WO2006090656A1 - パルス電流による磁壁移動に基づいた磁気抵抗効果素子および高速磁気記録装置 - Google Patents

パルス電流による磁壁移動に基づいた磁気抵抗効果素子および高速磁気記録装置 Download PDF

Info

Publication number
WO2006090656A1
WO2006090656A1 PCT/JP2006/302924 JP2006302924W WO2006090656A1 WO 2006090656 A1 WO2006090656 A1 WO 2006090656A1 JP 2006302924 W JP2006302924 W JP 2006302924W WO 2006090656 A1 WO2006090656 A1 WO 2006090656A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic
magnetization
current
free layer
Prior art date
Application number
PCT/JP2006/302924
Other languages
English (en)
French (fr)
Inventor
Masahiko Ichimura
Hiromasa Takahashi
Gen Tatara
Original Assignee
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University filed Critical Osaka University
Publication of WO2006090656A1 publication Critical patent/WO2006090656A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3263Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being symmetric, e.g. for dual spin valve, e.g. NiO/Co/Cu/Co/Cu/Co/NiO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • Non-Patent Document 3 Physical Review Letters 84 ⁇ , 3149—Page 3152 (2000) (Phys. Rev. Lett. 84, 3149-3152 (2000))
  • Non-Patent Document 4 Applied Physics Letters 78 ⁇ , 3663—pp. 3665 (2001) (Appl. Phys. Lett. 78, 3663-3665 (2001))
  • a high-speed magnetic recording apparatus of the present invention comprises a first magnetic pinned layer, a magnetic free layer, and a second magnetic pinned layer, and the first magnetic pinned layer And the second magnetization pinned layer are substantially anti-parallel, and there are transition regions between the first magnetization pinned layer and the magnetization free layer, or between the second magnetic pinned layer and the magnetic layer free layer. It has a structure in which the domain wall can be trapped and either one of the domain walls exists, and a sufficiently short pulse width in the range of 0.6 to 2. Ons between the first and second magnetic pinned layers. Supply the pulse current.
  • the magnetic domain of the magnetic domain free layer is inverted by moving the domain wall between two transition regions with a DC current density of pulse current not exceeding 10 6 AZcm 2. But It becomes possible.
  • the magnetic resistance due to the change in the direction of the relative magnetic field in the transition region between the first and second magnetic layers is detected by reversing the magnetic field of the magnetic layer.
  • the magnetization of one of the first and second ferromagnetic thin wire portions 11 and 15 is reversed by an external magnetic field so that the directions of the magnetic fields are reversed (anti-parallel),
  • a magnetic pinned layer is used.
  • the ferromagnetic minute region 13 is a magnetic free layer.
  • the first and second ferromagnetic thin wire portions 11 and 15 are changed to the first and second magnetic pinned layers 11 and 15, and the ferromagnetic minute region portion 13 is changed. This is called the magnetic layer 13.
  • first and second constricted portions 12 and 14 have a width, a thickness and a thickness that are larger than those of the first and second magnetic pinned layers 11 and 15 and the magnetic pinned free layer 13, respectively.
  • the first and second constricted portions 12 and 14 are referred to as first and second transition regions.
  • the first and second transition regions include not only the Co described above, but also other examples include a thickness change portion (step) of a continuous magnetic material having a plurality of thicknesses, and a magnetic Z insulator laminated structure. Insulator part or the insulator It may be formed with pinholes formed in the part. These can be processed by ordinary electron beam lithography technology.
  • Electrodes in contact with the first and second magnetic pinned layers 11 and 15 in the magnetoresistive effect element 10 are provided outside, and further electrodes are provided outside the magnetic free layer 13.
  • the output signal in FIG. 2 is considered as a magnetic resistance between the magnetic pinned layer 11 and the magnetic free layer 13 as described above, and is converted to a magnetic resistivity of about 250%. This can be obtained from the results in Fig. 2 as follows. Estimating the approximate value of the voltage obtained in Figure 2, the voltage is roughly 550 mV, / J, and the last is approximately 150 mV.
  • Table 1 shows the size of each part of the magnetoresistive effect element 10 shown in FIG.
  • FIG. 4 is a connection diagram showing an example in which a solid-state memory is configured in the case of two rows and two rows as an example of the magnetoresistive effect element 10 shown in Fig. 1 as a memory element and arranged in an XY matrix. It is.
  • bitlines 311 and 311 and read wordlines 312 and 312 are bitlines 311 and 311 and read wordlines 312 and 312
  • Each of the memory elements is provided with a read word line 312 and 312 and a write word line 313 and 313, respectively.
  • 318 is a bit line decoder
  • 319 is a read word line 312 312 decoder.
  • One of the bit lines 311 and 311 corresponds to the addressing of writing or reading.
  • the decoder 319 selects one of the word lines 31 2 and 312 in response to the read addressing. In response to write addressing, decoder 319
  • the decoder 319 has a write address 2 2
  • word line 313 is the gate MOS-FET317 and MOS-FET317, M When either OS-FET317 or MOS-FET317 is opened or closed, power line 315
  • Decoder 319 supports write addressing.
  • the first transition region 1 in the memory device 300 is
  • the domain wall in 2 or the first transition region 14 is moved or held depending on the polarity of the supply current. That is, writing is performed by changing the direction of the magnetic layer of the magnetic layer 13 in FIG. 1 as the domain wall moves. At this time, which of the power supply lines 315 and 315 is connected to the word line 313 is selected according to data to be written.
  • reading is performed by, for example, applying a voltage between the bit line 311 and the word line 312 selectively connected to the data line 314, thereby causing the magnetic layer fixed layer 11 in FIG. This is done by reading the resistance depending on the relative orientation of the magnetic field of the free layer 13.
  • the magnetoresistive effect element in FIG. 1 of the present invention has a magnetic resistivity of 250%, so that it is not necessary to perform cell selection with a MOS-FET during reading.
  • FIG. 5 shows a force indicating only one memory element, which is formed on the silicon substrate 120 in an XY matrix.
  • Cu is used for the bit line and word line wiring materials
  • Co is used for the ferromagnetic material. Since the bit line 116 and the first word line 111 are connected to the first and second magnetic pinned layers 11 and 15, respectively, the magnetic pinned layer may be used as it is. That is, the first and second magnetic pinned layers 11 and 15 do not have to be independent for each memory element. In addition, when the first and second magnetic pinned layers 11 and 15 are made of Co, the specific resistance is not so large, so there is no problem in terms of the electric circuit. By doing so, the lithography and magnetic bonding processes become easier.
  • FIG. 6 is a diagram showing a cross-sectional structure of the magnetoresistive element 20 of the present invention.
  • a first transition region is formed by forming an insulator layer 26 having a thickness of lOnm on a thin Co wire 21 having a thickness of ⁇ and a length of lOOnm, which serves as a magnetization fixed layer. Subsequently, a lOnm magnetic free layer 23 having a thickness is formed. Next, an insulating layer 27 having a thickness of lOnm is formed to provide a second transition region. Further, a magnetic pinned layer is formed by a Co wire 25 having a thickness of 100 ⁇ and a length of lOOnm. The function of each part is the same as in Figure 1.
