WO2010087389A1 - 磁気メモリ素子、磁気メモリ - Google Patents

磁気メモリ素子、磁気メモリ Download PDF

Info

Publication number
WO2010087389A1
WO2010087389A1 PCT/JP2010/051098 JP2010051098W WO2010087389A1 WO 2010087389 A1 WO2010087389 A1 WO 2010087389A1 JP 2010051098 W JP2010051098 W JP 2010051098W WO 2010087389 A1 WO2010087389 A1 WO 2010087389A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetization
layer
magnetization free
free layer
magnetic memory
Prior art date
Application number
PCT/JP2010/051098
Other languages
English (en)
French (fr)
Inventor
俊輔 深見
哲広 鈴木
聖万 永原
延行 石綿
則和 大嶋
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010548543A priority Critical patent/JP5483025B2/ja
Priority to US13/145,082 priority patent/US8994130B2/en
Publication of WO2010087389A1 publication Critical patent/WO2010087389A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1655Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Definitions

  • the present invention relates to a magnetic memory element and a magnetic memory.
  • the present invention relates to a magnetic memory element and a magnetic memory using domain wall motion.
  • Magnetic memory in particular, Magnetic Random Access Memory (MRAM)
  • MRAM Magnetic Random Access Memory
  • a magnetic material is used as a storage element, and information is stored in correspondence with the magnetization direction of the magnetic material.
  • Several methods have been proposed as a method for switching the magnetization of the magnetic material, but all of them are common in that current is used. In practical use of MRAM, it is very important how much the write current can be reduced.
  • the write current is required to be reduced to 0.5 mA or less, more preferably to 0.2 mA or less.
  • the 2T-1MTJ (Two Transistors-One Magnetic Tunnel Junction) circuit configuration proposed in Non-Patent Document 1 enables a minimum layout, and the existing volatile memory This is because cost performance equivalent to or better than the above can be realized.
  • the most common method of writing information to the MRAM is to arrange a wiring for writing around the magnetic memory element, and to change the magnetization direction of the magnetic memory element by a magnetic field generated by passing a current through the wiring. It is a method of switching. Since this method uses magnetization reversal by a magnetic field, writing in 1 nanosecond or less is possible in principle, which is preferable for realizing a high-speed MRAM.
  • the magnetic field for switching the magnetization of the magnetic material that is ensured with thermal stability and disturbance magnetic field resistance is generally about several tens of Oe (Yersted). In order to generate such a magnetic field, a current of about several mA is required. In this case, the chip area must be increased, and the power consumption required for writing increases. Therefore, it is inferior in competitiveness compared with other random access memories. In addition to this, when the element is miniaturized, the write current further increases, which is not preferable in terms of scaling.
  • the first method uses spin injection magnetization reversal.
  • This uses a laminated film composed of a first magnetic layer (magnetization free layer) having reversible magnetization and a second magnetic layer (reference layer) electrically connected to and fixed in magnetization.
  • a current is passed between the second magnetic layer (reference layer) and the first magnetic layer (magnetization free layer)
  • spin-polarized conduction electrons and in the first magnetic layer (magnetization free layer)
  • This is a method of reversing the magnetization of the first magnetic layer (magnetization free layer) by utilizing the interaction with the local electrons.
  • the magnetoresistive effect developed between the first magnetic layer (magnetization free layer) and the second magnetic layer (reference layer) is used. Therefore, the MRAM using the spin transfer magnetization reversal method is a two-terminal element.
  • spin injection magnetization reversal occurs at a certain current density or higher, the current required for writing is reduced if the element size is reduced. That is, it can be said that the spin injection magnetization reversal method is excellent in scaling.
  • an insulating layer is provided between the first magnetic layer (magnetization free layer) and the second magnetic layer (reference layer), and a relatively large current is applied to this insulating layer during writing. Must be washed away. For this reason, rewriting resistance and reliability are problems.
  • the write current path and the read current path are the same. Therefore, there is a concern about erroneous writing at the time of reading.
  • spin transfer magnetization reversal is excellent in scaling, there are some barriers to practical use.
  • Patent Document 1 discloses a magnetic storage device and a magnetic information writing method.
  • This magnetic memory device includes a magnetization fixed layer, a tunnel insulating layer, a magnetization free layer, and a pair of terminals for writing magnetic information.
  • the magnetization fixed layer is electrically conductive with fixed magnetization.
  • the tunnel insulating layer is laminated on the magnetization fixed layer.
  • the magnetization free layer includes a junction formed by laminating with a magnetization fixed layer via a tunnel insulating layer, a domain wall pinning portion formed adjacent to a pair of ends of the junction, and opposite to each other adjacent to the domain wall pinning portion. It is electroconductive which comprises a pair of magnetization fixed part to which fixed magnetization of direction was provided. The pair of magnetic information writing terminals are electrically connected to the pair of magnetization fixed portions, and a current passing through the joint portion of the magnetization free layer, the pair of domain wall pinning portions, and the pair of magnetization fixed portions is passed through the magnetization free layer.
  • an MRAM using such a current-induced domain wall motion phenomenon is such that the magnetizations at both ends of the first magnetic layer (magnetization free layer) having reversible magnetization are substantially antiparallel to each other. It is fixed.
  • a domain wall is introduced into the first magnetic layer.
  • a magnetic tunnel junction (MTJ) provided in a region where the domain wall moves is used to read the information by the magnetoresistive effect. Therefore, the MRAM using the current-induced domain wall motion method becomes a three-terminal element, and is consistent with the 2T-1MTJ configuration proposed in Non-Patent Document 1 described above.
  • Non-Patent Document 2 requires about 1 ⁇ 10 8 [A / cm 2 ] as the current density necessary for current-induced domain wall motion.
  • the write current becomes 1 mA when the width of the layer (magnetization free layer) in which the domain wall motion occurs is 100 nm and the film thickness is 10 nm. This cannot satisfy the above-mentioned conditions concerning the write current.
  • the write current can be reduced sufficiently small. It has been reported.
  • Patent Document 2 discloses a method for changing the magnetization state of a magnetoresistive effect element using domain wall motion, a magnetic memory element using the method, and a solid magnetic memory.
  • This magnetic memory element has a first magnetic layer, an intermediate layer, and a second magnetic layer, and records information in the magnetization directions of the first magnetic layer and the second magnetic layer.
  • magnetic domains that are antiparallel to each other and a domain wall that separates these magnetic domains are constantly formed in at least one of the magnetic layers, and the domain walls are moved in the magnetic layer so that adjacent magnetic domains can be moved.
  • Information recording is performed by controlling the position.
  • Patent Document 3 discloses a magnetoresistive effect element and a high-speed magnetic recording device based on domain wall motion by a pulse current.
  • This magnetoresistive effect element has a first magnetization fixed layer / magnetization free layer / second magnetization fixed layer.
  • the magnetoresistive effect element is for inducing domain wall generation in a transition region between the magnetization fixed layer and the magnetization free layer which is at least one boundary of the magnetization fixed layer / magnetization free layer or the magnetization free layer / second magnetization fixed layer.
  • the magnetization direction of these magnetization fixed layers is set to be approximately antiparallel, and a current with a predetermined pulse width is applied in a structure in which a domain wall exists in one of the transition regions of the magnetization fixed layer / magnetization free layer
  • a current with a predetermined pulse width is applied in a structure in which a domain wall exists in one of the transition regions of the magnetization fixed layer / magnetization free layer
  • the MTJ in the domain wall motion type MRAM, an MTJ for reading is provided adjacent to the region where the domain wall motion occurs.
  • the MTJ includes a magnetization free layer whose magnetization is reversed, a nonmagnetic layer, and a reference layer.
  • the reference layer also needs to be composed of a ferromagnetic material having perpendicular magnetic anisotropy. That is, the MTJ becomes the perpendicular magnetization MTJ.
  • Non-Patent Document 4 As reported in Non-Patent Document 4 in recent years, a very large TMR ratio exceeding 500% is obtained in the in-plane magnetization MTJ. However, on the other hand, such a large TMR ratio is not reported in the perpendicular magnetization MTJ.
  • the TMR ratio corresponds to the read signal amount in the MRAM and is preferably as large as possible for high-speed operation. Therefore, in an MRAM capable of reading at high speed, it is desirable that the MTJ is an in-plane magnetization MTJ.
  • an object of the present invention is to provide a domain wall motion type magnetic memory element and magnetic memory having a small write current, a large read signal, and a small cell area.
  • the magnetic memory element of the present invention includes a first magnetization free layer, a second magnetization free layer, a reference layer, and a nonmagnetic layer.
  • the first magnetization free layer is made of a ferromagnetic material having perpendicular magnetic anisotropy.
  • the second magnetization free layer is provided in the vicinity of the first magnetization free layer and is made of a ferromagnetic material having in-plane magnetic anisotropy.
  • the reference layer is made of a ferromagnetic material having in-plane magnetic anisotropy.
  • the nonmagnetic layer is provided between the second magnetization free layer and the reference layer.
  • the first magnetization free layer includes a first magnetization fixed region, a second magnetization fixed region, and a crystallization free region.
  • the magnetization In the first magnetization fixed region, the magnetization is fixed.
  • the magnetization is fixed in the second magnetization fixed region.
  • the magnetization free region is connected to the first magnetization fixed region and the second magnetization fixed region, and the magnetization can be reversed.
  • the second magnetization free layer fits in the first magnetization free layer in a plane parallel to the substrate.
  • the second magnetization free layer is provided so as to be shifted in the first direction with respect to the magnetization free region in a plane.
  • a plurality of magnetic memory cells provided with the magnetic memory element of the present invention are arranged in a matrix.
  • the present invention it is possible to provide a domain wall motion type magnetic memory element and magnetic memory having a small write current, a large read signal, and a small cell area.
  • FIG. 1A is a perspective view schematically showing a typical structure of a main part of a magnetic memory element according to the present invention.
  • FIG. 1B is an xz sectional view schematically showing a typical structure of a main part of the magnetic memory element according to the present invention.
  • FIG. 1C is an xy plan view schematically showing a typical structure of a main part of the magnetic memory element according to the present invention.
  • FIG. 1D is a plan view schematically showing the structure of the magnetization free layer of the magnetic memory element according to the present invention.
  • FIG. 2A is a cross-sectional view schematically showing an example of the magnetization state in the “0” memory state of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 1A is a perspective view schematically showing a typical structure of a main part of a magnetic memory element according to the present invention.
  • FIG. 1B is an xz sectional view schematically showing a typical structure of a main part of the magnetic memory element according to
  • FIG. 2B is a cross-sectional view schematically showing an example of the magnetization state in the “1” memory state of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 2C is a cross-sectional view schematically showing the coupling between the magnetization of the magnetization free region and the magnetization of the second magnetization free layer.
  • FIG. 2D is a cross-sectional view schematically showing the coupling between the magnetization of the magnetization free region and the magnetization of the second magnetization free layer.
  • FIG. 3A is a cross-sectional view schematically showing an example of a method of writing information to the magnetic memory element according to the present invention.
  • FIG. 3B is a cross-sectional view schematically showing an example of a method of writing information to the magnetic memory element according to the present invention.
  • FIG. 4A is a cross-sectional view schematically showing an example of a method for reading information from the magnetic memory element having the configuration shown in FIGS. 1A to 1D.
  • FIG. 4B is a cross-sectional view schematically showing an example of a method for reading information from the magnetic memory element having the configuration shown in FIGS. 1A to 1D.
  • FIG. 5 is a block diagram showing an example of a circuit configuration for one bit of the magnetic memory cell according to the embodiment of the present invention.
  • FIG. 6 is a block diagram showing an example of the configuration of the magnetic memory according to the embodiment of the present invention.
  • FIG. 7A is an xy plan view schematically showing an example of the layout of the magnetic memory cell according to the exemplary embodiment of the present invention.
  • FIG. 7B is an xz sectional view schematically showing an example of the layout of the magnetic memory cell according to the exemplary embodiment of the present invention.
  • FIG. 8A is a cross-sectional view schematically showing the structure of the first modification example of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 8B is a cross-sectional view schematically showing the structure of the first modification example of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 8C is a cross-sectional view schematically showing the structure of the first modification example of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 8A is a cross-sectional view schematically showing the structure of the first modification example of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 8B is a cross-sectional view schematically showing the structure of the
  • FIG. 9A is a cross-sectional view schematically showing the structure of the second modification example of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 9B is a cross-sectional view schematically showing the structure of the second modification example of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 9C is a cross-sectional view schematically showing the structure of the second modification example of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 9D is a cross-sectional view schematically showing the structure of the second modification example of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 9E is a cross-sectional view schematically showing the structure of the second modification example of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 10A is a cross-sectional view schematically showing the structure of the third modification example of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 10B is a cross-sectional view schematically showing the structure of the third modification example of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 10C is a cross-sectional view schematically showing the structure of the third modification example of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 11A is a schematic diagram showing a fourth modification of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 11B is a schematic diagram showing a fourth modification of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 12A is a cross-sectional view schematically showing a fifth modification of the magnetic memory element according to the embodiment of the present invention.
  • FIG. 12B is a cross-sectional view schematically showing a fifth modification of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 13A is a cross-sectional view schematically showing the structure of the sixth modification example of the magnetic memory element according to the exemplary embodiment of the present invention.
  • FIG. 13B is a cross-sectional view schematically showing the structure of the sixth modification example of the magnetic memory element according to the exemplary embodiment of the present invention.
  • a magnetic memory according to an embodiment of the present invention has a plurality of magnetic memory cells arranged in an array. Each of the plurality of magnetic memory cells has a magnetic memory element.
  • 1A, 1B, and 1C are respectively a perspective view, an xz sectional view, and an xy plan view schematically showing a typical structure of a main part of a magnetic memory element 70 according to the present invention. is there.
  • the z-axis is a direction perpendicular to the substrate, and the x-axis and y-axis are parallel to the substrate plane.
  • the magnetic memory element 70 includes a first magnetization free layer 10, a second magnetization free layer 20, a nonmagnetic layer 30, and a reference layer 40.
  • the conductive layer 50 and the magnetization fixed layer group 60 are preferably provided.
  • FIG. 1D is a plan view schematically showing the structure of the magnetization free layer 10 of the magnetic memory element 70 according to the present invention.
