도록, 고 투자율층으로 이루어지는 자속 집중기(51)(51a)가 형성되어 있다. 게다가 기입 워드선(11)의 측면에 형성된 상기 자속 집중기(51) 중 적어도 한쪽(도면에서는 양방)은, 기입 워드선(11)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있다. 즉, 상기 자속 집중기(51)의 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있는 부분은, 상기 TMR 소자(13)의 측면에 절연막(46)을 개재하여 연장 형성되어 있다. 이 자속 집중기(51)의 측벽 부분의 선단부(51s)는, TMR 소자(13)의 기억층(304)과 캡층(도시하지 않음)의 계면과 동등한 높이까지 형성하는 것이 가능하고, 예를 들면 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304)과 캡층(313)의 계면까지의 높이로 하는 것이 바람직하다. 또한, 자속 집중기(51)의 선단부(51s)와 TMR 소자(13)의 거리 x는, 자속 집중기(51)의 선단부(51s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200㎚ 이하로 하는 것이 바람직하다.
또한 자속 집중기(51)를 구성하는 고 투자율 재료로서는, 예를 들면 최대 투자율 μm가 100 이상인 연자성체를 이용할 수 있고, 구체적으로 설명하면, 일례로서 니켈·철·코발트를 포함하는 합금, 철·알루미늄(FeAl) 합금, 페라이트 합금 등을 이용할 수 있다.
또한, 도시한 바와 같이, 기입 워드선(11)과 자속 집중기(51)의 사이에 전기적 절연층을 형성하지 않는 경우, 자속 집중기(51)에는 전류 손상을 방지하기 위해서 비저항율이 높은 연자성막을 이용하는 것이 바람직하다. 또한 도시한 바와 같이, 상기 자속 집중기(51)는 기입 워드선(11)의 양 측면에 형성된 부분은 기입 워드선(11)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있지만, 그 돌출한 상태로 형성되는 부분은 기입 워드선(11)의 한쪽 측면에 형성되어 있는 것만이어도 된다.
계속해서, 상기 기본 구성을 조립한 제1 자기 메모리 장치(1)의 구체적 구성 예를, 도 1B에 의해서 설명한다.
도 1B에 도시한 바와 같이, 반도체 기판(예를 들면 p형 반도체 기판)(21)의 표면 측에는 p형 웰 영역(22)이 형성되어 있다. 이 p형 웰 영역(22)에는, 트랜지스터 형성 영역을 분리하는 소자 분리 영역(23)이 소위 STI(Shallow Trench Isolation)로 형성되어 있다. 상기 p형 웰 영역(22) 상에는 게이트 절연막(25)을 개재하여 게이트 전극(워드선)(26)이 형성되고, 게이트 전극(26)의 양측에 있어서의 p형 웰 영역(22)에는 확산층 영역(예를 들면 N+ 확산층 영역)(27, 28)이 형성되고, 선택용의 전계 효과형 트랜지스터(24)가 구성되어 있다.
상기 전계 효과형 트랜지스터(24)는 판독을 위한 스위칭 소자로서 기능한다. 이것은 n형 또는 p형 전계 효과 트랜지스터 외에, 다이오드, 바이폴라 트랜지스터 등의 각종 스위칭 소자를 이용하는 것도 가능하다.
상기 전계 효과형 트랜지스터(24)를 피복하는 상태에서 제1 절연막(41)이 형성되어 있다. 이 제1 절연막(41)에는 상기 확산층 영역(27, 28)에 접속하는 컨택트(예를 들면 텅스텐 플러그)(29, 30)가 형성되어 있다. 또한 제1 절연막(41) 상에는 컨택트(29)에 접속하는 감지선(15), 컨택트(30)에 접속하는 감지선 제1 랜딩 패드(31) 등이 형성되어 있다.
상기 제1 절연막(41) 상에는 상기 감지선(15), 제1 랜딩 패드(31) 등을 피복하는 제2 절연막(42)이 형성되어 있다. 이 제2 절연막(42)에는 상기 제1 랜딩 패드(31)에 접속하는 컨택트(예를 들면 텅스텐 플러그)(32)가 형성되어 있다. 또한 상기 제2 절연막(42) 상에는 컨택트(32)에 접속하는 제2 랜딩 패드(33), 제1 배선의 기입 워드선(11) 등이 형성되어 있다.
상기 기입 워드선(11)에는 적어도, 기입 워드선(11)의 양 측면 및 터널 자기 저항 소자(이하 TMR 소자라고 함)(13)에 대향하는 면과는 반대측의 면을 둘러싸도록, 상기 도 1A에 의해서 설명한 것과 마찬가지의 구성을 갖는 자속 집중기(51)가 형성되어 있다. 게다가 기입 워드선(11)의 측면에 형성된 상기 자속 집중기(51) 중 적어도 한쪽(도면에서는 양방)은, 기입 워드선(11)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있다.
상기 도 1A에서는, 상기 돌출한 상태로 형성되어 있는 부분의 자속 집중기(51)는, 상기 TMR 소자(13)에 대하여 절연막(43, 44)을 개재하여 TMR 소자(13)의 측면으로 연장 형성되어 있다. 연장 형성된 자속 집중기(51)의 측벽 부분의 선단부(51s)는, 예를 들면 TMR 소자(13)의 기억층(304)과 거의 동등한 높이로 형성된다.
또한, 자속 집중기(51)의 선단부(51s)와 TMR 소자(13)의 거리는, 자속 집중기(51)의 선단부(51s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 200㎚ 이하로 형성되어 있다.
또한 자속 집중기(51)를 구성하는 고 투자율 재료로는, 예를 들면 최대 투자율 μm가 100 이상인 연자성체를 이용할 수 있고, 구체적으로 설명하면, 일례로서 니켈·철·코발트를 포함하는 합금, 철·알루미늄(FeAl) 합금 혹은 페라이트 합금을 이용하고 있다.
상기 제2 절연막(42) 상에는 상기 기입 워드선(11), 자속 집중기(51), 제2 랜딩 패드(33) 등을 피복하는 제3 절연막(43)이 형성되어 있다. 이 제3 절연막(43)에는 상기 제2 랜딩 패드(33)에 달하는 개구부(43h)가 형성되어 있다.
또한, 상기 제3 절연막(43) 상에는, 상기 기입 워드선(11) 상방으로부터 상기 개구부(43h)에 걸쳐서 반강자성체층(305)이 형성되고, 이 반강자성체층(305) 상이고 또한 상기 기입 워드선(11)의 상방에는, 터널 절연막(303)을 사이에 두고 강자성체층으로 이루어지는 자화 고정층(302)과 자화가 비교적 용이하게 회전하는 기억층(304)이 형성되고, 또한 캡층(313)이 형성되어 있다. 이 반강자성체층(305)으로부터 캡층(313)에 의해서 정보 기억 소자(이하, TMR 소자라고 함)(13)가 구성되 어 있다. 이 TMR 소자(13)에 대해서는 일례를 후술한다. 또한, 이 도면에서는, 상기 바이패스선(16)은 반강자성체층(305) 상에 자화 고정층(302)을 연장한 상태로 구성되어 있다.
상기 제3 절연막(43) 상에는 상기 바이패스선(16), TMR 소자(13) 등을 피복하는 제4 절연막(44)이 형성되어 있다. 이 제4 절연막(44)은 표면이 평탄화되고, 상기 TMR 소자(13)의 최상층의 캡층(313) 표면이 노출되어 있다. 상기 제4 절연막(44) 상에는, 상기 TMR 소자(13)의 상면에 접속하는 것이고 또한 상기 기입 워드선(11)과 상기 TMR 소자(13)를 사이에 두고 입체적으로 교차(예를 들면 직교)하는 제2 배선의 비트선(12)이 형성되어 있다.
다음으로, 상기 TMR 소자(13)의 일례를, 도 4의 개략 구성 사시도에 의해서 설명한다. 도 4에 도시한 바와 같이, 상기 반강자성체층(305) 상에, 제1 자화 고정층(306)과 자성층이 반강자성적으로 결합하는 도전체층(307)과 제2 자화 고정층(308)을 순차로 적층하여 이루어지는 자화 고정층(302), 터널 절연막(303), 기억층(304), 또한 캡층(313)을 순차로 적층하여 구성되어 있다. 여기서는 자화 고정층(302)을 적층 구조로 했지만, 강자성체층의 단층 구조이어도 되고, 혹은 3층 이상의 강자성체층을, 도전체층을 사이에 두고 적층시킨 구조라도 무방하다. 또 상기 반강자성체층(305)의 기초에, TMR 소자와 직렬로 접속되는 스위칭 소자와의 접속에 이용되는 기초 도전층(도시하지 않음)을 형성하는 것도 가능하다. 또한, 기초 도전층을 반강자성체층(305)에 의해서 겸하는 것도 가능하다.
상기 기억층(304), 상기 제1 자화 고정층(306), 제2 자화 고정층(308)은, 예 를 들면, 니켈, 철 혹은 코발트, 또는 니켈, 철 및 코발트 중 적어도 2종으로 이루어지는 합금과 같은 강자성체로 이루어진다.
상기 도전체층(307)은 예를 들면, 루테늄, 구리, 크롬, 금, 은 등으로 형성되어 있다.
상기 제1 자화 고정층(306)은, 반강자성체층(305)과 접하는 상태로 형성되어 있고, 이들 층간에 작용하는 교환 상호 작용에 의해서, 제1 자화 고정층(306)은 강한 한 방향의 자기 이방성을 갖고 있다.
상기 반강자성체층(305)은 예를 들면, 철·망간 합금, 니켈·망간 합금, 백금 망간 합금, 이리듐·망간 합금, 로듐·망간 합금, 코발트 산화물 및 니켈 산화물 중의 1종을 이용할 수 있다.
상기 터널 절연막(303)은 예를 들면, 산화 알루미늄, 산화 마그네슘, 산화 실리콘, 질화 알루미늄, 질화 마그네슘, 질화 실리콘, 산화 질화 알루미늄, 산화 질화 마그네슘 혹은 산화 질화 실리콘으로 이루어진다.
상기 터널 절연막(303)은 상기 기억층(304)과 상기 자화 고정층(302)의 자기적 결합을 절단함과 함께, 터널 전류를 흘려 보내기 위한 기능을 갖는다. 이들 자성막 및 도전체막은 주로, 스퍼터링법에 의해서 형성된다. 터널 절연층은 스퍼터링법에 의해서 형성된 금속막을 산화, 질화 혹은 산화 질화시킴으로써 얻을 수 있다.
또한 최상층에는 캡층(313)이 형성되어 있다. 이 캡층(313)은 TMR 소자(13)와 별도의 TMR 소자(13)를 접속하는 배선과의 상호 확산 방지, 접촉 저항 저감 및 기억층(304)의 산화 방지라는 기능을 갖는다. 통상, 구리, 질화 탄탈, 탄탈, 질화 티탄 등의 재료로 형성되어 있다.
다음에 상기 자기 메모리 장치(1)의 동작을 설명한다. 상기 TMR 소자(13)에서는, 자기 저항 효과에 의한 터널 전류 변화를 검출하여 정보를 판독하지만, 그 효과는 기억층(304)과 제1, 제2 자화 고정층(306, 308)의 상대 자화 방향에 의존한다.
또한 상기 TMR 소자(13)에서는, 비트선(12) 및 기입 워드선(11)에 전류를 흘리고, 그 합성 자계에서 기억층(304)의 자화의 방향을 바꿔 「1」 또는 「0」을 기록한다. 판독은 자기 저항 효과에 의한 터널 전류 변화를 검출하여 행한다. 기억층(304)과 자화 고정층(302)의 자화 방향이 평행인 경우를 저 저항(이것을 예를 들면 「0」으로 함)으로 하고, 기억층(304)과 자화 고정층(302)의 자화 방향이 반평행인 경우를 고 저항(이것을 예를 들면 「1」로 함)으로 한다.
다음으로, 상기 구성의 자기 메모리 장치(1)의 기입 워드선(11)이 발생하는 전류 자계의 분포를 조사한 시뮬레이션 결과를 도 5에 의해서 설명한다. 도 5에서는 기입 워드선(11), TMR 소자(13) 및 자속 집중기(51)를 간단히 하여 도시한다. 시뮬레이션에서는, 기입 워드선(11)의 측면에 형성된 자속 집중기(51)의 선단부(51s)의 두께 t를 0.21㎛로 하고, 상기 기입 워드선(11)의 양 측면에 형성된 선단부(51s)의 간격 d를 0.59㎛로 했다. 또한 전류 자계를 화살표로 도시하고, 화살표의 길이는 전류 자계의 세기를 나타내고, 화살표의 방향은 전류 자계의 방향을 나타낸다.
도 5의 전류 자계의 분포도에 도시한 바와 같이, 상기 자기 메모리 장치(1)는, 기입 워드선(11)으로부터 발생하는 전류 자계가 자속 집중기(51)에 전달되고, 그 선단부(51s)로부터 효율적으로 TMR 소자(13)의 기억층(304)〔상기 도 1A 내지 도 1B 및 도 4 참조〕에 집중시킬 수 있다.
다음으로, 본 발명의 제1 자기 메모리 장치에 따른 제2 실시예를, 도 6의 개략 구성 단면도에 의해 설명한다. 본 발명의 제2 실시예는, 상기 도 1A 내지 도 1B, 도 5에 의해 설명한 자기 메모리 장치(1)에 있어서, 기입 워드선으로부터 발생하는 전류 자계를 더욱 효율적으로 기억층에 집중시킬 수 있도록 한 것이다. 또한 도면에서는, 기입 워드선, TMR 소자 및 자속 집중기의 관계만을 나타내고, 절연막이나 그 밖의 구성 부품의 도시는 생략했다. 또한 전류 자계를 화살표로 도시하고, 화살표의 길이는 전류 자계의 세기를 나타내고, 화살표의 방향은 전류 자계의 방향을 나타낸다.
도 6에 도시한 바와 같이, 자기 메모리 장치(1)(1b)는 이하의 구성을 갖는다. 기입 워드선(11)이 형성되고, 이 기입 워드선(11) 상방에는 이 기입 워드선(11)과 입체적으로 교차하는 비트선(12)이 형성되어 있다. 또한 교차 영역에 있어서의 기입 워드선(11)의 상방에는 TMR 소자(13)가 형성되고, 그 상면은 비트선(12)에 접속되어 있다. 상기 기입 워드선(11)의 양 측면 및 TMR 소자(13)에 대향하는 면과는 반대측의 기입 워드선(11)의 면에는, 고 투자율층으로 이루어지는 자속 집중기(55)가 형성되어 있다. 게다가 기입 워드선(11)의 측면에 형성된 상기 자속 집중기(55) 중 적어도 한쪽은 기입 워드선(11)보다 TMR 소자(13) 측으로 돌출한 상 태로 형성되어 있다. 또한 선단부(55s)를 두께 방향으로 확장한 연장부(55at)가 형성되어 있다. 여기서는, 일례로서 연장부(55at)를 포함시킨 선단부(55s)의 두께 tt는 0.328㎛로 하고, 선단부(55s)의 내측에 형성된 연장부(55at, 55at)의 간격 dt는 0.472㎛로 했다.
또한 도 6에서는 선단부(55s)의 양측에 연장부(55at)를 형성했지만, 한쪽 측만이어도 된다. 또한 도시한 바와 같이, 상기 자속 집중기(55)는 기입 워드선(11)의 양 측면에 형성된 부분은 기입 워드선(11)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있지만, 그 돌출한 상태로 형성되는 부분은 기입 워드선(11)의 한쪽 측면에 형성되어 있는 것만이어도 된다.
상기 제2 실시예에 나타낸 구성의 자속 집중기(55)에서는, 제1 실시예에서 설명한 자속 집중기(51)보다도 전류 자속의 누설을 감소시킬 수 있기 때문에, 기입 워드선(11)으로부터 발생하는 전류 자속을 제1 실시예의 자속 집중기(51)보다도 더욱 효율적으로 TMR 소자(13)의 기억층(304)에 집중시킬 수 있다.
다음으로, 제1 비교예로서, 종래 구조의 MRAM 셀에 있어서의 기입 워드선 및 그 주위 구조의 단면을 도 7에 의해서 설명한다. 또한 동 도 7에 의해서, 기입 워드선 및 그 주위의 전류 자계의 분포 상태를 설명한다. 도 7에서는 전류 자계를 화살표로 도시하고, 화살표의 길이는 전류 자계의 세기를 나타내고, 화살표의 방향은 전류 자계의 방향을 나타낸다.
도 7에 도시한 바와 같이, 기입 워드선(11) 상방에는 이 기입 워드선(11)에 대하여 입체적으로 직교하는 비트선(12)이 형성되어 있다. 이 기입 워드선(11)과 비트선(12)의 교차 영역에는, 예를 들면 0.4㎛×0.8㎛의 크기를 갖는 TMR 소자(13)가 형성되어 있다. 이 TMR 소자(13)는 기입 워드선(11) 상에 300㎚ 두께의 절연막(47)을 개재하여 형성되고, 그 상면에는 비트선(12)에 접속되어 있다.
다음으로, 상기 기입 워드선(11)에 전류를 흘리는 것에 의해 발생하는 전류 자계의 시뮬레이션을 행하였다. 그 결과, 도 7에 도시한 바와 같이, 기입 워드선(11), TMR 소자(13), 비트선(12)만 나타내는 전류 자계는 기입 워드선(11)을 둘러싸도록 분포한다. 따라서, 자속 집중기(51) 혹은 자속 집중기(55)를 형성한 실시예와 같이, 기입 워드선(11)으로부터 발생하는 전류 자계를 TMR 소자(13)에 집중시킬 수 없다. 또한 기입 워드선(11)의 전류가 유기하는 전류 자계는, TMR 소자(13)와 기입 워드선(11)의 거리가 커짐에 따라 급속히 감소하고 있다.
다음으로, 제2 비교예로서, 미국 특허 제5940319호 명세서에 기재된 것과 마찬가지의 구성의 기입 워드선 및 그 주위 구조의 단면을, 도 8에 의해서 설명한다. 또한 동도 8에 의해서, 기입 워드선 및 그 주위의 전류 자계의 분포를 설명한다.
도 8에서는 전류 자계를 화살표로 도시하고, 화살표의 길이는 전류 자계의 세기를 나타내고, 화살표의 방향은 전류 자계의 방향을 나타낸다.
도 8에 도시한 바와 같이, 기입 워드선(11)이 형성되고, 이 기입 워드선(11) 상방에는 이 기입 워드선(11)과 입체적으로 교차하는 비트선(12)이 형성되어 있다. 또한 교차 영역에서의 기입 워드선(11)의 상방에는 TMR 소자(13)가 형성되고, 그 상면은 비트선(12)에 접속되어 있다. 기입 워드선(11)의 주위에는 TMR 소자(13) 측을 제외하고, 연자성막으로 이루어지는 자속 집중기(57)가 형성되어 있다. 기입 워드선(11)의 측면에 형성된 자속 집중기(57)의 선단부(57s)는 기입 워드선(11)의 TMR 소자(13) 측의 면과 동등한 높이로 형성되어 있다. 즉, 기입 워드선(11)보다 TMR 소자(13) 측으로 돌출한 상태로는 형성되어 있지 않다.
계속해서, 상기 구성에 있어서 기입 워드선(11)으로부터 발생하는 전류 자계의 시뮬레이션을 행하였다. 이 제2 비교예에 있어서의 시뮬레이션에서는, 기입 워드선(11)의 측면에 형성된 자속 집중기(57)의 선단부(57s)의 각 두께 t는 0.21㎛로 하고, 자속 집중기(57)의 선단부(57s)의 간격 d는 0.59㎛로 했다.
그 결과, 기입 워드선(11)으로부터 발생한 전류 자계는, 자속 집중기(57)에 의해서 그 선단부(57s)에 전달되고, 기입 워드선(11)의 측면에 형성된 자속 집중기(57)의 선단부(57s, 57s) 사이에서 가장 강해진다. 그러나, 자속 집중기(57)의 선단부(57s)와 TMR 소자(13)의 거리가 개방되어 있기 때문에, 전류 자속이 충분히 TMR 소자(13)에 전달되지 않는다는 것을 알았다.
다음으로, 상기 제1 실시예, 제2 실시예, 제1 비교예, 제2 비교예에 대하여, 자화 방향에 대하여 직행하는 방향으로 배치한 자화를 반전시키기 위해서 필요한 비트선 전류의 기입 워드선 전류 의존성을, 도 9의 자화 용이축 방향의 자계를 공급하는 전류와 자화 곤란축 방향의 자계를 공급하는 전류의 관계도에 의해서 설명한다.
도 9에 도시한 바와 같이, 자화 곤란축 방향의 자계를 공급하는 전류에 대한 자화 용이축 방향의 자계를 공급하는 전류와의 관계는, 제1 실시예, 제2 실시예 모두, 제1 비교예, 제2 비교예보다도 크게 개선되어 있음을 알 수 있다. 즉, 제1 실시예, 제2 실시예 모두, 제1 비교예, 제2 비교예보다도, 자화 곤란축 방향의 자계를 공급하는 전류의 절대값이 커짐에 따라서 자화 용이축 방향의 자계를 공급하는 전류는 작아지고 있다.
다음으로, 본 발명의 제1 자기 메모리 장치에 관한 제 3 실시예를 도 10에 도시하는 개략 구성 단면도에 의해서 설명한다. 도 10에서는 제1 자기 메모리 장치의 제3 실시예에 따른 주요부를 도시하며, 기입 워드선, TMR 소자, 자속 집중기, 일부 절연막 이외의 도시는 생략했다. 또한, 상기 제1 자기 메모리 장치에 관한 제1 실시예와 마찬가지의 구성 부품에는 동일 부호를 부여한다.