  • the insulator layers 26, 27 are formed of, for example, Al 2 O.
  • FIG. 7 shows a state in which five pinholes 28 are formed in the insulator layer 26 as the first transition region in FIG. It is a figure shown in the form of a perspective view visually. In addition to the three pinholes 28 in the cross-sectional position, two pinholes 28 are formed!
  • the magnetoresistive effect element 20 when an external electrode is installed, a DC current with an Ins pulse width is supplied at a current density of 10 6 AZcm 2 and the polarity of the current is reversed at regular time intervals, The same signal output as in Fig. 2 is obtained. According to the calculation similar to that described in FIG. 2, the magnetoresistive element 20 of the present invention has a magnetoresistance of 300%.
  • first and second magnetic pinned layers 41 and 45 are formed at both ends of a thin Co layer having a thickness of lOnm, and a magnetic free layer 43 is formed at the center portion.
  • the first and second transition regions 42 and 44 are provided.
  • a tunnel magnetic junction 46 for reading out magnetic information of the magnetic free layer 43 is arranged at the center of the magnetic free layer 43.
  • the tunnel magnetic junction 46 includes an insulator tunnel barrier layer 47 and a magnetic pinned layer 48. The function of each part is the same as in FIG. 1, but for the tunnel magnetic junction 46 to function, the direction of the magnetic layer of the magnetic pinned layer 48 is one of the magnetic pinned layers 41 and 45. The direction of the magnetic field must be the same.
  • the magnetoresistive effect element 40 has a planar structure, and can share the magnetic pinned layer of adjacent memory elements, so that it has a structure advantageous for increasing the density when applied to a solid-state memory. is there.
  • FIG. 10 is a diagram showing a cross-sectional structure of the magnetoresistive element 50 of the present invention.
  • a step of lOnm in height and length for several atomic layers is formed on the silicon substrate 120.
  • the resulting Co magnetic free layer is relatively thin. 3 can be formed.
  • the steps on the silicon substrate 120 correspond to the magnetic free layer 53, and the step edges on the silicon substrate become the first and second transition regions 52 and 54.
  • One of the magnetic layers of the magnetic pinned layers 51 and 55 is set in the opposite direction to the other magnetization by an external magnetic field.
  • a tunnel magnetic junction 46 (insulator tunnel barrier layer 47 and magnetic pinned layer 48) for reading magnetic information of the magnetic free layer 53 is arranged.
  • the first and second transition regions 42 and 44 formed by cutting the magnetoresistive effect element 40 described in FIGS. 7 and 8 are formed by 52 and 54 by step edges.
  • the magnetoresistive effect element 50 when an external electrode is installed, a DC current with an Ins pulse width is supplied at a current density of 10 6 AZcm 2 and the polarity of the current is reversed at regular time intervals, The same signal output as in Fig. 2 is obtained.
  • the magnetoresistive effect element 50 also has a planar structure similar to the magnetoresistive effect element 40, and can share the magnetic pinned layer of the adjacent memory element, which is advantageous for increasing the density when applied to a solid-state memory. It is a simple structure.
  • FIG. 11 is a diagram showing a cross-sectional structure of the magnetoresistive element 60 of the present invention.
  • a transitional region is formed by depositing Cu62 with a thickness of 10 nm on a Co thin wire 61 with a thickness of 50 nm and a thickness of lOOnm.
  • the Co wire 61 is a magnetic pinned layer.
  • a 50 nm thick magnetic free layer 63 is formed.
  • the direction of the magnetic layer of the magnetic free layer 63 is set to be opposite to the magnetization of the magnetic fixed layer 61 by an external magnetic field.
  • Electrodes are provided outside the magnetic pinned layer 61 and the magnetic free layer 63 in the magnetoresistive element 60.
  • a measurement current is passed between the external electrodes in the direction from the magnetic pinned layer 61 to the magnetic free layer 63.
  • the measuring current is a direct current with a current density of 10 2 AZcm 2 .
  • a DC current with an Ins pulse width is supplied between the external electrodes at a current density of 10 6 AZcm 2 and the polarity of the current is inverted at intervals of 10 s. Then, the same output signal as in Fig. 2 is observed.
  • the current supplied between the external electrodes is simply a direct current, a current density of 10 9 AZcm 2 or greater is needed to observe the equivalent results in Fig. 2. It is necessary to supply.
  • the magnetoresistive effect element 60 is a two-terminal element, it is highly integrated when applied to a solid-state memory. This is advantageous for increasing the density.
  • FIG. 12 is a diagram showing a solid-state memory in the case of two vertical rows and two horizontal rows as an example in which the magnetoresistive effect elements 60 shown in FIG. 11 are arranged in an XY matrix.
  • the magnetic resistance shown in FIG. 11 is shown at the intersection of bit line 711, bit line 711, word line 712, and word line 712.
  • Anti-effect element 700 is arranged.
  • 715 is a bit line decoder
  • 716 is a word line decoder.
  • the decoders 715 and 716 select one of the bit line and the word line corresponding to the write or read address specification, and supply current to the magnetoresistive element 700.
  • the word line is selectively connected to the data line 713 by opening and closing the gate of the MOS-FET 714.
  • FIG. 1 is a conceptual diagram for explaining a magnetoresistive element 10 of the present invention.
  • FIG. 3 is a diagram showing the relationship between the pulse width of the pulse current of the magnetoresistive effect element 10 shown in FIG. 1 and the length of the magnetic free layer 13;
  • FIG. 4 is a connection diagram showing an example in which a solid-state memory in the case of two vertical rows and two horizontal rows is configured as an example in which the magnetoresistive effect element 10 shown in FIG. 1 is a memory element and arranged in an XY matrix. It is.
  • FIG. 5 is a cross-sectional view schematically showing one memory element 110 in which the solid-state memory shown in FIG. 4 is mounted on a silicon substrate.
  • FIG. 6 is a view showing a cross-sectional structure of a magnetoresistive effect element 20 of the present invention.
  • FIG. 7 is a perspective view schematically showing a state in which five pinholes 28 are formed in the insulator layer 26 as the first transition region in FIG. 6.
  • FIG. 7 is a perspective view schematically showing a state in which five pinholes 28 are formed in the insulator layer 26 as the first transition region in FIG. 6.
  • FIG. 8 is a diagram showing a schematic planar structure of a magnetoresistive element 40 of the present invention.
  • FIG. 9 is a schematic perspective view of a magnetoresistive element 40 of the present invention.
  • FIG. 10 is a view showing a cross-sectional structure of a magnetoresistive element 50 according to the present invention.
  • FIG. 11 is a view showing a cross-sectional structure of a magnetoresistive element 60 of the present invention.
  • FIG. 12 As an example in which the magnetoresistive effect elements 60 shown in FIG. 11 are arranged in an XY matrix,
  • Decoder 716 ⁇ Wordline decoder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

