JP2005243764A - 磁気記憶装置の製造方法 - Google Patents

磁気記憶装置の製造方法 Download PDF

Info

Publication number
JP2005243764A
JP2005243764A JP2004049134A JP2004049134A JP2005243764A JP 2005243764 A JP2005243764 A JP 2005243764A JP 2004049134 A JP2004049134 A JP 2004049134A JP 2004049134 A JP2004049134 A JP 2004049134A JP 2005243764 A JP2005243764 A JP 2005243764A
Authority
JP
Japan
Prior art keywords
insulating film
electrode
effect element
polishing
magnetoresistive effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004049134A
Other languages
English (en)
Inventor
Yuichi Yamamoto
雄一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004049134A priority Critical patent/JP2005243764A/ja
Publication of JP2005243764A publication Critical patent/JP2005243764A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】ビット線下の絶縁膜の成膜方法とその絶縁膜を含む膜の研磨工程を改善することで、磁気抵抗効果素子上の電極の露出と絶縁膜の平坦化を一回の研磨工程で可能とする。
【解決手段】磁気記憶装置の磁気抵抗効果素子13を形成した後で第2配線(ビット線)12を形成する際に、磁気抵抗効果素子13上の電極14含む磁気抵抗効果素子パターンを被覆する第1絶縁膜25を形成する工程と、第1絶縁膜25が被覆される磁気抵抗効果素子パターン部分の凸形状を転写する状態で被覆するように第2絶縁膜26を形成する工程と、第2、第1絶縁膜26、25の凸部を研磨により選択的に除去して電極14上部を露出させるとともに絶縁膜を平坦化する工程とを備え、研磨は凸部を選択的に研磨するとともに第2絶縁膜26を研磨するスラリーを用いることを特徴とする。
【選択図】図1