도 10에 도시한 바와 같이, 제3 실시예의 제1 자기 메모리 장치(1)(1c)는, 도 1A에 의해서 설명한 자속 집중기(51)에 있어서, TMR 소자(13)에 대향하는 측의 기입 워드선(11) 표면에도 고 투자율층(71)이 형성되어 있는 것이다. 즉, 고 투자율층(71)을 포함해서 자속 집중기(51)(51c)가 구성되어 있다. 또한 제1 실시예의 제1 자기 메모리 장치(1a)와 마찬가지로, 기입 워드선(11)의 측면에 형성된 고 투자율층 중 적어도 한쪽은 TMR 소자(13) 측의 기입 워드선(11) 표면에 형성되어 있는 고 투자율층보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있다. 즉, 이 자속 집중기(51)의 측벽 부분의 선단부(51s)는, TMR 소자(13)의 측면과 절연막(46)을 개재하여, TMR 소자(13)의 기억층(304)과 캡층(313)의 계면과 동등한 높이까지 형성하는 것이 가능하고, 예를 들면 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304)과 캡층(313)의 계면까지의 높이로 하는 것이 바람직하다. 또한, 자속 집중기(51)의 선단부(51s)와 TMR 소자(13)의 거리는, 자속 집중기(51)의 선단 부(51s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200㎚ 이하로 하는 것이 바람직하다. 이 제3 실시예의 기본 구성은 상기 제1 자기 메모리 장치의 제1 실시예의 기본 구성 대신에, 상기 도 1B에 의해서 설명한 자기 메모리 장치의 구성에 내장할 수 있다.
다음으로, 본 발명의 제1 자기 메모리 장치에 관한 제4 실시예를, 도 11에 도시하는 개략 구성 단면도에 의해서 설명한다. 도 11에서는 제1 자기 메모리 장치에 관한 제4 실시예의 주요부를 도시하며, 기입 워드선, TMR 소자, 자속 집중기, 일부 절연막 이외의 도시는 생략했다. 또한, 상기 제1 자기 메모리 장치에 관한 제1 실시예와 마찬가지의 구성 부품에는 동일 부호를 부여한다. 또한 도면에서는, 기입 워드선, TMR 소자 및 자속 집중기의 관계만을 도시하고, 절연막의 도시는 생략했다.
도 11에 도시한 바와 같이, 제4 실시예의 제1 자기 메모리 장치(1)(1d)는, 상기 도 1A에 의해서 설명한 제1 실시예의 자속 집중기(51)에 있어서, 기입 워드선(11)의 바닥부 측 및 측면 측과 고 투자율층으로 이루어지는 자속 집중기(51)(51d)의 사이에 절연막(61)이 형성되어 있는 것이다. 이 구성에서도, 기입 워드선(11)의 측면에 형성된 상기 자속 집중기(51) 중 적어도 한쪽(도면에서는 양방)은, 기입 워드선(11)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있다. 즉, 이 자속 집중기(51)의 측벽 부분의 선단부(51s)는, TMR 소자(13)의 측면과 절연막(46)을 개재하여, TMR 소자(13)의 기억층(304)과 캡층(313)의 계면과 동등한 높이까지 형성하는 것이 가능하고, 예를 들면 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304)과 캡층(313)의 계면까지의 높이로 하는 것이 바람직하다. 또한, 자속 집중기(51)의 선단부(51s)와 TMR 소자(13)의 거리는, 자속 집중기(51)의 선단부(51s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200㎚ 이하로 하는 것이 바람직하다. 이 제4 실시예의 기본 구성은 상기 제1 자기 메모리 장치의 제1 실시예의 기본 구성 대신에, 상기 도 1B에 의해서 설명한 자기 메모리 장치의 구성에 내장할 수 있다.
다음으로, 본 발명의 제1 자기 메모리 장치에 관한 제5 실시예를, 도 12에 도시하는 개략 구성 단면도에 의해서 설명한다. 도 12에서는, 제1 자기 메모리 장치에 관한 제5 실시예의 주요부를 도시하며, 기입 워드선, TMR 소자, 자속 집중기, 일부 절연막 이외의 도시는 생략했다. 또한, 상기 제1 자기 메모리 장치에 관한 제1 실시예와 마찬가지의 구성 부품에는 동일 부호를 부여한다.
도 12에 도시한 바와 같이, 제5 실시예의 제1 자기 메모리 장치(1)(1e)는, 상기 도 11에 의해서 설명한 자속 집중기(51d)에 있어서, 기입 워드선(11)의 주위에 절연막(62)을 형성하고, 그 절연막(62)을 개재하여 고 투자율층으로 이루어지는 자속 집중기(51)(51e)가 형성되어 있는 것이다. 이 구성에서도, 기입 워드선(11)의 측면에 형성된 상기 자속 집중기(51) 중 적어도 한쪽(도면에서는 양방)은, 기입 워드선(11) 상에 절연막(62)을 개재하여 형성되어 있는 고 투자율층(71)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있다. 즉, 이 자속 집중기(51)의 측벽 부분의 선단부(51s)는, TMR 소자(13)의 측면과 절연막(46)을 개재하여, TMR 소자(13)의 기억층(304)과 캡층(313)의 계면과 동등한 높이까지 형성하는 것이 가능하 고, 예를 들면 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304)과 캡층(313)의 계면까지의 높이로 하는 것이 바람직하다. 또한, 자속 집중기(51)의 선단부(51s)와 TMR 소자(13)의 거리는, 자속 집중기(51)의 선단부(51s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200㎚ 이하로 하는 것이 바람직하다.
바꿔 말하면, 제5 실시예의 고 투자율층으로 이루어지는 자속 집중기(51e)는, 상기 도 11에 의해서 설명한 제4 실시예의 자속 집중기(51d)에 있어서, TMR 소자(13) 측의 기입 워드선(11) 표면에 절연막을 개재하여 고 투자율층을 형성한 것이다. 즉, 기입 워드선(11)의 주위에 절연막(62)을 개재하여 고 투자율층으로 이루어지는 자속 집중기(51e)가 형성되어 있는 것이다. 게다가 이 구성에서도, 기입 워드선(11)의 측면에 형성된 상기 자속 집중기(51) 중 적어도 한쪽(도면에서는 양방)은, 기입 워드선(11)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있다. 이 제5 실시예의 기본 구성은 상기 제1 자기 메모리 장치의 제1 실시예의 기본 구성 대신에, 상기 도 1B에 의해서 설명한 자기 메모리 장치의 구성에 내장할 수 있다.
상기 제1 자기 메모리 장치(1)(1a∼1e)에서는, 기입 워드선(11)은, 적어도, TMR 소자(13)에 대향하는 면과는 반대측의 면 및 양 측면이 고 투자율층으로 이루어지는 자속 집중기(51)로 둘러싸이고, 기입 워드선(11)의 측면에 형성된 고 투자율층으로 이루어지는 자속 집중기(51) 중 적어도 한쪽은, 기입 워드선(11)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있고, 제1 실시예의 측벽 부분의 선단부(51s)는 기억층(304)의 높이로 형성되어 있기 때문에, 기입 워드선(11)으로부터 발생하는 전류 자계는 자속 집중기(51)의 선단부(51s)까지 전달되고, 선단부(51s, 51s) 사이에서 가장 강해진다. 따라서, 전류 자계는 TMR 소자(13)의 기억층(304)에 효율적으로 집중된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께, 기입 워드선(11)의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
다음으로, 본 발명의 제2 자기 메모리 장치에 관한 제1 실시예를, 도 13에 도시하는 개략 구성 단면도에 의해서 설명한다. 도 13에서는 제2 자기 메모리 장치의 제1 실시예에 관한 주요부를 도시하며, 스위칭 소자, 기입 워드선, 감지선 등의 도시는 생략했다. 또한, 상기 제1 자기 메모리 장치와 마찬가지의 구성 부품에는 동일 부호를 부여한다.
도 13에 도시한 바와 같이, 제2 자기 메모리 장치(2)(2a)의 제1 실시예는, 캡층(313)을 개재하여 TMR 소자(13)에 접속되는 비트선(12)의 양 측면 및 이 비트선(12)의 TMR 소자(13)에 대향하는 면과는 반대측의 면에, 고 투자율층으로 이루어지는 자속 집중기(52)(52a)가 형성되어 있는 것이고, 비트선(12)의 측면에 형성된 고 투자율층으로 이루어지는 자속 집중기(52) 중 적어도 한쪽(도면에서는 양방)은 비트선(12)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있는 것이다. 이 자속 집중기(52)의 측벽 부분은 TMR 소자(13)와 절연막(63)을 개재하여 형성되어 있 다.
자속 집중기(52)의 측벽 부분의 선단부(52s)는, TMR 소자(13)의 기억층(304)과 터널 절연막(303)의 계면과 동등한 높이까지 형성하는 것이 가능하고, 예를 들면 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304)과 캡층(313)의 계면까지의 높이로 하는 것이 바람직하다. 또한, 자속 집중기(52)의 선단부(52s)와 TMR 소자(13)의 거리 x는, 자속 집중기(52)의 선단부(52s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200㎚ 이하로 하는 것이 바람직하다.
또한, 상기 자속 집중기(52)를 구성하는 고 투자율 재료로서는, 예를 들면 최대 투자율 μm가 100 이상인 연자성체를 이용할 수 있고, 구체적으로 설명하면, 일례로서 니켈·철·코발트를 포함하는 합금, 철·알루미늄(FeAl) 합금, 페라이트 합금 등을 이용한다.
이 제2 자기 메모리 장치(2)(2a)의 다른 구성 부품은 도 1A 내지 도 1B에 의해서 설명한 구성과 마찬가지이다. 또한, 상기 도 1A 내지 도 1B에 의해서 설명한 자속 집중기(51)는, 형성되어 있지 않아도 되지만, TMR 소자(13)에 전류 자계를 보다 효과적으로 집중할 수 있기 때문에 자속 집중기(51)는 형성되어 있는 것이 바람직하다. 이 경우, 자속 집중기(51)의 선단부(51s)와 자속 집중기(52)의 선단부(52s)는 이격된 상태로 형성될 필요가 있다.
다음으로, 본 발명의 제2 자기 메모리 장치에 관한 제2 실시예를, 도 14에 도시하는 개략 구성 단면도에 의해서 설명한다. 도 14에서는 제2 자기 메모리 장치의 제2 실시예에 관한 주요부를 도시하며, 스위칭 소자, 기입 워드선, 감지선 등의 도시는 생략했다. 또한, 상기 제1 자기 메모리 장치와 마찬가지의 구성 부품에는 동일 부호를 부여한다.
도 14에 도시한 바와 같이, 제2 자기 메모리 장치(2)(2b)의 제2 실시예는, 도 13에 의해서 설명한 자속 집중기(52a)에 있어서, TMR 소자(13)가 캡층(313)을 개재하여 접속되는 측의 비트선(12) 표면에도 자속 집중기(52)(52b)의 측벽 부분에 접속되는 고 투자율층(72)이 형성되어 있는 것이다. 즉, 캡층(313)과 비트선(12)은 고 투자율층(72)을 개재하여 접속되어 있다. 상기 비트선(12)의 측면에 형성된 고 투자율층 중 적어도 한쪽(도면에서는 양방)은 상기 고 투자율층(72)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있다. 이 자속 집중기(52)의 측벽 부분은 TMR 소자(13)와 절연막(63)을 개재하여 형성되어 있다. 그 선단부(52s)는 TMR 소자(13)의 기억층(304)과 터널 절연막(303)의 계면과 동등한 높이까지 형성하는 것이 가능하고, 예를 들면 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304)과 캡층(313)의 계면까지의 높이로 하는 것이 바람직하다. 또한, 자속 집중기(52)의 선단부(52s)와 TMR 소자(13)의 거리는, 자속 집중기(52)의 선단부(52s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200㎚ 이하로 하는 것이 바람직하다. 또한 이 제2 실시예에 있어서의 상기 자속 집중기(52)를 구성하는 고 투자율 재료에는, 상기 제1 실시예의 자속 집중기(52)와 마찬가지의 재료를 이용한다.
이 제2 자기 메모리 장치(2b)의 다른 구성 부품은 상기 도 1A 내지 도 1B에 의해서 설명한 구성과 마찬가지이다. 또한, 상기 도 1A 내지 도 1B에 의해서 설명한 자속 집중기(51)는 형성되어 있지 않아도 되지만, TMR 소자(13)에 전류 자계를 보다 효과적으로 집중할 수 있기 때문에 자속 집중기(51)는 형성되어 있는 것이 바람직하다. 이 경우, 자속 집중기(51)의 선단부(51s)와 자속 집중기(52)의 선단부(52s)는 이격된 상태로 형성될 필요가 있다.
다음으로, 본 발명의 제2 자기 메모리 장치에 관한 제3 실시예를, 도 15에 도시하는 개략 구성 단면도에 의해서 설명한다. 도 15에서는 제2 자기 메모리 장치의 제3 실시예에 관한 주요부를 도시하며, 스위칭 소자, 기입 워드선, 감지선 등의 도시는 생략했다. 또한, 상기 제1 자기 메모리 장치와 마찬가지의 구성 부품에는 동일 부호를 부여한다.
도 15에 도시한 바와 같이, 제2 자기 메모리 장치(2)(2c)의 제3 실시예는, 도 13에 의해서 설명한 제1 실시예의 자속 집중기(52a)에 있어서, 비트선(12)의 상면(TMR 소자(13) 측과는 반대측의 면) 및 비트선(12)의 측면과 자속 집중기(52)(52c))의 사이에 절연막(64)이 형성되어 있는 것이다. 또한 이 자속 집중기(52)의 측벽 부분은 캡층(313)을 개재하여 비트선(12)을 접속하는 TMR 소자(13)와 절연막(63)을 개재하여 형성되어 있다. 그 선단부(52s)는 TMR 소자(13)의 기억층(304)과 터널 절연막(303)의 계면과 동등한 높이까지 형성하는 것이 가능하고, 예를 들면 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304)과 캡층(313)의 계면까지의 높이로 하는 것이 바람직하다. 또한, 자속 집중기(52)의 선단부 (52s)와 TMR 소자(13)의 거리는, 자속 집중기(52)의 선단부(52s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200㎚ 이하로 하는 것이 바람직하다. 또한, 이 제3 실시예에 있어서의 상기 자속 집중기(52)를 구성하는 고 투자율 재료에는, 상기 제1 실시예의 자속 집중기(52)와 마찬가지의 재료를 이용한다.
이 제2 자기 메모리 장치(2c)의 다른 구성 부품은, 도 1A 내지 도 1B에서 설명한 것과 마찬가지이다. 또한, 상기 도 1A 내지 도 1B에 의해서 설명한 자속 집중기(51)는 형성되어 있지 않아도 되지만, TMR 소자(13)에 전류 자계를 보다 효과적으로 집중할 수 있기 때문에 자속 집중기(51)는 형성되어 있는 것이 바람직하다. 이 경우, 자속 집중기(51)의 선단부(51s)와 자속 집중기(52)의 선단부(52s)는 이격된 상태로 형성될 필요가 있다. 또한, 도 15에 의해서 설명한 제3 실시예의 구성에 있어서는, 상기 도 14에 의해서 설명했던 것과 같은 고 투자율층(72)이 형성되어 있어도 된다.
상기 제2 자기 메모리 장치(2)(2a∼2c)에서는, 비트선(12)은, 적어도, TMR 소자(13)에 대향하는 면과는 반대측의 면 및 비트선(12)의 양 측면이 고 투자율층으로 이루어지는 자속 집중기(52)로 둘러싸이고, 비트선(12)의 측면에 형성된 고 투자율층으로 이루어지는 자속 집중기(52) 중 적어도 한쪽은 비트선(12)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있기 때문에, 비트선(12)으로부터 발생하는 전류 자계는 TMR 소자(13)의 기억층(304)에 효율적으로 집중된다. 이 때문에, 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 비트선(12)의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에, 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
다음으로, 본 발명의 제3 자기 메모리 장치에 관한 일 실시예를, 도 16에 도시하는 개략 구성 단면도에 의해서 설명한다. 도 16에서는 제3 자기 메모리 장치의 일 실시예에 관한 주요부를 도시하며, 스위칭 소자, 감지선, 비트선 등의 도시는 생략했다. 또한, 상기 제1 자기 메모리 장치와 마찬가지의 구성 부품에는 동일 부호를 부여한다.
도 16에 도시한 바와 같이, 제3 자기 메모리 장치(3)는, 기입 워드선(11) 상에 절연막(65)을 개재하여 고 투자율층으로 이루어지는 자속 집중기(53)가 형성되어 있고, 자속 집중기(53) 상에 절연막(66)을 개재하여 TMR 소자(13)가 형성되어 있는 것이다.
이 자속 집중기(53)의 측벽 부분은 TMR 소자(13)의 측면 방향에 절연막(66)을 개재하여 연장 형성되어 있고, 그 선단부(53s)는 TMR 소자(13)의 기억층(304)과 캡층(313)의 계면과 동등한 높이까지 형성하는 것이 가능하고, 예를 들면 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304)과 캡층(313)의 계면까지의 높이로 하는 것이 바람직하다. 또한, 자속 집중기(53)의 선단부(53s)와 TMR 소자(13)의 거리 x는, 자속 집중기(53)의 선단부(53s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200nm 이하로 하는 것이 바람직하다.
또한, 상기 자속 집중기(53)를 구성하는 고 투자율 재료로서는, 예를 들면 최대 투자율 μm가 100 이상인 연자성체를 이용할 수 있고, 구체적으로 설명하면, 일례로서 니켈·철·코발트를 포함하는 합금, 철·알루미늄(FeAl) 합금, 페라이트 합금 등을 이용하는 것이 가능하다.
자기 메모리 장치(3)의 다른 구성 부품은, 상기 도 1A 내지 도 1B에서 설명한 것과 마찬가지이다. 또한, 상기 도 1A 내지 도 1B에 의해서 설명한 자속 집중기(51)는 형성되어 있지 않아도 되지만, TMR 소자(13)에 전류 자계를 보다 효과적으로 집중할 수 있기 때문에 자속 집중기(51)는 형성되어 있는 것이 바람직하다. 이 구성에 대해서는 후술한다. 또한, 상기 도 16에 의해 설명한 구성에 있어서, 자속 집중기(53)는 기입 워드선(11)의 상면에 접속하는 상태로 형성되어 있어도 된다.
상기 제3 자기 메모리 장치(3)에서는, 기입 워드선(11)과 TMR 소자(13)의 사이 및 TMR 소자(13)의 측면 측에, 절연막(65)을 개재하여, 고 투자율층으로 이루어지는 자속 집중기(53)가 형성되어 있기 때문에, 기입 워드선(11)으로부터 발생하는 전류 자계는 TMR 소자(13)의 측면 하부측의 자속 집중기(53)에 의해서 TMR 소자(13)의 기억층(304)에 효율적으로 집중된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 기입 워드선(11)의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
다음으로, 본 발명의 제4 자기 메모리 장치에 관한 제1 실시예를, 도 17에 도시하는 개략 구성 단면도에 의해서 설명한다. 도 17에서는 제4 자기 메모리 장치의 제1 실시예에 관한 주요부를 도시하며, 기입 워드선, TMR 소자, 자속 집중기, 일부 절연막 이외의 도시는 생략했다. 또한, 상기 제1 자기 메모리 장치와 마찬가지의 구성 부품에는 동일 부호를 부여한다.
제1 실시예의 제4 자기 메모리 장치(4)·(4a)의 기본 구성은, 상기 도 8과 상기 도 16에 의해서 설명한 구성을 조합한 것이다. 즉, 도 17에 도시한 바와 같이, 제1 실시예 제4 자기 메모리 장치(4)(4a)는, 기입 워드선(11)에, 적어도, 이 기입 워드선(11)의 양 측면 및 이 기입 워드선(11) 상에 절연막(65, 66)을 개재하여 형성되는 TMR 소자(13)에 대향하는 면과는 반대측의 면을 둘러싸도록, 고 투자율층으로 이루어지는 자속 집중기(제1 자속 집중기)(57)가 형성되어 있다. 이 자속 집중기(57)의 측벽 부분(기입 워드선(11)의 측벽에 형성된 부분)은, 기입 워드선(11) 상면(TMR 소자(13) 측의 면)과 동등한 높이로 형성되어 있다.
또한, 상기 도 16에 의해서 설명한 것과 마찬가지의 자속 집중기(제2 자속 집중기)(53)가 기입 워드선(11)과 TMR 소자(13)의 사이에 형성되어 있다. 상기 자속 집중기(53)의 양 측벽 부분은 TMR 소자(13)의 측벽 근방에 절연막(66)을 개재하여 연장 형성되어 있고, 그 선단부(53s)는, TMR 소자(13)의 기억층(304)과 캡층(313)의 계면과 동등한 높이까지 형성하는 것이 가능하고, 예를 들면 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304)과 캡층(313)의 계면까지의 높이 로 하는 것이 바람직하다. 또한, 자속 집중기(53)의 선단부(53s)와 TMR 소자(13)의 거리 x는, 자속 집중기(53)의 선단부(53s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200㎚ 이하로 하는 것이 바람직하다.
또한, 상기 자속 집중기(53, 57)를 구성하는 고 투자율 재료로서는, 예를 들면 최대 투자율 μm가 100 이상인 연자성체를 이용할 수 있고, 구체적으로 설명하면, 일례로서 니켈·철·코발트를 포함하는 합금, 철·알루미늄(FeAl) 합금, 페라이트 합금 등을 이용할 수 있다.
다음으로, 본 발명의 제4 자기 메모리 장치에 관한 제2 실시예를, 도 18에 도시하는 개략 구성 단면도에 의해서 설명한다. 도 18에서는 제4 자기 메모리 장치의 제2 실시예에 관한 주요부를 도시하며, 기입 워드선, TMR 소자, 자속 집중기, 일부 절연막 이외의 도시는 생략했다. 또한, 상기 제1 자기 메모리 장치와 마찬가지의 구성 부품에는 동일 부호를 부여한다.
도 18에 도시한 바와 같이, 제2 실시예의 자기 메모리 장치(4)(4b)는, 상기 도 17에 의해서 설명한 자기 메모리 장치(4a)에 있어서, 자속 집중기(제1 자속 집중기)(57)와 기입 워드선(11)의 사이에 절연막(61)을 형성한 것으로, 그 밖의 구성은, 상기 도 17에 의해서 설명한 구성과 마찬가지이다.
다음으로, 본 발명의 제4 자기 메모리 장치에 관한 제3 실시예를, 도 19에 도시하는 개략 구성 단면도에 의해서 설명한다. 도 19에서는 제4 자기 메모리 장 치의 제3 실시예에 관한 주요부를 도시하며, 기입 워드선, TMR 소자, 자속 집중기, 일부 절연막 이외의 도시는 생략했다. 또한, 상기 제1 자기 메모리 장치와 마찬가지의 구성 부품에는 동일 부호를 부여한다.