 高速磁化反転が可能で、臨界電流密度の低い磁気抵抗素子および固体メモリを実現すること。  第1の磁化固定層、磁化自由層、第2の磁化固定層からなり、前記第1の磁化固定層と前記第2の磁化固定層とを略反平行とし、前記第1磁化固定層と前記磁化自由層間、あるいは前記第2磁化固定層と前記磁化自由層間の両方の遷移領域が磁壁をトラップでき、かつ、どちらか一方に磁壁が存在する構造を備え、前記第1、第2磁化固定層の間に、1nsのパルス幅の直流電流密度が106A/cm2を超えない値のパルス電流を供給する。

Description

明 細 書
パルス電流による磁壁移動に基づいた磁気抵抗効果素子および高速磁 気記録装置
技術分野
[0001] 本発明は、パルス電流の印加に伴う低電流密度かつ高速な磁壁移動による磁化反 転過程を利用した記憶、磁気抵抗効果を利用して読み出しをする固体メモリ素子お よびこれらを利用した装置に関する。
背景技術
[0002] 磁気抵抗効果は、磁性体に磁場を印加したとき、あるいは磁性体の磁ィ匕状態が変 化したとき電気抵抗が変化する現象である。この効果を利用した磁気抵抗効果素子 として、従来カゝら磁気ヘッドや磁気センサが知られ、最近では不揮発性固体磁気メモ リ素子(MRAM)なども試作されるようになってきて!/ヽる。
[0003] 現在試作されている MRAMの主要な形態は、ビット線とワード線の交点にトンネル 磁気抵抗 (TMR)素子が配置されたマトリックス状の構造を持つ。各配線に流した電 流の作る合成磁場により、 TMR素子の磁ィ匕の向きを反転させ記録の書き込みを行う 。つまり TMR素子カ モリセルの役割を担う。メモリセルの情報を読み出すためには 、メモリセルからのリーク電流が存在するため、 MOSトランジスタによるセルの選択が 必須となる。これらの構造を有する MRAMは、その構造ゆえ、プロセス技術の複合 化という欠点、ならびに、高密度大容量化に適さない以下の 3つの欠点が指摘されて いる。一つは、メモリセルの縮小化による有効な反転磁場条件が狭くなること。もう一 つは、磁性体の薄膜化による反転磁場の増大、それにともなう配線電流、消費電力 の増大。最後の一つは、セル選択のための MOSトランジスタを有するため DRAMと 同程度し力集積できな 、ことである。
[0004] 一方、最近、反転磁場を利用しない磁化反転過程であるスピントルクが提案され( 非特許文献 1、 2)、実際にスピントルクによる磁化反転が確認された (非特許文献 3, 4)。このスピントルクによって、メモリセルへの書き込みが提案されている。し力しなが ら、スピントルクによる磁ィ匕反転は、現在、以下の 2つの技術的課題を抱えている。一 つは、スピントルクによる磁ィ匕反転過程の動作速度は、緩和時間により決定されてし まうことである。これは、この磁化反転過程は、磁ィ匕の緩和 (ダンピング)により引き起 こされる準定常状態における磁ィ匕回転を利用するためであり、したがって高速磁ィ匕反 転が要求される固体メモリには対応できない。もう一つは、磁ィ匕反転を引き起こすスピ ントルクの生成には、 108AZcm2の程度の高い臨界電流密度が必要とされることで ある。
[0005] 非特許文献 1:フィジカルレビュー B39卷、 6995— 7002頁(1989) 1^. Rev. B 39, 6995-7002 (1989))
非特許文献 2 :フィジカルレビュー B54卷、 9353— 9358頁(1996) (Phys. Rev. B 54 , 9353-9358 (1996))
非特許文献 3 :フィジカルレビューレターズ 84卷、 3149— 3152頁(2000) (Phys. Re v. Lett. 84, 3149-3152 (2000))
非特許文献 4:アプライドフィジックスレターズ 78卷、 3663— 3665頁(2001) (Appl. Phys. Lett. 78, 3663-3665 (2001))
発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、スピントルク磁化反転と同様、反転磁場を利用しない磁化反転過 程によるメモリセルへの書き込みにおいて、低い臨界電流密度、ならびに高速磁ィ匕 反転過程を有する磁気抵抗効果素子および磁気記録装置を提供することにある。 課題を解決するための手段
[0007] 上記目的を達成するため、本発明の高速磁気記録装置は、第 1の磁ィ匕固定層、磁 ィ匕自由層、第 2の磁化固定層からなり、前記第 1の磁化固定層と前記第 2の磁化固 定層とを略反平行とし、前記第 1磁化固定層と前記磁化自由層間、あるいは前記第 2 磁ィ匕固定層と前記磁ィ匕自由層間の両方の遷移領域が磁壁をトラップでき、かつ、ど ちらか一方に磁壁が存在する構造を備え、前記第 1、第 2磁ィ匕固定層の間に、 0. 6 〜2. Onsの範囲の、十分短いパルス幅のパルス電流を供給する。
[0008] 上記構成において、パルス電流の直流電流密度が 106AZcm2を超えない値で磁 壁が 2つの遷移領域の間で移動することにより磁ィ匕自由層の磁ィ匕を反転させることが 可能となる。磁ィ匕自由層の磁ィ匕反転により、上記第 1あるいは第 2磁ィ匕固定層間の遷 移領域の相対磁ィ匕の向きの変化による磁気抵抗を検出する。
発明の効果
[0009] 本発明の磁気抵抗効果素子によれば、磁化反転に必要な臨界電流密度が低ぐ かつ高速に書き込みのできる磁気記憶装置が実現できる。
発明を実施するための最良の形態
[0010] 以下、図面を参照しつつ本発明の実施の形態について説明する。
実施例 1
[0011] (固体メモリ素子への応用)
図 1は本発明の磁気抵抗効果素子 10を説明するための概念図であり、図 2は図 1 に示す磁気抵抗効果素子 10の特性を説明する図である。
[0012] 幅および厚さが lOOnmの Coからなる強磁性細線を通常の電子線リソグラフィー技 術により作成する。次に、強磁性細線の端部力も長さ 200nmの領域を第 1の強磁性 細線部 11とし、これに隣接して、幅、厚さ、および、長さ 20nmの第 1の狭窄部 12、こ れに隣接して、幅および厚さが 100nm、長さが lOnmの強磁性微小領域部 13、これ に隣接して、幅、厚さ、および、長さ 20nmの第 2の狭窄部 14、これに隣接して、幅、 厚さ、および、長さ lOOnmの第 2の強磁性細線部 15となるように、通常の電子線リソ グラフィー技術により加工する。
[0013] ここで、第 1、第 2の強磁性細線部 11、 15のそれぞれの磁ィ匕の向きが逆 (反平行) になるように、外部磁場により、一方の磁化を反転させて、磁ィ匕固定層とする。強磁 性微小領域部 13が磁ィ匕自由層である。以下、それぞれの層の機能に着目して、第 1 、第 2の強磁性細線部 11、 15を第 1、第 2の磁ィ匕固定層 11、 15、また強磁性微小領 域部 13を磁ィ匕自由層 13と呼ぶ。
[0014] また、第 1、第 2の狭窄部 12, 14は、前記第 1、第 2の磁ィ匕固定層 11、 15、および 磁ィ匕自由層 13に比べ、幅、厚さ、および、長さ共に小さく作成される部分であり、第 1 、第 2の狭窄部 12, 14を第 1、第 2の遷移領域と呼ぶ。第 1、第 2の遷移領域は、上述 した Coのみならず、他の例としては、複数の膜厚を有する連続した磁性体の膜厚変 化部分 (ステップ)、磁性体 Z絶縁体積層構造の絶縁体部分、あるいは前記絶縁体 部分に形成されるピンホールなどで形成しても良 ヽ。これらは通常の電子線リソダラ フィー技術により加工できる。