  • the first magnetization free layer 10 is composed of three regions: a first magnetization fixed region 11 a, a second magnetization fixed region 11 b, and a magnetization free region 12.
  • the first magnetization fixed region 11 a is adjacent to one end of the magnetization free region 12, and the second magnetization fixed region 11 b is adjacent to another end of the magnetization free region 12.
  • the first magnetization fixed region 11a is adjacent to the end of the magnetization free region 12 on the ⁇ x direction side
  • the second magnetization fixed region 11b is adjacent to the end of the magnetization free region 12 on the + x direction side. ing.
  • the first magnetization fixed region 11a, the second magnetization fixed region 11b, and the magnetization free region 12 each have a substantially square shape.
  • the first magnetization fixed region 11a, the magnetization free region 12, and the second magnetization fixed region 11b are arranged on a straight line.
  • the magnetization free layer 10 has a rectangular shape with an aspect ratio of about 3.
  • the first magnetization free layer 10 is made of a ferromagnetic material having perpendicular magnetic anisotropy.
  • the first magnetization fixed region 11a and the second magnetization fixed region 11b have magnetization substantially fixed in one direction.
  • the magnetizations of the first magnetization fixed region 11a and the second magnetization fixed region 11b are fixed in antiparallel directions.
  • the first magnetization free region 11a and the second magnetization fixed region 11b are depicted as being fixed in the + z direction and the ⁇ z direction, respectively.
  • the magnetization of the magnetization free region 12 can be reversed. In this case, the direction can be either + z or -z.
  • the boundary between the first magnetization fixed region 11a and the magnetization free region 12 and the second magnetization according to the magnetization direction of the magnetization free region 12 A domain wall is formed at one of the boundaries between the fixed region 11 b and the magnetization free region 12.
  • FIG. 1D when the magnetization of the magnetization free region 12 is in the + z direction, a domain wall is formed at the boundary between the second magnetization fixed region 11b and the magnetization free region 12, and when the magnetization of the magnetization free region 12 is in the ⁇ z direction, A domain wall is formed at the boundary between the first magnetization fixed region 11 a and the magnetization free region 12.
  • the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40 are stacked in this order.
  • the second magnetization free layer 20 and the reference layer 40 are made of a ferromagnetic material.
  • the nonmagnetic layer 30 is made of a nonmagnetic material, and preferably made of an insulator.
  • the magnetic tunnel junction Magnetic Tunnel Junction: MTJ
  • the shapes and positional relationships of the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40 are arbitrary.
  • the second magnetization free layer 20 and the reference layer 40 need to be provided to overlap at least partially in the xy plane.
  • the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40 have the same shape and are illustrated as overlapping each other.
  • the second magnetization free layer 20 is preferably made of a ferromagnetic material having in-plane magnetic anisotropy.
  • the second magnetization free layer 20 has reversible magnetization. Further, the reversible magnetization in the second magnetization free layer 20 is magnetically coupled to the magnetization of the magnetization free region 12 in the magnetization free layer 10. In other words, when the magnetization direction of the magnetization free region 12 changes, the direction of the magnetization of the second magnetization free layer 20 can also change accordingly.
  • the magnetization of the magnetization free region 12 takes either the + z or ⁇ z direction
  • the magnetization of the second magnetization free layer 20 takes either the + x direction or the ⁇ x direction component. sell.
  • the reference layer 40 has a magnetization substantially fixed in one direction.
  • the magnetization of the reference layer 40 is fixed in the + x direction.
  • the reference layer 40 may have the following laminated structure.
  • the reference layer 40 preferably has a structure in which three layers of a ferromagnetic material, a nonmagnetic material, and a ferromagnetic material are laminated in this order.
  • the non-magnetic material sandwiched between the two ferromagnetic materials has a function of magnetically coupling the upper and lower ferromagnetic materials in an antiparallel direction (laminated ferri-coupling).
  • Ru is exemplified as the nonmagnetic material having such a function.
  • the reference layer 40 By making the reference layer 40 have a laminated structure having laminated ferrimagnetic coupling, the leakage magnetic field to the outside can be reduced and the magnetic influence on other layers such as the second magnetization free layer can be reduced.
  • an antiferromagnetic material is preferably adjacent to the reference layer. This is because the magnetization direction of the interface can be fixed in one direction by adjoining antiferromagnetic materials and performing heat treatment in a magnetic field.
  • a typical antiferromagnetic material is exemplified by Pt—Mn.
  • the second magnetization free layer 20 is provided above or below either one of the first magnetization free region 11a or the second magnetization free region 11b. In the example of FIGS. 1A to 1C, the second magnetization free layer 20 is provided above the first magnetization free region 11b.
  • the reference layer 40 has a magnetization substantially fixed in one direction, and the direction of this fixed magnetization is parallel to the direction of deviation of the second magnetization free layer 20 from the magnetization free region 12. It is desirable.
  • the second magnetization free layer 20 is provided so as to be shifted in the + x direction with respect to the magnetization free region 12, and the magnetization of the reference layer 40 is fixed in the + x direction.
  • the conductive layer 50 is provided between the magnetization free layer 10 and the MTJ composed of the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40.
  • the conductive layer 50 electrically connects the magnetization free layer 10 and the MTJ.
  • the shape of the conductive layer 50 is arbitrary. In the example of FIGS. 1A to 1C, the shape of the conductive layer 50 is the same as that of the MTJ.
  • the magnetization fixed layer group 60 contains at least one of a ferromagnetic material and an antiferromagnetic material.
  • the magnetization fixed layer group 60 has a function of directing the magnetizations of the first magnetization fixed region 11a and the second magnetization fixed region 11b of the magnetization free layer 10 in the antiparallel direction and fixing the magnetization in one direction.
  • the magnetization fixed layer group 60 may be composed of two regions, a first magnetization fixed layer group 60a and a second magnetization fixed layer group 60b.
  • the first magnetization fixed layer group 60a is magnetically coupled to the first magnetization fixed region 11a
  • the second magnetization fixed layer group 60b is magnetically coupled to the second magnetization fixed region 11b. It has been.
  • the first magnetization fixed layer group 60a and the second magnetization fixed layer group 60b are made of a ferromagnetic material, and the first magnetization fixed layer group 60a, the first magnetization fixed region 11a, and the second magnetization fixed layer group 60a.
  • the magnetization fixed layer group 60b and the second magnetization fixed region 11b are ferromagnetically coupled.
  • the magnetization fixed layer group 60 and the magnetization free layer 10 are provided adjacent to each other. However, these are only required to be magnetically coupled and may be electrically insulated. A specific configuration example of the magnetization fixed layer group 60 will be described later.
  • the first magnetization fixed region 11a and the second magnetization fixed region 11b are connected to different external wirings, and the side opposite to the side connected to the magnetization free layer 10 in the MTJ is Connected to another external wiring. That is, the magnetic memory element 70 is a three-terminal element.
  • the magnetization free layer 10 and the magnetization fixed layer group 60 are electrically connected, even if the magnetization fixed layer group 60 is on a path where the magnetization free layer 10 is connected to an external wiring, Good. That is, in the example of FIGS. 1A to 1C, the first magnetization fixed layer group 60a and the second magnetization fixed layer group 60b may be connected to different external wirings.
  • FIG. 2A and 2B are cross-sectional views schematically showing examples of magnetization states in the memory states of “0” and “1” of the magnetic memory element according to the exemplary embodiment of the present invention.
  • 2A shows the state of magnetization in the “0” state
  • FIG. 2B shows the state of magnetization in the “1” state.
  • the magnetization of the first magnetization fixed region 11a is fixed in the + z direction
  • the magnetization of the second magnetization fixed region 11b is fixed in the ⁇ z direction.
  • the magnetization of the magnetization free region 12 has a + z direction component.
  • the domain wall DW is formed at the boundary with the second magnetization fixed region 11b.
  • the magnetization of the magnetization free region 12 has a ⁇ z direction component.
  • the domain wall DW is formed at the boundary with the first magnetization fixed region 11a.
  • 2C and 2D are cross-sectional views schematically showing the coupling between the magnetization of the magnetization free region 12 and the magnetization of the second magnetization free layer 20.
  • 2C and 2D only the magnetization free region 12 and the second magnetization free layer 20 are shown. If the magnetization free region 12 has magnetization in the + z direction as shown in FIG. 2C, a leakage magnetic field as indicated by an arrow in the drawing is generated in the peripheral portion. Here, at the position of the second magnetization free layer 20, this leakage magnetic field is in the + x direction. Therefore, the magnetization of the second magnetization free layer 20 faces the + x direction. On the other hand, when the magnetization free region 12 has magnetization in the ⁇ z direction as shown in FIG.
  • a leakage magnetic field as indicated by an arrow is generated in the peripheral portion.
  • the leakage magnetic field is in the ⁇ x direction. Therefore, the magnetization of the second magnetization free layer 20 faces the ⁇ x direction.
  • the magnetization direction is changed in the xy plane by the leakage magnetic field. Can do.
  • the direction of deviation of the second magnetization free layer 20 with respect to the magnetization free region 12 is the first direction
  • the magnetization of the second magnetization free layer 20 corresponds to the stored information and the component parallel to the first direction. , Or an antiparallel component.
  • the reference layer 40 is preferably fixed in a direction substantially parallel to the first direction as described above. At this time, the MTJ composed of the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40 according to the information stored in the magnetization free region 12 is parallel (a state having components) and antiparallel (components). One state).
  • 3A and 3B are cross-sectional views schematically showing an example of a method of writing information to the magnetic memory element according to the present invention.
  • layers other than the first magnetization free layer 10 are omitted for the sake of simplicity.
  • a write current is introduced in the direction indicated by the arrow Iwrite in FIG. 3A.
  • conduction electrons flow from the second magnetization fixed region 11 b to the first magnetization fixed region 11 a via the magnetization free region 12 in the first magnetization free layer 10.
  • a spin transfer torque acts on the domain wall DW formed at the boundary between the second magnetization fixed region 11b and the magnetization free region 12, and moves in the ⁇ x direction. That is, current-induced domain wall movement occurs.
  • the conduction electrons decrease in the ⁇ x direction from the boundary between the first magnetization fixed region 11 a and the magnetization free region 12. Therefore, the domain wall DW stops at the boundary between the first magnetization fixed region 11 a and the magnetization free region 12. This state corresponds to the “1” state defined in FIG. 2B. In this way, “1” writing can be performed.
  • a write current is introduced in the direction indicated by the arrow Iwrite in FIG. 3B.
  • conduction electrons flow from the first magnetization fixed region 11 a to the first magnetization fixed region 11 a via the magnetization free region 12 in the first magnetization free layer 10.
  • a spin transfer torque acts on the domain wall DW formed at the boundary between the first magnetization fixed region 11a and the magnetization free region 12, and moves in the + x direction. That is, current-induced domain wall movement occurs.
  • the conduction electrons decrease in the positive direction of the x axis from the boundary between the second magnetization fixed region 11 b and the magnetization free region 12. Therefore, the domain wall DW stops at the boundary between the second magnetization fixed region 11 b and the magnetization free region 12.
  • This state corresponds to the “0” state defined in FIG. 2A. In this way, “0” writing can be performed.
  • FIGS. 1A to 1D are cross-sectional views schematically showing an example of a method for reading information from the magnetic memory element having the configuration shown in FIGS. 1A to 1D.
  • information is read mainly using a tunneling magnetoresistive effect (TMR effect).
  • TMR effect tunneling magnetoresistive effect
  • MTJ magnetic tunnel junction
  • the direction of the read current Iread is arbitrary.
  • FIG. 4A when the read current Iread is introduced in the “0” state defined in FIG. 2A, the magnetization is in a parallel state in the MTJ, so that a low resistance is realized.
  • FIG. 4B when the read current Iread is introduced in the “1” state defined in FIG. 2B, the magnetization is in an antiparallel state in the MTJ, so that high resistance is realized. In this way, information stored in the magnetic memory element 70 can be detected as a difference in resistance value.
  • FIG. 5 is a block diagram showing an example of a circuit configuration for one bit of the magnetic memory cell 80 according to the embodiment of the present invention.
  • the magnetic memory cell 80 includes a magnetic memory element 70 and transistors TRa and TRb.
  • the magnetic memory element 70 is a three-terminal element, and is connected to the word line WL, the ground line GL, and the bit line pair BLa, BLb.
  • the terminal connected to the reference layer 40 is connected to the ground line GL for reading.
  • a terminal connected to the first magnetization fixed region 11a (via the first magnetization fixed layer group 60a) is connected to one of the source / drain of the transistor TRa, and the other of the source / drain is connected to the bit line BLa. Yes.
  • a terminal connected to the second magnetization fixed region 11b (via the second magnetization fixed layer group 60b) is connected to one of the source / drain of the transistor TRb, and the other of the source / drain is connected to the bit line BLb. Yes.
  • the gates of the transistors TRa and TRb are connected to a common word line WL.
  • the word line WL is set to the high level, and the transistors TRa and TRb are turned on.
  • one of the bit line pair BLa and BLb is set to a high level, and the other is set to a low level (ground level).
  • the write current Iwrite flows between the bit line BLa and the bit line BLb via the transistors TRa and TRb and the first magnetization free layer 10.
  • the word line WL is set to a high level, and the transistors TRa and TRb are turned on. Further, the bit line BLa is set to an open state, and the bit line BLb is set to a high level. As a result, the read current Iread flows from the bit line BLb through the transistor TRb and the MTJ of the magnetic memory element 70 to the ground line GL. This enables reading using the magnetoresistive effect.
  • FIG. 6 is a block diagram showing an example of the configuration of the magnetic memory 90 according to the embodiment of the present invention.
  • the magnetic memory 90 includes a memory cell array 110, an X driver 120, a Y driver 130, and a controller 140.
  • the memory cell array 110 has a plurality of magnetic memory cells 80 arranged in an array.
  • Each of the magnetic memory cells 80 has the magnetic memory element 70 described above.
  • each magnetic memory cell 80 is connected to the word line WL, the ground line GL, and the bit line pair BLa, BLb.
  • the X driver 120 is connected to a plurality of word lines WL, and drives a selected word line connected to the accessed magnetic memory cell 80 among the plurality of word lines WL.
  • the Y driver 130 is connected to a plurality of bit line pairs BLa and BLb, and sets each bit line to a state corresponding to data writing or data reading.
  • the controller 140 controls each of the X driver 120 and the Y driver 130 in accordance with data writing or data reading.
  • FIG. 7A and 7B are an xy plan view and an xz sectional view schematically showing an example of the layout of the magnetic memory cell 80 according to the embodiment of the present invention, respectively.
  • FIG. 7B is an AA ′ cross section in FIG. 7A.
  • the transistors TRa and TRb are provided extending in the y direction, and one source / drain is shared between two magnetic memories 80.
  • the source / drain on the shared side is connected to the uppermost bit lines BLa and BLb through Via.
  • the bit lines BLa and BLb are provided extending in the y direction.
  • the gate electrodes of the transistors TRa and TRb are connected to a common word line WL.
  • the word line WL is provided extending in the x direction.
  • the source / drain not connected to the bit line BLa and bit line BLb is connected to the magnetic memory element 70.
  • the MTJ side terminal of the magnetic memory element 70 is connected to the ground line GL in the upper layer.
  • the ground line GL extends in the x direction.