도 19에 도시한 바와 같이, 제3 실시예의 자기 메모리 장치(4)(4c)는, 기입 워드선(11)의 바닥부 측 및 양 측면에 상기 도 1A에 의해서 설명한 자속 집중기(제1 자속 집중기)(51)를 구비하고, 또한 기입 워드선(11)과 TMR 소자(13)의 사이에 상기 도 16에 의해서 설명한 자속 집중기(제2 자속 집중기)(53)를 구비한 것이다. 상기 자속 집중기(51)의 측벽 부분의 선단부(51s)와 상기 자속 집중기(53)는, 절연막(65)을 개재하여 이격된 상태로 형성되어 있다. 또한, 도시는 하지 않지만, 상기 자속 집중기(51)의 측벽 부분의 선단부(51s)와 상기 자속 집중기(53)가 접속되어 있어도 된다.
다음으로, 본 발명의 제4 자기 메모리 장치에 관한 제4 실시예를, 도 20에 도시하는 개략 구성 단면도에 의해서 설명한다. 도 20에서는 제4 자기 메모리 장치의 제4 실시예에 관한 주요부를 도시하며, 기입 워드선, TMR 소자, 자속 집중기, 일부 절연막 이외의 도시는 생략했다. 또한, 상기 제1 자기 메모리 장치와 마찬가지의 구성 부품에는 동일 부호를 부여한다.
도 20에 도시한 바와 같이, 제4 실시예의 자기 메모리 장치(4)(4d)는, 기입 워드선(11)의 바닥부 측 및 양 측면에 절연막(61)을 개재하여 상기 도 11에 의해서 설명한 자속 집중기(제1 자속 집중기)(51)를 구비하고, 또한 기입 워드선(11)과 TMR 소자(13)의 사이에 상기 도 16에 의해서 설명한 자속 집중기(제2 자속 집중기 )(53)를 구비한 것이다. 상기 자속 집중기(51)의 측벽 부분의 선단부(51s)와 상기 자속 집중기(53)는, 절연막(65)을 개재하여 이격된 상태로 형성되어 있다. 또한, 도시는 하지 않지만, 상기 자속 집중기(51)의 측벽 부분의 선단부(51s)와 상기 자속 집중기(53)가 접속되어 있어도 된다.
상기 제4 자기 메모리 장치의 제1 실시예 내지 제4 실시예는, 예를 들면 상기 도 1B에 의해서 설명한 자기 메모리 장치에 있어서, 자속 집중기(51) 대신에 적용할 수 있다.
상기 제4 자기 메모리 장치(4)(4a∼4d)에서는, 기입 워드선(11)에는, 적어도, 기입 워드선(11)의 양 측면 및 TMR 소자(13)에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기(제1 자속 집중기)(51) 혹은 자속 집중기(제1 자속 집중기)(57)가 형성되고, 기입 워드선(11)과 TMR 소자(13)의 사이 및 TMR 소자(13)의 측면 측에 절연막(66)을 개재하여 고 투자율층으로 이루어지는 자속 집중기(제2 자속 집중기)(53)가 형성되어 있고, 그 선단부(53s)가 기억층(304)의 높이로 형성되어 있기 때문에, 기입 워드선(11)으로부터 발생하는 전류 자계는 자속 집중기(51) 혹은 자속 집중기(57)로부터 자속 집중기(53)에 전달되어 TMR 소자(13)의 기억층(304)에 효율적으로 집중된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 기입 워드선(11)의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
다음으로, 본 발명의 제5 자기 메모리 장치를 설명하기 전에, 일반적인 크로스 포인트형의 MRAM(Magnetic Random Access Memory)을, 도 21의 주요부를 간략화하여 도시한 개략 구성 사시도에 의해서 설명한다.
도 21에 도시한 바와 같이, 9개의 메모리 셀을 포함하고, 서로 교차하는 기입 워드선(11)(111, 112, 113) 및 비트선(12)(121, 122, 123)을 갖는다. 이들 기입 워드선(11)과 비트선(12)의 교차 영역에는, 기입 워드선(11)에 접속하는 스위칭 소자(14)(141∼149)와 이 스위칭 소자(14)에 접속함과 함께 비트선(12)에 접속하는 터널 자기 저항(TMR) 소자(13)(131∼139)가 배치되어 있다. 상기 TMR 소자(13)는 터널 절연막을 강자성체로 삽입한 기본 구성을 갖는 것으로 이루어진다. 또한, 상기 스위칭 소자(14)는 예를 들면 PN 접합 소자로 이루어진다.
TMR 소자(13)에의 기입은, 비트선(12) 및 기입 워드선(11)에 전류를 흘리고, 그리고나서 발생하는 합성 자계에 의해서 비트선(12)과 기입 워드선(11)의 교차 영역에 형성된 TMR 소자(13)의 기억층(304)(상세 내용은 도 5 참조)의 자화 방향을 자화 고정층(302)(상세 내용은 도 5 참조)에 대하여 평행 또는 반평행으로 하여 행한다.
다음으로, 본 발명의 제5 자기 메모리 장치에 따른 제1 실시예를, 도 22의 개략 구성 단면도에 의해서 설명한다. 본 발명의 제1 실시예는, 상기 도 21에 의해서 설명한 자기 메모리 장치에 있어서, 기입 워드선으로부터 발생하는 전류 자계를 효율적으로 기억층에 집중시킬 수 있도록 한 것이다. 도 22에서는 본 발명의 주요부인 기입 워드선, 스위칭 소자, TMR 소자, 비트선 및 일부의 절연막을 도시하고, 그 밖의 구성 부품의 도시는 생략했다. 또한, 도 22는 구성의 개략을 나타내는 도면으로서, 각 구성 부품의 축척은 일치시키고 있지는 않다.
즉, 그 기본 구성은 도 22에 도시한 바와 같이, 제5 자기 메모리 장치(5)(5a)는, 기입 워드선(11)과 비트선(12)이 입체적으로 교차(여기서는 직교)하는 상태로 형성되어 있다. 이 기입 워드선(11)과 비트선(12)의 교차 영역에 있어서의 기입 워드선(11) 상에는, 스위칭 소자(14)를 개재하여 상기 비트선(12)에 접속하는 TMR 소자(13)가 형성되어 있다. 이 스위칭 소자(14)에는 예를 들면 pn 접합이 이용된다. TMR 소자(13)와 비트선(12)은 TMR 소자의 최상층에 형성되는 캡층(313)에 의해서 접속되어 있다.
또한 기입 워드선(11)에는, 적어도, 이 기입 워드선(11)의 양 측면 및 이 기입 워드선(11) 상에 절연막(46)을 개재하여 형성되는 TMR 소자(13)에 대향하는 면과는 반대측의 면을 둘러싸도록, 고 투자율층으로 이루어지는 자속 집중기(51)가 형성되어 있다. 게다가 기입 워드선(11)의 측면에 형성된 상기 자속 집중기(51) 중 적어도 한쪽(이 도면에서는 양방)은 기입 워드선(11)보다 TMR 소자(13) 측방으로 돌출한 상태로 형성되어 있다.
즉, 상기 자속 집중기(51)의 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있는 부분은, 상기 TMR 소자(13)에 대하여, 절연막(46)을 개재하여 TMR 소자(13)의 측면 근방에 연장 형성되어 있다. 자속 집중기(51)의 측벽 부분의 선단부(51s)는, TMR 소자(13)의 기억층(304)과 캡층(313)의 계면과 동등한 높이까지 형성하는 것이 가능하고, 예를 들면 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304) 과 캡층(313)의 계면까지의 높이로 하는 것이 바람직하다. 또한, 자속 집중기(51)의 선단부(51s)와 TMR 소자(13)의 거리는, 자속 집중기(51)의 선단부(51s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200㎚ 이하로 하는 것이 바람직하다.
또한 자속 집중기(51)를 구성하는 고 투자율 재료로서는, 예를 들면 최대 투자율 μm가 100 이상인 연자성체를 이용할 수 있고, 구체적으로 설명하면, 일례로서 니켈·철·코발트를 포함하는 합금, 철·알루미늄(FeAl) 합금, 페라이트 합금 등을 이용할 수 있다.
또한, 도시한 바와 같이, 기입 워드선(11)과 자속 집중기(51)의 사이에 전기적 절연층을 형성하지 않는 경우, 자속 집중기(51)에는 전류 손상을 방지하기 위해서 비저항율이 높은 연자성막을 이용하는 것이 바람직하다. 또한 도시한 바와 같이, 상기 자속 집중기(51)는 기입 워드선(11)의 양 측면에 형성된 부분은 기입 워드선(11)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있지만, 그 돌출한 상태로 형성되는 부분은 기입 워드선(11)의 한쪽의 측면에 형성되어 있는 것만이어도 된다.
다음으로, 본 발명의 제5 자기 메모리 장치에 관한 제2 실시예를, 도 23에 도시하는 개략 구성 단면도에 의해서 설명한다. 도 23에서는 제5 자기 메모리 장치의 제2 실시예에 관한 주요부를 도시하며, 기입 워드선, TMR 소자, 자속 집중기 및 일부의 절연막 이외의 도시는 생략했다. 또한, 상기 제1 자기 메모리 장치와 마찬가지의 구성 부품에는 동일 부호를 부여한다.
도 23에 도시한 바와 같이, 제2 실시예에 관한 제5 자기 메모리 장치(5)(5b)는, 상기 도 21의 구성에 대하여 상기 도 10에 의해서 설명한 것과 마찬가지의 자속 집중기(51)를 형성한 것이다. 즉, 상기 도 22에 의해서 설명한 자속 집중기(51)와 기입 워드선(11)의 사이에 절연막(61)이 형성되어 있는 것이다. 바꿔 말하면, 상기 도 11의 구성에 있어서, 기입 워드선(11)과 TMR 소자(13)의 사이에 스위칭 소자(14)가 형성되고, 이 스위칭 소자(14)에 의해서 기입 워드선(11)과 TMR 소자(13)가 접속되어 있는 것이다.
상기 제5 자기 메모리 장치의 제1 실시예 및 제2 실시예에서도, 각 자속 집중기(51)의 선단부(51s)는, 상기 제1 자기 메모리 장치(1)의 제2 실시예에서 나타낸 것과 마찬가지의 구성으로 되어 있다.
상기 제5 자기 메모리 장치(5)에서는, 기입 워드선(11)에, 적어도, 기입 워드선(11)의 양 측면 및 TMR 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기(51)가 형성되고, 기입 워드선(11)의 측면에 형성된 고 투자율층 중 적어도 한쪽은 기입 워드선(11)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있고, 바람직하게는 기억층(304)의 높이로 형성되어 있기 때문에, 제1 자기 메모리 장치(1)와 마찬가지로, 기입 워드선(11)으로부터 발생하는 전류 자계는, 자속 집중기(51)의 선단부(51s)까지 전달되어, 선단부(51s, 51s) 사이에서 가장 강해진다. 따라서, 전류 자계는 TMR 소자(13)의 기억층(304)에 효율적으로 집중된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 제1 배선의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
다음으로, 본 발명의 제6 자기 메모리 장치에 따른 제1 실시예를, 도 24의 개략 구성 단면도에 의해서 설명한다. 본 발명의 제1 실시예는, 상기 도 21에 의해서 설명한 자기 메모리 장치에 있어서, 비트선으로부터 발생하는 전류 자계를 효율적으로 기억층에 집중시키는 것이 가능하도록 한 것이다. 도 24에서는 본 발명의 주요부인 스위칭 소자, TMR 소자, 비트선 및 일부의 절연막을 도시하고, 그 밖의 구성 부품의 도시는 생략했다. 또한, 상기 제2 자기 메모리 장치와 마찬가지의 구성 부품에는 동일 부호를 부여한다.
도 24에 도시한 바와 같이, 제1 실시예의 자기 메모리 장치(6)(6a)의 기본 구성은, 기입 워드선(11)과 비트선(12)이 입체적으로 교차(예를 들면 직교)하는 상태로 형성되어 있다. 이 기입 워드선(11)과 비트선(12)의 교차 영역에서의 기입 워드선(11) 상에는, 스위칭 소자(14)를 개재하여 TMR 소자(13)가 접속하도록 형성되고, TMR 소자(13)의 캡층(313)이 비트선(12)에 접속되어 있다. 또한 비트선(12)에는, 적어도, 이 비트선(12)의 양 측면 및 이 비트선(12)에 접속되는 TMR 소자(13)에 대향하는 면과는 반대측의 면을 둘러싸도록, 고 투자율층으로 이루어지는 자속 집중기(52)가 형성되어 있다. 게다가 비트선(12)의 측면에 형성된 상기 자속 집중기(52) 중 적어도 한쪽(도면에서는 양방)은 비트선(12)보다 TMR 소자(13) 측으 로 돌출한 상태로 형성되어 있다.
상기 돌출한 상태로 형성되어 있는 부분의 자속 집중기(52)는, 상기 TMR 소자(13)에 대하여 절연막(63)을 개재하여 TMR 소자(13)의 측방에 연장 형성되어 있다. 그 선단부(52s)는, TMR 소자(13)의 기억층(304)과 터널 절연막(303)의 계면과 동등한 높이까지 형성하는 것이 가능하고, 예를 들면 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304)과 캡층(313)의 계면까지의 높이로 하는 것이 바람직하다. 또한, 자속 집중기(52)의 선단부(52s)와 TMR 소자(13)의 거리는, 자속 집중기(52)의 선단부(52s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200㎚ 이하로 하는 것이 바람직하다.
또한, 상기 자속 집중기(52)를 구성하는 고 투자율 재료로서는, 예를 들면 최대 투자율 μm가 100 이상인 연자성체를 이용할 수 있고, 구체적으로 설명하면, 일례로서 니켈·철·코발트를 포함하는 합금, 철·알루미늄(FeAl) 합금, 페라이트 합금 등을 이용할 수 있다.
또한, 도시한 바와 같이, 비트선(12)과 자속 집중기(52)의 사이에 전기적 절연층을 형성하지 않는 경우, 자속 집중기(52)에는 전류 손상을 방지하기 위해서 비저항율이 높은 연자성막을 이용하는 것이 바람직하다. 또한 도시한 바와 같이, 상기 자속 집중기(52)는 비트선(12)의 양 측면에 형성된 부분은 비트선(12)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있지만, 그 돌출한 상태로 형성되는 부분 은 비트선(12)의 한쪽의 측면에 형성되어 있는 것만이어도 된다.
이 제6 자기 메모리 장치(6)(6a)의 다른 구성 부품은, 상기 도 1A 내지 도 1B에 의해서 설명한 구성과 마찬가지이다. 또한, 상기 도 1A 내지 도 1B에 의해서 설명한 자속 집중기(51)는, 형성되어 있지 않아도 되지만, TMR 소자(13)에 전류 자계를 보다 효과적으로 집중할 수 있기 때문에 자속 집중기(51)는 형성되어 있는 것이 바람직하다. 이 경우, 자속 집중기(51)의 선단부(51s)와 자속 집중기(52)의 선단부(52s)는 이격된 상태로 형성될 필요가 있다.
다음으로, 본 발명의 제6 자기 메모리 장치에 관한 제2 실시예를, 도 25에 도시하는 개략 구성 단면도에 의해서 설명한다. 도 25에서는 제6 자기 메모리 장치의 제2 실시예에 관한 주요부를 도시하며, 스위칭 소자, TMR 소자, 비트선 및 일부의 절연막을 도시하고, 그 밖의 구성 부품의 도시는 생략했다. 또한, 상기 제2 자기 메모리 장치와 마찬가지의 구성 부품에는 동일 부호를 부여한다.
도 25에 도시한 바와 같이, 제2 실시예의 제6 자기 메모리 장치(6)(6b)는, 상기 도 24의 구성에 대하여 상기 도 14에 의해서 설명한 것과 마찬가지의 자속 집중기(52)를 형성한 것이다. 즉, 상기 도 24에 의해서 설명한 제1 실시예의 자속 집중기(52)에 있어서, TMR 소자(13) 측의 비트선(12) 표면에도 고 투자율층(72)이 형성되어 있는 것이다. 즉, 고 투자율층(72)은 TMR 소자(13)의 최상층의 캡층(313)과 비트선(12)을 접속하도록 형성되어 있다. 또한 TMR 소자(13)의 하면 측은, 스위칭 소자(14)를 개재하여, 상기 비트선(12)과 입체적으로 교차(예를 들면 직교)하는 것으로 도시하지 않은 기입 워드선에 접속되어 있다.
상기 자속 집중기(52)는 상기 도 14에 의해서 설명한 것과 마찬가지로, 상기 비트선(12)의 측면에 형성된 고 투자율층 중 적어도 한쪽(도면에서는 양방)은 상기 고 투자율층(72)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있다. 이 자속 집중기(52)의 측벽 부분은 TMR 소자(13)와 절연막(63)을 개재하여 형성되어 있다. 그 선단부(52s)는 TMR 소자(13)의 기억층(304)과 터널 절연막(303)의 계면과 동등한 높이까지 형성하는 것이 가능하고, 예를 들면 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304)과 캡층(313)의 계면까지의 높이로 하는 것이 바람직하다. 또한, 자속 집중기(52)의 선단부(52s)와 TMR 소자(13)의 거리 x는, 자속 집중기(52)의 선단부(52s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200㎚ 이하로 하는 것이 바람직하다.
다음으로, 본 발명의 제6 자기 메모리 장치에 관한 제3 실시예를, 도 26에 도시하는 개략 구성 단면도에 의해서 설명한다. 도 26에서는 제6 자기 메모리 장치의 제3 실시예에 관한 주요부를 도시하며, 스위칭 소자, TMR 소자, 비트선 및 일부의 절연막을 도시하고, 그 밖의 구성 부품의 도시는 생략했다. 또한, 상기 제1 자기 메모리 장치에 관한 제1 실시예와 마찬가지의 구성 부품에는 동일 부호를 부여한다.
도 26에 도시한 바와 같이, 제3 실시예의 제6 자기 메모리 장치(6)(6c)는, 상기 도 24의 구성에 대하여 상기 도 15에 의해서 설명한 것과 마찬가지의 자속 집중기(52)를 형성한 것이다. 즉, 상기 도 24에 의해서 설명한 자속 집중기(52)와 비트선(12)의 사이에 절연막(64)을 형성한 것이다. 또한 TMR 소자(13)의 하면 측은, 스위칭 소자(14)를 개재하여, 상기 비트선(12)과 입체적으로 교차(예를 들면 직교)하는 것으로 도시는 하지 않은 기입 워드선에 접속되어 있다.
상기 자속 집중기(52)는, 상기 도 15에 의해서 설명한 것과 마찬가지로, 상기 비트선(12)의 측면에 형성된 고 투자율층 중 적어도 한쪽(도면에서는 양방)은 상기 비트선(12)보다 TMR 소자(13)의 측방에 돌출한 상태로 형성되어 있다. 이 자속 집중기(52)의 측벽 부분은 TMR 소자(13)와 절연막(63)을 개재하여 형성되어 있다. 그 선단부(52s)는, TMR 소자(13)의 기억층(304)과 터널 절연막(303)의 계면과 동등한 높이까지 형성하는 것이 가능하고, 예를 들면 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304)과 캡층(313)의 계면까지의 높이로 하는 것이 바람직하다. 또한, 자속 집중기(52)의 선단부(52s)와 TMR 소자(13)의 거리는, 자속 집중기(52)의 선단부(52s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200㎚ 이하로 하는 것이 바람직하다.
상기 제6 자기 메모리 장치(6)(6a∼6c)에서는, 비트선(12)에, 적어도, 비트선(12)의 양 측면 및 TMR 소자(13)에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기(52)가 형성되어 있다. 이 자속 집중기(52)는, 비트선(12) 측방에 형성된 이 자속 집중기(52)의 고 투자율층 중 적어도 한쪽(각 도면에서는 양방)이, 비트선(12)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되어 있다. 예를 들면 자속 집중기(52)의 측벽 부분의 선단부(52s)가 기억층(304)의 높이로 형성되어 있기 때문에, 상기 제2 자기 메모리 장치(2)와 마찬가지로, 비트선(12)으로부터 발생하는 전류 자계는, 선단부(52s)까지 전달되어, 그 선단부(52s, 52s) 사이에서 가장 강해진다. 따라서, 전류 자계는 TMR 소자(13)의 기억층(304)에 효율적으로 집중된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 비트선(12)의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
다음으로, 본 발명의 제1 자기 메모리 장치의 제조 방법에 따른 제1 실시예를, 도 27A 내지 도 27E의 제조 공정 단면도에 의해서 설명한다. 여기서는, 기입 워드선보다 하층의 배선 및 판독용 소자(예를 들면 절연 게이트형 전계 효과 트랜지스터)는 종래의 방법으로 제작되기 때문에, 설명의 기재는 생략한다.
도 27A에 도시한 바와 같이, 제1 절연막(41) 상에는 감지선(15), 제1 랜딩 패드(31) 등이 형성되어 있다. 이들 배선은 예를 들면 600㎚ 두께의 금속막 혹은 도전성 금속 화합물막 혹은 도전성 폴리실리콘막으로 형성되어 있다. 또한, 제1 절연막(41)에는, 도시하지 않은 판독 트랜지스터의 확산층에 접속되는 것으로 제1 랜딩 패드(31)에 접속하는 컨택트(30)가 형성되어 있다. 또한, 감지선(15)으로부터 판독 트랜지스터의 다른 확산층에 접속되는 컨택트의 도시는 생략했다.
상기 제1 절연막(41) 상에, 상기 감지선(15), 제1 랜딩 패드(31) 등을 피복하는 제2 절연막(42)을 형성한다. 이 제2 절연막(42)은 예를 들면 고밀도 플라즈 마 CVD(Chemical Vapor Deposition)법에 의해 HDP막을 예를 들면 800㎚의 두께로 형성하고, 또한 플라즈마 TEOS(테트라 에톡시 실란)-CVD법에 의해서, P-TEOS막을 예를 들면 1200㎚의 두께로 형성한다. 그 후, 화학적 기계 연마에 의해서, 제2 절연막(42)을 연마하고 평탄화하여, 감지선(15), 제1 랜딩 패드(31) 상에 예를 들면 700㎚ 두께의 제2 절연막(42)을 남긴다.