Description

本発明は、本発明は、強磁性体の磁化方向制御を利用した磁気記憶装置の製造方法に関するもので、特には、ビット線を形成する前の工程において絶縁膜表面を平坦化することを容易にして、磁気抵抗効果素子とビット線との距離の短縮化を容易にした磁気記憶装置の製造方法ある。
情報通信機器、特に携帯端末などの個人用小型機器の飛躍的な普及にともない、これを構成するメモリ素子やロジック素子等の素子には、高集積化、高速化、低消費電力化など、一層の高性能化が要求されている。特に不揮発性メモリはユビキタス時代に必要不可欠の素子と考えられている。例えば、電源の消耗やトラブル、サーバーとネットワークが何らかの障害により切断された場合であっても、不揮発性メモリは個人の重要な情報を保護することができる。
また、最近の携帯機器は不要な回路ブロックをスタンバイ状態にしてでき得る限り消費電力を抑えようと設計されているが、高速ネットワークメモリと大容量ストレージメモリを兼ねることができる不揮発性メモリが実現できれば、消費電力とメモリとの無駄を無くすことができる。また、電源を入れると瞬時に起動できる、いわゆるインスタント・オン機能も高速の大容量不揮発性メモリが実現できれば可能になってくる。
不揮発性メモリとしては、半導体を用いたフラッシュメモリや、強誘電体を用いたFRAM(Ferro electric Random Access Memory)などがあげられる。しかしながら、フラッシュメモリは、書き込み速度がμ秒の桁であるため遅いという欠点がある。また構造が複雑なために高集積化が困難であり、しかも、アクセス時間が100ns程度と遅いという欠点がある。一方、FRAMにおいては、書き換え可能回数が1012回〜1014回で完全にスタティックランダムアクセスメモリ(DRAM)やダイナミックランダムアクセスメモリ(SRAM)に置き換えるには耐久性が低いという問題が指摘されている。また、強誘電体キャパシタの微細加工が難しいという課題も指摘されている。
これらの欠点を有さない不揮発性メモリとして注目されているのが、MRAM(Magnetic Random Access Memory)もしくはMR(Magneto Resistance)メモリと呼ばれる磁気メモリであり、近年のトンネル磁気抵抗効果素子(以下、TMR:という、TMRはTunnel Magnetic Resistanceの略)材料の特性向上により注目を集めるようになってきている(例えば、非特許文献1参照。)。
MRAMは、構造が単純であるため高集積化が容易であり、また磁気モーメントの回転により記憶を行うために、書き換え回数が大であると予測されている。またアクセス時間についても、非常に高速であることが予想され、既に100MHzで動作可能であることが報告されている(例えば、非特許文献2参照。)。
上述の通り、高速化・高集積化が容易という長所を有するMRAMではあるが、書き込みは、TMR素子に近接させて設けられたビット線と書き込み用ワード線に電流を流し、その発生磁界によって行う。TMR素子の記憶層(記憶層)の反転磁界は材料にもよるが、1.58kA/m〜15.8kA/m(20Oe〜200Oe)が必要であり、このときの電流は数mAから数十mAになる。これは消費電流の増大につながり、素子の低寿命化、発熱、消費電力の増加という磁気記憶装置にとってはデメリットとなることが多い。このため、反転磁界を下げる材料及び構造の研究が進められている。一方、自然界の浮遊磁界は0.数kA/m(数Oe)であり、反転磁界の低減により、磁気ノイズマージンが小さくなり逆に素子内およびチップ外の磁気的ノイズの影響により誤動作を起こし易くなる。
一般的な磁気記憶装置の製造方法を図2および図3によって説明する。
図2に示すように、磁気記憶装置110は、書き込みワード線111とこの書き込みワード線111と立体的に交差するビット線112を備え、書き込みワード線111とビット線112との交差領域に、書き込みワード線11とは絶縁され、ビット線112とは電極114によって電気的に接続された磁気抵抗効果素子(例えばTMR素子)113を備える。また、磁気抵抗効果素子13は、選択素子(例えばトランジスタ素子)130に接続する電極131に接続電極118を介して接続されている。
上記磁気記憶装置の製造方法では、図3(1)に示すように、まず、磁気抵抗効果素子113上に電極114、ハードマスク115を積層した状態で、磁気抵抗効果素子113のパターニングを行う。したがって、磁気抵抗効果素子113、電極114およびハードマスク115を積層した磁気抵抗効果素子パターン116が形成される。その後、上記磁気抵抗効果素子パターン116には、磁気抵抗効果素子113等に接続する配線パターン等のパターニングを行う際に用いる複数層のハードマスクを含む絶縁膜121が被覆される。さらに、層間絶縁膜122が被覆される。このとき、層間絶縁膜122は、磁気抵抗効果素子パターン116上面より高く形成される。
