WO2008029861A1 - Cristal magnétique pour matériau d'absorption d'onde radio et absorbant d'onde radio - Google Patents

Cristal magnétique pour matériau d'absorption d'onde radio et absorbant d'onde radio Download PDF

Info

Publication number
WO2008029861A1
WO2008029861A1 PCT/JP2007/067351 JP2007067351W WO2008029861A1 WO 2008029861 A1 WO2008029861 A1 WO 2008029861A1 JP 2007067351 W JP2007067351 W JP 2007067351W WO 2008029861 A1 WO2008029861 A1 WO 2008029861A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
magnetic
crystal
wave absorption
particles
Prior art date
Application number
PCT/JP2007/067351
Other languages
English (en)
French (fr)
Inventor
Shin-Ichi Ohkoshi
Shiro Kuroki
Shunsuke Sakurai
Asuka Namai
Kimitaka Sato
Shinya Sasaki
Original Assignee
The University Of Tokyo
Dowa Electronics Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo, Dowa Electronics Materials Co., Ltd. filed Critical The University Of Tokyo
Priority to US12/310,525 priority Critical patent/US8072365B2/en
Priority to CN200780032109.1A priority patent/CN101512686B/zh
Priority to EP07806793.1A priority patent/EP2058824B1/en
Publication of WO2008029861A1 publication Critical patent/WO2008029861A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0045Mixed oxides or hydroxides containing aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62813Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62823Zirconium or hafnium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm

Definitions

  • Telecommunications invention provides a magnetic crystal consisting of ⁇ - F e 2 0 3 type iron oxide magnetic crystals suitable as a radio wave absorber used in the above high-frequency band 25GH Z, with Re Narabiniso
  • the present invention relates to an absorbing material and a radio wave absorber.
  • radio waves of various bands have been used for familiar purposes. Examples include mobile phones, wireless LAN, satellite broadcasting, highway traffic systems, non-stop automatic toll collection systems (ETC), and automobile driving support road systems (AHS).
  • ETC non-stop automatic toll collection systems
  • AHS automobile driving support road systems
  • radio wave usage forms in a high frequency range are diversified in this way, there are concerns about failures, malfunctions, and functional failures due to interference between electronic components, and countermeasures become important.
  • a method that absorbs unnecessary radio waves using a radio wave absorber and prevents reflection and intrusion of radio waves is effective. '
  • This document also uses B a F e (12 _ x) A 1 x O ig magnetoplumbite type hexagonal ferrite. It is stated that the ferromagnetic resonance frequency can be reduced to about 50 to 100 GHz.
  • no example of realizing an electromagnetic wave absorber that exhibits excellent radio wave absorption performance at 50 to 100 GHz is shown, and it is not provided as a material having an absorption peak at an arbitrary frequency from the high frequency side to the low frequency side. Absent.
  • Patent Document 2 discloses a radio wave absorber in which a carbide carbide powder is dispersed in a matrix resin and has an absorption peak near 76 GHz.
  • carbon carbide powder is less expensive than carbon carbide fiber, but it is expensive as a material for a radio wave absorber.
  • Patent Document 3 describes a radio wave absorber sheet obtained by dispersing and mixing spongy iron powder having a specific surface area of 0.05 m 2 / g or more.
  • a radio wave absorption peak in the range of 42 to 80 GHz is described. What it has is illustrated.
  • the position of the absorption peak fluctuates depending on the sheet thickness.
  • the sheet thickness must be adjusted within a narrow range of 0.2 to 0.5 mm. It is necessary to set it closely. Since iron powder is used, it is necessary to devise measures to ensure corrosion resistance (oxidation resistance).
  • an absorption peak in the region exceeding 80 GHz has not been realized.
  • the electromagnetic wave absorption characteristics of a magnetic material are related to the coercive force He of the magnetic material.
  • the magnetic resonance frequency increases in proportion to the coercive force H c, so if the coercive force H c increases, Absorption peak frequency tends to increase (Non-patent literature) Four).
  • Patent Document 1 Japanese Patent Laid-Open No. 11-354972
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2005-57093
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2004-179385
  • Non-Patent Document 4 Hideo Kaneko, Motofumi Honma, “Magnetic Materials”, Maruzen, 1977, p.l 23 Problems to be Solved by the Invention
  • the present invention provides a new iron oxide magnetic crystal capable of exhibiting excellent radio wave absorption performance at a desired frequency in a wide frequency range as described above, and to provide a radio wave absorber using the same. Objective.
  • the space group is the same as that of the ⁇ —F e 2 0 3 crystal, and £ —F e 2 ⁇ A magnetic crystal for a radio wave absorption material having a structure of ⁇ —M X F e 2 _ x 0 3 , where 0 part of ⁇ ⁇ 1 is substituted in part of 6 sites of 3 crystals.
  • epsilon part of e-site of epsilon one F e 2 ⁇ 3 crystal is substituted with M - M X F e 2 - a x 0 3 may be referred to as "M-substituted E _F e 2 0 3".
  • M the coercive force He of a magnetic oxide composed of £ _F e 2 0 3 crystal (that is, ⁇ —F e 2 0 3 in which the Fe site is not substituted with a substitution element) is
  • M include Al, Ga, and In.
  • x can be in the range of 0.2 to 0.8, for example, in the composition represented by ⁇ — M X F e 2 — x 0 3 .
  • M is Ga
  • x can be in the range of 0.1 to 0.8, for example.
  • M is In X can be in the range of 0.01 to 0.3, for example.
  • Such an M-substituted ⁇ -Fe 2 O 3 magnetic crystal can be synthesized, for example, by a process that combines the reverse micelle method and the Zol-Gel method, which will be described later, and a firing process. It can also be synthesized by a process combining the direct synthesis method and the sol-gel method disclosed in Japanese Patent Application No. 20 0 7-7 5 18 by the applicant and a baking process.
  • the particles having the magnetic crystal synthesized in this way in the magnetic phase have an average particle diameter in the range of 5 to 200 nm measured from a TEM (transmission electron microscope) photograph.
  • the particle variation coefficient (standard deviation of particle size / average particle size) is in the range of less than 80%, and it is a group of particles that are relatively fine and have a uniform particle size.
  • such magnetic particles that is, the M-substituted epsilon - particles with F e 2 0 3 crystal magnetic phase
  • the “magnetic phase” here is the part responsible for the magnetism of the powder.
  • M-substituted ⁇ — Fe 2 O 3 crystal in magnetic phase means that the magnetic phase is composed of M-substituted ⁇ -F e 2 O 3 crystal, which is an unavoidable impurity in production. This includes the case where magnetic crystals are mixed.
  • the radio wave absorption material of the present invention includes an iron oxide impurity crystal (specifically, a) as a crystal constituting a magnetic phase or a non-magnetic crystal and having a space group different from that of the ⁇ — F e 2 0 3 crystal.