  • the magnetization free layer 10 is preferably a rectangle having an aspect ratio of 3, and the MTJ is provided so as to be contained in the magnetization free layer 10 in the xy plane. Therefore, the magnetic memory element 70 is a rectangle having an aspect ratio of 3.
  • F is a design rule (or 1/2 of the metal layer pitch).
  • the cell area of 12F 2 realized in the layouts of FIGS. 7A and 7B is the minimum layout in a 2T-1MTJ circuit configuration suitable for high-speed MRAM. Therefore, by using the magnetic memory element 70 according to the embodiment of the present invention, the cell area of the high-speed MRAM can be reduced to the limit, and the manufacturing cost can be suppressed.
  • the first magnetization free layer 10 is preferably made of a ferromagnetic material having perpendicular magnetic anisotropy.
  • alloy materials such as Fe alloy, Gd—Co alloy, Co—Cr—Pt alloy, Co—Re—Pt alloy, Co—Ru—Pt alloy, Co—W alloy, Co / Pt multilayer film, Co / Pd Alternating films such as laminated films, Co / Ni laminated films, Co / Cu laminated films, Co / Ag laminated films, Co / Au laminated films, Fe / Pt laminated films, Fe / Pd laminated films, Fe / Pd laminated films, Fe / Au laminated films Is exemplified.
  • Non-Patent Document 5 (Applied Phisics Express, vol. 101303 (2008))
  • a Co / Ni laminated film is a suitable material for the magnetization free layer 10.
  • the second magnetization free layer 20 is made of a ferromagnetic material having in-plane magnetic anisotropy. Furthermore, since it is necessary to react sensitively to the magnetization direction of the magnetization free region 12, it must be magnetically soft. Examples of such materials include Ni—Fe and Co—Fe—B.
  • the nonmagnetic layer 30 is preferably made of an insulating material. Specifically, Mg—O, Al—O, Al—N, Ti—O and the like are exemplified.
  • the reference layer 40 is made of a ferromagnetic material having in-plane magnetic anisotropy. Specifically, many materials can be used, and typically contains any of Fe, Co, and Ni.
  • the magnetization direction needs to be fixed in one direction, and the leakage magnetic field to the outside is preferably small.
  • Specific examples of the laminated structure of the reference layer 40 include Co—Fe—B / Ru / Co—Fe / Pt—Mn in this order from the nonmagnetic layer 30 side.
  • the magnetization fixed layer group 60 contains a ferromagnetic material.
  • the magnetization fixed layer group 60 includes a first magnetization fixed layer group 60a and a second magnetization fixed layer group 60b, and the first magnetization fixed layer group 60a and the second magnetization fixed layer.
  • the material may be composed of a ferromagnetic material having perpendicular magnetic anisotropy. The material that can be specifically used is omitted because it overlaps with the material exemplified in the first magnetization free layer 10.
  • the write current can be reduced by forming the first magnetization free layer 10 in which current-induced domain wall motion occurs with a ferromagnetic material having perpendicular magnetic anisotropy.
  • the write current density can be reduced to about 5 ⁇ 10 11 [A / m 2 ] by appropriately selecting the material of the first magnetization free layer 10.
  • the width of the first magnetization free layer 10 is 90 nm and the film thickness is 4 nm, the write current is about 1.8 mA. Therefore, the minimum layout in the 2T-1MTJ circuit configuration suitable for high-speed operation is possible.
  • the MTJ for reading is composed of the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40, and the second magnetization free layer 20 and the reference layer 40 have strong in-plane magnetic anisotropy. It is composed of a magnetic material. Therefore, a large TMR ratio exceeding 100% can be obtained relatively easily, and high-speed reading is possible.
  • the MTJ for reading is formed so as to be accommodated in the first magnetization free layer 10 in the xy plane. Therefore, the cell area does not increase.
  • the first magnetization free layer 10 is formed with a rectangle having an aspect ratio of 3, a layout with 12F 2 is possible. Therefore, it is possible to provide an MRAM having a cost performance comparable to that of an existing embedded memory.
  • the write current in the first magnetization free layer 10 of the domain wall motion type magnetic memory element 70 can be reduced by using the ferromagnetic first magnetization free layer 10 having perpendicular magnetic anisotropy.
  • a large read signal can be obtained by configuring the MTJ for reading using the second magnetization free layer 20 and the reference layer 40 of a ferromagnetic material having in-plane magnetic anisotropy.
  • an increase in the cell area can be prevented. Thereby, a layout with a small memory cell such as 12F 2 is possible.
  • the present invention can provide a domain wall motion type magnetic memory element having a small write current, a large read signal, and a small cell area, and a magnetic memory (eg, MRAM) using the same. .
  • (First modification) 8A to 8C are cross-sectional views schematically showing the structure of the first modification of the magnetic memory element 70 according to the embodiment of the present invention.
  • the first modification relates to the position of the MTJ composed of the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40.
  • the second magnetization free layer 20 may be disposed at any position as long as the second magnetization free layer 20 is provided to be shifted in the xy plane with respect to the magnetization free region 12. Therefore, it may be disposed above the second magnetization fixed region 11b as shown in FIG. 8A, or may be provided above the first magnetization fixed region 11a as shown in FIG. 8B. As shown in FIG. 4, it may be arranged below the second magnetization fixed region 11b, or although not shown, it may be arranged below the first magnetization fixed region 11a.
  • the MTJ composed of the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40 may be formed so as to fit in the first magnetization free layer 10 in the xy plane.
  • the MTJ composed of the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40 is formed so as to be accommodated in the first magnetization free layer 10 in the xy plane, as described above. This is because the cell area can be reduced.
  • the magnetic memory element 70 has a rectangular shape with an aspect ratio of 3, and a layout with a cell area of 12F 2 is possible.
  • (Second modification) 9A to 9E are cross-sectional views schematically showing the structure of a second modification of the magnetic memory element 70 according to the embodiment of the present invention.
  • the second modification relates to the structure of the magnetization fixed layer group 60.
  • the magnetization fixed layer group 60 Is preferably provided.
  • the structure of the magnetization fixed layer group 60 is arbitrary.
  • FIG. 9A is an example thereof, and the first magnetization fixed layer group 60a is provided adjacent to the lower side of the first magnetization fixed region 11a, and the second magnetization fixed region is adjacent to the lower side of the second magnetization fixed region 11b.
  • the layer group 60b is provided adjacently.
  • the first magnetization fixed layer group 60a and the second magnetization fixed layer group 60b may have different magnetic properties.
  • FIG. 9B shows an example in which only one magnetization fixed layer group 60 is provided as another example.
  • the first magnetization fixed layer group 60a is provided adjacent to only the first magnetization fixed region 11a, and the magnetization fixed layer group 60b is not provided in the vicinity of the second magnetization fixed region 11b. Even in such a case, the magnetizations of the first magnetization fixed region 11a and the second magnetization fixed region 11b can be directed in the antiparallel direction.
  • FIG. 9C shows an example in which the magnetization fixed layer group 60 is provided adjacent to the upper side of the first magnetization free layer 10 as another example.
  • the magnetization fixed layer group 60 may be provided on the upper side with respect to the first magnetization free layer 10.
  • the first magnetization fixed region 11a and / or the second magnetization fixed layer may be provided. You may arrange
  • FIG. 9D shows another example in which the magnetization fixed layer group 60 is provided adjacent to both the upper and lower sides of the first magnetization free layer 10.
  • a first magnetization fixed layer group 60a and a third magnetization fixed layer group 60c are provided adjacent to the first magnetization fixed region 11a and adjacent to the second magnetization fixed region 11b.
  • a second magnetization fixed layer group 60b and a third magnetization fixed layer army 60d are provided adjacent to each other.
  • the number of the magnetization fixed layer groups 60 is arbitrary, and any number may be provided.
  • FIG. 9E shows another example in which the plurality of magnetization fixed layer groups 60 have different structures.
  • the thickness of the first magnetization fixed layer group 60a provided adjacent to the first magnetization fixed region 11a is larger than the thickness of the second magnetization fixed layer group 60b provided adjacent to the second magnetization fixed region 11b.
  • An example in which the thickness is also formed is shown.
  • the structures of the first magnetization fixed layer group 60a and the second magnetization fixed layer group 60b may be different from each other, and may have different shapes in addition to the film thickness.
  • FIGS. 10A to 10C are cross-sectional views schematically showing the structure of the third modification of the magnetic memory element 70 according to the embodiment of the present invention.
  • the third modification relates to the positional relationship between the MTJ composed of the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40 and the magnetization fixed layer group 60.
  • FIG. 10A shows an example.
  • MTJ is provided on the upper side of the first magnetization free layer 10
  • the magnetization fixed layer group 60 is provided on the lower side of the first magnetization free layer 10.
  • FIG. 10B shows another example.
  • both the MTJ and the magnetization fixed layer group 60 are provided above the first magnetization free layer 10.
  • the magnetization fixed layer group 60 is preferably provided at a position closer to the first magnetization free layer 10 than the MTJ. 10B, since the distance between the second magnetization free layer 20 and the magnetization free region 12 is increased, the magnetostatic coupling due to the leakage magnetic field described in FIGS. 2C and 2D is weakened, but the magnetization fixed layer group 60 Unless the film thickness is excessively large, the magnetization of the second magnetization free layer 20 can respond to the magnetization direction of the magnetization free region 12 by this magnetic coupling.
  • FIG. 10B shows another example.
  • the magnetization free layer 10 the magnetization fixed layer group 60, the conductive layer 50, the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40 are collectively deposited and patterned. By doing so, the magnetic memory element 70 can be formed. Therefore, the process becomes easy.
  • FIG. 10C shows another example.
  • the first magnetization fixed layer group 60a is provided adjacent to the first magnetization fixed region 11a, while the magnetization fixed layer group 60 is not provided adjacent to the second magnetization fixed region 11b.
  • a conductive layer 50, a second magnetization free layer 20, a nonmagnetic layer 30, and a reference layer 40 are provided above the second magnetization fixed region 11b.
  • the first magnetization fixed layer group 60a is deposited first, and the conductive layer 50, the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40 are patterned in the first magnetization fixed layer group 60a.
  • the conductive layer 50, the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40 may be deposited first, and the first magnetization fixed layer group 60a may be the conductive layer 50,
  • the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40 may be deposited and patterned after patterning.
  • FIG. 11A and FIG. 11B are schematic views showing a fourth modification of the magnetic memory element 70 according to the embodiment of the present invention.
  • the fourth modification relates to the direction of magnetic anisotropy of the second magnetization free layer 20.
  • a general MRAM information is stored in a free layer, and a TMR ratio generated by the relative angle between the magnetization of the free layer and the magnetization of the reference layer is used for reading.
  • a general free layer is characterized by being divided into a first magnetization free layer 10 that is a free layer for writing and a second magnetization free layer 20 that is a free layer for reading. .
  • the magnetization of the second magnetization free layer 20 only needs to change in the magnetization direction according to the magnetization direction of the magnetization free region 12, and the magnetization direction corresponds to the stored information (“0”, “1”). May or may not change 180 degrees. From this point of view, the direction of the magnetic anisotropy of the second magnetization free layer 20 is arbitrary.
  • FIG. 11A shows an example of the direction of magnetic anisotropy of the second magnetization free layer 20.
  • the magnetic anisotropy of the second magnetization free layer 20 is given in the y direction.
  • the anisotropic magnetic field Ha is provided in the y direction
  • the magnetization of the second magnetization free layer 20 is about the y axis.
  • the second magnetization free layer 20 has a difficult axis operation.
  • the second magnetization free layer 20 has a hard axis operation, even if the leakage magnetic field generated from the magnetization free region 12 is small, it can react sensitively.
  • FIG. 11B shows another example of the direction of magnetic anisotropy of the second magnetization free layer 20.
  • the magnetic anisotropy of the second magnetization free layer 20 is given in the x direction. That is, an anisotropic magnetic field Ha is applied in the x direction.
  • the magnetization of the magnetization free region 12 is oriented in the + z direction or the ⁇ z direction
  • the magnetization of the second magnetization free layer 20 is oriented in either the + x direction or the ⁇ x direction. That is, the second magnetization free layer 20 has an easy axis operation.
  • the change in the magnetization direction of the second magnetization free layer 20 is 180 degrees, so that the maximum TMR ratio obtained in this MTJ can be obtained.
  • the magnetic anisotropy as shown in FIGS. 11A and 11B may be imparted by crystal magnetic anisotropy due to the crystal structure, or may be imparted by shape magnetic anisotropy due to the shape. Alternatively, it may be provided by stress-induced magnetic anisotropy due to magnetostriction and stress. In the case of being imparted by stress-induced magnetic anisotropy, the size can be controlled by the material, film thickness, etc. of the wiring disposed around the periphery.
  • (Fifth modification) 12A and 12B are cross-sectional views schematically showing a fifth modification of the magnetic memory element 70 according to the embodiment of the present invention.
  • the fifth modification relates to the stacking order of the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40.
  • the MTJ composed of the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40 is within a range where they are stacked in this order, and the stacking order is arbitrary. That is, for example, as shown in FIG. 12A, the second magnetization free layer 20 may be disposed on the first magnetization free layer 10 side, and as shown in FIG. You may arrange
  • the second magnetization free layer 20 When the second magnetization free layer 20 is disposed on the first magnetization free layer 10 side as shown in FIG. 12A, the distance between the second magnetization free layer 20 and the magnetization free region 12 becomes short, and therefore the second magnetization free layer 20 Magnetostatic coupling due to the leakage magnetic field between the layer 20 and the magnetization free region 12 is strengthened.
  • the reference layer 40 when the reference layer 40 is disposed on the first magnetization free layer 10 side as shown in FIG. 12B, the MTJ including the second magnetization free layer 20, the nonmagnetic layer 30, and the reference layer 40 has a bottom pin structure. It becomes. An MTJ having a bottom pin structure generally tends to obtain a large TMR ratio as compared with an MTJ having a top pin structure as shown in FIG. 12A.
  • FIGSixth Modification 13A and 13B are cross-sectional views schematically showing the structure of a sixth modification of the magnetic memory element 70 according to the embodiment of the present invention.
  • the sixth modification relates to the positional relationship between the first magnetization free layer 10 and the magnetization fixed layer group 60.
  • the magnetization fixed layer group 60 is provided in the vicinity of the first magnetization free layer 10, and the magnetizations of the first magnetization fixed region 11a and the second magnetization fixed region 11b of the magnetization free layer 10 are antiparallel. And its magnetization is fixed in one direction.
  • the magnetization fixed layer group 60 may not be adjacent to the first magnetization free layer 10, and different layers may be inserted therebetween.
  • a cap layer 65 may be provided adjacent to the upper part of the magnetization fixed layer group 60.
  • the underlayer 15 may be provided adjacent to the lower portion of the first magnetization free layer 10.
  • the magnetization fixed layer group 60 is protected from damage during the manufacturing process in the process of forming the magnetization fixed layer group 60. Can do.
  • the underlayer 15 adjacent to the lower portion of the first magnetization free layer 10 the crystal structure can be adjusted so that preferable magnetic characteristics can be obtained in the first magnetization free layer 10. it can.
  • Examples of utilization of the present invention include nonvolatile semiconductor memory devices used in mobile phones, mobile personal computers and PDAs, and microcomputers with built-in nonvolatile memory used in automobiles and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 磁気メモリ素子は、垂直磁気異方性を有する強磁性体から構成された第1磁化自由層と、第1磁化自由層の近傍に設けられ、面内磁気異方性を有する強磁性体から構成された第2磁化自由層と、面内磁気異方性を有する強磁性体から構成されたリファレンス層と、第2磁化自由層とリファレンス層との間に設けられた非磁性層とを具備する。第1磁化自由層は、磁化が固定される第1磁化固定領域と、磁化が固定される第2磁化固定領域と、第1磁化固定領域と第2磁化固定領域とに接続され、磁化が反転可能な磁化自由領域とを備える。第2磁化自由層は基板に平行な平面内において第1磁化自由層内に収まる。第2磁化自由層は平面内において磁化自由領域に対して第1方向にずれて設けられる。