다음으로, 리소그래피 기술과 에칭 기술을 이용하여, 제2 절연막(42)에 감지선(15), 제1 랜딩 패드(31) 등에 달하는 비아홀(42h)을 형성한다. 도 27A에서는 감지선(15)에 달하는 비아홀의 도시는 생략했다.
계속해서 통상의 텅스텐 플러그 형성 기술에 의해서, 상기 비아홀(42h) 내에 텅스텐을 매립하여, 텅스텐 플러그로 이루어지는 컨택트(32)를 형성한다. 또한, 텅스텐의 성막은 예를 들면 화학적 기상 성장법, 스퍼터링 등의 기존의 성막 기술에 의해 행하고, 제2 절연막(42) 상에 형성되는 잉여의 텅스텐막의 제거는, 예를 들면 화학적 기계 연마 혹은 에치백에 의해 행하면 된다.
다음으로, 제2 절연막(42) 상에 제3 절연막의 일부로 되는 절연막(431)을 형성한다. 이 절연막(431)에는 P-TEOS막을 예를 들면 500㎚의 두께로 형성한 것을 이용한다. 상기 절연막(431)의 막 두께는 후에 형성하는 자속 집중기의 측벽 부분의 높이를 결정하게 되기 때문에, 자속 집중기의 측벽 부분의 선단부가 후에 형성하는 TMR 소자의 기억층의 높이로 되도록 결정된다. 계속해서, 리소그래피 기술과 에칭 기술에 의해, 절연막(431)에 기입 워드선을 형성하기 위한 배선홈(43t1)과 제2 랜딩 패드를 형성하기 위한 배선홈(43t2)을 형성한다.
다음으로, 도 27B에 도시한 바와 같이, PVD(Physical Vapor Deposition)법에 의해서, 상기 배선홈(43t1, 43t2) 내면 및 절연막(431) 표면에, 배리어 메탈(도시하지 않음), 고 투자율층(73), 배선 재료층(81)을 순차로 성막한다.
상기 배리어 메탈은, 예를 들면 티탄(Ti)을 5㎚의 두께로 퇴적한 후, 질화 티탄(TiN)을 20㎚의 두께로 퇴적하여 형성한다.
상기 고 투자율층(73)은, 예를 들면 최대 투자율 μm가 100 이상인 연자성체를 이용할 수 있고, 구체적으로 설명하면, 일례로서 니켈·철·코발트를 포함하는 합금, 철·알루미늄(FeAl) 합금, 페라이트 합금 등을 이용할 수 있고, 예를 들면 100nm의 두께로 형성한다. 그 외에도, 예를 들면 최대 투자율 μm가 100 이상이면, 예를 들면 코발트(Co), 철(Fe), 니켈(Ni) 중 어느 하나를 포함하는 금속 화합물, 금속 산화물 혹은 금속 질화물을 이용할 수 있다.
상기 배선 재료층(81)은 알루미늄(Al), 구리(Cu) 혹은 알루미늄-구리(Al-Cu) 합금을 예를 들면 450㎚의 두께로 형성한다.
그 후, 화학적 기계 연마에 의해서, 절연막(431) 상의 잉여의 상기 배선 재료층(81) 내지 배리어 메탈(도시하지 않음)을 제거하고, 각 배선홈(43t1, 43t2) 내에 상기 배선 재료층(81) 내지 배리어 메탈(도시하지 않음)을 남겨, 기입 워드선(11) 및 제2 랜딩 패드(33)를 형성한다. 또한 에치백에 의해, 각 배선홈(43t1, 43t2) 내의 배선 재료층(81)만을 예를 들면 100nm의 깊이로 후퇴시켜, 기입 워드선(11)의 측면 상방에 고 투자율층(73)이 노출되도록 한다. 이와 같이 해서, 고 투 자율층(73)으로 이루어지는 자속 집중기(51)가 형성된다.
다음으로, 도 27C에 도시한 바와 같이, 상기 절연막(431) 상에, 제3 절연막(43)의 일부로 되는 절연막(432)을, 예를 들면 산화 알루미늄(Al2O3)막을 20㎚의 두께로 퇴적하여 형성한다. 이것에 의해서, 제3 절연막(43)이 형성된다. 그 후, 리소그래피 기술과 에칭 기술에 의해, 포토레지스트를 마스크로 하여 절연막(432)의 에칭을 행하고, 제2 랜딩 패드(33) 상의 절연막(432)에, 이제부터 형성되는 TMR 소자와 제2 랜딩 패드(33)의 접속을 도모하는 개구부(432h)를 형성한다. 또한, 상기 절연막(432)은 산화 알루미늄 이외의 절연 재료(예를 들면 산화 실리콘, 질화 실리콘 등)에 의해 형성하는 것도 가능하다.
계속해서, PVD법에 의해서, 상기 개구부(432h) 내를 포함하는 제3 절연막(43) 상에, 배리어층(도시하지 않음), 반강자성체층(305), 강자성체로 이루어지는 자화 고정층(302), 터널 절연막(303), 강자성체로 이루어지는 기억층(304), 캡층(313)을 순차 형성한다.
상기 배리어층에는 질화 티탄, 탄탈 혹은 질화 탄탈을 이용한다.
상기 반강자성체층(305)에는, 예를 들면, 철·망간 합금, 니켈·망간 합금, 백금 망간 합금, 이리듐·망간 합금, 로듐·망간 합금, 코발트 산화물 및 니켈 산화물 중의 1종을 이용한다. 이 반강자성체층(305)은 TMR 소자(13)와 직렬로 접속되는 스위칭 소자의 접속에 이용되는 기초 도전층을 겸하는 것도 가능하다. 따라서, 본 실시예에서는, 반강자성체층(305)을 TMR 소자(13)와 도시하지 않은 스위칭 소자의 접속 배선의 일부로서 이용하고 있다.
상기 자화 고정층(302)에는 예를 들면, 니켈, 철 혹은 코발트, 또는 니켈, 철 및 코발트 중의 적어도 2종으로 이루어지는 합금과 같은, 강자성체를 이용한다. 이 자화 고정층(302)은 반강자성체층(305)과 접하는 상태로 형성되어 있고, 자화 고정층(302)과 반강자성체층(305)의 층간에 작용하는 교환 상호 작용에 의해서, 자화 고정층(302)은 강한 한 방향의 자기 이방성을 갖고 있다. 즉, 자화 고정층(302)은 반강자성체층(305)과의 교환 결합에 의해서 자화의 방향이 피닝(pinning)된다.
또한, 상기 자화 고정층(302)은, 도전층을 사이에 두고 자성층을 적층한 구성으로 하여도 된다. 예를 들면, 반강자성체층(305)측으로부터, 제1 자화 고정층과 자성층이 반강자성적으로 결합하는 도전체층과 제2 자화 고정층을 순차로 적층한 다층 구조로 하여도 된다. 이 자화 고정층(302)은 3층 이상의 강자성체층을, 도전체층을 사이에 두고 적층시킨 구조라도 무방하다. 상기 도전체층에는 예를 들면, 루테늄, 구리, 크롬, 금, 은 등을 이용할 수 있다.
상기 터널 절연막(303)은 상기 기억층(304)과 상기 자화 고정층(302)의 자기적 결합을 절단함과 함께, 터널 전류를 흘려 보내기 위한 기능을 갖는다. 그 때문에, 통상은 두께가 0.5㎚∼5㎚인 산화 알루미늄이 사용되지만, 예를 들면 산화 마그네슘, 산화 실리콘, 질화 알루미늄, 질화 마그네슘, 질화 실리콘, 산화 질화 알루미늄, 산화 질화 마그네슘 혹은 산화 질화 실리콘을 이용하여도 된다. 상기와 같이 터널 절연막(303)의 막 두께는, 0.5㎚∼5㎚로 매우 얇기 때문에, ALD(Atomic Layer Deposition)법에 의해 형성한다. 혹은 스퍼터링에 의해서 알루미늄 등의 금속막을 퇴적한 후에 플라즈마 산화 혹은 질화를 행하여 형성한다.
상기 기억층(304)에는 예를 들면, 니켈, 철 혹은 코발트, 또는 니켈, 철 및 코발트 중의 적어도 2종으로 이루어지는 합금과 같은, 강자성체를 이용한다. 이 기억층(304)은 외부 인가자장에 의해서 자화의 방향이 하층의 자화 고정층(302)에 대하여, 평행 또는 반평행으로 바꿀 수 있다.
상기 캡층(313)은 TMR 소자와 다른 TMR 소자를 접속하는 배선과의 상호 확산 방지, 접촉 저항 저감 및 기억층(304)의 산화 방지라는 기능을 갖는다. 통상, 구리, 질화 탄탈, 탄탈, 질화 티탄 등의 재료로 형성되어 있다.
다음으로, 도 27D에 도시한 바와 같이, 리소그래피 기술과 에칭(예를 들면 반응성 이온 에칭) 기술에 의해, 포토레지스트를 마스크로 하여, TMR 소자(13)를 형성하기 위한 적층막(캡층(313) 내지 반강자성체층(305))을 에칭하고, 우선 캡층(313) 내지 자화 고정층(302)의 적층막으로 TMR 소자(13)를 형성한다. 이 에칭에서는, 예를 들면 터널 절연막(303)으로부터 자화 고정층(302)의 도중에 에칭이 끝나도록 종점을 설정한다. 에칭 가스로는 염소(Cl)를 포함한 할로겐 가스 혹은 일산화탄소(CO)에 암모니아(NH3)를 첨가한 가스계를 이용한다. 그 후, 상기 포토레지스트를 제거한다.
계속해서, 리소그래피 기술과 에칭(예를 들면 반응성 이온 에칭) 기술에 의해, 포토레지스트를 마스크로 하여, TMR 소자(13)와 제2 랜딩 패드(33)를 접속하기 위한 바이패스선(16)을, 예를 들면 자화 고정층(302)과 반강자성체층(305)에 의해 형성한다. 이 구성에서는 기입 워드선(11)의 하부 및 측면 측에 형성한 고 투자율층(73)이 기입 워드선(11)의 상면보다도 TMR 소자(13) 측으로 연장되어 있기 때문에, 기입 워드선(11)에 의해 발생되는 전류 자계가 TMR 소자(13)의 기억층(304)에 효율적으로 인가된다.
다음으로, 도 27E에 도시한 바와 같이, 제3 절연막(43) 상에, TMR 소자(13), 바이패스선(16) 등을 피복하는 제4 절연막(44)을 형성한다. 이 제4 절연막(44)은 예를 들면 CVD법 혹은 PVD법에 의해서, 산화 실리콘 혹은 산화 알루미늄 등으로 형성된다. 그 후, 화학적 기계 연마에 의해서 제4 절연막(44) 표면을 평탄화 연마하여, TMR 소자(13)의 캡층(313) 상면을 노출시킨다.
다음으로 표준 배선 형성 기술에 의해서, 비트선(12) 및 주변 회로의 배선(도시하지 않음), 본딩 패드 영역(도시하지 않음)을 형성한다. 또한 전면에 보호막으로 되는 제5 절연막(도시하지 않음)을, 예를 들면 플라즈마 질화 실리콘막으로 형성한 후, 본딩 패드부를 개구하여 자기 메모리 장치의 웨이퍼 프로세스를 완료시킨다. 또한, 자속 집중기(51) 측벽 부분의 선단부(51s)의 높이는, 배선홈(43t1)의 깊이를 깊게 형성함으로써, TMR 소자(13)의 기억층(304)과 같은 정도의 높이로 형성하는 것이 가능하다.
다음으로, 본 발명의 제1 자기 메모리 장치의 제조 방법에 따른 제2 실시예를, 도 28A 내지 도 28E의 제조 공정 단면도에 의해서 설명한다. 여기서는, 기입 워드선보다 하층의 배선 및 판독용 소자(예를 들면 절연 게이트형 전계 효과 트랜 지스터)는 종래의 방법으로 제작되기 때문에, 설명은 생략한다.
도 28A에 도시한 바와 같이, 제1 절연막(41) 상에는 감지선(15), 제1 랜딩 패드(31) 등이 형성되어 있다. 이들 배선은 예를 들면 600㎚ 두께의 금속막 혹은 도전성 금속 화합물막 혹은 도전성 폴리실리콘막으로 형성되어 있다. 또한, 제1 절연막(41)에는, 도시하지 않은 판독 트랜지스터의 확산층에 접속되는 것으로 제1 랜딩 패드(31)에 접속하는 컨택트(30)가 형성되어 있다. 또한, 감지선(15)으로부터 판독 트랜지스터의 다른 확산층에 접속되는 컨택트의 도시는 생략했다. 상기 제1 절연막(41) 상에, 상기 감지선(15), 제1 랜딩 패드(31) 등을 피복하는 제2 절연막(42)을 형성한다. 이 제2 절연막(42)은, 예를 들면 고밀도 플라즈마 CVD법에 의해 HDP막을 예를 들면 800㎚의 두께로 형성하고, 또한 플라즈마 TEOS(테트라 에톡시 실란)-CVD법에 의해서, P-TEOS막을 예를 들면 1200㎚의 두께로 형성한다. 그 후, 화학적 기계 연마에 의해서, 제2 절연막(42)을 연마하고 평탄화하여, 감지선(15), 제1 랜딩 패드(31) 상에 예를 들면 700㎚ 두께의 제2 절연막(42)을 남긴다.
다음으로, 리소그래피 기술과 에칭 기술을 이용하여, 제2 절연막(42)에 감지선(15), 제1 랜딩 패드(31) 등에 달하는 비아홀(42h)을 형성한다. 도 28A에서는 감지선(15)에 달하는 비아홀의 도시는 생략했다. 계속해서 통상의 텅스텐 플러그 형성 기술에 의해서, 상기 비아홀(42h) 내에 텅스텐을 매립하여, 텅스텐 플러그로 이루어지는 컨택트(32)를 형성한다. 또한, 텅스텐의 성막은 예를 들면 화학적 기상 성장법, 스퍼터링 등의 기존의 성막 기술에 의해 행하고, 제2 절연막(42) 상에 형성되는 잉여의 텅스텐막의 제거는, 예를 들면 화학적 기계 연마 혹은 에치백에 의해 행하면 된다.
다음으로, PVD법에 의해서, 상기 제2 절연막(42) 표면에, 배리어 메탈(도시하지 않음), 고 투자율층(73), 기입 워드선이나 랜딩 패드를 형성하기 위한 배선 재료층(81)을 성막한다.
상기 배리어 메탈은 예를 들면 티탄(Ti)을 5㎚의 두께로 퇴적한 후, 질화 티탄(TiN)을 20㎚의 두께로 퇴적하여 형성한다.
상기 고 투자율층(73)은 예를 들면 최대 투자율 μm가 100 이상인 연자성체를 이용할 수 있고, 구체적으로는 일례로서 니켈·철·코발트를 포함하는 합금, 페라이트 합금 등을 이용할 수 있으며, 예를 들면 100nm의 두께로 형성한다. 그외에도, 예를 들면 최대 투자율 μm가 100 이상이면, 예를 들면 코발트(CO), 철(Fe), 니켈(Ni) 중 어느 하나를 포함하는 금속 화합물, 금속 산화물 혹은 금속 질화물을 이용할 수 있다.
상기 배선 재료층(81)은 알루미늄(Al), 구리(Cu) 혹은 알루미늄-구리(Al-Cu) 합금을 예를 들면 300㎚의 두께로 형성한다.
계속해서, 더미막(82)을, 예를 들면 플라즈마 질화 실리콘막을 예를 들면 40nm의 두께로 퇴적하여 형성한다.
다음으로, 리소그래피 기술과 에칭 기술에 의해, 포토레지스트를 마스크로 이용하여, 상기 더미막(82), 배선 재료층(81), 고 투자율층(73), 배리어 메탈(도시하지 않음)을 순차 에칭하고, 상기 더미막(82)을 탑재한 상태로, 기입 워드선(11), 컨택트(32)에 접속하는 제2 랜딩 패드(33)를 형성한다.
다음으로, 도 28B에 도시한 바와 같이, PVD법에 의해서, 상기 제2 절연막(42) 상에 상기 더미막(82)〔상기 도 28A 참조〕을 피복하는 고 투자율층을 형성한 후, 고 투자율층의 전면을 에칭하여, 더미막(82)을 탑재한 기입 워드선(11), 제2 랜딩 패드(33)의 각 측벽에 고 투자율 측벽(74S)을 형성한다. 이와 같이 해서, 고 투자율층(73)과 고 투자율 측벽(74S)으로 이루어지는 자속 집중기(51)가 형성된다. 계속해서, 선택적 에칭에 의해 더미막(82)만을 제거한다. 또한, 이 공정에서는 제2 랜딩 패드(33)의 측벽에도 기입 워드선(11)의 측벽과 마찬가지의 고 투자율 측벽(74S)이 형성된다. 이 고 투자율 측벽(74S)은 자속 집중기(51)의 측벽 부분으로 되기 때문에, 그 선단부(51s)의 높이는, 상기 더미막(82)의 막 두께에 의해서 조정된다. 그 선단부(51s)는 후에 형성되는 TMR 소자의 기억층과 캡층의 계면과 동등한 높이까지 형성하는 것이 가능하고, 예를 들면 터널 절연막과 기억층의 계면으로부터 기억층과 캡층의 계면까지의 높이로 하는 것이 바람직하다. 또한, 고 투자율 측벽(74S)과 TMR 소자(13)의 거리는, 선단부(51s)에 집중시킨 전류 자속이 기억층에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200㎚ 이하로 하는 것이 바람직하다.
다음으로, 도 28C에 도시한 바와 같이, 제2 절연막(42) 상에 기입 워드선(11), 제2 랜딩 패드(33), 자속 집중기(51) 등을 피복하는 제3 절연막(43)을, 예를 들면 산화 알루미늄(Al2O3)을 예를 들면 20㎚의 두께로 퇴적하여 형성한 후, 리소그 래피 기술과 에칭 기술에 의해, 포토레지스트를 마스크로 하여 제3 절연막(43)의 에칭을 행하고, 이제부터 형성되는 TMR 소자와 제2 랜딩 패드(33)의 접속을 도모하는 개구부(43h)를 형성한다.
계속해서, PVD법에 의해서, 상기 개구부(43h)를 포함하는 제3 절연막(43) 상에, 배리어층(도시하지 않음), 반강자성체층(305), 강자성체로 이루어지는 자화 고정층(302), 터널 절연막(303), 강자성체로 이루어지는 기억층(304), 캡층(313)을 순차 형성한다.
배리어층(도시하지 않음), 반강자성체층(305), 자화 고정층(302), 터널 절연막(303), 강자성체로 이루어지는 기억층(304) 및 캡층(313)은, 상기 제1 실시예에서 설명한 것과 마찬가지의 재료를 이용하여 형성할 수 있다.
다음으로, 도 28D에 도시한 바와 같이, 리소그래피 기술과 에칭(예를 들면 반응성 이온 에칭) 기술에 의해, 포토레지스트를 마스크로 하여, TMR 소자(13)를 형성하기 위한 적층막(캡층(313) 내지 반강자성체층(305))을 에칭하고, 우선 캡층(313) 내지 자화 고정층(302)의 적층막으로 TMR 소자(13)를 형성한다. 이 에칭에서는, 예를 들면 터널 절연막(303)으로부터 자화 고정층(302)의 도중에 에칭이 끝나도록 종점을 설정한다. 에칭 가스에는 염소(Cl)를 포함한 할로겐 가스 혹은 일산화탄소(CO)에 암모니아(NH3)를 첨가한 가스계를 이용한다. 그 후, 상기 포토레지스트를 제거한다.
계속해서, 리소그래피 기술과 에칭(예를 들면 반응성 이온 에칭) 기술에 의 해, 포토레지스트를 마스크로 하여, TMR 소자(13)와 제2 랜딩 패드(33)를 접속하기 위한 바이패스선(16)을, 예를 들면 자화 고정층(302)과 반강자성체층(305)에 의해 형성한다. 이 구성에서는, 기입 워드선(11)의 하부 및 측면 측에 형성한 자속 집중기(51)가 TMR 소자(13)의 측면 근방으로 연장되어 있기 때문에, 기입 워드선(11)에 의해 발생되는 전류 자계가 TMR 소자(13)의 기억층(304)에 효율적으로 인가된다.
다음으로, 도 28E에 도시한 바와 같이, 제3 절연막(43) 상에, TMR 소자(13), 바이패스선(16) 등을 피복하는 제4 절연막(44)을 형성한다.
이 제4 절연막(44)은 예를 들면 CVD법 혹은 PVD법에 의해서, 산화 실리콘 혹은 산화 알루미늄 등으로 형성된다. 그 후, 화학적 기계 연마에 의해서 제4 절연막(44) 표면을 평탄화 연마하여, TMR 소자(13)의 캡층(313) 상면을 노출시킨다.
다음에 표준 배선 형성 기술에 의해서, 비트선(12) 및 주변 회로의 배선(도시하지 않음), 본딩 패드 영역(도시하지 않음)을 형성한다. 또한 전면에 보호막으로 되는 제5 절연막(도시하지 않음)을, 예를 들면 플라즈마 질화 실리콘막으로 형성한 후, 본딩 패드부를 개구하고 자기 메모리 장치의 웨이퍼 프로세스를 완료시킨다.
다음으로, 본 발명의 제1 자기 메모리 장치의 제조 방법에 따른 제3 실시예를, 도 29A 내지 도 29F의 제조 공정 단면도에 의해서 설명한다. 여기서는, 기입 워드선보다 하층의 배선 및 판독용 소자(예를 들면 절연 게이트형 전계 효과 트랜지스터)는 종래의 방법으로 제작되기 때문에, 설명은 생략한다.