次いで、図3(2)に示すように、化学的機械研磨により層間絶縁膜122の表面を平坦化する。
その後、図4(3)に示すように、平坦化した層間絶縁膜122、上記絶縁膜121に電極114に達する接続孔123を形成し、その接続孔123を通じて電極114に接続するビット線112を層間絶縁膜122上に形成する。
上記製造方法では、層間絶縁膜の厚さが厚くなり、ビット線と磁気抵抗効果素子との距離が大きくなって、磁気記憶装置の書き込み特性が悪化するという問題点が生じる。
そこで、TMR素子にビット線を近づけて形成する磁気記憶装置の製造方法の一例が開示されている(例えば、特許文献1参照)。この製造方法では、ビット線を溝配線の形成技術によって形成する。すなわち、TMR素子を覆う層間絶縁膜に、ビット線を形成する配線溝を、その溝底部にTMR素子上面を露出させるように形成する。そして、その配線溝に配線材料を埋め込むことでビット線を形成する。
しかしながら、通常は、TMR素子上にはTMR素子やTMR素子に接続する配線を形成する際に用いた複数層のハードマスクが形成されている。このため、溝配線技術を用いる方法では、配線溝を形成する際に、ハードマスクを除去するため、ハードマスクの種類毎に異なるエッチングガスによりエッチングを行う必要があり、エッチング工程が複雑になる。
特開2002−111096号公報 Wang et al., "Feasibility of Ultra-Dense Spin-Tunneling Random Access Memory" IEEE Transaction on Magnetics 33 [6] (Nov. 1997) p4498-4512 R.Scheuerlein et al, "TA7.2 A 10ns Read and Write Non-Volatile Memory Array Using a Magnetic Tunnel Junction and FET Switch in each Cell"2000 IEEE International Solid-State Circuits Conference Digest of Papers (Feb.2000) p128-129
解決しようとする問題点は、磁気抵抗効果素子上にビット線が隣接して接続される構造を得ようとしたとき、磁気記憶装置を製造する際の磁性材料の加工ではハードマスクが多用されているため、実際には磁気抵抗効果素子(TMR素子)や電極を含むパターン上には、複数層のハードマスク層や層間絶縁膜が形成されていて、複雑な膜構造になっている。このため、通常の平坦化技術、例えば従来の酸化シリコンからなる層間絶縁膜を研磨する化学的機械研磨では、電極を露出させるように、層間絶縁膜およびハードマスク等を平坦化するように加工することが難しい点である。このように、従来の研磨方法によって化学的機械研磨を行うだけでは、ハードマスクとして用いられる窒化シリコン膜とその下地膜もしくは層間絶縁膜として用いられる酸化シリコン膜(SiO2)の研磨選択性の関係から、平坦化と薄膜化を両立させることは困難である。また、TMR素子上の膜構造が、層間絶縁膜や複数層のハードマスク等からなり、膜構造が複雑なためにエッチングが困難となるという点である。また層間絶縁膜等に接続孔を形成してTMR素子とビット線とを接続する構造ではTMR素子とビット線との距離も離れてしまい、磁気特性に悪い影響を与えるという点である。
本発明は、磁気抵抗効果素子上に電極を介して配線を接続させた磁気記憶装置の製造方法であって、前記磁気抵抗効果素子を形成した後で前記第2配線を形成する際に、前記磁気抵抗効果素子を形成する際に形成された前記磁気抵抗効果素子上の電極を含む磁気抵抗効果素子パターンを被覆する複数層の第1絶縁膜を形成する工程と、前記第1絶縁膜が被覆される前記磁気抵抗効果素子パターン部分の凸形状を転写する状態で被覆するように第2絶縁膜を形成する工程と、前記第2絶縁膜および前記第1絶縁膜の凸部を研磨により選択的に除去して前記電極上部を露出させる工程とを備え、前記研磨は前記凸部を選択的に研磨するとともに前記第2絶縁膜を研磨するスラリーを用いることを最も主要な特徴とする。
本発明の磁気記憶装置の製造方法は、第1絶縁膜が被覆される磁気抵抗効果素子パターン部分の凸形状を転写する状態で被覆するように第2絶縁膜を形成するため、第2絶縁膜は磁気抵抗効果素子が形成された領域上で凸状に形成される。また第2絶縁膜および第1絶縁膜の凸部を研磨により選択的に除去して電極上部を露出させる工程を、前記凸部を選択的に研磨するとともに前記第2絶縁膜を研磨するスラリーを用いて行うので、まず、凸部が選択的に研磨される。そして、電極が露出した際には、その周辺の絶縁膜は平坦化されている。また、第2絶縁膜が電極よりも高く形成されている場合には、始めに凸部が研磨され、その後、平坦化された後は第2絶縁膜が研磨される。その際、電極上の絶縁膜が凸状になると、その凸状部が選択的に研磨される。やがて、電極が露出し、電極周囲の絶縁膜は平坦化されている。また、第2絶縁膜が電極上面よりも低く形成されている場合には、始めに凸部が研磨され、その後、電極が露出すると、電極部が凸状になるが、研磨特性によりその凸状部が選択的に研磨される。やがて、電極とその電極周囲の絶縁膜とが平坦化される。この結果、一回の研磨加工において、第2絶縁膜の平坦化とともに磁気抵抗効果素子の電極の露出を図ることができるという利点がある。