[0015] 磁気抵抗効果素子 10における第 1、 2の磁ィ匕固定層 11、 15と接触する電極を外部 に設け、さらに磁ィ匕自由層 13の外部にも電極を設ける。まず、第 1の磁ィ匕固定層 11 と磁ィ匕自由層 13の外部電極間に、測定用の直流電源 16と計測用のメータ 17を接続 して測定用の直流電流(大きさは、 0. 3 X 10"4A ( = 0. 03mA) )を流す。次に、磁 ィ匕固定層 11側と 15側との外部電極間にパルス電流源 18から 1 X 10_4Aの電流で 1 nsのパルス幅の直流電流を供給し、 30s間隔で電流の極性を反転させることを繰り 返す。素子入力部で測定したときの電流密度は 106AZcm2である。すると、第 1の磁 化固定層 11側と磁ィ匕自由層 13側の外部電極間には図 2に見られる電圧信号が観 測される。
[0016] これは、第 1、第 2の磁ィ匕固定層 11、 15のいずれか一方の磁ィ匕の向きを反転させ た際、第 1、第 2の遷移領域 12、 14のいずれか一方に磁壁が導入され、その磁壁が 第 1、第 2の磁ィ匕固定層 11、 15間に加えられるパルス電流により移動することで、磁 化自由層 13の磁ィ匕の方向が変化したと考えられる。別の言い方をすれば、パルス電 流幅 Insの時間内に、磁壁が磁ィ匕自由層 13を走り切ってしまう。走りきつた磁壁が勝 手に戻ったりしないよう、 30秒待ってから、測定電流もノ ルス電流も極性を反転した ら、ほぼ同様に、磁壁の走る向きだけは反対に走り切る動作をしていると言うことがで きる。
[0017] 図 2における出力信号を、前述のように磁ィ匕固定層 11と磁ィ匕自由層 13間の磁気抵 抗と考え、磁気抵抗率に換算すると約 250%になる。これは、図 2の結果から以下の ようにして得られる。図 2において得られた電圧の大体の値を見積もると、電圧の大き ぃ咅分は約 550mV、 /J、さい咅分は約 150mVなので、
(550- 150) /150=400/150 = 8/3 = 2. 666666
となる。すなわち、約 250%と言うことになる。なお、図 2に示す特性は、第 2の磁化固 定層 15と磁ィ匕自由層 13の外部電極間に、測定用の直流電源 16と計測用のメータ 1 7を接続して直流電流を流して計測した場合でも同じように得られる。ただし、出力信 号の波形は反転する。 [0018] 同様の測定を、磁ィ匕固定層 11と 15の外部電極間に供給する電流を単なる直流電 流とした場合は、図 2と等価な結果が観測されるには 109AZcm2以上の大きさの電 流密度の電流を供給する必要がある。
[0019] すなわち、本発明によれば、単なる直流電流による駆動と比べて、 3桁小さい電流 で動作する固体メモリ素子が得られることになる。
[0020] 表 1は、図 1に示す磁気抵抗効果素子 10の各部のサイズ、すなわち、磁化固定層
11と 15、狭窄部 12, 14及び磁化自由層 13を種々変更したときの磁気抵抗率を示す 表である。
[0021] [表 1]
表 1
Figure imgf000007_0001
表 1に示すケースは、第 1の磁ィ匕固定層 11側と磁ィ匕自由層 13側の外部電極間に、 測定用の直流電流 0. 03mAを流し、磁化固定層 11, 15間に 10_4Aレベルの電流 で nsレベルのパルス幅の直流電流を供給し、 30s間隔で電流の極性を反転させるこ とを繰り返して上述のようにして得た磁気抵抗率を示すものである。表 1の No. 1のケ ースは、上述の例である。
表 1の No. l〜No. 4の結果から分かるように、パルス電流を 1 X 10_4A、第 1、第 2 の狭窄部 12, 14の大きさを 20nmX 20nm X 20nmとしたとき、パルス電流のパルス 幅と磁ィ匕自由層 13の長さとの関係は、図 3に示すように、比例関係が見られる。そし て、図 3に示す範囲で得られる磁気抵抗率が 200— 250%となっていることが分かる [0023] 表 1の No. 5は、第 1、第 2の狭窄部 12, 14の大きさを 40nm X 40nmX 40nmとし 、他の条件をパルス No. 1と同じものとした場合の結果を示す。これ力 分力るように 、第 1、第 2の狭窄部 12, 14を大きくすると磁気抵抗率が大きく低下する。逆に言え ば、大きな磁気抵抗率を得るためには、第 1、第 2の狭窄部 12, 14の大きさを 20nm X 20nm X 20nm以下とすることが必要であることがわかる。これは、小さければ小さ い程、大きな磁気抵抗率を得ることができると言えるが、製造プロセスから限界がある 実施例 2
[0024] (固体メモリへの応用)
次に、図 1に示した磁気抵抗効果素子 10を用いた固体メモリの例を説明する。図 4 は、図 1に示した磁気抵抗効果素子 10をメモリ素子とし、 X—Yマトリクス状に配列し た例として縦 2列、横 2列の場合の固体メモリを構成した例を示す接続図である。図 4 では、ビットライン 311 , 311と、読み出し用ワードライン 312 , 312、書き込み用ヮ
1 2 1 2
一ドライン 313, 313との交^;に図 1記載のメモリ素子 300 , 300 , 300 および
1 2 11 12 21
300 が配置されている。ビットライン 311 , 311はそれぞれメモリ素子の第 2の磁ィ匕
22 1 2
固定層 15に接続されている。メモリ素子のそれぞれに対し、読み出し用ワードライン 312 , 312のそれぞれと、書き込み用ワードライン 313 , 313のそれぞれが設けら
1 2 1 2
れ、それぞれ磁ィ匕自由層 13および第 1の磁ィ匕固定層 11に接続されている。 318は ビットラインのデコーダ、 319は、読み出し用ワードライン 312 , 312のデコーダで
1 1 2
ある。 319は書き込み用ワードライン 313 , 313のデコーダである。デコーダ 318は
2 1 2
書き込みあるいは読み出しのアドレス指定に対応して、ビットライン 311 , 311の一
1 2 つを選択する。デコーダ 319は読み出しのアドレス指定に対応して、ワードライン 31 2 , 312の一つを選択する。デコーダ 319は書き込みのアドレス指定に対応して、
1 2 2
ワードライン 313
1, 313の一つを選択する。また、デコーダ 319には書き込みのアド 2 2
レス指定に対応する書き込みデータも入力される。
[0025] ワードライン 312、ワードライン 312はゲートである MOS—FET316、 MOS—F
1 2 1
ET316の開閉により、データライン 314に選択的に接続される。ワードライン 313
2 1、 ワードライン 313はゲートである MOS— FET317 および MOS— FET317 、M OS-FET317 および MOS— FET317 のいずれかの開閉により、電源線 315
21 22 1 および 315に選択的に接続される。電源線 315
1、 315は、それぞれ、図 2の入力パ
2 2
ルスを供給する正負の電源線である。デコーダ 319は書き込みのアドレス指定に対
2
応する書き込みデータも入力されるので、磁気抵抗効果素子 300 , 300 , 300
11 12 21 および 300 に書き込むべきデータに応じて、電源線 315および 315のいずれか
22 1 2
がゲートである MOS— FET317 および MOS— FET317
11 12、MOS— FET317
