JP5327543B2 - 磁気ランダムアクセスメモリ - Google Patents

磁気ランダムアクセスメモリ Download PDF

Info

Publication number
JP5327543B2
JP5327543B2 JP2009533115A JP2009533115A JP5327543B2 JP 5327543 B2 JP5327543 B2 JP 5327543B2 JP 2009533115 A JP2009533115 A JP 2009533115A JP 2009533115 A JP2009533115 A JP 2009533115A JP 5327543 B2 JP5327543 B2 JP 5327543B2
Authority
JP
Japan
Prior art keywords
magnetization
region
magnetic
random access
access memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009533115A
Other languages
English (en)
Other versions
JPWO2009038004A1 (ja
Inventor
哲広 鈴木
俊輔 深見
則和 大嶋
延行 石綿
聖万 永原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009533115A priority Critical patent/JP5327543B2/ja
Publication of JPWO2009038004A1 publication Critical patent/JPWO2009038004A1/ja
Application granted granted Critical
Publication of JP5327543B2 publication Critical patent/JP5327543B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5607Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using magnetic storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Description

本発明は、磁気ランダムアクセスメモリ(MRAM:Magnetic Random Access Memory)に関する。特に、本発明は、磁壁移動方式のMRAMに関する。
MRAMは、高集積・高速動作の観点から有望な不揮発性メモリである。MRAMにおいては、TMR(Tunnel MagnetoResistance)効果などの「磁気抵抗効果」を示す磁気抵抗素子が利用される。その磁気抵抗素子には、例えばトンネルバリヤ層が2層の強磁性層で挟まれた磁気トンネル接合(MTJ:Magnetic Tunnel Junction)が形成される。その2層の強磁性層は、磁化の向きが固定された磁化固定層(ピン層)と、磁化の向きが反転可能な磁化自由層(フリー層)から構成される。
ピン層とフリー層の磁化の向きが“反平行”である場合のMTJの抵抗値(R+ΔR)は、磁気抵抗効果により、それらが“平行”である場合の抵抗値(R)よりも大きくなることが知られている。MRAMは、このMTJを有する磁気抵抗素子をメモリセルとして用い、その抵抗値の変化を利用することによってデータを不揮発的に記憶する。例えば、反平行状態はデータ“1”に対応付けられ、平行状態はデータ“0”に対応付けられる。メモリセルに対するデータの書き込みは、フリー層の磁化の向きを反転させることによって行われる。
MRAMに対するデータの書き込み方法として、「アステロイド方式」や「トグル方式」が知られている。これらの書き込み方式によれば、メモリセルサイズにほぼ反比例して、フリー層の磁化を反転させるために必要な反転磁界が大きくなる。つまり、メモリセルが微細化されるにつれて、書き込み電流が増加する傾向にある。
微細化に伴う書き込み電流の増加を抑制することができる書き込み方式として、「スピン注入(spin transfer)方式」が提案されている。例えば、以下の文献を参照のこと。
特許文献1.特開2005−93488号
非特許文献1.J.C.Slonczewski,Journal of Magnetism&Magnetic Materials,159,L1−L7(1996)
スピン注入方式によれば、強磁性導体にスピン偏極電流(spin−polarized current)が注入され、その電流を担う伝導電子のスピンと導体の磁気モーメントとの間の直接相互作用によって磁化が反転する(以下、「スピン注入磁化反転:Spin Transfer Magnetization Switching」と参照される)。
米国特許第6834005号(特許文献2)には、スピン注入を利用した磁気シフトレジスタが開示されている。この磁気シフトレジスタは、磁性体中の磁壁(domain wall)を利用して情報を記憶する。多数の領域(磁区)に分けられた磁性体において、磁壁を通過するように電流が注入され、その電流により磁壁が移動する。各領域の磁化の向きが、記録データとして扱われる。このような磁気シフトレジスタは、例えば、大量のシリアルデータの記録に利用される。尚、磁性体中の磁壁の移動は、以下の文献にも報告されている。
非特許文献2.Yamaguchi et al.,Real−Space Observation of Current−Driven Domain Wall Motion in Submicron Magnetic Wires,PRL,Vol.92,pp.077205−1−4,2004.
このようなスピン注入による磁壁移動(Domain Wall Motion)を利用した「磁壁移動方式のMRAM」が以下の文献に記載されている。
特許文献3.特開2005−191032号公報
特許文献4.WO2007/020823号(特願2006−088068号)公報