Description

磁気メモリ素子、磁気メモリ
 本発明は、磁気メモリ素子、磁気メモリに関する。特に本発明は磁壁移動を利用した磁気メモリ素子、磁気メモリに関する。
 磁気メモリ、特に磁気ランダムアクセスメモリ(Magnetic Random Access Memory;MRAM)は高速動作、及び無限回の書き換えが可能な不揮発性メモリとして動作する。そのため、一部で実用化が始まり、またより汎用性を高めるための開発が行われている。MRAMでは記憶素子として磁性体を用い、磁性体の磁化の向きに対応させて情報を記憶する。この磁性体の磁化をスイッチングさせる方法としていくつかの方式が提案されているが、いずれも電流を使う点では共通している。MRAMを実用化する上では、この書き込み電流をどれだけ小さくできるかが非常に重要である。
 非特許文献1によれば、その書込み電流には0.5mA以下への低減、さらに好ましくは0.2mA以下への低減が求められている。これは書き込み電流が0.2mA程度まで低減されると、非特許文献1で提案されている2T-1MTJ(Two Transistors-One Magnetic Tunnnel Junction)回路構成において最小レイアウトが可能となり、既存の揮発性メモリと同等以上のコストパフォーマンスを実現できるためである。
 MRAMへの情報の書き込み方法のうちで最も一般的なのは、磁性記憶素子の周辺に書き込みのための配線を配置し、この配線に電流を流すことで発生する磁場によって磁性記憶素子の磁化の方向をスイッチングさせる方法である。この方法は磁場による磁化反転となるため、原理的には1ナノ秒以下での書き込みが可能であり、高速MRAMを実現する上では好適である。しかしながら熱安定性、外乱磁場耐性が確保された磁性体の磁化をスイッチングするための磁場は一般的には数10Oe(エールステッド)程度となる。このような磁場を発生させるためには数mA程度の電流が必要となる。この場合、チップ面積が大きくならざるを得ず、また書き込みに要する消費電力も増大する。そのため、他のランダムアクセスメモリと比べて競争力で劣ることになる。これに加えて、素子が微細化されると、書き込み電流はさらに増大してしまい、スケーリングの点でも好ましくない。
 近年このような問題を解決する手段として、以下の2つの方法が提案されている。第1の方法はスピン注入磁化反転を用いる方法である。これは反転可能な磁化を有する第1の磁性層(磁化自由層)と、それに電気的に接続され、磁化が固定された第2の磁性層(リファレンス層)から構成された積層膜を用いる。そして、第2の磁性層(リファレンス層)と第1の磁性層(磁化自由層)との間で電流を流したときのスピン偏極した伝導電子と第1の磁性層(磁化自由層)中の局在電子との間の相互作用を利用して、第1の磁性層(磁化自由層)の磁化を反転する方法である。読み出しの際には第1の磁性層(磁化自由層)と第2の磁性層(リファレンス層)との間で発現される磁気抵抗効果を利用する。従ってスピン注入磁化反転方式を用いたMRAMは2端子の素子となる。
 スピン注入磁化反転はある電流密度以上のときに起こることから、素子のサイズが小さくなれば、書き込みに要する電流は低減される。すなわちスピン注入磁化反転方式はスケーリング性に優れていると言うことができる。しかしながら、一般的に第1の磁性層(磁化自由層)と第2の磁性層(リファレンス層)との間には絶縁層が設けられ、書き込みの際には比較的大きな電流をこの絶縁層に流さなければならない。そのため、書き換え耐性や信頼性が課題となる。また、書き込みの電流経路と読み出しの電流経路とが同じになる。そのため、読み出しの際の誤書き込みも懸念される。このようにスピン注入磁化反転はスケーリング性には優れるものの、実用化にはいくつかの障壁がある。
 一方、第2の方法である電流誘起磁壁移動現象を利用した磁化反転方法は、スピン注入磁化反転の抱える上述のような問題を解決することができる。電流誘起磁壁移動現象を利用したMRAMは例えば特許文献1で開示されている。すなわち、特許文献1には磁気記憶装置及び磁気情報の書込み方法が開示されている。この磁気記憶装置は、磁化固定層と、トンネル絶縁層と、磁化自由層と、一対の磁気情報書込み用端子とを備える。磁化固定層は、固定磁化が付与された導電性である。トンネル絶縁層は、磁化固定層に積層形成されている。磁化自由層は、トンネル絶縁層を介して磁化固定層と積層形成された接合部、接合部の一対の端部に隣接形成された磁壁ピン止め部、及び、磁壁ピン止め部に隣接する互いに反対向きの固定磁化が付与された一対の磁化固定部を具備する導電性である。一対の磁気情報書込み用端子は、一対の磁化固定部に電気接続し、磁化自由層の接合部、一対の磁壁ピン止め部及び一対の磁化固定部を貫通する電流を磁化自由層に流す。このような電流誘起磁壁移動現象を利用したMRAMは、一般的には反転可能な磁化を有する第1の磁性層(磁化自由層)において、その両端部の磁化が互いに略反平行となるように固定されている。このような磁化配置のとき、第1の磁性層内には磁壁が導入される。ここで、非特許文献2で報告されているように、磁壁を貫通する方向に電流を流したとき、磁壁は伝導電子の方向に移動することから、第1の磁性層(磁化自由層)内に電流を流すことにより書き込みが可能となる。情報を読み出す際には、磁壁が移動する領域に設けられる磁気トンネル接合(Magnetic Tunnel Junction;MTJ)を用い、磁気抵抗効果により読み出しを行う。従って、電流誘起磁壁移動方式を利用したMRAMは3端子の素子となり、上述の非特許文献1で提案されている2T-1MTJ構成とも整合する。
 電流誘起磁壁移動もある電流密度以上のときに起こることから、スピン注入磁化反転と同様にスケーリング性があると言える。これに加えて、電流誘起磁壁移動を利用したMRAM素子では、書き込み電流が磁気トンネル接合中の絶縁層を流れることはなく、また書き込み電流経路と読み出し電流経路は別となるため、スピン注入磁化反転で挙げられるような上述の問題は解決されることになる。
 一方で非特許文献2では電流誘起磁壁移動に必要な電流密度として1×10[A/cm 程度を要している。この場合、例えば磁壁移動の起こる層(磁化自由層)の幅を100nm、膜厚を10nmとした場合の書き込み電流は1mAとなる。これは前述の書き込み電流に関する条件を満たすことができない。しかし、非特許文献3で述べられているように、電流誘起磁壁移動が起こる強磁性層(磁化自由層)として垂直磁気異方性を有する材料を用いることによって、書き込み電流を十分小さく低減できることが報告されている。このようなことから、電流誘起磁壁移動を利用してMRAMを製造する場合、磁壁移動が起こる層(磁化自由層)としては垂直磁気異方性を有する強磁性体を用いることが好ましいと言える。
 関連する技術として特許文献2に磁壁移動を利用した磁気抵抗効果素子の磁化状態の変化方法及び該方法を用いた磁気メモリ素子、固体磁気メモリが開示されている。この磁気メモリ素子は、第一の磁性層と中間層と第二の磁性層とを有し、情報を第一の磁性層と、第二の磁性層との磁化の方向で記録する。この磁気メモリ素子は、少なくとも一方の磁性層内に互いに反平行磁化となる磁区とそれらの磁区を隔てる磁壁を定常的に形成し、前記磁壁を磁性層内で移動させることで、隣り合う磁区の位置を制御して情報記録を行う。
 特許文献3に、パルス電流による磁壁移動に基づいた磁気抵抗効果素子および高速磁気記録装置が開示されている。この磁気抵抗効果素子は、第1の磁化固定層/磁化自由層/第2の磁化固定層を有する。磁気抵抗効果素子は、該磁化固定層/磁化自由層あるいは磁化自由層/第2の磁化固定層の少なくとも一方の境界となる磁化固定層と磁化自由層間の遷移領域に磁壁発生を誘導するための機構を備え、これら磁化固定層の磁化の向きを略反平行に設定し、磁化固定層/磁化自由層の遷移領域のいずれか一方に磁壁が存在する構造において、所定のパルス幅の電流を印加することにより、直流電流密度10A/cmを超えない電流で磁壁が2つの遷移領域の間で移動することにより磁化自由層の磁化を反転させ、相対磁化の向きの変化に伴う磁気抵抗を検出する。
特開2005-191032号公報 特開2006-73930号公報 特開2006-270069号公報
IEEE Journal of Solid-State Circuits,vol.42,p.830(2007). Physical Review Letters,vol.92,p.077205,(2004). Journal of Applied Physics,vol.103,p.07E718,(2008). Applied Physics Letters,vol.89,p.232510,(2006). Applied Physics Express,vol.1,p.101303,(2008).
 ここで、特許文献1に開示されているように、磁壁移動型MRAMにおいては磁壁移動が起こる領域に隣接して読み出しのためのMTJが設けられる。ここで、MTJは磁化が反転する磁化自由層と非磁性層とリファレンス層から構成される。垂直磁気異方性を有する強磁性体を磁化自由層に用いて磁壁移動型MRAMを製造する場合、リファレンス層も垂直磁気異方性を有する強磁性体により構成される必要がある。すなわち当該MTJは垂直磁化MTJとなる。
 ここで、近年非特許文献4で報告されているように、面内磁化MTJにおいては500%を超える非常に大きなTMR比が得られている。しかし、その一方で、垂直磁化MTJにおいてはこのような大きなTMR比は報告されていない。TMR比はMRAMにおける読み出し信号量に相当し、高速動作のためにはなるべく大きいことが好ましい。従って高速での読み出しが可能なMRAMにおいては、MTJは面内磁化MTJであることが望ましい。
 また、一般的にMRAMセルのセル面積は小さいほどビットコストが下がり、低コスト化に繋がる。前述の2T-1MTJ方式においては、最小で12Fにまでセル面積の低減が可能である。磁壁移動型MRAMにおいても同様で、12Fのセル面積となるようなセル構造が好ましい。
 したがって、本発明の目的は、書き込み電流が小さく、読み出し信号が大きく、且つセル面積の小さな磁壁移動型の磁気メモリ素子、磁気メモリを提供することにある。
 本発明の磁気メモリ素子は、第1磁化自由層と、第2磁化自由層と、リファレンス層と、非磁性層とを具備する。第1磁化自由層は、垂直磁気異方性を有する強磁性体から構成されている。第2磁化自由層は、第1磁化自由層の近傍に設けられ、面内磁気異方性を有する強磁性体から構成されている。リファレンス層は、面内磁気異方性を有する強磁性体から構成されている。非磁性層は、第2磁化自由層とリファレンス層との間に設けられている。第1磁化自由層は、第1磁化固定領域と、第2磁化固定領域と、化自由領域とを備える。第1磁化固定領域は、磁化が固定される。第2磁化固定領域は、磁化が固定される。磁化自由領域は、第1磁化固定領域と第2磁化固定領域とに接続され、磁化が反転可能である。第2磁化自由層は基板に平行な平面内において第1磁化自由層内に収まる。第2磁化自由層は平面内において磁化自由領域に対して第1方向にずれて設けられる。
 本発明の磁気メモリは、上記の本発明の磁気メモリ素子を備えた複数の磁気メモリセルが行列状に配置されている。
 本発明により、書き込み電流が小さく、読み出し信号が大きく、且つセル面積の小さな磁壁移動型の磁気メモリ素子、磁気メモリを提供することができる。