  • a iron oxide impurity crystal
  • - F e 2 ⁇ 3, ⁇ - F e 2 ⁇ 3, F E_ ⁇ , F e 3 0 4 and the crystal a part of which is substituted with other elements of these F e) is sometimes mixed.
  • the radio wave absorption of the present invention The material to be collected is mainly composed of the above-mentioned “M-substituted £ —Fe 2 0 3 magnetic crystal”.
  • the ratio of the "M-substituted .epsilon. F e 2 ⁇ 3 magnetic crystal" in the iron oxide crystal constituting the radio wave absorbing material lies at 5 0 mole 0/0 or more in a molar ratio of the compound Things are the target.
  • the abundance ratio of crystals can be obtained by analysis by the lead belt method based on the X-ray diffraction pattern.
  • Around the magnetic phase may be non-magnetic compound such as shea silica formed by the sol one gel process (S I_ ⁇ 2) is attached.
  • the present invention also provides a radio wave absorber having a packed structure of particles having the M-substituted ⁇ -Fe 20 3 crystal in the magnetic phase.
  • a graph having a frequency of absorption on the horizontal axis and a peak of radio absorption in the 25 to 160 GHz band in the graph with the frequency on the horizontal axis and the radio wave absorption on the vertical axis is provided.
  • the peak position of the radio wave absorption can be controlled to 7 6 GHz ⁇ 10 GHz, and in this case, a radio wave absorber suitable for automotive radar applications can be used. Can be built.
  • M X F e is M is G a in 2 _ x 0 3
  • x is from 0.1 to 0 6 5.
  • An electromagnetic wave absorber having a filling structure is provided. In order to maintain such a packed structure of particles, it is advantageous to form a packed structure in which individual particles are fixed using a nonmagnetic polymer compound as a binder.
  • a radio wave absorber having a peak of radio wave absorption at an arbitrary position in a wide frequency range including a 76 GHz band used for in-vehicle radar can be easily configured.
  • the peak position of the electromagnetic absorption can be controlled by the substitution amount of the M element, and the peak of the electromagnetic wave absorption can be realized even in a high frequency region exceeding 110 GHz. It was confirmed that.
  • Fig. 1 (a) is the X-ray diffraction pattern for the powder obtained in the example.
  • Fig. 1 (b) is the X-ray diffraction pattern for the powder obtained in the control example. ⁇
  • FIG. 2 (a) is a graph showing the relationship between the frequency and the amount of radio wave absorption for the radio wave absorber samples using the powders obtained in Examples 1 to 6 and the control example.
  • FIG. 2 (b) is a graph showing the relationship between the frequency and the amount of radio wave absorption for the radio wave absorber samples using the powders obtained in Examples 7 to 10 and the control example.
  • FIG. 3 (a) is a TEM photograph of the powder obtained in Example 1.
  • FIG. 3 (b) is a TEM photograph of the powder obtained in Example 2.
  • FIG. 3 (c) is a TEM photograph of the powder obtained in Example 3.
  • FIG. 3 (d) is a TEM photograph of the powder obtained in Example 4.
  • FIG. 3 (e.) Is a TEM photograph of the powder obtained in Example 5.
  • FIG. 3 (f) is a TEM photograph of the powder obtained in Example 6.
  • FIG. 3 (g) is a TEM photograph of the powder obtained in Example 7.
  • FIG. 3 (h) is a TEM photograph of the powder obtained in Example 8.
  • FIG. 3 (i) is a TEM photograph of the powder obtained in Example 9.
  • Figure 3 (j) is a TEM photograph of the powder obtained in the control example.
  • FIG. 3 (k) is a TEM photograph of the powder obtained in Example 10.
  • FIG. 4 (a) shows the magnetic hysteresis loop of the powder obtained in Example 1.
  • Figure 4 (b) shows the magnetic hysteresis loop of the powder obtained in the control example.
  • FIG. 5 is a graph that displays measured data and a correction curve based on the Lorentz function for the relationship between the frequency and the amount of radio wave absorption in Example 9.
  • Fig. 6 is a graph showing the relationship between the coercive force and the radio wave absorption peak frequency for the M-substituted ⁇ _Fe 20 3 crystal.
  • Non-Patent Document 1 to 3 it is possible to obtain a was Align set the reverse micelle method and the sol-gel method step, according to the heat treatment (baking) process, the .epsilon. F e 2 ⁇ 3 nanoparticles .
  • the reverse micelle method two kinds of micellar solutions containing surfactants, ie, micelle solution I (raw material micelle) and micelle solution II (neutralizer micelle) are mixed to form iron hydroxide in the micelle. Let the precipitation reaction proceed. Next, a silica coat is applied to the surface of the iron hydroxide fine particles generated in the micelle by the sol-gel method. Apply.
  • the iron hydroxide fine particles having a silica coat layer are separated from the liquid and then subjected to a heat treatment in an air atmosphere at a predetermined temperature (in the range of 700 to 130 ° C). By this heat treatment, fine particles of ⁇ -Fe 2 0 3 crystals are obtained.
  • the aqueous phase of micellar solution I containing n-octane as the oil phase contains iron nitrate (111) as the iron source, M nitrate as the M element source to replace part of the iron (in the case of A1, aluminum nitrate) (III) 9 hydrate, in case of Ga, gallium nitrate (III) n hydrate, in case of In, indium nitrate (III) trihydrate), and surfactant (eg cetyltrimethyl bromide) Ammonia aqueous solution is used for the aqueous phase of Micelle Solution II, which also contains n-octane as the oil phase.
  • alkaline earth metal nitrate (B a, S r, C a, etc.) nitrate can be dissolved in the aqueous phase of the micelle solution I.
  • This nitrate functions as a shape control agent.
  • M-substituted ⁇ -Fe 2 O 3 crystal particles in the shape of a mouth can be obtained.
  • particles of M-substituted ⁇ _F e 2 0 3 crystals that are nearly spherical can be obtained.
  • This heat treatment causes an oxidation reaction in the silica coating. progresses, fine M element-containing water iron oxide particles is changed into fine M substituted ⁇ - F e 2 ⁇ 3 particles. during the oxidation reaction, the presence of the silica coat Ya a- F e 2 O 3 ⁇ -F e 2 0 instead of three crystals with ⁇ -F e 2 O 3 and space group contributes to the generation of M-substituted .epsilon.
  • a sol-gel method is applied to form a silica coating layer on the surface of the precursor particles.
  • the silica-coated particles are separated from the liquid and then subjected to heat treatment (sintering) at a predetermined temperature, fine particles of M-substituted ⁇ -Fe 2 0 3 crystals are obtained.
  • the most common polymorphisms of F e 2 0 3 with different crystal structures with formation are a— F e 2 0 3 and ⁇ — F e 2 0 3 , etc.
  • the ferrate product include F e O and F e 3 0 4. M substitution as above ⁇ — F e 2
  • one Fe 2 0 3 crystal and an iron oxide crystal (impurity crystal) having a different space group may coexist.