도 29A에 도시한 바와 같이, 제1 절연막(41) 상에는 감지선(15), 제1 랜딩 패드(31) 등이 형성되어 있다. 이들 배선은, 예를 들면 600㎚ 두께의 금속막 혹은 도전성 금속 화합물막 혹은 도전성 폴리실리콘막으로 형성되어 있다. 또한, 제1 절연막(41)에는, 도시하지 않은 판독 트랜지스터의 확산층에 접속되는 것으로 제1 랜딩 패드(31)에 접속하는 컨택트(30)가 형성되어 있다. 또한, 감지선(15)으로부터 판독 트랜지스터의 다른 확산층에 접속되는 컨택트의 도시는 생략했다. 상기 제1 절연막(41) 상에, 상기 감지선(15), 제1 랜딩 패드(31) 등을 피복하는 제2 절연막(42)을 형성한다. 이 제2 절연막(42)은 예를 들면 고밀도 플라즈마 CVD법에 의해 HDP막을 예를 들면 800㎚의 두께로 형성하고, 또한 플라즈마 TEOS(테트라 에톡시 실란)-CVD법에 의해서, P-TEOS막을 예를 들면 1200㎚의 두께로 형성한다. 그 후, 화학적 기계 연마에 의해서, 제2 절연막(42)을 연마하고 평탄화하여, 감지선(15), 제1 랜딩 패드(31) 상에 예를 들면 700㎚ 두께의 제2 절연막(42)을 남긴다.
다음으로, 리소그래피 기술과 에칭 기술을 이용하여, 제2 절연막(42)에 감지선(15), 제1 랜딩 패드(31) 등에 달하는 비아홀(42h)을 형성한다. 도 29A에서는 감지선(15)에 달하는 비아홀의 도시는 생략했다. 계속해서 통상의 텅스텐 플러그 형성 기술에 의해서, 상기 비아홀(42h) 내에 텅스텐을 매립하여, 텅스텐 플러그로 이루어지는 컨택트(32)를 형성한다. 또한, 텅스텐의 성막은 예를 들면 화학적 기상 성장법, 스퍼터링 등의 기존의 성막 기술에 의해 행하고, 제2 절연막(42) 상에 형성되는 잉여의 텅스텐막의 제거는, 예를 들면 화학적 기계 연마 혹은 에치백에 의해 행하면 된다.
다음으로, 제2 절연막(42) 상에 제3 절연막(43)을 형성한다. 이 제3 절연막(43)에는, P-TEOS막을 예를 들면 400㎚의 두께로 형성한 것을 이용한다. 계속해서, 리소그래피 기술과 에칭 기술에 의해, 제3 절연막(43)에 기입 워드선을 형성하기 위한 배선홈(43t1)과 제2 랜딩 패드를 형성하기 위한 배선홈(43t2)을 형성한다.
다음으로, 도 29B에 도시한 바와 같이, PVD법에 의해서, 상기 배선홈(43t1, 43t2) 내면 및 제3 절연막(43) 표면에, 배리어 메탈(도시하지 않음), 고 투자율층(73), 배선 재료층(81)을 순차로 성막한다. 배리어 메탈(도시하지 않음), 고 투자율층(73), 배선 재료층(81)은, 상기 제1 실시예에서 설명한 것과 마찬가지의 재료를 이용하여 형성할 수 있다.
그 후, 화학적 기계 연마에 의해서, 제3 절연막(43) 상의 잉여의 상기 배선 재료층(81) 내지 배리어 메탈(도시하지 않음)을 제거하고, 각 배선홈(43t1, 43t2) 내에 상기 배선 재료층(81) 내지 배리어 메탈(도시하지 않음)을 남겨, 기입 워드선(11) 및 제2 랜딩 패드(33)를 형성한다.
다음으로, 도 29C에 도시한 바와 같이, 제3 절연막(43)의 일부로 되는 절연막(432)을, 예를 들면 산화 알루미늄(Al2O3)막을 예를 들면 20㎚의 두께로 퇴적하여 형성한다. 그 후, 리소그래피 기술과 에칭 기술에 의해, 포토레지스트를 마스크로 하여 절연막(432)의 에칭을 행하고, 제2 랜딩 패드(33) 상의 절연막(432)에, 이제부터 형성되는 TMR 소자와 제2 랜딩 패드(33)의 접속을 도모하는 개구부(432h)를 형성한다. 또한, 상기 절연막(432)은 산화 알루미늄 이외의 절연 재료(예를 들면 산화 실리콘, 질화 실리콘 등)에 의해 형성하는 것도 가능하다.
계속해서, PVD법에 의해서, 상기 개구부(432h) 내를 포함하는 제3 절연막(43) 상에, 배리어층(도시하지 않음), 반강자성체층(305), 강자성체로 이루어지는 자화 고정층(302), 터널 절연막(303), 강자성체로 이루어지는 기억층(304), 캡층(313)을 순차 형성한다. 상기 터널 절연막(303)은 상기 기억층(304)과 상기 자화 고정층(302)의 자기적 결합을 절단함과 함께, 터널 전류를 흘려 보내기 위한 기능을 갖는다. 그 때문에, 0.5㎚∼5㎚ 정도의 두께로 형성된다.
배리어층(도시하지 않음), 반강자성체층(305), 자화 고정층(302), 터널 절연막(303), 강자성체로 이루어지는 기억층(304) 및 캡층(313)은, 상기 제1 실시예에서 설명한 것과 마찬가지의 재료를 이용하여 형성할 수 있다.
다음으로, 도 29D에 도시한 바와 같이, 리소그래피 기술과 에칭(예를 들면 반응성 이온 에칭) 기술에 의해, 포토레지스트를 마스크로 하고, 그 후 형성하는 TMR 소자와 제2 랜딩 패드(33)를 접속하기 위한 바이패스선으로 되는 패턴(17)을, 예를 들면 캡층(313) 내지 절연막(432)으로 이루어지는 적층막에 의해 형성한다. 다음으로, 상기 패턴(17)을 피복하는 절연막을, 예를 들면 30㎚ 정도의 두께의 플라즈마 질화 실리콘막, 산화 실리콘막 혹은 산화 알루미늄막으로 형성한 후, 이방성 에칭에 의해 이 절연막을 에치백하여 절연막 측벽(91S)을 형성한다. 또한, PVD법에 의해서, 고 투자율층을 형성한 후, 이 고 투자율층을 에치백하여, 절연막 측벽(91S)의 측면에 고 투자율 측벽(75S)을 형성한다. 이와 같이 해서, 고 투자율층(73)과 고 투자율 측벽(75S)으로 이루어지는 자속 집중기(51)가 구성된다. 이 자 속 집중기(51)의 고 투자율 측벽(75S)의 선단부(75s)의 높이는, 상기 기억층(304)과 캡층(313)의 계면 이하로 하고, 바람직하게는, 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304)과 캡층(313)의 계면의 사이로 한다.
다음으로, 도 29E에 도시한 바와 같이, 리소그래피 기술과 에칭(예를 들면 반응성 이온 에칭) 기술에 의해, 포토레지스트를 마스크로 하여, TMR 소자를 형성하기 위한 적층막(캡층(313) 내지 반강자성체층(305))을 에칭하여, TMR 소자(13)를 형성한다. 이 에칭에서는 예를 들면 터널 절연막(303)으로부터 자화 고정층(302)의 도중에 에칭이 끝나도록 종점을 설정한다. 에칭 가스에는 염소(Cl)를 포함한 할로겐 가스 혹은 일산화탄소(CO)에 암모니아(NH3)를 첨가한 가스계를 이용한다. 그 결과, TMR 소자(13)가 형성됨과 함께, TMR 소자(13)와 제2 랜딩 패드(33)를 접속하기 위한 바이패스선(16)이 반강자성체층(305)과 자화 고정층(302)으로 형성된다.
다음으로, 도 29F에 도시한 바와 같이, 제3 절연막(43) 상에, TMR 소자(13), 바이패스선(16) 등을 피복하는 제4 절연막(44)을 형성한다. 이 제4 절연막(44)은 예를 들면 CVD법 혹은 PVD법에 의해서, 산화 실리콘 혹은 산화 알루미늄 등으로 형성된다. 그 후, 화학적 기계 연마에 의해서 제4 절연막(44) 표면을 평탄화 연마하여, TMR 소자(13)의 캡층(313) 상면을 노출시킨다.
다음에 표준 배선 형성 기술에 의해서, 비트선(12) 및 주변 회로의 배선(도시하지 않음), 본딩 패드 영역(도시하지 않음)을 형성한다. 또한 전면에 보호막으 로 되는 제5 절연막(도시하지 않음)을, 예를 들면 플라즈마 질화 실리콘막으로 형성한 후, 본딩 패드부를 개구하여 자기 메모리 장치의 웨이퍼 프로세스를 완료시킨다.
상기 제조 방법에서는, 기입 워드선(11)의 주위에 형성된 고 투자율층(73)과 고 투자율 측벽(75S)이 접속되어 자속 집중기(51)가 형성됨과 함께, 이 자속 집중기(51)의 고 투자율 측벽(75S)이 TMR 소자(13)의 측면 근방에 연장한 상태로 형성되기 때문에, 기입 워드선(11)에 의해 발생되는 전류 자계가 TMR 소자(13)의 기억층(304)에 효율적으로 인가되게 된다.
다음으로, 본 발명의 제1 자기 메모리 장치의 제조 방법에 따른 제4 실시예를, 도 30A 내지 도 30B의 제조 공정 단면도에 의해서 설명한다. 여기서는, 상기 도 10에 의해서 설명한 제1 자기 메모리 장치의 제3 실시예의 기본 구성을 얻는 제조 방법을 도시한다.
도 30A에 도시한 바와 같이, 이 제조 방법은, 상기 도 28A에 의해서 설명한 제조 방법에 있어서, PVD법에 의해서, 제2 절연막(42) 표면에, 배리어 메탈(도시하지 않음), 고 투자율층(73), 기입 워드선이나 랜딩 패드를 형성하기 위한 배선 재료층(81)을 성막한 후, 고 투자율층(76)을 성막한다. 계속해서, 더미막(82)을 예를 들면 플라즈마 질화 실리콘을 예를 들면 40㎚의 두께로 퇴적하여 형성한다. 그 후의 공정은 상기 도 28A 내지 도 28E에 의해서 설명한 것과 마찬가지이다.
그 결과, 도 30B에 도시한 바와 같이, 기입 워드선(11)의 주위를, 고 투자율층(73), 고 투자율 측벽(74S) 및 고 투자율층(76)에 의해서 둘러쌈과 함께 TMR 소 자(13)의 측방에 고 투자율 측벽(74S)이 연장 형성된 자속 집중기(51)(51b)가 형성된다. 이 자속 집중기(51)의 측벽 부분으로 되는 고 투자율 측벽(74S)의 선단부(51s)는, 상기 제1 자기 메모리 장치의 제조 방법에 따른 제2 실시예와 마찬가지로 설정되어 형성된다. 그 후의 제조 공정은 상기 도 28C 이후에 의해서 설명한 제조 방법에 의해 행하면 된다.
다음으로, 본 발명의 제1 자기 메모리 장치의 제조 방법에 따른 제5 실시예를, 도 31A 내지 도 31B의 개략 구성 단면도에 의해서 설명한다. 여기서는, 상기 도 10에 의해서 설명한 제1 자기 메모리 장치의 제3 실시예의 제조 방법을 도시한다.
도 31A에 도시한 바와 같이, 이 제조 방법은 상기 도 28A에 의해서 설명한 제조 방법에 있어서, PVD법에 의해서, 제2 절연막(42) 표면에, 배리어 메탈(도시하지 않음), 고 투자율층(73), 절연막(92)을 성막한다. 그 후, 리소그래피 기술과 에칭 기술을 이용하여, 절연막(92)을 관통하여 고 투자율층(73) 혹은 컨택트(32)에 달하는 개구부(92h)를 형성한다.
계속해서, 상기 개구부(92h) 내도 포함시켜 상기 절연막(92) 상에, 기입 워드선이나 랜딩 패드를 형성하기 위한 배선 재료층(81)을 형성하고, 또한 더미막(82)을 예를 들면 플라즈마 질화 실리콘을 40nm의 두께로 퇴적하여 형성한다.
다음으로, 리소그래피 기술과 에칭 기술에 의해, 포토레지스트를 마스크로 이용하여, 상기 더미막(82), 배선 재료층(81), 절연막(92)을 순차 에칭하고, 상기 더미막(82)을 탑재한 상태에서, 배선 재료층(81)으로 이루어지는 기입 워드선(11), 컨택트(32)에 접속하는 제2 랜딩 패드(33)를 형성한다.
다음으로, 도 31B에 도시한 바와 같이, CVD법에 의해서, 상기 제2 절연막(42) 상에 상기 더미막(82)을 피복하는 절연막을 형성한 후, 절연막의 전면을 에치백하여, 더미막(82)을 탑재한 기입 워드선(11), 제2 랜딩 패드(33)의 각 측벽에 절연막 측벽(91S)을 형성한다. 이 절연막 측벽(91S)은 적어도 상기 절연막(92)에 접속되고, 또한 상기 더미막(82)의 측벽을 피복하는 상태로 형성된다.
계속해서 PVD법에 의해서, 상기 제2 절연막(42) 상에 상기 플라즈마 질화 실리콘막이나 절연막 측벽(91S)을 피복하는 고 투자율층을 형성한 후, 고 투자율층의 전면을 에치백하여, 더미막(82)을 탑재한 기입 워드선(11), 제2 랜딩 패드(33)의 각 측벽에 고 투자율 측벽(75S)을 형성한다. 이 때, 이 자속 집중기(51)의 측벽 부분으로 되는 고 투자율 측벽(75S)의 선단부(75s)는, 상기 제1 자기 메모리 장치의 제조 방법에 따른 제2 실시예의 고 투자율 측벽(74S)과 마찬가지로 설정되어 형성된다. 이와 같이 해서, 기입 워드선(11)의 주위를, 절연막(92), 절연막 측벽(91S)을 개재하여, 고 투자율층(73), 고 투자율 측벽(75S) 및 고 투자율층에 의해서 둘러쌈과 함께 TMR 소자(13) 측에 고 투자율 측벽(75S)이 연장 형성된 자속 집중기(51)(51c)가 형성된다.
계속해서, 선택적 에칭에 의해 더미막(82)만을 제거한다. 또한, 상기 고 투자율 측벽(75S)을 형성하는 에치백 시에, 상기 고 투자율층(73), 배리어 메탈(도시하지 않음)을 제거한다. 또한, 고 투자율층(73) 및 배리어 메탈의 불필요 부분의 제거는, 절연막 측벽(91S)의 형성 후에 행할 수도 있다. 그 후의 공정은 상기 도 28C 이후에 의해서 설명한 공정과 마찬가지이다.
다음으로, 본 발명의 제1 자기 메모리 장치의 제조 방법에 따른 제6 실시예를, 도 32A 내지 도 32B의 개략 구성 단면도에 의해서 설명한다. 여기서는, 상기 도 11에 의해서 설명한 제1 자기 메모리 장치의 제4 실시예의 제조 방법을 도시한다.
도 32A에 도시한 바와 같이, 이 제조 방법은, 상기 도 31A에 의해서 설명한 제조 방법에 있어서, PVD법에 의해서, 제2 절연막(42) 표면에, 배리어 메탈(도시하지 않음), 고 투자율층(73), 절연막(92), 기입 워드선이나 랜딩 패드를 형성하기 위한 배선 재료층(81)을 성막한 후, 절연막(93)을 형성하고나서 고 투자율층(71)을 성막한다. 계속해서, 더미막(82)을 예를 들면 플라즈마 질화 실리콘을 40nm의 두께로 퇴적하여 형성한다. 그 후의 공정은, 상기 도 31A 내지 도 31B에 의해서 설명한 것과 마찬가지이다.
그 결과, 도 32B에 도시한 바와 같이, 배선 재료층(81)으로 이루어지는 기입 워드선(11)의 주위를, 절연막(92, 93), 절연막 측벽(91S)을 개재하여, 고 투자율층(73), 고 투자율 측벽(75S) 및 고 투자율층(71)에 의해서 둘러쌈과 함께, TMR 소자(13) 측방에 고 투자율 측벽(75S)이 연장 형성된 자속 집중기(51)(51d)가 형성된다. 상기 절연막 측벽(91S)은 적어도 상기 절연막(92, 93)에 접속하는 상태로 형성된다. 이 자속 집중기(51)의 측벽 부분으로 되는 고 투자율 측벽(75S)의 선단부(75s)는, 상기 제1 자기 메모리 장치의 제조 방법에 따른 제2 실시예와 마찬가지로 설정되어 형성된다.
상기 제1 자기 메모리 장치의 제조 방법에서는, 적어도, 기입 워드선(11)의 양 측면 및 TMR 소자(13)에 대향하는 면과는 반대측의 면에 고 투자율층(71, 72, 73) 등으로 이루어지는 자속 집중기(51)(51a∼51d)를 형성하는 공정을 구비하고, 기입 워드선(11)의 양 측면에 형성되는 고 투자율 측벽(75S) 중 적어도 한쪽을 기입 워드선(11)보다 TMR 소자(13) 측으로 돌출한 상태로 형성한다. 이로부터, 기입 워드선(11)에 전류를 흘렸을 때에 발생하는 전류 자계는, 기입 워드선의 양 측면에 형성되는 고 투자율 측벽(75S) 혹은 고 투자율 측벽(75S)에 의해서, TMR 소자(13)의 기억층에 효율적으로 집중되도록 된다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 기입 워드선(11)의 일렉트로 마이그레이션에 대한 수명이 높아진다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 집적도를 높일 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과가 저감된다.
다음으로, 본 발명의 제2 자기 메모리 장치의 제조 방법에 따른 제1 실시예를, 도 33A 내지 도 33C의 제조 공정 단면도에 의해서 설명한다. 여기서 TMR 소자(13), 제4 절연막(44) 등보다 하층의 구성은, 종래 기술 혹은 상기 제1 자기 메모리 장치의 제조 방법에 의해서 형성되기 때문에, 여기서의 설명은 생략한다.
도 33A에 도시한 바와 같이, 제4 절연막(44)의 표면에 TMR 소자(13)의 캡층(313)이 노출된 상태로 형성되어 있다. 상기 제4 절연막(44)의 표면은 평탄화되어 있다. 상기 TMR 소자(13)는 종래의 자기 메모리 장치의 제조 방법 혹은 상기 설명한 제1 자기 메모리 장치의 제조 방법에 의해서 형성되어 있다.
다음으로, 도 33B에 도시한 바와 같이, PVD법에 의해서, 제4 절연막(44) 표면에, 배리어 메탈(도시하지 않음)을, 예를 들면 티탄(Ti)을 5㎚의 두께로 퇴적한 후, 질화 티탄(TiN)을 20㎚의 두께로 퇴적하여 형성한다. 계속해서, PVD법에 의해서, 비트선을 형성하기 위한 배선 재료층(83)을 예를 들면 알루미늄, 구리 혹은 알루미늄 구리 합금을 500㎚의 두께로 퇴적하여 형성한다. 또한 PVD법에 의해서, 고 투자율층(77)을 30㎚의 두께로 형성한다.
이어서 리소그래피 기술과 에칭 기술에 의해, 비트선을 형성하기 위한 레지스트 마스크(94)를 형성하고, 그것을 이용하여, 상기 고 투자율층(77), 배선 재료층(83), 배리어 메탈(도시하지 않음), 제4 절연막(44)을 순차 에칭하여, 상기 고 투자율층(77)을 탑재한 비트선(12)을 형성한다. 이 에칭에서는 제4 절연막(44)의 도중까지 에칭을 진행시킨다. 그 깊이는, 예를 들면 TMR 소자의 기억층(304)과 터널 절연막(303)의 경계까지의 깊이로 한다. 바람직하게는, 기억층(304)과 터널 절연막(303)의 경계로부터 기억층(304)과 캡층(313)의 경계까지의 깊이로 한다. 이와 같이 깊이를 설정함으로써, 후에 형성되는 자속 집중기(52) 측벽 부분의 선단부의 위치가, TMR 소자의 기억층에 전류 자계를 집중하기 쉬운 위치에 형성되게 된다.
다음에 도 33C에 도시한 바와 같이, PVD법에 의해서, 고 투자율층(77)을 포함하는 비트선(12)을 피복하는 고 투자율층을 형성한 후, 이 고 투자율층을 에칭하여, 비트선(12)의 측벽에 고 투자율층으로 이루어지는 고 투자율 측벽(78S)을 형성한다. 이와 같이 해서, 고 투자율층(77)과 이것에 접속되는 고 투자율 측벽(78S) 으로 이루어지는 자속 집중기(52)(52a)가 형성된다.
상기 제조 방법에 따르면, 고 투자율층(77)과 고 투자율 측벽(78S)으로 이루어지는 자속 집중기(51)에 의해 자기 회로가 형성되고, 비트선(12)에 의한 자장을 효과적으로 TMR 소자(13)의 기억층(304)에 집중시킬 수 있다.
다음으로, 본 발명의 제2 자기 메모리 장치의 제조 방법에 따른 제2 실시예를, 도 34A 내지 도 34E의 제조 공정 단면도에 의해서 설명한다. 여기서는, 상기 도 13에 의해서 설명한 제2 자기 메모리 장치의 제1 실시예에 따른 다른 제조 방법을 도시한다. 또한, TMR 소자(13), 제4 절연막(44) 등보다 하층의 구성은, 종래 기술 혹은 상기 제1 자기 메모리 장치의 제조 방법에 의해서 형성되기 때문에, 여기서의 설명은 생략한다.
도 34A에 도시한 바와 같이, 기존의 제조 방법에 의해서, 혹은 상기 제1 자기 메모리 장치의 제조 방법에 의해서, 기입 워드선(11) 상에 제3 절연막(43)의 일부를 개재하여, 최상층에 캡층(313)을 형성한 TMR 소자(13)가 형성되어 있다. 또한, TMR 소자(13)를 구성하는 반강자성체층(305) 및 자화 고정층(302)으로 형성되는 바이패스선(16)은 지면 수직 방향으로 연장되고, 폭 방향에서 TMR 소자(13)와 바이패스선(16)이 일치하도록 형성되어 있다. TMR 소자(13)의 구성 및 그 제조 방법은 상기 설명한 구성 및 그 제조 방법을 이용하는 것이 가능하고, 물론 종래부터 알려져 있는 구성 및 제조 방법을 이용하는 것도 가능하다.
다음으로, 도 34B에 도시한 바와 같이, CVD법 혹은 PVD법에 의해서, 상기 제3 절연막(43) 상에 상기 TMR 소자(13), 바이패스선(도시하지 않음) 등을 피복하는 절연막을 예를 들면 플라즈마 질화 실리콘 혹은 산화 알루미늄에 의해 형성한다. 그 후, 이 절연막의 에치백을 행하여, TMR 소자(13)의 측벽에 절연막 측벽(95S)을 형성한다. 계속해서, CVD법 혹은 PVD법에 의해서, 상기 TMR 소자(13) 등을 피복하는 제4 절연막(44)을 예를 들면 산화 실리콘막으로 형성한다. 그 후, 화학적 기계 연마에 의해서, 상기 제4 절연막(44)의 표면을 평탄화 연마함과 함께, TMR 소자(13)의 최상층에 형성되어 있는 캡층(313)을 노출시킨다.
