JP2004040006A - 磁気メモリ装置およびその製造方法 - Google Patents

磁気メモリ装置およびその製造方法 Download PDF

Info

Publication number
JP2004040006A
JP2004040006A JP2002198133A JP2002198133A JP2004040006A JP 2004040006 A JP2004040006 A JP 2004040006A JP 2002198133 A JP2002198133 A JP 2002198133A JP 2002198133 A JP2002198133 A JP 2002198133A JP 2004040006 A JP2004040006 A JP 2004040006A
Authority
JP
Japan
Prior art keywords
wiring
insulating film
forming
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002198133A
Other languages
English (en)
Inventor
Makoto Motoyoshi
元吉 真
Minoru Igarashi
五十嵐 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002198133A priority Critical patent/JP2004040006A/ja
Priority to US10/612,842 priority patent/US6992342B2/en
Priority to KR1020030045949A priority patent/KR20040005640A/ko
Publication of JP2004040006A publication Critical patent/JP2004040006A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】1選択素子と1TMR素子で構成されるMRAMの利点であるアクセス速度の速さとクロスポイント型のMRAMの利点であるセル面積の縮小化とを兼ね備えた磁気メモリ装置の提供を図る。
【解決手段】書き込みワード線(第1配線)11とビット線(第2配線)12とが立体的に交差する領域に、書き込みワード線11と絶縁されビット線12と接続するTMR素子13を備えた磁気メモリ装置において、TMR素子13と書き込みワード線11より下層に設けられた第2ランディングパッド(配線層)33とを接続するもので、書き込みワード線11と絶縁された状態で書き込みワード線11内を貫通する接続孔61と、TMR素子13と第2ランディングパッド33とを接続するもので接続孔61内にサイドウォール絶縁膜62を介して形成されたコンタクト63とを備えたものである。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、磁気メモリ装置およびその製造方法に関し、詳しくはトンネル磁気抵抗素子を構成する強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記録する不揮発性の磁気メモリ装置およびその製造方法に関する。
【0002】
【従来の技術】
情報通信機器、特に携帯端末などの個人用小型機器の飛躍的な普及にともない、これを構成するメモリ素子やロジック素子等の素子には、高集積化、高速化、低消費電力化など、一層の高性能化が要請されている。特に不揮発性メモリはユビキタス時代に必要不可欠の素子と考えられている。
【0003】
例えば、電源の消耗やトラブル、サーバーとネットワークが何らかの障害により切断された場合であっても、不揮発性メモリは個人の重要な情報を保護することができる。そして、不揮発性メモリの高密度化、大容量化は、可動部分の存在により本質的に小型化が不可能なハードディスクや光ディスクを置き換える技術としてますます重要になってきている。
【0004】
また、最近の携帯機器は不要な回路ブロックをスタンバイ状態にしてでき得る限り消費電力を抑えようと設計されているが、高速ネットワークメモリと大容量ストレージメモリを兼ねることができる不揮発性メモリが実現できれば、消費電力とメモリとの無駄を無くすことができる。また、電源を入れると瞬時に起動できる、いわゆるインスタント・オン機能も高速の大容量不揮発性メモリが実現できれば可能になってくる。
【0005】
不揮発性メモリとしては、半導体を用いたフラッシュメモリや、強誘電体を用いたFRAM(Ferro electric Random Access Memory)などがあげられる。しかしながら、フラッシュメモリは、書き込み速度がμ秒の桁であるため遅いという欠点がある。一方、FRAMにおいては、書き換え可能回数が1012〜1014で完全にスタティックランダムアクセスメモリやダイナミックランダムアクセスメモリに置き換えるには耐久性が低いという問題が指摘されている。また、強誘電体キャパシタの微細加工が難しいという課題も指摘されている。
【0006】
これらの欠点を有さない不揮発性メモリとして注目されているのが、MRAM(Magnetic Random Access Memory)とよばれる磁気メモリである。初期のMRAMはJ.M.Daughton,“Thin Solid Films”Vol.216(1992),p.162−168で報告されているAMR(Anisotropic Magneto Resistive)効果やD.D.Tang et al.,“IEDM Technical Digest”(1997),p.995−997で報告されているGMR(Giant Magneto Resistance)効果を使ったスピンバルブを基にしたものであった。しかし、負荷のメモリセル抵抗が10Ω〜100Ωと低いため、読み出し時のビットあたりの消費電力が大きく大容量化が難しいという欠点があった。
【0007】
一方TMR(Tunnel Magneto Resistance)効果はR.Meservey et al.,“Pysics Reports”Vol.238(1994),p.214−217で報告されているように抵抗変化率が室温で1%〜2%しかなかったが、近年T.Miyazaki et al.,“J.Magnetism & Magnetic Material”Vol.139(1995),L231で報告されているように抵抗変化率20%近く得られるようになり、TMR効果を使ったMRAMに注目が集まるようになってきている。
【0008】
MRAMは、構造が単純であるため高集積化が容易であり、また磁気モーメントの回転により記録を行うために、書き換え回数が大であると予測されている。またアクセス時間についても、非常に高速であることが予想され、既に100MHzで動作可能であることが、R.Scheuerlein et al.,“ISSCC Digest of Technical Papers”(Feb. 2000),p.128−129で報告されている。
【0009】
次に、従来型の1選択素子と1TMR素子(1T1J構造)とで構成されるMRAMを図30の概略構成断面図によって説明する。図30では、選択素子にMOSトランジスタを用いた例を示す。
【0010】
図30に示すように、シリコン基板21には選択用のMOSトランジスタ24が形成されている。このMOSトランジスタ24の一方の拡散層28には、下層より順に、コンタクト部30、第1ランディングパッド31、コンタクト部32、第2ランディングパッド33、コンタクト部34、第3ランディングパッド35およびコンタクト部36を介して、TMR(Tunneling Magneto Resistance)素子13の引き出し電極137の一端が接続されていて、この引き出し電極137の他端はTMR素子13の反強磁性体層131に接続されている。この引き出し電極137は、例えば導電体で形成され、後に説明する反強磁性体層131を引き出し電極として用いる、もしくは反強磁性体層131の一部を引き出し電極として用いることも可能である。
【0011】
上記MOSトランジスタ24の他方の拡散層27には、タングステンプラグからなるコンタクト部29を介してセンス線15が接続されている。
【0012】
上記TMR素子13は、トンネル絶縁層133を強磁性体層の磁化固定層132と磁化が比較的容易に回転する記憶層134とで挟んで構成され、磁化固定層132下面には反強磁性体層131が接して形成されている。またTMR素子13の記憶層134上にはキャップ層135、電極層136が形成され、この電極層136にビット線12が接続されている。TMR素子13の引き出し電極137下には第4絶縁膜44を介して書き込みワード線11が形成されている。この書き込みワード線11とビット線12とはTMR素子13を挟んで立体的に直交するように形成されている。
【0013】
上記記憶層134と磁化固定層132とは、例えば、ニッケル、鉄もしくはコバルト、またニッケル、鉄およびコバルトのうちの少なくとも2種からなる合金、またはその合金を主成分とする強磁性体が用いられる。上記磁化固定層132は、上記反強磁性体層131と接する状態に形成されていて、これらの層間に働く交換相互作用によって、磁化固定層132は、強い一方向の磁気異方性を持つことになる。
【0014】
上記反強磁性体層131は、例えば、鉄・マンガン合金、ニッケル・マンガン合金、白金マンガン合金、イリジウム・マンガン合金、ロジウム・マンガン合金、コバルト酸化物およびニッケル酸化物のうちの1種を用いることができる。
【0015】
上記トンネル絶縁層133は、例えば、酸化アルミニウム、酸化マグネシウム、酸化シリコン、窒化アルミニウム、窒化マグネシウム、窒化シリコン、酸化窒化アルミニウム、酸化窒化マグネシウム、酸化窒化シリコン等の絶縁体からなり、記憶層134と磁化固定層132との磁気的結合を切るとともに、トンネル電流を流すための役割を担う。これらの磁性膜および導体膜は主にスパッタリング法により形成される。トンネル絶縁層133は、スパッタリングで形成された金属膜を酸化、窒化もしくは酸化窒化させることにより得ることができる。
【0016】
さらにキャップ層135は、TMR素子13と別のTMR素子13とを接続する配線との相互拡散防止、接触抵抗低減および記憶層134の酸化防止という機能を有する。通常、銅、窒化タンタル、タンタル、窒化チタン等の材料により形成されている。
【0017】
次に上記磁気メモリ装置の動作を説明する。上記TMR素子13では、磁気抵抗効果によるトンネル電流変化を検出して情報を読み出すが、その効果は記憶層134と磁化固定層132との相対磁化方向に依存する。
【0018】
TMR素子13へのデータの書き込みは、ビット線12および書き込みワード線11に電流を流し、それから発生する合成磁界によって記憶層134の磁化方向を変えて「1」または「0」を記録する。読み出しは磁気抵抗効果によるトンネル電流変化を検出して行う。記憶層134と磁化固定層132の磁化方向が等しい場合を低抵抗(これを例えば「0」とする)とし、記憶層134と磁化固定層132の磁化方向が反平行の場合を高抵抗(これを例えば「1」とする)とする。
【0019】
ビット線12を流れる書き込み電流によって記憶層134の容易軸方向磁界(HEA )が作られ、書き込みワード線11を流れる電流によって困難軸方向磁界(HHA )が作られる。
【0020】
図31に示すアステロイド曲線は、印加された容易軸方向磁界HEA および困難軸方向磁界HHA による記憶層磁化方向の反転しきい値を示している。アステロイド曲線外部A、Bに相当する合成磁界ベクトルが発生すると、磁界反転が起こり、データの書き込みができる。アステロイド曲線内部Cの合成磁界ベクトルは、その電流双安定状態の一方からセルを反転させることはない。また、電流を流しているワード線およびビット線の交点以外のセルにおいても、ワード線もしくはビット線単独で発生する磁界が印加されるため、それらの大きさが一方向反転磁界HK 以上の場合(領域B)は、交点以外のセルの磁化方向も反転するので、合成磁界が斜線で示す領域Aにある場合のみ、選択されたセルを選択書き込みが可能となる。
【0021】
以上のように、MRAMでは、ビット線および書き込みワード線からなる格子の交点にメモリセルが配置されている。MRAMの場合、書き込みワード線とビット線とを使用することで、アステロイド磁化反転特性を利用し、選択的に個々のメモリセルに書き込むことが一般的である。
【0022】
単一の記憶領域における合成磁化は、それに印加された容易軸方向磁界HEA と困難軸方向磁界HHA とのベクトル合成によって決まる。ビット線を流れる電流はセルに容易軸方向の磁界(HEA )を印加し、書き込みワード線を流れる電流はセルに困難軸方向の磁界(HHA )を印加する。
【0023】
【発明が解決しようとする課題】
MRAMは主に2種類のタイプに分かれる。前記図30によって説明した1選択素子と1TMR素子(1T1J構造)とからなるMRAMの他に、図32に示すクロスポイント型MRAMが知られている。
【0024】
図32に示すように、クロスポイント型MRAM301は、立体的に直交する書き込みワード線311とビット線312との間に、強磁性体層332、334でトンネル絶縁層333が挟まれていて一方の強磁性体層332に反強磁性体層331が接続されているTMR素子313と、反強磁性体層331側にn層を接続させてなるpn接合ダイオード314とを設置することで実現できる。
【0025】
いま、図33に示すように、デザインルール上の書き込みワード線311とビット線312の各配線幅(=配線間隔)の最小寸法をFとすると、クロスポイント型MRAM301は4F2 なるセル面積で実現できる。各TMR素子313に対してスイッチング素子がないため、アクセス速度は劣るが大容量のメモリを作ることができる。
【0026】
一方、前記図30に示した1選択素子と1TMR素子(1T1J構造)、またはこれを相補型に用いた2選択素子と2TMR素子(2T2J構造)からなるMRAMセルでは、直交する書き込みワード線とビット線との2本の配線のうち、書き込みワード線はTMR素子と電気的に絶縁されていなければならない。このため、TMR素子の磁化固定層と選択素子のMOSトランジスタの拡散層とを接続させるためには、TMR素子直下に形成される書き込みワード線を迂回して、引き出し電極、接続孔等を設ける必要があった。
【0027】
1選択素子と1TMR素子のMRAMでは、図34に示すように、デザインルール上の書き込みワード線11とビット線12の各配線幅(=配線間隔)の最小寸法をFとすると、セルの大きさは、書き込みワード線11とビット線12との間の領域にトンネル磁気抵抗素子13を設け、ビット線12と選択素子のトランジスタの拡散層(図示せず)とを接続するコンタクトCを設ける必要があるため、セルを構成するのに必要な最小の長さは、ビット線12の配設方向に4F、書き込みワード線11の配設方向に2Fとなる。したがって、セル面積を8F2 より小さくすることはできない。なお、図面に示した構成では、上記選択素子のトランジスタのゲート電極24が書き込みワード線11の下方側方に形成されている。
【0028】
以上、説明したように、1選択素子と1TMR素子のMRAMは、先に説明したクロスポイント型MRAMよりもアクセス速度が劣ることはないが、メモリセルアレイの集積度が1/2になるという問題点があった。そこで、1選択素子と1TMR素子のMRAMのアクセス速度を維持するとともに、クロスポイント型MRAMと同等なセル面積を実現することで高集積化が図れる1選択素子と1TMR素子のMRAMを提供する。
【0029】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされた磁気メモリ装置およびその製造方法である。
【0030】
本発明の磁気メモリ装置は、第1配線と、前記第1配線と立体的に交差する第2配線と、前記第1配線と電気的に絶縁され、前記第2配線と電気的に接続されたもので、前記第1配線と前記第2配線との交差領域にトンネル絶縁層を強磁性体で挟んで構成されるトンネル磁気抵抗素子とを備えたもので、前記強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記憶する不揮発性の磁気メモリ装置において、前記トンネル磁気抵抗素子と前記第1配線より下層に設けられた配線層とを接続するもので、前記第1配線と絶縁された状態でかつ前記第1配線内を貫通した状態に設けられた接続孔と、前記トンネル磁気抵抗素子の前記第2配線が接続される側とは反対側と前記第1配線より下層に設けられた配線層とを接続するもので前記接続孔内に形成されたコンタクト部とを備えたものである。
【0031】
上記磁気メモリ装置では、第1配線と絶縁された状態にかつ第1配線内を貫通した状態に設けられた接続孔と、トンネル磁気抵抗素子の第2配線が接続される側とは反対側と第1配線より下層に設けられた配線層とを接続するもので接続孔内に形成されたコンタクト部とを備えたことから、トンネル磁気抵抗素子直下にコンタクト部が形成される。このため、セル面積に占めるコンタクト部の面積を新たに創出することなく、トンネル磁気抵抗素子のセル面積を利用して、トンネル磁気抵抗素子と第1配線より下層に設けられた配線層との接続が行える。したがって、1選択素子と1TMR素子とで構成されるMRAMにおいて、従来の1選択素子と1TMR素子型のMRAMと同等のアクセス速度を維持できるとともに、従来よりもセル面積の縮小化が可能になる。このセル面積はクロスポイント型MRAMと同等のセル面積に縮小化が可能になる。
【0032】
本発明の磁気メモリ装置の第1製造方法は、表面が絶縁性の基体上に第1配線を形成する工程と、前記第1配線を覆う絶縁膜を形成する工程と、前記絶縁膜より前記第1配線内を貫通して前記基体に形成されている配線層に達する接続孔を形成する工程と、前記接続孔の側壁にサイドウォール絶縁膜を形成する工程と、前記接続孔内にコンタクト部を形成する工程と、トンネル絶縁層を強磁性体で挟んでなるもので、前記第1配線と電気的に絶縁されかつ前記コンタクト部に接続されるトンネル磁気抵抗素子を形成する工程と、前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程とを備えている。
【0033】
上記磁気メモリ装置の第1製造方法では、絶縁膜より第1配線内を貫通して第1配線より下層の基体に形成されている配線層に達する接続孔を形成する工程と、接続孔の側壁にサイドウォール絶縁膜を形成する工程と、接続孔内にコンタクト部を形成する工程と備えていることから、トンネル磁気抵抗素子直下にコンタクト部を形成することが可能になる。このため、セル面積に占めるコンタクト部の面積を新たに創出することなく、トンネル磁気抵抗素子のセル面積を利用して、トンネル磁気抵抗素子と他の配線との接続が行える。したがって、1選択素子と1TMR素子とで構成されるMRAMにおいて、従来の1選択素子と1TMR素子型のMRAMと同等のアクセス速度を維持できるとともに、従来よりもセル面積の縮小化が可能になる。このセル面積はクロスポイント型MRAMと同等のセル面積に縮小化が可能になる。
【0034】
本発明の磁気メモリ装置の第2製造方法は、表面が絶縁性の基体上に高透磁率膜、第1配線層および絶縁膜とを下層より順に形成する工程と、前記絶縁膜より前記第1配線層および高透磁率膜を貫通して前記基体に形成されている配線層に達する接続孔を形成する工程と、前記接続孔の側壁にサイドウォール絶縁膜を形成する工程と、前記接続孔内にコンタクト部を形成する工程と、前記絶縁膜上にダミー膜を形成する工程と、前記ダミー膜から前記高透磁率膜までを第1配線の形状に加工する工程と、前記第1配線の形状に加工した積層体の側壁に高透磁率材料からなる高透磁率サイドウォールを形成して、前記高透磁率膜と前記高透磁率サイドウォールとで磁束集中器を形成する工程と、前記ダミー膜を除去する工程と、前記絶縁膜上に、トンネル絶縁層を強磁性体で挟んでなるもので前記コンタクト部に接続されるトンネル磁気抵抗素子を形成する工程と、前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程とを備えている。
【0035】
上記磁気メモリ装置の第2製造方法では、書き込みワード線、磁束集中器等を貫通する接続孔とその内部にサイドウォール絶縁膜を介してコンタクト部を形成する工程を備えていることから、前記第1製造方法と同様に、トンネル磁気抵抗素子直下にコンタクト部を形成することが可能になる。このため、セル面積に占めるコンタクト部の面積を新たに創出することなく、トンネル磁気抵抗素子のセル面積を利用して、トンネル磁気抵抗素子と他の配線との接続が行える。したがって、1選択素子と1TMR素子とで構成されるMRAMにおいて、従来の1選択素子と1TMR素子型のMRAMと同等のアクセス速度を維持できるとともに、従来よりもセル面積の縮小化が可能になる。このセル面積はクロスポイント型MRAMと同等のセル面積に縮小化が可能になる。
【0036】
さらに第1配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率膜からなる磁束集中器を形成する工程を備えていることから、第1配線に電流を流した際に発せられる電流磁界は、第1配線の両側面に形成される高透磁率膜によって、トンネル磁気抵抗素子の記憶層(記録層ともいう)に効率よく集中されるようになる。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第1配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0037】