  • impurity crystals cannot be said to be preferable in order to bring out the characteristics of the M-substituted ⁇ - Fe 20 3 crystal as high as possible, but is allowed within a range that does not impair the effects of the present invention.
  • the coercive force H c of the M-substituted ⁇ —F e 2 0 3 crystal is controlled so as to be trivalent M element, Ga, A 1 and
  • the 2 — x O 3 crystal was prepared according to the procedure shown in the examples described later.
  • G a as substitution elements M, A 1 by selecting and I n, M-substituted ⁇ _M X F e 2 _ x 0 3 crystals, the coercive force H c with the substitution amount of M is increased is lowered Shows behavior.
  • the radio wave absorption peak also shifts to the lower frequency side (see Fig. 6 below).
  • the peak frequency of radio wave absorption can be controlled by the amount of M element substitution.
  • 8 do not contain substituent element - the F e 2 0 3 wave absorber packed with particles having a magnetic phase consisting of magnetic crystal (For example thickness. 2 to 1 0 mm), giant coercive force of the magnetic crystal H c
  • no peak of radio wave absorption is seen (perhaps there is a peak of radio wave absorption in the higher frequency range), while a part of Fe is replaced with an appropriate amount of M element.
  • the peak of the radio wave absorption amount is below 140 GHz. Actually observed. In the case of magnetic oxides that are generally used, the amount of radio wave absorption is almost zero when the distance from the frequency of the radio wave absorption peak is increased. In contrast, .epsilon.
  • a typical form of the radio wave absorbing material provided in the present invention is “magnetic powder” obtained by the above-described process. This powder is composed of particles having the above-mentioned M-substituted ⁇ — Fe 2 0 3 magnetic crystal in the magnetic phase. The particle diameter of the particles can be controlled, for example, by adjusting the heat treatment (firing) temperature in the above step.
  • a practical radio wave absorber having a radio wave absorption amount exceeding 20 dB can be constructed as will be described later in the examples.
  • a powder having an individual particle diameter of 1 O nm or more is more preferable, and a particle diameter of 30 nm or more is more preferable.
  • the classification operation have also been studied a technique for extracting only large £ per F e 2 0 3 particles having a particle diameter.
  • Measurement of the particle diameter from a TEM photograph can be obtained by measuring the largest diameter of each particle (major axis diameter in the case of a rod-shaped one) from a TEM photograph image magnified 600,000 times.
  • the average value of the particle sizes obtained for 300 independent particles is taken as the average particle size of the powder. This is called the “TEM average particle size”.
  • the magnetic phase has the general formula ⁇ 1 M X F e 2 — x 0 3 , 0 ⁇ x ⁇ 1, Ideally it in are those represented by comprising a single phase composition, but as described above, impurity crystals and different crystal structures in the powder (a- F e 2 ⁇ 3, etc.) There is a possibility of mixing, and this mixing is allowed in 5 boxes that do not impair the effects of the present invention.
  • the powder may contain impurities that cannot be avoided during production, and elements that are added as necessary.
  • non-magnetic compounds may adhere to the particles constituting the powder. Mixture of these compounds is allowed as long as the effects of the present invention are not impaired.
  • Alkaline earth metals (B a, S r, C a, etc.) added as shape control agents may remain on the surface layer of the crystals to be generated. It may contain at least one kind of alkaline earth metal element (hereinafter referred to as alkaline earth metal element A). Its content is at most a ratio of A / (M + F e) XI 0 0 in the range of 20% by mass or less, and contains more than 20% by mass of alkaline earth metal. Is generally unnecessary to fulfill the function as a shape control agent. 1 0 Mass. More preferably / 0 or less.
  • a silica coat coated on the surface of the iron hydroxide fine particles by the sol-gel method may exist on the surface of the powder particles after the heat treatment (firing).
  • a non-magnetic compound such as silica
  • the durability, weather resistance, and reliability of the magnetic powder can be handled and used as a magnetic material for various applications.
  • the nonmagnetic compound having such a function include heat-resistant compounds such as silica, alumina and zirconia.
  • the amount of non-magnetic compound attached is too large, it is not preferable because the adverse effects such as intense aggregation of particles are increased.
  • the amount of the nonmagnetic compound present is, for example, in the case of silica S i O 2 , the compounding ratio represented by S i / (M + F e) X 100 is 100 mass% or less It is desirable to be. Part or most of the silica adhering to the particle surface can be removed by dipping in an Al force solution. Siri force adhesion amount can be adjusted to any amount using this method. It is.
  • the method for preparing the film is limited to the method exemplified here. It is not a thing. For example, even when a heat-resistant film such as alumina zirconia is formed on the surface of the precursor fine particles, this is heated to a predetermined heat treatment temperature to form particles having M-substituted ⁇ -F e 2 0 3 crystals in the magnetic phase. It is believed that it is possible to obtain a powder.
  • a heat-resistant film such as alumina zirconia
  • the radio wave absorbing material (magnetic powder) of the present invention functions as a radio wave absorber by forming a packed structure of the powder particles.
  • the packing structure here means that each particle constitutes a three-dimensional structure in the state where the particles are in contact with each other or close to each other.
  • it is necessary to maintain the filling structure.
  • a method of forming a packed structure by fixing individual particles using a non-magnetic polymer compound as a binder can be mentioned.
  • the powder of the radio wave absorbing material of the present invention is mixed with a nonmagnetic polymer base material to obtain a kneaded product.
  • the blending amount of the radio wave absorbing material powder in the kneaded product is preferably 60% by mass or more.
  • a larger amount of the radio wave absorbing material powder is advantageous in improving the radio wave absorption characteristics.
  • the amount is too large, it is difficult to knead with the polymer base material, so care must be taken.
  • the amount of radio wave absorbing material powder have a 8 0-9 5 wt% may be an 8 5-9 5 mass 0/0.
  • an appropriate material may be selected from resin (such as nylon), gel (silicone gel, etc.), thermoplastic elastomer, and rubber. Two or more polymer compounds may be blended to make a base material.
  • the radio wave absorbing material powder is Surface treatment with a surface treatment agent (silane coupling agent, titanate coupling agent, etc.) can be performed.
  • a surface treatment agent silane coupling agent, titanate coupling agent, etc.
  • various additives such as a plasticizer, a reinforcing agent, a heat resistance improver, a heat conductive filler, and an adhesive can be added when mixing the radio wave absorbing material powder and the polymer base material.
  • the kneaded material By forming the kneaded material into a predetermined sheet thickness by rolling, a radio wave absorber that maintains the filling structure can be obtained.
  • the kneaded material can be formed into a desired wave absorber shape by injection molding instead of rolling.
  • This example uses a G a a substitution element M, is an example of synthesizing crystals of ⁇ - G a 0. 46 F e 54 0 3 composition. The following procedure was followed.
  • TEOS tetraethoxysilane
  • step 3 Place the solution obtained in step 3 in a centrifuge and centrifuge. Collect the precipitate obtained in this process. The collected precipitate is washed several times with a mixed solution of chloroform and methanol.