磁気抵抗効果素子に接続される電極を露出させるとともに絶縁膜の平坦化を行うという目的を、層間絶縁膜となる第2絶縁膜の成膜を磁気抵抗効果素子が形成されていない第1絶縁膜上の領域で電極下面より高く電極上面以下の高さに行い、凸部を選択的に研磨するスラリーを用いて、磁気抵抗効果素子を被覆する第2絶縁膜および第1絶縁膜等の磁気抵抗効果素子上に形成される絶縁膜からなる凸部を研磨により選択的に除去して、磁気抵抗効果素子上に形成されている電極上部を露出させることで、複雑の工程を経ずに、磁気抵抗効果素子の電極の露出と絶縁膜の平坦化とを同時に実現した。
本発明の磁気記憶装置の製造方法に係る一実施例を、図1の製造工程図によって説明する。本実施例では、一例として、トンネル磁気抵抗素子を構成する強磁性体のスピン方向が平行もしくは反平行によって抵抗値が変化することを利用して情報を記録する磁気抵抗効果素子上に電極を介して配線を接続させた磁気記憶装置の製造方法を説明する。
図示はしないが、通常のLSIプロセスにより、基板(例えばシリコン半導体基板)上に選択素子(例えばトランジスタ素子)、センス線等を形成した後、層間絶縁膜として絶縁膜を成膜する。次いで、図1(1)に示すように、絶縁膜41に第1配線(以下、書き込みワード線という)11を形成した後、書き込みワード線11を被覆する絶縁膜42を形成する。上記書き込みワード線11は、例えば、絶縁膜41に配線溝を形成し、その内面にバリアメタル層、磁性体層を形成した後、配線材料の銅をめっき法等により埋め込み、絶縁膜41上の余剰な配線材料、磁性体層、バリアメタル層を除去することで形成することができる。また、上記絶縁膜42は、通常の銅を配線材料に用いた多層配線で用いられる窒化シリコン(SiN)等の銅の拡散を防止する膜により形成することができる。また、上記絶縁膜42、41には、選択素子に接続する電極(図示せず)を適宜形成する。
その後、絶縁膜42上に、バリア層(図示せず)、選択素子に接続する電極と磁気抵抗効果素子とを接続させるための導電膜、磁気トンネル接合(以下MTJという、MTJはMagnetic Tunnel Junctionの略)を有する多層膜、キャップ層(図示せず)、電極膜、エッチングマスクとなる無機膜等を形成する。次いで、レジスト塗布、リソグラフィー技術により、レジストマスクを形成した後、そのレジストマスクを用いて無機膜を加工していわゆるハードマスク15を形成し、そのハードマスク15をエッチングマスクに用いて、上記電極膜、多層膜等を加工(例えば、イオンミリング、ドライエッチング等)して、上記書き込みワード線11上方の絶縁膜42上に、磁気抵抗効果素子13とビット線とを接続する電極14、MTJを有する磁気抵抗効果素子13を形成する。ここでは、上記エッチングは、例えば、磁気抵抗効果素子13のトンネル絶縁層で停止するようにする。このエッチングでは、一例として、エッチングガスには塩素(Cl)を含んだハロゲンガスもしくは一酸化炭素(CO)にアンモニア(NH3 )を添加したガス系を用いる。その後、上記フォトレジストを除去する。
上記磁気トンネル接合(MTJ)を有する多層膜として、例えば、トンネル磁気抵抗(以下、TMRという、TMRはTunnel Magnetic Resistanceの略)効果を発現するTMR膜を用いることができる。その一例としては、下層より、反強磁性膜、磁化固定層となる強磁性体膜、トンネル絶縁膜、記憶層となる強磁性体膜、導電膜を順に積層した構成となっている。また、強磁性体膜間に非磁性導電膜を挟んだ構成を用いることもできる。
上記バリア層には、窒化チタン、タンタル、窒化タンタル等の材料膜を用いることができる。
上記反強磁性体層には、例えば、鉄・マンガン合金、ニッケル・マンガン合金、白金マンガン合金、イリジウム・マンガン合金、ロジウム・マンガン合金、コバルト酸化物およびニッケル酸化物のうちの1種を用いる。この反強磁性体層は、磁気抵抗効果素子13と直列に接続されるスイッチング素子との接続に用いられる接続電極16を兼ねることも可能である。したがって、本実施例では、反強磁性体層を磁気抵抗効果素子13と図示はしていないスイッチング素子との接続配線の一部として用いている。
上記磁気抵抗効果素子13を構成する磁化固定層には、例えば、ニッケル、鉄もしくはコバルト、またはニッケル、鉄およびコバルトのうちの少なくとも2種からなる合金のような、強磁性体を用いる。この磁化固定層は、反強磁性体層と接する状態に形成されていて、磁化固定層と反強磁性体層との層間に働く交換相互作用によって、磁化固定層は、強い一方向の磁気異方性を有している。すなわち、磁化固定層は反強磁性体層との交換結合によって磁化の方向がピニング(pinning)される。