21 および MOS—FET317 のいずれかの開閉により、正あるいは負の電源に接続さ
22
れ、所定の電流が供給される。
[0026] 例えば、メモリ素子 300 にデータを書き込むときは、ビットライン 311と、電源線 31
11 1
5および 315のいずれかに接続されたワードライン 313との間に 106AZcm2で In
1 2 1
sのパルス幅の電流を供給することにより、メモリ素子 300 における第 1の遷移領域 1
11
2あるいは第 1の遷移領域 14にある磁壁が供給電流の極性により移動、あるいは保 持される。すなわち、磁壁の移動に伴って図 1における磁ィ匕自由層 13の磁ィ匕の方向 を変化させることにより書き込みが行われる。このとき、ワードライン 313を電源線 31 5および 315のいずれに接続するかは、書き込むべきデータにより選択される。
1 2 一 方、読み出しは、例えば、ビットライン 311と、データライン 314と選択的に接続され たワードライン 312との間に電圧を印加することにより、図 1における磁ィ匕固定層 11 、磁ィ匕自由層 13の磁ィ匕の相対向きに依存した抵抗を読み出すことにより行われる。 本発明の図 1における磁気抵抗効果素子は、磁気抵抗率が 250%に達するので、 読み出しの際 MOS— FETでセル選択を行う必要がな 、。
[0027] 図 5は、上述の図 4に示した固体メモリをシリコン基板上に実装した例を一つのメモ リ素子 110について模式的に示す断面図である。シリコン基板 120の上に、第 1のヮ 一ドライン 111 (図 4のワードライン 313に対応する)、第 1の磁ィ匕固定層 11、第 1の遷 移領域 12、磁ィ匕自由層 13、第 2のワードライン 117 (図 4のワードライン 312に対応す る)、第 2の遷移領域 14、第 2の磁ィ匕固定層 15、ビットライン 116 (図 3のビットライン 3 11に対応する)を、半導体分野で常用されるリソグラフィー技術により形成する。ビッ トライン 116は紙面と平行に形成され、第 1のワードライン 111および第 2のワードライ ン 117は紙面に垂直方向に形成される。その他の層ある 、は領域は層間絶縁膜 11 8で埋められる。
[0028] 図 5は 1メモリ素子のみを示す力 これが X—Yマトリクス状にシリコン基板 120上に 形成される。図の例では、ビットライン、ワードラインの配線材料に Cuを、強磁性材料 には Coを用いた。ビットライン 116、第 1のワードライン 111は、それぞれ、第 1、第 2 の磁ィ匕固定層 11, 15に接続されているので、磁ィ匕固定層をそのまま用いてもよい。 すなわち、第 1、第 2の磁ィ匕固定層 11, 15は、メモリ素子単位で独立している必要は 無い。また、第 1、第 2の磁ィ匕固定層 11, 15を Coとするときは、これの固有抵抗はそ れほど大きくないから、電気回路的にも問題はない。こうすることにより、リソグラフィー 、磁ィ匕固着のプロセスがより簡便になる。
実施例 3
[0029] (他のタイプの固体メモリ素子への応用)
図 6は本発明の磁気抵抗効果素子 20の断面構造を示す図である。磁化固定層と なる太さ ΙΟΟηπι φ、長さ lOOnmの Co細線 21上に、厚さ lOnmの絶縁体層 26を形 成して第 1の遷移領域を設ける。続いて厚さ lOnm磁ィ匕自由層 23を形成する。次い で、厚さ lOnmの絶縁体層 27を形成して第 2の遷移領域を設ける。さらに太さ 100η ιη φ、長さ lOOnmの Co細線 25による磁ィ匕固定層を形成する。各部位の機能は図 1 と同様である。第 1、第 2の遷移領域となる絶縁体 26, 27を設ける時点で、 Co細線 2 1, 23上に Auのナノメーターサイズの微粒子を乗せておく。厚さ lOnmの絶縁体層 2 6, 27を形成する際には、この微粒子が絶縁体層中にピンホール 28, 29を形成して 遷移領域として機能する。ここで、絶縁体層 26, 27は、例えば、 Al Oで形成するの
2 3
がよい。
[0030] ピンホールを形成するために、 Co細線 21, 23上に Auのナノメーターサイズの微粒 子を乗せる際、一つずつ乗せるということはできないから、例えば、適当な数の Auの ナノメーターサイズの微粒子を振り撒くということが実際的であり、その結果、 Co細線
21 , 23上に乗る Auのナノメーターサイズの微粒子は、統計的に分布した数となる。 図 6では、これを断面位置で 3個、 2個とした。もちろん平面として見ればもっと多いか もしれないし、場合によっては、一つだけ、と言うこともありうる。図 7は、図 6における 第 1の遷移領域としての絶縁体層 26にピンホール 28が 5個形成されている様子を模 視的に斜視図の形で示す図である。断面位置の 3個のピンホール 28の他に 2個のピ ンホール 28が形成されて!、る状態を示すものとして!/、る。
[0031] 磁気抵抗効果素子 20においても、外部電極を設置し、 106AZcm2の電流密度で Insのパルス幅の直流電流を供給し一定時間間隔で電流の極性を反転させることを 繰り返すと、図 2と同様の信号出力が得られる。本発明の磁気抵抗効果素子 20は、 図 2で説明したのと同様の計算によると、磁気抵抗率が 300%に達する。
実施例 4
[0032] (さらに異なるタイプの固体メモリ素子への応用)
図 8、図 9は本発明の磁気抵抗効果素子 40の平面構造および対応する模式的な 斜視図を示す図である。この実施例では、厚さ lOnmの Coの薄層の両端に第 1、第 2 の磁ィ匕固定層 41、 45が、中央部に磁ィ匕自由層 43が形成され、これらの間に切り込 みを設けて、第 1、第 2の遷移領域 42、 44としている。さら〖こは磁ィ匕自由層 43の磁ィ匕 情報を読み出すためのトンネル磁気接合 46が磁ィ匕自由層 43の中央部に配置され ている。また、図 8から分力るように、トンネル磁気接合 46は、絶縁体トンネルバリア層 47、および磁ィ匕固定層 48から構成されている。各部位の機能は図 1と同様であるが 、トンネル磁気接合 46が機能するためには、磁ィ匕固定層 48の磁ィ匕の向きは磁ィ匕固 定層 41、 45のどちらか一方の磁ィ匕の向きと同じにする必要がある。
[0033] 図 8の磁ィ匕自由層 43の長さを lOnmとした場合、 106AZcm2の電流密度で Insの パルス幅の直流電流を供給し一定時間間隔で電流の極性を反転させることを繰り返 すと、図 2と同様の信号出力が得られる。
[0034] 磁気抵抗効果素子 40はプレーナ一構造を有しており、隣接するメモリ素子の磁ィ匕 固定層を共有することが可能なので、固体メモリへの応用に際し高密度化に有利な 構造である。
実施例 5
[0035] (さらに異なるタイプの固体メモリ素子への応用)
図 10は本発明の磁気抵抗効果素子 50の断面構造を示す図である。まず、シリコン 基板 120上に、数原子層分の高さ、長さ lOnmのステップを形成する。その上に Co を蒸着し表面を平坦化することで、結果的に Coの厚さが相対的に薄い磁ィ匕自由層 5 3が形成できる。シリコン基板 120上のステップが磁ィ匕自由層 53に対応し、前記シリ コン基板上のステップエッジが第 1、第 2の遷移領域 52、 54となる。磁ィ匕固定層 51、 55の一方の磁ィ匕は、外部磁場により他方の磁化と反対向きにしておく。さらには磁 化自由層 53の磁ィ匕情報を読み出すためのトンネル磁気接合 46 (絶縁体トンネルバリ ァ層 47、および磁ィ匕固定層 48)を配置する。この構成は、図 7, 8で説明した磁気抵 抗効果素子 40の切り込みにより形成した第 1、第 2の遷移領域 42、 44をステップエツ ジにより 52、 54により形成したものである。