  • step 4 After drying the precipitate obtained in step 4, heat-treat it at 1100 ° C for 4 hours in an atmospheric furnace.
  • the target sample (powder of radio wave absorbing material) was obtained through steps 1 to 6 above.
  • the manufacturing conditions are summarized in Table 1.
  • Fig. 3 A TEM photograph of this powder is shown in Fig. 3 (a).
  • the TEM average particle size was 33.0 nm, and the standard deviation was 17.3 nm.
  • the coefficient of variation defined by X100 was 52.5%.
  • the obtained sample was subjected to powder X-ray diffraction (XRD: Rigaku RI NT 2000, radiation source CuKa line, voltage 40 kV, current 3 OmA), as shown in Fig. 1 (a).
  • XRD Rigaku RI NT 2000, radiation source CuKa line, voltage 40 kV, current 3 OmA
  • Fig. 1 (a) A diffraction pattern was obtained.
  • the magnetic hysteresis loop at room temperature (300K) was measured for the obtained sample.
  • the magnetic hysteresis loop is shown in Fig. 4 (a).
  • the magnetic hysteresis loop was measured using an MPMS 7 superconducting quantum interferometer (SQU ID) manufactured by Quantum Design, Inc. under the condition of an applied magnetic field of 7 O kOe (5.57 X 10 6 A / m).
  • the value of the measured magnetic moment is normalized by the mass of acid iron. .
  • the free space method is a method for obtaining radio wave absorption characteristics by irradiating a measurement sample placed in free space with a plane wave and measuring the S parameter at that time.
  • a circle of 26.8 mm in diameter ⁇ 10 mm in thickness A columnar filling structure was formed.
  • the structure consisting of this filling structure is called “radio wave absorber sample” here.
  • Table 2 summarizes the analytical composition and properties of the magnetic oxides composed of the resulting Ga-substituted ⁇ -Fe 2 O 3 crystals.
  • a magnetic oxide composed of Ga-substituted ⁇ -Fe 2 0 3 crystals was prepared in the same manner as in Example 1 except that the charged composition of micelle solution I in Procedure 1 was changed as shown in Table 1. Similarly, the characteristics were examined. Any of these G a substituted .epsilon. F e 2 ⁇ 3 crystals exhibited an X-ray diffraction pattern similar to FIG. 1 (a). TEM photographs of each powder are shown in Fig. 3 (b) to Fig. 3 (f). The radio wave absorption characteristics are shown in Fig. 2 (a). Table 2 summarizes the analytical composition and characteristics of each magnetic oxide.
  • the substitution element M was changed from Ga to A1.
  • the coercivity (He) of this magnetic oxide at 300 K was 13 kO e, and the saturation magnetization (Ms) was 26.6 emu /.
  • a filling structure was formed using this oxide powder, and the radio wave absorption characteristics were measured. Measurement The method is the same as in Examples 7-9. The measurement results are shown in Fig. 2 (b).
  • each of the radio wave absorber samples of Examples 1 to 8 and 10 had a peak of radio wave absorption between 25 and 140 GHz. These samples had a lower coercive force H c than that of the control example described later ( ⁇ —F e 2 0 3 without addition of a substitution element), and the magnetic resonance frequency was lowered accordingly. It is probable that the yield peak appeared in the region below 140 GHz.
  • Example 9 even when the frequency was increased to 140 GHz, the amount of radio wave absorption further increased (Fig. 2 (b)). As for the radio wave absorption characteristics on the higher frequency side, no direct measurement method has been established at present. Therefore, we attempted to estimate the resonance frequency by extrapolating the spectrum using the Lorentz function. Figure 5 shows the results. According to the result, it was found that there was a radio wave absorption peak near 147 GHz.
  • Figure 6 shows the relationship between the coercivity H c and the radio wave absorption peak frequency.
  • the coercive force H c and the radio wave absorption peak frequency have a linear correlation.
  • the actually measured coercive force He and the radio wave absorption peak frequency value estimated were plotted, which are also almost on the extension of the measured data line.
  • the substitution element M is Ga, A 1, In, etc.
  • the larger the value of X when the molar ratio of M to F e is expressed as M: F e x: (2 1 X) ( That is, the coercive force He decreases as the amount of substitution by M increases (see Table 2 and Table 3 above).
  • This example is an example of synthesizing a crystal having an ⁇ -Fe 2 O 3 composition without adding the substitution element M.
  • step 1 change the amount of iron nitrate (III) 9 hydrate used in the preparation of micelle solution I from 0.002295 mol to 0.0030 mol, and add gallium nitrate (III) n hydrate. I did not.
  • step 1 when adjusting the micelle solution I, 0.00030 mol of barium nitrate was added as a shape control agent.
  • step 3 the amount of tetraethoxysilane (TEOS) added was 6 mL.
  • step 5 the firing temperature was 1000 ° C.
  • FIG. 3 (j) A TEM photograph of this powder is shown in Fig. 3 (j).
  • the TEM average particle size was 34.8 nm, the standard deviation was 28.9 nm, and the dynamic coefficient was 83.1%.