本発明の磁気メモリ装置の第3製造方法は、表面が絶縁性の基体上に高透磁率膜、第1配線層および第1絶縁膜とを下層より順に形成する工程と、前記第1絶縁膜より前記第1配線層および高透磁率膜を貫通して前記基体に形成されている配線層に達する接続孔を形成する工程と、前記接続孔の側壁にサイドウォール絶縁膜を形成する工程と、前記接続孔内にコンタクト部を形成する工程と、前記第1絶縁膜から前記高透磁率膜までを第1配線の形状に加工する工程と、前記第1配線の形状に加工した積層体の側壁に高透磁率材料からなる第1高透磁率サイドウォールを形成して、前記高透磁率膜と前記第1高透磁率サイドウォールとで磁束集中器を形成する工程と、第1絶縁膜、コンタクト部および磁束集中器を覆う第2絶縁膜を形成した後、前記第2絶縁膜を平坦化するとともに前記磁束集中器の先端部を露出させる工程と、前記第1絶縁膜上に、トンネル絶縁層を強磁性体で挟んでなるもので前記コンタクト部に接続されるトンネル磁気抵抗素子を形成する工程と、前記TMR素子の側壁にサイドウォール絶縁膜を形成する工程と、前記TMR素子の側壁に前記サイドウォール絶縁膜を介して、前記磁束集中器の先端部に接続される第2高透磁率サイドウォールを形成する工程と、前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程とを備えている。
【0038】
上記磁気メモリ装置の第3製造方法では、書き込みワード線、磁束集中器等を貫通する接続孔とその内部にサイドウォール絶縁膜を介してコンタクト部を形成する工程を備えていることから、前記第1製造方法と同様に、トンネル磁気抵抗素子直下にコンタクト部を形成することが可能になる。このため、セル面積に占めるコンタクト部の面積を新たに創出することなく、トンネル磁気抵抗素子のセル面積を利用して、トンネル磁気抵抗素子と他の配線との接続が行える。したがって、1選択素子と1TMR素子とで構成されるMRAMにおいて、従来の1選択素子と1TMR素子型のMRAMと同等のアクセス速度を維持できるとともに、従来よりもセル面積の縮小化が可能になる。このセル面積はクロスポイント型MRAMと同等のセル面積に縮小化が可能になる。
【0039】
さらに第1配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率膜からなる磁束集中器を形成する工程を備えていることから、第1配線に電流を流した際に発せられる電流磁界は、第1配線の両側面に形成される高透磁率膜によって、トンネル磁気抵抗素子の記憶層(記録層ともいう)に効率よく集中されるようになる。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第1配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0040】
本発明の磁気メモリ装置の第4製造方法は、表面が絶縁性の基体上に第1配線を形成する工程と、前記第1配線を覆う第1絶縁膜を形成する工程と、前記第1絶縁膜上に高透磁率膜および第2絶縁膜とを下層より順に形成する工程と、前記第2絶縁膜より前記高透磁率膜、第1絶縁膜および第1配線を貫通して前記基体に形成されている配線層に達する接続孔を形成する工程と、前記接続孔の側壁にサイドウォール絶縁膜を形成する工程と、前記接続孔内にコンタクト部を形成する工程と、前記第2絶縁膜上にダミー膜を形成する工程と、前記第1配線上に前記ダミー膜、第2絶縁膜および高透磁率膜を第1配線の形状に加工する工程と、前記第1配線の形状に加工した積層体の側壁に高透磁率材料からなる高透磁率サイドウォールを形成して、前記高透磁率膜と前記高透磁率サイドウォールとで磁束集中器を形成する工程と、前記ダミー膜を除去する工程と、前記第2絶縁膜上に、トンネル絶縁層を強磁性体で挟んでなるもので前記コンタクト部に接続されるトンネル磁気抵抗素子を形成する工程と、前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程とを備えている。
【0041】
上記磁気メモリ装置の第4製造方法では、書き込みワード線、磁束集中器等を貫通する接続孔とその内部にサイドウォール絶縁膜を介してコンタクト部を形成する工程を備えていることから、前記第1製造方法と同様に、トンネル磁気抵抗素子直下にコンタクト部を形成することが可能になる。このため、セル面積に占めるコンタクト部の面積を新たに創出することなく、トンネル磁気抵抗素子のセル面積を利用して、トンネル磁気抵抗素子と他の配線との接続が行える。したがって、1選択素子と1TMR素子とで構成されるMRAMにおいて、従来の1選択素子と1TMR素子型のMRAMと同等のアクセス速度を維持できるとともに、従来よりもセル面積の縮小化が可能になる。このセル面積はクロスポイント型MRAMと同等のセル面積に縮小化が可能になる。
【0042】
さらに第1配線を形成した後に、第1配線とトンネル磁気抵抗素子との間およびトンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率膜からなる磁束集中器を形成する工程を備えていることから、第1配線に電流を流した際に発せられる電流磁界がトンネル磁気抵抗素子の側面下部側の磁束集中器によって、トンネル磁気抵抗素子の記憶層(記録層ともいう)に効率よく集中されるようになる。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第1配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0043】
本発明の磁気メモリ装置の第5製造方法は、表面が絶縁性の基体上に第1高透磁率膜、第1配線層および第1絶縁膜とを下層より順に形成する工程と、前記第1絶縁膜から前記第1高透磁率膜までを第1配線の形状に加工する工程と、前記第1配線の形状に加工した積層体の側壁に高透磁率材料からなる高透磁率サイドウォールを形成して、前記第1高透磁率膜と前記高透磁率サイドウォールとで第1磁束集中器を形成する工程と、前記第1磁束集中器および第1絶縁膜を覆う第2絶縁膜を形成する工程と、前記第2絶縁膜上に第2高透磁率膜および第3絶縁膜とを下層より順に形成する工程と、前記第3絶縁膜より前記第2高透磁率膜、第2絶縁膜、第1絶縁膜、第1配線および第1磁束集中器を貫通して前記基体に形成されている配線層に達する接続孔を形成する工程と、前記接続孔の側壁にサイドウォール絶縁膜を形成する工程と、前記接続孔内にコンタクト部を形成する工程と、前記第3絶縁膜上にダミー膜を形成する工程と、前記第2配線上に前記ダミー膜、第3絶縁膜および第2高透磁率膜を第1配線の形状に加工する工程と、前記第1配線の形状に加工した積層体の側壁に高透磁率材料からなる高透磁率サイドウォールを形成して、前記第2高透磁率膜と前記高透磁率サイドウォールとで第2磁束集中器を形成する工程と、前記ダミー膜を除去する工程と、前記第3絶縁膜上に、トンネル絶縁層を強磁性体で挟んでなるもので前記コンタクト部に接続されるトンネル磁気抵抗素子を形成する工程と、前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程とを備えている。
【0044】
上記磁気メモリ装置の第5製造方法では、書き込みワード線、磁束集中器等を貫通する接続孔とその内部にサイドウォール絶縁膜を介してコンタクト部を形成する工程を備えていることから、前記第1製造方法と同様に、トンネル磁気抵抗素子直下にコンタクト部を形成することが可能になる。このため、セル面積に占めるコンタクト部の面積を新たに創出することなく、トンネル磁気抵抗素子のセル面積を利用して、トンネル磁気抵抗素子と他の配線との接続が行える。したがって、1選択素子と1TMR素子とで構成されるMRAMにおいて、従来の1選択素子と1TMR素子型のMRAMと同等のアクセス速度を維持できるとともに、従来よりもセル面積の縮小化が可能になる。このセル面積はクロスポイント型MRAMと同等のセル面積に縮小化が可能になる。
【0045】
さらに、第1配線の両側面およびトンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率膜からなる第1磁束集中器を形成する工程と、第1配線を形成した後に、第1配線とトンネル磁気抵抗素子との間およびトンネル磁気抵抗素子の側面側に、絶縁膜を介して、高透磁率膜からなる第2磁束集中器を形成する工程とを備えていることから、第1配線に電流を流した際に発せられる電流磁界は第1磁束集中器から第2磁束集中器に伝達されてトンネル磁気抵抗素子の記憶層(記録層ともいう)に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに第1配線のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0046】
【発明の実施の形態】
本発明の磁気メモリ装置に係る第1実施の形態を、図1の概略構成断面図によって説明する。
【0047】
図1に示すように、半導体基板(例えばp型半導体基板)21の表面側にはp型ウエル領域(図示せず)が形成されている。このp型ウエル領域には、トランジスタ形成領域を分離する素子分離領域23が、例えばSTI(Shallow TrenchIsolation)で形成されている。上記p型ウエル領域には、選択素子用の電界効果型トランジスタ24、24が形成されている。電界効果型トランジスタ24には、上記p型ウエル領域上に形成されたゲート絶縁膜25を介してゲート電極(ワード線)26が形成され、ゲート電極26の両側におけるp型ウエル領域には拡散層領域(例えばN+ 拡散層領域)27、28が形成されている。図面では、二つの選択素子用の電界効果型トランジスタ24が一つの拡散層27を共有した形態になっている。
【0048】
上記電界効果トランジスタ24は読み出しのためのスイッチング素子として機能する。これには、n型またはp型電界効果トランジスタの他に、ダイオード、バイポーラトランジスタ等の各種スイッチング素子を用いることも可能である。
【0049】
上記電界効果型トランジスタ24を覆う状態に第1絶縁膜41が形成されている。この第1絶縁膜41には上記拡散層領域27、28に接続するコンタクト部(例えばタングステンに代表される高融点金属を用いた導電性プラグ)29、30が形成されている。さらに第1絶縁膜41上にはコンタクト部29に接続するセンス線15、コンタクト部30に接続するランディングパッド(第1ランディングパッド)31等が形成されている。
【0050】
上記第1絶縁膜41上には、上記センス線15、第1ランディングパッド31等を覆う第2絶縁膜42が形成されている。この第2絶縁膜42には上記第1ランディングパッド31に接続するコンタクト部(例えばタングステンに代表される高融点金属を用いた導電性プラグ)32が形成されている。さらに上記第2絶縁膜42上には、コンタクト部32に接続するランディングパッド(第2ランディングパッド)33が形成されている。
【0051】
上記第2絶縁膜42上には、上記第2ランディングパッド33等を覆う第3絶縁膜43が形成されている。この第3絶縁膜43上には、書き込みワード線11が上記第2ランディングパッド33上方を通るように形成されている。
【0052】
上記第3絶縁膜43上には、上記書き込みワード線11等を覆う第4絶縁膜44が形成されている。この第4絶縁膜44には、上記書き込みワード線11中を貫通して上記第2ランディングパッド33に達する接続孔61が形成されている。
【0053】
上記接続孔61内部にはサイドウォール絶縁膜62を介してコンタクト部63が、例えばタングステンに代表される高融点金属を用いた導電性プラグで形成されている。したがって、サイドウォール絶縁膜62によって書き込みワード線11とコンタクト部63とは電気的に絶縁されている。
【0054】
さらに、上記第4絶縁膜44上には、バリアメタル層130が形成され、その上面で、上記書き込みワード線11上方に反強磁性体層131が形成され、この反強磁性体層131上には、強磁性体層からなる磁化固定層132とトンネル絶縁層133と磁化が比較的容易に回転する記憶層134との積層構造体が形成され、その上にキャップ層135が形成されている。この反強磁性体層131からキャップ層135によって情報記憶素子(以下、TMR素子という)13が構成されている。さらにキャップ層135上には第2配線となるビット線12に接続する電極層136が形成されている。
【0055】
上記第4の絶縁膜44上には上記TMR素子13等を覆う第5の絶縁膜45が形成されている。この第5の絶縁膜45は表面が平坦化され、上記電極層136表面が露出されている。上記第5の絶縁膜45上には、上記電極層136の上面に接続するものでかつ上記書き込みワード線11上に上記TMR素子13を間にして立体的に交差(例えば直交)するビット線12が形成されている。
【0056】
上記TMR素子13の磁化固定層132および記憶層134は、強磁性体層の単層構造であってもよく、もしくは2層以上の強磁性体層を、例えば、ルテニウム、銅、クロム、金、銀等で形成される導電体層を挟んで積層させた構造であってもよい。また上記反強磁性体層131の下地に、TMR素子と直列に接続されるスイッチング素子との接続に用いられる下地導電層(図示せず)を形成することも可能である。また、下地導電層を反強磁性体層131によって兼ねることも可能である。
【0057】
上記記憶層134と磁化固定層132とは、例えば、ニッケル、鉄もしくはコバルト、またニッケル、鉄およびコバルトのうちの少なくとも2種からなる合金、またはその合金を主成分とする強磁性体が用いられる。上記磁化固定層132は、上記反強磁性体層131と接する状態に形成されていて、これらの層間に働く交換相互作用によって、磁化固定層132は、強い一方向の磁気異方性を持つことになる。
【0058】
上記反強磁性体層131は、例えば、鉄・マンガン合金、ニッケル・マンガン合金、白金マンガン合金、イリジウム・マンガン合金、ロジウム・マンガン合金、コバルト酸化物およびニッケル酸化物のうちの1種を用いることができる。
【0059】
上記トンネル絶縁層133は、例えば、酸化アルミニウム、酸化マグネシウム、酸化シリコン、窒化アルミニウム、窒化マグネシウム、窒化シリコン、酸化窒化アルミニウム、酸化窒化マグネシウム、酸化窒化シリコン等の絶縁体からなり、記憶層134と磁化固定層132との磁気的結合を切るとともに、トンネル電流を流すための役割を担う。これらの磁性膜および導体膜は主にスパッタリング法により形成される。トンネル絶縁層133は、スパッタリングで形成された金属膜を酸化、窒化もしくは酸化窒化させることにより得ることができる。
【0060】
さらに上層にはキャップ層135、ビット線との接続を行う電極層136が形成されている。上記キャップ層135は、TMR素子13と別のTMR素子13とを接続する配線との相互拡散防止、接触抵抗低減および記憶層134の酸化防止という機能を有する。通常、銅、窒化タンタル、タンタル、窒化チタン等の材料により形成されている。上記電極層136には、ビット線と接続する導電体で通常タングステンまたは窒化タングステンが用いられる。
【0061】
次に上記磁気メモリ装置1の動作を説明する。上記TMR素子13では、磁気抵抗効果によるトンネル電流変化を検出して情報を読み出すが、その効果は記憶層134と磁化固定層132との相対磁化方向に依存する。
【0062】
また上記TMR素子13では、ビット線12および書き込みワード線11に電流を流し、その合成磁界で記憶層134の磁化の方向を変えて「1」または「0」を記録する。読み出しは磁気抵抗効果によるトンネル電流変化を検出して行う。記憶層134と磁化固定層132の磁化方向が等しい場合を低抵抗(これを例えば「0」とする)とし、記憶層134と磁化固定層132の磁化方向が反平行の場合を高抵抗(これを例えば「1」とする)とする。
【0063】
この形状では書き込みワード線11に開けた接続孔61およびこの接続孔61と書き込みワード線11の合わせズレにより記憶層132の磁場が変わることが懸念される。そこで図2の(1)の平面図および(2)の(1)図におけるA−A線断面図に示すように、書き込みワード線11に接続孔61を開け、この接続孔61の中心軸ZTH の位置とTMR素子13の中心軸ZTMR の位置とのずれ量Dy(図2(3)、(4)のグラフの横軸:TMR素子とスルーホールとのずれ量)と、TMR素子13の記憶層が磁化反転に必要な電流(図2(3)、(4)グラフの縦軸:磁化反転に必要な電流)との関係をシミュレーションにより求めた。この結果を図2(3)、(4)に示す。
【0064】
図2の(1)および(2に示すように、書き込みワード線11はX軸方向に配設され、TMR素子13の大きさは短径(X軸方向)が0.13μm、長径(Y軸方向)が0.26μmの楕円柱形状とし、接続孔61の直径は50nmと80nmの円形開口部を有するものとした。また接続孔61の中心軸ZTHはTMR素子13の中心軸ZTMRに対してY軸方向にずれるものとしてTMR素子13の中心軸ZTMRに対する接続孔61の中心軸ZTHのズレ量(Y方向のずれ量)をDyとした。したがって、Dy=0のとき、TMR素子13の中心軸ZTMRと接続孔61の中心軸ZTHとが一致する。さらにTMR素子13と書き込みワード線11との間隔をGapとした。なお、図面では絶縁膜の図示は省略されている。
【0065】
図2の(3)に示すグラフは、Gap=10nmの場合の磁化反転に必要な電流IとTMR素子13と接続孔61とのずれ量Dyとの関係を示すもので、接続孔61を形成しない場合、接続孔61の直径が50nmの場合、接続孔61の直径が80nmの場合ともに、TMR素子13と接続孔61とのずれ量Dyが−60nm≦Dy≦60nmの範囲では、6mAで一定であった。すなわち、TMR素子13と接続孔61とのずれ量Dyに関係なく反転電流は一定になった。
【0066】
また図2の(4)に示すグラフは、Gap=100nmの場合の磁化反転に必要な電流IとTMR素子13と接続孔61とのずれ量Dyとの関係を示すもので、接続孔を形成しない場合、接続孔61の直径dが50nmの場合、接続孔61の直径dが80nmの場合のいずれも、TMR素子13と接続孔61とのずれ量Dyが−60nm≦Dy≦60nmの範囲では、10mAで一定であった。すなわち、TMR素子13と接続孔61とのずれ量Dyに関係なく反転電流は一定になった。
【0067】
したがって、書き込みワード線11を貫通する接続孔61は、書き込みワード線11で発生される磁場の強さにはほとんど影響を与えないことがわかる。また、接続孔61と書き込みワード線11の合わせズレは少なくとも±60nmまでは発生磁場強度に影響を与えないことがわかる。
【0068】
上記磁気メモリ装置1では、第1配線の書き込みワード線11と絶縁された状態にかつ書き込みワード線11を貫通した状態に設けられた接続孔61を通して、TMR素子13の第2配線のビット線12が接続される側とは反対側と他の配線層である第2ランディングパッド33とが接続されるコンタクト部63を備えたことから、TMR素子13直下にコンタクト部63が形成される。このため、セル面積に占めるコンタクト部63の面積を新たに創出することなく、TMR素子13のセル面積を利用して、選択素子のMOSトランジスタ24の拡散層28にコンタクト部30、32、第1ランディングパッド31等を介して接続されている第2ランディングパッド33とTMR素子13との接続が行える。したがって、1選択素子と1TMR素子とで構成されるMRAMにおいて、従来の1選択素子と1TMR素子型のMRAMと同等のアクセス速度を維持できるとともに、従来よりもセル面積の縮小化が可能になる。このセル面積はクロスポイント型MRAMと同等のセル面積に縮小化が可能になる。
【0069】
次に、本発明の磁気メモリ装置に係る第2実施の形態を、図3によって説明する。図3では、(1)にレイアウト図を示し、(2)に(1)図におけるA−A線断面図を示す。
【0070】
第2実施の形態の磁気メモリ装置は、書き込みワード線とこの書き込みワード線を貫通するように形成される接続孔が前記第1実施の形態の磁気メモリ装置と異なる。その他の構成は、第1実施の形態の磁気メモリ装置と同様となっている。
【0071】
ここでは、第1実施の形態の磁気メモリ装置と異なる構成部分を中心に説明する。図3に示すように、第2ランディングパッド33を覆う第3絶縁膜43上には、2本の書き込みワード線11(11a、11b)が並行に形成され、この2本の書き込みワード線11の上方で、2本の書き込みワード線11を覆う第4絶縁膜44上には、TMR素子13が形成されている。さらにTMR素子13を覆う第5絶縁膜45が形成され、第5絶縁膜45表面にはTMR素子13上面が露出されている。そして2本の書き込みワード線11上方にTMR素子13を間にして立体的に交差(例えば直交)するビット線12がTMR素子13の上面に接続して第5絶縁膜45上に形成されている。また上記TMR素子13下より2本の書き込みワード線11a、11b間を通って下層に形成されている第2ランディングパッド33に達するように接続孔61が形成され、この接続孔61側壁にはサイドウォール絶縁膜62が形成されている。さらに接続孔61内にはサイドウォール絶縁膜62を介して、TMR素子13の下面と第2ランディングパッド33とを接続するコンタクト部63が、例えばタングステンプラグで形成されている。