[0036] 磁気抵抗効果素子 50においても、外部電極を設置し、 106AZcm2の電流密度で Insのパルス幅の直流電流を供給し一定時間間隔で電流の極性を反転させることを 繰り返すと、図 2と同様の信号出力が得られる。磁気抵抗効果素子 50も、磁気抵抗 効果素子 40同様プレーナー構造を有しており、隣接するメモリ素子の磁ィヒ固定層を 共有することが可能なので、固体メモリへの応用に際し高密度化に有利な構造であ る。
実施例 6
[0037] (さらに異なるタイプの固体メモリ素子への応用)
図 11は本発明の磁気抵抗効果素子 60の断面構造を示す図である。太さ 50nm、 厚さ lOOnmの Co細線 61上に厚さ 10nmの Cu62を蒸着して遷移領域とする。 Co細 線 61は磁ィ匕固定層である。続いて厚さ 50nm磁ィ匕自由層 63を形成する。外部磁場 により、磁ィ匕自由層 63の磁ィ匕の向きを磁ィ匕固定層 61の磁化と反対方向にしておく。
[0038] 磁気抵抗効果素子 60における磁ィ匕固定層 61と、磁ィ匕自由層 63の外部に電極を 設ける。まず、磁ィ匕固定層 61から磁ィ匕自由層 63への方向に、外部電極間に測定用 の電流を流しておく。測定用電流は、 102AZcm2の大きさの電流密度で直流である 。次に、外部電極間に 106AZcm2の大きさの電流密度で Insのパルス幅の直流電 流を供給し、 10s間隔で電流の極性を反転させることを繰り返す。すると、図 2と同様 の出力信号が観測される。この例でも、同様の測定を外部電極間に供給する電流を 単なる直流電流とした場合には、図 2と等価な結果が観測されるには 109AZcm2以 上の大きさの電流密度を供給する必要がある。
[0039] 磁気抵抗効果素子 60は 2端子素子であるので、固体メモリへの応用に際し高集積 度、高密度化に有利である。
実施例 7
[0040] (他のタイプの固体メモリへの応用)
次に、図 11に示した磁気抵抗効果素子 60を用いた固体メモリの例を説明する。図 12は、図 11に示した磁気抵抗効果素子 60を X—Yマトリクス状に配列した例として 縦 2列、横 2列の場合の固体メモリを示す図である。図 12では、ビットライン 711 ビッ トライン 711と、ワードライン 712、ワードライン 712との交点に図 11記載の磁気抵
2 1 2
抗効果素子 700が配置されている。 715はビットラインのデコーダ、 716はワードライ ンのデコーダである。デコーダ 715および 716が書き込みあるいは読み出しのァドレ ス指定に対応して、ビットラインおよびワードラインの一つが選択され磁気抵抗効果 素子 700に電流が供給される。なお、ワードラインは MOS— FET714のゲートの開 閉により、データライン 713に選択的に接続される。
[0041] 例えば、ビットライン 711と、データライン 713と選択的に接続されたワードライン 71 2との間に 106AZcm2で Insのパルス幅の電流を供給することにより、図 11におけ る磁ィ匕自由層の磁ィ匕の向きが反転、あるいは保持される。すなわち、図 10における 磁ィ匕自由層の磁ィ匕の方向を変化させることにより書き込みが行われる。一方、読み出 しは、例えば、ビットライン 711と、データライン 713と選択的に接続されたワードライ ン 712との間に電圧を印加することにより、図 11における磁ィ匕固定層 61、磁ィ匕自由 層 63の磁ィ匕の相対向きに依存した抵抗を読み出すことにより行われる。
[0042] なお、上述の実施例では、図 11の磁気抵抗効果素子 60の磁ィ匕自由層の長さを 50 nmとした他は全て磁化自由層の長さを lOnmとし、書き込みのパルス電流の幅を In s、大きさを 106AZcm2とする例とした力 これらの磁ィ匕自由層の長さを 1 μ mとし、書 き込みのパルス電流の幅を 100nsとしても、書き込みのパルス電流の大きさを 106A /cm2とできる。
産業上の利用可能性
[0043] 本発明によれば、単なる直流電流による駆動と比べて、 3桁小さ 、電流で動作する 固体メモリ素子が得られるとともに、固体メモリとしても、リソグラフィー、磁化固着のプ ロセスがより簡便にできるものとなる。 図面の簡単な説明
[0044] [図 1]本発明の磁気抵抗効果素子 10を説明するための概念図である。
[図 2]図 1に示す磁気抵抗効果素子 10の特性を説明する図である。
[図 3]図 1に示す磁気抵抗効果素子 10のパルス電流のパルス幅と磁ィ匕自由層 13の 長さとの関係を示す図である。
[図 4]図 1に示した磁気抵抗効果素子 10をメモリ素子とし、 X—Yマトリクス状に配列し た例として縦 2列、横 2列の場合の固体メモリを構成した例を示す接続図である。
[図 5]図 4に示した固体メモリをシリコン基板上に実装した例を一つのメモリ素子 110 について模式的に示す断面図である。
[図 6]本発明の磁気抵抗効果素子 20の断面構造を示す図である。
[図 7]図 6における第 1の遷移領域としての絶縁体層 26にピンホール 28が 5個形成さ れている様子を模視的に斜視図の形で示す図である。
[図 8]本発明の磁気抵抗効果素子 40の模式的な平面構造を示す図である。
[図 9]本発明の磁気抵抗効果素子 40の模式的な斜視図である。
[図 10]本発明の磁気抵抗効果素子 50の断面構造を示す図である。
[図 11]本発明の磁気抵抗効果素子 60の断面構造を示す図である。
[図 12]図 11に示した磁気抵抗効果素子 60を X—Yマトリクス状に配列した例として縦
2列、横 2列の場合の固体メモリを示す図である。
符号の説明
[0045] 10, 20, 40, 50, 60· ··磁気抵抗効果素子、 11, 21, 41, 51, 61· ··第 1の磁ィ匕固 定層、 12, 26, 42, 52, 62· ··第 1の遷移領域、 13, 23, 43, 53, 63· ··磁ィ匕自由層 、 14, 27, 44, 54· ··第 2の遷移領域、 15, 25, 45, 55· ··第 2の磁ィ匕固定層、 16· ·· 測定用の直流電源、 17· ··計測用のメータ、 18· ··パルス電流源、 28, 29· ··ピンホー ル、 46· ··トンネル磁気接合、 47· ··絶縁体トンネルバリア層、 48· ··磁ィ匕固定層、 110 , 300, 700· ··メモリ素子、 116, 311 , 311 , 711 , 711 …ビットライン、 117, 31
1 2 1、 2
2 , 312…読み出し用ワードライン、 111, 313 , 313…書き込み用ワードライン、 3
1 2 1 2
14…データライン、 315 , 315…電源線、 316 , 316 , 317 , 317 , 317 , 3
1 2 1 2 11 12 211
17 〜MOS—FET、 318…ビットラインのデコーダ、 319…読み出し用ワードライン のデコーダ、 319…書き込み用ワードラインのデコーダ、 118…層間絶縁膜、 712
2 1
, 712…ワードライン、 713···データライン、 714- MOS— FET、 715···ビットライン
2
のデコーダ、 716···ワードラインのデコーダ。