図1Aは、本発明に係る磁気メモリ素子の主要な部分の代表的な構造を模式的に示す斜視図である。 図1Bは、本発明に係る磁気メモリ素子の主要な部分の代表的な構造を模式的に示すx-z断面図である。 図1Cは、本発明に係る磁気メモリ素子の主要な部分の代表的な構造を模式的に示すx-y平面図である。 図1Dは、本発明に係る磁気メモリ素子の磁化自由層の構造を模式的に示す平面図である。 図2Aは、本発明の実施の形態に係る磁気メモリ素子の“0”のメモリ状態における磁化の状態の例を模式的に示す断面図である。 図2Bは、本発明の実施の形態に係る磁気メモリ素子の“1”のメモリ状態における磁化の状態の例を模式的に示す断面図である。 図2Cは、磁化自由領域の磁化と第2磁化自由層の磁化との結合について模式的に示す断面図である。 図2Dは、磁化自由領域の磁化と第2磁化自由層の磁化との結合について模式的に示す断面図である。 図3Aは、本発明に係る磁気メモリ素子への情報の書き込み方法の一例を模式的に示す断面図である。 図3Bは、本発明に係る磁気メモリ素子への情報の書き込み方法の一例を模式的に示す断面図である。 図4Aは、図1A~図1Dに示された構成を有する磁気メモリ素子からの情報の読み出し方法の一例を模式的に示す断面図である。 図4Bは、図1A~図1Dに示された構成を有する磁気メモリ素子からの情報の読み出し方法の一例を模式的に示す断面図である。 図5は、本発明の実施の形態に係る磁気メモリセルの1ビット分の回路の構成の一例を示すブロック図である。 図6は、本発明の実施の形態に係る磁気メモリの構成の一例を示すブロック図である。 図7Aは、本発明の実施の形態に係る磁気メモリセルのレイアウトの一例を模式的に示すx-y平面図である。 図7Bは、本発明の実施の形態に係る磁気メモリセルのレイアウトの一例を模式的に示すx-z断面図である。 図8Aは、本発明の実施の形態に係る磁気メモリ素子の第1の変形例の構造を模式的に示す断面図である。 図8Bは、本発明の実施の形態に係る磁気メモリ素子の第1の変形例の構造を模式的に示す断面図である。 図8Cは、本発明の実施の形態に係る磁気メモリ素子の第1の変形例の構造を模式的に示す断面図である。 図9Aは、本発明の実施の形態に係る磁気メモリ素子の第2の変形例の構造を模式的に示す断面図である。 図9Bは、本発明の実施の形態に係る磁気メモリ素子の第2の変形例の構造を模式的に示す断面図である。 図9Cは、本発明の実施の形態に係る磁気メモリ素子の第2の変形例の構造を模式的に示す断面図である。 図9Dは、本発明の実施の形態に係る磁気メモリ素子の第2の変形例の構造を模式的に示す断面図である。 図9Eは、本発明の実施の形態に係る磁気メモリ素子の第2の変形例の構造を模式的に示す断面図である。 図10Aは、本発明の実施の形態に係る磁気メモリ素子の第3の変形例の構造を模式的に示す断面図である。 図10Bは、本発明の実施の形態に係る磁気メモリ素子の第3の変形例の構造を模式的に示す断面図である。 図10Cは、本発明の実施の形態に係る磁気メモリ素子の第3の変形例の構造を模式的に示す断面図である。 図11Aは、本発明の実施の形態に係る磁気メモリ素子の第4の変形例の形態を示す模式図である。 図11Bは、本発明の実施の形態に係る磁気メモリ素子の第4の変形例の形態を示す模式図である。 図12Aは、本発明の実施の形態に係る磁気メモリ素子の第5の変形例の形態を模式的に示す断面図である。 図12Bは、本発明の実施の形態に係る磁気メモリ素子の第5の変形例の形態を模式的に示す断面図である。 図13Aは、本発明の実施の形態に係る磁気メモリ素子の第6の変形例の構造を模式的に示す断面図である。 図13Bは、本発明の実施の形態に係る磁気メモリ素子の第6の変形例の構造を模式的に示す断面図である。
 以下、添付図面を参照して、本発明の磁気メモリ素子及び磁気メモリの実施の形態について説明する。
1.構造
 本発明の実施の形態に係る磁気メモリは、アレイ状に配置された複数の磁気メモリセルを有している。複数の磁気メモリセルの各々は磁気メモリ素子を有している。以下、磁気メモリ素子の構造について説明する。図1A、図1B、及び図1Cは、それぞれ本発明に係る磁気メモリ素子70の主要な部分の代表的な構造を模式的に示す斜視図、x-z断面図、及びx-y平面図である。なお、図に示されているx-y-z座標系において、z軸は基板に垂直な方向であり、x軸とy軸は基板平面に平行であるものとする。また、図1Bの白抜き矢印は、その層における磁化方向を示し、両方向矢印は両方の磁化方向を取り得ることを示す。以下、各図面において同じである。磁気メモリ素子70は第1磁化自由層10、第2磁化自由層20、非磁性層30、リファレンス層40を具備する。この他、導電層50、磁化固定層群60を具備することが好ましい。
 図1Dは、本発明に係る磁気メモリ素子70の磁化自由層10の構造を模式的に示す平面図である。第1磁化自由層10は第1磁化固定領域11a、第2磁化固定領域11b、及び磁化自由領域12の3つの領域から構成される。第1磁化固定領域11aは磁化自由領域12の一方の端部に隣接し、第2磁化固定領域11bは磁化自由領域12の別の端部に隣接する。図1Dの例では、第1磁化固定領域11aは磁化自由領域12の-x方向側の端部に隣接し、第2磁化固定領域11bは磁化自由領域12の+x方向側の端部に隣接している。好適には第1磁化固定領域11a、第2磁化固定領域11b、磁化自由領域12はそれぞれ略正方形状の形状を有する。また第1磁化固定領域11a、磁化自由領域12、第2磁化固定領域11bは一直線上に配置される。このとき、磁化自由層10はアスペクト比が約3の長方形となる。
 図1Dにおいて、丸に点及びバツの印は、その層における紙面に垂直上向き及び下向きの磁化方向を示し、両方の印が記載された層は両方の磁化方向を取り得ることを示す。以下、各図面において同じである。第1磁化自由層10は、垂直磁気異方性を有する強磁性体から構成される。そして、第1磁化固定領域11a、第2磁化固定領域11bは実質的に一方向に固定された磁化を有する。また第1磁化固定領域11a、第2磁化固定領域11bの磁化は互いに反平行方向に固定されている。図1Dでは第1磁化自由領域11a、第2磁化固定領域11bはそれぞれ+z方向、-z方向に固定されているものとして描かれている。磁化自由領域12の磁化は反転可能である。この場合+z、-zのいずれかの方向を向くことができる。
 磁化自由層10内の3つの領域が上述のような磁化構造であるとき、磁化自由領域12の磁化方向に応じて、第1磁化固定領域11aと磁化自由領域12との境界、及び第2磁化固定領域11bと磁化自由領域12との境界のいずれか一方に磁壁が形成される。図1Dの場合、磁化自由領域12の磁化が+z方向のとき、第2磁化固定領域11bと磁化自由領域12との境界に磁壁が形成され、磁化自由領域12の磁化が-z方向のとき、第1磁化固定領域11aと磁化自由領域12との境界に磁壁が形成される。
 第2磁化自由層20、非磁性層30、リファレンス層40はこの順に積層して設けられる。第2磁化自由層20、及びリファレンス層40は強磁性体から構成される。また非磁性層30は非磁性体から構成され、好適には絶縁体から構成される。このとき、第2磁化自由層20、非磁性層30、リファレンス層40の3つの層の積層体によって磁気トンネル接合(Magnetic Tunnel Junction;MTJ)が構成される。なお、第2磁化自由層20、非磁性層30、リファレンス層40の形状、及び位置関係には任意性がある。但し、第2磁化自由層20、リファレンス層40は少なくとも一部分においてx-y面内で重なって設けられる必要がある。図1A~図1Cの例では第2磁化自由層20、非磁性層30、リファレンス層40の形状は同一であり、互いに重なったものとして描かれている。
 また、図1Bの例では、第2磁化自由層20、及びリファレンス層40がとりうる磁化方向の一例が矢印で示されている。第2磁化自由層20は好適には面内磁気異方性を有する強磁性体から構成される。また第2磁化自由層20は反転可能な磁化を有する。さらに、第2磁化自由層20における反転可能な磁化は、磁化自由層10の中の磁化自由領域12の磁化と磁気的に結合している。言い換えると、磁化自由領域12の磁化の方向が変わったとき、それに付随して第2磁化自由層20の磁化もその方向を変えることができる。図1Bの例では、磁化自由領域12の磁化は+zまたは-z方向のいずれかの方向をとり、また第2磁化自由層20の磁化は+x方向、または-x方向のいずれかの成分をとりうる。
 リファレンス層40は実質的に一方向に固定された磁化を有する。図1Bの例ではリファレンス層40の磁化は+x方向に固定されている。また図示されていないが、リファレンス層40は以下のような積層構造を有していてもよい。例えばリファレンス層40は強磁性体、非磁性体、強磁性体の3層がこの順に積層された構造を有していることが好ましい。ここで二つの強磁性体に挟まれた非磁性体は上下の強磁性体を反平行方向に磁気結合させる(積層フェリ結合させる)機能を有していることが好ましい。このような機能を有する非磁性体としてはRuが例示される。リファレンス層40を積層フェリ結合を有する積層構造にすることによって、外部への漏洩磁界を低減し、第2磁化自由層などのその他の層への磁気的な影響を低減することができる。これに加えて、リファレンス層には反強磁性体が隣接していることが好ましい。これは、反強磁性体を隣接させ、磁場中で熱処理を行うことによって界面の磁化方向を一方向に固定することができるためである。代表的な反強磁性体としてはPt-Mnが例示される。
 第2磁化自由層20、非磁性層30、リファレンス層40はいずれもx-y面内において第1磁化自由層10に収まることが好ましい。さらに第2磁化自由層20のx-y面内における位置は第1磁化自由層10の中の磁化自由領域12に対して一方向にずれて設けられる必要がある。より好適には、第2磁化自由層20は第1磁化自由領域11a、または第2磁化自由領域11bのいずれか一方の上部、または下部に設けられる。図1A~図1Cの例では第2磁化自由層20は第1磁化自由領域11bの上部に設けられている。さらに、前述のようにリファレンス層40は実質的に一方向に固定された磁化を有するが、この固定磁化の方向は、第2磁化自由層20が磁化自由領域12に対するズレの方向に平行であることが望ましい。図1A~図1Cの例の場合、第2磁化自由層20が磁化自由領域12に対して+x方向にずれて設けられており、リファレンス層40の磁化は+x方向に固定されている。
 導電層50は磁化自由層10と、第2磁化自由層20、非磁性層30、及びリファレンス層40から構成されるMTJとの間に設けられる。導電層50は磁化自由層10とMTJとを電気的に接続する。また導電層50の形状は任意である。図1A~図1Cの例では導電層50の形状はMTJと同形状となっている。
 磁化固定層群60は強磁性体、または反強磁性体の少なくとも一方を含有する。磁化固定層群60は磁化自由層10の第1磁化固定領域11a、及び第2磁化固定領域11bの磁化を反平行方向に向け、またその磁化を一方向に固定する働きを有する。磁化固定層群60は、図1A~図1Cの例に示されるように第1磁化固定層群60a、第2磁化固定層群60bの二つの領域から構成されてもよい。ここで第1磁化固定層群60aは第1磁化固定領域11aに磁気的に結合して設けられており、第2磁化固定層群60bは第2磁化固定領域11bに磁気的に結合して設けられている。また図1A~図1Cの例では第1磁化固定層群60a、第2磁化固定層群60bは強磁性体から構成され、第1磁化固定層群60aと第1磁化固定領域11a、及び第2磁化固定層群60bと第2磁化固定領域11bはそれぞれ強磁性的に結合している。なお、図1A~図1Cの例では磁化固定層群60と磁化自由層10は隣接して設けられている。しかし、これらは磁気的に結合していればよく、電気的には絶縁されていても構わない。なお磁化固定層群60の具体的な構成例は後述される。
 また図には示されていないが、第1磁化固定領域11a、第2磁化固定領域11bがそれぞれ異なる外部の配線に接続され、またMTJにおける磁化自由層10と接続される側とは反対の側が別の外部の配線へと接続される。すなわち、当該磁気メモリ素子70は3端子の素子となる。なお、磁化自由層10と磁化固定層群60とが電気的に接続して設けられている場合、磁化自由層10が外部の配線に接続される経路上に磁化固定層群60があってもよい。すなわち、図1A~図1Cの例の場合、第1磁化固定層群60aと第2磁化固定層群60bがそれぞれ異なる外部の配線に接続されてもよい。
2.メモリ状態
 次に、本発明の実施の形態に係る磁気メモリ素子のメモリ状態について説明する。図2A及び図2Bは、本発明の実施の形態に係る磁気メモリ素子の“0”及び“1”それぞれのメモリ状態における磁化の状態の例を模式的に示す断面図である。図2Aは“0”状態における磁化の状態を、図2Bは“1”状態における磁化の状態をそれぞれ示している。なお、ここでは第1磁化固定領域11aの磁化は+z方向に固定され、第2磁化固定領域11bの磁化は-z方向に固定されているものとしている。いま、図2Aに示されるような“0”状態においては、磁化自由領域12の磁化は+z方向成分を有している。このとき第2磁化固定領域11bとの境界に磁壁DWが形成される。一方、図2Bに示されるような“1”状態においては、磁化自由領域12の磁化は-z方向成分を有している。このとき第1磁化固定領域11aとの境界に磁壁DWが形成される。磁化自由領域12が上述のような磁化状態にあるとき、図2Aに示された“0”状態では、第2磁化自由層20は+x方向の磁化成分を有する。一方、図2Bに示された“1”状態では、第2磁化自由層20は-x方向の磁化成分を有する。
 図2C及び図2Dは、磁化自由領域12の磁化と第2磁化自由層20の磁化との結合について模式的に示す断面図である。図2C及び図2Dでは磁化自由領域12及び第2磁化自由層20のみが示されている。いま、図2Cのように磁化自由領域12が+z方向の磁化を有している場合、図に矢印で示されたような漏洩磁界が周辺部に発生する。ここで第2磁化自由層20の位置においてはこの漏洩磁界は+x方向である。従って第2磁化自由層20の磁化は+x方向を向く。一方、図2Dのように磁化自由領域12が-z方向の磁化を有している場合、図に矢印で示されたような漏洩磁界が周辺部に発生する。ここで第2磁化自由層20の位置においてはこの漏洩磁界は-x方向である。従って第2磁化自由層20の磁化は-x方向を向く。
 このように第2磁化自由層20がx-y面内において磁化自由領域12に対して一方向にずれて設けられているために、漏洩磁界によりその磁化方向をx-y面内で変えることができる。なお、第2磁化自由層20の磁化自由領域12に対するズレの方向を第1方向としたとき、第2磁化自由層20の磁化は格納される情報に対応して、その第1方向と平行成分、または反平行成分のいずれかを取る。一方、リファレンス層40は前述のようにこの第1方向に略平行方向に固定されていることが望ましい。このとき、磁化自由領域12に格納されている情報に応じて第2磁化自由層20、非磁性層30及びリファレンス層40から構成されるMTJは、平行(成分を有する状態)及び反平行(成分を有する状態)のいずれか一方の状態となる。