【0072】
上記第2実施の形態の磁気メモリ装置によれば、前記第1実施の形態の磁気メモリ装置と同様なる利点があるとともに、以下のような利点がある。すなわち、書き込みワード線11が2本に形成されていることにより、TMR素子13へ磁束を集中的に印加することができるので、TMR素子13の記憶層の磁化反転が容易になる利点がある。
【0073】
また、図4のレイアウト図に示すように、上記2本の書き込みワード線11a、11bは、部分的に接続されていてもよい。その接続部分11cは図示したようにTMR素子13端部に形成されるとよい。この接続部分11cはTMR素子13にオーバラップする状態に形成されていてもよい。このようにTMR素子13端部に書き込みワード線11aと書き込みワード線11bとを接続する接続部分11cが形成されることにより、書き込みワード線で発生された磁界がさらに効率よくTMR素子に印加されるようになる。なお、書き込みワード線11は3本以上に形成されていても差し支えはない。
【0074】
また、図5のレイアウト図に示すように、上記接続孔61は、書き込みワード線11の配設方向に長く形成されていてもよい。さらに接続孔61はTMR素子13よりはみ出すように形成されていてもよい。このように接続孔61を形成することによりTMR素子13および下層配線、例えばランディングパッド(図示せず)やTMR素子13との接続面積を大きくすることが可能になり、コンタクト抵抗を低減することができる。また図4によって説明した書き込みワード線が複数本形成されている場合も同様に、接続孔61は、書き込みワード線11の配設方向に長く形成することができ、さらに接続孔61はTMR素子13よりはみ出すように形成することができる。
【0075】
次に、本発明の磁気メモリ装置に係る第3実施の形態を、図6の概略構成断面図によって説明する。本発明の第3実施の形態は、上記図1によって説明した磁気メモリ装置において、書き込みワード線から発する電流磁界を効率よく記憶層に集中させることができるように、磁束集中器を設けたものである。
【0076】
その基本構成は、図6の(1)に示すように、磁気メモリ装置3(3a)は、書き込みワード線11を備え、この書き込みワード線11の上方でかつ書き込みワード線11に交差(例えば直交)するようにビット線12が形成され、その交差領域で書き込みワード線11の上方には絶縁膜47を介してトンネル磁気抵抗素子(以下TMRという)13が形成され、このTMR素子13はビット線12に接続されている。
【0077】
上記書き込みワード線11には、少なくとも、この書き込みワード線11の両側面およびTMR素子13に対向する面とは反対側の面を囲むように、高透磁率膜からなる磁束集中器51(51a)が設けられている。しかも書き込みワード線11の側面に形成された上記磁束集中器51の少なくとも一方(図面では両方)は、書き込みワード線11よりTMR素子13側に突き出した状態に形成されている。すなわち、上記磁束集中器51のTMR素子13側に突き出した状態に形成されている部分は、上記TMR素子13の側面に絶縁膜46を介して延長形成されている。この磁束集中器51の側壁部分の先端部51Sは、TMR素子13の記憶層134とキャップ層(図示せず)との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜133と記憶層134との界面から記憶層134とキャップ層135との界面までの高さとすることが好ましい。また、磁束集中器51の先端部51SとTMR素子13との距離xは、磁束集中器51の先端部51Sに集中させた電流磁束が記憶層134に効率よく達する距離とする必要があり、例えばその距離は200nm以下とすることが好ましい。
【0078】
また磁束集中器51を構成する高透磁率材料としては、例えば最大透磁率μが100以上の軟磁性体を用いることができ、具体的には、一例としてニッケル・鉄・コバルトを含む合金、鉄・アルミニウム(FeAl)合金、フェライト合金、等を用いることができる。
【0079】
さらに、TMR素子13からランディングパッド33に接続するように、上記絶縁膜47、書き込みワード線11、第1磁束集中器51、第3絶縁膜43を貫通する状態に、接続孔61が形成されている。さらに接続孔61の側壁にはサイドウォール絶縁膜62が形成され、このサイドウォール絶縁膜62を介して接続孔61の内部には、TMR素子13の反強磁性体層131(もしくはバリアメタル層(図示せず))とランディングパッド33とを接続するコンタクト部63が形成されている。
【0080】
なお、図示したように、書き込みワード線11と磁束集中器51の間に電気的絶縁層を設けない場合、磁束集中器51には電流損を防ぐため比抵抗率の高い軟磁性膜を用いることが望ましい。また図示したように、上記磁束集中器51は書き込みワード線11の両側面に形成された部分は書き込みワード線11よりTMR素子13側に突き出した状態に形成されているが、その突き出した状態に形成される部分は書き込みワード線11の片方の側面に形成されているもののみでも良い。
【0081】
次いで、上記基本構成を組み込んだ磁気メモリ装置3の具体的構成例を、図6の(2)によって説明する。なお、本願発明構成は、前記図1によって説明した構成にも適用できる。
【0082】
図6の(2)に示すように、半導体基板(例えばp型半導体基板)21の表面側にはp型ウエル領域(図示せず)が形成されている。このp型ウエル領域には、トランジスタ形成領域を分離する素子分離領域23が、例えばSTI(Shallow Trench Isolation)で形成されている。上記p型ウエル領域には、選択素子用の電界効果型トランジスタ24が形成されている。電界効果型トランジスタ24には、上記p型ウエル領域上に形成されたゲート絶縁膜25を介してゲート電極(ワード線)26が形成され、ゲート電極26の両側におけるp型ウエル領域には拡散層領域(例えばN+ 拡散層領域)27、28が形成されている。
【0083】
上記電界効果トランジスタ24は読み出しのためのスイッチング素子として機能する。これは、n型またはp型電界効果トランジスタの他に、ダイオード、バイポーラトランジスタ等の各種スイッチング素子を用いることも可能である。
【0084】
上記電界効果型トランジスタ24を覆う状態に第1絶縁膜41が形成されている。この第1絶縁膜41には上記拡散層領域27、28に接続するコンタクト部(例えばタングステンに代表される高融点金属を用いた導電性プラグ)29、30が形成されている。さらに第1絶縁膜41上にはコンタクト部29に接続するセンス線15、コンタクト部30に接続するランディングパッド(第1ランディングパッド)31等が形成されている。
【0085】
上記第1絶縁膜41上には、上記センス線15、第1ランディングパッド31等を覆う第2絶縁膜42が形成されている。この第2絶縁膜42には上記第1ランディングパッド31に接続するコンタクト部(例えばタングステンに代表される高融点金属を用いた導電性プラグ)32が形成されている。さらに上記第2絶縁膜42上には、コンタクト部32に接続するランディングパッド(第2ランディングパッド)33が形成されている。
【0086】
上記第2絶縁膜42上には、上記第2ランディングパッド33等を覆う第3絶縁膜43が形成されている。この第3絶縁膜43上には、書き込みワード線11が上記第2ランディングパッド33上方を通るように形成されている。
【0087】
上記書き込みワード線11には、少なくとも、書き込みワード線11の両側面およびトンネル磁気抵抗素子(以下TMRという)13に対向する面とは反対側の面を囲むように、前記図6の(1)によって説明したのと同様な構成を有する磁束集中器51が設けられている。しかも書き込みワード線11の側面に形成された上記磁束集中器51の少なくとも一方(図面では両方)は、書き込みワード線11より後に詳述するTMR素子13側に突き出した状態に形成されている。
【0088】
上記図1では、上記突き出した状態に形成されている部分の磁束集中器51は、上記TMR素子13に対して第4絶縁膜44および第5絶縁膜45の一部を介してTMR素子13の側面に延長形成されている。延長形成された磁束集中器51の側壁部分の先端部51Sは、例えばTMR素子13の記憶層134とほぼ同等の高さに形成される。また、磁束集中器51の先端部51SとTMR素子13との距離は、磁束集中器51の先端部51Sに集中させた電流磁束が記憶層134に効率よく達する距離とする必要があり、例えば200nm以下に形成されている。
【0089】
また磁束集中器51を構成する高透磁率材料には、例えば最大透磁率μが100以上の軟磁性体を用いることができ、具体的には、一例としてニッケル・鉄・コバルトを含む合金、鉄・アルミニウム(FeAl)合金もしくはフェライト合金を用いている。
【0090】
上記第3絶縁膜43上には、上記書き込みワード線11、磁束集中器51、第2ランディングパッド33等を覆う第4絶縁膜44が形成されている。この第4絶縁膜44および上記第3絶縁膜43には、上記書き込みワード線11および磁束集中器51中を貫通して上記第2ランディングパッド33に達する接続孔61が形成されている。
【0091】
上記接続孔61内部にはサイドウォール絶縁膜62を介してコンタクト部63が、例えばタングステンに代表される高融点金属を用いた導電性プラグで形成されている。したがって、サイドウォール絶縁膜62によって書き込みワード線11および磁束集中器51とコンタクト部63とは電気的に絶縁されている。
【0092】
さらに、上記第4絶縁膜44上には、バリアメタル層130が形成され、その上面で、上記書き込みワード線11上方に反強磁性体層131が形成され、この反強磁性体層131上には、強磁性体層からなる磁化固定層132とトンネル絶縁層133と磁化が比較的容易に回転する記憶層134との積層構造体が形成され、その上にキャップ層135が形成されている。この反強磁性体層131からキャップ層135によって情報記憶素子(以下、TMR素子という)13が構成されている。さらにキャップ層135上には第2配線となるビット線12に接続する電極層136が形成されている。
【0093】
上記第4の絶縁膜44上には上記TMR素子13等を覆う第5の絶縁膜45が形成されている。この第5の絶縁膜45は表面が平坦化され、上記電極層136表面が露出されている。上記第5の絶縁膜45上には、上記電極層136の上面に接続するものでかつ上記書き込みワード線11上に上記TMR素子13を間にして立体的に交差(例えば直交)するビット線12が形成されている。
【0094】
上記TMR素子13の磁化固定層132および記憶層134は、強磁性体層の単層構造であってもよく、もしくは2層以上の強磁性体層を、例えば、ルテニウム、銅、クロム、金、銀等で形成される導電体層を挟んで積層させた構造であってもよい。また上記反強磁性体層131の下地に、TMR素子と直列に接続されるスイッチング素子との接続に用いられる下地導電層(図示せず)を形成することも可能である。また、下地導電層を反強磁性体層131によって兼ねることも可能である。
【0095】
上記磁気メモリ装置3の各構成部品は上記磁束集中器51を除いて前記図1によって説明した磁気メモリ装置1と同様である。
【0096】
次に、上記構成の磁気メモリ装置3の書き込みワード線11が発する電流磁界の分布を調べたシミュレーション結果を、図7によって説明する。図7では、書き込みワード線11、ビット線12、TMR素子13および磁束集中器51を簡単化して示す。シミュレーションでは、書き込みワード線11の側面に形成された磁束集中器51の先端部51Sの厚さtを0.21μmとし、上記書き込みワード線11の両側面に形成された先端部51Sの間隔dを0.59μmとした。また電流磁界を矢印で示し、矢印の長さは電流磁界の強さを示し、矢印の方向は電流磁界の方向を示す。
【0097】
図7の電流磁界の分布図に示すように、上記磁気メモリ装置1は、書き込みワード線11から発せられる電流磁界は磁束集中器51に伝達され、その先端部51Sより効率よくTMR素子13の記憶層134〔前記図6参照〕に集中させることができる。
【0098】
次に、本発明の磁気メモリ装置に係る第4実施の形態を、図8の概略構成断面図によって説明する。この第4実施の形態は、上記図6によって説明した磁気メモリ装置3において、書き込みワード線から発する電流磁界をさらに効率よく記憶層に集中させることができるようにしたものである。なお、図面では、書き込みワード線、ビット線、TMR素子および磁束集中器の関係のみを示し、絶縁膜、接続孔、サイドウォール絶縁膜、コンタクト部おおびその他の構成部品の図示は省略した。また電流磁界を矢印で示し、矢印の長さは電流磁界の強さを示し、矢印の方向は電流磁界の方向を示す。
【0099】
図8に示すように、磁気メモリ装置3(3b)は、以下の構成を有する。書き込みワード線11が形成され、この書き込みワード線11上方にはこの書き込みワード線11と立体的に交差するビット線12が形成されている。また交差領域における書き込みワード線11の上方にはTMR素子13が形成され、その上面はビット線12に接続されている。上記書き込みワード線11の両側面およびTMR素子13に対向する面とは反対側の書き込みワード線11の面には、高透磁率膜からなる磁束集中器55が形成されている。しかも書き込みワード線11の側面に形成された上記磁束集中器55の少なくとも一方は書き込みワード線11よりTMR素子13側に突き出した状態に形成されている。さらに先端部55Sを厚さ方向に拡張した張り出し部55atが設けられている。ここでは、一例として張り出し部55atを含めた先端部55Sの厚さttは0.328μmとし、先端部55Sの内側に形成された張り出し部55at、55atの間隔dtは0.472μmとした。
【0100】
また図8では先端部55Sの両側に張り出し部55atを設けたが、一方側だけでもよい。さらに図示したように、上記磁束集中器55は書き込みワード線11の両側面に形成された部分は書き込みワード線11よりTMR素子13側に突き出した状態に形成されているが、その突き出した状態に形成される部分は書き込みワード線11の片方の側面に形成されているもののみでも良い。
【0101】
この第4実施の形態の基本構成は、前記第3実施の形態の磁気メモリ装置の基本構成に代えることができるので、前記図6の(2)によって説明した磁気メモリ装置の構成に組み込むことができる。
【0102】
上記第4実施の形態に示した構成の磁束集中器55では、第3実施の形態で説明した磁束集中器51よりも電流磁束の漏れを減少させることができるため、書き込みワード線11から発せられる電流磁束を第3実施の形態の磁束集中器51よりもさらに効率よくTMR素子13の記憶層134に集中させることができる。
【0103】
次に、比較例1として、従来構造のMRAMセルの書き込みワード線に接続孔を貫通させた構成における書き込みワード線およびその周囲の電流磁界の分布状態を、図9によって説明する。図9では、電流磁界を矢印で示し、矢印の長さは電流磁界の強さを示し、矢印の方向は電流磁界の方向を示す。なお図面では、書き込みワード線、ビット線、TMR素子および磁束集中器の関係のみを示し、絶縁膜、接続孔、サイドウォール絶縁膜、コンタクト部おおびその他の構成部品の図示は省略した。
【0104】
図9に示すように、書き込みワード線11上方には、この書き込みワード線11に対して立体的に直交するビット線12が形成されている。この書き込みワード線11とビット線12との交差領域には、例えば0.4μm×0.8μmの大きさを有するTMR素子13が形成されている。このTMR素子13は、書き込みワード線11上に300nmの厚さの絶縁膜48を介して形成され、その上面にはビット線12に接続されている。
【0105】
次に、上記書き込みワード線11に電流を流すことにより発生する電流磁界のシミュレーションを行った。その結果、図9に示すように、電流磁界は書き込みワード線11を取り巻くように分布する。したがって、磁束集中器51もしくは磁束集中器55を設けた実施の形態のように、書き込みワード線11から発せられる電流磁界をTMR素子13に集中させることができない。また書き込みワード線11の電流が誘起する電流磁界は、TMR素子13と書き込みワード線11との距離が大きくなるにしたがい急速に減少している。
【0106】
次に、比較例2として、米国特許第5940319号明細書に記載されたのと同様のMRAMセルの書き込みワード線に接続孔を貫通させた構成における書き込みワード線およびその周囲の電流磁界の分布状態を、図10によって説明する。図10では、電流磁界を矢印で示し、矢印の長さは電流磁界の強さを示し、矢印の方向は電流磁界の方向を示す。なお図面では、書き込みワード線、TMR素子および磁束集中器の関係のみを示し、絶縁膜、接続孔、サイドウォール絶縁膜、コンタクト部おおびその他の構成部品の図示は省略した。
【0107】
図10に示すように、書き込みワード線11が形成され、この書き込みワード線11上方にはこの書き込みワード線11と立体的に交差するビット線12が形成されている。また交差領域における書き込みワード線11の上方にはTMR素子13が形成され、その上面はビット線12に接続されている。書き込みワード線11の周囲にはTMR素子13側を除いて、軟磁性膜からなる磁束集中器57が形成されている。書き込みワード線11の側面に形成された磁束集中器57の先端部57Sは書き込みワード線11のTMR素子13側の面と同等の高さに形成されている。すなわち、書き込みワード線11よりTMR素子13側に突出した状態には形成されていない。
【0108】
次いで、上記構成において書き込みワード線11より発せられる電流磁界のシミュレーションを行った。この比較例2におけるシミュレーションでは、書き込みワード線11の側面に形成された磁束集中器57の先端部57Sの各厚さtは0.21μmとし、磁束集中器57の先端部57Sの間隔dは0.59μmとした。
【0109】
この結果、書き込みワード線11より発せられた電流磁界は、磁束集中器57によってその先端部57Sに伝達され、書き込みワード線11の側面に形成された磁束集中器57の先端部57S、57S間で最も強くなる。しかしながら、磁束集中器57の先端部57SとTMR素子13との距離が開いているため、電流磁束が十分TMR素子13に伝達されないことがわかった。
【0110】
次に、上記第3実施の形態、第4実施の形態、比較例1、比較例2について、磁化方向に対して直行する方向に配置した磁化を反転させるため必要なビット線電流の書き込みワード線電流依存性を、図11の磁化容易軸方向の磁界を与える電流と磁化難易軸方向の磁界を与える電流との関係図によって説明する。
【0111】
図11に示すように、磁化難易軸方向の磁界を与える電流に対する磁化容易軸方向の磁界を与える電流との関係は、第3実施の形態、第4実施の形態ともに、比較例1、比較例2よりも、大きく改善していることが分かる。すはわち、第3実施の形態、第4実施の形態ともに、比較例1、比較例2よりも、磁化難易軸方向の磁界を与える電流の絶対値が大きくなるにしたがい磁化容易軸方向の磁界を与える電流は小さくなっている。
【0112】
次に、本発明の磁気メモリ装置に係わる第5実施の形態を、図12に示す概略構成断面図によって説明する。図12では、磁気メモリ装置の第5実施の形態に係わる要部を示し、書き込みワード線、TMR素子、磁束集中器、ランディングパッド、接続孔、コンタクト部、一部絶縁膜以外の図示は省略した。また、前記第3実施の形態で説明した磁気メモリ装置3と同様の構成部品には同一符号を付与する。
【0113】
図12に示すように、第5実施の形態の磁気メモリ装置3(3c)は、図6の(1)によって説明した磁束集中器51において、TMR素子13に対向する側の書き込みワード線11表面にも高透磁率膜71が形成されているものである。すなわち、高透磁率膜71を含めて磁束集中器51(51c)が構成されている。また第3実施の形態の磁気メモリ装置3aと同様に、書き込みワード線11の側面に形成された高透磁率膜の少なくとも一方はTMR素子13側の書き込みワード線11表面に形成されている高透磁率膜71よりTMR素子13側に突き出した状態に形成されている。すなわち、この磁束集中器51の側壁部分の先端部51Sは、TMR素子13の側面と絶縁膜47を介して、TMR素子13の記憶層134とキャップ層135との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜133と記憶層134との界面から記憶層134とキャップ層135との界面までの高さとすることが好ましい。
【0114】
また、磁束集中器51の先端部51SとTMR素子13との距離は、磁束集中器51の先端部51Sに集中させた電流磁束が記憶層134に効率よく達する距離とする必要があり、例えばその距離は200nm以下、好ましくは100nm以下とする。
【0115】
さらに、TMR素子13からランディングパッド33に接続するように、上記絶縁膜47、高透磁率膜71、書き込みワード線11、第1磁束集中器51、第3絶縁膜43を貫通する状態に、接続孔61が形成されている。さらに接続孔61の側壁にはサイドウォール絶縁膜62が形成され、このサイドウォール絶縁膜62を介して接続孔61の内部には、TMR素子13の反強磁性体層131(もしくはバリアメタル層(図示せず))とランディングパッド33とを接続するコンタクト部63が形成されている。
【0116】
この第5実施の形態の基本構成は、前記第3実施の形態の磁気メモリ装置の基本構成に代えることができるので、前記図6の(2)によって説明した磁気メモリ装置の構成に組み込むことができる。