계속해서, 도 34C에 도시한 바와 같이, 또한 상기 제4 절연막(44) 상에 제5 절연막(45)을, 예를 들면 400㎚ 두께의 산화 실리콘막으로 형성한다. 그 후, 리소그래피 기술과 에칭 기술에 의해, TMR 소자(13)보다도 폭이 넓어지도록 비트선용 홈 패턴을 형성하는 개구부를 갖는 레지스트 마스크(도시하지 않음)를 형성하고, 그것을 이용하여, TMR 소자(13) 상의 제5 절연막(45)에 비트선용의 배선홈(45t)을 형성한다. 또한 에칭을 진행시켜, 절연막 측벽(95S)의 측부의 제4 절연막(44)에 홈(44t)을 형성한다. 이 에칭에서는, 산화 실리콘과 플라즈마 질화 실리콘 혹은 산화 알루미늄과의 선택비가 높은 조건으로 이방성 에칭을 행하여 TMR 소자(13)의 측면, 예를 들면 TMR 소자(13)의 캡층(313)과 기억층(304)의 계면과 동등한 높이 부근에서 에칭을 멈춘다.
계속해서, 도 34D에 도시한 바와 같이, PVD법에 의해서, 홈(44t)을 매립함과 동시에 배선홈(45t)의 내면에 고 투자율층을 형성한 후, 에칭에 의해 홈(44t) 내부에 남김과 동시에 배선홈(45t)의 측면에 고 투자율층을 남김으로써 고 투자율 측벽(78S)을 형성한다.
계속해서, PVD법에 의해서, 상기 배선홈(45t)의 내면 및 제5 절연막(45) 표면에, 배리어 메탈(도시하지 않음)을, 예를 들면 티탄(Ti)을 5㎚의 두께로 퇴적한 후, 질화 티탄(TiN)을 20㎚의 두께로 퇴적하여 형성한다. 계속해서, PVD법에 의해서, 상기 배리어 메탈 상에, 상기 배선홈(45t) 내를 매립하도록 비트선을 형성하기 위한 배선 재료층(83)을, 예를 들면 알루미늄, 구리 혹은 알루미늄 구리 합금을 500㎚의 두께로 퇴적하여 형성한다. 그 후, 화학적 기계 연마에 의해서, 제5 절연막(45) 상의 잉여의 배선 재료층(83) 및 배리어 메탈을 연마 제거하여, 배선홈(45t) 내에 배리어 메탈을 개재하여 배선 재료층으로 이루어지는 비트선(12)을 형성한다.
다음으로, 도 34E에 도시한 바와 같이, PVD법에 의해서, 상기 제5 절연막(45) 상에 비트선(12)을 피복하는 고 투자율층(77)을 50㎚의 두께로 형성한다. 그 후, 리소그래피 기술과 에칭 기술에 의해, 비트선(12) 상을 피복하는 레지스트 마스크(도시하지 않음)를 형성한 후, 그것을 이용하여 고 투자율층(77)의 에칭을 행한다. 그 결과, 비트선(12)의 상면 및 측면을 피복하는 고 투자율층(77)과 고 투자율 측벽(78S)으로 이루어지는 자속 집중기(52)(52a)가 형성된다. 이와 같이 자속 집중기(52)에 의한 자기 회로에 의해서, 비트선(12)에 의해서 만들어지는 전류 자계를 TMR 소자(13)의 기억층(304)에 집중시킬 수 있기 때문에, 높은 효율로 기입이 행할 수 있게 된다.
다음으로, 본 발명의 제2 자기 메모리 장치의 제조 방법에 따른 제3 실시예를, 도 35A 내지 도 35B의 제조 공정 단면도에 의해서 설명한다. 여기서는, 상기 도 14에 의해서 설명한 제2 자기 메모리 장치의 제2 실시예의 제조 방법을 도시한다.
도 35A에 도시한 바와 같이, 상기 도 33A에 도시하는 공정에 있어서, 제4 절연막을 화학적 기계 연마하여 TMR 소자(13)의 캡층(313)을 노출시킨 후, PVD법에 의해서, 제4 절연막(44) 표면에 고 투자율층(72)을 형성한다. 계속해서, 상기 고 투자율층(72) 상에, 상기 도 33B에 의해서 설명한 것과 마찬가지로 하여, 배리어 메탈(도시하지 않음), 비트선을 형성하기 위한 배선 재료층(81), 고 투자율층(71)을 순차로 형성하면 된다.
그 후의 공정은, 상기 도 33C에 의해서 설명한 프로세스와 마찬가지이다. 이 프로세스에 있어서, 비트선을 형성하는 에칭에서는, 상기 고 투자율층(72)도 동시에 에칭한다. 그 결과, 도 35B에 도시한 바와 같이, 배선 재료층(81)에서 비트선(12)이 형성됨과 함께, 비트선(12)을 고 투자율층(72, 71) 및 고 투자율 측벽(78S)으로 피복하는 자속 집중기(52)(52b)가 형성된다. 이 고 투자율 측벽(78S)의 선단부의 위치는, 상기 제2 자기 메모리 장치의 제조 방법에 따른 제1 실시예와 마찬가지로 설정된다.
다음으로, 본 발명의 제2 자기 메모리 장치의 제조 방법에 따른 제4 실시예를, 도 36A 내지 도 36B의 제조 공정 단면도에 의해서 설명한다. 여기서는, 상기 도 15에 의해서 설명한 제2 자기 메모리 장치의 제3 실시예의 제조 방법을 도시한다.
도 36A에 도시한 바와 같이, 상기 도 33B에 도시하는 공정에 있어서, 배리어 메탈(도시하지 않음), 비트선을 형성하기 위한 배선 재료층(81)을 형성한 후, 절연막(96)을 형성하고, 그 후 고 투자율층(77)을 형성한다.
계속해서 리소그래피 기술과 에칭 기술에 의해, TMR 소자(13)의 캡층(313)에 접속하는 비트선을 형성하기 위한 레지스트 마스크(도시하지 않음)를 형성하고, 그것을 이용하여, 상기 고 투자율층(77), 절연막(96), 배선 재료층(81), 배리어 메탈(도시하지 않음), 제4 절연막(44)을 순차 에칭하고, 상기 절연막(96)을 개재하여 고 투자율층(77)을 탑재한 비트선(12)을 상기 배선 재료층(81)으로 형성한다. 이 에칭에서는 제4 절연막(44)의 도중까지 에칭을 진행시킨다. 그 깊이는, 예를 들면 TMR 소자의 캡층(313) 혹은 기억층(304)과 거의 동등하게 높이로 한다.
계속해서, 도 36B에 도시한 바와 같이, CVD법에 의해서, 상기 고 투자율층(77) 위를 피복하는 절연막을 형성한 후, 이 절연막의 전면을 에치백하여, 비트선(12)의 측벽에 절연막 측벽(97S)을 형성한다. 이 절연막 측벽(97S)은 적어도 상기 절연막(96)의 측벽을 피복하고, 고 투자율층(77)의 측벽을 노출시키는 상태로 형성된다.
계속해서 PVD법에 의해서, 상기 제4 절연막(44) 상에 상기 고 투자율층(77)이나 절연막 측벽(97S)을 피복하는 고 투자율층을 형성한 후, 이 고 투자율층의 전면을 에칭하여, 비트선(12)의 측벽에 절연막 측벽(97S)을 개재하여 고 투자율 측벽(78S)을 형성한다. 그 때, 고 투자율 측벽(78S)은 고 투자율층(77)에 접속하도록 형성된다. 이와 같이 해서, 고 투자율층(77)과 고 투자율 측벽(78S)으로 이루어지는 자속 집중기(52)(52c)가 형성된다. 이 고 투자율 측벽(78S)의 선단부의 위치 는, 상기 제2 자기 메모리 장치의 제조 방법에 따른 제1 실시예와 같이 설정된다.
이 제3 실시예에서는, 비트선(12)을 형성할 때에 제4 절연막(44)의 에칭을 행하지 않고서, 절연막 측벽(97S)을 형성하고, 그 후 제4 절연막(44)의 에치백을 행하여도 된다. 이 제4 절연막(44)의 에칭과 절연막 측벽(97S)을 형성하는 에치백을 동시에 행하는 것도 가능하다.
다음으로, 본 발명의 제2 자기 메모리 장치의 제조 방법에 따른 제5 실시예를, 도 37A 내지 도 37B의 제조 공정 단면도에 의해서 설명한다.
도 37A에 도시한 바와 같이, 상기 도 33B에 도시하는 공정에 있어서, 비트선(12)은 TMR 소자(13)보다도 폭넓게 형성하고, 제4 절연막(44)을 에칭한 후, 또한 비트선(12) 아래의 제4 절연막(44)의 사이드 에칭을 행한다.
계속해서, 도 37B에 도시한 바와 같이, 상기 도 33C에 의해서 설명한 것과 마찬가지로, 고 투자율 측벽(78S)을 형성하면, 고 투자율 측벽(78S)은, 상기 도 33A 내지 도 33C에 의해서 설명한 제1 실시예보다도 TMR 소자(13) 측에 근접하는 상태로 형성된다. 이와 같이 해서, 비트선(12)에 고 투자율층(77)과 고 투자율 측벽(78S)으로 이루어지는 자속 집중기(52)(52d)가 형성된다.
상기 제조 방법으로 형성되는 자속 집중기(52d)는, 제1 실시예에서 설명한 제조 방법에 의해서 형성되는 자속 집중기(52a)보다도 전류 자속의 누설을 감소시킬 수 있기 때문에, 비트선(12)으로부터 발생하는 전류 자속을 제1 실시예의 자속 집중기(52a)보다도 더욱 효율적으로 TMR 소자(13)의 기억층(304)에 집중시킬 수 있다.
또한, 상기 제5 실시예의 비트선(12) 아래를 사이드 에칭하는 방법은, 상기 도 35A 내지 도 35B에 의해서 설명한 제3 실시예에도 적용할 수 있다. 또한, 상기 제2 자기 메모리 장치의 제조 방법에서의 제4 실시예에 있어서, 자속 집중기(52b, 52c)의 각 선단부(52s)를 폭넓게 형성하기 위해서는, 비트선(12)을 형성할 때에 제4 절연막(44)의 에칭은 행하지 않고서, 절연막 측벽(97S)을 형성한다. 그 후, 제4 절연막(44)의 에치백을 행하고나서, 절연막 측벽(97S) 아래의 제4 절연막(44)의 사이드 에칭을 행하고, 그 후, 고 투자율 측벽(78S)을 형성함으로써 가능해진다. 이 고 투자율 측벽(78S)의 선단부의 위치는 상기 제2 자기 메모리 장치의 제조 방법에 따른 제1 실시예와 마찬가지로 설정된다.
다음으로, 본 발명의 제3 자기 메모리 장치의 제조 방법에 따른 실시예를, 도 38A 내지 도 38C의 제조 공정 단면도에 의해서 설명한다. 여기서는, 상기 도 16에 의해서 설명한 제3 자기 메모리 장치의 실시예의 제조 방법을 도시한다.
도 38A에 도시한 바와 같이, 상기 도 27A에 의해서 설명한 바와 같이, 컨택트(32)가 형성된 제2 절연막(42) 상에, 제3 절연막의 일부로 되는 절연막(431)을 형성한다. 계속해서, 이 절연막(431)에 기입 워드선을 형성하기 위한 홈(43t1)과 컨택트(32)에 접속하는 제2 랜딩 패드를 형성하기 위한 홈(43t2)를 형성한다. 그 후, 이 홈(43t1, 43t2) 내를 포함하는 절연막(431) 상에, 상기 도 27B에 의해서 설명한 것과 마찬가지의 배리어 메탈(도시하지 않음)을 개재하여 배선 재료층을 형성한다. 여기서는, 도 27A 내지 도 27E에 의해서 설명한 바와 같은 고 투자율층은 형성하지 않는다. 그 후, 절연막(431) 상의 잉여의 배선 재료층과 배리어 메탈을 제거하여, 홈(43t1) 내를 매립하는 기입 워드선(11)과, 홈(43t2) 내를 매립하는 제2 랜딩 패드(33)를 형성한다.
계속해서, 도 38B에 도시한 바와 같이, 상기 기입 워드선(11), 제2 랜딩 패드(33) 등이 형성된 절연막(431) 상에 제3 절연막의 일부로 되는 절연막(432)을, 예를 들면 산화 알루미늄 혹은 산화 실리콘 혹은 질화 실리콘으로 형성한다. 또한상기 절연막(432)과 에칭 선택성을 갖는 절연 재료로 제3 절연막의 일부로 되는 절연막(433)을 형성한다. 이 절연막(433)은, 후에 형성되는 자속 집중기의 측벽 부분의 높이를 결정한다. 이를 위해, 자속 집중기의 측벽 부분이 소망 높이로 되는 막 두께로 형성한다. 그 후, 리소그래피 기술과 에칭 기술에 의해, TMR 소자를 형성하는 영역 상에 그것보다도 넓게 형성한 개구부를 갖는 레지스트 마스크(도시하지 않음)를 형성하고, 절연막(433)의 에칭을 행하여, 기입 워드선(12) 상의 절연막(433)에 개구부(433h)를 형성한다. 그 후, 상기 레지스트 마스크를 제거한다.
계속해서, 상기 개구부(433h) 내를 포함하는 상기 절연막(433) 상에, 고 투자율층(79)을 형성하고, 평탄화 절연막을 형성한다. 그 후, 화학적 기계 연마에 의해서, 절연막(433) 상의 잉여의 평탄화 절연막, 고 투자율층(79)을 제거한다. 그 때, 개구부(433h) 내의 평탄화 절연막은 완전히 제거하는 것이 바람직하다. 이 에칭에서는 절연막(433)이 에칭되어도 무방하다. 여기서는, 절연막(433)은 에칭 제거된다. 그 결과, 개구부(433h) 내에 고 투자율층(79)으로 이루어지는 자속 집중기(53)가 형성된다. 이 자속 집중기(53)의 측벽 부분의 선단부(53s)는, 후에 형성되는 TMR 소자의 기억층과 캡층의 계면의 높이 이하로 설정되고, 바람직하게는, 터널 절연층과 기억층의 계면의 높이로부터 기억층과 캡층의 계면의 높이의 범위로 형성된다.
계속해서, 상기 도 28C에 의해서 설명한 것과 마찬가지로 하여, 상기 절연막(432) 상에 상기 자속 집중기(53)를 피복하는 절연막(434)을 형성한다. 이와 같이, 절연막(431 내지 434)에 의해서 제3 절연막(43)이 구성된다. 계속해서 제3 절연막(43)에 제2 랜딩 패드(33)에 달하는 개구부(43h)를 형성한다. 그 후, 반강자성체층(305), 자화 고정층(302), 터널 절연막(303), 기억층(304), 캡층(313)을 하층으로부터 순차로 적층하여 형성한다. 그 후, 상기 도 28D 내지 도 28E에 의해서 설명한 것과 마찬가지의 프로세스를 행함으로써, TMR 소자(13), TMR 소자(13)와 제2 랜딩 패드(33)를 접속하는 바이패스선(16), 제4 절연막(44), TMR 소자(13)의 캡층(313)에 접속하는 비트선(12) 등이 형성된다.
또한, 자속 집중기(53)를 기입 워드선(11) 상에 접속하는 상태로 형성하는 경우에는, 상기 절연막(432)을 형성하지 않으면 된다. 그 밖의 프로세스는 상기 설명한 바와 같다.
다음으로, 본 발명의 제4 자기 메모리 장치의 제조 방법에 따른 제1 실시예를, 도 39의 제조 공정 단면도에 의해서 설명한다. 여기서는, 상기 도 17에 의해서 설명한 제4 자기 메모리 장치의 제1 실시예의 제조 방법을 도시한다.
상기 도 27A 내지 도 27B에 의해서 설명한 바와 같이, 제3 절연막(43)의 일부로 되는 절연막(431)에 기입 워드선(11)과 제2 랜딩 패드(33)를 형성한다. 그 때, 기입 워드선(11)의 에칭은 행하지 않는다. 따라서, 자속 집중기(제1 자속 집 중기)(57)는 기입 워드선(11)의 바닥부 및 측벽에만 형성된다. 그 후, 상기 도 38B 내지 도 38C에서 설명한 것과 마찬가지로 절연막(432)을 형성하는 공정 이후의 공정을 행하면 된다.
그 결과, 도 39에 도시한 바와 같이, 기입 워드선(11)의 하면 및 측면에 고 투자율층으로 이루어지는 자속 집중기(제1 자속 집중기)(57)가 형성되고, 기입 워드선(11)과 TMR 소자(13)의 사이에 자속 집중기(제2 자속 집중기)(53)가 형성된다. 상기 제1 자속 집중기(57)의 측벽은 기입 워드선(11) 상면과 동등한 높이로 형성된다. 상기 제2 자속 집중기(53)의 측벽 부분은 TMR 소자(13)의 측벽 측에 제3 절연막(43)을 개재하여 형성되고, 그 선단부(53s)는 상기 제3 자기 메모리 장치의 제조 방법에서 설명한 자속 집중기(53)와 마찬가지로 형성된다. 또한, 절연막(432)을 형성하지 않아도 된다. 이 경우에는, 제1 자속 집중기(57)의 측벽 부분의 선단부(57s)에 제2 자속 집중기(53)의 바닥부가 접속된 상태로 형성된다.
다음으로, 본 발명의 제4 자기 메모리 장치의 제조 방법에 따른 제2 실시예를, 도 40의 제조 공정 단면도에 의해서 설명한다. 여기서는, 상기 도 18에 의해서 설명한 제4 자기 메모리 장치의 제2 실시예의 제조 방법을 도시한다.
상기 도 27A 내지 도 27B에 의해서 설명한 바와 같이, 제3 절연막(43)의 일부로 되는 절연막(431)에 기입 워드선(11)과 제2 랜딩 패드(33)를 형성한다. 그 때, 고 투자율층(73)을 형성한 후, 절연막(61)을 형성하고, 그 후 제2 랜딩 패드(33)가 형성되는 홈 내의 절연막(61)에 컨택트(32)에 통하는 개구부(61h)를 형성한다. 이 개구부(61h)는 고 투자율층(73)을 관통하여 형성되는 것이 바람직하지만, 고 투자율층(73)을 관통하지 않아도 된다. 그 후, 기입 워드선을 형성하기 위한 배선 재료층(81)을 형성한다. 여기서는 상기 도 27A 내지 도 27E에 의해서 설명한 바와 같이 기입 워드선(11)의 에치백은 행하지 않는다. 따라서, 자속 집중기(제1 자속 집중기)(57)는, 기입 워드선(11)의 바닥부 및 측벽에만 절연막(61)을 개재하여 형성된다. 한편, 절연막(61)이 형성되어 있더라도, 제2 랜딩 패드(33)는 개구부(61h)를 통하여 컨택트(32)에 접속된다. 또한, 개구부(62h)가 고 투자율층(73)을 관통하지 않는 경우에는, 제2 랜딩 패드(33)는 고 투자율층(73)을 개재하여 컨택트(32)에 접속된다. 그 후, 상기 도 38B 내지 도 38C에서 설명한 것과 같이 절연막(432)을 형성하는 공정 이후의 공정을 행하면 된다.
그 결과, 도 40에 도시한 바와 같이, 기입 워드선(11)의 하면 및 측면에 절연막(61)을 개재하여 고 투자율층으로 이루어지는 자속 집중기(제1 자속 집중기)(57)가 형성되고, 기입 워드선(11)과 TMR 소자(13)의 사이에 자속 집중기(제2 자속 집중기)(53)가 형성된다. 상기 제1 자속 집중기(57)의 측벽은 기입 워드선(11) 상면과 동등한 높이로 형성된다. 상기 제2 자속 집중기(53)의 측벽 부분은 TMR 소자(13)의 측벽 측에 제3 절연막(43)을 개재하여 형성되고, 그 선단부(53s)는 상기 제3 자기 메모리 장치의 제조 방법에서 설명한 자속 집중기와 마찬가지로 형성된다. 또한, 절연막(432)을 형성하지 않아도 된다. 이 경우에는, 제1 자속 집중기(57)의 측벽 부분의 선단부(57s)에 제2 자속 집중기(53)의 바닥부가 접속된 상태로 형성된다.
다음으로, 본 발명의 제4 자기 메모리 장치의 제조 방법에 따른 제3 실시예 를, 도 41A 내지 도 41B의 제조 공정 단면도에 의해서 설명한다. 여기서는, 상기 도 19에 의해서 설명한 제4 자기 메모리 장치의 제3 실시예의 제조 방법을 도시한다.
도 41A에 도시한 바와 같이, 상기 도 28A 및 도 28B에 의해서 설명한 공정을 행하고, 제2 절연막(42) 상에 고 투자율층으로 이루어지는 자속 집중기(제1 자속 집중기)(51)에 바닥부 및 측면을 둘러싸인 기입 워드선(11)과 컨택트(32)에 고 투자율층(73)을 개재하여 접속하는 제2 랜딩 패드(33)를 형성한다. 그 후, 제2 절연막(42) 상에, 기입 워드선(11), 제1 자속 집중기(51), 제2 랜딩 패드(33) 등을 피복하는 제3 절연막의 일부로 되는 절연막(431)을 형성한다. 여기서는, 이 절연막(431)은 제1 자속 집중기(51)보다도 높게 되는 두께로 형성한다. 그 후, 화학적 기계 연마에 의해서, 이 절연막(431) 표면을 평탄화한다. 그 때, 제1 자속 집중기(51)의 측벽 부분의 선단부(51s)가 절연막(431) 표면에 노출되더라도 무방하다.