  • Example 2 When the obtained sample was subjected to X-ray diffraction in the same manner as in Example 1, the diffraction pattern shown in FIG. 1 (b) was obtained. In this diffraction pattern, the crystal structure of ⁇ —F e 2 O 3 (rhombic, no peaks other than those corresponding to the space group Pn a S ⁇ were observed. Also, the obtained sample was the same as in Example 1. The magnetic hysteresis loop was measured at room temperature (300 K), where the applied magnetic field was 50 kOe (3.98 X 10 6 A / m), and the results are shown in Fig.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compounds Of Iron (AREA)
  • Aerials With Secondary Devices (AREA)

Description

明 細 書 電波吸収材料用の磁性結晶および電波吸収体 技術分野
本発明は、 ε— F e 203系の鉄酸化物からなる磁性結晶であって、 25GH Z以上の高周波帯域で使用される電波吸収材として適した磁性結晶、 並びにそ れを用いた電波吸収材料および電波吸収体に関する。 従来技術
近年、 情報通信技術の高度化に伴い、 さまざまな帯域の電波が身近な用途で 使用されるようになってきた。 例えば、 携帯電話、 無線 LAN、 衛星放送、 高 度道路交通システム、 ノンストップ自動料金徴収システム (ETC)、 自動車走 行支援道路システム (AHS) などが挙げられる。 このように高周波域での電 波利用形態が多様化すると、 電子部品同士の干渉による故障、 誤動作、 機能不 全の発生などが懸念され、 その対策が重要となってくる。 その対策の 1つとし て、 電波吸収体を用いて不要な電波を吸収し、 電波の反射および侵入を防ぐ方 法が有効である。 '
特に昨今では、'電波を用いた取り組みの一つとして自動車の運転支援システ ムの研究が盛んになり、 76 GHz帯域のミリ波を利用して車間距離等の情報 を検知する車載レーダーの開発が進められ、 特にこの帯域で優れた電波吸収能 を有する素材の開発が待たれている。 今後は 100GHz帯域、 あるいはさら に高い周波数帯域での電波利用が考えられる。 これを実現するには、 そのよう な高周波域で電波吸収性能を発現する素材の開発が必須である。
従来、 電波吸収性能を有するものとしては、 六方晶フェライ ト粒子などがよ く利用されてきた。 たとえば、 特許文献 1には B a F e (12_x) A 1 x019, x = 0.6のマグネトプランバイト型六方晶フェライトを用いた電波吸収体におい て、 53 GH z付近で吸収ピークをもつものが示されている。また同文献には、 B a F e (12_x) A 1 xOig系のマグネトプランバイト型六方晶フェライトを使 用すると強磁性共鳴周波数を 50〜100GHz程度にすることができると記 載されている。 しかし、 50〜100 GHzで優れた電波吸収性能を呈する電 波吸収体を実現した例は示されておらず、 高周波側から低周波側にかけ任意の 周波数で吸収ピークを持つ材料としては提供されていない。
特許文献 2には炭化ケィ素粉末をマトリクス樹脂中に分散させた電波吸収体 において、 76 GH z付近で吸収ピークをもつものが示されている。 しかし、 炭化ケィ素粉末は炭化ケィ素繊維に比べると安価ではあるが、 電波吸収体用の 素材としては高価である。 また、 導電性を有するため電子機器内部 (回路付近) において接して使用する時などは、 絶縁処置を施す必要がある。
特許文献 3には、比表面積が 0.05 m2/ g以上の海綿状鉄粉を分散混合して なる電波吸収体シートが記載されており、 実施例として 42〜80GHzの範 囲に電波吸収ピークを持つものが例示されている。 しかし、 吸収ピークの位置 はシート厚さに敏感に依存して変動し、 上記の周波数帯域で吸収ピークの位置 を所定の周波数に合わせるには、 シート厚さを 0.2〜 0.5 mmの狭い範囲で精 密に設定する必要がある。 鉄粉を使用するため耐食性 (耐酸化性) を確保する ための工夫も必要である。 また、 80 GH zを超えるような領域に吸収ピーク を持つものは実現されていない。
一方、 酸化鉄系磁性材料の研究においては、 最近、 20 kOe (1.59 X 1 06A/m) という巨大な保磁力 H cを示す ε— F e 23の存在が確認されてい る。 F e 23の組成を有しながら結晶構造が異なる多形 (polymorphism) には 最も普遍的なものとしてひ一 F e 203および γ— F e 203があるが、 ε— F e 23もその一つである。この ε— F e 203の結晶構造と磁気的性質が明らかにさ れたのは、 非特許文献 1〜 3に見られるように、 ε— F e 203結晶をほぼ単相 の状態で合成できるようになったごく最近のことである。 この ε— F e 203は 巨大な保磁力 H cを示すことから、 高記録密度の磁気記録媒体への適用が期待 されている。
磁性体の電波吸収特性は、 その磁性体が持つ保磁力 Heと関連があり、 一般 に保磁力 H cに比例して磁気共鳴周波数が高くなることから、 保磁力 H cが増 大すれば電波吸収ピークの周波数が高くなる傾向を示すとされる (非特許文献 4)。 本発明者らの検討によって、 ε—F e 23は高い保磁力を有することが確 認されているが、 ε -F e 203の電波吸収能力に関する知見や性状に関しては 未だ報告がない。
【特許文献 1】 特開平 11一 354972号公報
【特許文献 2】 特開 2005— 57093号公報
【特許文献 3】 特開 2004— 179385号公報
【非特言干文献 1 J Jian dm, Shmichi Onkoshi and Kazuhito Hashimoto, ADVANCED MATERIALS 2004, 16, No.l、 January 5, p.48.51
【非特許文 2】 Jian Jin, Kazuhito Hashimoto and Shinichi Ohkoshi, JOURNAL OF MATERIALS CHIMISTRY 2005, 15, p.1067-1071
【非特 S午文献 3】 Shmisuke Sakurai, Jian Jin, Kazuhito Hashimoto and Shinichi Ohkoshi, JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, Vol.74, No.7, July, 2005、 p.1946-1949
【非特許文献 4】金子秀夫、 本間基文著、 「磁性材料」、 丸善、 1977年、 p.l 23 発明が解決しょうとする課題