Claims

請求の範囲
[1] 第 1の磁化固定層 Z磁化自由層 Z第 2の磁化固定層を有する磁気抵抗効果素子 にあって、該磁ィ匕固定層 Z磁ィ匕自由層あるいは磁ィ匕自由層 Z第 2の磁ィ匕固定層の 少なくとも一方の境界となる磁ィ匕固定層と磁ィ匕自由層間の遷移領域に磁壁発生を誘 導するための機構を備え、これら磁ィ匕固定層の磁ィ匕の向きを略反平行に設定し、磁 化固定層 Z磁化自由層の遷移領域のいずれか一方に磁壁が存在する構造におい て、所定のパルス幅の電流を印加することにより、直流電流密度 106AZcm2を超え ない電流で磁壁が 2つの遷移領域の間で移動することにより磁ィ匕自由層の磁ィ匕を反 転させ、相対磁ィ匕の向きの変化に伴う磁気抵抗を検出することを特徴とする磁気抵 抗効果素子。
[2] 磁化固定層 Z磁化自由層または磁ィ匕自由層 Z磁化固定層の遷移領域に磁壁発 生を誘導するための機構として遷移領域が他の領域より断面積が小さいものとされて
V、る請求項 1記載の磁気抵抗素子。
[3] 磁化固定層 Z磁化自由層が 100 X 100 X lOOnmのオーダの大きさであるとき、遷 移領域が 20 X 20 X 20nmのオーダの大きさである請求項 2記載の磁気抵抗素子。
[4] 磁ィ匕固定層 Z磁ィ匕自由層 Z磁ィ匕固定層の構造として構成されるとともに、磁ィ匕固 定層 Z磁化自由層または磁化自由層 Z磁化固定層の遷移領域に磁壁発生を誘導 するための機構として前記遷移領域が絶縁材料で構成されるとともに、該絶縁材料 内に磁ィ匕固定層一磁ィ匕自由層または磁ィ匕自由層一磁ィ匕固定層に連なるピンホール を形成したものである請求項 1記載の磁気抵抗効果素子。
[5] 磁化固定層 Z磁化自由層 Z磁化固定層の構造が単一の平板状の強磁性体材料 で構成され、かつ、磁ィ匕自由層上に絶縁体トンネルバリア層と磁ィ匕固定層から構成さ れるトンネル磁気接合を備えるとともに、磁化固定層 z磁化自由層の遷移領域に磁 壁発生を誘導するための機構として前記単一の平板状の強磁性体材料に切り込み を形成したものである請求項 1記載の磁気抵抗効果素子。
[6] 磁ィ匕固定層 Z磁ィ匕自由層 Z磁ィ匕固定層の構造として構成されるとともに、磁ィ匕固 定層 Z磁化自由層または磁化自由層 Z磁化固定層の遷移領域に磁壁発生を誘導 するための機構として前記磁ィ匕自由層の膜厚が磁ィ匕固定層の膜厚より薄いものとさ れ、かつ、磁ィ匕自由層上に絶縁体トンネルバリア層と磁ィ匕固定層から構成されるトン ネル磁気接合を備える請求項 1記載の磁気抵抗効果素子。
[7] 前記所定のパルス幅の電流が 0. 3ns以上 1. 6ns以下の範囲のパルス幅の電流で ある請求項 1記載の磁気抵抗効果素子。
[8] 第 1の磁化固定層 Z磁化自由層 Z第 2の磁ィ匕固定層を有し、これら磁ィ匕固定層の 磁ィ匕の向きを略反平行に設定した磁気抵抗効果素子をメモリ素子としてマトリックス 状に配置するとともに、前記各メモリ素子の第 1の磁ィ匕固定層または第 2の磁ィ匕固定 層にビットラインを、前記各メモリ素子の第 2の磁ィ匕固定層または第 1の磁ィ匕固定層 にワードラインを接続し、前記各メモリ素子の磁ィ匕自由層にデータラインを、それぞれ 、書き込みアドレスあるいは読み出しアドレスに応じて選択的に接続して、前記第 1の 磁化固定層一前記第 2の磁化固定層間に所定のパルス幅の電流を記憶すべきデー タに応じた極性で印加することにより、直流電流密度 106AZcm2を超えない電流で 前記磁ィ匕自由層の磁ィ匕を反転させて、前記第 1の磁ィ匕固定層 Z磁ィ匕自由層または 前記磁化自由層 Z第 2の磁ィ匕固定層の間の 2つの遷移領域の間で磁壁が移動する ことにより前記各メモリ素子にデータを磁気記憶させ、前記各メモリ素子のデータライ ンと前記各メモリ素子の第 1の磁ィ匕固定層または第 2の磁ィ匕固定層のビットラインとの 間で磁気記憶されたデータを読み出すことを特徴とする磁気記録装置。
[9] 前記所定のパルス幅の電流が 0. 3ns以上 1. 6ns以下の範囲のパルス幅の電流で ある請求項 8記載の磁気記録装置。
[10] 前記第 1の磁ィ匕固定層一前記第 2の磁ィ匕固定層間にきわめて短いパルス幅の電 流を記憶すべきデータに応じた極性で印加するため、前記各メモリ素子の第 2の磁 化固定層または第 1の磁ィ匕固定層に接続されるワードラインは記憶すべきデータ〖こ 応じて正負の異なった電源線に選択的に接続される請求項 8記載の磁気記録装置。
[11] 磁化固定層 Z絶縁体層 Z磁化自由層を有する磁気抵抗効果素子をメモリ素子とし てマトリックス状に配置するとともに、前記各メモリ素子の磁ィ匕自由層にビットラインを 、前記各メモリ素子の磁ィ匕固定層にワードラインを接続し、前記各ワードラインにデー タラインを、それぞれ、書き込みアドレスあるいは読み出しアドレスに応じて選択的に 接続して、前記磁化固定層一前記磁化自由層間に所定のパルス幅の電流を記憶す べきデータに応じた極性で印加することにより、直流電流密度 106AZcm2を超えな い電流で前記磁ィ匕自由層の磁ィ匕を反転させて、前記磁化固定層 Z磁化自由層間 の遷移領域の間で磁壁が移動することにより前記各メモリ素子にデータを磁気記憶 させ、前記各メモリ素子のデータラインに接続されたワードラインと前記各メモリ素子 の磁ィ匕自由層のビットラインとの間で磁気記憶されたデータを読み出すことを特徴と する磁気記録装置。
前記所定のパルス幅の電流が 0. 3ns以上 1. 6ns以下の範囲のパルス幅の電流で ある請求項 11記載の磁気記録装置。
PCT/JP2006/302924 2005-02-23 2006-02-20 パルス電流による磁壁移動に基づいた磁気抵抗効果素子および高速磁気記録装置 WO2006090656A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005046572 2005-02-23
JP2005-046572 2005-02-23