【0117】
次に、本発明の磁気メモリ装置に係わる第6実施の形態を、図13に示す概略構成断面図によって説明する。図13では、磁気メモリ装置の第6実施の形態に係わる要部を示し、書き込みワード線、TMR素子、磁束集中器、ランディングパッド、接続孔、コンタクト部、一部絶縁膜以外の図示は省略した。また、前記第3実施の形態で説明した磁気メモリ装置3と同様の構成部品には同一符号を付与する。
【0118】
図13に示すように、第6実施の形態の磁気メモリ装置3(3d)は、前記図6の(1)によって説明した第3実施の形態の磁気メモリ装置3(3c)において、書き込みワード線11の底部側および側面側と高透磁率膜からなる磁束集中器51(51d)との間に絶縁膜81が形成されているものである。この構成でも、書き込みワード線11の側面に形成された上記磁束集中器51の少なくとも一方(図面では両方)は、書き込みワード線11よりTMR素子13側に突き出した状態に形成されている。すなわち、この磁束集中器51の側壁部分の先端部51Sは、TMR素子13の側面と絶縁膜47を介して、TMR素子13の記憶層134とキャップ層135との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜133と記憶層134との界面から記憶層134とキャップ層135との界面までの高さとすることが好ましい。
【0119】
また、磁束集中器51の先端部51SとTMR素子13との距離は、磁束集中器51の先端部51Sに集中させた電流磁束が記憶層134に効率よく達する距離とする必要があり、例えばその距離は200nm以下、好ましくは100nm以下とする。
【0120】
さらに、TMR素子13からランディングパッド33に接続するように、上記絶縁膜47、書き込みワード線11、絶縁膜81、磁束集中器51、第3絶縁膜43を貫通する状態に、接続孔61が形成されている。さらに接続孔61の側壁にはサイドウォール絶縁膜62が形成され、このサイドウォール絶縁膜62を介して接続孔61の内部には、TMR素子13の反強磁性体層131(もしくはバリアメタル層(図示せず))とランディングパッド33とを接続するコンタクト部63が形成されている。
【0121】
この第6実施の形態の基本構成は、前記第3実施の形態の磁気メモリ装置の基本構成に代えることができるので、前記図6の(2)によって説明した磁気メモリ装置の構成に組み込むことができる。
【0122】
次に、本発明の磁気メモリ装置に係わる第7実施の形態を、図14に示す概略構成断面図によって説明する。図14では、磁気メモリ装置の第7実施の形態に係わる要部を示し、書き込みワード線、TMR素子、磁束集中器、ランディングパッド、接続孔、コンタクト部、一部絶縁膜以外の図示は省略した。また、前記第3実施の形態で説明した磁気メモリ装置3と同様の構成部品には同一符号を付与する。
【0123】
図14に示すように、第7実施の形態の磁気メモリ装置3(3e)は、前記図13によって説明した磁気メモリ装置3(3d)において、書き込みワード線11の周囲に絶縁膜82を形成し、その絶縁膜82を介して高透磁率膜からなる磁束集中器51(51e)が形成されているものである。この構成でも、書き込みワード線11の側面に形成された上記磁束集中器51の少なくとも一方(図面では両方)は、書き込みワード線11上に絶縁膜82を介して形成されている高透磁率膜71よりTMR素子13側に突き出した状態に形成されている。すなわち、この磁束集中器51の側壁部分の先端部51Sは、TMR素子13の側面と絶縁膜47を介して、TMR素子13の記憶層134とキャップ層135との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜133と記憶層134との界面から記憶層134とキャップ層135との界面までの高さとすることが好ましい。
【0124】
また、磁束集中器51の先端部51SとTMR素子13との距離は、磁束集中器51の先端部51Sに集中させた電流磁束が記憶層134に効率よく達する距離とする必要があり、例えばその距離は200nm以下、好ましくは100nm以下とする。
【0125】
言いかえれば、第7実施の形態の高透磁率膜からなる磁束集中器51eは、前記図13によって説明した第6実施の形態の磁束集中器51dにおいて、TMR素子13側の書き込みワード線11表面に絶縁膜を介して高透磁率膜を形成したものである。すなわち、書き込みワード線11の周囲に絶縁膜82を介して高透磁率膜からなる磁束集中器51eが形成されているものである。しかもこの構成でも、書き込みワード線11の側面に形成された上記磁束集中器51の少なくとも一方(図面では両方)は、書き込みワード線11よりTMR素子13側に突き出した状態に形成されている。
【0126】
さらに、TMR素子13からランディングパッド33に接続するように、上記絶縁膜47、高透磁率膜71、絶縁膜82、書き込みワード線11、絶縁膜82、磁束集中器51、第3絶縁膜43を貫通する状態に、接続孔61が形成されている。さらに接続孔61の側壁にはサイドウォール絶縁膜62が形成され、このサイドウォール絶縁膜62を介して接続孔61の内部には、TMR素子13の反強磁性体層131(もしくはバリアメタル層(図示せず))とランディングパッド33とを接続するコンタクト部63が形成されている。
【0127】
この第7実施の形態の基本構成は、前記第3実施の形態の磁気メモリ装置の基本構成に代えることができるので、前記図6の(2)によって説明した磁気メモリ装置の構成に組み込むことができる。
【0128】
上記磁気メモリ装置3(3a〜3e)では、書き込みワード線11は、少なくとも、TMR素子13に対向する面とは反対側の面および両側面が高透磁率膜からなる磁束集中器51で囲まれ、書き込みワード線11の側面に形成された高透磁率膜からなる磁束集中器51の少なくとも一方は、書き込みワード線11よりTMR素子13側に突き出した状態に形成されていて、実施の形態1の側壁部分の先端部51Sは記憶層134の高さに形成されていることから、書き込みワード線11から発する電流磁界は、磁束集中器51の先端部51Sまで伝達され、先端部51S、51S間で最も強くなる。したがって、電流磁界はTMR素子13の記憶層134に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに書き込みワード線11のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0129】
次に、本発明の磁気メモリ装置に係わる第8実施の形態を、図15に示す概略構成断面図によって説明する。図15では、磁気メモリ装置の第8実施の形態に係わる要部を示し、書き込みワード線、TMR素子、磁束集中器、ランディングパッド、接続孔、コンタクト部、一部絶縁膜以外の図示は省略した。また、前記第3実施の形態で説明した磁気メモリ装置3と同様の構成部品には同一符号を付与する。
【0130】
図15に示すように、磁気メモリ装置4は、書き込みワード線11上に絶縁膜85を介して高透磁率膜からなる磁束集中器53が設けられていて、磁束集中器53上に絶縁膜86を介してTMR素子13が設けられているものである。
【0131】
この磁束集中器53の側壁部分はTMR素子13の側面方向に絶縁膜86を介して延長形成されていて、その先端部53Sは、TMR素子13の記憶層134とキャップ層135との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜133と記憶層134との界面から記憶層134とキャップ層133との界面までの高さとすることが好ましい。また、磁束集中器53の先端部53SとTMR素子13との距離xは、磁束集中器53の先端部53Sに集中させた電流磁束が記憶層134に効率よく達する距離とする必要があり、例えばその距離は200nm以下、好ましくは100nm以下とする。
【0132】
また、上記磁束集中器53を構成する高透磁率材料としては、例えば最大透磁率μが100以上の軟磁性体を用いることができ、具体的には、一例としてニッケル・鉄・コバルトを含む合金、鉄・アルミニウム(FeAl)合金、フェライト合金、等を用いることができる。
【0133】
さらに、TMR素子13からランディングパッド33に接続するように、上記絶縁膜86、磁束集中器53、絶縁膜85、書き込みワード線11、第3絶縁膜43を貫通する状態に、接続孔61が形成されている。さらに接続孔61の側壁にはサイドウォール絶縁膜62が形成され、このサイドウォール絶縁膜62を介して接続孔61の内部には、TMR素子13の反強磁性体層131(もしくはバリアメタル層(図示せず))とランディングパッド33とを接続するコンタクト部63が形成されている。
【0134】
磁気メモリ装置4の他の構成部品は、前記図6で説明したのと同様である。なお、前記図6によって説明した磁束集中器51は形成されていなくてもよいが、TMR素子13へ電流磁界をより効果的に集中できることから磁束集中器51は形成されているほうが好ましい。この構成については後述する。また、上記図15によって説明した構成において、磁束集中器53は書き込みワード線11の上面に接続する状態に形成されていてもよい。
【0135】
上記磁気メモリ装置4では、書き込みワード線11とTMR素子13との間およびTMR素子13の側面側に、絶縁膜85を介して、高透磁率膜からなる磁束集中器53が設けられていることから、書き込みワード線11から発する電流磁界はTMR素子13の側面下部側の磁束集中器53によってTMR素子13の記憶層134に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに書き込みワード線11のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0136】
この第8実施の形態の基本構成は、前記第3実施の形態の磁気メモリ装置の基本構成に代えることができるので、前記図6の(2)によって説明した磁気メモリ装置の構成に組み込むことができる。
【0137】
次に、本発明の磁気メモリ装置に係わる第9実施の形態を、図16に示す概略構成断面図によって説明する。図16では、磁気メモリ装置の第9実施の形態に係わる要部を示し、書き込みワード線、TMR素子、第1、第2磁束集中器、ランディングパッド、接続孔、コンタクト部、一部絶縁膜以外の図示は省略した。また、前記第3実施の形態で説明した磁気メモリ装置3と同様の構成部品には同一符号を付与する。
【0138】
第9実施の形態の磁気メモリ装置5(5a)の基本構成は、前記図10と前記図15によって説明した構成を組み合わせたものである。すなわち、図16に示すように、第9実施の形態の磁気メモリ装置5(5a)は、書き込みワード線11の両側面およびこの書き込みワード線11上に絶縁膜85、86を介して形成されるTMR素子13に対向する面とは反対側の面を囲むように、高透磁率膜からなる磁束集中器(第1磁束集中器)57が設けられている。この磁束集中器57の側壁部分(書き込みワード線11の側壁に形成された部分)は、書き込みワード線11上面(TMR素子13側の面)と同等の高さに形成されている。
【0139】
さらに、前記図15によって説明したのと同様の磁束集中器(第2磁束集中器)53が書き込みワード線11とTMR素子13との間に設けられている。上記磁束集中器53の両側壁部分はTMR素子13の側壁近傍に絶縁膜86を介して延長形成されていて、その先端部53Sは、TMR素子13の記憶層134とキャップ層133との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜133と記憶層134との界面から記憶層134とキャップ層135との界面までの高さとすることが好ましい。また、磁束集中器53の先端部53SとTMR素子13との距離xは、磁束集中器53の先端部53Sに集中させた電流磁束が記憶層134に効率よく達する距離とする必要があり、例えばその距離は200nm以下、好ましくは100nm以下とする。
【0140】
また、上記磁束集中器53、57を構成する高透磁率材料としては、例えば最大透磁率μが100以上の軟磁性体を用いることができ、具体的には、一例としてニッケル・鉄・コバルトを含む合金、鉄・アルミニウム(FeAl)合金、フェライト合金、等を用いることができる。
【0141】
さらに、TMR素子13からランディングパッド33に接続するように、上記絶縁膜86、磁束集中器53、絶縁膜85、書き込みワード線11、磁束集中器57、第3絶縁膜43を貫通する状態に、接続孔61が形成されている。さらに接続孔61の側壁にはサイドウォール絶縁膜62が形成され、このサイドウォール絶縁膜62を介して接続孔61の内部には、TMR素子13の反強磁性体層131(もしくはバリアメタル層(図示せず))とランディングパッド33とを接続するコンタクト部63が形成されている。
【0142】
次に、本発明の磁気メモリ装置に係わる第10実施の形態を、図17に示す概略構成断面図によって説明する。図17では、第10実施の形態の磁気メモリ装置に係わる要部を示し、書き込みワード線、TMR素子、第1、第2磁束集中器、ランディングパッド、接続孔、コンタクト部、一部絶縁膜以外の図示は省略した。また、前記第3実施の形態で説明した磁気メモリ装置3と同様の構成部品には同一符号を付与する。
【0143】
図17に示すように、第9実施の形態の磁気メモリ装置5(5b)は、前記図16によって説明した磁気メモリ装置5aにおいて、磁束集中器(第1磁束集中器)57と書き込みワード線11との間に絶縁膜81を設けたものであり、その他の構成は、前記図16によって説明した構成と同様である。
【0144】
したがって、TMR素子13とランディングパッド33とを接続する接続孔61は、上記絶縁膜86、磁束集中器53、絶縁膜85、書き込みワード線11、絶縁膜81、磁束集中器57、第3絶縁膜43を貫通する状態に形成されている。さらに接続孔61の側壁にはサイドウォール絶縁膜62が形成され、このサイドウォール絶縁膜62を介して接続孔61の内部には、TMR素子13の反強磁性体層131(もしくはバリアメタル層(図示せず))とランディングパッド33とを接続するコンタクト部63が形成されている。
【0145】
次に、本発明の磁気メモリ装置に係わる第11実施の形態を、図18に示す概略構成断面図によって説明する。図18では、磁気メモリ装置の第11実施の形態に係わる要部を示し、書き込みワード線、TMR素子、第1、第2磁束集中器、ランディングパッド、接続孔、コンタクト部、一部絶縁膜以外の図示は省略した。また、前記第3実施の形態で説明した磁気メモリ装置3と同様の構成部品には同一符号を付与する。
【0146】
図18に示すように、第10実施の形態の磁気メモリ装置5(5c)は、書き込みワード線11の底部側および両側面に前記図6の(1)によって説明した磁束集中器(第1磁束集中器)51を備え、さらに書き込みワード線11とTMR素子13との間に前記図15によって説明した磁束集中器(第2磁束集中器)53を備えたものである。上記磁束集中器51の側壁部分の先端部51Sと上記磁束集中器53とは、絶縁膜85を介して離間された状態に形成されている。
【0147】
したがって、TMR素子13とランディングパッド33とを接続する接続孔61は、上記絶縁膜86、磁束集中器53、絶縁膜85、書き込みワード線11、磁束集中器51、第3絶縁膜43を貫通する状態に形成されている。さらに接続孔61の側壁にはサイドウォール絶縁膜62が形成され、このサイドウォール絶縁膜62を介して接続孔61の内部には、TMR素子13の反強磁性体層131(もしくはバリアメタル層(図示せず))とランディングパッド33とを接続するコンタクト部63が形成されている。
【0148】
なお、図示はしないが、上記磁束集中器51の側壁部分の先端部51Sと上記磁束集中器53とが接続されていてもよい。
【0149】
次に、本発明の磁気メモリ装置に係わる第12実施の形態を、図19に示す概略構成断面図によって説明する。図19では、磁気メモリ装置の第12実施の形態に係わる要部を示し、書き込みワード線、TMR素子、第1、第2磁束集中器、ランディングパッド、接続孔、コンタクト部、一部絶縁膜以外の図示は省略した。また、前記第3実施の形態で説明した磁気メモリ装置3と同様の構成部品には同一符号を付与する。
【0150】
図19に示すように、第12実施の形態の磁気メモリ装置5(5d)は、書き込みワード線11の底部側および両側面に絶縁膜81を介して前記図13によって説明した磁束集中器(第1磁束集中器)51を備え、さらに書き込みワード線11とTMR素子13との間に前記図15によって説明した磁束集中器(第2磁束集中器)53を備えたものである。上記磁束集中器51の側壁部分の先端部51Sと上記磁束集中器53とは、絶縁膜85を介して離間された状態に形成されている。
【0151】
したがって、TMR素子13とランディングパッド33とを接続する接続孔61は、上記絶縁膜86、磁束集中器53、絶縁膜85、書き込みワード線11、絶縁膜81、磁束集中器51、第3絶縁膜43を貫通する状態に形成されている。さらに接続孔61の側壁にはサイドウォール絶縁膜62が形成され、このサイドウォール絶縁膜62を介して接続孔61の内部には、TMR素子13の反強磁性体層131(もしくはバリアメタル層(図示せず))とランディングパッド33とを接続するコンタクト部63が形成されている。
【0152】
なお、図示はしないが、上記磁束集中器51の側壁部分の先端部51Sと上記磁束集中器53とが接続されていてもよい。
【0153】
上記磁気メモリ装置の第9実施の形態〜第12実施の形態の基本構成は、前記第3実施の形態の磁気メモリ装置の基本構成に代えることができるので、前記図6の(2)によって説明した磁気メモリ装置の構成に組み込むことができる。
【0154】
上記磁気メモリ装置5(5a〜5d)では、書き込みワード線11には、少なくとも、書き込みワード線11の両側面およびTMR素子13に対向する面とは反対側の面に高透磁率膜からなる磁束集中器(第1磁束集中器)51もしくは磁束集中器(第1磁束集中器)57が設けられ、書き込みワード線11とTMR素子13との間およびTMR素子13の側面側に絶縁膜86を介して高透磁率膜からなる磁束集中器(第2磁束集中器)53が設けられていて、その先端部53Sが記憶層134の高さに形成されていることから、書き込みワード線11から発する電流磁界は磁束集中器51もしくは磁束集中器57から磁束集中器53に伝達されてTMR素子13の記憶層134に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに書き込みワード線11のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0155】
また、前記第3実施の形態〜第12実施の形態で説明した構成において、第2実施の形態で説明したように書き込みワード線を複数本とすることもできる。この構成では、第2実施の形態の作用、効果も併せて得られる。
【0156】
次に、本発明の磁気メモリ装置の第1製造方法に係る第1実施の形態を、図20〜図22の製造工程断面図によって説明する。図20〜図22では、1選択素子と1TMR素子(1T1J構造)からなるMRAMを示す。
【0157】
図20の(1)に示すように、通常のトレンチ素子分離技術を用いて、半導体基板21に素子分離領域23を、例えばSTI(Shallow Trench Isolation)で形成する。次いで、通常の電界効果型トランジスタの形成技術を用いて、半導体基板21に選択素子となる電界効果型トランジスタ24を形成する。なお、前記図1に示したような二つの選択素子用の電界効果型トランジスタ24を設けることも可能である。この構成では拡散層27を共有した形態に形成される。なお、前記図1によって説明した磁気メモリ装置の第1実施の形態のように、二つの選択素子用の電界効果型トランジスタを設けた構成も以下に説明する製造方法を適用することで実現することができる。
【0158】
次に、MOSトランジスタ24を覆う第1絶縁膜41を形成する。その後、例えばCMPによって、この第1絶縁膜41表面を平坦化する。次いで、通常のリソグラフィー技術とエッチング技術を用いて、各拡散層27、28に達する接続孔を開口した後、例えば通常のタングステンプラグの形成技術を用いて各接続孔内にタングステンプラグからなるコンタクト部29、30を形成する。次いで、第1絶縁膜41上に導電膜を形成した後、通常のリソグラフィー技術とエッチング技術を用いて上記導電膜を加工し、コンタクト部29に接続するセンス線15とコンタクト部30に接続する第1ランディングパッド31を形成する。なお、センス線15、第1ランディングパッド31等は、通常の溝配線技術を用いて形成することも可能である。
【0159】
次に、センス線15、第1ランディングパッド31等を覆う第2絶縁膜42を形成する。その後、例えばCMPによって、この第2絶縁膜42表面を平坦化する。次いで、通常のリソグラフィー技術とエッチング技術を用いて、第1ランディングパッド31に達する接続孔を開口した後、例えば通常のタングステンプラグの形成技術を用いて各接続孔内にタングステンプラグからなるコンタクト部32を形成する。次いで、第2絶縁膜42上に導電膜を形成した後、通常のリソグラフィー技術とエッチング技術を用いて上記導電膜を加工し、コンタクト部32に接続する第2ランディングパッド33を形成する。なお、第2ランディングパッド33は、通常の溝配線技術を用いて形成することも可能である。