그 후, 도 41B에 도시한 바와 같이, 도 38B에 의해서 설명한 절연막(432)을 형성하는 이후의 공정을 행하면 된다. 또한, 절연막(432)은 형성하지 않아도 된다. 그 결과 기입 워드선(11)의 하면 및 측면에 고 투자율층으로 이루어지는 자속 집중기(제1 자속 집중기)(51)가 형성되고, 기입 워드선(11)과 TMR 소자(13)의 사이에 자속 집중기(제2 자속 집중기)(53)가 형성된다. 제1 자속 집중기(51)의 측벽 부분은, 기입 워드선(11) 상면보다 TMR 소자(13) 측으로 돌출한 상태로 형성되고, 제2 자속 집중기(53)의 측벽의 선단부(53s)는, 상기 제3 자기 메모리 장치의 제조 방법에서 설명한 자속 집중기(53)와 같이 형성된다.
다음으로, 본 발명의 제4 자기 메모리 장치의 제조 방법에 따른 제4 실시예를, 도 42의 제조 공정 단면도에 의해서 설명한다. 여기서는, 상기 도 20에 의해서 설명한 제4 자기 메모리 장치의 제4 실시예의 제조 방법을 도시한다.
상기 도 31A 및 도 31B에 의해서 설명한 것과 마찬가지로, 제2 절연막(42) 상에, 고 투자율층(73)과 고 투자율 측벽(75S)으로 이루어지는 자속 집중기(제1 자속 집중기)(51)와 함께, 이 제1 자속 집중기(51)에 바닥부와 측벽을 절연막(92)과 절연막 측벽(91S)을 개재하여 둘러싸인 기입 워드선(11) 및 컨택트(32)에 접속하는 제2 팬딩 패드(33)를 형성한다. 그 후, 더미막(82)을 제거한다. 또한, 제2 절연막(42) 상에, 기입 워드선(11), 제1 자속 집중기(51), 제2 랜딩 패드(33) 등을 피복하는 제3 절연막의 일부로 되는 절연막(431)을 형성한다. 여기서는, 이 절연막(431)은 제1 자속 집중기(51)보다도 높아지는 두께로 형성한다. 그 후, 화학적 기계 연마에 의해서, 이 절연막(431) 표면을 평탄화한다. 이 때, 제1 자속 집중기(51)의 측벽 부분의 선단부(51s)가 절연막(431) 표면에 노출되어도 된다.
그 후, 도 38B에 의해서 설명한 절연막(432)을 형성하는 이후의 공정을 행하면 된다. 또한, 절연막(432)은 형성하지 않아도 된다. 그 결과, 도 42에 도시한 바와 같이, 기입 워드선(11)의 하면 및 측면에 고 투자율층으로 이루어지는 자속 집중기(제1 자속 집중기)(51)가 형성되고, 기입 워드선(11)과 TMR 소자(13)의 사이에 자속 집중기(제2 자속 집중기)(53)가 형성된다. 제1 자속 집중기(51)의 측벽 부분은, 기입 워드선(11) 상면보다 TMR 소자(13) 측으로 돌출한 상태로 형성되고, 제2 자속 집중기(53)의 측벽의 선단부(53s)는, 상기 제3 자기 메모리 장치의 제조 방법에서 설명한 자속 집중기(53)와 마찬가지로 형성된다.
다음으로, 본 발명의 제5 자기 메모리 장치의 제조 방법에 따른 제1 실시예를, 도 43의 제조 공정 단면도에 의해서 설명한다. 여기서는, 상기 도 22에 의해서 설명한 제5 자기 메모리 장치의 제1 실시예의 제조 방법을 도시한다.
도 43에 도시한 바와 같이, 상기 도 27A 내지 도 27E, 상기 도 28A 내지 도 28E 등에 의해서 설명한 것과 마찬가지로 하여, 기입 워드선(11)의 주위에 자속 집중기(51)를 형성한다. 그 후, 기입 워드선(11) 상에, 스위칭 소자(14), TMR 소자(13)를, 예를 들면 기존의 제조 방법에 의해서 형성하면 된다.
이 제조 방법의 경우에도, 자속 집중기(51)의 측벽 부분은, 기입 워드선(11) 상면보다 TMR 소자(13) 측으로 돌출한 상태로 형성되고, 그 선단부(51s)는 TMR 소자(13)의 기억층(304)과 캡층(313)의 계면의 높이까지 형성하는 것이 가능하고, 예를 들면 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304)과 캡층(313)의 계면까지의 높이로 하는 것이 바람직하다. 또한, 자속 집중기(51)의 선단부(51s)와 TMR 소자(13)의 거리는, 자속 집중기(51)의 선단부(51s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200㎚ 이하로 하는 것이 바람직하다.
다음으로, 본 발명의 제5 자기 메모리 장치의 제조 방법에 따른 제2 실시예를, 도 44의 제조 공정 단면도에 의해서 설명한다. 여기서는, 상기 도 23에 의해서 설명한 제5 자기 메모리 장치의 제2 실시예의 제조 방법을 도시한다.
도 44에 도시한 바와 같이, 기입 워드선(11) 및 자속 집중기(51)를, 상기 도 31A 내지 도 31B에 의해서 설명한 것과 마찬가지로 하여 형성한다. 그 결과, 제2 절연막(42) 상에 고 투자율층(73) 및 절연막(92)을 개재하여 기입 워드선(11)이 형성됨과 함께, 기입 워드선(11)의 바닥부에 절연막(92)을 통하여, 기입 워드선(11)의 측벽에 절연막 측벽(91S)을 개재하여 자속 집중기(51)가 형성된다. 또한, 기입 워드선(11) 상에 스위칭 소자(14)가 형성되기 때문에, 그 후, 기입 워드선(11) 상에, 스위칭 소자(14), TMR 소자(13)를, 예를 들면 기존의 제조 방법에 의해서 형성하면 된다.
이 제조 방법의 경우에도, 자속 집중기(51)의 측벽의 선단부(51s)는, 상기 제5 자기 메모리 장치의 제조 방법에 있어서의 제1 실시예와 마찬가지의 위치에 형성된다.
다음으로, 본 발명의 제6 자기 메모리 장치의 제조 방법에 따른 제1 실시예를 설명한다. 여기서는, 상기 도 24에 의해서 설명한 제6 자기 메모리 장치의 제1 실시예의 제조 방법을 설명한다. 또한, 상기 제1 내지 제5 자기 메모리 장치의 제조 방법에서 설명한 구성 부품과 마찬가지의 것에는 동일 부호를 부여했다.
기입 워드선(11), 스위칭 소자(14), TMR 소자(13), TMR 소자(13)를 피복하는 제4 절연막(44) 등을, 예를 들면 기존의 방법으로 형성한 후, 혹은 상기 도 42, 도 43 등에 의해서 설명한 제조 방법으로 형성한 후, 상기 도 33B 내지 도 33C에 의해서 설명한 제조 방법에 의해, 비트선(12)을 형성함과 함께 비트선(12)의 상면에 고 투자율층(77)을 형성하고, 또한 비트선(12)의 측면에 고 투자율 측벽(78S)을 형성하고, 고 투자율층(77)과 이것에 접속되는 고 투자율 측벽(78S)으로 이루어지는 자 속 집중기(52)를 형성한다.
이 제조 방법의 경우에도, 제2 자기 메모리 장치의 제조 방법과 마찬가지로, 자속 집중기(52)의 측벽 부분은, 비트선(12)보다 TMR 소자(13) 측으로 돌출한 상태로 형성되고, 그 선단부(52s)는, TMR 소자(13)의 기억층(304)과 터널 절연막(303)의 계면의 높이까지 형성하는 것이 가능하고, 예를 들면 터널 절연막(303)과 기억층(304)의 계면으로부터 기억층(304)과 캡층(313)의 계면까지의 높이로 하는 것이 바람직하다. 또한, 자속 집중기(52)의 선단부(52s)와 TMR 소자(13)의 거리는, 자속 집중기(52)의 선단부(52s)에 집중시킨 전류 자속이 기억층(304)에 효율적으로 달하는 거리로 할 필요가 있는데, 예를 들면 그 거리는 200㎚ 이하로 하는 것이 바람직하다.
상기 제조 방법에 따르면, 고 투자율층(77)과 고 투자율 측벽(78S)으로 이루어지는 자속 집중기(52)에 의해 자기 회로가 형성되고, 비트선(12)에 의한 자장을 효과적으로 TMR 소자(13)의 기억층(304)에 집중시킬 수 있다.
또는, 상기 도 34A 내지 도 34E에 의해서 설명한 제조 방법에 의해 자속 집중기(52)를 형성해도 된다.
다음으로, 본 발명의 제6 자기 메모리 장치의 제조 방법에 따른 제2 실시예를 설명한다. 여기서는, 상기 제25도에 의해서 설명한 제6 자기 메모리 장치의 제2 실시예의 제조 방법을 설명한다. 또한, 상기 제1 내지 제5 자기 메모리 장치의 제조 방법에서 설명한 구성 부품과 마찬가지의 것에는 동일 부호를 부여했다.
기입 워드선(11), 스위칭 소자(14), TMR 소자(13), TMR 소자(13)를 피복하는 제4 절연막(44) 등을, 예를 들면 기존의 방법으로 형성한 후, 혹은 상기 도 42, 도 43 등에 의해서 설명한 제조 방법으로 형성한 후, 상기 도 35A 내지 도 35B에 의해서 설명한 제조 방법에 의해, 비트선(12)을 형성함과 함께, 비트선(12)의 하면에 고 투자율층(72), 비트선(12)의 상면에 고 투자율층(77)을 형성하고, 또한 비트선(12)의 측면에 고 투자율 측벽(78S)을 형성한다. 이와 같이 해서, 고 투자율층(72, 77)과 이들에 접속되는 고 투자율 측벽(78S)으로 이루어지는 자속 집중기(52)(52b)를 형성한다.
이 제조 방법의 경우에도, 자속 집중기(52)의 측벽의 선단부(52s)는, 상기 제6 자기 메모리 장치의 제조 방법에 있어서의 제1 실시예와 마찬가지의 위치에 형성된다.
상기 제조 방법에 따르면, 고 투자율층(72, 77)과 고 투자율 측벽(78S)으로 이루어지는 자속 집중기(52)에 의해 자기 회로가 형성되고, 비트선(12)에 의한 전류자장을 효과적으로 TMR 소자(13)의 기억층(304)에 집중시킬 수 있다.
다음으로, 본 발명의 제6 자기 메모리 장치의 제조 방법에 따른 제3 실시예를 설명한다. 여기서는, 상기 도 26에 의해서 설명한 제6 자기 메모리 장치의 제3 실시예의 제조 방법을 설명한다. 또한, 상기 제1 내지 제5 자기 메모리 장치의 제조 방법에서 설명한 구성 부품과 마찬가지의 것에는 동일 부호를 부여했다.
기입 워드선(11), 스위칭 소자(14), TMR 소자(13), TMR 소자(13)를 피복하는 제4 절연막(44) 등을, 예를 들면 기존의 방법으로 형성한 후, 혹은 상기 도 42, 도 43 등에 의해서 설명한 제조 방법으로 형성한 후, 상기 도 36A 내지 도 36B에 의해 서 설명한 제조 방법에 의해, 비트선(12)을 형성함과 함께, 비트선(12)의 상면에 절연막(96)을 개재하여 고 투자율층(77)을 형성하고, 또한 비트선(12)의 측면에 절연막 측벽(97S)을 개재하여 고 투자율 측벽(78S)을 형성한다. 이와 같이 해서, 고 투자율층(77)과 이것에 접속되는 고 투자율 측벽(78S)으로 이루어지는 자속 집중기(52)(52c)를 형성한다.
이 제조 방법의 경우에도, 자속 집중기(52)의 측벽의 선단부(52s)는, 상기 제6 자기 메모리 장치의 제조 방법에 있어서의 제1 실시예와 마찬가지의 위치에 형성된다.
상기 제조 방법에 따르면, 고 투자율층(77)과 고 투자율 측벽(78S)으로 이루어지는 자속 집중기(52)에 의해 자기 회로가 형성되고, 비트선(12)에 의한 자장을 효과적으로 TMR 소자(13)의 기억층(304)에 집중시킬 수 있다.
이상, 설명한 바와 같이 본 발명의 제1 자기 메모리 장치에 따르면, 제1 배선은, 적어도, 제1 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되어 있고, 제1 배선의 측면에 형성된 고 투자율층 중 적어도 한쪽은 제1 배선보다 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있기 때문에, 제1 배선으로부터 발생하는 전류 자계는 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있는 자속 집중기의 선단부에 의해 터널 자기 저항 소자의 기억층에 효율적으로 집중적으로 인가할 수 있다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 제1 배선의 일렉트로 마이그레이션에 대한 수명을 높일 수 있다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있으므로, 소자의 고집적화를 도모할 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과를 저감할 수 있으므로, 기입의 신뢰성 향상을 도모할 수 있다.
본 발명의 제2 자기 메모리 장치에 따르면, 제2 배선은, 적어도, 제2 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되어 있고, 제2 배선의 측면에 형성된 고 투자율층 중 적어도 한쪽은 제2 배선보다 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있기 때문에, 제2 배선으로부터 발생하는 전류 자계는 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있는 자속 집중기의 선단부에 의해 터널 자기 저항 소자의 기억층에 효율적으로 집중적으로 인가할 수 있다. 이 때문에 기입을 위한 전류값을 낮추는 것이 가능하게 되어, 소비 전류의 저감을 도모할 수 있음과 함께 제2 배선의 일렉트로 마이그레이션에 대한 수명을 높일 수 있다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있으므로, 소자의 고집적화를 도모할 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과를 저감할 수 있으므로, 기입의 신뢰성 향상을 도모할 수 있다.
본 발명의 제3 자기 메모리 장치에 따르면, 제1 배선과 터널 자기 저항 소자의 사이 및 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 자속 집중기가 형성되어 있기 때문에, 제1 자기 메모리 장치와 마찬 가지의 효과가 얻어진다.
상기 제4 자기 메모리 장치에서는, 제1 배선은, 적어도, 제1 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 제1 자속 집중기가 형성되고, 제1 배선과 터널 자기 저항 소자의 사이 및 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 제2 자속 집중기가 형성되어 있기 때문에, 제1 자기 메모리 장치와 마찬가지 효과가 얻어진다.
상기 제5 자기 메모리 장치에서는, 제1 배선은, 적어도, 제1 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되고, 제1 배선의 측면에 형성된 고 투자율층 중 적어도 한쪽은 제1 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있기 때문에, 소위 크로스 포인트형 자기 메모리 장치에서도 상기 제1 자기 메모리 장치와 마찬가지의 효과가 얻어진다.
상기 제6 자기 메모리 장치에서는, 제2 배선에, 적어도, 제2 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되어 있고, 제2 배선의 측면에 형성된 고 투자율층 중 적어도 한쪽은 제2 배선보다 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있기 때문에, 소위 크로스 포인트형 자기 메모리 장치에서도 상기 제2 자기 메모리 장치와 마찬가지의 효과가 얻어진다.
또한, 제1, 제2 및 제4 내지 제6 자기 메모리 장치에서는, 고 투자율층과 제 1 배선 혹은 제2 배선의 사이에 절연막이 형성되어 있는 것이어도, 각각의 자기 메모리 장치와 마찬가지의 효과를 얻을 수 있다.
본 발명의 제1 자기 메모리 장치의 제조 방법에 따르면, 적어도, 제1 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고, 제1 배선의 양 측면에 형성되는 고 투자율층 중 적어도 한쪽을 제1 배선보다 터널 자기 저항 소자 측으로 돌출한 상태로 형성하기 때문에, 제1 배선에 전류를 흘렸을 때에 발생하는 전류 자계를 터널 자기 저항 소자의 기억층에 효율적으로 집중할 수 있는 구성의 자속 집중기에 형성할 수 있다. 이와 같이 형성된 자속 집중기에 의해서, 제1 자기 메모리 장치는, 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 제1 배선의 일렉트로 마이그레이션에 대한 수명을 높일 수 있다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 소자의 고집적화를 도모할 수 있다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과를 저감할 수 있다.
본 발명의 제2 자기 메모리 장치의 제조 방법에 따르면, 적어도, 제2 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고, 제2 배선의 양 측면에 형성되는 고 투자율층 중 적어도 한쪽을 제2 배선보다 터널 자기 저항 소자 측으로 돌출한 상태로 형성하기 때문에, 제2 배선에 전류를 흘렸을 때에 발생하는 전류 자계를 터널 자기 저항 소자의 기억층에 효율적으로 집중할 수 있는 구성의 자속 집 중기에 형성할 수 있다. 이와 같이 형성된 자속 집중기에 의해서, 제2 자기 메모리 장치는, 기입을 위한 전류값을 낮추는 것이 가능해져, 소비 전류의 저감을 도모할 수 있음과 함께 제2 배선의 일렉트로 마이그레이션에 대한 수명을 높일 수 있다. 또한 구동 전류가 적게 들기 때문에 전류 구동 회로의 면적을 축소할 수 있고, 소자의 고집적화를 도모하는 것이 가능하다. 또한 누설 자계가 적어지기 때문에 인접 셀과의 간섭 효과를 저감할 수 있다.
본 발명의 제3 자기 메모리 장치의 제조 방법에 따르면, 제1 배선을 형성한 후에, 제1 배선과 터널 자기 저항 소자의 사이 및 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 포함하고 있기 때문에, 제1 배선에 전류를 흘렸을 때에 발생하는 전류 자계를 터널 자기 저항 소자의 기억층에 효율적으로 집중할 수 있는 구성의 자속 집중기를 형성할 수 있다. 따라서, 제1 자기 메모리 장치의 제조 방법과 마찬가지의 효과가 얻어진다.
본 발명의 제4 자기 메모리 장치의 제조 방법에서는, 적어도, 제1 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 제1 자속 집중기를 형성하는 공정과, 제1 배선을 형성한 후에, 제1 배선과 터널 자기 저항 소자의 사이 및 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 제2 자속 집중기를 형성하는 공정을 포함하고 있기 때문에, 제1 배선에 전류를 흘렸을 때에 발생하는 전류 자계를 제2 자속 집중기에 효율적으로 집중할 수 있는 구성의 제1 자속 집중기를 형성할 수 있다. 이와 동시에, 제1 자속 집중기를 개재하여 전달된 전류 자계를 터널 자기 저항 소자의 기억층에 효율적으로 집중할 수 있는 구성의 제2 자속 집중기를 형성할 수 있다. 따라서, 제1 자기 메모리 장치의 제조 방법과 마찬가지의 효과가 얻어진다.
상기 제5 자기 메모리 장치의 제조 방법에서는, 적어도, 제1 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고, 제1 배선의 양 측면에 형성되는 고 투자율층 중 적어도 한쪽을 제1 배선보다 터널 자기 저항 소자 측으로 돌출한 상태로 형성하기 때문에, 소위 크로스 포인트형의 자기 메모리 장치에서도, 상기 제1 자기 메모리 장치의 제조 방법과 마찬가지의 효과를 얻을 수 있다.
상기 제6 자기 메모리 장치의 제조 방법에서는, 적어도, 제2 배선의 양 측면 및 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고, 제2 배선의 양 측면에 형성되는 고 투자율층 중 적어도 한쪽을 제2 배선보다 터널 자기 저항 소자 측으로 돌출한 상태로 형성하기 때문에, 소위 크로스 포인트형의 자기 메모리 장치에서도, 상기 제2 자기 메모리 장치의 제조 방법과 마찬가지의 효과를 얻을 수 있다.
또한, 제1, 제2 및 제4 내지 제6 자기 메모리 장치의 제조 방법에서는, 고 투자율층과 제1 배선 혹은 제2 배선의 사이에 절연막을 형성하는 경우에도, 각각의 자기 메모리 장치의 제조 방법과 마찬가지의 효과를 얻을 수 있다.
Claims (38)
- 제1 배선과,상기 제1 배선과 입체적으로 교차하는 제2 배선과,상기 제1 배선과 전기적으로 절연되고, 상기 제2 배선과 전기적으로 접속되고, 상기 제1 배선과 상기 제2 배선의 교차 영역에 터널 절연층을 강자성체로 협지하여 구성되는 터널 자기 저항 소자를 구비하며,상기 강자성체의 스핀 방향이 평행 혹은 반평행에 따라서 저항값이 변화하는 것을 이용하여 정보를 기억하는 불휘발성의 자기 메모리 장치로서,상기 제1 배선에, 적어도, 상기 제1 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되고,상기 제1 배선의 측면에 형성된 상기 고 투자율층 중 적어도 한쪽은 상기 제1 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있는 것을 특징으로 하는 자기 메모리 장치.
- 제1항에 있어서,상기 자속 집중기는, 상기 터널 자기 저항 소자 측의 상기 제1 배선 표면에도 고 투자율층이 형성되어 있는 것을 특징으로 하는 자기 메모리 장치.
- 제1항에 있어서,상기 자속 집중기와 상기 제1 배선의 사이에 절연막이 형성되어 있는 것을 특징으로 하는 자기 메모리 장치.
- 제3항에 있어서,상기 자속 집중기는, 상기 터널 자기 저항 소자 측의 상기 제1 배선 표면에도 절연막을 개재하여 고 투자율층이 형성되어 있는 것을 특징으로 하는 자기 메모리 장치.
- 삭제
- 제1 배선과,상기 제1 배선과 입체적으로 교차하는 제2 배선과,상기 제1 배선과 전기적으로 절연되고, 상기 제2 배선과 전기적으로 접속되고, 상기 제1 배선과 상기 제2 배선의 교차 영역에 터널 절연층을 강자성체로 협지하여 구성되는 터널 자기 저항 소자를 구비하며,상기 강자성체의 스핀 방향이 평행 혹은 반평행에 따라서 저항값이 변화하는 것을 이용하여 정보를 기억하는 불휘발성의 자기 메모리 장치로서,상기 제2 배선에, 적어도, 상기 제2 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되어 있고,상기 제2 배선의 측면에 형성된 상기 고 투자율층 중 적어도 한쪽은 상기 제2 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있고,상기 자속 집중기는, 상기 터널 자기 저항 소자 측의 상기 제2 배선 표면에도 고 투자율층이 형성되어 있는 것을 특징으로 하는 자기 메모리 장치.