 なお、図2A、図2Bで定義された磁化状態とメモリ状態(“0”、“1”)の間の対応には任意性があり、この限りではないことは明らかである。
3.書き込み方法
 次に、本発明の実施の形態に係る磁気メモリ素子への情報の書き込み方法について説明する。図3A及び図3Bは、本発明に係る磁気メモリ素子への情報の書き込み方法の一例を模式的に示す断面図である。なお、図3A及び図3Bでは簡単のために第1磁化自由層10以外の層は省略されている。いま、図2Aで定義された“0”状態において図3Aに矢印Iwriteで示された方向に書き込み電流を導入する。このとき伝導電子は第1磁化自由層10において第2磁化固定領域11bから磁化自由領域12を経由して第1磁化固定領域11aへと流れる。このとき第2磁化固定領域11bと磁化自由領域12の境界に形成された磁壁DWにはスピントランスファートルク(Spin Transfer Torque;STT)が働き、-x方向に移動する。すなわち電流誘起磁壁移動が起こる。ここで、伝導電子は第1磁化固定領域11aと磁化自由領域12との境界よりも-x方向では減少する。そのため、磁壁DWは第1磁化固定領域11aと磁化自由領域12との境界で停止する。この状態は図2Bで定義された“1”状態に相当する。このようにして“1”書き込みを行うことができる。
 また、図2Bで定義された“1”状態において図3Bに矢印Iwriteで示された方向に書き込み電流を導入する。このとき伝導電子は第1磁化自由層10において第1磁化固定領域11aから磁化自由領域12を経由して第1磁化固定領域11aへと流れる。このとき第1磁化固定領域11aと磁化自由領域12との境界に形成された磁壁DWにはスピントランスファートルク(Spin Transfer Torque)が働き、+x方向に移動する。すなわち電流誘起磁壁移動が起こる。ここで、伝導電子は第2磁化固定領域11bと磁化自由領域12との境界よりもx軸の正の方向では減少する。そのため、磁壁DWは第2磁化固定領域11bと磁化自由領域12との境界で停止する。この状態は図2Aで定義された“0”状態に相当する。このようにして“0”書き込みを行うことができる。
 なお、“0”状態における“0”書き込み、及び“1”状態における“1”書き込みを行った場合には状態の変化は起こらない。すなわちオーバーライトが可能である。なお、第1磁化自由層10の磁化状態が電流によって書き換わったとき、図2A~図2Dを用いて示されたように、第2磁化自由層20の磁化方向は付随して変化する。
4.読み出し方法
 次に、本発明の実施の形態に係る磁気メモリ素子からの情報の読み出し方法について説明する。図4A及び図4Bは、図1A~図1Dに示された構成を有する磁気メモリ素子からの情報の読み出し方法の一例を模式的に示す断面図である。本実施の形態においては主にトンネル磁気抵抗効果(Tunneling Magnetoresistive effect;TMR effect)を利用して情報の読み出しを行う。そのために第2磁化自由層20、非磁性層30、リファレンス層40から構成される磁気トンネル接合(MTJ)を貫通する方向に読み出し電流Ireadを導入する。なおこの読出し電流Ireadの方向には任意性がある。
 いま、図4Aに示されるように図2Aで定義された“0”状態において読出し電流Ireadを導入したとき、当該MTJにおいて磁化は平行状態となっているので、低抵抗が実現される。また図4Bに示されるように図2Bで定義された“1”状態において読出し電流Ireadを導入したとき、当該MTJにおいて磁化は反平行状態となっているので、高抵抗が実現される。このようにして、当該磁気メモリ素子70に格納された情報は抵抗値の差として検出することができる。
5.回路構成
 次に、本発明の実施の形態に係る磁気メモリ素子70を有する磁気メモリセル80に書き込み電流及び読み出し電流を導入するための回路構成について説明する。図5は、本発明の実施の形態に係る磁気メモリセル80の1ビット分の回路の構成の一例を示すブロック図である。図5の例では、磁気メモリセル80は、磁気メモリ素子70、トランジスタTRa、TRbを備える。磁気メモリ素子70は3端子の素子であり、ワード線WL、グラウンド線GL、及びビット線対BLa、BLbに接続されている。例えば、リファレンス層40につながる端子は、読み出しのためのグラウンド線GLに接続されている。(第1磁化固定層群60aを経由して)第1磁化固定領域11aにつながる端子は、トランジスタTRaのソース/ドレインの一方に接続され、ソース/ドレインの他方は、ビット線BLaに接続されている。(第2磁化固定層群60bを経由して)第2磁化固定領域11bにつながる端子は、トランジスタTRbのソース/ドレインの一方に接続され、ソース/ドレインの他方は、ビット線BLbに接続されている。トランジスタTRa、TRbのゲートは、共通のワード線WLに接続されている。
 データ書き込み時、ワード線WLはHighレベルに設定され、トランジスタTRa、TRbがONされる。また、ビット線対BLa、BLbのいずれか一方がHighレベルに設定され、他方がLowレベル(グラウンドレベル)に設定される。その結果、トランジスタTRa、TRb、第1磁化自由層10を経由して、ビット線BLaとビット線BLbとの間で書き込み電流Iwriteが流れる。
 データ読み出し時、ワード線WLはHighレベルに設定され、トランジスタTRa、TRbがONされる。また、ビット線BLaはオープン状態に設定され、ビット線BLbはHighレベルに設定される。その結果、読み出し電流Ireadが、ビット線BLbからトランジスタTRb及び磁気メモリ素子70のMTJを貫通してグラウンド線GLへ流れる。これによって磁気抵抗効果を利用した読み出しが可能となる。
 図6は、本発明の実施の形態に係る磁気メモリ90の構成の一例を示すブロック図である。磁気メモリ90は、メモリセルアレイ110、Xドライバ120、Yドライバ130、コントローラ140を備えている。メモリセルアレイ110は、アレイ状に配置された複数の磁気メモリセル80を有している。磁気メモリセル80の各々は、上述の磁気メモリ素子70を有している。既出の図5で示されたように、各磁気メモリセル80は、ワード線WL、グラウンド線GL、及びビット線対BLa、BLbに接続されている。Xドライバ120は、複数のワード線WLに接続されており、それら複数のワード線WLのうちアクセス対象の磁気メモリセル80につながる選択ワード線を駆動する。Yドライバ130は、複数のビット線対BLa、BLbに接続されており、各ビット線をデータ書き込みあるいはデータ読み出しに応じた状態に設定する。コントローラ140は、データ書き込みあるいはデータ読み出しに応じて、Xドライバ120とYドライバ130のそれぞれを制御する。
6.レイアウト
 次に、本発明の実施の形態に係る磁気メモリセル80のレイアウトについて説明する。図7A及び図7Bは、それぞれ本発明の実施の形態に係る磁気メモリセル80のレイアウトの一例を模式的に示すx-y平面図、及びx-z断面図である。ただし、図7Bは、図7AにおけるA-A’断面である。図7A及び図7Bにおいては、トランジスタTRa、TRbはy方向に延伸して設けられており、かつ一方のソース/ドレインが二つの磁気メモリ80の間で共有されている。共有されている側のソース/ドレインはViaを介して最上層のビット線BLa、BLbに接続される。ビット線BLa、BLbはy方向に延伸して設けられている。またトランジスタTRa、TRbのゲート電極は共通のワード線WLに接続される。ワード線WLはx方向に延伸して設けられている。また、ビット線BLa、ビット線BLbと接続されないソース/ドレインは磁気メモリ素子70に接続される。また磁気メモリ素子70のうちのMTJ側の端子は、上層においてグラウンド線GLに接続される。グラウンド線GLはx方向に延伸して設けられている。
 ここで、磁気メモリ素子70においては、好適には磁化自由層10がアスペクト比3の長方形であり、MTJはx-y面内において磁化自由層10内に収まるように設けられる。従って磁気メモリ素子70はアスペクト比3の長方形となる。このとき磁気メモリセル80は図に示されているように、3F×4F=12Fのセル面積となる。ここでFは設計ルール(またはメタル層ピッチの1/2)である。図7A及び図7Bのレイアウトで実現されている12Fというセル面積は、高速MRAMに適した2T-1MTJ回路構成における最小レイアウトである。従って、本発明の実施の形態に係る磁気メモリ素子70を用いることによって高速MRAMのセル面積を極限まで低減できることができ、製造コストを抑制することができる。
7.材料
 次に、第1磁化自由層10、第2磁化自由層20、非磁性層30、リファレンス層40、導電層50、及び磁化固定層群60に用いることのできる材料について説明する。
 第1磁化自由層10は前述の通り垂直磁気異方性を有する強磁性体により構成されることが好ましい。具体的にはFe-Pt合金、Fe-Pd合金、Co-Pt合金、Co-Pd合金、Tb-Fe-Co合金、Gd-Fe-Co合金、Tb-Fe合金、Tb-Co合金、Gd-Fe合金、Gd-Co合金、Co-Cr-Pt合金、Co-Re-Pt合金、Co-Ru-Pt合金、Co-W合金などの合金系材料のほか、Co/Pt積層膜、Co/Pd積層膜、Co/Ni積層膜、Co/Cu積層膜、Co/Ag積層膜、Co/Au積層膜、Fe/Pt積層膜、Fe/Pd積 層膜、Fe/Au積層膜などの交互積層膜が例示される。特にこの中で発明者らはCo/Ni積層膜を用いて制御性の高い電流誘起磁壁移動が実現できることを実験的に確認しており(非特許文献5(Applied Phisics Express,vol.1,p.101303(2008)))、この点でCo/Ni積層膜が磁化自由層10の好適な材料として挙げられる。
 第2磁化自由層20は面内磁気異方性を有する強磁性体により構成される。さらに磁化自由領域12の磁化方向に敏感に反応する必要があるため、磁気的にソフトである必要がある。このような材料としては、Ni-Fe、Co-Fe-Bなどが例示される。非磁性層30は絶縁性材料により構成されることが好ましい。具体的にはMg-O、Al-O、Al-N、Ti-Oなどが例示される。リファレンス層40は面内磁気異方性を有する強磁性体から構成される。具体的には多くの材料を用いることができ、代表的にはFe、Co、Niのいずれかを含有する。またその磁化方向は一方向に固定されている必要があり、さらに外部への漏洩磁界が小さいことが好ましい。このために前述のように、積層フェリ結合を有する積層構造としたり、反強磁性層を隣接させたりすることが好ましい。具体的なリファレンス層40の積層構造としては、非磁性層30側から順にCo-Fe-B/Ru/Co-Fe/Pt-Mnなどが例示される。
 導電層50は導電性の材料であればあらゆる材料を用いることができる。具体的にはTa、W、Ti、Ru、Cu、Alなどが例示される。磁化固定層群60は強磁性体を含有する。このうち図1A~図1Dに示されるように磁化固定層群60が第1磁化固定層群60a、第2磁化固定層群60bから構成され、第1磁化固定層群60a、第2磁化固定層群60bがいずれも単一の強磁性体から構成される場合の例として、その材料は垂直磁気異方性を有する強磁性体により構成されてもよい。具体的に用いることのできる材料は、第1磁化自由層10で例示した材料と重複するので省略する。
8.効果
 次に、本発明で得られる効果について説明する。
 本発明においては、電流誘起磁壁移動の起こる第1磁化自由層10が垂直磁気異方性を有する強磁性体により構成されることによって書き込み電流を低減することができる。例えば第1磁化自由層10の材料を適切に選択することによって書き込み電流密度を5×1011[A/m]程度まで低減できる。このとき、第1磁化自由層10の幅を90nm、膜厚を4nmとすると、書き込み電流は1.8mA程度となる。従って高速動作に適した2T-1MTJ回路構成における最小レイアウトが可能となる。
 また本発明においては、読み出し用のMTJは第2磁化自由層20、非磁性層30、リファレンス層40から構成され、第2磁化自由層20、リファレンス層40は面内磁気異方性を有する強磁性体により構成される。従って比較的容易に100%を超えるような大きなTMR比を得ることができ、高速での読み出しが可能となる。
 さらにこの読み出し用のMTJはx-y面内において第1磁化自由層10内に収まるようにして形成される。従ってセル面積は増大せず、特に第1磁化自由層10がアスペクト比3の長方形により形成されたとき、12Fでのレイアウトが可能となる。従って既存の混載メモリと同程度のコストパフォーマンスを有するMRAMを提供することができる。
 本発明では、垂直磁気異方性を有する強磁性体の第1磁化自由層10を用いることによって、磁壁移動型磁気メモリ素子70の第1磁化自由層10での書き込み電流を低減することができる。加えて、面内磁気異方性を有する強磁性体の第2磁化自由層20及びリファレンス層40を用いて読み出し用のMTJを構成することによって、大きな読み出し信号を得ることができる。また読み出し用のMTJを基板平行平面内において第1磁化自由層10に収まるように形成することによってセル面積の増加を防ぐことができる。それにより、12Fのような小さなメモリセルでのレイアウトが可能となる。以上のように、本発明は、書き込み電流が小さく、読み出し信号が大きく、且つセル面積の小さな磁壁移動型の磁気メモリ素子や、それを用いた磁気メモリ(例示:MRAM)を提供することができる。
9.変形例
 以上で説明された磁気メモリは以下に説明される変形例を用いて実施してもよい。
(第1の変形例)
 図8A~図8Cは、本発明の実施の形態に係る磁気メモリ素子70の第1の変形例の構造を模式的に示す断面図である。第1の変形例は第2磁化自由層20、非磁性層30、リファレンス層40から構成されるMTJの位置に関する。
 磁気メモリ素子70では、第2磁化自由層20が磁化自由領域12に対してx-y面内でずれて設けられればどのような位置に配置されても構わない。従って、図8Aに示されるように第2磁化固定領域11bの上部に配置されてもよいし、図8Bに示されるように第1磁化固定領域11aの上部に設けられてもよいし、図8Cに示されるように第2磁化固定領域11bの下部に配置されてもよし、図示されないが第1磁化固定領域11aの下部に配置されてもよい。
 なお、いずれの場合においても第2磁化自由層20、非磁性層30、リファレンス層40から構成されるMTJはx-y面内において第1磁化自由層10に収まるようにして形成されることが好ましい。これは、第2磁化自由層20、非磁性層30、リファレンス層40から構成されるMTJはx-y面内において第1磁化自由層10に収まるようにして形成されることで、前述の通りセル面積を低減することが可能であるためである。なお、図8A、図8B、図8Cのいずれの場合においても磁気メモリ素子70はアスペクト比が3の長方形の形状をしており、12Fのセル面積でのレイアウトが可能である。
(第2の変形例)
 図9A~図9Eは、本発明の実施の形態に係る磁気メモリ素子70の第2の変形例の構造を模式的に示す断面図である。第2の変形例は磁化固定層群60の構造に関する。
 磁気メモリ素子70では、磁化自由層10の第1磁化固定領域11a、及び第2磁化固定領域11bの磁化を反平行方向に向け、またその磁化を一方向に固定するために磁化固定層群60が設けられることが好ましい。ここでこの磁化固定層群60の構造には任意性がある。
 図9Aはそのうちの一例であり、第1磁化固定領域11aの下側に隣接して第1磁化固定層群60aが設けられ、第2磁化固定領域11bの下側に隣接して第2磁化固定層群60bが隣接して設けられている。ここで第1磁化固定層群60aと第2磁化固定層群60bは磁気的性質が異なっていてもよい。
 図9Bは他の一例として、磁化固定層群60が一つだけ設けられる例が示されている。図9Bにおいては第1磁化固定領域11aのみに隣接して第1磁化固定層群60aが設けられており、第2磁化固定領域11bの近傍には磁化固定層群60bは設けられていない。このような場合にも第1磁化固定領域11aと第2磁化固定領域11bの磁化を反平行方向に向けることは可能である。
 図9Cは他の一例として、磁化固定層群60が第1磁化自由層10に対して上側に隣接して設けられる例が示されている。図9Cに示されているように磁化固定層群60は第1磁化自由層10に対して上側に設けられてもよい、これ以外にも第1磁化固定領域11a、且つ/又は第2磁化固定領域11bに対して磁気的な影響を及ぼすことができる範囲においてどのような場所に配置されても構わない。
 図9Dは他の一例として、磁化固定層群60が第1磁化自由層10に対して上側、及び下側の両方に隣接して設けられる例が示されている。図9Dにおいては第1磁化固定領域11aに隣接して第1磁化固定層群60a、第3磁化固定層群60cが隣接して設けられており、また第2磁化固定領域11bに隣接して第2磁化固定層群60b、第3磁化固定層軍60dが隣接して設けられている。このように磁化固定層群60の数は任意であり、いくつ設けられても構わない。
 図9Eは他の一例として、複数設けられる磁化固定層群60が互いに構造が異なる例が示されている。図9Eにおいては第1磁化固定領域11aに隣接して設けられる第1磁化固定層群60aの膜厚が第2磁化固定領域11bに隣接して設けられる第2磁化固定層群60bの膜厚よりも厚く形成される例が示されている。このように第1磁化固定層群60aと第2磁化固定層群60bの構造は互いに異なっていてもよく、膜厚の他に形状などが異なっていてもよい。
(第3の変形例)
 図10A~図10Cは、本発明の実施の形態に係る磁気メモリ素子70の第3の変形例の構造を模式的に示す断面図である。第3の変形例は第2磁化自由層20、非磁性層30、リファレンス層40から構成されるMTJと磁化固定層郡60との位置関係に関する。
 本発明においては、MTJと磁化固定層群60の位置関係には任意性がある。図10Aはその一例を示している。図10Aにおいては、MTJは第1磁化自由層10の上側に設けられており、また磁化固定層群60は第1磁化自由層10の下側に設けられている。
 図10Bは別の一例を示している。図10Bにおいては、MTJも磁化固定層群60も第1磁化自由層10の上側に設けられている。なお、この場合、第1磁化自由層10に対して磁化固定層群60がMTJよりも近い位置に設けられることが好ましい。図10Bのような構成の場合、第2磁化自由層20と磁化自由領域12の距離が離れるため、図2C、図2Dで説明された漏洩磁界による静磁結合は弱まるが、磁化固定層群60の膜厚が過度に厚くない限り、この磁気結合によって第2磁化自由層20の磁化は磁化自由領域12の磁化方向に応答することができる。また図10Bのような構造を用いた場合、磁化自由層10、磁化固定層群60、導電層50、第2磁化自由層20、非磁性層30、リファレンス層40を一括で堆積させ、パターニングを行うことにより磁気メモリ素子70を形成することができる。従ってプロセスが容易となる。
 図10Cは別の一例を示している。図10Cにおいては、第1磁化固定領域11aに隣接して第1磁化固定層群60aが設けられており、一方第2磁化固定領域11bに隣接しては磁化固定層群60は設けられていない。そして第2磁化固定領域11bの上部には導電層50、及び第2磁化自由層20、非磁性層30、リファレンス層40が設けられている。このような構成を用いた場合、第2磁化自由層20と磁化自由領域12の距離を近づけることができるので、第2磁化自由層20と磁化自由領域12の間での漏洩磁界による静磁結合を強めることができる。ここで、第1磁化固定層群60aと、導電層50、第2磁化自由層20、非磁性層30、リファレンス層40のいずれか一方を非連続で堆積させる必要がある。本形態の場合、第1磁化固定層群60aを先に堆積し、導電層50、第2磁化自由層20、非磁性層30、リファレンス層40は第1磁化固定層群60aのパターニングを行った後で堆積、パターニングしてもよいし、逆に導電層50、第2磁化自由層20、非磁性層30、リファレンス層40を先に堆積し、第1磁化固定層群60aは導電層50、第2磁化自由層20、非磁性層30、リファレンス層40のパターニングを行った後で堆積、パターニングをしてもよい。
(第4の変形例)
 図11A及び図11Bは、本発明の実施の形態に係る磁気メモリ素子70の第4の変形例の形態を示す模式図である。第4の変形例は第2磁化自由層20の磁気異方性の方向に関する。
 磁気メモリ素子70では、情報は第1磁化自由層10の中の磁化自由領域12の磁化方向として格納される。そして読み出しの際は、磁化自由領域12の磁化方向を反映した磁化方向をとる第2磁化自由層20を含むMTJにおけるTMR比として読み出される。一般的なMRAMにおいては、情報はフリー層に格納され、読み出しの際はこのフリー層の磁化とリファレンス層の磁化の相対角度によって生ずるTMR比が用いられる。ここで本発明の場合、一般的なフリー層が書き込み用のフリー層である第1磁化自由層10と読み出し用のフリー層である第2磁化自由層20に分けて設けられることが特徴である。ここで第2磁化自由層20の磁化は磁化自由領域12の磁化方向に応じて磁化方向に変化が起こればよく、格納される情報(“0”、“1”)に対応して磁化方向が180度変化してもよいし、しなくてもよい。そしてこのような観点から第2磁化自由層20の磁気異方性の方向には任意性が生ずる。
 図11Aは第2磁化自由層20の磁気異方性の方向の一例を示している。図11Aにおいては第2磁化自由層20の磁気異方性はy方向に付与されている。この場合、y方向に異方性磁界Haが設けられているため、磁化自由領域12の磁化が+z方向、または-z方向を向いたときに、第2磁化自由層20の磁化はy軸回りで+x方向、または-x方向へと回転する。すなわち第2磁化自由層20は困難軸動作となる。第2磁化自由層20が困難軸動作となった場合、磁化自由領域12から生ずる漏洩磁界が小さくても敏感に反応することができる。
 一方、図11Bは第2磁化自由層20の磁気異方性の方向の他の一例を示している。図11Bにおいては第2磁化自由層20の磁気異方性はx方向に付与されている。つまり、x方向に異方性磁界Haが付与されている。この場合、磁化自由領域12の磁化が+z方向、または-z方向を向いたときに、第2磁化自由層20の磁化は+x方向、または-x方向のいずれかの方向を向く。すなわち、第2磁化自由層20は容易軸動作となる。第2磁化自由層20が容易軸動作となった場合、第2磁化自由層20の磁化方向の変化が180度となるため、このMTJにおいて得られる最大のTMR比を得ることができる。
 なお、図11A、図11Bで示されたような磁気異方性は、結晶構造に起因した結晶磁気異方性によって付与されてもよく、また形状に起因した形状磁気異方性によって付与されてもよく、或いは磁歪と応力に起因した応力誘起磁気異方性によって付与されてもよい。応力誘起磁気異方性によって付与される場合、周辺に配置される配線の材料、膜厚などによってその大きさをコントロールすることができる。
(第5の変形例)
 図12A及び図12Bは、本発明の実施の形態に係る磁気メモリ素子70の第5の変形例の形態を模式的に示す断面図である。第5の変形例は第2磁化自由層20、非磁性層30、リファレンス層40の積層順序に関する。
 磁気メモリ素子70では、第2磁化自由層20、非磁性層30、リファレンス層40により構成されるMTJはこの順に積層される範囲で、その積層順序には任意性がある。すなわち、例えば図12Aに示されているように、第2磁化自由層20が第1磁化自由層10側に配置されてもよく、また図12Bに示されているように、リファレンス層20が第1磁化自由層10側に配置されてもよい。
 図12Aに示されたように第2磁化自由層20が第1磁化自由層10側に配置された場合、第2磁化自由層20と磁化自由領域12の距離が近くなるため、第2磁化自由層20と磁化自由領域12の間での漏洩磁界による静磁結合が強くなる。一方、図12Bに示されたようにリファレンス層40が第1磁化自由層10側に配置された場合、第2磁化自由層20、非磁性層30、リファレンス層40から構成されるMTJはボトムピン構造となる。ボトムピン構造のMTJは図12Aに示されるようなトップピン構造のMTJに比べて一般的には大きなTMR比を得やすい。
(第6の変形例)
 図13A及び図13Bは、本発明の実施の形態に係る磁気メモリ素子70の第6の変形例の構造を模式的に示す断面図である。第6の変形例は第1磁化自由層10と磁化固定層群60の位置関係に関する。
 磁気メモリ素子70では、磁化固定層群60が第1磁化自由層10の近傍に設けられ、磁化自由層10の第1磁化固定領域11a、及び第2磁化固定領域11bの磁化を反平行方向に向け、またその磁化を一方向に固定する。ここでこの目的を果たすためには磁化固定層群60は第1磁化自由層10に隣接していなくてもよく、異なる層がこの間に挿入されてもよい。例えば図13Aに示されるように磁化固定層群60の上部にキャップ層65が隣接して設けられてもよい。また、図13Bに示されるように第1磁化自由層10の下部に下地層15が隣接して設けられてもよい。
 図13Aに示されるように磁化固定層群60の上部に隣接してキャップ層65を設けることによって、磁化固定層群60の形成過程で磁化固定層群60を製造プロセス中のダメージから保護することができる。また図13Bに示されるように第1磁化自由層10の下部に隣接して下地層15を設けることによって、第1磁化自由層10において好ましい磁気特性が得られるように結晶構造を調整することができる。
 本発明の活用例として、携帯電話、モバイルパソコンやPDAに使用される不揮発性の半導体メモリ装置や、自動車などに使用される不揮発性メモリ内蔵のマイコンが挙げられる。
 以上、実施の形態を参照して本発明を説明したが、本発明は上記実施の形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。また、実施の形態及び各変形例に示される技術は、技術的な矛盾が発生しない限り、互いに適用可能である。
 この出願は、2009年1月30日に出願された特許出願番号2009-020138号の日本特許出願に基づいており、その出願による優先権の利益を主張し、その出願の開示は、引用することにより、そっくりそのままここに組み込まれている。

Claims (9)

  1.  垂直磁気異方性を有する強磁性体から構成された第1磁化自由層と、
     前記第1磁化自由層の近傍に設けられ、面内磁気異方性を有する強磁性体から構成された第2磁化自由層と、
     面内磁気異方性を有する強磁性体から構成されたリファレンス層と、
     前記第2磁化自由層と前記リファレンス層との間に設けられた非磁性層と
     を具備し、
     前記第1磁化自由層は、
      磁化が固定される第1磁化固定領域と、
      磁化が固定される第2磁化固定領域と、
      前記第1磁化固定領域と前記第2磁化固定領域とに接続され、磁化が反転可能な磁化自由領域とを備え、
     前記第2磁化自由層は基板に平行な平面内において前記第1磁化自由層内に収まり、
     前記第2磁化自由層は前記平面内において前記磁化自由領域に対して第1方向にずれて設けられる
     磁気メモリ素子。
  2.  請求項1記載の磁気メモリ素子であって、
     前記リファレンス層は前記第1方向に略平行方向に固定された磁化を有する
     磁気メモリ素子。
  3.  請求項1又は2に記載の磁気メモリ素子であって、
     前記第2磁化自由層は、前記平面内において前記第1磁化固定領域、及び前記第2磁化固定領域のいずれか一方の内に収まるようにして設けられる
     磁気メモリ素子。
  4.  請求項3記載の磁気メモリ素子であって、
     前記第1磁化固定領域、前記磁化自由領域、前記第2磁化固定領域がこの順に直線状に配置され、
     前記第1磁化自由層のアスペクト比が約3の長方形である
     磁気メモリ素子。
  5.  請求項3又は4に記載の磁気メモリ素子であって、
     前記第1磁化自由層に磁気的に結合して磁化固定層群が設けられる
     磁気メモリ素子。
  6.  請求項3又は4に記載の磁気メモリ素子であって、
     前記第1磁化自由層と、前記第2磁化自由層又は前記リファレンス層とに電気的に接続して設けられた導電層を更に具備する
     磁気メモリ素子。
  7.  請求項5又は6に記載の磁気メモリ素子であって、
     前記第2磁化自由層及び前記磁化固定層群が、前記第1磁化自由層に対して互いに反対側に設けられる
     磁気メモリ素子。
  8.  請求項5又は6に記載の磁気メモリ素子であって、
     前記第2磁化自由層及び前記磁化固定層群が、前記第1磁化自由層に対して互いに同じ側に設けられる
     磁気メモリ素子。
  9.  請求項1乃至8のいずれか一項に記載の磁気メモリ素子を備えた複数の磁気メモリセルが行列状に配置された
     磁気メモリ。
PCT/JP2010/051098 2009-01-30 2010-01-28 磁気メモリ素子、磁気メモリ WO2010087389A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010548543A JP5483025B2 (ja) 2009-01-30 2010-01-28 磁気メモリ素子、磁気メモリ
US13/145,082 US8994130B2 (en) 2009-01-30 2010-01-28 Magnetic memory element and magnetic memory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009020138 2009-01-30
JP2009-020138 2009-01-30

Publications (1)

Publication Number Publication Date
WO2010087389A1 true WO2010087389A1 (ja) 2010-08-05

Family

ID=42395647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051098 WO2010087389A1 (ja) 2009-01-30 2010-01-28 磁気メモリ素子、磁気メモリ

Country Status (3)

Country Link
US (1) US8994130B2 (ja)
JP (1) JP5483025B2 (ja)
WO (1) WO2010087389A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021250924A1 (ja) * 2020-06-11 2021-12-16 株式会社村田製作所 磁気センサチップおよび磁気センサ装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033076A (ja) * 2012-08-03 2014-02-20 Toshiba Corp 磁気抵抗効果素子
WO2015047368A1 (en) * 2013-09-30 2015-04-02 Intel Corporation Spintronic logic element
US10079337B2 (en) 2017-01-11 2018-09-18 International Business Machines Corporation Double magnetic tunnel junction with dynamic reference layer
US10510390B2 (en) * 2017-06-07 2019-12-17 International Business Machines Corporation Magnetic exchange coupled MTJ free layer having low switching current and high data retention
US10332576B2 (en) * 2017-06-07 2019-06-25 International Business Machines Corporation Magnetic exchange coupled MTJ free layer with double tunnel barriers having low switching current and high data retention
JP6499798B1 (ja) 2018-09-28 2019-04-10 Tdk株式会社 磁気記録アレイ
US10923169B2 (en) 2018-09-28 2021-02-16 Tdk Corporation Magnetic recording array and magnetic recording device
WO2022070378A1 (ja) * 2020-10-01 2022-04-07 Tdk株式会社 磁壁移動素子および磁気アレイ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073930A (ja) * 2004-09-06 2006-03-16 Canon Inc 磁壁移動を利用した磁気抵抗効果素子の磁化状態の変化方法及び該方法を用いた磁気メモリ素子、固体磁気メモリ
JP2007103663A (ja) * 2005-10-04 2007-04-19 Toshiba Corp 磁気素子、記録再生素子、論理演算素子および論理演算器
WO2007119446A1 (ja) * 2006-03-24 2007-10-25 Nec Corporation Mram、及びmramのデータ読み書き方法
WO2008068967A1 (ja) * 2006-12-06 2008-06-12 Nec Corporation 磁気ランダムアクセスメモリ及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4413603B2 (ja) 2003-12-24 2010-02-10 株式会社東芝 磁気記憶装置及び磁気情報の書込み方法
JP4932275B2 (ja) 2005-02-23 2012-05-16 株式会社日立製作所 磁気抵抗効果素子
US8416611B2 (en) * 2007-06-25 2013-04-09 Nec Corporation Magnetoresistance effect element and magnetic random access memory
JP5338666B2 (ja) * 2007-08-03 2013-11-13 日本電気株式会社 磁壁ランダムアクセスメモリ
US8120127B2 (en) * 2007-08-03 2012-02-21 Nec Corporation Magnetic random access memory and method of manufacturing the same
WO2009037910A1 (ja) * 2007-09-19 2009-03-26 Nec Corporation 磁気ランダムアクセスメモリ、その書き込み方法、及び磁気抵抗効果素子
JP5299642B2 (ja) * 2008-02-19 2013-09-25 日本電気株式会社 磁気ランダムアクセスメモリ
JP5488465B2 (ja) * 2008-07-10 2014-05-14 日本電気株式会社 磁気ランダムアクセスメモリ、並びに磁気ランダムアクセスメモリの初期化方法及び書き込み方法
JP5545213B2 (ja) * 2008-07-15 2014-07-09 日本電気株式会社 磁気ランダムアクセスメモリ及びその初期化方法
US8687414B2 (en) * 2008-12-25 2014-04-01 Nec Corporation Magnetic memory element and magnetic random access memory
WO2010074132A1 (ja) * 2008-12-25 2010-07-01 日本電気株式会社 磁気メモリ素子及び磁気ランダムアクセスメモリ
JPWO2011052475A1 (ja) * 2009-10-26 2013-03-21 日本電気株式会社 磁気メモリ素子、磁気メモリ、及びその初期化方法
US9379312B2 (en) * 2009-12-24 2016-06-28 Nec Corporation Magnetoresistive effect element and magnetic random access memory using the same
US9222994B2 (en) * 2011-09-19 2015-12-29 Tdk Corporation Perpendicular spin torque oscillator FMR frequency measurement method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073930A (ja) * 2004-09-06 2006-03-16 Canon Inc 磁壁移動を利用した磁気抵抗効果素子の磁化状態の変化方法及び該方法を用いた磁気メモリ素子、固体磁気メモリ
JP2007103663A (ja) * 2005-10-04 2007-04-19 Toshiba Corp 磁気素子、記録再生素子、論理演算素子および論理演算器
WO2007119446A1 (ja) * 2006-03-24 2007-10-25 Nec Corporation Mram、及びmramのデータ読み書き方法
WO2008068967A1 (ja) * 2006-12-06 2008-06-12 Nec Corporation 磁気ランダムアクセスメモリ及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021250924A1 (ja) * 2020-06-11 2021-12-16 株式会社村田製作所 磁気センサチップおよび磁気センサ装置

Also Published As

Publication number Publication date
JP5483025B2 (ja) 2014-05-07
JPWO2010087389A1 (ja) 2012-08-02
US8994130B2 (en) 2015-03-31
US20110297909A1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP6304697B2 (ja) 磁気メモリ素子および磁気メモリ
JP5483025B2 (ja) 磁気メモリ素子、磁気メモリ
JP5696909B2 (ja) 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
JP5360599B2 (ja) 磁気抵抗効果素子及び磁気ランダムアクセスメモリ
JP5382348B2 (ja) 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ
JP5814680B2 (ja) 磁気抵抗素子及び磁気メモリ
WO2012002156A1 (ja) 磁気メモリ素子、磁気メモリ
JP5664556B2 (ja) 磁気抵抗効果素子及びそれを用いた磁気ランダムアクセスメモリ
JPWO2010095589A1 (ja) 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ
JP5370907B2 (ja) 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ
JP5652472B2 (ja) 磁気メモリ素子、磁気メモリ、及びその製造方法
JP5257831B2 (ja) 磁気ランダムアクセスメモリ、及びその初期化方法
JP5472820B2 (ja) 磁気抵抗素子、mram及び磁気抵抗素子の初期化方法
JP5445970B2 (ja) 磁気抵抗効果素子及び磁気ランダムアクセスメモリ
WO2011052475A1 (ja) 磁気メモリ素子、磁気メモリ、及びその初期化方法
JP5445133B2 (ja) 磁気ランダムアクセスメモリ、その書き込み方法、及び磁気抵抗効果素子
WO2011037143A1 (ja) 磁気メモリ
JP5397384B2 (ja) 磁性記憶素子の初期化方法
JP2010219104A (ja) 磁気メモリ素子、磁気メモリ、及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735854

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010548543

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13145082

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10735854

Country of ref document: EP

Kind code of ref document: A1