特許文献3に記載されたMRAMは、磁化が固定された磁化固定層と、磁化固定層上に積層されたトンネル絶縁層と、トンネル絶縁層に積層された磁化記録層とを備える。磁化記録層には、磁化の向きが反転可能な部分と実質的に変化しない部分も含まれているため、磁化自由層ではなく、磁化記録層と呼ぶことにする。図1は、その磁化記録層の構造を示している。図1において、磁化記録層100は、直線形状を有している。具体的には、磁化記録層100は、トンネル絶縁層及び磁化固定層と重なる接合部103、接合部103の両端に隣接するくびれ部104、及びくびれ部104に隣接形成された一対の磁化固定部101、102を有する。一対の磁化固定部101、102には、互いに反対向きの固定磁化が付与されている。更に、MRAMは、一対の磁化固定部101、102に電気的に接続された一対の書き込み用端子105、106を備える。この書き込み用端子105、106により、磁化記録層100の接合部103、一対のくびれ部104及び一対の磁化固定部101、102を貫通する電流が流れる。
図2は、特許文献4に記載された磁気メモリセルの磁化記録層110の構造を示している。磁化記録層110は、U字型の形状を有している。具体的には、磁化記録層110は、第1磁化固定領域111、第2磁化固定領域112、及び磁化反転領域113を有している。磁化反転領域113は、ピン層130とオーバーラップしている。磁化固定領域111、112は、Y方向に延びるように形成されており、その磁化の向きは同じ方向に固定されている。一方、磁化反転領域113は、X方向に延びるように形成されており、反転可能な磁化を有している。従って、磁壁が、第1磁化固定領域111と磁化反転領域113との境界B1、あるいは、第2磁化固定領域112と磁化反転領域113との境界B2に形成される。磁化状態の初期化は、例えば、XY面内で斜め45度方向に十分大きな初期磁界を印加することによりおこなわれ、初期磁界を除いた後に、磁化固定領域の磁化が+Y方向、磁化反転領域の磁化が+X方向を向き、磁壁が境界B1に形成された状態が実現される。
磁化固定領域111、112は、電流供給端子115及び116のそれぞれに接続されている。これら電流供給端子115、116を用いることにより、磁化記録層110に書き込み電流を流すことが可能である。その書き込み電流の方向に応じて、磁壁は磁化反転領域113中を移動する。この磁壁移動により、磁化反転領域113の磁化方向を制御することができる。
しかしながら、図1、図2に示したスピントルクによる磁壁移動を利用した磁気記憶装置の書込み動作においては、書込み電流に上限があるという課題がある。図3A〜図3CはU字形状の素子における書込み動作を示した平面図である。図3Aのように初期状態で左下の境界B1に磁壁が形成されているとする。このとき、電流を端子116から115に印加し、すなわち、電子を端子115から116に流すと、スピントルク効果により磁壁は右方向に移動し、電流を切断した後は図3Bに示したように右下の境界B2に磁壁が形成される。この磁壁移動が成功するためには、磁壁が左下の境界B1に生成されたピンポテンシャルから抜け出すのに十分大きな電流が印加される必要がある。しかしながら、この電流が大きすぎると磁壁は右下のピンポテンシャルからも抜け出してしまい、図3Cのように磁壁が右上から抜けてしまう。一旦磁壁が抜けてしまうと、電流の印加だけで磁壁を生成することは困難であるので、磁化状態が固定された不良ビットとなってしまう。
図4は書込み電流に上限のない磁壁移動を利用したメモリセルの磁化記録層を示す平面図である。磁化記録層110は、Y字型の形状を有している。具体的には、磁化記録層110は、第1磁化固定領域111、第2磁化固定領域112、及び磁化反転領域113を有している。磁化反転領域113は、ピン層130とオーバーラップしている。磁化固定領域111、112は、斜めY方向に延びるように形成されており、その磁化の向きは領域の延伸方向に沿って固定されている。一方、磁化反転領域113は、X方向に延びるように形成されており、反転可能な磁化を有している。磁化状態の初期化は、例えば、−Y方向に十分大きな初期磁界を印加することによりおこなうことができる。
図5はY字形状の磁化記録層の書込み動作を示す平面図である。図5の(A)に示したように磁化反転領域113の磁化M3は左に向いているとする。このとき、磁壁は磁化反転領域113と第1磁化固定領域111の境界に位置している。書込み電流を端子117から端子115に印加、すなわち、電子が端子115から端子117に流れると磁壁はスピントルクにより駆動され磁化反転領域113中を移動していき、最終的には磁化反転領域113の右側から抜ける。結果として、図5の(B)に示したように磁化反転領域113の磁化方向は反転し、磁化反転領域113と第2磁化固定領域112の境界に新たな磁壁が形成される。磁化反転領域の方向を再び左向きにするためには、端子116から端子117に電子を流せばよい。
このようにY字形状の磁化記録層を有するメモリセルにおいては、書込み動作において、磁壁が磁化反転領域の一端から抜けるため、書込み電流に上限がないという長所がある。しかしながら、Y字形状の場合、2つの磁化固定領域が磁化反転領域を基準として、反対側に位置しているため、磁化記録層の外枠140(図5に記載)の面積がU字形状と比較して大きくなり、セルサイズが大きいという課題がある。
本発明の目的は、書込み電流の上限がなく、書込みマージンが大きく、或いは、実効的なセルサイズを小さくすることを可能とする、磁壁移動を利用した磁気ランダムアクセスメモリを提供することにある。
本発明の一実施形態による磁気ランダムアクセスメモリは、磁気異方性をもつ強磁性層である磁化記録層を備える。磁気記録層は、N個(Nは3以上の整数)の磁化領域を有する。磁化領域のうちの一つは、磁化領域のうちの他の一つを経由することなく磁化領域のうちの更に他の一つの磁化領域と接続される。磁化領域のうちのM個(MはN−1以上の整数)は、反転可能な磁化を持つ磁化反転領域である。