【0160】
次に、例えばHDP(High Density Plasma)CVD法により、第2ランディングパッド33等を覆うとともにその後のCMP工程にで第2ランディングパッド33上に所定の膜厚(例えば第2ランディングパッド33上に電気的絶縁が十分に得られる膜厚)以上が残るように、酸化シリコンを例えば1000nmの厚さに堆積した後、CMPによりその表面を研磨して平坦化し、第2ランディングパッド33上に電気的絶縁が十分に得られるように、例えば500nmの厚さの酸化シリコン膜を残すように第3絶縁膜43を形成する。
【0161】
次いで、図20の(2)に示すように、第3絶縁膜43上に書き込みワード線を形成するための導電膜を形成する。ここでは一例として、チタン膜(例えば厚さが20nm)と窒化チタン膜(例えば厚さが20nm)、アルミニウム銅合金膜(例えば厚さが300nm)、チタン膜(例えば厚さが10nm)と窒化チタン膜(例えば厚さが100nm)を下層より順次形成する。そして、通常のリソグラフィー技術とエッチング技術を用いて上記導電膜を加工し、書き込みワード線11を形成する。なお、書き込みワード線11は、通常の溝配線技術を用いて形成することも可能である。なお、図20の(2)以降の製造工程図では、第3絶縁膜43よりも下層の構成の図示は省略した。
【0162】
次に、例えばHDPCVD法により、書き込みワード線11等を覆う第4絶縁膜の下層441を、例えば酸化シリコンを500nmの厚さに堆積して形成する。その後、例えばCMPによって、書き込みワード線11表面が露出するようにこの第4絶縁膜の下層441の表面を平坦化する。
【0163】
次いで、図20の(3)に示すように、第4絶縁膜の下層441表面に、第4絶縁膜の上層442を、例えば酸化アルミニウムを50nmの厚さに堆積して形成する。このようにして、第4絶縁膜44を形成する。次に第4絶縁膜44上にレジスト膜91を塗布形成した後、通常のリソグラフィー技術により、レジスト膜91に孔92を形成する。さらに200℃〜300℃の温度で熱処理を行い、レジスト膜91をリフローして、孔92の口径を縮小させる。この図面では、リフロー前のレジスト膜91を2点鎖線で示し、リフロー後のレジスト膜91を実線で示した。
【0164】
なお、レジスト膜91の孔径の縮小方法は、リフロー処理の他に、例えばT.Toyoshima et.al,IEDM(International Electron Devices Meeting) (1998) p.333−336で報告されている方法を使っても良い。また、レジスト膜の厚さ方向の途中まで孔を開けた後、その途中まで形成した孔の側壁にサイドウォール絶縁膜を形成し、このサイドウォール絶縁膜をマスクにして、レジスト膜に初めに開けた孔よりも口径が縮小された孔を形成しても良い。
【0165】
続いて、図21の(4)に示すように、上記レジスト膜91をエッチングマスクに用いたエッチング技術により、第4絶縁膜44から第3絶縁膜43に、書き込みワード線11を貫通して第2ランディングパッド33に達する接続孔61を形成する。
【0166】
次に、図21の(5)に示すように、接続孔61の内面および第4絶縁膜44表面に、サイドウォール絶縁膜を形成するための絶縁膜を、接続孔61に側壁部分で電気的絶縁性が確保できる厚さ、例えば酸化シリコンを20nmの厚さに堆積して形成する。その後、この絶縁膜をエッチバックして、接続孔61の側壁にサイドウォール絶縁膜62を形成する。
【0167】
その後、上記レジスト膜を除去する。次いで、図21の(6)に示すように、通常のタングステンプラグの形成技術を用いて、タングステン膜を接続孔61内に埋め込むように第4絶縁膜44上に形成する。次いで、例えばCMPによって、第4絶縁膜44上の余剰なタングステン膜を除去して、接続孔61の側壁にサイドウォール絶縁膜62を介して接続孔61内にタングステンを残し、タングステンプラグからなるコンタクト部63を形成する。このCMPによって、第4絶縁膜44の表面は平坦化される。
【0168】
次に、第4絶縁膜44上にコンタクト部63と接続するTMR素子13を形成する工程を行う。まず図21の(7)に示すように、PVD(Physical Vapor Deposition)法によって、第4絶縁膜44上に、バリア層130、反強磁性体層131、強磁性体からなる磁化固定層132、トンネル絶縁膜133、強磁性体からなる記憶層134、キャップ層135、電極層136を下より順次堆積する。
【0169】
上記バリア層130には、窒化チタン、タンタルもしくは窒化タンタルを用いる。
【0170】
上記反強磁性体層131には、例えば、鉄・マンガン合金、ニッケル・マンガン合金、白金マンガン合金、イリジウム・マンガン合金、ロジウム・マンガン合金、コバルト酸化物およびニッケル酸化物のうちの1種を用いる。この反強磁性体層131は、TMR素子13と直列に接続されるスイッチング素子との接続に用いられる下地導電層を兼ねることも可能である。したがって、本実施の形態では、反強磁性体層131をTMR素子13と図示はしていないスイッチング素子との接続配線の一部として用いている。
【0171】
上記磁化固定層132には、例えば、ニッケル、鉄もしくはコバルト、またはニッケル、鉄およびコバルトのうちの少なくとも2種からなる合金のような、強磁性体を用いる。この磁化固定層132は、反強磁性体層131と接する状態に形成されていて、磁化固定層132と反強磁性体層131との層間に働く交換相互作用によって、磁化固定層132は、強い一方向の磁気異方性を有している。すなわち、磁化固定層132は反強磁性体層131との交換結合によって磁化の方向がピニング(pinning)される。
【0172】
なお、上記磁化固定層132は、導電層を挟んで磁性層を積層した構成としてもよい。例えば、反強磁性体層131側から、第1の磁化固定層と磁性層が反強磁性的に結合するような導電体層と第2の磁化固定層とを順に積層した構成としてもよい。この磁化固定層132は、3層以上の強磁性体層を、導電体層を挟んで積層させた構造であってもよい。上記導電体層には、例えば、ルテニウム、銅、クロム、金、銀等を用いることができる。
【0173】
上記トンネル絶縁層133は、上記記憶層134と上記磁化固定層132との磁気的結合を切るとともに、トンネル電流を流すための機能を有する。そのため、通常は厚さが0.5nm〜5nmの酸化アルミニウムが使われるが、例えば、酸化マグネシウム、酸化シリコン、窒化アルミニウム、窒化マグネシウム、窒化シリコン、酸化窒化アルミニウム、酸化窒化マグネシウムもしくは酸化窒化シリコンを用いてもよい。上記したようにトンネル絶縁層133の膜厚は、0.5nm〜5nmと非常に薄いため、ALD(Atomic Layer Deposition)法により形成する。もしくはスパッタリングによってアルミニウム等の金属膜を堆積した後にプラズマ酸化もしくは窒化を行って形成する。
【0174】
上記記憶層134には、例えば、ニッケル、鉄もしくはコバルト、またはニッケル、鉄およびコバルトのうちの少なくとも2種からなる合金のような、強磁性体を用いる。この記憶層134は外部印加磁場によって磁化の方向が下層の磁化か固定層132に対して、平行又は反平行に変えることができる。
【0175】
上記キャップ層135は、TMR素子と別のTMR素子とを接続する配線との相互拡散防止、接触抵抗低減および記憶層134の酸化防止という機能を有する。通常、銅、窒化タンタル、タンタル、窒化チタン等の材料により形成されている。したがって、上記バリア層130と同様な材料で形成することができる。
【0176】
上記電極層136は、例えばCVD法により、タングステンまたは窒化タングステンを例えば50nmの厚さに堆積して形成する。
【0177】
次に、図22の(8)に示すように、リソグラフィ技術とエッチング(例えば反応性イオンエッチング)技術とにより、フォトレジスト(図示せず)をマスクにして、TMR素子13を形成するための積層膜(電極層136、キャップ層135、基板34、トンネルバリア層133、磁化固定層132、反強磁性体層131、バリア層130)をエッチングして、TMR素子13を形成する。このエッチングでは、一例として、エッチングガスには塩素(Cl)を含んだハロゲンガスもしくは一酸化炭素(CO)にアンモニア(NH3 )を添加したガス系を用いる。その後、上記フォトレジストを除去する。
【0178】
次に、図22の(9)に示すように、第4絶縁膜44上に、TMR素子13を覆う第5絶縁膜45を形成する。この第5絶縁膜45は、例えばプラズマCVD法もしくはPVD法によって、酸化シリコンもしくは酸化アルミニウム等で、TMR素子13の厚さよりも厚く、例えば100nmの厚さに形成される。その後、例えばCMPによって、第5絶縁膜45表面を平坦化研磨して、TMR素子13の電極層136上面を露出させる。
【0179】
次に、図22の(10)に示すように、標準的な配線形成技術によって、第5絶縁膜45上に、TMR素子13の電極層136に接続するビット線12を、上記書き込みワード線11に対してTMR素子13を間にして立体的に交差(直交)するように形成する。それとともに、周辺回路の配線(図示せず)、ボンディングパッド領域(図示せず)を形成する。さらに全面に保護膜となる第6絶縁膜46を、例えばプラズマCVD法によって窒化シリコン膜で形成した後、ボンディングパッド部(図示せず)を開口して磁気メモリ装置のウエハプロセスを完了させる。
【0180】
上記図20〜図22によって説明した磁気メモリ装置の製造方法では、第4絶縁膜44より書き込みワード線11内を貫通して書き込みワード線11より下層に形成されている第2ランディングパッド33に達する接続孔61を形成した後、接続孔61の側壁にサイドウォール絶縁膜62を形成し、さらに接続孔61内にコンタクト部63を形成することから、トンネル磁気抵抗素子13直下にコンタクト部63を形成することが可能になる。このため、セル面積に占めるコンタクト部63の面積を新たに創出することなく、トンネル磁気抵抗素子13のセル面積を利用して、トンネル磁気抵抗素子13と選択素子である電界効果トランジスタ24の拡散層28に接続されている第2ランディングパッド33との接続が行える。したがって、1選択素子と1TMR素子とで構成されるMRAMにおいて、従来の1選択素子と1TMR素子型のMRAMと同等のアクセス速度を維持できるとともに、従来よりもセル面積の縮小化が可能になる。このセル面積はクロスポイント型MRAMと同等のセル面積に縮小化が可能になる。
【0181】
次に、本発明の磁気メモリ装置の第1製造方法に係る第2実施の形態を、図23の製造工程断面図によって説明する。この製造方法は、前記図2によって説明した磁気メモリ装置の第2実施の形態を実現する製造方法である。
【0182】
磁気メモリ装置の第1製造方法に係る第2実施の形態は、書き込みワード線とこの書き込みワード線を貫通するように形成される接続孔の製造方法が前記磁気メモリ装置の第1製造方法の第1実施の形態と異なる。その他の製造工程は、磁気メモリ装置の第1製造方法の第1実施の形態と同様となっている。
【0183】
ここでは、磁気メモリ装置の第1製造方法の第1実施の形態と異なる工程である、書き込みワード線の形成工程および接続孔の形成工程について説明する。図23の(1)に示すように、書き込みワード線11を形成する際に、第3絶縁膜43上に、書き込みワード線を形成するための導電膜111を形成した後、この導電膜111上にオフセット絶縁膜65を第3絶縁膜43およびその後に形成される第4絶縁膜をエッチングする際にエッチングマスクとなる絶縁材料で形成されればよく、例えば酸化アルミニウム膜もしくは窒化シリコン膜で形成する。その後、通常のレジスト塗布、リソグラフィー技術によるレジストマスク(図示せず)を形成した後、このオフセット絶縁膜65と同時に導電膜111をエッチング加工して、オフセット絶縁膜65を載せた書き込みワード線11a(111)、11b(111)を形成する。なお、上記第3絶縁膜43を形成する以前の工程は、前記第1実施の形態の磁気メモリ装置の製造方法と同様に行うことができる。
【0184】
その後、レジストマスクを除去する。次いで図23の(2)に示すように、第3絶縁膜43上にオフセット絶縁膜65を載せた書き込みワード線11(11a)、11(11b)を覆う状態に第4絶縁膜44を形成した後、例えばCMPによって、オフセット絶縁膜65が露出するように第4絶縁膜44表面を平坦化する。そして、通常のレジスト塗布、リソグラフィー技術により、レジスト膜93に孔94を形成した後、このレジスト膜93をエッチングマスクに用いて第4絶縁膜44、第3絶縁膜43をエッチング加工し、下層配線のランディングパッド33に達する接続孔61を形成する。このとき、オフセット絶縁膜65がエッチングされ難いエッチング条件を選択することにより、書き込みワード線11(11a)、11(11b)間いっぱいに接続孔61を形成することができる。その後、レジストマスクを除去する。
【0185】
次に、図23の(3)に示すように、前記磁気メモリ装置の第1製造方法の第1実施の形態と同様に、接続孔61内にサイドウォール絶縁膜62を形成し、接続孔61を埋め込むコンタクト部63を例えばタングステンプラグで形成すればよい。その後、図示はしないが、TMR素子の形成工程以降は、磁気メモリ装置の第1製造方法の第1実施の形態と同様である。
【0186】
上記磁気メモリ装置の第1製造方法の第2実施の形態によれば、前記磁気メモリ装置の第1製造方法の第1実施の形態と同様なる利点がある。これとともに、以下のような利点がある。すなわち、書き込みワード線11上に形成されたオフセット絶縁膜65がいわゆるエッチングストップ層となるので、書き込みワード線11上にかかるようにエッチングマスクとなるレジスト膜93に孔94を形成することができる。このため、レジスト膜93に口径が微細な孔を形成する必要がなくなる、リソグラフィー工程におけるマスク合わせ余裕を大きく取ることができる等の利点がある。
【0187】
上記磁気メモリ装置の第1製造方法の第1、第2実施の形態においては、前記図5のレイアウト図によって説明したように、接続孔61は、TMR素子11よりはみ出すように書き込みワード線11の配設方向に長く形成することができる。このように接続孔61を形成することによりTMR素子13および下層配線のランディングパッド33との接続面積を大きくすることが可能になり、コンタクト抵抗を低減することができる。
【0188】
上記磁気メモリ装置の第1製造方法の第2実施の形態では、書き込みワード線11が複数(図面では2本)の配線で形成され、この書き込みワード線11a、11b間に接続孔61を形成し、この接続孔61にTMR素子とランディングパッド33とを接続するコンタクト部が形成されることから、接続孔61両側における書き込みワード線11a、11b幅を均等に形成することができる。このため、どちらか一方の書き込みワード線11に電流が片寄って流れることによる、例えば細く形成された配線の電流密度が上昇することによる断線の発生懸念がない。
【0189】
次に、本発明の磁気メモリ装置の第2製造方法に係る第1実施の形態を、図24、図25の製造工程断面図によって説明する。この製造方法は、前記図6によって説明した磁気メモリ装置の第3実施の形態を実現する製造方法である。
【0190】
磁気メモリ装置の第2製造方法の第1実施の形態では、前記磁気メモリ装置の第1製造方法の第1実施の形態において、第3絶縁膜を形成した後から第4絶縁膜を形成するまでが異なる。その他の製造工程は、磁気メモリ装置の第1製造方法の第1実施の形態と同様となっている。そこで、図24および図25では、第3絶縁膜を形成した後の工程について説明する。
【0191】
まず前記図20の(1)によって説明したプロセスと同様に、半導体基板21に素子分離領域23を形成する。次いで、半導体基板21に選択素子となる電界効果型トランジスタ24を形成する。次に、MOSトランジスタ24を覆う第1絶縁膜41を形成し、この第1絶縁膜41表面を平坦化する。次いで、各拡散層27、28に達する接続孔を開口した後、各接続孔内にタングステンプラグからなるコンタクト部29、30を形成する。次いで、第1絶縁膜41上に導電膜を形成した後、この導電膜を加工してコンタクト部29に接続するセンス線15とコンタクト部30に接続する第1ランディングパッド31とを形成する。次に、センス線15、第1ランディングパッド31等を覆う第2絶縁膜42を形成し、この第2絶縁膜42表面を平坦化する。次いで、第1ランディングパッド31に達する接続孔を開口した後、接続孔内にタングステンプラグからなるコンタクト部32を形成する。次いで、第2絶縁膜42上に導電膜を形成した後、この導電膜を加工して、コンタクト部32に接続する第2ランディングパッド33を形成する。
【0192】
次に、図24の(1)に示すように、第2絶縁膜42上にコンタクト部32に接続する第2ランディングパッド33等を第3絶縁膜43で覆った後、CMP工程によって第2ランディングパッド33上に所定の膜厚(例えば第2ランディングパッド33上の電気的絶縁が十分に得られる膜厚)以上が残るように、第3絶縁膜43を研磨する。ここでは一例として、酸化シリコンを1000nmの厚さに堆積した後、CMPによりその表面を研磨して平坦化し、第2ランディングパッド33上に電気的絶縁が十分に得られるように、例えば500nmの厚さの酸化シリコン膜を残すようにして、第3絶縁膜43を形成する。
【0193】
次に、PVD法によって、上記第3絶縁膜43表面に、バリアメタル(図示せず)、高透磁率膜73、書き込みワード線を形成するための配線材料層111を成膜する。さらに、配線材料層111上に第4絶縁膜44を形成する。
【0194】
上記バリアメタルは、例えばチタン(Ti)を5nmの厚さに堆積した後、窒化チタン(TiN)を20nmの厚さに堆積して形成する。
【0195】
上記高透磁率膜73は、例えば最大透磁率μが100以上の軟磁性体を用いることができ、具体的には、一例としてニッケル・鉄・コバルトを含む合金、フェライト合金、等を用いることができ、例えば100nmの厚さに形成する。その他にも、例えば最大透磁率μが100以上であれば、例えばコバルト(Co)、鉄(Fe)、ニッケル(Ni)のいずれかを含む金属化合物、金属酸化物もしくは金属窒化物を用いることができる。
【0196】
以下の各種製造方法の説明において、高透磁率膜には上記材料を用いることができる。
【0197】
上記配線材料層111は、アルミニウム(Al)、銅(Cu)もしくはアルミニウム−銅(Al−Cu)合金を例えば300nmの厚さに形成する。
【0198】
上記第4絶縁膜44は、例えば酸化アルミニウム(Al2 3 )を形成する。この第4絶縁膜44の膜厚は、後に形成されるTMR素子と書き込みワード線11との電気的絶縁が確保される膜厚であればよい。例えばその厚さは例えば3nm〜50nmとする。
【0199】
次に、図24の(2)に示すように、第4絶縁膜44表面から第2ランディングパッド33に達する接続孔61を形成し、さらに接続孔61の側壁にサイドウォール絶縁膜62を介して接続孔61内にコンタクト部63を形成する。具体的には、前記図20の(3)によって説明したのと同様にして、第4絶縁膜44上にレジスト膜(91)を形成する。続いて、前記図20の(4)によって説明したのと同様にして上記レジスト膜(91)をエッチングマスクに用いたエッチング技術により、第4絶縁膜44から第3絶縁膜43に、配線材料層111、高透磁率膜73を貫通して第2ランディングパッド33に達する接続孔61を形成する。
【0200】
次に、前記図20の(5)によって説明したのと同様にして、接続孔61の内面および第4絶縁膜44表面に、サイドウォール絶縁膜を形成するための絶縁膜を、接続孔61に側壁部分で電気的絶縁性が確保できる厚さ、例えば酸化シリコンを20nmの厚さに堆積して形成する。その後、この絶縁膜をエッチバックして、接続孔61の側壁にサイドウォール絶縁膜62を形成する。
【0201】
次に、前記図20の(6)によって説明したのと同様にして、通常のタングステンプラグの形成技術を用いて、タングステン膜を接続孔61内に埋め込むように第4絶縁膜44上に形成する。次いで、例えばCMPによって、第4絶縁膜44上の余剰なタングステン膜を除去して、接続孔61の側壁にサイドウォール絶縁膜62を介して接続孔61内にタングステンを残し、タングステンプラグからなるコンタクト部63を形成する。このCMPによって、第4絶縁膜44の表面は平坦化される。
【0202】
次に、図24の(3)に示すように、上記第4絶縁膜44上に上記コンタクト部63を覆う上記ダミー膜112を、例えば第4絶縁膜44に対して選択的にエッチングが可能な膜で形成する。ここでは、上記ダミー膜112を例えば酸化シリコン膜で形成する。
【0203】
次に、リソグラフィ技術とエッチング技術とによって、フォトレジスト(図示せず)をマスクに用いて、上記ダミー膜112、配線材料層111、高透磁率膜73、バリアメタル(図示せず)を順次エッチングして、上記ダミー膜112を載せた状態で、書き込みワード線11を形成する。その後、上記フォトレジストを除去する。
【0204】
次に、図24の(4)に示すように、PVD法によって、上記第3絶縁膜43上に上記ダミー膜112〔前記図24の(1)参照〕を覆う高透磁率膜を形成した後、高透磁率膜の全面をエッチバックして、ダミー膜112を載せた書き込みワード線11の側壁に高透磁率サイドウォール74sを形成する。このようにして、高透磁率膜73と高透磁率サイドウォール74sとからなる磁束集中器51が形成される。