Publications (1)

Publication Number Publication Date
WO2006090656A1 true WO2006090656A1 (ja) 2006-08-31

Family

ID=36927296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302924 WO2006090656A1 (ja) 2005-02-23 2006-02-20 パルス電流による磁壁移動に基づいた磁気抵抗効果素子および高速磁気記録装置

Country Status (1)

Country Link
WO (1) WO2006090656A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072421A1 (ja) * 2006-12-12 2008-06-19 Nec Corporation 磁気抵抗効果素子及びmram
WO2009038004A1 (ja) * 2007-09-20 2009-03-26 Nec Corporation 磁気ランダムアクセスメモリ
WO2009130738A1 (ja) * 2008-04-21 2009-10-29 国立大学法人京都大学 強磁性細線素子
US7848137B2 (en) 2006-03-24 2010-12-07 Nec Corporation MRAM and data read/write method for MRAM
US7929342B2 (en) 2005-08-15 2011-04-19 Nec Corporation Magnetic memory cell, magnetic random access memory, and data read/write method for magnetic random access memory
JP2018182291A (ja) * 2017-04-14 2018-11-15 Tdk株式会社 磁壁利用型アナログメモリ素子、磁壁利用型アナログメモリ、不揮発性ロジック回路及び磁気ニューロ素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191032A (ja) * 2003-12-24 2005-07-14 Toshiba Corp 磁気記憶装置及び磁気情報の書込み方法
WO2005069368A1 (ja) * 2004-01-15 2005-07-28 Japan Science And Technology Agency 電流注入磁壁移動素子
JP2006005308A (ja) * 2004-06-21 2006-01-05 Victor Co Of Japan Ltd 不揮発性磁気メモリ
JP2006073930A (ja) * 2004-09-06 2006-03-16 Canon Inc 磁壁移動を利用した磁気抵抗効果素子の磁化状態の変化方法及び該方法を用いた磁気メモリ素子、固体磁気メモリ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191032A (ja) * 2003-12-24 2005-07-14 Toshiba Corp 磁気記憶装置及び磁気情報の書込み方法
WO2005069368A1 (ja) * 2004-01-15 2005-07-28 Japan Science And Technology Agency 電流注入磁壁移動素子
JP2006005308A (ja) * 2004-06-21 2006-01-05 Victor Co Of Japan Ltd 不揮発性磁気メモリ
JP2006073930A (ja) * 2004-09-06 2006-03-16 Canon Inc 磁壁移動を利用した磁気抵抗効果素子の磁化状態の変化方法及び該方法を用いた磁気メモリ素子、固体磁気メモリ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GROLLIER J. ET AL.: "Switching a spin valve back and forth by current-induced domain wall motion", APPLIED PHYSICS LETTERS, vol. 83, no. 3, 21 July 2003 (2003-07-21), pages 509 - 511, XP001178014 *
YAMAGUCHI A. ET AL.: "Real-Space Observation of Current-Driven Domain Wall Motion in Submicron Magnetic Wires", PHYSICAL REVIEW LETTERS, vol. 92, no. 7, 20 February 2004 (2004-02-20), pages 077205-1 - 077205-4, XP002988240 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7929342B2 (en) 2005-08-15 2011-04-19 Nec Corporation Magnetic memory cell, magnetic random access memory, and data read/write method for magnetic random access memory
US7848137B2 (en) 2006-03-24 2010-12-07 Nec Corporation MRAM and data read/write method for MRAM
WO2008072421A1 (ja) * 2006-12-12 2008-06-19 Nec Corporation 磁気抵抗効果素子及びmram
US7936627B2 (en) 2006-12-12 2011-05-03 Nec Corporation Magnetoresistance effect element and MRAM
WO2009038004A1 (ja) * 2007-09-20 2009-03-26 Nec Corporation 磁気ランダムアクセスメモリ
WO2009130738A1 (ja) * 2008-04-21 2009-10-29 国立大学法人京都大学 強磁性細線素子
US8345473B2 (en) 2008-04-21 2013-01-01 Kyoto University Ferromagnetic thin wire element
JP2018182291A (ja) * 2017-04-14 2018-11-15 Tdk株式会社 磁壁利用型アナログメモリ素子、磁壁利用型アナログメモリ、不揮発性ロジック回路及び磁気ニューロ素子
JP7013839B2 (ja) 2017-04-14 2022-02-01 Tdk株式会社 磁壁利用型アナログメモリ、不揮発性ロジック回路及び磁気ニューロ素子

Similar Documents

Publication Publication Date Title
JP4932275B2 (ja) 磁気抵抗効果素子
US10622550B2 (en) Magnetoresistance effect element including a recording layer with perpendicular anisotropy and a bias layer comprised of an antiferromagnetic material, magnetic memory device, manufacturing method, operation method, and integrated circuit
JP4682585B2 (ja) 記憶素子及びメモリ
JP6861996B2 (ja) 磁気抵抗効果素子及び磁気メモリ装置
JP5696909B2 (ja) 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
JP5505312B2 (ja) 磁気メモリ素子及び磁気ランダムアクセスメモリ
JP6416180B2 (ja) 磁気記憶装置
JP4962889B2 (ja) 磁気メモリー
JP5488465B2 (ja) 磁気ランダムアクセスメモリ、並びに磁気ランダムアクセスメモリの初期化方法及び書き込み方法
JP6495980B2 (ja) 磁気メモリ
JP5664556B2 (ja) 磁気抵抗効果素子及びそれを用いた磁気ランダムアクセスメモリ
JP5545213B2 (ja) 磁気ランダムアクセスメモリ及びその初期化方法
JPWO2010095589A1 (ja) 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ
JP6815297B2 (ja) 磁気メモリ
JP4543901B2 (ja) メモリ
WO2006090656A1 (ja) パルス電流による磁壁移動に基づいた磁気抵抗効果素子および高速磁気記録装置
JP2005310829A (ja) 磁気メモリ及びその記録方法
JP5754531B2 (ja) 磁気抵抗効果素子及び磁気ランダムアクセスメモリの製造方法
JP6509971B2 (ja) 磁気記憶素子及び磁気記憶装置
JP2004348826A (ja) 磁気記憶装置
KR102663631B1 (ko) 자기 메모리 장치
JP2004172156A (ja) 磁気記憶素子及びその記録方法、並びに磁気記憶装置
JP2004023015A (ja) 磁気抵抗効果素子およびその製造方法並びに磁気メモリ装置
JP5327543B2 (ja) 磁気ランダムアクセスメモリ
JP2008084950A (ja) 記憶素子、メモリ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714065

Country of ref document: EP

Kind code of ref document: A1