本発明の一実施形態による磁気ランダムアクセスメモリの書込み方法は、磁気異方性をもつ強磁性層である磁化記録層を具備し、磁気記録層が第1磁化領域、第2磁化領域、……、第N磁化領域(Nは3以上の整数)のN個の磁化領域とを有し、磁化領域のうちM個(MはN−1以上の整数)は反転可能な磁化を有する第1磁化反転領域、……、第M磁化反転領域であり、第K磁化領域は、第J磁化領域を経由することなく第L磁化領域と接続されており(J,K,LはN以下であり互いに異なる整数)、且つ、第K磁化領域の一端が他の磁化領域と接続していない磁気ランダムアクセスメモリの書込み方法であり、第1磁化反転領域、……、第M磁化反転領域の磁化の情報をそれぞれ読み出すステップと、書き込むべき書き込み情報を決定するステップと、磁化の情報と書き込み情報とに応じて第1磁化反転領域、……、第M磁化反転領域のうちの少なくとも一部を含む集合から書き込み領域を順次選択し、前記書き込み領域と他の磁化反転領域との間に、磁化の情報と書き込み情報とに応じて規定された電流を印加するステップとを備える。
本発明によれば、垂直、あるいは、面内磁気異方性を持つ磁性層を用いた磁壁移動方式のMRAMにおいて、書込み電流の上限をなくし、かつ、ビット当たりのセル面積を小さすることができる。その結果、書込みマージンが大きく、高速動作可能であり、大容量の磁気ランダムアクセスメモリを提供することができる。
図1は、関連技術における磁気ランダムアクセスメモリの磁化記録層を示す平面図。 図2は、関連技術における磁気ランダムアクセスメモリの磁化記録層を示す平面図。 図3A〜図3Cは、関連技術における磁気ランダムアクセスメモリの動作を示す平面図。 図4は、Y字型の磁化記録層を示す平面図。 図5は、Y字型の磁化記録層の動作を示す平面図。 図6は、本発明の磁気ランダムアクセスメモリの実施形態を示す斜視図。 図7は、本発明の磁気ランダムアクセスメモリの磁化記録層の実施形態を示す平面図。 図8は、本発明の磁気ランダムアクセスメモリの磁化記録層の実施形態を示す斜視図。 図9は、本発明の磁気ランダムアクセスメモリの磁化記録層の実施形態を示す斜視図。 図10A、図10Bは、本発明の磁気ランダムアクセスメモリの磁化記録層の実施形態を示す平面図。 図11は、本発明の磁気ランダムアクセスメモリの磁化記録層の実施形態を示す平面図。 図12A、図12Bは、本発明の磁気ランダムアクセスメモリの初期化方法を示す平面図。 図13A〜図13Cは、本発明の磁気ランダムアクセスメモリの初期化方法を示す平面図。 図14A〜図14Hは、本発明の磁気ランダムアクセスメモリの磁化状態を示す平面図。 図15は、本発明の磁気ランダムアクセスメモリの書込み動作を示す平面図。 図16は、本発明の磁気ランダムアクセスメモリの書込み動作を示すフローチャート。 図17は、本発明の磁気ランダムアクセスメモリの書込み動作を示す平面図。 図18は、本発明の磁気ランダムアクセスメモリの書込み動作を示すフローチャート。 図19A〜図19Hは、本発明の磁気ランダムアクセスメモリの磁化状態を示す平面図。 図20は、本発明の磁気ランダムアクセスメモリの読出し動作を説明するための平面図。 図21は、本発明の磁気ランダムアクセスメモリの読出し動作を説明するための平面図。 図22は、本発明の実施形態に係るMRAMの構成の一例を示す平面図。
添付図面を参照して、本発明の実施形態に係るMRAMを説明する。本実施形態に係るMRAMは磁壁移動方式のMRAMである。
1.基本構成
図6は、本実施形態に係る磁気メモリセル1(磁気抵抗素子)の一例を示す斜視図である。磁気メモリセル1は、強磁性体層である磁化記録層10とピン層、及び非磁性体層であるトンネルバリヤ層を備えている。ピン層、及び、トンネルバリヤ層はそれぞれ、30a、30b、30c及び、32a、32b、32cの3つの領域に分かれて形成されている。トンネルバリヤ層は、Al2O3膜やMgO膜等の薄い絶縁膜である。
図6に示されるように、本実施形態に係る磁化記録層10はY字形状をしており、3つの磁化反転領域、すなわち、第1磁化反転領域11a、第2磁化反転領域11b、及び、第3磁化反転領域11cを有している。第1磁化反転領域11aに、ピン層30aがトンネルバリヤ層32aを介して接続され、また、第2磁化反転領域11bに、ピン層30bがトンネルバリヤ層32bを介して接続され、また、第3磁化反転領域11cに、ピン層30cがトンネルバリヤ層32cを介して接続され、それぞれ、磁気トンネル接合が形成されている。また、第1磁化反転領域11aには電流印加用の端子14a、第2磁化反転領域11bには電流印加用の端子14b、第3磁化反転領域11cには電流印加用の端子14cがそれぞれ設けられている。本実施形態においては、3つの磁気トンネル接合にビット情報を記録させることができるので、1セルあたり6値の情報を蓄えることができる。そのため、磁気トンネル接合を有する磁化反転領域が一つだけ設けられている図4に示したセルと比較して、ビットあたりのセル面積を小さくすることができる。なお、ここで、8値(23)ではなく、6値の情報となる理由については後述する。
図7は本実施形態の磁化記録層10の変形例を示した平面図である。図7において、第1磁化反転領域11a、第2磁化反転領域11b、及び、第3磁化反転領域11cの端部の形状が先細り形状になっている。これは書き込み電流印加時に磁壁を端部から抜けやすくするためである。
図8は本実施形態に係る磁気メモリセルの変形例である。磁化記録層10はY字形状をしており、第1磁化反転領域11a、第2磁化反転領域11b、及び、磁化固定領域13を有している。第1磁化反転領域11aに、ピン層30aがトンネルバリヤ層32aを介して接続され、また、第2磁化反転領域11bに、ピン層30bがトンネルバリヤ層32bを介して接続され、それぞれ磁気トンネル接合が形成されている。また、第1磁化反転領域11aには電流印加用の端子14a、第2磁化反転領域11bには電流印加用の端子14b、磁化固定領域13には電流印加用の端子14cがそれぞれ設けられている。本実施形態においては、2つの磁気トンネル接合にビット情報を記録させることができるので、後述のように1セルあたり3値の情報を蓄えることができる。そのため、磁気トンネル接合を有する磁化反転領域が一つだけ設けられている図4に示したセルと比較して、ビットあたりのセル面積を小さくすることができる。
図9は本実施形態に係る磁気メモリセルの別の変形例である。磁化記録層10は十字形状をしており、第1磁化反転領域11a、第2磁化反転領域11b、第3磁化反転領域11c、及び、磁化固定領域13を有している。第1磁化反転領域11aに、ピン層30aがトンネルバリヤ層32aを介して接続され、また、第2磁化反転領域11bに、ピン層30bがトンネルバリヤ層32bを介して接続され、また、第3磁化反転領域11cに、ピン層30cがトンネルバリヤ層32cを介して接続され、それぞれ磁気トンネル接合が形成されている。また、第1磁化反転領域11aには電流印加用の端子14a、第2磁化反転領域11bには電流印加用の端子14b、第3磁化反転領域11cには電流印加用の端子14c、磁化固定領域13には電流印加用の端子14cがそれぞれ設けられている。本実施形態においては、3つの磁気トンネル接合にビット情報を記録させることができるので、1セルあたり7値の情報を蓄えることができる。
このように本実施形態においては、磁気トンネル接合を有する磁化反転領域の数が2以上であり、かつ、磁化固定領域の数が0又は1であり、かつ、磁化反転領域と磁化固定領域の合計が3以上であることを特徴としている。以下では、簡単のため、磁化反転領域と磁化固定領域の合計が3である図6、図8に示した形状についてさらに詳しく説明する。
本実施形態で用いる磁性層としては垂直異方性を持つ材料、及び、面内異方性を持つ材料のいずれも用いることができる。
図10Aは垂直異方性を持つ磁化記録層の磁化を示した平面図である。磁化記録層10は基板面に垂直な方向の異方性を持つ。磁化記録層10は、Fe、Co、Niのうちから選択される少なくとも一つ以上の材料を含むことが望ましい。さらに、PtやPdを含むことで垂直異方性を安定化することができる。これに加えて、B、C、N、O、Al、Si、P、Ti、V、Cr、Mn、Cu、Zn、Zr、Nb、Mo、Tc、Ru、Rh、Ag、Hf、Ta、W、Re、Os、Ir、Au、Smなどを添加することによって所望の磁気特性が発現されるように調整することができる。具体的にはCo、Co−Pt、Co−Pd、Co−Cr、Co−Pt−Cr、Co−Cr−Ta、Co−Cr−B、Co−Cr−Pt−B、Co−Cr−Ta−B、Co−V、Co−Mo、Co−W、Co−Ti、Co−Ru、Co−Rh、Fe−Pt、Fe−Pd、Fe−Co−Pt、Fe−Co−Pd、Sm−Coが例示される。この他、Fe、Co、Niのうちから選択される少なくとも一つの材料を含む層が、異なる層と積層されることにより垂直方向の磁気異方性を発現させることもできる。具体的にはCo/Pd、Co/Pt、Fe/Auの積層膜が例示される。
ピン層30a、30b、30cも磁化記録層10と同様な材料が用いられる。ピン層30a、30b、30cの磁化の向き(図10Aにおいて破線で図示)は、書込み、及び、読出し動作によって変化しない。そのため、ピン層30a、30b、30cの磁気異方性は磁化記録層10よりも大きいことが望ましい。これは、磁化記録層10とピン層30a、30b、30cの材料、組成を異なるものとすることにより実現される。また、ピン層30a、30b、30cのトンネルバリヤ層とは反対側の面に反強磁性体層を積層し、磁化をピン止めすることによっても実現される。さらにピン層30a、30b、30cを強磁性層、非磁性層、強磁性層からなる積層膜にすることもできる。ここで、非磁性層としてはRu、Cuなどが用いられる。この場合、2つの強磁性層の磁化は互いに反平行になり、2つの強磁性層の磁化を等しくすれば、ピン層からの漏洩磁界を抑制することができる。図10Aにおいて、各磁化反転領域の磁化は+Z、−Zのいずれかの方向(紙面に垂直な方向)を向く。
図10Bは面内異方性を持つ磁化記録層の磁化を示した平面図である。磁化記録層10の材料としては、Fe、Co、Niのうちから選択される少なくとも一つ以上の材料を含むことが望ましい。典型的にはNiFeが用いられる。また、CoFeBはMgOバリヤと組み合わせることにより高いMR比が得られることが知られている。図10Bにおいて、各磁化反転領域の磁化は中心に向かう方向、あるいは、中心から離れる方向のいずれかを向く。
図11は本実施形態の変形例における磁化記録層を示した平面図である。面内磁気異方性をもつ磁化記録層10は第1磁化反転領域11a、第2磁化反転領域11b、及び、第3磁化反転領域11cから構成されており、これらの磁化反転領域は中心部において接続している。第1磁化反転領域11a、及び、第2磁化反転領域11bは第3磁化反転領域11cと平行な磁化成分を持つように湾曲している。湾曲している箇所よりも先端側の領域に、トンネルバリヤ層を介してピン層30a、30bが接続され磁気トンネル接合が形成される。また、磁化反転領域11cにも、トンネルバリヤ層を介してピン層30cが接続され磁気トンネル接合が形成されている。本変形例においては、ピン層30a、30b、30cの磁化を固定する方向を同じX方向にすることができるという長所がある。
次に本実施形態の初期化方法について述べる。磁化反転領域の磁化方向を初期化する方法は磁化記録層の磁気異方性の方向により異なっている。最初に磁気異方性が面内である場合について説明する。
図12A、図12Bは面内異方性を持つ磁化記録層の初期化過程を示した平面図である。最初に、図12Aに示したように、左下方向(X軸から−100度程度)に十分大きな磁界を印加することにより磁化記録層の磁化を左下方向に磁化する。その後、この磁界を取り除くと、形状異方性により、それぞれの領域の磁化は図12Bに示した方向を向き、各磁化反転領域の磁化は初期化される。
2.初期化
次に磁化記録層の磁気異方性が垂直方向である場合の初期化について説明する。
図13A〜図13Cは垂直磁気異方性をもつ磁化記録層を有する本実施形態において、初期化が容易になるように形状を改良した磁化記録層の初期化過程を説明するための平面図である。図13A〜図13Cにおいて、垂直磁気異方性を持つ磁化記録層は第1磁化反転領域11a、第2磁化反転領域11b、及び、第3磁化反転領域13aから構成されている。第1磁化反転領域13a、第2磁化反転領域13b、及び、第3磁化反転領域にはトンネルバリヤ層(図示せず)を介してピン層(図示せず)がそれぞれ接続され、磁気トンネル接合が形成されている。第1磁化反転領域11aを構成する各辺はXY平面において、負の傾きをもっている。その反対に、第2磁化反転領域を構成する各辺はXY平面において、正の傾きを持っている。すなわち、第1磁化反転領域11aの第3磁化領域11cと接する端部とその反対側の端部とを結ぶ方向と、第2磁化反転領域11bの第3磁化領域11cと接する端部とその反対側の端部とを結ぶ方向とは平行でない。
図13Aはこの磁化記録層に+Y方向の十分大きな磁界を印加し、各磁化領域の磁化を+Y方向に飽和させたときの磁極M1〜M3、及びそれによる反磁界D1〜D3を示した図である。各辺に生じた磁極M1〜M3による反磁界D1〜D3は各辺に垂直な方向を向く。従って、第1磁化反転領域11aの辺近傍においては−X方向、第2磁化反転領域11bの辺近傍においては+X方向の磁界成分をもつ。図13Bはこの反磁界による磁化に対するトルクの方向を示したものである。トルクは磁界方向と磁化方向の外積に比例するので、第1磁化反転領域、及び、第2磁化反転領域の辺近傍におけるトルクT1、T2はそれぞれ、−Z、+Z方向となる。従って、+Y方向の磁界を取り去った後は、各領域の磁化はトルクによって駆動され、最終的には図13Cに示したように、第1磁化反転領域11aは−Z、第2磁化反転領域11bは+Zの方向に初期化される。なお、このとき、第3磁化反転領域11cには大きなトルクが発生しないので、磁化方向が+Z、−Zのいずれになるかは不定であるが、磁化固定領域から電流を印加することにより、磁化反転領域を初期化することが可能である。また、磁化反転領域も磁化固定領域と同様に各辺を規則的に傾けることにより、初期化磁界印加後の磁化状態を特定させることもできる。
本実施形態の初期化においては複数の磁化領域のうち、少なくとも2つの磁化領域の磁化方向を互いに反対にすることが必要である。ここで反対とは、垂直磁気異方性を持つ磁化記録層の場合は反平行であることを意味し、面内磁気異方性を持つ磁化記録層の場合は磁化領域が接合した部分に対しての向きが逆であることを意味している。初期化の別の手段としては任意の磁化領域の少なくとも一部に別の磁性層を隣接させることにより、その磁化領域の保磁力を変化させる方法がある。ことのきの別の磁性層としては、反強磁性層、強磁性層のいずれをも用いることができる。また、保磁力を変化させるためには、磁化領域へのイオン注入や磁化領域の下地のラフネスや表面形状を変化させてもよい。
3.書込み動作、及び、読出し動作
次に、本実施形態におけるデータの書き込み、読出し原理を説明する。
図14A〜図14Hは磁化記録層が垂直磁気異方性をもち、3つの磁化反転領域を有する本実施形態の磁化記録層が取りうる磁化状態を示した平面図である。3つの磁化反転領域が2つの磁化方向、+Z、−Zを取りうるので、8通りの磁化状態が存在する。このうち、図14G、図14Hに示した磁化状態は全ての磁化が同一方向を向いており、磁壁が存在しない。これらの磁化状態からはどのような方向に電流を印加しても磁化反転領域の磁化を反転させることはできないので、本実施形態においては禁止状態となる。従って、本実施形態で取りうる磁化状態の数は図14A〜図14Fまでの6通りとなる。以下、磁化状態を表す符号として、他の2つの磁化反転領域と異なる方向の磁化をもつ磁化領域の番号Iと、その磁化領域の磁化の方向Mを組み合わせた[I,M]を用いる。磁化の方向Mは+Z方向を“1”、−Z方向を“0”とした。
図15は本発明の実施形態におけるデータ書込み時の状態遷移を示した平面図である。図15においては、磁化反転領域は3つあるとしている。データ書き込みは、スピン注入を利用した磁壁移動方式で行われる。書き込み電流は、MTJを貫通する方向ではなく、磁化記録層10の平面内を流れる。その書き込み電流は、3つの磁化反転領域に接続した端子14a、14b、14cのうち、2つの端子間に供給される。
以下、最初に磁化状態が[3,0]であった場合を例に、書込み動作における状態遷移を説明する。[3,0]の磁化状態においては第3磁化反転領域11cが“0”、第1磁化反転領域11a、第2磁化反転領域11bが“1”になっている。第3磁化反転領域11cが“1”に反転すると、全ての磁化状態が“1”の状態になってしまうので、第3磁化反転領域11cを反転する書込みは禁止される。従って、書込みの際は第3磁化反転領域11cから第1磁化反転領域11a、第2磁化反転領域11bのいずれかに電子がながれ磁壁が移動する。すなわち、電子が第3磁化反転領域11cから第1磁化反転領域11aに流れるときは状態[2,1]に遷移し、電子が第3磁化反転領域11cから第2磁化反転領域11bに流れるときは状態[1,1]に遷移する。一般的に表現すると、状態[I,M]に対して、IからJに電子を流すと、状態[K,M’]に遷移するといえる。ここで、I、J、Kは全て異なる領域であり、M’はMと異なる磁化方向であることを示す。
図15には、6の磁化状態[I,M]と各磁化状態間を遷移させるための電子の流れの方向I→Jが示されている。図15から明らかなように、本発明を6値のメモリセルと考えた場合、各磁化状態を実現するためには、現在の磁化状態を調べた後、必要な電子、電流を選択した端子間に印加する必要がある。また、各磁化状態は必ずしも1回の電流印加だけでは遷移せず、例えば、[3,0]から[3,1]のように3回の電流を順次印加する必要がある場合もある。
図16は書き込む情報と読出した磁化状態の情報に基づき、書込み電流の印加手順を定めるフローチャートの例を示した図面である。ここで、書き込む情報は[3,0]、すなわち、第3磁化反転領域11cが“0”、第1磁化反転領域11a、第2磁化反転領域11bが“1”である。第1磁化反転領域11a、第2磁化反転領域11b、第3磁化反転領域11cのデータを順次読み出した後、書込み電流を順次、印加する。図16で示したフローチャートでは3回の電流印加が必要な書込み手順に対して、2回の読出し手順で判定が可能になるように、読出し判定の順番を定めている。
図17は本実施形態の変形例におけるデータ書込み時の状態遷移を示した平面図である。図17において、磁化記録層は第1磁化反転領域11a、第2磁化反転領域11b、磁化固定領域13から構成されており、磁化固定領域13の磁化は−Z方向に固定されている。この磁化記録層が取りうる磁化状態は図15で示した磁化状態の中で第3磁化反転領域の磁化方向が−Zであるものを抜き出したものに相当する。3つの磁化状態間の遷移は同様に、状態[I,M]に対して、IからJに電子を流すと、状態[K,M’]に遷移すると表現することができる。図17においては、状態[1,1]から[2,1]の状態遷移には2回の電流を順次印加する必要がある。
図18は書き込む情報と読出した磁化状態の情報に基づき、書込み電流の印加手順を定めるフローチャートの例を示した図面である。ここで、書き込む情報は[1,1]、すなわち、第1磁化反転領域11aが“1”、第2磁化反転領域11bが“0”である。第1磁化反転領域11aと第2磁化反転領域11bのデータを順次読み出した後、書込み電流を順次、印加する。図18で示したフローチャートでは2回の電流印加が必要な書込み手順に対して、1回の読出し手順で判定が可能になるように、読出し判定の順番を定めている。
以上、磁化記録層が垂直磁気異方性を持つ場合の書込み動作について説明したが、磁化記録層が面内磁気異方性を持つ場合についても同様である。ただし、禁止される磁化状態の磁壁の数が垂直磁気異方性の場合と若干異なっている。図19A〜図19Hは磁化記録層が面内磁気異方性をもち、3つの磁化反転領域を有する本発明の磁化記録層が取りうる磁化状態を示した平面図である。8つの磁化状態の内、図19G、図19Hに示した各磁化反転領域が中心に対して全て同じ方向に向かっている状態が禁止状態になる。これは図19Aから図19Fに示した磁化状態が一つの磁壁を含むのに対し、図19G、図19Hに示した磁化状態が3つの磁壁を含むためであり、電流印加により図19Aから図19Fの各状態から図19G、図19Hの状態に遷移させることができないためである。
図20は本実施形態のデータの読み出しを説明するための平面図である。データ読み出し時、読み出し電流は、ピン層と磁化反転領域との間を流れるように供給される。すなわち、図19Aにおいて、第1磁化反転領域11aのデータを読み出す場合、読み出し電流は、ピン層30aに接続された配線Raから端子14aに接続された配線Waに流れる。この読み出し電流あるいは読み出し電位に基づいて、磁気抵抗素子の抵抗値が検出され、第1磁化反転領域11aの磁化の向きがセンスされる。この場合、配線Waの変わりに他の端子14b、14cに接続された配線Wb、Wcを用いても良い。同様に第2磁化反転領域11bのデータを読み出す場合、読み出し電流は、ピン層30bに接続された配線Rbから端子14bに接続された配線Wbに流れる。さらに同様に、第3磁化反転領域11cのデータを読み出す場合、読み出し電流は、ピン層30cに接続された配線Rcから端子14cに接続された配線Wcに流れる。
図21はピン層30a、30b、30cが電気的に短絡し、配線Rに接続された構成を示している。この場合、第1磁化反転領域11a、第2磁化反転領域11b、第3磁化反転領域11cのいずれを読み出す場合も、読出し電流は配線RとWa、Wb、Wcのいずれかの間に電流を印加することによりおこなわれる。読み出される抵抗は磁第1磁化反転領域11a、第2磁化反転領域11b、第3磁化反転領域11cに接続したトンネルバリヤ抵抗の並列抵抗値となる。3つのトンネルバリヤ抵抗を区別するためには、トンネルバリヤの面積を変えることにより抵抗値の絶対値を変えることが有効である。
4.MRAMの構成
図22は本発明の実施形態に係るMRAMセルの構成の一例を示している。図22においてMRAMセルは第1磁化反転領域11a、第2磁化反転領域11b、第3磁化反転領域11c、を有する磁化記録層とそれぞれと接続された第1書込みトランジスタ140a、第2書込みトランジスタ140b、第3書き込みトランジスタ140cを有している。第1書込みトランジスタ140a、第2書込みトランジスタ140b、第3書込みトランジスタ140cはそれぞれ、第1ワード線142a、第2ワード線142b、第3ワード線142cに接続する。また、第1書込みトランジスタ140a、第2書込みトランジスタ140b、第3書込みトランジスタ140cのゲートはそれぞれ、第1ビット線141a、第2ビット線141b、第3ビット線141cに接続する。また、第1磁化反転領域11aに接続した磁気トンネル接合130a、第2磁化反転領域11bに接続した磁気トンネル接合130b、第3磁化反転領域11cに接続した磁気トンネル接合はそれぞれ第4ビット線143a、第5ビット線143b、第6ビット線143cに接続する。
第1磁化反転領域から第2磁化反転領域に電子を流し、データの書き込む場合の動作は次のようになる。まず、第1ビット線141a、第2ビット線141bを高電位にすることにより第1書込みトランジスタ、及び第2書込みトランジスタをONにし、同時に第1ワード線142aをグランドに接続し、第2ワード線142bに必要な電流値に応じた電位を印加する。このとき、第3書込みトランジスタはOFF、第3ビット線はオープン状態とする。これらのトランジスタ、ビット線、ワード線の設定により、書込み電流はワード線142bから第2磁化反転領域、第1磁化反転領域を経由して、ワード線142aに流れる。
第1磁化反転領域のデータを読み出す場合の動作は次のようになる。まず第1ワード線142aを高電位にすることにより第1書込みトランジスタ140aをオンにし、他のトランジスタをオフにする。次に、読出し電圧を第4ビット線143aと第1ワード線142aの間に印加する。このとき、これ以外のワード線、ビット線はオープンにする。これにより、第4ビット線143aから第1磁化反転領域の磁気トンネル接合を経由して、第1ワード線に読出し電流が流れ、これを感知して、情報を読み出すことができる。
図22においては3つの書き込みトランジスタが使用されているが、各磁化反転領域の磁気トンネル接合に接続する読出しトランジスタを設けても良い。
以上説明したMRAMの活用例として、携帯電話、モバイルパソコンやPDAに使用される不揮発性の半導体メモリ装置や、自動車など使用される不揮発性メモリ内蔵のマイコンが挙げられる。
当業者は上記実施例の様々な変形を容易に実施することができる。したがって、本発明は上記実施例に限定されることはなく、請求の範囲やその均等物によって参酌される最も広い範囲で解釈される。
この出願は、2007年9月20日に出願された日本出願特願2007−244084号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (8)

  1. 磁気異方性をもつ強磁性層である磁化記録層を具備し、
    前記磁気記録層は、N個(Nは3以上の整数)の磁化領域を有し、
    前記磁化領域のうちの一つは、前記磁化領域のうちの他の一つを経由することなく前記磁化領域のうちの更に他の一つの磁化領域と接続され、
    前記磁化領域のうちのM個(MはN−1以上の整数)は、反転可能な磁化を持つ磁化反転領域であり、
    更に、前記磁化反転領域の各々に接続されることにより磁気トンネル接合を形成するトンネルバリヤ層とピン磁性層を具備する
    磁気ランダムアクセスメモリ。
  2. 請求項1に記載の磁気ランダムアクセスメモリであって、
    少なくとも一つの前記磁化反転領域の各々は、他の前記磁化領域と接続している第1の端部と、前記第1の端部の反対側に位置し先細り形状となっている第2の端部とを有する
    磁気ランダムアクセスメモリ。
  3. 請求項1に記載の磁気ランダムアクセスメモリであって、
    前記磁化記録層は、垂直磁化異方性を持つ
    磁気ランダムアクセスメモリ。
  4. 請求項3に記載の磁気ランダムアクセスメモリであって、
    前記N個の磁化領域のうちの一部の磁化領域と他の磁化領域とは、磁化方向が反平行である
    磁気ランダムアクセスメモリ。
  5. 請求項3に記載の磁気ランダムアクセスメモリであって、
    前記磁化領域のうちの第1磁化領域と第2磁化領域との各々は、他の前記磁化領域と接続している第1の端部と、前記第1の端部の反対側に位置する第2の端部とを有し、
    前記第1領域の前記第1の端部と前記第2の端部とを結ぶ方向と、前記第2領域の前記第1の端部と前記第2の端部とを結ぶ方向とは平行でない
    磁気ランダムアクセスメモリ。
  6. 請求項1に記載の磁気ランダムアクセスメモリであって、
    前記磁化記録層は、面内磁気異方性を持つ
    磁気ランダムアクセスメモリ。
  7. 請求項6に記載の磁気ランダムアクセスメモリであって、
    各々の前記磁化反転領域は延伸領域を含み、
    一つの前記磁化反転領域の前記延伸領域と、他の前記磁化反転領域の前記延伸領域とは、互いに平行に延伸し、磁化方向が互いに平行または反平行となる
    磁気ランダムアクセスメモリ。
  8. 磁気異方性をもつ強磁性層である磁化記録層を具備し、前記磁気記録層が第1磁化領域から第N磁化領域(Nは3以上の整数)までのN個の磁化領域とを有し、前記磁化領域のうちM個(MはN−1以上の整数)は反転可能な磁化を有する第1磁化反転領域から第M磁化反転領域であり、前記N個の磁化領域のうちの一つである第K磁化領域は、前記N個の磁化領域のうちの一つである第J磁化領域を経由することなく前記N個の磁化領域のうちの一つである第L磁化領域と接続されており(J,K,LはN以下であり互いに異なる整数)、且つ、前記第K磁化領域の一端が他の磁化領域と接続していない磁気ランダムアクセスメモリの書込み方法であって、
    前記第1磁化反転領域から前記第M磁化反転領域までの磁化の情報をそれぞれ読み出し、
    書き込むべき書き込み情報を決定し、
    前記磁化の情報と前記書き込み情報とに応じて前記第1磁化反転領域から前記第M磁化反転領域までのうちの少なくとも一部を含む集合から書き込み領域を順次選択し、前記書き込み領域と他の磁化反転領域との間に、前記磁化の情報と前記書き込み情報とに応じて規定された電流を印加する
    磁気ランダムアクセスメモリの書込み方法。
JP2009533115A 2007-09-20 2008-09-10 磁気ランダムアクセスメモリ Active JP5327543B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009533115A JP5327543B2 (ja) 2007-09-20 2008-09-10 磁気ランダムアクセスメモリ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007244084 2007-09-20
JP2007244084 2007-09-20
PCT/JP2008/066330 WO2009038004A1 (ja) 2007-09-20 2008-09-10 磁気ランダムアクセスメモリ
JP2009533115A JP5327543B2 (ja) 2007-09-20 2008-09-10 磁気ランダムアクセスメモリ

Publications (2)

Publication Number Publication Date
JPWO2009038004A1 JPWO2009038004A1 (ja) 2011-01-06
JP5327543B2 true JP5327543B2 (ja) 2013-10-30

Family

ID=40467822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009533115A Active JP5327543B2 (ja) 2007-09-20 2008-09-10 磁気ランダムアクセスメモリ

Country Status (2)

Country Link
JP (1) JP5327543B2 (ja)
WO (1) WO2009038004A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041880A (ja) 2011-08-11 2013-02-28 Renesas Electronics Corp 磁気ランダムアクセスメモリ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504210A (ja) * 2002-03-27 2006-02-02 イーストゲイト インベストメンツ リミテッド データ記憶装置
WO2007020823A1 (ja) * 2005-08-15 2007-02-22 Nec Corporation 磁気メモリセル、磁気ランダムアクセスメモリ、及び磁気ランダムアクセスメモリへのデータ読み書き方法
JP2007201059A (ja) * 2006-01-25 2007-08-09 Toshiba Corp 磁気素子、磁気記録装置及び書き込み方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205053B1 (en) * 2000-06-20 2001-03-20 Hewlett-Packard Company Magnetically stable magnetoresistive memory element
WO2006090656A1 (ja) * 2005-02-23 2006-08-31 Osaka University パルス電流による磁壁移動に基づいた磁気抵抗効果素子および高速磁気記録装置
JP4962889B2 (ja) * 2005-08-01 2012-06-27 独立行政法人科学技術振興機構 磁気メモリー
JPWO2007119446A1 (ja) * 2006-03-24 2009-08-27 日本電気株式会社 Mram、及びmramのデータ読み書き方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504210A (ja) * 2002-03-27 2006-02-02 イーストゲイト インベストメンツ リミテッド データ記憶装置
WO2007020823A1 (ja) * 2005-08-15 2007-02-22 Nec Corporation 磁気メモリセル、磁気ランダムアクセスメモリ、及び磁気ランダムアクセスメモリへのデータ読み書き方法
JP2007201059A (ja) * 2006-01-25 2007-08-09 Toshiba Corp 磁気素子、磁気記録装置及び書き込み方法

Also Published As

Publication number Publication date
WO2009038004A1 (ja) 2009-03-26
JPWO2009038004A1 (ja) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5338666B2 (ja) 磁壁ランダムアクセスメモリ
JP5598697B2 (ja) 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
JP6290487B1 (ja) 磁気メモリ
JP5486731B2 (ja) 磁気メモリ
US9799822B2 (en) Magnetic memory element and magnetic memory
JP5366014B2 (ja) 磁気ランダムアクセスメモリ及びその初期化方法
JP5201539B2 (ja) 磁気ランダムアクセスメモリ
WO2010095589A1 (ja) 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ
JP5382348B2 (ja) 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ
JP6495980B2 (ja) 磁気メモリ
JP5299735B2 (ja) 磁壁ランダムアクセスメモリ
JP5257831B2 (ja) 磁気ランダムアクセスメモリ、及びその初期化方法
JP2011501420A (ja) 低電流密度を有する磁気要素
JPWO2007119446A1 (ja) Mram、及びmramのデータ読み書き方法
JP5360600B2 (ja) 磁気ランダムアクセスメモリ、及び、磁気ランダムアクセスメモリの初期化方法
JP5370773B2 (ja) 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ、及びその初期化方法
WO2010053039A1 (ja) 磁性記憶素子の初期化方法
JP5445029B2 (ja) 磁気抵抗素子、及び磁壁ランダムアクセスメモリ
WO2009133744A1 (ja) 磁気記憶素子、及び磁気メモリ
JP5327543B2 (ja) 磁気ランダムアクセスメモリ
JP2004296858A (ja) 磁気記憶素子及び磁気記憶装置
JP5339212B2 (ja) 磁気ランダムアクセスメモリ
WO2009122995A1 (ja) 磁気抵抗記憶装置
JP2004055754A (ja) 磁気抵抗効果素子及び磁気メモリ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130710

R150 Certificate of patent or registration of utility model

Ref document number: 5327543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150