上述のように、 車載レーダーに利用される 76 GHz帯域を含む広い周波数 領域において、 所望の周波数で優れた電波吸収性能を発揮するような安価な素 材を使用した電波吸収体を構築することは必ずしも容易ではない。
本発明は、 上記のような広い周波数領域における所望の周波数で優れた電波 吸収性能を発揮しうる新たな酸化鉄系磁性結晶を提供すること、 およびそれを 用いた電波吸収体を提供することを目的とする。
■ 課題を解決するための手段
発明者らは詳細な検討の結果、 ε— F e 203結晶の F eサイ トの一部を、 3 価の金属元素で置換した磁性結晶において、 上記目的が達成し得ることが明ら かになつた。
すなわち本発明では、 ε— F e23結晶と空間群が同じであり、 £—F e 23結晶の 6サィトの一部が Mで置換された ε —MXF e 2_x03、 ただし 0く χ < 1、 の構造を有する、 電波吸収材料用の磁性結晶が提供される。 以下、 ε 一 F e 23結晶の eサイトの一部が Mで置換された ε — MX F e 2x03を 「M置換 E _F e 203」 と呼ぶことがある。
ここで、 Mとして、 £ _F e 203結晶 (すなわち、 F eサイトが置換元素で 置換されていない ε —F e 203) からなる磁性酸化物の保磁力 H eを、 前記置 換によって低下させる作用を有する 1種または 2種以上の 3価の元素を利用す ることができる。 具体的には、 Mとしては例えば A l、 G a、 I nなどが挙げ られる。 Mが A 1である場合、 ε — MXF e 2_x03で表される組成において、 x は例えば 0.2〜0.8の範囲とすることができる。 Mが G aである場合も、 xは 例えば 0.1〜0.8の範囲とすることができる。 Mが I nである場合は、 Xは例 えば 0.0 1〜 0.3の範囲とすることができる。
このような M置換 ε — F e 2 O 3磁性結晶は、 例えば後述の、 逆ミセル法とゾ ル一ゲル法を組み合わせた工程および焼成工程によつて合成することができる。 本出願人らが特願 2 0 0 7 - 7 5 1 8号に開示した直接合成法とゾル一ゲル法 を組み合わせた工程および焼成工程によって合成することもできる。 このよう にして合成される当該磁性結晶を磁性相にもつ粒子は、 TEM (透過型電子顕 微鏡) 写真から計測される平均粒子径が 5〜2 0 0 nmの範囲にある。 また、 粒子の変動係数(粒子径の標準偏差/平均粒子径)が 8 0 %未満の範囲にあり、 比較的微細で粒子径の整った粒子群となっている。 本発明では、 このような磁 性粒子 (すなわち上記の M置換 ε — F e 203結晶を磁性相にもつ粒子) の粉体 からなる電波吸収材料が提供される。 ここでいう 「磁性相」 は当該粉体の磁性 を担う部分である。 「M置換 ε — F e 203結晶を磁性相にもつ」 とは、 磁性相が M置換 ε -F e 2 O 3結晶からなることを意味し、 その磁性相に製造上不可避的 な不純物磁性結晶が混在する場合を含む。
本発明の電波吸収材料には、 磁性相を構成する結晶、 または非磁性結晶とし て、 ε — F e 23結晶と空間群を異にする鉄酸化物の不純物結晶 (具体的には a— F e 23、 γ— F e 23、 F e〇、 F e 304およびこれらの F eの一部が 他の元素で置換された結晶) が混在することがある。 しかし、 本発明の電波吸 収材料は、 上記 「M置換 £ — F e 203磁性結晶」 を主相とするものである。 す なわち、 当該電波吸収材料を構成する鉄酸化物結晶の中で 「M置換 ε— F e 23磁性結晶」 の割合が、 化合物としてのモル比で 5 0モル0 /0以上であるものが対 象となる。 結晶の存在比は、 X線回折パターンに基づくリードベルト法による 解析で求めることができる。 磁性相の周囲にはゾル一ゲル過程で形成されたシ リカ (S i〇2) 等の非磁性化合物が付着していることがある。
また、 本発明では、 上記 M置換 ε— F e 203結晶を磁性相にもつ粒子の充填 構造を有する電波吸収体が提供される。 特に、 横軸に周波数、 縦軸に電波吸収 量をとつたグラフにおいて、 2 5〜1 6 0 G H z帯域に電波吸収量のピークを 有するものが提供される。 Mの置換量を調整することなどによって、 電波吸収 量のピーク位置を 7 6 G H z ± 1 0 G H z帯域にコントロールすることが可能 であり、 この場合、 車載レーダー用途に適した電波吸収体を構築することがで きる。 また特に 4 0〜1 6 0 G H z帯域に電波吸収量のピークを有するものと して、 ε— MX F e 2_x 0 3における Mが G aであり、 xが 0. 1〜 0 . 6 5である 磁性結晶を磁性相にもつ粒子の充填構造を有する電波吸収体、 あるいは Mが A 1であり、 Xが 0 . 2〜 0 . 8である磁性結晶を磁性相にもつ粒子の充填構造を有 する電波吸収体が提供される。 このような粒子の充填構造を維持するためには、' 個々の粒子が非磁性高分子化合物をバインダ一として固着された充填構造を形 成させることが有利である。
本発明の磁性結晶によれば、 車載レーダーに利用される 7 6 GH z帯域を含 む幅広い周波数領域の任意の位置に電波吸収量のピークを有する電波吸収体を 簡便に構成することができる。 この磁性結晶では、 M元素の置換量によって電 波吸収量のピーク位置をコントロールすることが可能であり、 1 1 0 GH zを 超える高周波領域においても、 電波吸収量のピークを実現することが可能であ ることが確かめられた。 図面の簡単な説明
図 1 ( a ) は、 実施例で得られた粉体についての X線回折パターンである 図 1 ( b ) は、 対照例で得られた粉体についての X線回折パターンである λ
図 2 ( a ) は、 実施例 1〜6および対照例で得られた粉体を用いた電波吸収 体試料について、 周波数と電波吸収量の関係を示したグラフである。
図 2 ( b ) は、 実施例 7〜 1 0および対照例で得られた粉体を用いた電波吸 収体試料について、 周波数と電波吸収量の関係を示したグラフである。
図 3 ( a ) は、 実施例 1で得られた粉体の T E M写真である。
図 3 ( b ) は、 実施例 2で得られた粉体の T E M写真である。
図 3 ( c ) は、 実施例 3で得られた粉体の T E M写真である。
図 3 ( d ) は、 実施例 4で得られた粉体の T EM写真である。
図 3 ( e.) は、 実施例 5で得られた粉体の T E M写真である。
図 3 ( f ) は、 実施例 6で得られた粉体の T E M写真である。
図 3 ( g ) は、 実施例 7で得られた粉体の T EM写真である。
図 3 ( h ) は、 実施例 8で得られた粉体の T E M写真である。
図 3 ( i ) は、 実施例 9で得られた粉体の T E M写真である。
図 3 ( j ) は、 対照例で得られた粉体の T E M写真である。
図 3 ( k ) は、 実施例 1 0で得られた粉体の T E M写真である。
図 4 ( a ) は、 実施例 1で得られた粉体の磁気ヒステリシスループである。 図 4 ( b ) は、 対照例で得られた粉体の磁気ヒステリシスループである。 図 5は、 実施例 9の周波数と電波吸収量の関係について、 実測データとロー レンツ関数による補正曲線を表示したグラフである。