なお、上記磁化固定層は、導電層を挟んで磁性層を積層した構成としてもよい。例えば、反強磁性体層側から、第1の磁化固定層と磁性層が反強磁性的に結合するような導電体層と第2の磁化固定層とを順に積層した構成としてもよい。この磁化固定層は、3層以上の強磁性体層を、導電体層を挟んで積層させた構造であってもよい。上記導電体層には、例えば、ルテニウム、銅、クロム、金、銀等を用いることができる。
上記磁気抵抗効果素子13を構成するトンネル絶縁層は、上記記憶層と上記磁化固定層との磁気的結合を切るとともに、トンネル電流を流すための機能を有する。そのため、通常は厚さが0.5nm〜5nmの酸化アルミニウムが使われるが、例えば、酸化マグネシウム、酸化シリコン、窒化アルミニウム、窒化マグネシウム、窒化シリコン、酸化窒化アルミニウム、酸化窒化マグネシウムもしくは酸化窒化シリコンを用いてもよい。上記したようにトンネル絶縁層133の膜厚は、0.5nm〜5nmと非常に薄いため、原子層蒸着(ALD:Atomic Layer Deposition)法により形成することができる。もしくはスパッタリングによってアルミニウム等の金属膜を堆積した後にプラズマ酸化もしくは窒化を行って形成することもできる。
上記磁気抵抗効果素子13を構成する記憶層には、例えば、ニッケル、鉄もしくはコバルト、またはニッケル、鉄およびコバルトのうちの少なくとも2種からなる合金のような、強磁性体を用いる。この記憶層は外部印加磁場によって磁化の方向を、下層の磁化固定層に対して平行または反平行に変えることができる。
上記キャップ層は、磁気抵抗効果素子13と別の磁気抵抗効果素子(図示せず)とを接続する配線との相互拡散防止、接触抵抗低減および記憶層の酸化防止という機能を有する。通常、銅、窒化タンタル、タンタル、窒化チタン等の材料により形成されている。したがって、上記バリア層と同様な材料で形成することができる。
上記電極14を形成する電極層は、窒化チタン(TiN)、窒化タンタル(TaN)、タンタル(Ta)、チタン(Ti)、タングステン(W)、アルミニウム(Al)、銅(Cu)、アルミニウム銅合金(AlCu)、ルテニウム(Ru)等の金属材料、ポリシリコンなどで形成することができる。
上記ハードマスク15を形成する無機膜は、上記多層膜のエッチング時にエッチングマスクとなるもので、例えば窒化シリコン膜と酸化シリコン膜との積層膜で形成される。例えば、図面では、窒化シリコン膜17と酸化シリコン膜18との積層膜を用いた。
さらに、エッチングマスクとなる無機膜(例えば、窒化シリコン膜21、酸化シリコン膜22の積層膜)を形成した後、レジスト塗布、リソグラフィー技術により、レジストマスク(図示せず)を形成する。そしてレジストマスクを用いて上記無機膜を加工し、いわゆるハードマスク23を形成する。そのハードマスク23をエッチングマスクに用いて、磁化固定層、反強磁性体層、導電膜、バリア層等を加工(例えば、イオンミリング、ドライエッチング等)して、磁気抵抗効果素子13と選択素子に接続する電極(図示せず)とを接続する接続電極16を形成する。このエッチングでは、一例として、エッチングガスには塩素(Cl)を含んだハロゲンガスもしくは一酸化炭素(CO)にアンモニア(NH3 )を添加したガス系を用いる。その後、上記フォトレジストを除去する。
さらに、磁気抵抗効果素子13、電極14、接続電極16等を被覆するように、キャップ絶縁膜となる窒化シリコン膜24が形成されている。このように、絶縁膜42上に凸状に形成された磁気抵抗効果素子13、電極14、ハードマスク15等を被覆するように、窒化シリコン膜21と酸化シリコン膜22とからなるハードマスク23および窒化シリコン膜24が形成されている。ここではハードマスク15、23、窒化シリコン膜24を第1絶縁膜25とする。上記ハードマスク15、ハードマスク23は、酸化シリコン膜と窒化シリコン膜の積層膜に限定はされず、例えば、窒化酸化シリコン(SiON)膜、窒化シリコン膜(SiN)、酸化シリコン膜(SiO2)の単層膜もしくはそれらの積層膜であってもよい。
そして、後に形成される第2配線(以下ビット線という)との絶縁を確保するための第2絶縁膜(層間絶縁膜)26を形成する。第2絶縁膜26は、上記第1絶縁膜25で被覆する上記磁気抵抗効果素子13、電極14、接続電極16等からなる磁気抵抗効果素子パターン部分の凸形状を転写する状態で被覆するとともに、例えば上記磁気抵抗効果素子13が形成されていない領域で上記電極14下面より高く上記電極14上面以下の高さに形成する。上記第2絶縁膜26には、高密度プラズマ酸化シリコン(HDP)膜を用いることができる。HDP膜は、凸形状に対し、いわゆるコンフォーマルに成膜することが可能であり、凸形状を転写するように成膜される特徴がある。