【0205】
続いて、図25の(5)に示すように、選択的エッチングによりダミー膜112(2点鎖線で示す部分)のみを除去する。この高透磁率サイドウォール74sは、磁束集中器51の側壁部分となるため、その先端部51Sの高さは、上記ダミー膜112の膜厚によって調整される。その先端部51Sは、後に形成されるTMR素子の記憶層とキャップ層との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜と記憶層との界面から記憶層とキャップ層との界面までの高さとすることが好ましい。また、高透磁率サイドウォール74Sと後に形成されるTMR素子との距離は、先端部51Sに集中させた電流磁束が記憶層に効率よく達する距離とする必要があり、例えばその距離は200nm以下、好ましくは100nm以下とする。
【0206】
次に、図25の(6)に示すように、上記第3絶縁膜43、第4絶縁膜44上に、磁束集中器51を覆うバリア層(図示せず)、反強磁性体層131、強磁性体からなる磁化固定層132、トンネル絶縁層133、強磁性体からなる記憶層134、キャップ層135、電極層136を順次形成する。上記バリア層(図示せず)、反強磁性体層131、磁化固定層132、トンネル絶縁層133、強磁性体からなる記憶層134、キャップ層135および電極層136は、前記第1実施の形態で説明したのと同様の材料を用いて形成することができる。
【0207】
次に、図25の(7)に示すように、リソグラフィ技術とエッチング(例えば反応性イオンエッチング)技術とにより、フォトレジストをマスクにして、TMR素子13を形成するための積層膜(電極層136、キャップ層135、記憶層134、トンネル絶縁層133、磁化固定層132、反強磁性体層131、バリア層)をエッチングしてTMR素子13を形成する。このエッチングでは、エッチングガスには塩素(Cl)を含んだハロゲンガスもしくは一酸化炭素(CO)にアンモニア(NH3 )を添加したガス系を用いる。その後、上記フォトレジストを除去する。
【0208】
この構成では、書き込みワード線11の下部および側面側に形成した磁束集中器51がTMR素子13の側面近傍に張り出しているため、書き込みワード線11により発生される電流磁界がTMR素子13の記憶層134に効率良く印加される。
【0209】
次に、図25の(8)に示すように、第3絶縁膜43、第4絶縁膜44上に、TMR素子13を覆う第5絶縁膜45を形成する。この第5絶縁膜45は、例えばCVD法もしくはPVD法によって、酸化シリコンもしくは酸化アルミニウム等で形成される。その後、化学的機械研磨によって第5絶縁膜45表面を平坦化研磨して、TMR素子13の電極層136上面を露出させる。
【0210】
次に標準的な配線形成技術によって、書き込みワード線11に対してTMR素子13を挟んで立体的に交差(例えば直交)するように、第5絶縁膜45上にTMR素子13の電極層136に接続するビット線12を形成するとともに、周辺回路の配線(図示せず)、ボンディングパッド領域(図示せず)を形成する。さらに全面に保護膜となる第6絶縁膜(図示せず)を、例えばプラズマ窒化シリコン膜で形成した後、ボンディングパッド部を開口して磁気メモリ装置のウエハプロセスを完了させる。
【0211】
また、上記磁気メモリ装置の第2製造方法において、高透磁率膜73と第1配線層111との間に絶縁膜を形成し、高透磁率サイドウォール74sを形成する前に書き込みワード線11の側壁にサイドウォール絶縁膜を形成すれば、前記図13によって説明した磁気メモリ装置の第6実施の形態の構成を実現することができる。
【0212】
上記磁気メモリ装置の第2製造方法では、第4絶縁膜44より書き込みワード線(第1配線)11、磁束集中器51を貫通して、書き込みワード線11より下層に形成されている第2ランディングパッド33に達する接続孔61を形成する工程と、接続孔61の側壁にサイドウォール絶縁膜62を形成する工程と、接続孔61内にコンタクト部63を形成する工程と備えていることから、コンタクト部63上にTMR素子13を形成することが可能になる。このため、セル面積に占めるコンタクト部63の面積を新たに創出することなく、TMR素子13のセル面積を利用して、TMR素子13と第2ランディングパッド33との接続が行える。したがって、1選択素子と1TMR素子とで構成されるMRAMにおいて、従来の1選択素子と1TMR素子型のMRAMと同等のアクセス速度を維持できるとともに、従来よりもセル面積の縮小化が可能になる。このセル面積はクロスポイント型MRAMと同等のセル面積に縮小化が可能になる。
【0213】
さらに書き込みワード線11の両側面およびTMR素子13に対向する面とは反対側の面に高透磁率膜からなる磁束集中器51を形成する工程を備えていることから、書き込みワード線11に電流を流した際に発せられる電流磁界は、書き込みワード線11の両側面に形成される高透磁率膜によって、TMR素子13の記憶層(記録層ともいう)134に効率よく集中されるようになる。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに書き込みワード線11のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0214】
次に、本発明の磁気メモリ装置の第2製造方法に係る第2実施の形態を説明する。ここでは、前記図12によって説明した磁気メモリ装置の第5実施の形態の基本構成を得る製造方法を示す。
【0215】
この製造方法は、前記図24の(1)によって説明した製造方法において、PVD法によって、第3絶縁膜43表面に、バリアメタル(図示せず)、高透磁率膜73、書き込みワード線やランディングパッドを形成するための配線材料層111を成膜した後、高透磁率膜を成膜する。その後の工程は、前記図24、図25によって説明したのと同様である。
【0216】
この結果、前記図12に示したような、書き込みワード線11の周囲を、高透磁率膜73、高透磁率サイドウォール74sおよび高透磁率膜(図示せず)によって取り囲むとともにTMR素子13の側方に高透磁率サイドウォール74sが延長形成された磁束集中器51が形成される。この磁束集中器51の側壁部分となる高透磁率サイドウォール74sの先端部51Sは、上記磁気メモリ装置の第2製造方法に係る第1実施の形態と同様に設定されて形成される。
【0217】
この製造方法は、前記図24、図25によって説明した製造方法において、次の点で異なる。前記図24の(1)において、高透磁率膜73を形成した後、絶縁膜(図示せず)を成膜する。また、書き込みワード線11を形成するパターニングでは、高透磁率膜73をエッチングせずに残す。さらに高透磁率サイドウォール74sを形成する前にサイドウォール絶縁膜を形成する。この3工程以外は、前記図24、図25によって説明したのと同様である。
【0218】
この結果、前記図13に示したような、書き込みワード線11の側面および底面側に、絶縁膜を介して高透磁率膜73、高透磁率サイドウォール74sからなる磁束集中器51が形成される。この磁束集中器51の側壁部分となる高透磁率サイドウォール74sの先端部51Sは、上記磁気メモリ装置の第2製造方法に係る第1実施の形態と同様に設定されて形成される。
【0219】
上記磁気メモリ装置の第2製造方法の第2、第3実施の形態においても、前記磁気メモリ装置の第2製造方法の第1実施の形態と同様なる効果が得られる。
【0220】
次に、本発明の磁気メモリ装置の第3製造方法に係る実施の形態を、図26の製造工程断面図によって説明する。この製造方法は、前記図8によって説明した磁気メモリ装置の第4実施の形態を実現する製造方法である。
【0221】
第3絶縁膜43を形成するまでは、前記図20の(1)によって説明したのと同様の工程である。以下、第3絶縁膜43を形成した後を説明する。まず、図26の(1)に示すように、前記図24の(1)〜(4)によって説明したのと同様にして、第3絶縁膜43上に高透磁率膜73、第1配線層111および第4絶縁膜44とを下層より順に形成する。次いで第4絶縁膜44より第1配線層111、高透磁率膜73および第3絶縁膜43を貫通して第2ランディングパッド33に達する接続孔61を形成する。接続孔61の形成方法は、前記第1製造方法と同様な方法を採用することができる。さらに、この接続孔61の側壁にサイドウォール絶縁膜62を形成する。さらに、上記接続孔61内にサイドウォール絶縁膜62を介してコンタクト部63を形成する。
【0222】
次いで、図26の(2)に示すように、第4絶縁膜44から高透磁率膜73までを加工して、第1配線層111で書き込みワード線11を形成する。この書き込みワード線11は第4絶縁膜44を載せた状態に形成される。
【0223】
書き込みワード線11の形状に加工した積層体の側壁に高透磁率材料からなる高透磁率サイドウォール74sを形成して、高透磁率膜73と高透磁率サイドウォール74sとで磁束集中器55を形成する。
【0224】
図26の(3)に示すように、さらに、第4絶縁膜44、コンタクト部63、磁束集中器55等を覆う第4絶縁膜44を形成する。この製造方法では、書き込みワード線11直上に形成される第4絶縁膜と書き込みワード線11の側部に形成される第4絶縁膜44とを2回に分けて成膜する。そして、後に形成した第4絶縁膜44の表面を平坦化するとともに上記第1磁束集中器55の先端部55Sを露出させる。
【0225】
次に、図26の(4)に示すように、前記図25の(6)、(7)で説明したのと同様にして、上記書き込みワード線11上に形成された第4絶縁膜44上に、TMR素子13を形成する。次いで、通常のエッチバック技術を用いたサイドウォールの形成技術によって、上記TMR素子13の側壁にサイドウォール絶縁膜49sを形成する。なお、サイドウォール絶縁膜49sの高さが十分に確保できない場合には、図示はしないが、TMR素子13を形成する膜の最上層にダミー膜を形成しておき、TMR素子13に加工したときに、TMR素子13上にダミー膜が形成されるようにしてもよい。または、ダミー膜を形成せずに、TMR素子13の最上層の電極層136を上記ダミー膜に相当する厚さだけ厚く形成してもよい。これによって、サイドウォール絶縁膜49sの高さがかせげるようになる。
【0226】
さらに、通常のエッチバック技術を用いたサイドウォールの形成技術によって、上記TMR素子13の側壁に上記サイドウォール絶縁膜49sを介して、上記第1磁束集中器55の先端部55Sに接続されるように高透磁率サイドウォール75sを形成する。この高透磁率サイドウォール75sは磁束集中器55の側壁部分よりも、少なくともTMR素子13側に厚く形成することが好ましい。また、この高透磁率サイドウォール75sの先端部75Sの高さは、前記磁束集中器51等の先端部51Sと同様なる高さと同様に、TMR素子13の記憶層134とキャップ層136との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜133と記憶層134との界面から記憶層134とキャップ層135との界面までの高さとすることが好ましい。また、先端部75SとTMR素子13との距離を決定するサイドウォール絶縁膜49sの厚さは、先端部75Sに集中させた電流磁束が記憶層134に効率よく達する距離とする必要があり、例えばその厚さは200nm以下、好ましくは100nm以下とする。
【0227】
その後、図示はしないが、前記図25の(8)によって説明したのと同様に、第4絶縁膜44上に、TMR素子13、高透磁率サイドウォール75s等を覆う第5絶縁膜45を形成する。次いで、化学的機械研磨によって第5絶縁膜45表面を平坦化研磨して、TMR素子13の電極層136上面を露出させる。次に標準的な配線形成技術によって、書き込みワード線11に対してTMR素子13を挟んで立体的に交差(例えば直交)するように、第5絶縁膜45上にTMR素子13の電極層136に接続するビット線12を形成するとともに、周辺回路の配線(図示せず)、ボンディングパッド領域(図示せず)を形成する。さらに全面に保護膜となる第6絶縁膜(図示せず)を、例えばプラズマ窒化シリコン膜で形成した後、ボンディングパッド部を開口して磁気メモリ装置のウエハプロセスを完了させる。
【0228】
上記磁気メモリ装置の第3製造方法では、書き込みワード線11、磁束集中器55等を貫通する接続孔61とその内部にサイドウォール絶縁膜62を介してコンタクト部63を形成する工程を備えていることから、前記第1製造方法と同様に、コンタクト部63上にTMR素子13を形成することが可能になる。このため、セル面積に占めるコンタクト部63の面積を新たに創出することなく、TMR素子13のセル面積を利用して、TMR素子13と他の配線との接続が行える。したがって、1選択素子と1TMR素子とで構成されるMRAMにおいて、従来の1選択素子と1TMR素子型のMRAMと同等のアクセス速度を維持できるとともに、従来よりもセル面積の縮小化が可能になる。このセル面積はクロスポイント型MRAMと同等のセル面積に縮小化が可能になる。
【0229】
さらに書き込みワード線11の両側面およびTMR素子13に対向する面とは反対側の面に高透磁率膜からなる磁束集中器55を形成する工程および高透磁率サイドウォール49sを形成する工程を備えていることから、書き込みワード線11に電流を流した際に発せられる電流磁界は、書き込みワード線11の両側面に形成される高透磁率膜によって、TMR素子13の記憶層(記録層ともいう)134に効率よく集中されるようになる。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに書き込みワード線11のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。また、磁束集中器55の先端部が第2高透磁率サイドウォール49sによってTMR素子13側に厚く形成されることから、第1製造方法よりも電流磁界を効率的にTMR素子13に印加できる。
【0230】
また、上記第3製造方法の実施の形態において、磁束集中器55の側壁先端の厚さと高透磁率サイドウォール49s下端の厚さとを同じにして、磁束集中器55の側壁の先端と高透磁率サイドウォール49sの下端とが一致するように形成することにより、前記図6によって説明した本発明の磁気メモリ装置の第3実施の形態の構成を形成することも可能である。
【0231】
また、上記第3製造方法の実施の形態において、書き込みワード線11を形成する前に、高透磁率膜73上に絶縁膜を形成し、その後書き込みワード線11を形成する。また書き込みワード線11の側壁にサイドウォール絶縁膜を形成してから、高透磁率膜73に接続するように高透磁率サイドウォール74sを形成する。さらに、TMR素子13を形成する前に、第4絶縁膜44上に高透磁率膜を形成し、さらに絶縁膜を形成した後、この絶縁膜からランディングパッド33に接続するように、接続孔61、サイドウォール絶縁膜62、コンタクト部63等を形成し、その後コンタクト部63に接続するTMR素子13を形成する。
【0232】
次いで、TMR素子13の側壁にサイドウォール絶縁膜49sを形成する。このエッチバックの際に、TMR素子13直下に形成された絶縁膜もエッチングする。次に高透磁率サイドウォール75s形成する。このエッチバック時に、露出される高透磁率膜もエッチングする。このような製造方法を採ることにより、前記図14で説明した磁気メモリ装置の第7実施の形態の構成を形成することが可能となる。この場合も、高透磁率サイドウォール75sは磁束集中器55の側壁部分よりも、少なくともTMR素子13側に厚く形成することが好ましい。また、この製造方法において、TMR素子13直下に形成される絶縁膜と高透磁率膜を形成しなければ、前記磁気メモリ装置の第6実施の形態の構成を実現することができる。
【0233】
次に、本発明の磁気メモリ装置の第4製造方法に係る実施の形態を、図27の製造工程断面図によって説明する。この製造方法は、前記図15によって説明した磁気メモリ装置の第8実施の形態を実現する製造方法である。
【0234】
第3絶縁膜43を形成するまでは、前記図20の(1)によって説明したのと同様の工程である。以下、第3絶縁膜43を形成した後を説明する。図27の(1)に示すように、第3絶縁膜43上に書き込みワード線11を形成する。書き込みワード線11を覆う第4絶縁膜44を形成する。その後第4絶縁膜44の表面を化学的機械研磨によって平坦化し、書き込みワード線11を露出させる。次に、プラズマCVD酸化膜、プラズマナイトライド、またはアルミナを堆積する。この堆積膜厚は例えば200nm以下、好ましくは100nm以下にする。次いで、第4絶縁膜44上に高透磁率膜76および絶縁膜87を下層より順に形成する。
【0235】
次いで、絶縁膜87より高透磁率膜76、第4絶縁膜44および書き込みワード線11、第3絶縁膜43を貫通して第2ランディングパッド33に達する接続孔61を形成する。次に接続孔61の側壁にサイドウォール絶縁膜62を形成する。さらに接続孔61内にサイドウォール絶縁膜62を介して導電性を持つコンタクト部63を形成する。上記接続孔61、サイドウォール絶縁膜62、コンタクト部63の各形成方法は、前記第1製造方法と同様な方法を採用することができる。
【0236】
次いで、図27の(2)に示すように、TMR素子13は、前記第1製造方法で説明したのと同様に、絶縁膜87上に、バリア層(図示せず)、反強磁性体層131、磁化固定層132、トンネル絶縁層133、記憶層134、キャップ層135および電極層136を下層より順に形成した後、ここではさらにダミー膜113を形成する。そして、リソグラフィー技術とエッチング技術とによって、ダミー膜113からバリア層までの積層膜を、コンタクト部63に接続するようにTMR素子13の形状に加工する。このようにして、ダミー膜113を載せたものでコンタクト部63に接続するTMR素子13が形成される。なお、ダミー膜113を形成せずに、TMR素子13の最上層の電極層136を上記ダミー膜113に相当する厚さだけ厚く形成してもよい。また、電極層136がダミー膜113を形成する必要が無い厚さに形成されている場合には、ダマシン膜113を形成する必要はない。
【0237】
次に、図27の(3)に示すように、通常のエッチバック技術を用いたサイドウォールの形成技術によって、上記TMR素子13の側壁にサイドウォール絶縁膜49sを形成する。このエッチバックでは、絶縁膜87もエッチバックされて高透磁率膜76が露出される。さらに、通常のエッチバック技術を用いたサイドウォールの形成技術によって、上記TMR素子13の側壁に上記サイドウォール絶縁膜49sを介して、高透磁率サイドウォール77sを形成し、磁束集中器53を構成する。この磁束集中器53側壁(高透磁率サイドウォール77s)の先端部53Sの高さは、TMR素子13の記憶層134とキャップ層135との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜133と記憶層134との界面から記憶層134とキャップ層133との界面までの高さとすることが好ましい。また、磁束集中器53の先端部53SとTMR素子13との距離xは、磁束集中器53の先端部53Sに集中させた電流磁束が記憶層134に効率よく達する距離とする必要があり、例えばその距離は200nm以下、好ましくは100nm以下とする。その後、ダミー膜113〔前記図27の(2)参照〕を除去する。
【0238】
その後、前記図25の(8)によって説明したのと同様に、第4絶縁膜44上に、TMR素子13、磁束集中器53等を覆う第5絶縁膜45を形成する。次いで、化学的機械研磨によって第5絶縁膜45表面を平坦化研磨して、TMR素子13の電極層136上面を露出させる。次に標準的な配線形成技術によって、書き込みワード線11に対してTMR素子13を挟んで立体的に交差(例えば直交)するように、第5絶縁膜45上にTMR素子13の電極層136に接続するビット線12を形成するとともに、周辺回路の配線(図示せず)、ボンディングパッド領域(図示せず)を形成する。さらに全面に保護膜となる第6絶縁膜(図示せず)を、例えばプラズマ窒化シリコン膜で形成した後、ボンディングパッド部を開口して磁気メモリ装置のウエハプロセスを完了させる。
【0239】
上記磁気メモリ装置の第4製造方法では、書き込みワード線11、磁束集中器53等を貫通する接続孔61とその内部にサイドウォール絶縁膜62を介してコンタクト部63を形成する工程を備えていることから、前記第1製造方法と同様に、コンタクト部63上にTMR素子13を形成することが可能になる。このため、セル面積に占めるコンタクト部63の面積を新たに創出することなく、TMR素子13のセル面積を利用して、TMR素子13とランディングパッド33との接続が行える。したがって、1選択素子と1TMR素子とで構成されるMRAMにおいて、従来の1選択素子と1TMR素子型のMRAMと同等のアクセス速度を維持できるとともに、従来よりもセル面積の縮小化が可能になる。このセル面積はクロスポイント型MRAMと同等のセル面積に縮小化が可能になる。
【0240】
さらに書き込みワード線11を形成した後に、磁束集中器53を形成する工程を備えていることから、書き込みワード線11に電流を流した際に発せられる電流磁界が磁束集中器53の先端部53SよりTMR素子13の記憶層(記録層ともいう)134に効率よく集中されるようになる。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに書き込みワード線11のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0241】
次に、本発明の磁気メモリ装置の第5製造方法に係る実施の形態を、図28、図29の製造工程断面図によって説明する。この製造方法は、前記図16によって説明した磁気メモリ装置の第9実施の形態もしくは第11実施の形態を実現する製造方法である。
【0242】
第3絶縁膜43を形成するまでは、前記図20の(1)によって説明したのと同様の工程である。以下、第3絶縁膜43を形成した後を説明する。まず、図28の(1)に示すように、前記図24の(1)によって説明したのと同様にして、第3絶縁膜43上に、第1高透磁率膜78、第1配線層111およびダミー膜114とを下層より順に形成する。
【0243】
次いで、図28の(2)に示すように、ダミー膜114から第1高透磁率膜78までを加工して、第1配線層111で書き込みワード線11を形成する。この書き込みワード線11はダミー膜114を載せた状態に形成される。
【0244】
次に、書き込みワード線11の形状に加工した積層体の側壁に高透磁率材料からなる第1高透磁率サイドウォール79sを形成して、第1高透磁率膜78と第1高透磁率サイドウォール79sとで第1磁束集中器57を形成する。その後、ダミー膜114を選択的に除去する。また、第1高透磁率膜78を残して書き込みワード線11を形成することもできる。この場合には、第1高透磁率サイドウォール79sを形成する際に、第3絶縁膜43上の余剰な第1高透磁率膜78を除去すればよい。この第1高透磁率サイドウォール79sの形成工程において、第1高透磁率サイドウォール79sの先端の高さを書き込みワード線11の上面にあわせるように形成すれば、前記磁気メモリ装置の第9実施の形態を形成することになり、第1高透磁率サイドウォール79sの先端の高さを書き込みワード線11の上面より突き出た状態に形成すれば、前記磁気メモリ装置の第11実施の形態を形成することになる。図面では、前記磁気メモリ装置の第11実施の形態を形成する場合を説明する。
【0245】
次いで、図28の(3)に示すように、第3絶縁膜43上に、第1磁束集中器57、書き込みワード線11等を覆う第4絶縁膜44を形成する。そして、化学的機械研磨によって、第4絶縁膜44表面の平坦化する。このとき、第1磁束集中器57の側壁部分(第1高透磁率サイドウォール79s)先端が露出しても差し支えはない。さらに、前記第4製造方法と同様にして、第4絶縁膜44上に、第2高透磁率膜76、絶縁膜87を下層より順に形成する。
【0246】
次いで、図28の(4)に示すように、絶縁膜87、高透磁率膜(第2高透磁率膜)76、第4絶縁膜44、書き込みワード線11、第1磁束集中器57および第3絶縁膜43を貫通してランディングパッド33に達する接続孔61を形成する。接続孔61の形成方法は、前記第1製造方法と同様な方法を採用することができる。さらに、この接続孔61の側壁にサイドウォール絶縁膜62を形成する。さらに、上記接続孔61内にサイドウォール絶縁膜62を介してコンタクト部63を形成する。
【0247】
その後、図29の(5)に示すように、前記第1製造方法で説明したのと同様に、絶縁膜87上に、バリア層(図示せず)、反強磁性体層131、磁化固定層132、トンネル絶縁層133、記憶層134、キャップ層135および電極層136を下層より順に形成した後、ここではさらに前記第4製造方法と同様に、ダミー膜113を形成する。そして、リソグラフィー技術とエッチング技術とによって、ダミー膜113からバリア層までの積層膜および絶縁膜87をTMR素子13の形状に加工して、コンタクト部63に接続するようにTMR素子13を形成する。このようにして、ダミー膜113を載せたものでコンタクト部63に接続するTMR素子13が形成される。なお、ダミー膜113を形成せずに、TMR素子13の最上層の電極層136を上記ダミー膜113に相当する厚さだけ厚く形成してもよい。
【0248】
次に、図29の(6)に示すように、通常のエッチバック技術を用いたサイドウォールの形成技術によって、上記TMR素子13の側壁にサイドウォール絶縁膜49sを形成する。この絶縁膜のエッチバックでは、絶縁膜87もエッチバックされて第2高透磁率膜76が露出される。さらに、通常のエッチバック技術を用いたサイドウォールの形成技術によって、上記TMR素子13の側壁に上記サイドウォール絶縁膜49sを介して、高透磁率サイドウォール(第2高透磁率サイドウォール)77sを形成する。このようにして、第2高透磁率膜76と第2高透磁率サイドウォール)77sとで第2磁束集中器53が形成される。この磁束集中器53側壁(第2高透磁率サイドウォール77s)の先端部53Sの高さは、TMR素子13の記憶層134とキャップ層135との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜133と記憶層134との界面から記憶層134とキャップ層133との界面までの高さとすることが好ましい。また、磁束集中器53の先端部53SとTMR素子13との距離は、磁束集中器53の先端部53Sに集中させた電流磁束が記憶層134に効率よく達する距離とする必要があり、例えばその距離はサイドウォール絶縁膜49sの厚さで決定され、例えば200nm以下、好ましくは100nm以下とする。その後、ダミー膜113を除去する。なお、ダミー膜113を形成せず、電極層136をダミー膜113の膜厚分だけ厚く形成してもよい。また、電極層136がダミー膜113を形成する必要が無い厚さに形成されている場合には、ダマシン膜113を形成する必要はない。
【0249】
その後、図29の(7)に示すように、前記図25の(8)によって説明したのと同様に、第4絶縁膜44上に、TMR素子13、第2磁束集中器53等を覆う第5絶縁膜45を形成する。次いで、化学的機械研磨によって第5絶縁膜45表面を平坦化研磨して、TMR素子13の電極層136上面を露出させる。次に標準的な配線形成技術によって、書き込みワード線11に対してTMR素子13を挟んで立体的に交差(例えば直交)するように、第5絶縁膜45上にTMR素子13の電極層136に接続するビット線12を形成するとともに、周辺回路の配線(図示せず)、ボンディングパッド領域(図示せず)を形成する。さらに全面に保護膜となる第6絶縁膜(図示せず)を、例えばプラズマ窒化シリコン膜で形成した後、ボンディングパッド部を開口して磁気メモリ装置のウエハプロセスを完了させる。
【0250】
上記磁気メモリ装置の第5製造方法において、書き込みワード線11と第1磁束集中器57との間に絶縁膜を形成すれば、前記磁気メモリ装置の第10実施の形態もしくは第12実施の形態の構成を形成することができる。書き込みワード線11と第1磁束集中器57との間に絶縁膜を形成する方法は、第1高透磁率膜78と第1配線層111との間に絶縁膜を形成し、第1高透磁率サイドウォール79sを形成する前に書き込みワード線11の側壁にサイドウォール絶縁膜を形成すれば実現することができる。
【0251】
上記磁気メモリ装置の第5製造方法では、書き込みワード線11、第1磁束集中器57、第2磁束集中器53等を貫通する接続孔61とその内部にサイドウォール絶縁膜62を介してコンタクト部63を形成する工程を備えていることから、前記第1製造方法と同様に、コンタクト部63上にTMR素子13を形成することが可能になる。このため、セル面積に占めるコンタクト部63の面積を新たに創出することなく、TMR素子13のセル面積を利用して、TMR素子13と選択素子に接続されている第2ランディングパッド33との接続が行える。したがって、1選択素子と1TMR素子とで構成されるMRAMにおいて、従来の1選択素子と1TMR素子型のMRAMと同等のアクセス速度を維持できるとともに、従来よりもセル面積の縮小化が可能になる。このセル面積はクロスポイント型MRAMと同等のセル面積に縮小化が可能になる。
【0252】
さらに、書き込みワード線11の両側面およびTMR素子13に対向する面とは反対側の面に高透磁率膜からなる第1磁束集中器を形成する工程と、書き込みワード線11とTMR素子13との間およびTMR素子13の側面側に、絶縁膜を介して、高透磁率膜からなる第2磁束集中器53を形成する工程とを備えていることから、書き込みワード線11に電流を流した際に発せられる電流磁界は第1磁束集中器57から第2磁束集中器53に伝達されてTMR素子13の記憶層(記録層ともいう)134に効率よく集中される。このため書き込みのための電流値を下げることが可能になり、消費電流の低減が図れるとともに書き込みワード線11のエレクトロマイグレーションに対する寿命が高められる。また駆動電流が少なくてすむことから電流駆動回路の面積を縮小することができ、集積度を高められる。さらに漏れ磁界が少なくなるため隣接セルとの干渉効果が低減される。
【0253】
上記各製造方法の実施の形態において、TMR素子13の側方に形成される各磁束集中器の側壁部分の先端部は、TMR素子13の記憶層134とキャップ層135との界面と同等の高さまで形成することが可能であり、例えばトンネル絶縁膜133と記憶層134との界面から記憶層134とキャップ層135との界面までの高さとすることが好ましい。また、磁束集中器の先端部とTMR素子13との距離は、磁束集中器の先端部に集中させた電流磁束が記憶層134に効率よく達する距離とする必要があり、例えばその距離は200nm以下、好ましくは100nm以下とする。
【0254】
なお上記各製造方法における各絶縁膜の平坦化はCMPに限定されず、その他の平坦化技術(エッチバックによる平坦化技術、リフローによる平坦化技術、リフロー後にエッチバックする平坦化技術等)を用いることも可能である。
【0255】
上記第2〜第5製造方法の各実施の形態では、書き込みワード線11を1本の配線で形成したが、これを複数本(例えば2本)の配線で形成することも可能である。その際には、前記図23によって説明したように、接続孔61は複数本の配線間に形成すればよい。
【0256】
【発明の効果】
以上、説明したように本発明の磁気メモリ装置によれば、トンネル磁気抵抗素子の第2配線が接続する反対側に接続するように、第1配線よりも下層の配線層に接続されるコンタクト部を、第1配線と絶縁された状態でかつ第1配線内を貫通する状態に設けたことから、トンネル磁気抵抗素子の占有面積内にコンタクト部を形成することができる。このため、従来は形成していたトンネル磁気抵抗素子に接続される引き出し配線部分を形成する必要が無くなり、セル面積に占めるコンタクト部の面積を新たに創出することなく、第2配線(ビット線)に沿った方向の長さを縮小することができる。すなわち、従来は最小線幅をFとしたときに、8F2 以上のセル面積を必要としていたのが、8F2 よりも小さいセルサイズ、例えば最小4F2 のセルサイズを実現することができる。したがって、1選択素子と1TMR素子とで構成されるMRAMにおいて、従来の1選択素子と1TMR素子型のMRAMと同等のアクセス速度を維持できるとともに、従来よりもセル面積の縮小化が可能になる。このセル面積はクロスポイント型MRAMと同等のセル面積に縮小化が可能になる。
【0257】
本発明の磁気メモリ装置の製造方法によれば、絶縁膜より第1配線内を貫通して第1配線より下層に形成されている配線層に達する接続孔を形成する工程と、接続孔の側壁にサイドウォール絶縁膜を形成する工程と、接続孔内にコンタクト部を形成する工程と備えていることから、第1配線上に絶縁膜を介して形成されるトンネル磁気抵抗素子直下にトンネル磁気抵抗素子と上記配線層とを接続するコンタクト部を形成することが可能になる。このため、従来は形成していたトンネル磁気抵抗素子に接続される引き出し配線部分を形成する必要が無くなるので、セル面積に占めるコンタクト部の面積を新たに創出することなく、第2配線(ビット線)に沿った方向の長さを縮小することができる。すなわち、従来は最小線幅をFとしたときに、8F2 以上のセル面積を必要としていたのが、8F2 よりも小さいセルサイズ、例えば最小4F2 のセルサイズで製造することができる。したがって、従来の1選択素子と1TMR素子型の磁気メモリ装置(例えばMRAM)と同等のアクセス速度を維持できるとともに、従来よりもセル面積の縮小化が可能になる。このセル面積はクロスポイント型MRAMと同等のセル面積に縮小化が可能になる。上記効果は、磁束集中器を形成する場合にも同様に得られる。
【0258】
さらに、従来は形成していたトンネル磁気抵抗素子に接続される引き出し配線部分を形成する必要が無くなるので、トンネル磁気抵抗素子を一段エッチングで形成することができる。このため、引き出し配線を形成する際のマスク合わせ余裕を考慮する必要が無くなり、その分だけ、さらにセル面積を縮小することができる。またトンネル磁気抵抗素子を一段エッチングで形成することができることから、トンネル絶縁層上、磁化固定層上もしくは反強磁性体層上でエッチングを停止するような、エッチングの精密な制御を必要としないので、エッチング工程の負荷を軽減することができる。
【図面の簡単な説明】
【図1】本発明の磁気メモリ装置に係る第1実施の形態を示す概略構成断面図である。
【図2】TMR素子と接続孔とのずれ量と、TMR素子の記憶層が磁化反転に必要な電流との関係を説明する図であり、(1)は書き込みワード線とTMR素子と接続孔との一例として関係を示す平面図であり、(2)は(1)のA−A線における部分断面図であり、(3)および(4)はTMR素子と接続孔とのずれ量と、TMR素子の記憶層が磁化反転に必要な電流との関係を示すグラフである。
【図3】本発明の磁気メモリ装置に係る第2実施の形態を示す図であり、(1)はレイアウト図であり、(2)は(1)に示したA−A線における断面図である。
【図4】本発明の磁気メモリ装置に係る第2実施の形態における書き込みワード線の変形例を示すレイアウト図である。
【図5】本発明の磁気メモリ装置における接続孔の変形例を示すレイアウト図である。
【図6】本発明の磁気メモリ装置に係る第3実施の形態を示す概略構成断面図である。
【図7】第1実施の形態に係る磁気メモリ装置の書き込みワード線が発する電流磁界のシミュレーションによる分布状態を示す概略構成断面図である。
【図8】本発明の磁気メモリ装置に係る第4実施の形態およびこの磁気メモリ装置の書き込みワード線が発する電流磁界のシミュレーションによる分布状態を示す概略構成断面図である。
【図9】比較例1として、従来構造のMRAMセルにおける書き込みワード線およびその周囲構造および書き込みワード線周囲の電流磁界のシミュレーションによる分布状態を示す概略構成断面図である。
【図10】比較例2として、従来構造のMRAMセルにおける書き込みワード線およびその周囲構造および書き込みワード線周囲の電流磁界のシミュレーションによる分布状態を示す概略構成断面図である。
【図11】磁気メモリ装置の第1実施の形態、第2実施の形態、比較例1および比較例2について、磁化方向に対して直行する方向に配置した磁化を反転させるため必要なビット線電流の書き込みワード線電流依存性を示す図であって、磁化容易軸方向の磁界を与える電流と磁化難易軸方向の磁界を与える電流との関係図である。
【図12】本発明の磁気メモリ装置に係る第5実施の形態を示す概略構成断面図である。
【図13】本発明の磁気メモリ装置に係る第6実施の形態を示す概略構成断面図である。
【図14】本発明の磁気メモリ装置に係る第7実施の形態を示す概略構成断面図である。
【図15】本発明の磁気メモリ装置に係る第8実施の形態を示す概略構成断面図である。
【図16】本発明の磁気メモリ装置に係る第9実施の形態を示す概略構成断面図である。
【図17】本発明の磁気メモリ装置に係る第10実施の形態を示す概略構成断面図である。
【図18】本発明の磁気メモリ装置に係る第11実施の形態を示す概略構成断面図である。
【図19】本発明の磁気メモリ装置に係る第12実施の形態を示す概略構成断面図である。
【図20】本発明の磁気メモリ装置の第1製造方法に係る第1実施の形態を示す製造工程断面図である。
【図21】本発明の磁気メモリ装置の第1製造方法に係る第1実施の形態を示す製造工程断面図である。
【図22】本発明の磁気メモリ装置の第1製造方法に係る第1実施の形態を示す製造工程断面図である。
【図23】本発明の磁気メモリ装置の第1製造方法に係る第2実施の形態を示す製造工程断面図である。
【図24】本発明の磁気メモリ装置の第2製造方法に係る第1実施の形態を示す製造工程断面図である。
【図25】本発明の磁気メモリ装置の第2製造方法に係る第1実施の形態を示す製造工程断面図である。
【図26】本発明の磁気メモリ装置の第3製造方法に係る実施の形態を示す製造工程断面図である。
【図27】本発明の磁気メモリ装置の第4製造方法に係る実施の形態を示す製造工程断面図である。
【図28】本発明の磁気メモリ装置の第5製造方法に係る実施の形態を示す製造工程断面図である。
【図29】本発明の磁気メモリ装置の第5製造方法に係る実施の形態を示す製造工程断面図である。
【図30】従来の1選択素子と1TMR素子のMRAMの概略構成断面図である。
【図31】容易軸方向磁界HEA および困難軸方向磁界HHA による記憶層磁化方向の反転しきい値を示すアステロイド曲線である。
【図32】従来のクロスポイント型MRAMの要部斜視図である。
【図33】従来のクロスポイント型MRAMの要部レイアウト図である。
【図34】従来の1選択素子と1TMR素子のMRAMの要部レイアウト図である。
【符号の説明】
11…書き込みワード線(第1配線)、12…ビット線(第2配線)、13…トンネル磁気抵抗素子(TMR素子)、33…第2ランディングパッド(配線層)、61…接続孔、63…コンタクト部、132…磁化固定層、133…トンネル絶縁層、134…記憶層

Claims (15)

  1. 第1配線と、
    前記第1配線と立体的に交差する第2配線と、
    前記第1配線と電気的に絶縁され、前記第2配線と電気的に接続されたもので、前記第1配線と前記第2配線との交差領域にトンネル絶縁層を強磁性体で挟んで構成されるトンネル磁気抵抗素子とを備えたもので、
    前記強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記憶する不揮発性の磁気メモリ装置において、
    前記トンネル磁気抵抗素子と前記第1配線より下層に設けられた配線層とを接続するもので、前記第1配線と絶縁された状態でかつ前記第1配線内を貫通した状態に設けられた接続孔と、
    前記トンネル磁気抵抗素子の前記第2配線が接続される側とは反対側と前記第1配線より下層に設けられた配線層とを接続するもので前記接続孔内に形成されたコンタクト部と
    を備えたことを特徴とする磁気メモリ装置。
  2. 第1配線は複数の配線からなり、
    前記コンタクト部は、前記複数の第1配線と絶縁された状態にかつ前記複数の第1配線間を貫通した状態に設けられた孔を通して、前記トンネル磁気抵抗素子の前記第2配線が接続される側とは反対側と他の配線層とが接続される
    ことを特徴とする請求項1記載の磁気メモリ装置。
  3. 前記第1配線に、少なくとも、前記第1配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率膜からなる磁束集中器が設けられ、
    前記第1配線の側面に形成された前記高透磁率膜の少なくとも一方は前記第1配線より前記トンネル磁気抵抗素子側に突き出した状態に形成されていて、
    前記接続孔は、前記第1配線とともに前記磁束集中器と絶縁された状態でかつ前記第1配線内と前記磁束集中器内とを貫通した状態に設けられている
    ことを特徴とする請求項1記載の磁気メモリ装置。
  4. 前記第1配線と前記トンネル磁気抵抗素子との間および前記トンネル磁気抵抗素子の側面に絶縁膜を介して高透磁率膜からなる磁束集中器が設けられ、
    前記接続孔は、前記第1配線とともに前記磁束集中器と絶縁された状態でかつ前記第1配線内とともに前記磁束集中器内を貫通した状態に設けられている
    ことを特徴とする請求項1記載の磁気メモリ装置。
  5. 前記第1配線に、少なくとも、前記第1配線の両側面および前記トンネル磁気抵抗素子に対向する面とは反対側の面に高透磁率膜からなる第1磁束集中器が設けられ、
    前記第1配線と前記トンネル磁気抵抗素子との間および前記トンネル磁気抵抗素子の側面に絶縁膜を介して高透磁率膜からなる第2磁束集中器が設けられ、
    前記接続孔は、前記第1配線とともに前記第1、第2磁束集中器と絶縁された状態でかつ前記第1配線内とともに前記第1、第2磁束集中器内を貫通した状態に設けられている
    ことを特徴とする請求項1記載の磁気メモリ装置。
  6. 表面が絶縁性の基体上に第1配線を形成する工程と、
    前記第1配線を覆う絶縁膜を形成する工程と、
    前記絶縁膜より前記第1配線内を貫通して前記基体に形成されている配線層に達する接続孔を形成する工程と、
    前記接続孔の側壁にサイドウォール絶縁膜を形成する工程と、
    前記接続孔内にコンタクト部を形成する工程と、
    トンネル絶縁層を強磁性体で挟んでなるもので、前記第1配線と電気的に絶縁されかつ前記コンタクト部に接続されるトンネル磁気抵抗素子を形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えたことを特徴とする磁気メモリ装置の製造方法。
  7. 第1配線は複数の配線で形成され、
    前記接続孔は前記複数の第1配線間に形成される
    ことを特徴とする請求項6記載の磁気メモリ装置の製造方法。
  8. 表面が絶縁性の基体上に高透磁率膜、第1配線層および絶縁膜を下層より順に形成する工程と、
    前記絶縁膜より前記第1配線層および高透磁率膜を貫通して前記基体に形成されている配線層に達する接続孔を形成する工程と、
    前記接続孔の側壁にサイドウォール絶縁膜を形成する工程と、
    前記接続孔内にコンタクト部を形成する工程と、
    前記絶縁膜上にダミー膜を形成する工程と、
    前記ダミー膜から前記高透磁率膜までを第1配線の形状に加工する工程と、
    前記第1配線の形状に加工した積層体の側壁に高透磁率材料からなる高透磁率サイドウォールを形成して、前記高透磁率膜と前記高透磁率サイドウォールとで磁束集中器を形成する工程と、
    前記ダミー膜を除去する工程と、
    前記絶縁膜上に、トンネル絶縁層を強磁性体で挟んでなるもので前記コンタクト部に接続されるトンネル磁気抵抗素子を形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えたことを特徴とする磁気メモリ装置の製造方法。
  9. 第1配線は複数の配線で形成され、
    前記接続孔は前記複数の第1配線間に形成される
    ことを特徴とする請求項8記載の磁気メモリ装置の製造方法。
  10. 表面が絶縁性の基体上に高透磁率膜、第1配線層および第1絶縁膜を下層より順に形成する工程と、
    前記第1絶縁膜より前記第1配線層および高透磁率膜を貫通して前記基体に形成されている配線層に達する接続孔を形成する工程と、
    前記接続孔の側壁にサイドウォール絶縁膜を形成する工程と、
    前記接続孔内にコンタクト部を形成する工程と、
    前記第1絶縁膜から前記高透磁率膜までを第1配線の形状に加工する工程と、前記第1配線の形状に加工した積層体の側壁に高透磁率材料からなる第1高透磁率サイドウォールを形成して、前記高透磁率膜と前記第1高透磁率サイドウォールとで磁束集中器を形成する工程と、
    第1絶縁膜、コンタクト部および磁束集中器を覆う第2絶縁膜を形成した後、前記第2絶縁膜を平坦化するとともに前記磁束集中器の先端部を露出させる工程と、
    前記第1絶縁膜上に、トンネル絶縁層を強磁性体で挟んでなるもので前記コンタクト部に接続されるトンネル磁気抵抗素子を形成する工程と、
    前記TMR素子の側壁にサイドウォール絶縁膜を形成する工程と、
    前記TMR素子の側壁に前記サイドウォール絶縁膜を介して、前記磁束集中器の先端部に接続される第2高透磁率サイドウォールを形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えたことを特徴とする磁気メモリ装置の製造方法。
  11. 前記第1配線は複数の配線で形成され、
    前記接続孔は前記複数の第1配線間に形成される
    ことを特徴とする請求項10記載の磁気メモリ装置の製造方法。
  12. 表面が絶縁性の基体上に第1配線を形成する工程と、
    前記第1配線を覆う第1絶縁膜を形成する工程と、
    前記第1絶縁膜上に高透磁率膜および第2絶縁膜を下層より順に形成する工程と、
    前記第2絶縁膜より前記高透磁率膜、第1絶縁膜および第1配線を貫通して前記基体に形成されている配線層に達する接続孔を形成する工程と、
    前記接続孔の側壁にサイドウォール絶縁膜を形成する工程と、
    前記接続孔内にコンタクト部を形成する工程と、
    前記第2絶縁膜上に、トンネル絶縁層を強磁性体で挟んでなるもので前記コンタクト部に接続されるトンネル磁気抵抗素子を形成する工程と、
    前記TMR素子の側壁にサイドウォール絶縁膜を形成するとともに前記高透磁率膜を露出させる工程と、
    前記TMR素子の側壁に前記サイドウォール絶縁膜を介して前記高透磁率膜に接続する高透磁率サイドウォールを形成して、前記高透磁率膜と前記高透磁率サイドウォールとで磁束集中器を形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えたことを特徴とする磁気メモリ装置の製造方法。
  13. 前記第1配線は複数の配線で形成され、
    前記接続孔は前記複数の第1配線間に形成される
    ことを特徴とする請求項12記載の磁気メモリ装置の製造方法。
  14. 表面が絶縁性の基体上に第1高透磁率膜、第1配線層および第1絶縁膜を下層より順に形成する工程と、
    前記第1絶縁膜から前記第1高透磁率膜までを第1配線の形状に加工する工程と、
    前記第1配線の形状に加工した積層体の側壁に高透磁率材料からなる第1高透磁率サイドウォールを形成して、前記第1高透磁率膜と前記第1高透磁率サイドウォールとで第1磁束集中器を形成する工程と、
    前記第1磁束集中器および第1絶縁膜を覆う第2絶縁膜を形成する工程と、
    前記第2絶縁膜上に第2高透磁率膜および第3絶縁膜を下層より順に形成する工程と、
    前記第3絶縁膜より前記第2高透磁率膜、第2絶縁膜、第1絶縁膜、第1配線および第1磁束集中器を貫通して前記基体に形成されている配線層に達する接続孔を形成する工程と、
    前記接続孔の側壁にサイドウォール絶縁膜を形成する工程と、
    前記接続孔内にコンタクト部を形成する工程と、
    前記第3絶縁膜上に、トンネル絶縁層を強磁性体で挟んでなるもので前記コンタクト部に接続されるトンネル磁気抵抗素子を形成する工程と、
    前記TMR素子の側壁にサイドウォール絶縁膜を形成するとともに前記第2高透磁率膜を露出させる工程と、
    前記TMR素子の側壁に前記サイドウォール絶縁膜を介して前記第2高透磁率膜に接続する第2高透磁率サイドウォールを形成して、前記第2高透磁率膜と前記第2高透磁率サイドウォールとで第2磁束集中器を形成する工程と、
    前記トンネル磁気抵抗素子と電気的に接続するもので前記トンネル磁気抵抗素子を間にして前記第1配線と立体的に交差する第2配線を形成する工程と
    を備えたことを特徴とする磁気メモリ装置の製造方法。
  15. 前記第1配線は複数の配線で形成され、
    前記接続孔は前記複数の第1配線間に形成される
    ことを特徴とする請求項14記載の磁気メモリ装置の製造方法。
JP2002198133A 2002-07-08 2002-07-08 磁気メモリ装置およびその製造方法 Pending JP2004040006A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002198133A JP2004040006A (ja) 2002-07-08 2002-07-08 磁気メモリ装置およびその製造方法
US10/612,842 US6992342B2 (en) 2002-07-08 2003-07-02 Magnetic memory device having a non-volatile magnetic section and manufacturing thereof
KR1020030045949A KR20040005640A (ko) 2002-07-08 2003-07-08 자기 메모리 장치 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002198133A JP2004040006A (ja) 2002-07-08 2002-07-08 磁気メモリ装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2004040006A true JP2004040006A (ja) 2004-02-05

Family

ID=31705671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002198133A Pending JP2004040006A (ja) 2002-07-08 2002-07-08 磁気メモリ装置およびその製造方法

Country Status (3)

Country Link
US (1) US6992342B2 (ja)
JP (1) JP2004040006A (ja)
KR (1) KR20040005640A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208429A (zh) * 2010-03-31 2011-10-05 瑞萨电子株式会社 半导体器件和半导体器件组件
JP2012114118A (ja) * 2010-11-19 2012-06-14 Sony Corp 記憶装置
US8227880B2 (en) 2009-09-04 2012-07-24 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
US20210249053A1 (en) * 2018-10-09 2021-08-12 International Business Machines Corporation Landing pad in interconnect and memory stacks: structure and formation of the same
JP7481930B2 (ja) 2019-07-31 2024-05-13 日本放送協会 磁壁移動型磁性細線デバイス、および、そのデータ書き込み方法、並びに記録装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3596536B2 (ja) * 2002-03-26 2004-12-02 ソニー株式会社 磁気メモリ装置およびその製造方法
DE10350161A1 (de) * 2003-10-28 2005-06-09 Infineon Technologies Ag Magnetoresistive Speicherzelle und Verfahren zu deren Herstellung
US20050205952A1 (en) * 2004-03-19 2005-09-22 Jae-Hyun Park Magnetic random access memory cells having split sub-digit lines having cladding layers thereon and methods of fabricating the same
US7132707B2 (en) * 2004-08-03 2006-11-07 Headway Technologies, Inc. Magnetic random access memory array with proximate read and write lines cladded with magnetic material
JP2007088415A (ja) * 2005-08-25 2007-04-05 Fujitsu Ltd 磁気抵抗効果素子、磁気ヘッド、磁気記憶装置、および磁気メモリ装置
KR101124504B1 (ko) * 2005-09-22 2012-03-15 삼성전자주식회사 ALD 공정에 의한 비정질 NiO 박막의 제조방법 및상기 비정질 NiO 박막을 이용한 비휘발성 메모리 소자
JP2008098365A (ja) * 2006-10-11 2008-04-24 Toshiba Corp 磁気ランダムアクセスメモリ及びその製造方法
KR100833080B1 (ko) * 2006-12-27 2008-05-27 동부일렉트로닉스 주식회사 자기 메모리 장치 및 그 제조방법
US20080173975A1 (en) * 2007-01-22 2008-07-24 International Business Machines Corporation Programmable resistor, switch or vertical memory cell
US7859025B2 (en) * 2007-12-06 2010-12-28 International Business Machines Corporation Metal ion transistor
US8551578B2 (en) * 2008-02-12 2013-10-08 Applied Materials, Inc. Patterning of magnetic thin film using energized ions and thermal excitation
US8535766B2 (en) * 2008-10-22 2013-09-17 Applied Materials, Inc. Patterning of magnetic thin film using energized ions
US20090201722A1 (en) * 2008-02-12 2009-08-13 Kamesh Giridhar Method including magnetic domain patterning using plasma ion implantation for mram fabrication
US20090199768A1 (en) * 2008-02-12 2009-08-13 Steven Verhaverbeke Magnetic domain patterning using plasma ion implantation
US8094486B2 (en) * 2008-05-22 2012-01-10 Qualcomm Incorporated Pad design with buffers for STT-MRAM or other short pulse signal transmission
US20090290406A1 (en) * 2008-05-22 2009-11-26 Qualcomm Incorporated Low loading pad design for STT MRAM or other short pulse signal transmission
KR102022873B1 (ko) 2013-03-12 2019-11-04 삼성전자 주식회사 비휘발성 메모리 소자 및 이의 제조 방법
US9203015B2 (en) 2013-03-22 2015-12-01 Hisanori Aikawa Magnetic storage device
US8987846B2 (en) * 2013-03-22 2015-03-24 Yoshinori Kumura Magnetic memory and manufacturing method thereof
KR102081989B1 (ko) 2013-08-05 2020-02-27 삼성전자주식회사 자기 메모리 장치 및 그 제조 방법
KR102084726B1 (ko) * 2013-11-05 2020-03-04 삼성전자주식회사 반도체 소자
CN111293137A (zh) * 2018-12-07 2020-06-16 中国科学院上海微系统与信息技术研究所 基于二维cmos的三维mram存储结构及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329486A (en) * 1992-04-24 1994-07-12 Motorola, Inc. Ferromagnetic memory device
JP3183224B2 (ja) * 1997-07-31 2001-07-09 日本電気株式会社 複数nw端末接続通信制御方法及びその装置
US5940319A (en) * 1998-08-31 1999-08-17 Motorola, Inc. Magnetic random access memory and fabricating method thereof
US6211090B1 (en) * 2000-03-21 2001-04-03 Motorola, Inc. Method of fabricating flux concentrating layer for use with magnetoresistive random access memories
US6487110B2 (en) * 2000-09-27 2002-11-26 Canon Kabushiki Kaisha Nonvolatile solid-state memory device using magnetoresistive effect and recording and reproducing method of the same
US6724651B2 (en) * 2001-04-06 2004-04-20 Canon Kabushiki Kaisha Nonvolatile solid-state memory and method of driving the same
KR100500450B1 (ko) * 2003-05-13 2005-07-12 삼성전자주식회사 분할된 서브 디지트 라인들을 갖는 자기 램 셀들

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227880B2 (en) 2009-09-04 2012-07-24 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
CN102208429A (zh) * 2010-03-31 2011-10-05 瑞萨电子株式会社 半导体器件和半导体器件组件
JP2012114118A (ja) * 2010-11-19 2012-06-14 Sony Corp 記憶装置
US20210249053A1 (en) * 2018-10-09 2021-08-12 International Business Machines Corporation Landing pad in interconnect and memory stacks: structure and formation of the same
JP7481930B2 (ja) 2019-07-31 2024-05-13 日本放送協会 磁壁移動型磁性細線デバイス、および、そのデータ書き込み方法、並びに記録装置

Also Published As

Publication number Publication date
US20040113175A1 (en) 2004-06-17
KR20040005640A (ko) 2004-01-16
US6992342B2 (en) 2006-01-31

Similar Documents

Publication Publication Date Title
JP2004040006A (ja) 磁気メモリ装置およびその製造方法
US10388629B2 (en) Semiconductor device
JP3906139B2 (ja) 磁気ランダムアクセスメモリ
US20050270828A1 (en) Magnetic memory device and manufacturing method thereof
US20050185435A1 (en) Magnetic storage device and method of fabricating the same
JP2003324187A (ja) 磁気メモリ装置の製造方法および磁気メモリ装置
US6841820B2 (en) Information storage apparatus and manufacturing method therefor
KR20030078774A (ko) 자기 기억 장치의 제조 방법
EP1484767B1 (en) Magnetic memory apparatus and method of manufacturing magnetic memory apparatus
JP2006278645A (ja) 磁気メモリ装置
US6958503B2 (en) Nonvolatile magnetic memory device
JP2009081390A (ja) 磁壁移動型mram及びその製造方法
JP3596536B2 (ja) 磁気メモリ装置およびその製造方法
JP4341355B2 (ja) 磁気記憶装置、磁気記憶装置の書き込み方法および磁気記憶装置の製造方法
JP2003282837A (ja) 磁気メモリ装置およびその製造方法
JP2004235512A (ja) 磁気記憶装置およびその製造方法
JP2008021816A (ja) 不揮発性磁気記憶装置の製造方法
JP2005243764A (ja) 磁気記憶装置の製造方法
JP2003332650A (ja) トンネル磁気抵抗素子とその製造方法および磁気メモリ装置とその製造方法
JP2004235510A (ja) 磁気記憶装置およびその製造方法
US7579196B2 (en) Interconnect connecting a diffusion metal layer and a power plane metal and fabricating method thereof
JP2005175374A (ja) 磁気メモリ装置及びその製造方法
JP2005340715A (ja) 磁気メモリ装置及びその製造方法
JP2005294723A (ja) 磁気記憶装置および磁気記憶装置の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708