WO2006115275A1 - Mramおよびその書き込み方法 - Google Patents

Mramおよびその書き込み方法 Download PDF

Info

Publication number
WO2006115275A1
WO2006115275A1 PCT/JP2006/308772 JP2006308772W WO2006115275A1 WO 2006115275 A1 WO2006115275 A1 WO 2006115275A1 JP 2006308772 W JP2006308772 W JP 2006308772W WO 2006115275 A1 WO2006115275 A1 WO 2006115275A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit line
write word
line
magnetic body
mram
Prior art date
Application number
PCT/JP2006/308772
Other languages
English (en)
French (fr)
Inventor
Teruo Ono
Akinobu Yamaguchi
Saburo Nasu
Original Assignee
Kyoto University
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Osaka University filed Critical Kyoto University
Priority to JP2007514779A priority Critical patent/JPWO2006115275A1/ja
Priority to US11/919,189 priority patent/US20100157662A1/en
Publication of WO2006115275A1 publication Critical patent/WO2006115275A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1657Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • G11C5/063Voltage and signal distribution in integrated semi-conductor memory access lines, e.g. word-line, bit-line, cross-over resistance, propagation delay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Definitions

  • the present invention relates to an MRAM and a method of writing the same, and more particularly to an MRAM having a TMR element.
  • a magnetic random access memory writes data by changing the direction of spin (magnetization) by flowing a current through a magnetic body, and changing the direction of the spin. It is a memory device that reads data by using the change in resistance value due to.
  • FIG. 7 is an explanatory view showing a structure of a conventional MRAM.
  • the MRAM 50 includes a TMR (Tunneling Magnetoresistive) element 51 performing a write Z read operation, a bit line 52, a write word line 53, a read word line 54, and a MOS transistor 58. There is.
  • TMR Transmission Magnetoresistive
  • the TMR element 51 has a first ferromagnetic layer 55, a second ferromagnetic layer 56, and a tunnel barrier 57 disposed therebetween.
  • the first ferromagnetic layer 55 is capable of reversing the direction of the magnetization Mil in the direction of + X or ⁇ X, while the second ferromagnetic layer 56 has the direction of the magnetization M10 in one direction (+ X direction). It is fixed to
  • writing information to MRAM 50 causes current 110 to flow to bit line 52 and causes current 111 or current 112 to flow to write word line 53, and occurs around bit line 52.
  • the magnetic field B10 and the magnetic field B11 or the magnetic field B12 generated around the write word line 53 are combined to invert the direction of the magnetic flux M 11 of the first ferromagnetic layer 55.
  • the direction of the magnetic field Mi l of the first ferromagnetic layer 55 depends on whether the current II 1 or the current 112 flows in the write word line 53. It is parallel or antiparallel to the direction of M10. Then, when the direction of the magnetization Mil is parallel to the direction of the magnetization M10, “0” is written to the MRAM 50. On the other hand, the direction of the magnetization Mil is the direction of the magnetization M10 When it is antiparallel, “1” is written to the MRAM 50. This writing is performed only in the TMR element 51 in which the magnetic field generated in the bit line 52 and the magnetic field generated in the write word line 53 cross each other. That is, in the magnetic field B10 of the bit line 52 or the magnetic field B 11 ⁇ 12 of the write word line 53, the magnetic field ⁇ Mi l of the first ferromagnetic layer 55 is not reversed.
  • the writing of information to the MRAM 50 will be described more specifically.
  • a current 111 flows in the write word line 53 in the Y direction which is one direction along the write word line 53
  • a magnetic field B 11 is generated around the write word line 53.
  • the magnetic field Mil of the first ferromagnetic layer 55 is oriented in one X direction by a magnetic field combining the magnetic field B11 and the magnetic field B10 generated by the current 110 flowing to the bit line 52.
  • the direction of the magnetic field Mil of the first ferromagnetic layer 55 and the direction of the magnetic field M10 of the second ferromagnetic layer 56 become antiparallel, and the current does not easily flow in the TMR element 51.
  • the resistance value of the TMR element 51 is increased.
  • a magnetic field B12 is generated around the write word line 53.
  • the magnetic field Mil of the first ferromagnetic layer 55 is directed in the + X direction by a magnetic field combining the magnetic field B12 and the magnetic field B10 generated by the current 110 flowing through the bit line 52.
  • the direction of the magnetic field Mil of the first ferromagnetic layer 55 and the direction of the magnetic field M10 with the second ferromagnetic layer 56 become parallel, and the current easily flows in the TMR element 51.
  • the resistance value of element 51 decreases.
  • the direction of the magnetic field Mi l of the first ferromagnetic layer 55 is + by using the resistance change in the TMR element 51 described above while turning on the MOS transistor 58.
  • Data can be read out with the state that the direction of the X direction is “0” and the direction of the magnetic field ⁇ Mi l of the first ferromagnetic layer 55 being the one direction of the X direction as “1”.
  • spin-injection magnetic field in which the spin-polarized current flowing in the TMR element inverts the magnetic field using spin torque applied to the magnetic field. It is a method called ⁇ inversion.
  • the critical current density required for magnetization reversal is as large as about 10 7 [AZ cm 2 ].
  • spin injection magnetization reversal such a large current flows in the tunnel barrier that constitutes the TMR element, and the tunnel barrier may be destroyed. Therefore, at present, spin injection magnetization reversal has not been an effective method to provide a large capacity MRAM.
  • Patent Document 1 Japanese Patent Publication No. 2003-174149 (publication date: June 20, 2003)
  • Patent Document 2 Japanese Patent Publication No. 2004-527123 (publication date: September 2004, 2004)
  • Non-patent literature l Appl. Phys. Lett. 72 (1998) 1116-111.
  • Nonpatent literature 2 J. Appl. Phys. 93 (2003) 8430-8432. "Dynamics of a magnetic domain wall in magnetic wires with an artificial neck"
  • Non-Patent Document 3 J. Magn. Magn. Mater. 286, (2005) 167- 170. "Temperature dependen ce of depinning fields in submicron magnetic wires with an artificial neck
  • Non-Patent Document 4 Design of Curie point written magnetooresis random access memory cells j," “J. Appl. Phys. Vol. 93 No. 10", May 15, 2003, DAUGHTON JM, PO HM AV, American Institute of Physics, 7304-7306
  • the present invention has been made in view of the above problems, and an object thereof is to provide an MRAM with high capacity of gigabit class and a method of writing data to the MRAM. To provide.
  • the MRAM of the present invention has a plurality of write word lines and a plurality of bit lines provided crossing the write word lines, and the write word lines
  • the TMR element comprises a first magnetic body having a variable magnetic direction, a second magnetic body having a fixed magnetic direction, and an insulation sandwiched between the first magnetic body and the second magnetic body.
  • the bit line is provided to introduce a domain wall at a desired position, and further, when data is written, a current flowing through the bit line is the first magnetic material. It flows to the body.
  • the MRAM write method of the present invention has a plurality of write word lines and a plurality of bit lines provided crossing the write word lines, and A method of writing data in an MRAM having a TMR element at each intersection of a write word line and the above bit line.
  • a writing method of an MRAM wherein the TMR element comprises a first magnetic body having a variable magnetic direction, And the insulator sandwiched between the first magnetic body and the second magnetic body, and the bit line can introduce a magnetic wall at a desired position. As described above, when data is written, a current flowing through the bit line is supplied to the first magnetic body.
  • the integration of MRAM has been limited to 64 bits to 128 Mbits.
  • the bit line is provided such that the domain wall can be introduced at a desired position.
  • the bit line obliquely intersects the write word line, and expands in the direction in which the write word line extends at a position intersecting the write word line.
  • the TMR element is provided at the position where the write word line and the bit line intersect. That is, at the position where the TMR element is provided, the bit line bulges in the direction in which the write word line extends.
  • the magnetic force on the bit line obliquely crossing the write word line is a bit. Turn along the line. Then, since the bit line bulges in the extending direction of the write word line at the position where the bit line intersects with the write word line, a domain wall is formed in the first magnetic body at this expanded position (the desired position). That is, the directions of the magnetic fluxes reverse each other Boundaries can be
  • the domain wall is pushed by this current. Furthermore, by causing a current to flow to the write word line to generate a magnetic field around the write word line, the domain wall moves and the direction of the magnetic flux of the first magnetic body is changed.
  • the inventors of the present invention have been able to write “0” or “1” to the MRAM without causing a large current to flow to the bit lines and the write word lines by using the movement of the domain wall. It was confirmed. Therefore, the current flowing to the write word line and the word line at the time of information writing can be small, so the TMR element can be miniaturized without destroying the write word line and the word line to enhance the integration of the MRAM to the Gbit class. be able to
  • bit line is provided to cross the oblique direction with respect to the write word line and to be line symmetrical with respect to the write word line.
  • Patent Documents 1 and 2 aim to reduce the operating power and the write current as in the present invention, but in the present invention, “at the position where the bit line intersects with the write word line” per cent, Te bulges in the direction in which the write word line extends, Ru, "said, does not disclose a cormorant technical idea. Therefore, the inventions disclosed in Patent Documents 1 and 2 are completely different from the present invention.
  • FIG. 1 is a plan view showing a structure of an intersection of a bit line and a write word line in the MRAM according to the present embodiment.
  • FIG. 2 is a perspective view showing the configuration of the MRAM shown in FIG.
  • FIG. 3 (a) is a view showing a state in which an external magnetic field is applied to the MRAM shown in FIG.
  • FIG. 4 A perspective view showing a state in which a bit line is provided in a bit line in the MRAM of FIG.
  • FIG. 5 A plan view showing a state in which a bent portion is provided to the bit line of FIG. 1.
  • FIG. 6 shows that the current flowing to the bit line is reduced by the MRAM according to the present embodiment. It is a graph.
  • FIG. 7 is a perspective view showing the configuration of a conventional MRAM.
  • FIG. 1 is a plan view of an M RAM (MRAM: Magnetic Random Access Memory) according to this embodiment.
  • MRAMIO Magnetic Random Access Memory
  • bit lines 1-1 ⁇ 1-2 ⁇ ⁇ ⁇ ⁇ arranged to draw an S-curve (curved curve) and a plurality of write word lines 2 parallel to each other — 1 ⁇ 2 — 2 ⁇ and read-out word line 3 ⁇ 1 ⁇ 3 ⁇ 2 ⁇ .
  • each bit line 1-1 ⁇ 1-2 ⁇ ⁇ ⁇ is simply described as "bit line 1”
  • each write word line 2-1-2- 2- ⁇ ⁇ ⁇ is simply written Write “Inclusive Word Line 2”
  • a MOS transistor 4 and a TMR element 5 are provided at each intersection of the bit line 1 and the write word line 2. Further, each read word line 3 is disposed in parallel with the write word line 2 in the vicinity of each write word line 2. Furthermore, each read word line 3 is connected to the TMR element 5 via the transistor 4.
  • bit line 1 has the write word line 2-1 and the write word line 2 adjacent to each other.
  • -It is arranged to cross diagonally between the two. That is, the bit line 1 is disposed so as not to be orthogonal to nor parallel to the write word line 2.
  • bit line 1 is a direction in which write word line 2 extends at a position passing write word line 2 (position crossing write word line 2; position intersecting write word line 2), P direction Or, it expands in the Q direction, which is the opposite direction to the P direction.
  • the direction in which the bit line 1 bulges is the P direction at the position intersecting the write word line 2-1, and the direction Q at the position intersecting the write word line 2-2. This is merely an example, and the direction in which the bit line 1 bulges is either the P direction or the Q direction. It may be
  • the bit line 1 is axially symmetrical about the longitudinal axis R 1 ′ R 2 of the write word line 2. Also, in the present embodiment, the bit line 1 is formed of a ferromagnetic layer
  • bit line 1 and write word line 2 For example, a center point of a portion where bit line 1 and write word line 2-1 are orthogonal to each other and a bit line
  • the bit line 1 is provided such that the straight line passing the center point of the portion where 1 and the write word line 2-2 are orthogonal to each other and the write word line 2 is an acute angle, for example, 45 °. ing.
  • FIG. 2 is a perspective view showing the structure in the vicinity of the intersection of the bit line 1 and the write word line 2 in the MRAM 10.
  • the TMR element 5 includes a first ferromagnetic layer (also referred to as a write layer or free layer) 6 that also has a metal (alloy based on iron; for example, FeCo alloy etc.) force, and a tunnel barrier (also referred to as tunnel barrier) 7 And a second ferromagnetic layer (also referred to as a fixed layer) 8 made of metal (alloy based on iron; for example, FeCo alloy etc.) and the like.
  • the tunnel barrier 7 has a thickness of several nm, and is made of, for example, aluminum oxide or magnesium oxide.
  • boundary portions (domain walls) 12 in which the directions of the magnetic fluxes Ml in the first ferromagnetic layer 6 face each other.
  • the MRAM 10 can change the direction of the magnetic flux M 1 of the first ferromagnetic layer 6 by moving the domain wall 12. That is, data can be written.
  • the second ferromagnetic layer 8 is fixed in the direction + X direction of the magnetic flux ⁇ M2 inside.
  • the direction of the magnetic flux M2 of the second ferromagnetic layer 8 can be fixed, for example, by an antiferromagnetic layer (not shown), but if the direction of the magnetic flux can be fixed, the direction of the magnetic flux M2 can be fixed.
  • the fixed orientation is not limited to the antiferromagnetic layer, but may be anything.
  • bit line 1 As shown in FIG. 1, an initialization state before writing information to MRAM 10, that is, before flowing current to bit line 1 and write word line 2 (details)
  • the direction of the magnetic flux ⁇ Ml in the bit line 1 can be made as follows.
  • the “initialization state” is a so-called state of the magnetic field force SO. Below Below, the procedure of initialization is explained.
  • a sufficiently strong external magnetic field is applied parallel to the write lead wire 2 using an electromagnet or the like.
  • the magnetic field in the bit line 1 is directed in the direction in which the write word line 2 extends.
  • the orientation of the magnetic field ⁇ M1 of bit line 1 in the first region in FIG. 1, ie, the region opposite to axis R2 with respect to axis R1 is The direction is toward the axis R1.
  • the axis R1 is a line passing through the center of the write word line 2-1
  • the axis R2 is a line passing through the center of the write word line 2-2.
  • the direction of the magnetization Ml of the bit line 1 is a direction from the axis R2 toward the axis R1. That is, the direction of the magnetization Ml of the bit line 1 is inverted along the bit line in the first region and the second region.
  • boundary portions in which the directions of the magnetizations Ml face each other are formed. Boundary portions where the directions of the magnetic fluxes face each other are referred to as domain walls, and are shown in FIG. 1 with reference numeral 12.
  • the direction of magnetization of the bit line 1 is a direction away from the axis R2. That is, the direction of magnetization M 1 of bit line 1 reverses along bit line 1 in the third region. As a result, a boundary portion in which the direction of the magnetic flux is reversed is formed near the axis R2. The portions where the magnetizations reverse to each other are also indicated by! /, And the reference number 12 in FIG.
  • the magnetic flux direction of the second ferromagnetic layer 8 may change.
  • the angle between the direction of the wedge and the direction in which the write word line 2 extends may be an acute angle. Thereby, it is possible to prevent the change of the magnetic direction of the second ferromagnetic layer 8 before and after the application of the external magnetic field.
  • the force MRAM 10 which will be described in detail later, writes data by moving the domain wall. Therefore, in the MRAM 10, a domain wall needs to be introduced at a suitable position (desired position) around a portion where the bit line 1 and the write word line 2 intersect.
  • a suitable position (desired position) around a portion where the bit line 1 and the write word line 2 intersect.
  • the bit line 1 is provided as shown in FIG. 5 and initialization is carried out, the bit line 1 is broken at the domain wall. Since it is introduced into the bent portion, it is introduced into the bending portion 18.
  • the bent portion 18 corresponds to the above-mentioned desired position.
  • the bit line 1 is arranged such that the bent portion 18 is on the desired position. Therefore, it can be said that the bit line 1 is provided so as to introduce the domain wall at a desired position and to be able to confine the introduced domain wall.
  • bit line 1 shown in FIG. 1 the domain wall is introduced at a portion where the bit line 1 and the external magnetic field cross at right angles. That is, in the case of the configuration shown in FIG. 1, the bit line 1 is disposed such that the portion where the bit line 1 and the external magnetic field are orthogonal to each other is on the desired position.
  • the domain wall is introduced to the bent portion. That is, as long as it is bent, the domain wall is introduced. Therefore, it is needless to say that the constituent force of the bending portion 18 shown in FIG. 5 is an example.
  • the bending portion 18 force S is larger and bent at an angle.
  • an external magnetic field for initialization is applied to the write word line 2 in parallel.
  • the external magnetic field is, as shown in FIG. 5, the + y direction of the line segment y parallel to the write word line 2, and the line segment y Apply an angle inclined to the X direction of the line segment X perpendicular to. That is, the external magnetic field for initialization may be applied at such an angle that the domain wall can be introduced to the desired position of the bit line 1 provided as described above. However, the angle ⁇ must be acute.
  • the direction of the current II flowing through the bit line 1 is either “0” or “1”.
  • the direction of the magnetic flux ⁇ ⁇ Ml of the first ferromagnetic layer 6 needs to be in the ⁇ X direction.
  • the direction of the magnetic flux M2 of the second ferromagnetic layer 8 is merely an example, and may be the + X direction.
  • a current in the + X direction may be supplied to the bit line 1. Further, in order to select the TMR element 5 to which the information is to be written, a current 12 is supplied to the write word line 2 in the Y direction (one direction in which the write word line 2 extends). As a result, a magnetic field B2 is generated around the write word line 2.
  • a current II may be supplied to the bit line 1 in the ⁇ X direction. Furthermore, in order to select the TMR element 5 to be written, a current 13 in the + Y direction is supplied to the write word line 2. As a result, a magnetic field B3 is generated around the write word line 2.
  • the magnetization changes its direction little by little.
  • carriers which also have spins
  • their momentum is given to the magnetic flux.
  • the domain wall 12 moves in the carrier flow direction (momentum transfer effect).
  • the direction of spin reverses to the direction of the magnetic flux after passing the magnetic flux directed before passing.
  • the spin angular momentum change due to the spin inversion of the carrier is given to the domain wall 12.
  • the domain wall 12 moves in a direction satisfying the angular momentum conservation law of the entire system (spin transfer effect).
  • the domain wall 12 moves in the ⁇ X direction by the current II in the + X direction, and the direction of the magnetic flux Ml of the first ferromagnetic layer 6 can be made the one X direction.
  • the domain wall 12 moves in the + X direction by the current II in the X direction, and the direction of the magnetic flux ⁇ M1 of the first ferromagnetic layer 6 can be set to the + X direction.
  • the relationship between the direction of the current II and the moving direction of the domain wall in the above description is merely an example. That is, depending on what kind of substance is used for the first ferromagnetic layer 6, the direction of the current II may coincide with the moving direction of the domain wall.
  • bit line 1 and first ferromagnetic layer 6 described in the case where bit line 1 is made of the same material as first ferromagnetic layer 6 is limited to this. It is not a thing.
  • the first ferromagnetic layer 6 may be provided so as to replace a part of the bit line 1. That is, the bit line 1 (made of the material B in the figure) is interrupted before it three-dimensionally crosses the write line 2 and the interrupted bit line 1 is connected. A ferromagnetic layer 6 (portion made of the material A in the figure) may be provided. In other words, bit line 1 is replaced by first ferromagnetic layer 6 at the intersection with write word line 2. Furthermore, in other words, the first ferromagnetic layer 6 may be integrated with the bit line 1 so that a current can flow to the bit line 1. Furthermore, as shown in FIG.
  • the portion of bit line 1 different from first ferromagnetic layer 6 may be made of a material (material B in the figure) which is less likely to generate heat with a low resistance. Further, the resistance of the bit line 1 may be lowered by increasing the cross-sectional area of the bit line 1 at a portion different from the first ferromagnetic layer 6. By reducing the resistance value of bit line 1 in this manner, if the first ferromagnetic layer 6 is efficiently heated even if the voltage applied to bit line 1 is reduced, the first magnetic layer can be made with a lower current. Since the direction of the six magnetic poles can be changed, energy saving can be achieved.
  • a narrow portion 17 may be provided on the side surface of the bit line 1.
  • the narrow portion 17 is provided around the intersection of the bit line 1 and the write word line 2.
  • the bit line 1 may be configured to be bent at the intersection with the write word line 2, and a bent portion 18 may be formed in the bit line 1.
  • the position at which the domain wall 12 stops can be set as a preferable position around the portion where the bit line 1 and the write word line 2 intersect.
  • bit line 1 and write word line 2 shown in FIG. 5 can be described as follows: bent portion 18 provided in the vicinity of write word line 2-1
  • bit line 1 connecting the bent portion 18 provided in the vicinity of the word line 2-2 is extended so as to straddle the write word line 2-1, and the extended bit line 1 and the write word line 2-2
  • the bit line 1 is provided such that the angle made by 1 is an acute angle, for example 45 °.
  • the MRAM of the present embodiment utilizing domain wall movement is as shown below, as compared to an MRAM utilizing spin injection magnetic resonance (hereinafter referred to as spin injection MRAM). An advantageous effect can be achieved.
  • the spin injection MRAM is configured to invert the magnetic state of what has been made into a single magnetic domain by spin injection, and a current flows in the TMR element both at the time of writing and reading of information. That is, a common circuit is used for writing and reading information.
  • the critical current density required for magnetization reversal is as large as about 10 7 [AZ cm 2], and such a large current flows, so that the tunnel barrier constituting the TMR element is broken. If you do, you will also get ⁇ ⁇ problems.
  • the current flowing to the tunnel barrier constituting the TMR element is a small current, the tunnel barrier can not be broken.
  • the bit line 1 bulges in the extending direction of the write word line 2 at the position where the bit line 1 passes through the write word line 2. Thereby, a domain wall 12 is formed on the bit line 1, and this domain wall 12 can be moved according to the direction of the current flowing through the bit line 1.
  • the current (graph (3) in the figure) in the bit line in the MRAM 10 of the present embodiment is subjected to magnetic reversal using the conventional current.
  • the graph shows the result compared with the graph of) and the current (graph (2) in the figure) flowing to the MRAM performing spin injection magnetic field inversion.
  • the current flowing through the bit line is significantly reduced.
  • the degree of integration can be increased to Gbit grade.
  • first ferromagnetic layer 6 is provided to replace a portion of bit line 1, and bit line 1 and Therefore, even if the voltage applied to bit line 1 is reduced by using a material having a small electric resistance such as copper while using a material having a large resistance (Ni Fe or the like) as first ferromagnetic layer 6. ,
  • the first ferromagnetic layer 6 can be efficiently heated. In recent years, it has been reported that a large TMR effect can be obtained by using a FeCoB alloy as the first ferromagnetic layer 6.
  • Non-Patent Document 4 “0” or “1” can be written to the MRAM 10 only by supplying a small current to the bit line 1 and the write word line 2, thereby saving energy when writing information to the MRAM.
  • the first magnetic body may be provided so as to replace a part of the bit line, or the first magnetic body may be configured as described above. It may be integrated with a bit line and provided so as to flow current to the bit line, or the bit line force may be interrupted before it three-dimensionally intersects with the write word line. The first magnetic body may be provided to connect the interrupted bit lines.
  • the electrical resistance of the bit line may be lower than the electrical resistance of the first magnetic body.
  • the electrical resistance of the bit line is lower than the electrical resistance of the first magnetic body.
  • the amount of heat generation of the first magnetic body is increased, so that the direction of the magnetic flux of the first magnetic body can be easily changed.
  • the first magnetic body can be efficiently heated, thereby saving energy.
  • the bit line may be made of a material having a lower electric resistance than the first magnetic body, or the same material as the first magnetic body. It may be formed of Furthermore, the cross-sectional area of the bit line is preferably larger than the cross-sectional area of the first magnetic body.
  • It can be suitably used as a memory of a personal computer, a mobile phone or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 本発明のMRAMは、複数の書き込みワード線(2)と、書き込みワード線(2)と交差して設けられた複数のビット線(1)とを有するとともに、書き込みワード線(2)とビット線(1)との各交点にTMR素子(5)を有するMRAM(10)であって、TMR素子(5)は、磁化(M1)の方向が可変である第1強磁性層と、磁化(M2)の方向が固定された第2強磁性層と、第1強磁性層と第2強磁性層とに挟持されたトンネル障壁(7)とから成っており、ビット線(1)は、所望の位置に磁壁が導入できるように、例えば、書き込みワード線(2)と交差する位置において書き込みワード線(2)が延びる方向に膨らんで設けられており、さらに、データが書き込まれるときに、ビット線(1)を流れる電流が、上記第1強磁性層に流れる。これにより、ギガビット級の大容量化を図ったMRAMを提供することができる。

Description

明 細 書
MRAMおよびその書き込み方法
技術分野
[0001] 本発明は、 MRAMおよびその書き込み方法に関するものであり、特に、 TMR素子 を有する MRAMに関するものである。
背景技術
[0002] 磁気ランダムアクセスメモリ(MRAM; Magnetic Random Access Memory)は、磁性 体に電流を流してスピン (磁化)の向きを変化させることによるデータの書き込み、ま た、上記スピンの向きを変化させることによる抵抗値の変化を利用して、データの読 み出しを行う、メモリデバイスである。
[0003] 図 7は、従来の MRAMの構造を示す説明図である。 MRAM50は、同図に示すよ うに、書き込み Z読み出し動作を行う TMR (Tunneling Magnetoresistive)素子 51と、 ビット線 52と、書き込みワード線 53と、読み出しワード線 54と、 MOSトランジスタ 58と を有している。
[0004] TMR素子 51は、同図に示すように、第 1強磁性層 55と、第 2強磁性層 56と、これら の間に配されたトンネル障壁 57とを有している。第 1強磁性層 55は、磁化 Mi lの向 き力 +X方向または—X方向に反転可能である一方、第 2強磁性層 56は、磁化 Ml 0の向きが一方向(+X方向)に固定されている。
[0005] MRAM50への情報の書き込みは、図 7に示すように、ビット線 52に電流 110を流 すとともに、書き込みワード線 53に電流 111または電流 112を流し、ビット線 52の周り に発生する磁場 B10と、書き込みワード線 53の周りに発生する磁場 B11または磁場 B 12とを合成した磁場によって、第 1強磁性層 55の磁ィ匕 M 11の方向を反転させるこ とにより行われる。
[0006] つまり、この第 1強磁性層 55の磁ィ匕 Mi lの方向は、書き込みワード線 53に電流 II 1または電流 112のいずれが流れるかに応じて、第 2強磁性層 56の磁ィ匕 M10の方向 と平行または反平行にされる。そして、磁化 Mi lの方向が磁化 M10の方向と平行な とき、 MRAM50に「0」が書き込まれる。一方、磁化 Mi lの方向が磁化 M10の方向 と反平行なとき、 MRAM50に「1」が書き込まれる。この書き込みは、ビット線 52に発 生した磁場と、書き込みワード線 53に発生した磁場とが交差している TMR素子 51で のみ行われる。つまり、ビット線 52の磁場 B10、または書き込みワード線 53の磁場 B 11 ·Β12のいずれか一方の磁場では、第 1強磁性層 55の磁ィ匕 Mi lは、反転しない ようになっている。
[0007] MRAM50への情報の書き込みについて、もう少し具体的に説明する。書き込みヮ ード線 53に、書き込みワード線 53に沿う一方向である Y方向に電流 111を流すと、 書き込みワード線 53の周りには磁場 B11が生じる。この磁場 B11と、ビット線 52に流 した電流 110により生じた磁場 B10とを合成した磁場により、第 1強磁性層 55の磁ィ匕 Mi lが一 X方向を向く。このとき、第 1強磁性層 55の磁ィ匕 Mi lの向きと、第 2強磁性 層 56の磁ィ匕 M10の向きとが反平行となり、 TMR素子 51に電流が流れにくくなるた め、 TMR素子 51の抵抗値が上がる。
[0008] 一方、書き込みワード線 53に +Y方向に電流を流すと、書き込みワード線 53の周り には磁場 B12が生じる。この磁場 B12と、ビット線 52に流した電流 110により生じた磁 場 B10とを合成した磁場により、第 1強磁性層 55の磁ィ匕 Mi lが +X方向を向く。この とき、第 1強磁性層 55の磁ィ匕 Mi lの向きと、第 2強磁性層 56との磁ィ匕 M10の向きと が平行となり、 TMR素子 51に電流が流れやすくなるため、 TMR素子 51の抵抗値が 下がる。
[0009] MRAM50からデータを読み出すときは、 MOSトランジスタ 58を ONにしつつ、上 述の TMR素子 51における抵抗変化を利用して、第 1強磁性層 55の磁ィ匕 Mi lの向 きが +X方向を向いた状態を「0」、第 1強磁性層 55の磁ィ匕 Mi lの向きが一 X方向を 向いた状態を「1」として、データを読み出すことができる。
[0010] しかしながら、上記の MRAM構造では、記憶容量を大きくするために TMR素子 5 1を微小化すると、書き込みに必要な電流値、すなわち、第 1強磁性層 55の磁ィ匕 Ml 1の反転に必要な電流値が急激に増加する。つまり、ビット線 52および書き込みヮー ド線 53に大電流を流す必要がある。しかしながら、ビット線 52および書き込みワード 線 53に大電流を流すと、書き込みワード線 53およびビット線 52が破壊されるという問 題が生じる。それゆえ、 MRAMの集積化は、 64Mbit〜 128Mbit程度が限界である 、という問題があった。
[0011] この問題に対しての解決策の 1つが、 TMR素子内を流れるスピン偏極した電流が 磁ィ匕にスピントルクを与えることを利用して磁ィ匕を反転する、スピン注入磁ィ匕反転と呼 ばれる方法である。しかし、磁化反転に必要な臨界電流密度は 107[AZcm2]程度と 大きい。スピン注入磁化反転では、 TMR素子を構成するトンネル障壁にこのような大 電流が流されており、トンネル障壁が破壊されてしまう場合がある。よって、現時点で は、スピン注入磁化反転は、大容量の MRAMを提供するための有効な手法とはな つていない。
特許文献 1 :日本国公開特許公報「特開 2003— 174149号公報 (公開日: 2003年 6 月 20日)」
特許文献 2 :日本国公表特許公報「特表 2004— 527123号公報 (公表日: 2004年 9 月 2曰)
非特許文献 l :Appl. Phys. Lett. 72(1998) 1116- 111. "Magnetization reversal in subm icron magnetic wire studied by using giant magnetoresistance effect
非特許文献 2 : J. Appl. Phys. 93 (2003) 8430-8432. "Dynamics of a magnetic domain wall in magnetic wires with an artificial neck"
非特許文献 3 : J. Magn. Magn. Mater. 286, (2005) 167- 170."Temperature dependen ce of depinning fields in submicron magnetic wires with an artificial neck
非特許文献 4:「Design of Curie point written magnetoresistance random access mem ory cellsj、「J. Appl. Phys.Vol.93 No.10」、 2003年 5月 15 日、 DAUGHTON J M、 PO HM A V著、 American Institute of Physics発行、 7304-7306頁
発明の開示
[0012] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、ギガビット級の 大容量化を図った MRAMを提供すること、および、この MRAMへのデータの書き 込み方法を提供することにある。
[0013] 本発明の MRAMは、上記目的を達成するために、複数の書き込みワード線と、こ れら書き込みワード線と交差して設けられた複数のビット線とを有するとともに、上記 書き込みワード線と上記ビット線との各交点に TMR素子を有する MRAMであって、 上記 TMR素子は、磁ィ匕方向が可変である第 1磁性体と、磁ィ匕方向が固定された第 2 磁性体と、上記第 1磁性体と上記第 2磁性体とに挟持された絶縁体とから成っており 、上記ビット線は、所望の位置に磁壁を導入できるように設けられており、さらに、デ ータが書き込まれるときに、上記ビット線を流れる電流が、上記第 1磁性体に流れるよ うになつている。
[0014] また、上記目的を達成するために、本発明の MRAMの書き込み方法は、複数の 書き込みワード線と、これら書き込みワード線と交差して設けられた複数のビット線と を有するとともに、上記書き込みワード線と上記ビット線との各交点に TMR素子を有 する MRAMにデータを書き込む MRAMの書き込み方法であって、上記 TMR素子 は、磁ィ匕方向が可変である第 1磁性体と、磁ィ匕方向が固定された第 2磁性体と、上記 第 1磁性体と上記第 2磁性体とに挟持された絶縁体とから成っており、上記ビット線は 、所望の位置に磁壁を導入できるように設けられており、データを書き込むときに、上 記ビット線に流れる電流を、上記第 1磁性体に流して 、る。
[0015] 上記した通り、 MRAMの大容量ィ匕を図るためには、 TMR素子を微小化する必要 がある。し力しながら、 TMR素子を微小化すると、ビット線および書き込みワード線が 破壊されてしまう可能性がある。それゆえ、 MRAMの集積化は、 64bit〜 128Mbit が限界であった。
[0016] 上記構成によれば、ビット線は、所望の位置に磁壁を導入できるように設けられて いる。例えば、上記ビット線は、書き込みワード線に対して斜めに交差しているととも に、書き込みワード線と交差する位置において、書き込みワード線が延びる方向に膨 らんでいる。そして、上記の通り、書き込みワード線とビット線とが交差する位置には、 TMR素子が設けられている。つまり、 TMR素子が設けられている位置において、ビ ット線が、書き込みワード線が延びる方向に膨らんで 、る。
[0017] それゆえ、書き込みワード線に電流を流す前の初期化状態 (磁場を 0にした状態) において、書き込みワード線に対して斜めに交差したビット線上の磁ィ匕の向き力 ビ ット線に沿う方向に向く。そして、ビット線が、書き込みワード線と交差する位置におい て書き込みワード線が延びる方向に膨らんでいるため、この膨らんだ位置(上記所望 の位置)において、第 1磁性体に磁壁ができる。すなわち、磁ィ匕の向きが互いに逆転 する境界ができる。
[0018] また、ビット線を流れる電流は、第 1磁性体にも流れるため、この電流によって磁壁 が押される。さらに、書き込みワード線に電流を流して、書き込みワード線の周りに磁 場を発生させることで、磁壁が移動し、第 1磁性体の磁ィ匕の向きが変えられる。
[0019] 本発明者らは、鋭意研究の結果、磁壁の移動を利用すると、ビット線および書き込 みワード線に大きな電流を流すことなぐ「0」または「1」を MRAMに書き込むことが できることを確認した。よって、情報書き込み時における書き込みワード線およびヮー ド線に流す電流が小さくてすむので、書き込みワード線およびワード線を破壊するこ となぐ TMR素子を微小化して MRAMの集積化を Gbit級にまで高めることができる
[0020] なお、上記ビット線は、換言すれば、上記書き込みワード線に対して斜め方向に横 断し、かつ上記書き込みワード線に対して線対称となるように設けられている、とも言 える。
[0021] また、特許文献 1や特許文献 2は、本発明と同じく動作電力や書き込み電流の低減 を目的とするものではあるが、本発明における「ビット線が、書き込みワード線と交差 する位置にぉ 、て書き込みワード線が延びる方向に膨らんで 、る」と 、う技術的思想 を開示するものではない。よって、特許文献 1および 2に開示された発明は、本発明と は全く異なるものである。
図面の簡単な説明
[0022] [図 1]本実施形態に係る MRAMのビット線と書き込みワード線との交点の構造を示 す平面図である。
[図 2]図 1の MRAMの構成を示す斜視図である。
[図 3(a)]図 1の MRAMに外部磁場を印加する状態を示す図である。
[図 3(b)]第 2強磁性層の磁ィ匕の向きと、書き込みワード線が延びる方向とがなす角を
、鋭角にした状態を示す図である。
[図 4]図 2の MRAMにおけるビット線にくびれを設けた状態を示す斜視図である。
[図 5]図 1のビット線に折れ曲り部を設けた状態を示す平面図である。
[図 6]本実施形態に係る MRAMによりビット線に流れる電流が低減されることを示す グラフである。
[図 7]従来の MRAMの構成を示す斜視図である。
発明を実施するための最良の形態
[0023] 本発明の一実施形態について、図面を用いて説明する。図 1は、本実施形態の M RAM (MRAM; Magnetic Random Access Memory)の平面図である。 MRAMIOは 、同図に示すように、 S字カーブ(曲線状カーブ)を描くように配された複数のビット線 1— 1 · 1— 2· ··と、互いに平行な複数の書き込みワード線 2—1 · 2— 2· ··と、読み出し ワード線 3— 1 · 3— 2· ··とを備えている。
[0024] なお、図 1にお 、ては、ビット線および書き込みワード線をそれぞれ 2本ずつだけ記 載している力 もちろん、実際の MRAMにおいては記憶容量に対応する数のビット 線および書き込みワード線が設けられる。また、以下の説明では、各ビット線 1— 1 · 1 - 2· · ·を単に「ビット線 1」として記載し、各書き込みワード線 2— 1 - 2- 2- · ·を単に「書 き込みワード線 2」と記載し、各読み出しワード線 3— 1 · 3— 2· ··を単に「読み出しヮー ド線 3」と記載する。
[0025] そして、ビット線 1と書き込みワード線 2との各交点には、 MOSトランジスタ 4および T MR素子 5が設けられている。また、各読み出しワード線 3は、各書き込みワード線 2 の近傍に、書き込みワード線 2と平行に配されている。さらに、各読み出しワード線 3 は、トランジスタ 4を介して TMR素子 5に接続されて!、る。
[0026] ここで、具体的にビット線 1と書き込みワード線 2との配置関係を説明すると、ビット 線 1は、同図に示すように、隣り合う書き込みワード線 2—1と書き込みワード線 2— 2 との間を、斜め方向に横断するように配設されている。つまり、ビット線 1は、書き込み ワード線 2と直交せず、かつ、平行でもないように配設されている。
[0027] すなわち、ビット線 1は、書き込みワード線 2を通過する位置(書き込みワード線 2を 跨ぐ位置;書き込みワード線 2と交差する位置)で、書き込みワード線 2の延びる方向 である、 P方向、または、 P方向とは逆方向である Q方向に膨らんでいる。なお、ビット 線 1が膨らむ方向は、書き込みワード線 2— 1と交差する位置では、 P方向である一方 、書き込みワード線 2— 2と交差する位置では、 Q方向となっている。し力しながら、こ れは単なる一例にすぎず、ビット線 1が膨らむ方向は、 P方向または Q方向のいずれ であってもよい。
[0028] また、ビット線 1は、書き込みワード線 2の長手方向の軸 R1 'R2を中心として、軸対 象となっている。また、本実施形態では、ビット線 1は、強磁性層にて形成されている
[0029] さらに、より具体的にビット線 1と書き込みワード線 2との配置関係を説明すると、例 えば、ビット線 1と書き込みワード線 2—1とが直交する部分の中心点と、ビット線 1と書 き込みワード線 2— 2とが直交する部分の中心点とを通る直線と、書き込みワード線 2 とがなす角が鋭角、例えば、 45° であるように、ビット線 1は設けられている。
[0030] 図 2は、 MRAM10における、ビット線 1と書き込みワード線 2との交点付近の構造を 示す斜視図である。この交点には、 TMR素子 5が設けられている。この TMR素子 5 は、金属 (鉄を主とした合金;例えば FeCo合金など)力も成る第 1強磁性層(書き込 み層や自由層ともいう) 6と、トンネル障壁(トンネルバリアともいう) 7と、金属 (鉄を主と した合金;例えば FeCo合金など)カゝら成る第 2強磁性層(固定層ともいう) 8と、を備え ている。トンネル障壁 7は、厚さ数 nmであり、例えば酸ィ匕アルミ、または、酸化マグネ シゥムなど力 成って 、る。
[0031] また、詳細は後述する力 ビット線 1には、第 1強磁性層 6における磁ィ匕 Mlの向き が互いに向き合った境界部分 (磁壁) 12ができる。 MRAM10は、この磁壁 12を移 動させることにより、第 1強磁性層 6の磁ィ匕 Mlの向きを変更することができる。すなわ ち、データの書きこみを行うことができる。
[0032] また、第 2強磁性層 8は、その内部の磁ィ匕 M2の向き力 +X方向に固定されている 。この第 2強磁性層 8の磁ィ匕 M2の向きは、例えば反強磁性層(不図示)によって固定 することができるが、磁ィ匕の向きを固定できるものであれば、磁ィ匕の向きを固定するも のは反強磁性層に限らず、何でもよい。
[0033] ここで、ビット線 1を図 1に示すように構成することによって、 MRAM10に情報を書 きこむ前、つまり、ビット線 1および書き込みワード線 2に電流を流す前の初期化状態 (詳細は後述する)において、ビット線 1における磁ィ匕 Mlの向きを次のようにすること ができる。
[0034] なお、「初期化状態」とは、磁場力 SOの 、わゆるィ-シァリゼーシヨン状態である。以 下、初期化の手順について説明する。
[0035] まず、図 3 (a)に示すように、電磁石等を用いて、十分強い外部磁場を、書き込みヮ ード線 2に平行に印加する。これにより、ビット線 1における磁ィ匕は書き込みワード線 2 の延びる方向を向く。
[0036] その後、外部磁場を取り除くと、形状磁気異方性によって、図 1における第 1領域、 すなわち軸 R1に関して軸 R2と反対側の領域では、ビット線 1の磁ィ匕 Mlの向きは、 軸 R1に向力う方向となる。ここで、軸 R1は、書き込みワード線 2—1の中心を通る線 分である一方、軸 R2は、書き込みワード線 2— 2の中心を通る線分である。
[0037] また、図 1における第 2領域、すなわち軸 R1と軸 R2との間における領域では、ビット 線 1の磁化 Mlの向きは、軸 R2から軸 R1に向力う方向となる。つまり、ビット線 1の磁 化 Mlの向きが、第 1領域および第 2領域においてビット線に沿って反転する。これに より、ビット線 1における軸 R1付近 (TMR素子 5が設けられた付近)に、磁化 Mlの向 きが互いに向き合った境界部分ができる。この磁ィ匕の向きが互いに向き合う境界部 分を、磁壁といい、図 1では参照番号 12を付して示している。
[0038] また、図 1における第 3領域、すなわち、軸 R2に関して軸 R1と反対側の領域では、 ビット線 1の磁化の向きは、軸 R2から遠ざカゝる方向となる。つまり、ビット線 1の磁化 M 1の向きが、第 3領域においてビット線 1に沿って逆転する。これにより、軸 R2付近に 、磁ィ匕の方向が逆転する境界部分ができる。この磁化が互いに逆転する部分も、磁 壁と!/ 、、図 1では参照番号 12を付して示して!/、る。
[0039] なお、強い外部磁場を印加すると、第 2強磁性層 8の磁ィ匕方向が変わってしまう場 合がある。このように外部磁場の印加前後で第 2強磁性層 8の磁ィ匕方向が変化するこ とを防止するためには、図 3 (b)に示すように、第 2強磁性層 8の磁ィ匕の向きと、書き 込みワード線 2が延びる方向とがなす角を、鋭角にすればよい。これにより、外部磁 場の印加前後で、第 2強磁性層 8の磁ィ匕方向が変わってしまうことを防止できる。
[0040] ところで、詳細は後述する力 MRAM10は、磁壁を移動させることにより、データ の書き込みを行う。そのため、 MRAM10は、ビット線 1と書き込みワード線 2とが交差 する部位周辺の好適な位置 (所望の位置)に、磁壁が導入されている必要がある。こ こで、ビット線 1を図 5に示すように設け、初期化を行った場合、磁壁はビット線 1が折 れ曲った部分に導入されるため、折れ曲り部 18に導入される。該折れ曲り部 18は、 上記所望の位置に相当する。
[0041] つまり、図 5に示す構成の場合、折れ曲り部 18が、上記所望の位置上となるように ビット線 1を配している。従って、ビット線 1は、所望の位置に磁壁を導入させるように、 かつ、導入した磁壁を閉じ込めることが可能なように設けられていると言える。
[0042] なお、図 1に示すビット線 1も同様である。この場合、磁壁は、ビット線 1と外部磁場と が直交する部分に導入される。つまり、図 1に示す構成の場合、ビット線 1と外部磁場 とが直交する部分が、上記所望の位置上となるようにビット線 1を配している。
[0043] また、上述のように、ビット線 1を折り曲げた場合、磁壁は、その折れ曲った部分に 導入される。すなわち、折れ曲ってさえいれば、磁壁は導入される。従って、図 5に示 す折れ曲り部 18の構成力 一例であることは言うまでもない。例えば、折れ曲り部 18 力 Sさらに大き 、角度で折れ曲って 、てもよ 、。
[0044] また、上述のように、ビット線 1を図 1に示すように設けた場合、初期化を行うための 外部磁場は、書き込みワード線 2に平行に印加する。し力しながら、ビット線 1を図 5に 示すように設けた場合、外部磁場は、図 5に示すように、書き込みワード線 2に平行な 線分 yの +y方向と、上記線分 yに垂直な線分 Xの X方向とに対して角度 Θ分傾け て印加する。つまり、初期化を行うための外部磁場は、上述のように設けられたビット 線 1の所望の位置に磁壁を導入できるような角度で印加すればよい。ただし、上記角 度 Θは鋭角でなければならない。
[0045] 〔動作〕
次に、この MRAM10へ情報を書きこむときの動作について説明する。
[0046] まず、情報を書き込みた!/、TMR素子 5が設けられたビット線 1に電流を流す。このと き、ビット線 1に流れる電流によって発生するジュール熱によって、 TMR素子 5の第 1 強磁性層 6が発熱する。
[0047] ここで、ビット線 1に流す電流 IIの向きは、「0」、または「1」のいずれの情報を MRA
M10に書き込むかによつて異なる。
[0048] 例えば、 MRAM10に「0」を書き込む場合には、第 2強磁性層 8の磁化 M2の向き(
— X方向)と、第 1強磁性層 6の磁ィ匕 Mlの向きとを平行にする必要がある。つまり、第 1強磁性層 6の磁ィ匕 Mlの向きを、—X方向にする必要がある。もちろん、第 2強磁性 層 8の磁ィ匕 M2の向きは単なる一例にすぎず、 +X方向でもよい。
[0049] このように、第 1強磁性層 6の磁ィ匕 Mlの向きを一 X方向にするためには、ビット線 1 に、 +X方向の電流を流せばよい。さらに、情報を書き込むべき TMR素子 5を選択 するために、書き込みワード線 2に Y方向(書き込みワード線 2の延びる方向の一 方向)の電流 12を流す。これにより、書き込みワード線 2の周りに磁場 B2が発生する。
[0050] このとき、(i)第 1強磁性層 6に加えられたジュール熱、(ii)磁壁 12を押す電流 II、 および (iii)書き込みワード線 2の周りに発生した磁場 B2の 3つの要素により、磁壁 12 が一 X方向に動き、第 1強磁性層 6の磁ィ匕 Mlの向きが一 X方向となる。従って、第 1 強磁性層 6の磁ィ匕 Mlの向きと第 2強磁性層 8の磁ィ匕 M2の向きとが互いに平行とな り、 MRAM10に「0」を書き込むことができる。
[0051] また、「1」を書き込む場合には、第 2強磁性層 8の磁ィ匕 M2の向きと、第 1強磁性層 6の磁ィ匕 Mlの向きとを反平行にする必要がある。つまり、第 1強磁性層 6の磁ィ匕 Ml の向きを、 +X方向にする必要がある。
[0052] このように、第 1強磁性層 6の磁ィ匕 Mlの向きを +X方向にするためには、ビット線 1 に—X方向に電流 IIを流せばよい。さらに、書き込むべき TMR素子 5を選択するた めに、書き込みワード線 2に +Y方向の電流 13を流す。これにより、書き込みワード線 2の周りに磁場 B3が発生する。
[0053] このとき、(i)第 1強磁性層 6に加えられたジュール熱、(ii)磁壁 12を押す電流 II、 および (iii)書き込みワード線 2の周りに発生した磁場 B3の 3つの要素により、磁壁 12 が +X方向に動き、第 1強磁性層 6の磁ィ匕 Mlの向きが +X方向となる。従って、第 1 強磁性層 6の磁ィ匕 Mlの向きと第 2強磁性層 8の磁ィ匕 M2の向きが反平行となり、 MR AM10に「1」を書き込むことができる。
[0054] ここで、電流 IIにより磁壁 12が移動する原理について述べておく。
[0055] まず、磁壁 12部分では、磁化が、少しずつその向きを変えている。このような磁壁 1 2に電流 IIを流すと、電荷を運ぶキャリア (スピンも有している)が磁壁 12部分におい て散乱を受け、その運動量が磁ィ匕に与えられる。この結果、磁壁 12はキャリアが流れ る方向に移動する(モーメンタムトランスファー効果)。 [0056] また、キャリアが磁壁 12を通過する際には、通過する以前の磁ィ匕の向き力も通過し た後の磁ィ匕の向きへスピンの向きが反転する。このキャリアのスピン反転によるスピン 角運動量変化が、磁壁 12に与えられる。この結果、磁壁 12が系全体の角運動量保 存則を満たす方向に移動する (スピントランスファー効果)。
[0057] 以上のようにして、 +X方向の電流 IIにより磁壁 12が— X方向に移動し、第 1強磁 性層 6の磁ィ匕 Mlの向きを一 X方向とすることができる。また、 X方向の電流 IIによ り磁壁 12が +X方向に移動し、第 1強磁性層 6の磁ィ匕 Mlの向きを +X方向とするこ とがでさる。
[0058] なお、上記の説明では、(i)第 1強磁性層 6に加えられたジュール熱、(ii)磁壁 12を 押す電流 11、および (iii)書き込みワード線 2の周りに発生した磁場 B2 (B3)という 3つ の要素により、磁壁 12が移動すると説明した力 3つの要素のバランスは、適宜調整 すればよい。つまり、電流 IIの値を減少させても、その減少分を補うだけ書き込みヮ ード線 2の周りに発生する磁場 B2 (B3)を強くすればよい。また、例えば、上記 3つの 要素のうち、 1つの要素の値を 0とし、残り 2つの要素の値をその減少分を補うような値 として、使用してちょい。
[0059] また、上述の記載における、電流 IIの方向と、磁壁の移動方向との関係は、一例に すぎない。すなわち、第 1強磁性層 6にどのような物質を用いるかによつて、電流 IIの 方向と磁壁の移動方向とがー致する場合もある。
[0060] また、上記構成では、ビット線 1を第 1強磁性層 6と同一材料にて作製した場合につ いて説明した力 ビット線 1および第 1強磁性層 6の構成はこれに限定されるものでは ない。
[0061] たとえば、図 5に示すように、第 1強磁性層 6を、ビット線 1の一部を置き換えるように 設けてもよい。すなわち、ビット線 1 (図中の材料 Bで作製されている)を、書き込みヮ ード線 2と立体的に交差する手前において途切れさせ、この途切れたビット線 1を繋 ぐように、第 1強磁性層 6 (図中の材料 Aで作製されている部分)を設けてもよい。換 言すれば、ビット線 1は、書き込みワード線 2と交差する箇所において、第 1強磁性層 6により置き換えられている。さらに換言すれば、第 1強磁性層 6を、ビット線 1と一体 化し、ビット線 1に電流を流すように設けてもょ 、。 [0062] さらに、図 5に示すように、ビット線 1における第 1強磁性層 6と異なる箇所は、抵抗 が低ぐ発熱しにくい材料(図中の材料 B)にて作製してもよい。また、ビット線 1にお ける第 1強磁性層 6と異なる箇所の断面積を大きくすることにより、ビット線 1の抵抗を 低くしてもよい。このようにしてビット線 1の抵抗値を下げることで、ビット線 1に印加す る電圧を小さくしても効率的に第 1強磁性層 6を発熱させると、より低電流で第 1磁性 層 6の磁ィ匕の向きを変えることができるため、省エネルギー化を図ることができる。
[0063] さらに、図 4に示すように、ビット線 1の側面に、くびれ部 17を設けてもよい。なお、こ のくびれ部 17は、ビット線 1と書き込みワード線 2との交差部位の周辺に設けることが 好ましい。このようにくびれ部 17を設けることにより、磁壁 12が停止する位置 (磁壁 12 が導入される位置)を、ビット線 1と書き込みワード線 2とが交差する部位周辺の好適 な位置とすることができる (非特許文献 1〜3参照)。
[0064] また、図 5に示すように、ビット線 1を書き込みワード線 2との交差部分において折れ 曲がるように構成し、ビット線 1に折れ曲り部 18を形成してもよい。このように折れ曲り 部 18を形成しても、磁壁 12が停止する位置を、ビット線 1と書きこみワード線 2とが交 差する部位周辺の好適な位置とすることができる。
[0065] なお、図 5に示すビット線 1と書き込みワード線 2との配置関係について、より具体的 に説明すると、書き込みワード線 2—1近辺に設けられている折れ曲り部 18と書き込 みワード線 2— 2近辺に設けられている折れ曲り部 18とをつなぐビット線 1を、例えば 、書き込みワード線 2—1を跨ぐように延長し、該延長したビット線 1と書き込みワード 線 2—1とがなす角が鋭角、例えば、 45° であるように、ビット線 1は設けられている。
[0066] なお、最後に、磁壁移動を利用した本実施形態の MRAMは、スピン注入磁ィ匕反 転を利用した MRAM (以下、スピン注入 MRAMと記載)と比較して、以下に示すよう な有利な効果を奏することができる。
[0067] スピン注入 MRAMは、単磁区化したものの磁ィ匕状態をスピン注入で反転させる構 成であり、情報の書きこみおよび読み出し時双方において、 TMR素子内に電流を流 す。つまり、情報の書きこみおよび読み出し時双方で共通の回路を使用する。
[0068] ここで、情報の書きこみ時には、消費電力の低減のために、小さい電流で書き込み が行えるように構成される。一方、情報の読み出し時には、十分な電圧降下を得るた め、大きな電流を流すように構成される。このため、情報の読み出し時に誤って情報 の書きこみがなされてしまうと 、う問題を生じてしまう。
[0069] また、スピン注入 MRAMの場合、磁化反転に必要な臨界電流密度は 107[AZcm 2]程度と大きぐこのような大きな電流が流れることにより、 TMR素子を構成するトン ネル障壁が破壊されてしまうと ヽぅ問題も生じてしまう。
[0070] これに対し、本実施形態の MRAMの場合、情報の読み出し時のみ、 TMR素子内 に電流を流す (情報の書きこみ時は、上述のように、磁壁を押すための電流をビット 線 1に流す)。つまり、情報の書きこみ時に使用する回路と、情報の読み出し時に使 用する回路とが異なる。従って、読み出し時に誤って書きこみを行うことがない。また 、 TMR素子を構成するトンネル障壁に流す電流が小さい電流で済むため、トンネル 障壁を破壊してしまうことがな ヽ。
[0071] 〔作用'効果〕
本実施形態の MRAM10では、ビット線 1が、書き込みワード線 2を通過する位置で 、書き込みワード線 2の延びる方向に膨らんでいる。これにより、ビット線 1に磁壁 12 が形成され、この磁壁 12は、ビット線 1に流れる電流の向きに応じて移動させることが 可能である。
[0072] 本発明者らは、鋭意研究の結果、磁壁 12の移動を利用すると、ビット線 1および書 き込みワード線 2に大きな電流を流すことなく、「0」または「 1」を MRAM 10に書き込 むことができることを確認した。
[0073] 参考のため、本実施形態の MRAM10におけるビット線に流れる電流(図中(3)の グラフ)を、従来の電流を用いて磁ィ匕反転を行う MRAMに流れる電流(図中(1)のグ ラフ)、およびスピン注入磁ィ匕反転を行う MRAMに流れる電流(図中(2)のグラフ)と 比較した結果を示す。図 6からゎカゝるように、磁壁移動を利用する本実施形態の MR AMでは、ビット線に流れる電流が格段に低減されている。
[0074] 従って、 TMR素子 5を微小化しても、ビット線 1、および書き込みワード線 2が破壊 されてしまうのを防止することができる。それゆえ、集積度を Gbit級まで上げることが できる。
[0075] また、ビット線 1の一部を置き換えるように第 1強磁性層 6を設け、さらに、ビット線 1と して、銅などの電気抵抗の小さな材質を用いる一方、第 1強磁性層 6として抵抗の大 きな材質 (Ni Fe 等)を用いることにより、ビット線 1に印加する電圧を小さくしても、
81 19
効率的に第 1強磁性層 6を発熱させることができる。なお、近年では FeCoB合金を第 1強磁性層 6として用いることにより、大きな TMR効果が得られることが報告されてい る。
[0076] そして、第 1強磁性層 6を熱することにより、第 1強磁性層 6の磁ィ匕の向きが変わりや すくなる (非特許文献 4参照)。従って、小さな電流をビット線 1や書き込みワード線 2 に流すだけで「0」または「1」を MRAM10に書き込むことができるので、 MRAMへ の情報書き込み時の省エネルギー化を図ることができる。
[0077] また、本実施形態の MRAMでは、上記第 1磁性体が、上記ビット線の一部を置き 換えるように設けられている構成であってもよいし、上記第 1磁性体が、上記ビット線 と一体化されて、該ビット線に電流を流すように設けられて 、る構成であってもよ 、し 、上記ビット線力 上記書き込みワード線と立体的に交差する手前において途切れて おり、この途切れたビット線を繋ぐように上記第 1磁性体が設けられている構成であつ てもよい。
[0078] また、本実施形態の MRAMでは、上記ビット線の電気抵抗が、上記第 1磁性体の 電気抵抗よりも低くてもよい。
[0079] 上記構成によれば、ビット線の電気抵抗が、第 1磁性体の電気抵抗より低くなつて いる。これにより、第 1磁性体は発熱量が大きくなるので、第 1磁性体の磁ィ匕の向きを 変えやすくなる。さらに、ビット線に印加する電圧を小さくしても第 1磁性体を効率的 に発熱させることができるので、省エネルギー化を図ることができる。
[0080] また、本実施形態の MRAMでは、上記ビット線が、上記第 1磁性体よりも電気抵抗 が低い材料力 成っていてもよいし、上記ビット線力 上記第 1磁性体と同一の材料 にて形成されていてもよい。さらに、上記ビット線の断面積が、第 1磁性体の断面積よ りも大きいことが好ましい。
産業上の利用の可能性
[0081] パソコン、携帯電話などのメモリとして好適に用いることができる。

Claims

請求の範囲
[1] 複数の書き込みワード線と、これら書き込みワード線と交差して設けられた複数のビ ット線とを有するとともに、上記書き込みワード線と上記ビット線との各交点に TMR素 子を有する MRAMであって、
上記 TMR素子は、磁ィヒ方向が可変である第 1磁性体と、磁化方向が固定された第 2磁性体と、上記第 1磁性体と上記第 2磁性体とに挟持された絶縁体とから成ってお り、
上記ビット線は、所望の位置に磁壁を導入できるように設けられており、 さらに、データが書き込まれるときに、上記ビット線を流れる電流が、上記第 1磁性 体に流れる MRAM。
[2] 上記ビット線は、上記書き込みワード線と交差する位置において上記書き込みヮー ド線が延びる方向に膨らんで設けられている請求項 1記載の MRAM。
[3] 上記ビット線は、上記書き込みワード線と交差する位置において折れ曲がるように 設けられて 、る請求項 1記載の MRAM。
[4] 上記第 1磁性体は、上記ビット線の一部を置き換えるように設けられている請求項 1 に記載の MRAM。
[5] 上記第 1磁性体は、上記ビット線と一体ィ匕されて、該ビット線に電流を流すように設 けられて 、る請求項 1に記載の MRAM。
[6] 上記ビット線は、上記書き込みワード線と交差する手前において途切れており、こ の途切れたビット線を繋ぐように上記第 1磁性体が設けられて 、る請求項 1に記載の
MRAM0
[7] 上記ビット線の電気抵抗は、上記第 1磁性体よりも低い電気抵抗である請求項 1〜
6の!、ずれか 1項に記載の MRAM。
[8] 上記ビット線は、上記第 1磁性体よりも電気抵抗が低い材料により形成されている請 求項 1〜7のいずれか 1項に記載の MRAM。
[9] 上記ビット線は、上記第 1磁性体と同一の材料にて形成されている請求項 1〜7の いずれか 1項に記載の MRAM。
[10] 上記ビット線の断面積は、上記第 1磁性体よりも大きい断面積である請求項 9に記 載の MRAM。
[11] 上記ビット線は、上記書き込みワード線に対して斜め方向に横断し、かつ上記書き 込みワード線に対して線対称となるように設けられて 、る請求項 1記載の MRAM。
[12] 上記ビット線は、上記書き込みワード線と交差する位置において、曲線状のカーブ を描くように曲げられて 、る請求項 1に記載の MRAM。
[13] 上記ビット線は、上記書き込みワード線と交差する箇所において、上記第 1磁性体 により置き換えられて 、る請求項 1に記載の MRAM。
[14] 複数の書き込みワード線と、これら書き込みワード線と交差して設けられた複数のビ ット線とを有するとともに、上記書き込みワード線と上記ビット線との各交点に TMR素 子を有する MRAMにデータを書き込む MRAMの書き込み方法であって、
上記 TMR素子は、磁ィヒ方向が可変である第 1磁性体と、磁化方向が固定された第
2磁性体と、上記第 1磁性体と上記第 2磁性体とに挟持された絶縁体とから成ってお り、
上記ビット線は、所望の位置に磁壁を導入できるように設けられており、 データを書き込むときに、上記ビット線に流れる電流を、上記第 1磁性体に流す MR AMの書き込み方法。
[15] 上記ビット線は、上記書き込みワード線と交差する位置において上記書き込みヮー ド線が延びる方向に膨らんで設けられている請求項 14記載の MRAMの書き込み方 法。
[16] 上記ビット線は、上記書き込みワード線と交差する位置において折れ曲がるように 設けられている請求項 14記載の MRAMの書き込み方法。
[17] 上記ビット線は、上記書き込みワード線と交差する位置において、曲線状のカーブ を描くように曲げられて 、る請求項 14に記載の MRAMの書き込み方法。
[18] 上記ビット線は、上記書き込みワード線と交差する箇所において、上記第 1磁性体 により置き換えられている請求項 14記載の MRAMの書き込み方法。
[19] 上記ビット線は、上記書き込みワード線に対して斜め方向に横断し、かつ上記書き 込みワード線に対して線対称となるように設けられて 、る請求項 14記載の MRAMの 書き込み方法。
PCT/JP2006/308772 2005-04-26 2006-04-26 Mramおよびその書き込み方法 WO2006115275A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007514779A JPWO2006115275A1 (ja) 2005-04-26 2006-04-26 Mramおよびその書き込み方法
US11/919,189 US20100157662A1 (en) 2005-04-26 2006-04-26 Mram and method for writing in mram

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005128505 2005-04-26
JP2005-128505 2005-04-26

Publications (1)

Publication Number Publication Date
WO2006115275A1 true WO2006115275A1 (ja) 2006-11-02

Family

ID=37214888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308772 WO2006115275A1 (ja) 2005-04-26 2006-04-26 Mramおよびその書き込み方法

Country Status (3)

Country Link
US (1) US20100157662A1 (ja)
JP (1) JPWO2006115275A1 (ja)
WO (1) WO2006115275A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201465A (ja) * 2006-01-26 2007-08-09 Samsung Electronics Co Ltd マグネチックドメインドラッギングを利用する磁性素子ユニット及びその作動方法
JP2007288162A (ja) * 2006-03-20 2007-11-01 Fuji Electric Device Technology Co Ltd 磁壁移動検出端子を有する磁壁移動型磁気記録素子
JP2008166787A (ja) * 2006-12-29 2008-07-17 Samsung Electronics Co Ltd 磁壁移動を利用した情報保存装置及びその製造方法
JP2009026354A (ja) * 2007-07-17 2009-02-05 Institute Of Physical & Chemical Research 磁化状態制御装置および磁気情報記録装置
JP2009536420A (ja) * 2006-05-09 2009-10-08 インジェニア・ホールディングス・(ユー・ケイ)・リミテッド データストレージ装置及びその方法
JP2010114261A (ja) * 2008-11-06 2010-05-20 Sharp Corp 磁気メモリ、および磁気メモリへの情報記録方法
JP2010524233A (ja) * 2007-03-30 2010-07-15 インターナショナル・ビジネス・マシーンズ・コーポレーション 高密度の平面磁壁メモリ装置およびその形成方法
US8300456B2 (en) 2006-12-06 2012-10-30 Nec Corporation Magnetic random access memory and method of manufacturing the same
JP5062481B2 (ja) * 2005-08-15 2012-10-31 日本電気株式会社 磁気メモリセル、磁気ランダムアクセスメモリ、及び磁気ランダムアクセスメモリへのデータ読み書き方法
JP2013537704A (ja) * 2010-06-30 2013-10-03 インターナショナル・ビジネス・マシーンズ・コーポレーション 磁気ランダム・アクセス・メモリ(mram)装置及びmram装置を製造する方法
JP5397384B2 (ja) * 2008-11-07 2014-01-22 日本電気株式会社 磁性記憶素子の初期化方法
US8693238B2 (en) 2006-08-07 2014-04-08 Nec Corporation MRAM having variable word line drive potential
US9293183B2 (en) 2011-08-11 2016-03-22 Renesas Electronics Corporation Magnetoresistive random access memory

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534493B1 (ja) * 2012-08-09 2014-07-02 独立行政法人科学技術振興機構 スピンモータ及びスピン回転部材
WO2016079085A1 (en) * 2014-11-17 2016-05-26 Imec Vzw A vcma multiple gate magnetic memory element and a method of operating such a memory element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195250A (ja) * 1998-12-24 2000-07-14 Toshiba Corp 磁気メモリ装置
JP2006073930A (ja) * 2004-09-06 2006-03-16 Canon Inc 磁壁移動を利用した磁気抵抗効果素子の磁化状態の変化方法及び該方法を用いた磁気メモリ素子、固体磁気メモリ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4405103B2 (ja) * 2001-04-20 2010-01-27 株式会社東芝 半導体記憶装置
JP2003174149A (ja) * 2001-12-07 2003-06-20 Mitsubishi Electric Corp 磁気抵抗記憶素子および磁気ランダムアクセスメモリ装置
US6891193B1 (en) * 2002-06-28 2005-05-10 Silicon Magnetic Systems MRAM field-inducing layer configuration
JP4413603B2 (ja) * 2003-12-24 2010-02-10 株式会社東芝 磁気記憶装置及び磁気情報の書込み方法
JP4932275B2 (ja) * 2005-02-23 2012-05-16 株式会社日立製作所 磁気抵抗効果素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195250A (ja) * 1998-12-24 2000-07-14 Toshiba Corp 磁気メモリ装置
JP2006073930A (ja) * 2004-09-06 2006-03-16 Canon Inc 磁壁移動を利用した磁気抵抗効果素子の磁化状態の変化方法及び該方法を用いた磁気メモリ素子、固体磁気メモリ

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5062481B2 (ja) * 2005-08-15 2012-10-31 日本電気株式会社 磁気メモリセル、磁気ランダムアクセスメモリ、及び磁気ランダムアクセスメモリへのデータ読み書き方法
JP2007201465A (ja) * 2006-01-26 2007-08-09 Samsung Electronics Co Ltd マグネチックドメインドラッギングを利用する磁性素子ユニット及びその作動方法
JP2007288162A (ja) * 2006-03-20 2007-11-01 Fuji Electric Device Technology Co Ltd 磁壁移動検出端子を有する磁壁移動型磁気記録素子
JP2009536420A (ja) * 2006-05-09 2009-10-08 インジェニア・ホールディングス・(ユー・ケイ)・リミテッド データストレージ装置及びその方法
US8693238B2 (en) 2006-08-07 2014-04-08 Nec Corporation MRAM having variable word line drive potential
US8300456B2 (en) 2006-12-06 2012-10-30 Nec Corporation Magnetic random access memory and method of manufacturing the same
JP2008166787A (ja) * 2006-12-29 2008-07-17 Samsung Electronics Co Ltd 磁壁移動を利用した情報保存装置及びその製造方法
JP2010524233A (ja) * 2007-03-30 2010-07-15 インターナショナル・ビジネス・マシーンズ・コーポレーション 高密度の平面磁壁メモリ装置およびその形成方法
JP2009026354A (ja) * 2007-07-17 2009-02-05 Institute Of Physical & Chemical Research 磁化状態制御装置および磁気情報記録装置
JP2010114261A (ja) * 2008-11-06 2010-05-20 Sharp Corp 磁気メモリ、および磁気メモリへの情報記録方法
JP5397384B2 (ja) * 2008-11-07 2014-01-22 日本電気株式会社 磁性記憶素子の初期化方法
JP2013537704A (ja) * 2010-06-30 2013-10-03 インターナショナル・ビジネス・マシーンズ・コーポレーション 磁気ランダム・アクセス・メモリ(mram)装置及びmram装置を製造する方法
US9293183B2 (en) 2011-08-11 2016-03-22 Renesas Electronics Corporation Magnetoresistive random access memory

Also Published As

Publication number Publication date
JPWO2006115275A1 (ja) 2008-12-18
US20100157662A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
WO2006115275A1 (ja) Mramおよびその書き込み方法
JP5486731B2 (ja) 磁気メモリ
JP5224127B2 (ja) 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
CN101546808B (zh) 磁阻效应元件和磁性随机存取存储器
US7936597B2 (en) Multilevel magnetic storage device
JP5544547B2 (ja) 磁化反転装置、記憶素子、及び磁界発生装置
JP5461683B2 (ja) 磁気メモリセル及び磁気ランダムアクセスメモリ
JP2005191032A (ja) 磁気記憶装置及び磁気情報の書込み方法
KR101397654B1 (ko) 자기 메모리 소자, 그 구동 방법 및 불휘발성 기억장치
KR20060135738A (ko) 개선된 마그네틱 스위칭
JP5492144B2 (ja) 垂直磁化磁気抵抗効果素子及び磁気メモリ
JP2005101605A (ja) Mramのための熱支援型切換えアレイ構成
TWI422083B (zh) Magnetic memory lattice and magnetic random access memory
JP2006332527A (ja) 磁気記憶素子
JP2004303306A (ja) 磁気メモリデバイスおよび磁気メモリデバイスの書込方法
JP2004303801A (ja) 磁気メモリ及びその書き込み方法
CN110366756A (zh) 磁存储器、半导体装置、电子设备和读取磁存储器的方法
US10375698B2 (en) Memory system
JP4492052B2 (ja) 磁気記憶セルおよび磁気メモリデバイス
JP2002353417A (ja) 磁気抵抗効果素子および磁気メモリ装置
JP2005501402A (ja) 外部磁場を使用することなく磁化反転を制御するデバイス
JP5382295B2 (ja) 磁気ランダムアクセスメモリ
JP4665382B2 (ja) 磁気メモリ
JP2008300622A (ja) 磁気抵抗効果素子および磁気メモリ装置
JP4749037B2 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007514779

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11919189

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732378

Country of ref document: EP

Kind code of ref document: A1