次いで、図1(2)に示すように、上記第2絶縁膜26、上記第1絶縁膜25の凸部を研磨により選択的に除去するとともに、磁気抵抗効果素子13が形成されていない領域の第2絶縁膜26を研磨して、上記電極14上部を露出させるとともに第2絶縁膜26表面を平坦化する。この研磨には、上記凸部を選択的に研磨するとともに第2絶縁膜26を研磨するスラリーを用いる。例えばセリア系スラリーを用いる。
上記セリア系スラリーを用いた研磨では、平坦面において酸化シリコン膜は研磨されるが酸化シリコン膜以外の膜種は研磨され難く、また凸部は酸化シリコン膜および酸化シリコン膜以外の膜も研磨されるという特徴を有している。本発明の研磨工程では、上記セリア系スラリーの特徴を利用して、絶縁膜の平坦化とともに磁気抵抗効果素子の電極の露出を図っている。
上記研磨条件の一例を説明する。研磨パッドには発泡ポリウレタン樹脂の研磨パッドを用いた。研磨圧力は300hPa、研磨定盤の回転数を100rpm、研磨ヘッドの回転数を107rpm、研磨スラリーは、酸化セリウム系スラリーを用いた。その供給流量は200cc/min、研磨雰囲気の温度は25℃〜30℃、研磨時間はジャスト研磨に30secのオーバー研磨を行った。このときの研磨終点はトルクエンドポイントを使用した。上記研磨条件は一例であり、被研磨膜の膜厚、種類等によって適宜、変更されるものである。
上記研磨工程についてさらに説明する。上記第2絶縁膜26は、上記磁気抵抗効果素子13が形成されていない領域で上記電極14下面より高く上記電極14上面以下の高さに形成されている。この場合には、まず、第2絶縁膜26、第1絶縁膜25(ハードマスク15も含む)等の凸状部が研磨される。これは研磨スラリーが凸部を選択的に研磨する特性を有しているためである。その後、凸部が研磨され、電極14が露出される。このとき、磁気抵抗効果素子13が形成されていない領域における第2絶縁膜26の表面の高さと電極14上面の高さとが一致する場合には、ここで研磨を終了することができる。なお。さらに研磨を進めて、酸化シリコンからなる第2絶縁膜26を研磨し、電極14を凸状に露出すると、その電極14の凸部を選択的に研磨することにより、電極14および第2絶縁膜26表面を平坦化することもできる。このように研磨することで、電極14の厚さを制御することが可能になる。
また、第2絶縁膜26が電極14上面よりも高く形成されている場合には、始めに第2絶縁膜26、第1絶縁膜25(ハードマスク15も含む)等からなる凸部が研磨され、その後、平坦化された後は第2絶縁膜26が研磨される。その際、電極14上のハードマスク15が凸状になると、その凸状部が選択的に研磨される。やがて、電極14が露出し、電極周囲の絶縁膜(例えば第2絶縁膜26)は平坦化されている。
したがって、本研磨工程では、磁気抵抗効果素子13上に複雑に成膜されているハードマスクを含む第1絶縁膜25、層間絶縁膜となる第2絶縁膜26を容易に一回の研磨加工で除去することができ、さらに第2絶縁膜26の平坦化とともに磁気抵抗効果素子13の電極14の露出を同時に達成することができる。また、磁気抵抗効果素子13上に形成された電極14の所望の位置で研磨を停止させることもできるので、電極14の薄膜化が可能となる。
次いで、図1(3)に示すように、通常のプロセスによって、第2絶縁膜26上に上記電極14に接続するビット線12を形成する。このビット線12は、上記書き込みワード線11に対して立体的に交差するように、かつその交差領域に上記磁気抵抗効果素子13が配置されるように形成される。このようにして、磁気記憶装置1が形成される。
上記磁気記憶装置の製造方法では、磁気抵抗効果素子13上に接続する電極14を介してビット線12が接続されることから、磁気抵抗効果素子13とビット線12との距離を電極14の厚さ分に近づけることができる。また、電極14の厚さは研磨工程において、制御することが可能であるため、薄くすることができる。よって、従来よりも磁気抵抗効果素子13とビット線12との距離を縮小することができるので、ビット線12による書き込み特性を向上させることが可能になる。
本発明の磁気記憶装置の製造方法は、環状の磁気抵抗効果素子を備えた磁気記憶装置の製造方法の用途にも適用することができ、また、凸状体を被覆するように、酸化シリコン膜と酸化シリコン膜以外の膜(例えば窒化シリコン膜)とを含む積層の絶縁膜で被覆されている構成において、凸状体上面を露出させるととも積層の絶縁膜表面の平坦化を同時に行うという、通常の半導体装置の製造方法の用途にも適用できる。
磁気記憶装置の製造方法に係る一実施例を示した製造工程断面図である。 磁気記憶装置の概略構成を示した概略構成断面図である。 従来の磁気記憶装置の製造方法に係る一例を示した製造工程断面図である。 従来の磁気記憶装置の製造方法に係る一例を示した製造工程断面図である。
符号の説明
1…磁気記憶装置、11…第1配線(書き込みワード線)、12…第2配線(ビット線)、13…磁気抵抗効果素子、14…電極、25…第1絶縁膜、26…第2絶縁膜