図 6は、 M置換 ε _ F e 203結晶について、 保磁力と電波吸収ピーク周波数 の関係を示したグラフである。 発明の好ましい態様
非特許文献 1〜 3に記載されるように、 逆ミセル法とゾルーゲル法を組み合 わせた工程と、 熱処理 (焼成) 工程によれば、 ε— F e 23ナノ微粒子を得る ことができる。 逆ミセル法では、 界面活性剤を含んだ 2種類のミセル溶液、 す なわちミセル溶液 I (原料ミセル) とミセル溶液 II (中和剤ミセル) を混合す ることによって、 ミセル内で水酸化鉄の沈殿反応を進行させる。 次に、 ゾルー ゲル法によって、 ミセル内で生成した水酸化鉄微粒子の表面にシリカコートを 施す。 シリカコート層をもつ水酸化鉄微粒子は、 液から分離されたあと、 所定 の温度(7 0 0〜 1 3 0 0 °Cの範囲内)で大気雰囲気下での熱処理に供される。 この熱処理により ε— F e 203結晶の微粒子が得られる。
より具体的には、 例えば以下のようにする。
n—オクタンを油相とするミセル溶液 Iの水相には、 鉄源としての硝酸鉄 (111)、 鉄の一部を置換させる M元素源としての M硝酸塩 (A 1の場合、 硝酸ァ ルミユウム (III) 9水和物、 G aの場合、 硝酸ガリウム (III) n水和物、 I n の場合、 硝酸インジウム (III) 3水和物)、 および界面活性剤 (例えば臭化セチ ルトリメチルアンモニゥム) を溶かし、 同じく n—オクタンを油相とするミセ ル溶液 IIの水相にはアンモニア水溶液を用いる。 その際、 ミセル溶液 Iの水相 に適量のアルカリ土類金属 (B a 、 S r 、 C aなど) の硝酸塩を溶解させてお くことができる。 この硝酸塩は形状制御剤として機能する。 すなわち、 アル力 リ土類金属が液中に存在すると最終的に口ッド形状の M置換 ε— F e 2 O 3結晶 の粒子を得ることができる。 形状制御剤がない場合は、 球状に近い M置換 ε _ F e 203結晶の粒子を得ることができる。
両ミセル溶液 Iと IIを混合した後、 ゾルーゲル法を適用する。 すなわち、 シ ラン(例えばテトラエチルオルトシラン)を合体液に滴下しながら撹拌を続け、 ミセル内で M元素を含有する水酸化鉄の生成反応を進行させる。 これにより、 ミセル内で生成した微細な水酸化鉄沈殿の粒子表面にはシランの加水分解によ つて生成するシリカがコーティングされる。 次いで、 シリカコーティングされ た M元素含有水酸化鉄粒子を液から分離 ·洗浄 ·乾燥して得た粒子粉体を炉内 に装入し、 空気中で 7 0 0〜 1 3 0 0 ° (:、 好ましくは 9 0 0〜 1 2 0 0 °C、 さ らに好ましくは 9 5 0〜 1 1 5 0 °Cの温度範囲で熱処理 (焼成) する。 この熱 処理によりシリカコーティング内で酸化反応が進行して、 微細な M元素含有水 酸化鉄粒子は微細な M置換 ε— F e 2 Ο 3粒子に変化する。 この酸化反応の際に、 シリカコートの存在が a— F e 2 O 3や γ—F e 203の結晶ではなく、 ε—F e 2 O 3と空間群が同じである M置換 ε— F e 2 O 3結晶の生成に寄与すると共に、粒 子同士の焼結を防止する作用を果たす。 また、 適量のアルカリ土類金属が共存 していると、 粒子形状がロッド状に成長しやすくなる。 また、 より経済的な M置換 ε— F e 203結晶の製法として、 本出願人らが特 願 2 0 0 7— 7 5 1 8号明細書に開示した方法が利用できる。 これを簡潔に説 明すれば、 初めに 3価の鉄塩と置換元素 (G a、 A 1など) の塩が溶解してい る水溶媒に、 撹拌状態でアンモニア水などの中和剤を添加することで、 鉄の水 酸化物 (一部が別元素で置換されていることもある) からなる前駆体を形成す る。 その後にゾルーゲル法を適用し、 前駆体粒子表面にシリカの被覆層を形成 させる。 このシリカ被覆粒子を液から分離した後に、 所定の温度で熱処理 (焼 成) を行うと、 M置換 ε — F e 203結晶の微粒子が得られる。
F e 203の ,袓成を有しながら結晶構造が異なる多形(polymorphism) には最 も普遍的なものとして a— F e 203および γ— F e 203があり、 その他の鉄酸 化物としては F e Oや F e 304が挙げられる。 上記のような M置換 ε— F e 2
03の合成において、このようなら一 F e 203結晶と空間群を異にする鉄酸化物 結晶 (不純物結晶) が混在する場合がある。 このような不純物結晶の混在は、 M置換 ε - F e 203結晶の特性をできるだけ高く引き出す上で好ましいとは言 えないが、 本発明の効果を阻害しない範囲で許容される。
発明者らの詳細な検討によれば、 置換量に応じて、 M置換 ε— F e 20 3結晶 の保磁力 H cをコントロールしゃすい 3価の M元素として、 G a、 A 1および
1 nを挙げることができる。発明者らはこれらの元素を置換元素 Mとして、種々 の置換量で M置換 ε — F e 203結晶を合成し、 磁気特性を調査した。 置換後の 結晶を ε -MX F e 2_x O 3と表記するときの xの値 (すなわち Mによる置換量) と、 保磁力 H eの測定値を表 3に例示する。 これら各組成の M置換 ε — MX F e
2x O 3結晶は後述の実施例に示す手順に準じて作成したものである。 置換元素 Mとして G a、A 1、 I nなどを選択すると、 M置換 ε _MX F e 2_x 03結晶は、 Mによる置換量が増大するに伴い保磁力 H cが低下していく挙動を示す。
そして、 この保磁力 H eの低下に伴い、 電波吸収量のピークも低周波数側に シフトする (後述の図 6参照)。 つまり、 M元素の置換量により電波吸収量のピ ーク周波数をコントロールすることができる。 例えば、 置換元素を含有しない 8 - F e 20 3磁性結晶からなる磁性相を有する粒子を充填した電波吸収体 (例 えば厚さ 2〜 1 0 mm) では、 その磁性結晶の巨大な保磁力 H cによって、 測 定可能周波数領域では電波吸収量のピークが見られない (おそらく更に高い周 波数域に電波吸収量のピークが存在すると考えられる) のに対し、 F eの一部 を適量の M元素で置換して保磁力 H cを低下させた M置換 ε— F e 203磁性結 晶からなる磁性相を有する粒子を充填した電波吸収体では、 1 40 GH z以下 の領域で電波吸収量のピークが実際に観測された。 なお、 一般的に用いられて いる磁性酸化物の場合、 電波吸収ピークの周波数から遠ざかると電波吸収量は ほとんどゼロになる。 これに対し、 ε— F e 23結晶や M置換 ε — F e 203結 晶からなる磁性酸化物の場合は、 電波吸収ピークの周波数を外れても、 広い周 波数領域で連続して電波吸収現象が起こるという特異な電波吸収挙動を呈する。 本発明で提供される電波吸収材料の典型的な形態は、 上記のような工程で得 られた 「磁性粉体」 である。 この粉体は前述の M置換 ε — F e 203磁性結晶を 磁性相にもつ粒子で構成される。 その粒子の粒子径は、 例えば上記工程におい て熱処理 (焼成) 温度を調整することによりコントロール可能である。 電波吸 収材料としての用途では、 磁性粉体の粒子径が大きいほど吸収性能の向上が期 待できるが、 あまり大きな ε -F e 203粒子を合成することは現時点において 困難である。 発明者らの検討によれば、 前記の逆ミセル法とゾルーゲル法を組 み合わせた手法や、 特願 200 7- 7 5 1 8号に開示した直接合成法とゾルー ゲル法を組み合わせた手法によって、 TEM (透過型電子顕微鏡) 写真から計 測される平均粒子径 (後述の 「TEM平均粒子径」) で 5〜200 nmの範囲の 粒子を合成することが可能である。 このような微粒子であっても後述実施例で 示すように、 電波吸収量が 20 d Bを超える実用的な電波吸収体を構築するこ とができる。 個々の粒子の粒子径が 1 O nm以上である粉体がより好ましく、 3 0 nm以上であることが一層好ましい。 分級操作により、 粒子径の大きい £ 一 F e 203粒子だけを抽出する技術も研究されている。