- 삭제
- 제1 배선과,상기 제1 배선과 입체적으로 교차하는 제2 배선과,상기 제1 배선과 전기적으로 절연되고, 상기 제2 배선과 전기적으로 접속되고, 상기 제1 배선과 상기 제2 배선의 교차 영역에 터널 절연층을 강자성체로 협지하여 구성되는 터널 자기 저항 소자를 구비하며,상기 강자성체의 스핀 방향이 평행 혹은 반평행에 따라서 저항값이 변화하는 것을 이용하여 정보를 기억하는 불휘발성의 자기 메모리 장치로서,상기 제2 배선에, 적어도, 상기 제2 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되어 있고,상기 제2 배선의 측면에 형성된 상기 고 투자율층 중 적어도 한쪽은 상기 제2 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있고,상기 자속 집중기와 상기 제2 배선의 사이에 절연막이 형성되어 있고,상기 자속 집중기는, 상기 터널 자기 저항 소자 측의 상기 제2 배선 표면에도 절연막을 개재하여 고 투자율층이 형성되어 있는 것을 특징으로 하는 자기 메모리 장치.
- 제1 배선과,상기 제1 배선과 입체적으로 교차하는 제2 배선과,상기 제1 배선과 전기적으로 절연되고, 상기 제2 배선과 전기적으로 접속되고, 상기 제1 배선과 상기 제2 배선의 교차 영역에 터널 절연층을 강자성체로 협지 하여 구성되는 터널 자기 저항 소자를 구비하며,상기 강자성체의 스핀 방향이 평행 혹은 반평행에 따라서 저항값이 변화하는 것을 이용하여 정보를 기억하는 불휘발성의 자기 메모리 장치로서,상기 제1 배선과 상기 터널 자기 저항 소자의 사이 및 상기 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 자속 집중기가 형성되어 있는 것을 특징으로 하는 자기 메모리 장치.
- 제1 배선과,상기 제1 배선과 입체적으로 교차하는 제2 배선과,상기 제1 배선과 전기적으로 절연되고, 상기 제2 배선과 전기적으로 접속되고, 상기 제1 배선과 상기 제2 배선의 교차 영역에 터널 절연층을 강자성체로 협지하여 구성되는 터널 자기 저항 소자를 구비하며,상기 강자성체의 스핀 방향이 평행 혹은 반평행에 따라서 저항값이 변화하는 것을 이용하여 정보를 기억하는 불휘발성의 자기 메모리 장치로서,상기 제1 배선에는, 적어도, 상기 제1 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에, 고 투자율층으로 이루어지는 제1 자속 집중기가 형성되고,상기 제1 배선과 상기 터널 자기 저항 소자의 사이 및 상기 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 제2 자속 집중기가 형성되어 있는 것을 특징으로 하는 자기 메모리 장치.
- 제10항에 있어서,상기 제1 자속 집중기와 상기 제1 배선의 사이에 절연막이 형성되어 있는 것을 특징으로 하는 자기 메모리 장치.
- 제10항에 있어서,상기 제1 배선의 측면에 형성된 상기 고 투자율층 중 적어도 한쪽은 상기 제1 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있는 것을 특징으로 하는 자기 메모리 장치.
- 제12항에 있어서,상기 제1 자속 집중기와 상기 제1 배선의 사이에 절연막이 형성되어 있는 것을 특징으로 하는 자기 메모리 장치.
- 제1 배선과,상기 제1 배선과 입체적으로 교차하는 제2 배선과,상기 제1 배선과 스위칭 소자를 개재하여 전기적으로 접속되고, 상기 제2 배선과 전기적으로 접속되고, 상기 제1 배선과 상기 제2 배선의 교차 영역에 터널 절연층을 강자성체로 협지하여 구성되는 터널 자기 저항 소자를 구비하며,상기 강자성체의 스핀 방향이 평행 혹은 반평행에 따라서 저항값이 변화하는 것을 이용하여 정보를 기억하는 불휘발성의 자기 메모리 장치로서,상기 제1 배선에, 적어도, 상기 제1 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되고,상기 제1 배선의 측면에 형성된 상기 고 투자율층 중 적어도 한쪽은 상기 제1 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있는 것을 특징으로 하는 자기 메모리 장치.
- 제14항에 있어서,상기 자속 집중기와 상기 터널 자기 저항 소자의 사이에 절연막이 형성되어 있는 것을 특징으로 하는 자기 메모리 장치.
- 삭제
- 제1 배선과,상기 제1 배선과 입체적으로 교차하는 제2 배선과,상기 제1 배선과 스위칭 소자를 개재하여 전기적으로 접속되고, 상기 제2 배선과 전기적으로 접속되고, 상기 제1 배선과 상기 제2 배선의 교차 영역에 터널 절연층을 강자성체로 협지하여 구성되는 터널 자기 저항 소자를 구비하며,상기 강자성체의 스핀 방향이 평행 혹은 반평행에 따라서 저항값이 변화하는 것을 이용하여 정보를 기억하는 불휘발성의 자기 메모리 장치로서,상기 제2 배선에, 적어도, 상기 제2 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되어 있고,상기 제2 배선의 측면에 형성된 상기 고 투자율층 중 적어도 한쪽은 상기 제2 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있고,상기 자속 집중기는, 상기 터널 자기 저항 소자 측의 상기 제2 배선 표면에도 고 투자율층이 형성되어 있는 것을 특징으로 하는 자기 메모리 장치.
- 삭제
- 제1 배선과,상기 제1 배선과 입체적으로 교차하는 제2 배선과,상기 제1 배선과 스위칭 소자를 개재하여 전기적으로 접속되고, 상기 제2 배선과 전기적으로 접속되고, 상기 제1 배선과 상기 제2 배선의 교차 영역에 터널 절연층을 강자성체로 협지하여 구성되는 터널 자기 저항 소자를 구비하며,상기 강자성체의 스핀 방향이 평행 혹은 반평행에 따라서 저항값이 변화하는 것을 이용하여 정보를 기억하는 불휘발성의 자기 메모리 장치로서,상기 제2 배선에, 적어도, 상기 제2 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기가 형성되어 있고,상기 제2 배선의 측면에 형성된 상기 고 투자율층 중 적어도 한쪽은 상기 제2 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성되어 있고,상기 자속 집중기는, 상기 터널 자기 저항 소자 측의 상기 제2 배선 표면에도 절연막을 개재하여 고 투자율층이 형성되어 있는 것을 특징으로 하는 자기 메모리 장치.
- 제1 배선을 형성하는 공정과,터널 절연층을 강자성체로 협지하여 이루어지고 상기 제1 배선과 전기적으로 절연된 터널 자기 저항 소자를 형성하는 공정과,상기 터널 자기 저항 소자와 전기적으로 접속하고 상기 터널 자기 저항 소자를 사이에 두고 상기 제1 배선과 입체적으로 교차하는 제2 배선을 형성하는 공정을 포함한 불휘발성의 자기 메모리 장치의 제조 방법으로서,적어도, 상기 제1 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고,상기 제1 배선의 양 측면에 형성되는 상기 고 투자율층 중 적어도 한쪽을 상기 제1 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성하는 것을 특징으로 하는 자기 메모리 장치의 제조 방법.
- 제20항에 있어서,상기 고 투자율층을 상기 터널 자기 저항 소자 측의 상기 제1 배선 표면에도 형성하는 것을 특징으로 하는 자기 메모리 장치의 제조 방법.
- 제20항에 있어서,상기 고 투자율층을, 상기 제1 배선에 대하여 절연막을 개재하여 형성하는 것을 특징으로 하는 자기 메모리 장치의 제조 방법.
- 제22항에 있어서,상기 고 투자율층을, 상기 터널 자기 저항 소자 측의 상기 제1 배선 표면에도 절연막을 개재하여 형성하는 것을 특징으로 하는 자기 메모리 장치의 제조 방법.
- 삭제
- 제1 배선을 형성하는 공정과,터널 절연층을 강자성체로 협지하여 이루어지고 상기 제1 배선과 전기적으로 절연된 터널 자기 저항 소자를 형성하는 공정과,상기 터널 자기 저항 소자와 전기적으로 접속하고 상기 터널 자기 저항 소자를 사이에 두고 상기 제1 배선과 입체적으로 교차하는 제2 배선을 형성하는 공정을 포함한 불휘발성의 자기 메모리 장치의 제조 방법으로서,적어도, 상기 제2 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고,상기 제2 배선의 양 측면에 형성되는 상기 고 투자율층 중 적어도 한쪽을 상기 제2 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성하고,상기 고 투자율층을, 상기 터널 자기 저항 소자 측의 상기 제2 배선 표면에도 형성하는 것을 특징으로 하는 자기 메모리 장치의 제조 방법.
- 삭제
- 제1 배선을 형성하는 공정과,터널 절연층을 강자성체로 협지하여 이루어지고 상기 제1 배선과 전기적으로 절연된 터널 자기 저항 소자를 형성하는 공정과,상기 터널 자기 저항 소자와 전기적으로 접속하고 상기 터널 자기 저항 소자를 사이에 두고 상기 제1 배선과 입체적으로 교차하는 제2 배선을 형성하는 공정을 포함한 불휘발성의 자기 메모리 장치의 제조 방법으로서,적어도, 상기 제2 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고,상기 제2 배선의 양 측면에 형성되는 상기 고 투자율층 중 적어도 한쪽을 상기 제2 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성하고,상기 고 투자율층을, 상기 제2 배선에 대하여 절연막을 개재하여 형성하고,상기 고 투자율층을, 상기 터널 자기 저항 소자 측의 상기 제2 배선 표면에도 절연막을 개재하여 형성하는 것을 특징으로 하는 자기 메모리 장치의 제조 방법.
- 제1 배선을 형성하는 공정과,터널 절연층을 강자성체로 협지하여 이루어지고 상기 제1 배선과 전기적으로 절연된 터널 자기 저항 소자를 형성하는 공정과,상기 터널 자기 저항 소자와 전기적으로 접속하고 상기 터널 자기 저항 소자를 사이에 두고 상기 제1 배선과 입체적으로 교차하는 제2 배선을 형성하는 공정을 포함한 불휘발성의 자기 메모리 장치의 제조 방법으로서,상기 제1 배선을 형성한 후에,상기 제1 배선과 상기 터널 자기 저항 소자의 사이 및 상기 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함한 것을 특징으로 하는 자기 메모리 장치의 제조 방법.
- 제1 배선을 형성하는 공정과,터널 절연층을 강자성체로 협지하여 이루어지고 상기 제1 배선과 전기적으로 절연된 터널 자기 저항 소자를 형성하는 공정과,상기 터널 자기 저항 소자와 전기적으로 접속하고 상기 터널 자기 저항 소자를 사이에 두고 상기 제1 배선과 입체적으로 교차하는 제2 배선을 형성하는 공정을 포함한 불휘발성의 자기 메모리 장치의 제조 방법으로서,적어도, 상기 제1 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 제1 자속 집중기를 형성하는 공정과,상기 제1 배선을 형성한 후에,상기 제1 배선과 상기 터널 자기 저항 소자의 사이 및 상기 터널 자기 저항 소자의 측면 측에, 절연막을 개재하여, 고 투자율층으로 이루어지는 제2 자속 집중기를 형성하는 공정을 더 포함한 것을 특징으로 하는 자기 메모리 장치의 제조 방법.
- 제29항에 있어서,상기 제1 자속 집중기의 고 투자율층을, 상기 제1 배선에 대하여 절연막을 개재하여 형성하는 것을 특징으로 하는 자기 메모리 장치의 제조 방법.
- 제29항에 있어서,상기 제1 배선의 양 측면에 형성되는 상기 제1 자속 집중기의 고 투자율층 중 적어도 한쪽을 상기 터널 자기 저항 소자 측의 상기 제1 배선 표면보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성하는 것을 특징으로 하는 자기 메모리 장치의 제조 방법.
- 제31항에 있어서,상기 제1 자속 집중기의 고 투자율층을, 상기 제1 배선에 대하여 절연막을 개재하여 형성하는 것을 특징으로 하는 자기 메모리 장치의 제조 방법.
- 제1 배선을 형성하는 공정과,상기 제1 배선 상에 스위칭 소자를 형성하는 공정과,터널 절연층을 강자성체로 협지하여 이루어지고 상기 제1 배선 상에 상기 스위칭 소자를 개재하여 접속되는 터널 자기 저항 소자를 형성하는 공정과,상기 터널 자기 저항 소자와 전기적으로 접속하고 상기 터널 자기 저항 소자를 사이에 두고 상기 제1 배선과 입체적으로 교차하는 제2 배선을 형성하는 공정을 포함한 불휘발성의 자기 메모리 장치의 제조 방법으로서,적어도, 상기 제1 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고,상기 제1 배선의 양 측면에 형성되는 상기 고 투자율층 중 적어도 한쪽을 상기 제1 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성하는 것을 특징으로 하는 자기 메모리 장치의 제조 방법.
- 제33항에 있어서,상기 고 투자율층을 상기 터널 자기 저항 소자 측의 상기 제1 배선 표면에도 형성하는 것을 특징으로 하는 자기 메모리 장치의 제조 방법.
- 삭제
- 제1 배선을 형성하는 공정과,상기 제1 배선 상에 스위칭 소자를 형성하는 공정과,터널 절연층을 강자성체로 협지하여 이루어지고 상기 제1 배선과 스위칭 소자를 개재하여 접속되는 터널 자기 저항 소자를 형성하는 공정과,상기 터널 자기 저항 소자와 전기적으로 접속하고 상기 터널 자기 저항 소자를 사이에 두고 상기 제1 배선과 입체적으로 교차하는 제2 배선을 형성하는 공정을 포함한 불휘발성의 자기 메모리 장치의 제조 방법으로서,적어도, 상기 제2 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고,상기 제2 배선의 양 측면에 형성되는 상기 고 투자율층 중 적어도 한쪽을 상기 제2 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성하고,상기 고 투자율층을, 상기 터널 자기 저항 소자 측의 상기 제2 배선 표면에도 형성하는 것을 특징으로 하는 자기 메모리 장치의 제조 방법.
- 삭제
- 제1 배선을 형성하는 공정과,상기 제1 배선 상에 스위칭 소자를 형성하는 공정과,터널 절연층을 강자성체로 협지하여 이루어지고 상기 제1 배선과 스위칭 소자를 개재하여 접속되는 터널 자기 저항 소자를 형성하는 공정과,상기 터널 자기 저항 소자와 전기적으로 접속하고 상기 터널 자기 저항 소자를 사이에 두고 상기 제1 배선과 입체적으로 교차하는 제2 배선을 형성하는 공정을 포함한 불휘발성의 자기 메모리 장치의 제조 방법으로서,적어도, 상기 제2 배선의 양 측면 및 상기 터널 자기 저항 소자에 대향하는 면과는 반대측의 면에 고 투자율층으로 이루어지는 자속 집중기를 형성하는 공정을 더 포함하고,상기 제2 배선의 양 측면에 형성되는 상기 고 투자율층 중 적어도 한쪽을 상기 제2 배선보다 상기 터널 자기 저항 소자 측으로 돌출한 상태로 형성하고,상기 고 투자율층을, 상기 제2 배선에 대하여 절연막을 개재하여 형성하고,상기 고 투자율층을, 상기 터널 자기 저항 소자 측의 상기 제2 배선 표면에도 절연막을 개재하여 형성하는 것을 특징으로 하는 자기 메모리 장치의 제조 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2002-00085095 | 2002-03-26 | ||
JP2002085095A JP3596536B2 (ja) | 2002-03-26 | 2002-03-26 | 磁気メモリ装置およびその製造方法 |
PCT/JP2003/003712 WO2003081672A1 (en) | 2002-03-26 | 2003-03-26 | Magnetic memory device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040091776A KR20040091776A (ko) | 2004-10-28 |
KR100980917B1 true KR100980917B1 (ko) | 2010-09-07 |
Family
ID=28449242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020047015345A KR100980917B1 (ko) | 2002-03-26 | 2003-03-26 | 자기 메모리 장치 및 그 제조 방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7345367B2 (ko) |
EP (1) | EP1489660A4 (ko) |
JP (1) | JP3596536B2 (ko) |
KR (1) | KR100980917B1 (ko) |
WO (1) | WO2003081672A1 (ko) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3906145B2 (ja) * | 2002-11-22 | 2007-04-18 | 株式会社東芝 | 磁気ランダムアクセスメモリ |
US6864551B2 (en) * | 2003-02-05 | 2005-03-08 | Applied Spintronics Technology, Inc. | High density and high programming efficiency MRAM design |
US20060069850A1 (en) * | 2004-09-30 | 2006-03-30 | Rudelic John C | Methods and apparatus to perform a reclaim operation in a nonvolatile memory |
US20060069849A1 (en) * | 2004-09-30 | 2006-03-30 | Rudelic John C | Methods and apparatus to update information in a memory |
US7285835B2 (en) * | 2005-02-24 | 2007-10-23 | Freescale Semiconductor, Inc. | Low power magnetoelectronic device structures utilizing enhanced permeability materials |
JP2006344750A (ja) * | 2005-06-08 | 2006-12-21 | Tdk Corp | 磁気メモリ |
JP5062481B2 (ja) * | 2005-08-15 | 2012-10-31 | 日本電気株式会社 | 磁気メモリセル、磁気ランダムアクセスメモリ、及び磁気ランダムアクセスメモリへのデータ読み書き方法 |
US7936627B2 (en) * | 2006-12-12 | 2011-05-03 | Nec Corporation | Magnetoresistance effect element and MRAM |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020034094A1 (en) * | 2000-07-27 | 2002-03-21 | Yoshiaki Saito | Magnetic memory |
KR20070025015A (ko) * | 2005-08-31 | 2007-03-08 | 삼성전자주식회사 | 비휘발성 메모리 소자 및 그 제조 방법. |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5659499A (en) * | 1995-11-24 | 1997-08-19 | Motorola | Magnetic memory and method therefor |
DE19836567C2 (de) * | 1998-08-12 | 2000-12-07 | Siemens Ag | Speicherzellenanordnung mit Speicherelementen mit magnetoresistivem Effekt und Verfahren zu deren Herstellung |
US6165803A (en) | 1999-05-17 | 2000-12-26 | Motorola, Inc. | Magnetic random access memory and fabricating method thereof |
US20020055190A1 (en) * | 2000-01-27 | 2002-05-09 | Anthony Thomas C. | Magnetic memory with structures that prevent disruptions to magnetization in sense layer |
US6211090B1 (en) * | 2000-03-21 | 2001-04-03 | Motorola, Inc. | Method of fabricating flux concentrating layer for use with magnetoresistive random access memories |
JP2002246566A (ja) | 2001-02-14 | 2002-08-30 | Sony Corp | 磁気メモリ装置 |
JP2003031773A (ja) | 2001-07-13 | 2003-01-31 | Canon Inc | 磁気メモリ素子及びその記録方法、並びにその磁気メモリ素子を用いたメモリ |
US6812040B2 (en) * | 2002-03-12 | 2004-11-02 | Freescale Semiconductor, Inc. | Method of fabricating a self-aligned via contact for a magnetic memory element |
US6783994B2 (en) * | 2002-04-26 | 2004-08-31 | Freescale Semiconductor, Inc. | Method of fabricating a self-aligned magnetic tunneling junction and via contact |
US6724652B2 (en) * | 2002-05-02 | 2004-04-20 | Micron Technology, Inc. | Low remanence flux concentrator for MRAM devices |
JP2004040006A (ja) * | 2002-07-08 | 2004-02-05 | Sony Corp | 磁気メモリ装置およびその製造方法 |
US6885074B2 (en) * | 2002-11-27 | 2005-04-26 | Freescale Semiconductor, Inc. | Cladded conductor for use in a magnetoelectronics device and method for fabricating the same |
US6798004B1 (en) * | 2003-04-22 | 2004-09-28 | Freescale Semiconductor, Inc. | Magnetoresistive random access memory devices and methods for fabricating the same |
-
2002
- 2002-03-26 JP JP2002085095A patent/JP3596536B2/ja not_active Expired - Fee Related
-
2003
- 2003-03-26 EP EP03715413A patent/EP1489660A4/en not_active Withdrawn
- 2003-03-26 KR KR1020047015345A patent/KR100980917B1/ko not_active IP Right Cessation
- 2003-03-26 WO PCT/JP2003/003712 patent/WO2003081672A1/ja active Application Filing
- 2003-03-26 US US10/508,924 patent/US7345367B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020034094A1 (en) * | 2000-07-27 | 2002-03-21 | Yoshiaki Saito | Magnetic memory |
KR20070025015A (ko) * | 2005-08-31 | 2007-03-08 | 삼성전자주식회사 | 비휘발성 메모리 소자 및 그 제조 방법. |
Also Published As
Publication number | Publication date |
---|---|
EP1489660A1 (en) | 2004-12-22 |
EP1489660A4 (en) | 2005-09-28 |
US7345367B2 (en) | 2008-03-18 |
WO2003081672A1 (en) | 2003-10-02 |
US20050162970A1 (en) | 2005-07-28 |
JP3596536B2 (ja) | 2004-12-02 |
JP2003282836A (ja) | 2003-10-03 |
KR20040091776A (ko) | 2004-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1364417B1 (en) | Keepers for mram electrodes | |
US7247506B2 (en) | Method for producing magnetic memory device | |
JP4583997B2 (ja) | 磁気メモリセルアレイおよびその製造方法 | |
JP2004040006A (ja) | 磁気メモリ装置およびその製造方法 | |
JP2007273493A (ja) | 磁気メモリ装置及びその製造方法 | |
US20050270828A1 (en) | Magnetic memory device and manufacturing method thereof | |
US6630703B2 (en) | Magnetoresistive memory cell configuration and method for its production | |
US8481339B2 (en) | Magnetic memory and manufacturing method thereof | |
JP2011166015A (ja) | 半導体装置および半導体装置の製造方法 | |
US6927073B2 (en) | Methods of fabricating magnetoresistive memory devices | |
JP2006278645A (ja) | 磁気メモリ装置 | |
KR100980917B1 (ko) | 자기 메모리 장치 및 그 제조 방법 | |
KR20040108575A (ko) | 자기기억장치 및 자기기억장치의 제조방법 | |
JP2003282837A (ja) | 磁気メモリ装置およびその製造方法 | |
JP2006173472A (ja) | 磁気記憶装置およびその製造方法 | |
JP2005175374A (ja) | 磁気メモリ装置及びその製造方法 | |
JP2007123512A (ja) | 磁気記憶装置 | |
JP2004235510A (ja) | 磁気記憶装置およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
J201 | Request for trial against refusal decision | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |