WO2011118461A1 - 磁気メモリ - Google Patents
磁気メモリ Download PDFInfo
- Publication number
- WO2011118461A1 WO2011118461A1 PCT/JP2011/056158 JP2011056158W WO2011118461A1 WO 2011118461 A1 WO2011118461 A1 WO 2011118461A1 JP 2011056158 W JP2011056158 W JP 2011056158W WO 2011118461 A1 WO2011118461 A1 WO 2011118461A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetization
- layer
- magnetic
- underlayer
- magnetic memory
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 160
- 230000015654 memory Effects 0.000 title claims abstract description 82
- 230000005415 magnetization Effects 0.000 claims abstract description 245
- 230000008878 coupling Effects 0.000 claims abstract description 12
- 238000010168 coupling process Methods 0.000 claims abstract description 12
- 238000005859 coupling reaction Methods 0.000 claims abstract description 12
- 230000002441 reversible effect Effects 0.000 claims abstract description 6
- 238000013500 data storage Methods 0.000 claims description 41
- 239000000463 material Substances 0.000 claims description 34
- 239000000696 magnetic material Substances 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052763 palladium Inorganic materials 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 238000000034 method Methods 0.000 description 22
- 239000000758 substrate Substances 0.000 description 10
- 239000013078 crystal Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 229910003321 CoFe Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 239000002772 conduction electron Substances 0.000 description 4
- 239000003302 ferromagnetic material Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/82—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3254—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3286—Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3295—Spin-exchange coupled multilayers wherein the magnetic pinned or free layers are laminated without anti-parallel coupling within the pinned and free layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/20—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
- H10B61/22—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
Definitions
- the present invention relates to a magnetic memory.
- the present invention relates to a magnetic memory that uses current-induced domain wall motion and includes a data storage layer having perpendicular magnetic anisotropy.
- Magnetic memory in particular, Magnetic Random Access Memory (MRAM)
- MRAM Magnetic Random Access Memory
- the MRAM uses a magnetic material as a storage element and stores data corresponding to the magnetization direction of the magnetic material.
- the magnetization of the magnetic material is switched to a direction corresponding to the data.
- a current hereinafter referred to as “write current”.
- Non-Patent Document 1 N. Sakimura et al., MRAM Cell Technology for Over 500-MHz SoC, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42,. It is shown that the cell area becomes equal to that of an existing embedded SRAM by reducing the write current to 0.5 mA or less.
- the most common method of writing data to the MRAM is to arrange a wiring for writing around the magnetic memory element and generate a magnetic field by flowing a write current through the wiring, and the magnetic field of the magnetic memory element is generated by the magnetic field.
- This is a method of switching the magnetization direction. According to this method, writing in 1 nanosecond or less is possible in principle, which is suitable for realizing a high-speed MRAM.
- the magnetic field for switching the magnetization of the magnetic material that has ensured thermal stability and disturbance magnetic field resistance is generally about several tens of Oe (Yersted). In order to generate such a magnetic field, several A write current of about mA is required.
- the chip area is inevitably increased, and the power consumption required for writing increases, so that it is inferior in competitiveness compared to other random access memories.
- the write current further increases, which is not preferable in terms of scaling.
- the first is a spin-injection magnetization reversal (Spin Torque Transfer) method.
- the second magnetic layer is composed of a first magnetic layer having reversible magnetization and a second magnetic layer that is electrically connected thereto and whose magnetization direction is fixed.
- a write current is passed between the magnetic layer and the first magnetic layer.
- the magnetization of the first magnetic layer can be reversed by the interaction between the spin-polarized conduction electrons and the localized electrons in the first magnetic layer.
- a magnetoresistive effect developed between the first magnetic layer and the second magnetic layer is used. Therefore, a magnetic memory element using spin injection magnetization reversal is a two-terminal element.
- spin transfer magnetization reversal occurs at a certain current density or higher, the current required for writing is reduced if the element size is reduced. That is, it can be said that the spin injection magnetization reversal method is excellent in scaling.
- an insulating layer is provided between the first magnetic layer and the second magnetic layer, and a relatively large write current must be passed through the insulating layer during writing. Rewriting durability and reliability are issues. Further, since the write current path and the read current path are the same, there is a concern about erroneous writing during reading. Thus, although spin transfer magnetization reversal is excellent in scaleability, there are some barriers to practical use.
- the second method is a current-induced domain wall motion (Current Drive Domain Wall Motion) method.
- An MRAM using current-induced domain wall motion is disclosed in, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2005-191032).
- Patent Document 1 Japanese Patent Laid-Open No. 2005-191032.
- a magnetic layer (data storage layer) having reversible magnetization is provided, and the magnetizations at both ends of the data storage layer are fixed so as to be substantially antiparallel to each other. .
- Such a magnetization arrangement introduces a domain wall into the data storage layer.
- Non-Patent Document 2 (A. Yamaguchi et al., Real-Space Observation of Current-Drived Domain Wall Motion in Submicron Magnificent 7: WISIVAL.
- the domain wall moves in the direction of conduction electrons. Therefore, by supplying a write current in the in-plane direction to the data storage layer, it is possible to move the domain wall in a direction corresponding to the current direction and write desired data.
- a magnetic tunnel junction including a region where the domain wall moves is used, and reading is performed based on the magnetoresistance effect. Therefore, a magnetic memory element using current-induced domain wall motion is a three-terminal element.
- current induced domain wall motion also occurs when the current density is greater than a certain current density. Therefore, it can be said that the current induced domain wall motion method is also excellent in scaling.
- the write current does not flow through the insulating layer, and the write current path and the read current path are different. Therefore, the above-mentioned problem in the case of spin injection magnetization reversal is solved.
- Non-Patent Document 2 a current density of about 1 ⁇ 10 8 [A / cm 2 ] is reported as a current density necessary for current-induced domain wall motion.
- Non-Patent Document 3 in (S. Fukami et al., Micromagnetic analysis of current driven domain wall motion in nanostrips with perpendicular magnetic anisotropy, JOURNAL OF APPLIED PHYSICS, VOL. 103, 07E718, 2008.), the current-induced domain wall motion type
- the utility of perpendicular magnetic anisotropy materials is described. Specifically, it has been found through micromagnetic simulation that the write current can be reduced sufficiently small when the data storage layer in which the domain wall motion occurs has perpendicular magnetic anisotropy.
- Japanese Patent Application Laid-Open No. 2008-135503 discloses a top pin type magnetoresistive element.
- the magnetoresistive element includes an underlayer, a magnetization free layer formed on the underlayer, and a magnetization fixed layer formed on the magnetization free layer via a nonmagnetic layer 34.
- the underlayer is formed of a crystalline metal material.
- the crystal of the underlayer has a plurality of types of crystal orientation components. Two or more types of the plurality of types of crystal orientation components are in contact with the magnetization free layer.
- An MRAM disclosed in Patent Document 3 Japanese Unexamined Patent Application Publication No. 2009-54715
- a magnetic recording layer that is a ferromagnetic layer having magnetic anisotropy
- a read layer for reading information provided on the magnetic recording layer. And comprising.
- the magnetization recording layer is connected to the boundary between the first magnetization switching region and the magnetization switching region including the first magnetization switching region having the reversible magnetization and the second magnetization switching region, and the magnetization direction is fixed.
- a second magnetization fixed region connected to a boundary between the first magnetization fixed region and the second magnetization switching region and having a fixed magnetization direction.
- a ferromagnetic material having perpendicular magnetic anisotropy is preferably formed as a data storage layer.
- the inventor of the present application paid attention to the following points.
- perpendicular magnetization must be realized using such materials. In other words, it is necessary to realize a crystal orientation such that perpendicular magnetization can be obtained in the data storage layer.
- One object of the present invention is to provide a technique capable of suitably realizing a data storage layer having perpendicular magnetic anisotropy and improving operational reliability in a magnetic memory using current-induced domain wall motion. There is.
- a magnetic memory in one aspect of the present invention, includes a pinning layer that is a perpendicular magnetization film whose magnetization direction is fixed, an underlayer formed on the pinning layer, and a data storage layer that is a perpendicular magnetization film formed on the underlayer.
- the data storage layer includes a magnetization free region whose magnetization direction can be reversed, and a magnetization fixed region that is magnetically coupled to the pinning layer via the underlayer and whose magnetization direction is fixed by the magnetic coupling.
- the underlayer includes a magnetic underlayer formed of a magnetic material.
- FIG. 1A is a side view showing a configuration of a magnetic memory element according to an exemplary embodiment of the present invention.
- FIG. 1B is a plan view of the magnetic memory device shown in FIG. 1A.
- FIG. 2A shows the “0” state of the magnetic memory element.
- FIG. 2B shows the “1” state of the magnetic memory element.
- FIG. 3A is a conceptual diagram illustrating a method of writing data to a magnetic memory element.
- FIG. 3B is a conceptual diagram showing a method of writing data to the magnetic memory element.
- FIG. 4A is a conceptual diagram illustrating a method of reading data from a magnetic memory element.
- FIG. 4B is a conceptual diagram illustrating a method of reading data from a magnetic memory element.
- FIG. 4A is a conceptual diagram illustrating a method of reading data from a magnetic memory element.
- FIG. 5 is a circuit diagram showing a configuration of one magnetic memory cell.
- FIG. 6 is a graph showing a measurement result of the dependency of the magnetization curve on the underlayer thickness.
- FIG. 7 is a graph showing the measurement results of the dependence of the magnetization curve on the underlayer thickness.
- FIG. 8 is a side view showing a modification of the magnetic memory element.
- the magnetic memory according to the present embodiment includes a plurality of magnetic memory cells arranged in an array, and each magnetic memory cell has a magnetic memory element.
- a current-induced domain wall motion type magnetic memory element includes a data storage layer that stores data according to a magnetization state, a read mechanism for reading data stored in the data storage layer, and a current that is introduced into the data storage layer. A current introduction mechanism.
- FIG. 1A and 1B show a configuration example of the magnetic memory element 1 according to the present embodiment.
- 1A is a side view and FIG. 1B is a plan view.
- the z-axis indicates a direction perpendicular to the substrate, and the x-axis and y-axis are parallel to the substrate plane.
- the magnetic memory element 1 includes a magnetization free layer 10, a nonmagnetic layer 20, a pinned layer 30, a base layer 40, a pinning layer 50, and an electrode layer 60.
- the magnetization free layer 10 is the “data storage layer” described above, and is formed of a ferromagnetic material.
- the magnetization free layer 10 is formed of a perpendicular magnetic film having perpendicular magnetic anisotropy.
- the magnetization free layer 10 includes a region where the magnetization direction can be reversed, and stores data according to the magnetization state. More specifically, the magnetization free layer 10 includes a first magnetization fixed region 11a, a second magnetization fixed region 11b, and a magnetization free region 12.
- the magnetization fixed regions 11a and 11b are located on both sides of the magnetization free region 12, and the magnetization free region 12 is sandwiched between the magnetization fixed regions 11a and 11b.
- the magnetizations of the magnetization fixed regions 11a and 11b are fixed in opposite directions. That is, the magnetization directions of the magnetization fixed regions 11a and 11b are antiparallel.
- the magnetization direction of the first magnetization fixed region 11a is fixed in the + z direction
- the magnetization direction of the second magnetization fixed region 11b is fixed in the ⁇ z direction.
- the magnetization direction of the magnetization free region 12 can be reversed, and becomes the + z direction or the ⁇ z direction. Accordingly, a domain wall is formed in the magnetization free layer 10 according to the magnetization direction of the magnetization free region 12.
- the nonmagnetic layer 20 is provided adjacent to the magnetization free layer 10.
- the nonmagnetic layer 20 is provided so as to be adjacent to at least the magnetization free region 12 of the magnetization free layer 10.
- the nonmagnetic layer 20 is formed of a nonmagnetic material, and preferably is formed of an insulator.
- the pinned layer 30 is provided adjacent to the nonmagnetic layer 20 and on the side opposite to the magnetization free layer 10. That is, the pinned layer 30 is connected to the magnetization free layer 10 (magnetization free region 12) through the nonmagnetic layer 20.
- the pinned layer 30 is made of a ferromagnetic material, and its magnetization direction is fixed in one direction.
- the pinned layer 30 is also formed of a perpendicular magnetization film having perpendicular magnetic anisotropy.
- the magnetization direction of the pinned layer 30 is fixed in the + z direction or the ⁇ z direction.
- the magnetization direction of the pinned layer 30 is fixed in the + z direction.
- the magnetization free layer 10 (magnetization free region 12), the nonmagnetic layer 20, and the pinned layer 30 described above form a magnetic tunnel junction (MTJ).
- MTJ magnetic tunnel junction
- the nonmagnetic layer 20 and the pinned layer 30 correspond to a “read mechanism” for reading data stored in the magnetization free layer 10 as a data storage layer.
- the underlayer 40 is provided on the substrate side of the magnetization free layer 10. As will be described in detail later, by using this foundation layer 40 as a foundation, the magnetization free layer 10 having perpendicular magnetic anisotropy is formed on the foundation layer 40. That is, the magnetization free layer 10 is formed on the underlayer 40 so as to be in contact with the underlayer 40. The underlayer 40 is formed on the pinning layer 50.
- a pinning layer 50 is provided on the substrate side of the base layer 40.
- the pinning layer 50 is a perpendicular magnetization film whose magnetization direction is fixed, and plays a role of fixing the magnetization directions of the magnetization fixed regions 11 a and 11 b in the magnetization free layer 10. More specifically, the pinning layer 50 includes a first pinning layer 50a on the first magnetization fixed region 11a side and a second pinning layer 50b on the second magnetization fixed region 11b side.
- the first pinning layer 50a is magnetically coupled to the first magnetization fixed region 11a via the underlayer 40, and the magnetization direction of the first magnetization fixed region 11a is fixed by the magnetic coupling.
- the second pinning layer 50b is magnetically coupled to the second magnetization fixed region 11b through the underlayer 40, and fixes the magnetization direction of the second magnetization fixed region 11b by the magnetic coupling.
- the magnetization directions of the first pinning layer 50a and the second pinning layer 50b are opposite to each other.
- Two electrode layers 60 are provided so as to be connected to each of the first pinning layer 50a and the second pinning layer 50b.
- the electrode layer 60 corresponds to the “current introduction mechanism” described above, and is used to introduce a current into the magnetization free layer 10 as a data storage layer.
- FIGS. 2A and 2B show two memory states that the magnetic memory element 1 shown in FIG. 1A can take.
- the magnetization directions of the magnetization fixed regions 11a and 11b of the magnetization free layer 10 are fixed in the + z direction and the ⁇ z direction, respectively, and the magnetization direction of the pinned layer 30 is fixed in the + z direction.
- the magnetization direction of the magnetization free region 12 of the magnetization free layer 10 is the + z direction.
- the domain wall DW is formed at the boundary between the magnetization free region 12 and the second magnetization free region 11b.
- the magnetization direction of the magnetization free region 12 and the magnetization direction of the pinned layer 30 are parallel to each other. Therefore, the MTJ resistance value is relatively small.
- Such a magnetization state is associated with, for example, a memory state of data “0”.
- the magnetization direction of the magnetization free region 12 of the magnetization free layer 10 is the ⁇ z direction.
- a domain wall DW is formed at the boundary between the magnetization free region 12 and the first magnetization free region 11a.
- the magnetization direction of the magnetization free region 12 and the magnetization direction of the pinned layer 30 are antiparallel to each other. Accordingly, the MTJ resistance value is relatively large.
- Such a magnetization state is associated with, for example, a memory state of data “1”.
- data writing to the magnetic memory element 1 is performed by a current induced domain wall motion method.
- the above-described electrode layer 60 current introduction mechanism connected to the magnetization free layer 10 having the domain wall DW is used.
- the two electrode layers 60 it is possible to cause a write current to flow in the in-plane direction in the magnetization free layer 10 and move the domain wall DW in a direction corresponding to the current direction. That is, the magnetization state of the magnetization free layer 10 can be switched between the two memory states shown in FIGS. 2A and 2B by current induced domain wall motion.
- FIG. 3A shows the write current Iwrite when the state is switched from FIG. 2A (“0” state) to FIG. 2B (“1” state).
- the write current Iwrite flows from the first magnetization fixed region 11a to the second magnetization fixed region 11b via the magnetization free region 12 in the magnetization free layer 10. Therefore, conduction electrons flow from the second magnetization fixed region 11b to the first magnetization fixed region 11a via the magnetization free region 12.
- a spin transfer torque acts on the domain wall DW located in the vicinity of the boundary between the second magnetization fixed region 11b and the magnetization free region 12, and the domain wall DW acts on the first magnetization fixed region 11a. Move towards. That is, current induced domain wall movement occurs. The movement of the domain wall DW stops near the boundary between the first magnetization fixed region 11 a and the magnetization free region 12. In this way, the memory state shown in FIG. 2B, that is, the writing of data “1” is realized.
- FIG. 3B shows the write current Iwrite when the state is switched from FIG. 2B (“1” state) to FIG. 2A (“0” state).
- the write current Iwrite flows from the second magnetization fixed region 11b to the first magnetization fixed region 11a via the magnetization free region 12 in the magnetization free layer 10.
- conduction electrons flow from the first magnetization fixed region 11a to the second magnetization fixed region 11b via the magnetization free region 12.
- the spin transfer torque acts on the domain wall DW located near the boundary between the first magnetization fixed region 11a and the magnetization free region 12, and the domain wall DW moves toward the second magnetization fixed region 11b. That is, current induced domain wall movement occurs.
- the movement of the domain wall DW stops near the boundary between the second magnetization fixed region 11 b and the magnetization free region 12. In this way, the memory state shown in FIG. 2A, that is, writing of data “0” is realized.
- a method of reading data from the magnetic memory element 1 will be described with reference to FIGS. 4A and 4B.
- data reading is performed by using the tunnel magnetoresistive effect (TMR effect).
- TMR effect tunnel magnetoresistive effect
- a read current Iread flows in a direction penetrating the MTJ (magnetization free layer 10, nonmagnetic layer 20, pinned layer 30).
- the direction of the read current Iread is arbitrary.
- FIG. 4A shows the read current Iread in the “0” state shown in FIG. 2A. In this case, since the magnetization direction of the magnetization free region 12 and the magnetization direction of the pinned layer 30 are parallel, the resistance value of the MTJ is relatively small.
- FIG. 4B shows the read current Iread in the “1” state shown in FIG. 2B. In this case, since the magnetization direction of the magnetization free region 12 and the magnetization direction of the pinned layer 30 are antiparallel, the MTJ resistance value is relatively large.
- the magnitude of the resistance value of the MTJ can be determined based on the magnitude of the read current Iread or the voltage value corresponding to the read current Iread. That is, the magnetization state of the magnetization free layer 10 (data storage layer) can be detected, and the data stored as the magnetization state can be read.
- the nonmagnetic layer 20 and the pinned layer 30 function as a “read mechanism” for detecting the magnetization state of the magnetization free layer 10 through the tunnel magnetoresistance effect.
- FIG. 5 shows a circuit configuration example of a 1-bit magnetic memory cell.
- the magnetic memory cell has a 2T-1MTJ (two transistors-one magnetic tunnel junction) configuration including the magnetic memory element 1 and two transistors TRa and TRb.
- the magnetic memory element 1 is a three-terminal element, and is connected to the word line WL, the ground line GL, and the bit line pair BLa, BLb.
- a terminal connected to the pinned layer 30 is connected to the ground line GL.
- a terminal (electrode layer 60) connected to the first pinning layer 50a is connected to the bit line BLa via the transistor TRa.
- a terminal (electrode layer 60) connected to the second pinning layer 50b is connected to the bit line BLb via the transistor TRb.
- the gates of the transistors TRa and TRb are connected to a common word line WL.
- the word line WL is set to the high level, and the transistors TRa and TRb are turned on.
- one of the bit line pair BLa and BLb is set to a high level, and the other is set to a low level (ground level).
- the write current Iwrite flows between the bit line BLa and the bit line BLb via the transistors TRa and TRb and the magnetization free layer 10.
- the word line WL is set to a high level, and the transistors TRa and TRb are turned on. Further, the bit line BLa is set to an open state, and the bit line BLb is set to a high level. As a result, the read current Iread flows from the bit line BLb through the MTJ of the magnetic memory element 1 to the ground line GL.
- the magnetic memory element 1 includes a data storage layer (magnetization free layer 10) having perpendicular magnetic anisotropy.
- a data storage layer having such perpendicular magnetic anisotropy, it is possible to reduce the write current required for current-induced domain wall motion.
- the material of the magnetization free layer 10 In order to actually realize the current-induced domain wall motion and further reduce the write current, it is necessary to adjust the material of the magnetization free layer 10 appropriately. Specifically, it is preferable to use a material having a small saturation magnetization and a large spin polarizability. Furthermore, perpendicular magnetization must be realized using such materials. In other words, it is necessary to realize a crystal orientation such that perpendicular magnetization can be obtained in the magnetization free layer 10.
- the “underlayer 40” is provided so that the magnetization free layer 10 can be grown in a suitable crystal orientation.
- Non-Patent Document 4 (A. Thiaville et al., Domain wall motion by spin-polarized current: by micromagnetic study, JOURNAL OF APPLIED PHYSICS, VOL. The current-induced domain wall motion is more likely to occur as the parameter: g ⁇ B P / 2eM s increases.
- g Lande g factor
- ⁇ B Bohr magneton
- P spin polarizability
- e elementary charge of electron
- M s saturation magnetization. Since g, ⁇ B , and e are physical constants, it can be seen that it is effective to increase the spin polarizability P of the magnetization free layer 10 and decrease the saturation magnetization M s in order to reduce the write current.
- the magnetization free layer 10 has a laminated structure in which a first layer and a second layer are laminated.
- the first layer contains an alloy made of a plurality of materials selected from any one of Fe, Co, and Ni, or a group thereof.
- the second layer contains an alloy made of a plurality of materials selected from Pt, Pd, Au, Ag, Ni, Cu, or a group thereof.
- Non-patent Document 5 S. Fukami et al., Low-Current Permanental Domain Wall Motion Cell. for Scalable High-Speed MRAM, Symposium on VLSI Technology, 12A-2, 2008.).
- the magnetic material of the magnetization free layer 10 as described above has an fcc structure and an fcc (111) -oriented crystal structure in which (111) planes are stacked in the direction perpendicular to the substrate.
- Non-Patent Document 6 (G.H.O. Daaldelop et al., Prediction and Confirmation of Permanent Magnetic Anisotropy in Co / Ni Multilayers, PHYSICAL REVIEW. .)
- the perpendicular magnetic anisotropy of the laminated film as described above is manifested by the interfacial magnetic anisotropy at the interface of these films. Therefore, in order to realize good perpendicular magnetic anisotropy in the magnetization free layer 10, it is preferable to provide the “underlayer 40” so that the above-described magnetic material can be grown with good fcc (111) orientation.
- Non-Patent Document 7 FJA den den Broeder et al., Perpendicular Magnetic Anisotropy and Cooperity of Co / Ni Multilayers, 27, IEEE TRANSACTIONS. Shows that perpendicular magnetization can be obtained in a Co / Ni laminated film by using a base layer of a nonmagnetic material. More specifically, only a thick Au film or Cu film of 10 nm or more is used as the underlayer. However, when only such a nonmagnetic layer is used as the underlayer, only weak magnetostatic coupling can be obtained between the pinning layer and the data storage layer (magnetization fixed region). If the magnetization fixation of the magnetization fixed region is insufficient, there is a possibility that the domain wall DW may come out of the data storage layer by the data write operation. This significantly degrades the operational reliability of the magnetic memory.
- the underlayer 40 In order to maintain the domain wall DW normally in the data storage layer 10, it is necessary to sufficiently fix the magnetization directions of the magnetization fixed regions 11a and 11b in the data storage layer 10. That is, it is important to realize strong magnetic coupling between the pinning layers 50a and 50b and the magnetization fixed regions 11a and 11b. Therefore, according to the present embodiment, a magnetic material is used as the underlayer 40. That is, the underlayer 40 in FIG. 1A is a “magnetic underlayer” formed of a magnetic material. Preferably, a perpendicular magnetization film having perpendicular magnetic anisotropy is used as the magnetic underlayer 40.
- Examples of the material of the magnetic underlayer 40 include NiFeB. It will be shown below that even when such a NiFeB film is used as the magnetic underlayer 40, the Co / Ni laminated film as the magnetization free layer 10 can be grown with a good fcc (111) orientation. That is, it is shown that good perpendicular magnetic anisotropy can be realized in the magnetization free layer 10 by using the NiFeB film as the magnetic underlayer 40.
- 6 and 7 show the magnetization curves of the Co / Ni multilayer film measured for various NiFeB film thicknesses. 6 shows a magnetization curve in the substrate vertical direction, and FIG. 7 shows a magnetization curve in the substrate in-plane direction. A silicon substrate with an oxide film was used as the substrate. As shown in FIGS. 6 and 7, by appropriately adjusting the NiFeB film thickness, the Co / Ni laminated film can be grown with good fcc (111) orientation, that is, good perpendicular magnetization can be realized. I understand that.
- the Co / Ni laminated film exhibits perpendicular magnetic anisotropy when the NiFeB film thickness is 2 nm or more. That is, good perpendicular magnetization is realized when the film thickness is 2 nm or more.
- the NiFeB film gives perpendicular magnetic anisotropy to the Co / Ni laminated film and that the NiFeB film itself is also perpendicularly magnetized.
- FIG. 7 shows that when the NiFeB film thickness is increased to about 10 nm, the NiFeB film partially has magnetic anisotropy in the in-plane direction of the substrate. Therefore, the NiFeB film thickness is preferably 10 nm or less. Thus, the NiFeB film thickness is preferably 2 nm or more and 10 nm or less.
- This NiFeB film thickness is smaller than the film thickness (10 nm or more) of the nonmagnetic underlayer shown in Non-Patent Document 7 described above.
- the underlayer becomes thicker, the resistance value of the underlayer decreases, and the write current easily flows through the underlayer. That is, a relatively large part of the write current flows through the underlayer instead of the magnetization free layer 10, and the total amount of the write current increases, including the amount not contributing to the current-induced domain wall motion. This is not preferable from the viewpoint of reducing the write current. In other words, it is preferable that the thickness of the underlayer is reduced from the viewpoint of reducing the write current.
- the material of the magnetic underlayer 40 is not limited to NiFeB.
- NiFeNbB, NiFeZr, NiFeTi, NiFeMoB, NiFeCrB, NiFeNbMoB, NiFeCr, NiFeNb, NiFeMo, NiFeNbMo, or the like may be used.
- NiFeNbB, NiFeZr, NiFeTi, NiFeMoB, NiFeCrB, NiFeNbMoB, NiFeCr, NiFeNb, NiFeMo, NiFeNbMo, or the like may be used.
- NiFeNbB, NiFeZr, NiFeTi, NiFeMoB, NiFeCrB, NiFeNbMoB, NiFeCr, NiFeNb, NiFeMo, NiFeNbMo, or the like may be used.
- the material of the magnetization free layer 10 is Co / Ni has been described as an example.
- the present invention can be implemented even when the material of the magnetization free layer 10 is another material (Co / Pd, Co / Pt, CoFe / Pt, CoFe / Pd, etc.). Since the resistivity of these materials is approximately equal to the resistivity of Co / Ni, the above-mentioned underlayer material and its film thickness range are applied in the same manner, thereby obtaining favorable characteristics.
- FIG. 8 shows a modified example.
- the underlayer 40 includes a magnetic underlayer 41 and a nonmagnetic underlayer 42.
- the magnetic underlayer 41 is the same as the magnetic underlayer 40 described above.
- the nonmagnetic underlayer 42 is formed of a nonmagnetic material.
- the nonmagnetic underlayer 42 is interposed between the magnetization free layer 10 and the magnetic underlayer 41.
- the nonmagnetic underlayer 42 plays a role of further promoting the perpendicular magnetic anisotropy of the magnetization free layer 10 and magnetically coupling the magnetization free layer 10 and the magnetic underlayer 41.
- the material of the nonmagnetic underlayer 42 is preferably a material that improves the orientation of the Co-based perpendicular magnetization film and that provides excellent magnetic coupling between the magnetic films.
- a material that improves the orientation of the Co-based perpendicular magnetization film and that provides excellent magnetic coupling between the magnetic films examples include Au, Pt, Ru, Ir, and Pd.
- the film thickness of the nonmagnetic underlayer 42 is determined so that the magnetic coupling between the magnetization free layer 10 and the magnetic underlayer 41 is the strongest and the crystal orientation of the magnetization free layer 10 is maximized. It is done.
- the optimum film thickness is in the range of 0.2 to 2 nm.
- the magnetization free layer 10 (data storage layer) having perpendicular magnetic anisotropy can be suitably realized in the magnetic memory using current-induced domain wall motion. Is possible.
- a sufficiently strong magnetic coupling is realized between the pinning layers 50a and 50b and the magnetization fixed regions 11a and 11b.
- an operation failure such that the domain wall DW disappears due to the data write operation is prevented. That is, the operation reliability of the magnetic memory using current-induced domain wall motion is improved.
- the write current can be reduced sufficiently small (see Non-Patent Document 3).
- a suitable magnetization free layer 10 (data storage layer) having perpendicular magnetic anisotropy is realized. As a result, the write current can be reduced.
- the cell area becomes equal to that of an existing embedded SRAM by reducing the write current to 0.5 mA or less.
- one criterion for the desired write current magnitude is “0.2 mA or less”. This is because when the write current is reduced to about 0.2 mA, the minimum layout is possible in the cell configuration of 2T-1MTJ proposed in Non-Patent Document 1, which can replace the existing volatile memory and reduce the cost. This is because it is realized.
- the write current can be reduced to 0.2 mA or less by appropriately selecting the materials and film thicknesses of the magnetization free layer 10 and the underlayer 40.
- a magnetic memory with a write current reduced to 0.2 mA or less can be an alternative to existing memories.
- a pinning layer which is a perpendicular magnetization film with a fixed magnetization direction;
- a data storage layer that is a perpendicular magnetization film formed on the underlayer; With The data storage layer is A magnetization free region whose magnetization direction is reversible;
- a magnetization fixed region that is magnetically coupled to the pinning layer via the underlayer, and whose magnetization direction is fixed by the magnetic coupling;
- the underlayer includes a magnetic underlayer formed of a magnetic material.
- the magnetic memory according to appendix 1 or 2 The magnetic underlayer has a thickness of 2 nm to 10 nm.
- the magnetic memory according to any one of appendices 1 to 3,
- the data storage layer has a laminated structure in which a first layer and a second layer are laminated,
- the first layer contains an alloy composed of a plurality of materials selected from any one of Fe, Co, and Ni, or a group thereof.
- the second layer includes a Pt, Pd, Au, Ag, Ni, Cu, or an alloy made of a plurality of materials selected from these groups.
- the underlayer further includes a nonmagnetic underlayer formed of a nonmagnetic material, The nonmagnetic underlayer is interposed between the data storage layer and the magnetic underlayer.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
Abstract
Description
1-1.磁気メモリ素子の基本構成
本実施の形態に係る磁気メモリは、アレイ状に配置された複数の磁気メモリセルを備えており、各々の磁気メモリセルは磁気メモリ素子を有している。電流誘起磁壁移動型の磁気メモリ素子は、磁化状態に応じてデータを記憶するデータ記憶層と、データ記憶層に格納されたデータを読み出すための読み出し機構と、データ記憶層に電流を導入するための電流導入機構と、を備える。
図2A及び図2Bは、図1Aで示された磁気メモリ素子1が取り得る2つのメモリ状態を示している。ここでは、磁化自由層10の磁化固定領域11a、11bの磁化方向はそれぞれ+z方向及び-z方向に固定され、ピン層30の磁化方向は+z方向に固定されているとする。
次に、図3A及び図3Bを参照して、磁気メモリ素子1へのデータ書き込み方法を説明する。簡単のため、図3A及び図3Bにおいて、非磁性層20とピン層30の図示は省略されている。本実施の形態によれば、磁気メモリ素子1へのデータ書き込みは、電流誘起磁壁移動方式により行われる。そのために、磁壁DWを有する磁化自由層10に接続された上述の電極層60(電流導入機構)が用いられる。2つの電極層60を用いることによって、書き込み電流を磁化自由層10内で面内方向に流し、その電流方向に応じた方向に磁壁DWを移動させることができる。すなわち、電流誘起磁壁移動により、磁化自由層10の磁化状態を、図2A及び図2Bで示された2つのメモリ状態の間で切り替えることができる。
次に、上述の磁気メモリ素子1を有する磁気メモリセルの回路構成を説明する。図5は、1ビット分の磁気メモリセルの回路構成例を示している。磁気メモリセルは、磁気メモリ素子1と2つのトランジスタTRa、TRbを含む2T-1MTJ(two transistors-one magnetic tunnel junction)構成を有している。磁気メモリ素子1は、3端子の素子であり、ワード線WL、グラウンド線GL、及びビット線対BLa、BLbに接続されている。例えば、ピン層30につながる端子は、グラウンド線GLに接続されている。第1ピニング層50aにつながる端子(電極層60)は、トランジスタTRaを介してビット線BLaに接続されている。第2ピニング層50bにつながる端子(電極層60)は、トランジスタTRbを介してビット線BLbに接続されている。トランジスタTRa、TRbのゲートは、共通のワード線WLに接続されている。
以上に説明されたように、本実施の形態に係る磁気メモリ素子1は、垂直磁気異方性を有するデータ記憶層(磁化自由層10)を備えている。上述の非特許文献3によれば、そのような垂直磁気異方性を有するデータ記憶層を用いることにより、電流誘起磁壁移動に要する書き込み電流を低減することが可能である。
上述の通り、磁化自由層10において電流誘起磁壁移動を実現する必要がある。非特許文献4(A. Thiaville et al., Domain wall motion by spin-polarized current: a micromagnetic study, JOURNAL OF APPLIED PHYSICS, VOL. 95, NO. 11, pp.7049-7051, 2004.)によれば、電流誘起磁壁移動は、パラメータ:gμBP/2eMsが大きいほど起こり易い。ここで、gはランデのg因子、μBはボーア磁子、Pはスピン分極率、eは電子の素電荷、Msは飽和磁化である。g、μB、eは物理定数であるので、書き込み電流を低減するためには、磁化自由層10のスピン分極率Pを大きく、飽和磁化Msを小さくすることが有効であることが分かる。
ところで、上述のような磁化自由層10の磁性材料は、fcc構造を有し、且つ、(111)面が基板垂直方向に積層したfcc(111)配向結晶構造を有する。また、非特許文献6(G.H.O. Daalderop et al., Prediction and Confirmation of Perpendicular Magnetic Anisotropy in Co/Ni Multilayers, PHYSICAL REVIEW LETTERS, VOL. 68, NO. 5, pp.682-685, 1992.)によれば、上述のような積層膜の垂直磁気異方性は、それら膜の界面における界面磁気異方性によって発現する。従って、磁化自由層10において良好な垂直磁気異方性を実現するためには、上述の磁性材料が良好なfcc(111)配向で成長できるような「下地層40」を設けることが好ましい。
図8は、変形例を示している。本変形例では、下地層40は、磁性下地層41と非磁性下地層42を備えている。磁性下地層41は、上述の磁性下地層40と同様である。一方、非磁性下地層42は、非磁性体で形成されている。この非磁性下地層42は、磁化自由層10と磁性下地層41との間に介在している。非磁性下地層42は、磁化自由層10の垂直磁気異方性をさらに促進させるとともに、磁化自由層10と磁性下地層41とを磁気的にカップリングさせる役割を果たす。
以上に説明されたように、本実施の形態によれば、電流誘起磁壁移動を利用した磁気メモリにおいて、垂直磁気異方性を有する磁化自由層10(データ記憶層)を好適に実現することが可能となる。特に、ピニング層50a、50bと磁化固定領域11a、11bとの間で、十分に強い磁気的結合が実現される。これにより、データ書き込み動作によって磁壁DWが消失するといった動作不良が防止される。すなわち、電流誘起磁壁移動を利用した磁気メモリの動作信頼性が向上する。
磁化方向が固定された垂直磁化膜であるピニング層と、
前記ピニング層上に形成された下地層と、
前記下地層上に形成された垂直磁化膜であるデータ記憶層と、
を備え、
前記データ記憶層は、
磁化方向が反転可能な磁化自由領域と、
前記下地層を介して前記ピニング層と磁気的に結合し、当該磁気的結合によってその磁化方向が固定された磁化固定領域と
を備え、
前記下地層は、磁性体で形成された磁性下地層を備える
磁気メモリ。
付記1に記載の磁気メモリであって、
前記磁性下地層は、NiFeB、NiFeNbB、NiFeZr、NiFeTi、NiFeMoB、NiFeCrB、NiFeNbMoB、NiFeCr、NiFeNb、NiFeMo、NiFeNbMoのうちのいずれかを含有する
磁気メモリ。
付記1又は2に記載の磁気メモリであって、
前記磁性下地層の膜厚は、2nm以上10nm以下である
磁気メモリ。
付記1乃至3のいずれか一項に記載の磁気メモリであって、
前記データ記憶層は、第1の層と第2の層が積層された積層構造を有し、
前記第1の層は、Fe、Co、Niのいずれか、またはこれらの群から選択される複数の材料からなる合金を含有し、
前記第2の層は、Pt、Pd、Au、Ag、Ni、Cuのいずれか、またはこれらの群から選択される複数の材料からなる合金を含有する
磁気メモリ。
付記4に記載の磁気メモリであって、
前記第1の層は、Coを含有し、
前記第2の層は、Niを含有する
磁気メモリ。
付記1乃至5のいずれか一項に記載の磁気メモリであって、
前記下地層は、更に、非磁性体で形成された非磁性下地層を備え、
前記非磁性下地層は、前記データ記憶層と前記磁性下地層との間に介在している
磁気メモリ。
付記6に記載の磁気メモリであって、
前記非磁性下地層は、Au、Pt、Ru、Ir、Pdのいずれかを含有する
磁気メモリ。
Claims (7)
- 磁化方向が固定された垂直磁化膜であるピニング層と、
前記ピニング層上に形成された下地層と、
前記下地層上に形成された垂直磁化膜であるデータ記憶層と、
を備え、
前記データ記憶層は、
磁化方向が反転可能な磁化自由領域と、
前記下地層を介して前記ピニング層と磁気的に結合し、当該磁気的結合によってその磁化方向が固定された磁化固定領域と
を備え、
前記下地層は、磁性体で形成された磁性下地層を備える
磁気メモリ。 - 請求項1に記載の磁気メモリであって、
前記磁性下地層は、NiFeB、NiFeNbB、NiFeZr、NiFeTi、NiFeMoB、NiFeCrB、NiFeNbMoB、NiFeCr、NiFeNb、NiFeMo、NiFeNbMoのうちのいずれかを含有する
磁気メモリ。 - 請求項1又は2に記載の磁気メモリであって、
前記磁性下地層の膜厚は、2nm以上10nm以下である
磁気メモリ。 - 請求項1乃至3のいずれか一項に記載の磁気メモリであって、
前記データ記憶層は、第1の層と第2の層が積層された積層構造を有し、
前記第1の層は、Fe、Co、Niのいずれか、またはこれらの群から選択される複数の材料からなる合金を含有し、
前記第2の層は、Pt、Pd、Au、Ag、Ni、Cuのいずれか、またはこれらの群から選択される複数の材料からなる合金を含有する
磁気メモリ。 - 請求項4に記載の磁気メモリであって、
前記第1の層は、Coを含有し、
前記第2の層は、Niを含有する
磁気メモリ。 - 請求項1乃至5のいずれか一項に記載の磁気メモリであって、
前記下地層は、更に、非磁性体で形成された非磁性下地層を備え、
前記非磁性下地層は、前記データ記憶層と前記磁性下地層との間に介在している
磁気メモリ。 - 請求項6に記載の磁気メモリであって、
前記非磁性下地層は、Au、Pt、Ru、Ir、Pdのいずれかを含有する
磁気メモリ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/636,318 US20130075847A1 (en) | 2010-03-23 | 2011-03-16 | Magnetic memory |
JP2012506957A JPWO2011118461A1 (ja) | 2010-03-23 | 2011-03-16 | 磁気メモリ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010066930 | 2010-03-23 | ||
JP2010-066930 | 2010-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011118461A1 true WO2011118461A1 (ja) | 2011-09-29 |
Family
ID=44673018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/056158 WO2011118461A1 (ja) | 2010-03-23 | 2011-03-16 | 磁気メモリ |
Country Status (3)
Country | Link |
---|---|
US (1) | US20130075847A1 (ja) |
JP (1) | JPWO2011118461A1 (ja) |
WO (1) | WO2011118461A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015068509A1 (ja) * | 2013-11-06 | 2015-05-14 | 日本電気株式会社 | 磁気抵抗効果素子、磁気メモリ、及び磁気記憶方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008288235A (ja) * | 2007-05-15 | 2008-11-27 | Tdk Corp | 磁気検出素子及びその製造方法 |
WO2009019949A1 (ja) * | 2007-08-03 | 2009-02-12 | Nec Corporation | 磁気ランダムアクセスメモリ及びその製造方法 |
WO2009057504A1 (ja) * | 2007-11-02 | 2009-05-07 | Nec Corporation | 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ、及びその初期化方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4380577B2 (ja) * | 2005-04-07 | 2009-12-09 | 富士電機デバイステクノロジー株式会社 | 垂直磁気記録媒体 |
JP2008204565A (ja) * | 2007-02-21 | 2008-09-04 | Fujitsu Ltd | 磁気抵抗効果素子、及びこれを用いた磁気ヘッド及び磁気記録再生装置 |
WO2009001706A1 (ja) * | 2007-06-25 | 2008-12-31 | Nec Corporation | 磁気抵抗効果素子、および磁気ランダムアクセスメモリ |
WO2009110530A1 (ja) * | 2008-03-07 | 2009-09-11 | 日本電気株式会社 | 半導体装置 |
JP5532436B2 (ja) * | 2008-09-02 | 2014-06-25 | 日本電気株式会社 | 磁気メモリ及びその製造方法 |
-
2011
- 2011-03-16 WO PCT/JP2011/056158 patent/WO2011118461A1/ja active Application Filing
- 2011-03-16 JP JP2012506957A patent/JPWO2011118461A1/ja active Pending
- 2011-03-16 US US13/636,318 patent/US20130075847A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008288235A (ja) * | 2007-05-15 | 2008-11-27 | Tdk Corp | 磁気検出素子及びその製造方法 |
WO2009019949A1 (ja) * | 2007-08-03 | 2009-02-12 | Nec Corporation | 磁気ランダムアクセスメモリ及びその製造方法 |
WO2009057504A1 (ja) * | 2007-11-02 | 2009-05-07 | Nec Corporation | 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ、及びその初期化方法 |
Also Published As
Publication number | Publication date |
---|---|
US20130075847A1 (en) | 2013-03-28 |
JPWO2011118461A1 (ja) | 2013-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7929342B2 (en) | Magnetic memory cell, magnetic random access memory, and data read/write method for magnetic random access memory | |
JP5206414B2 (ja) | 磁気メモリセルおよび磁気ランダムアクセスメモリ | |
JP5146836B2 (ja) | 磁気ランダムアクセスメモリ及びその製造方法 | |
JP5338666B2 (ja) | 磁壁ランダムアクセスメモリ | |
JP5598697B2 (ja) | 磁気抵抗効果素子、および磁気ランダムアクセスメモリ | |
JP5532436B2 (ja) | 磁気メモリ及びその製造方法 | |
JP6029020B2 (ja) | 磁気メモリ素子および磁気メモリ | |
US7848137B2 (en) | MRAM and data read/write method for MRAM | |
WO2010095589A1 (ja) | 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ | |
JP5201539B2 (ja) | 磁気ランダムアクセスメモリ | |
JPWO2017159432A1 (ja) | 磁気メモリ | |
US9379312B2 (en) | Magnetoresistive effect element and magnetic random access memory using the same | |
JP2011210830A (ja) | 磁気記憶素子および磁気記憶装置 | |
US8994130B2 (en) | Magnetic memory element and magnetic memory | |
JP5370773B2 (ja) | 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ、及びその初期化方法 | |
JP5201538B2 (ja) | 磁気ランダムアクセスメモリ | |
WO2011118461A1 (ja) | 磁気メモリ | |
JP5625380B2 (ja) | 磁気抵抗記憶素子及び磁気ランダムアクセスメモリ | |
JP4720081B2 (ja) | 磁気メモリ | |
JP4674433B2 (ja) | 磁気抵抗効果素子及び磁気メモリ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11759267 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012506957 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13636318 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11759267 Country of ref document: EP Kind code of ref document: A1 |