Claims (7)

  1. 磁気抵抗効果素子上に電極を介して配線を接続させた磁気記憶装置の製造方法であって、
    前記磁気抵抗効果素子を形成した後で前記第2配線を形成する際に、
    前記磁気抵抗効果素子を形成する際に形成された前記磁気抵抗効果素子上の電極を含む磁気抵抗効果素子パターンを被覆する複数層の第1絶縁膜を形成する工程と、
    前記第1絶縁膜が被覆される前記磁気抵抗効果素子パターン部分の凸形状を転写する状態で被覆するように第2絶縁膜を形成する工程と、
    前記第2絶縁膜および前記第1絶縁膜の凸部を研磨により選択的に除去して前記電極上部を露出させるとともに平坦化する工程と
    を備え、
    前記研磨は前記凸部を選択的に研磨するとともに前記第2絶縁膜を研磨するスラリーを用いる
    ことを特徴とする磁気記憶装置の製造方法。
  2. 前記スラリーにはセリア系スラリーを用いる
    ことを特徴とする請求項1記載の磁気記憶装置の製造方法。
  3. 前記研磨は化学的機械研磨である
    ことを特徴とする請求項1記載の磁気記憶装置の製造方法。
  4. 前記研磨は、前記電極が露出および前記平坦化がなされた時点を研磨終点とする
    ことを特徴とする請求項1記載の磁気記憶装置の製造方法。
  5. 前記磁気抵抗効果素子が形成されていない領域における前記第2絶縁膜が前記電極上面よりも低く形成されている場合には、
    前記研磨によって前記電極上部を研磨して前記第2絶縁膜表面とともに平坦化する
    ことを特徴とする請求項1記載の磁気記憶装置の製造方法。
  6. 前記研磨は前記電極および前記第2絶縁膜表面が同一高さに形成された時点を研磨終点とする
    ことを特徴とする請求項5記載の磁気記憶装置の製造方法。
  7. 前記第1絶縁膜はエッチングマスクとして用いるハードマスクを含む
    ことを特徴とする請求項1記載の磁気記憶装置の製造方法。
JP2004049134A 2004-02-25 2004-02-25 磁気記憶装置の製造方法 Pending JP2005243764A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049134A JP2005243764A (ja) 2004-02-25 2004-02-25 磁気記憶装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049134A JP2005243764A (ja) 2004-02-25 2004-02-25 磁気記憶装置の製造方法

Publications (1)

Publication Number Publication Date
JP2005243764A true JP2005243764A (ja) 2005-09-08

Family

ID=35025199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049134A Pending JP2005243764A (ja) 2004-02-25 2004-02-25 磁気記憶装置の製造方法

Country Status (1)

Country Link
JP (1) JP2005243764A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295198A (ja) * 2005-04-14 2006-10-26 Headway Technologies Inc 磁気トンネル接合素子およびその形成方法ならびに磁気メモリセルおよびその製造方法
JP2007158336A (ja) * 2005-11-30 2007-06-21 Magic Technologies Inc Mtjmram素子およびその製造方法、並びにmtjmramアレイ
JP2007214229A (ja) * 2006-02-08 2007-08-23 Sony Corp 磁気記憶装置、磁気記憶装置の製造方法および半導体集積回路装置
JP2007242663A (ja) * 2006-03-06 2007-09-20 Fujitsu Ltd 磁気抵抗効果素子を含む半導体装置及びその製造方法
JP2007273963A (ja) * 2006-03-02 2007-10-18 Qimonda Ag 自己整合プロセスを用いて形成された相変化メモリ
CN112563410A (zh) * 2019-09-10 2021-03-26 铠侠股份有限公司 磁性存储装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295198A (ja) * 2005-04-14 2006-10-26 Headway Technologies Inc 磁気トンネル接合素子およびその形成方法ならびに磁気メモリセルおよびその製造方法
JP2007158336A (ja) * 2005-11-30 2007-06-21 Magic Technologies Inc Mtjmram素子およびその製造方法、並びにmtjmramアレイ
JP2007214229A (ja) * 2006-02-08 2007-08-23 Sony Corp 磁気記憶装置、磁気記憶装置の製造方法および半導体集積回路装置
JP2007273963A (ja) * 2006-03-02 2007-10-18 Qimonda Ag 自己整合プロセスを用いて形成された相変化メモリ
JP2007242663A (ja) * 2006-03-06 2007-09-20 Fujitsu Ltd 磁気抵抗効果素子を含む半導体装置及びその製造方法
CN112563410A (zh) * 2019-09-10 2021-03-26 铠侠股份有限公司 磁性存储装置
CN112563410B (zh) * 2019-09-10 2023-10-03 铠侠股份有限公司 磁性存储装置

Similar Documents

Publication Publication Date Title
US7271010B2 (en) Nonvolatile magnetic memory device and manufacturing method thereof
JP2003243630A (ja) 磁気メモリ装置およびその製造方法
US20050185435A1 (en) Magnetic storage device and method of fabricating the same
JP2004040006A (ja) 磁気メモリ装置およびその製造方法
US6972468B2 (en) Method of manufacturing magnetic memory device, and magnetic memory device
US6841820B2 (en) Information storage apparatus and manufacturing method therefor
EP1484767B1 (en) Magnetic memory apparatus and method of manufacturing magnetic memory apparatus
JP2007053315A (ja) 磁気メモリ装置およびその製造方法
US6958503B2 (en) Nonvolatile magnetic memory device
JP2008282940A (ja) 磁気記憶装置の製造方法
JP2005243764A (ja) 磁気記憶装置の製造方法
JP4590862B2 (ja) 磁気メモリ装置及びその製造方法
JP2003218324A (ja) 磁気記憶装置およびその製造方法
JP2003282837A (ja) 磁気メモリ装置およびその製造方法
JP2008021816A (ja) 不揮発性磁気記憶装置の製造方法
JP2004055918A (ja) 磁気記憶装置及びその製造方法
JP4516004B2 (ja) 磁気記憶装置の製造方法
US20070072311A1 (en) Interconnect for a GMR Stack Layer and an Underlying Conducting Layer
JP2004235512A (ja) 磁気記憶装置およびその製造方法
JP4899377B2 (ja) 不揮発性磁気記憶装置の製造方法
JP2004259912A (ja) 磁気記憶装置およびその製造方法
JP2003332650A (ja) トンネル磁気抵抗素子とその製造方法および磁気メモリ装置とその製造方法
JP2005175374A (ja) 磁気メモリ装置及びその製造方法
US20090233381A1 (en) Interconnect For a GMR Memory Cells And An Underlying Conductive Layer
JP2005294723A (ja) 磁気記憶装置および磁気記憶装置の製造方法