TEM写真からの粒子径の計測は、 6 0万倍に拡大した TEM写真画像から 各粒子の最も大きな径 (ロッド状のものでは長軸径) を測定することにより求 めることができる。 独立した粒子 300個について求めた粒子径の平均値を、 その粉末の平均粒子径とする。 これを 「TEM平均粒子径」 と呼ぶ。
本発明の電波吸収材料は、 磁性相が一般式 ε 一 MXF e 2x03、 0 < x < 1、 で表される組成の単相からなるものであることが理想的であるが、 上述のよう に、 粉体中にはこれと異なる結晶構造の不純物結晶 (a— F e 23等) が混在 することがあり、 その混在は本発明の効果を阻害しない 5囲で許容される。 粉 体にはこれ以外にも製造上混入が避けられない不純物や、 必要に応じて添加さ れる元素が含まれることがある。 また、 粉体を構成する粒子には非磁性化合物 等が付着していることがある。 これらの化合物の混在も、 本発明の効果を阻害 しない範囲で許容される。
例えば、 逆ミセル法とゾルーゲル法を組み合わせた工程を実施する際に、 ミ セル内に適量のアル力リ土類金属イオンを共存させておくと最終的にロッド形 状の結晶が得られやすくなる (前述)。 形状制御剤として添カ卩したアルカリ土類 金属 (B a、 S r、 C aなど) は、 生成する結晶の表層部に残存することがあ り、 したがって、 本発明に従う電波吸収材料は、 このようなアルカリ土類金属 元素 (以下、 アルカリ土類金属元素を Aと表記) の少なくとも 1種を含有する ことがある。 その含有量は、 多くても A/ (M+ F e ) X I 0 0で表される配 合比が 2 0質量%以下の範囲であり、 2 0質量%を超えるアル力リ土類金属の 含有は、 形状制御剤としての機能を果たす上では一般に不必要である。 1 0質 量。 /0以下であることがより好ましい。
さらに、 ゾルーゲル法で水酸化鉄微粒子の表面にコーティングされたシリカ コートが、 熱処理 (焼成) 後の粉末粒子の表面に存在することがある。 粉末粒 子の表面にシリカのような非磁性化合物が存在していると、 この磁性粉体の取 り扱い上や、 各種用途の磁性材料として使用する場合に、 耐久性、 耐候性、 信 賴性等を改善できるメリットが生じる場合がある。 このような機能を有する非 磁性化合物としてはシリカのほ力 アルミナゃジルコニァ等の耐熱性化合物が 挙げられる。 ただし、 非磁性化合物の付着量があまり多いと、 粒子同士が激し く凝集してしまうなどの弊害が大きくなり好ましくない。 種々検討の結果、 非 磁性化合物の存在量は、 例えばシリカ S i O 2の場合だと、 S i / (M+ F e ) X 1 0 0で表される配合比が 1 0 0質量%以下であることが望まれる。 粒子表 面に付着したシリカの一部または大部分は、 アル力リ溶液に浸す方法によって 除去することができる。 シリ力付着量はこのような方法で任意の量に調整可能 である。
なお、 本明細書では M置換 ε— F e 20 3結晶の合成法について、 その前駆体 となる水酸化鉄と M水酸化物の微粒子を逆ミセル法や直接合成法で作製する例 を挙げたが、 M置換 ε— F e 23結晶への酸化が可能なサイズ (数百 n m以下 と考えられる) の同様の前駆体が作製できる手法であれば、 上記以外の手法を 採用しても構わない。 また、 該前駆体微粒子をゾル一ゲル法を適用してシリカ コーティングした例を挙げたが、 該前駆体に耐熱性皮膜をコーティングできれ ば、 その皮膜作製法はここに例示した手法に限られるものではない。 例えばァ ルミナゃジルコニァ等の耐熱性皮膜を該前駆体微粒子表面に形成させる場合で も、 これを所定の熱処理温度に加熱して M置換 ε - F e 2 0 3結晶を磁性相にも つ粒子の粉体を得ることは可能であると考えられる。
本発明の電波吸収材料 (磁性粉体) は、 その粉体粒子の充填構造を形成させ ることによって、 電波吸収体として機能する。 ここでいう充填構造は、 粒子同 士が接しているかまたは近接している状態で各粒子が立体構造を構成している ものを意味する。 電波吸収体の実用に供するためには充填構造を維持させる必 要がある。 その手法として、 例えば非磁性高分子化合物をバインダーとして、 個々の粒子を固着させることによって充填構造を形成させる方法が挙げられる。 具体的には、 本発明の電波吸収材料の粉体を非磁性の高分子基材と混合して 混練物を得る。 混練物中における電波吸収材料粉体の配合量は 6 0質量%以上 とすることが好ましい。 電波吸収材料粉体の配合量が多いほど電波吸収特性を 向上させる上で有利となるが、 あまり多いと高分子基材との混練が難しくなる ので注意を要する。 例えば電波吸収材料粉体の配合量は 8 0〜9 5質量%ある いは 8 5〜9 5質量0 /0とすることができる。
高分子基材としては、 使用環境に応じて、 耐熱性、 難燃性、 耐久性、 機械的 強度、 電気的特性を満足する各種のものが使用できる。 例えば、 樹脂 (ナイ口 ン等)、 ゲル (シリコーンゲル等)、 熱可塑性エラストマ一、 ゴムなどから適切 なものを選択すれば良い。 また 2種以上の高分子化合物をプレンドして基材と してもよい。
高分子基材との相溶性や分散性を改善するために、 電波吸収材料粉体には予 め表面処理剤 (シランカップリング剤、 チタネートカップリング剤等) による 表面処理を施すことができる。 また、 電波吸収材料粉体と高分子基材との混合 に際し、 可塑剤、 補強剤、 耐熱向上剤、 熱伝導性充填剤、 粘着剤などの各種添 加剤を添加することができる。
上記混練物を圧延により所定のシート厚に成形することで前記充填構造が維 持された電波吸収体が得られる。 また、 圧延の替わりに混練物を射出成形する ことにより所望の電波吸収体形状に成形することもできる。 また、 本発明の電 波吸収材料の粉体を塗料中に混合し、 これを基体の表面に塗布することによつ ても、 充填構造が維持された電波吸収体が構築できる。 実施例
《実施例 1》
本例は、 置換元素 Mとして G aを使用し、 ε— G a 0. 46F e 5403組成の 結晶を合成した例である。 以下の手順に従った。
〔手順 1〕 '
ミセル溶液 Iとミセル溶液 IIの 2種類のミセル溶液を調整する。
• ミセル溶液 Iの作製
テフロン (登録商標) 製のフラスコに、 純水 6mL、 n—オクタン 18.3m Lおよび 1—ブタノール 3.7mLを入れる。 そこに、 硝酸鉄 (III) 9水和物を 0.002295モル、 硝酸ガリゥム (III) n水和物を 0.000705モルを添 加し、 室温で良く撹拌しながら溶解させる。 さらに、 界面活性剤としての臭化 セチルトリメチルアンモニゥムを、 純水/界面活性剤のモル比が 30となるよ うな量で添加し、 撹拌により溶解させ、 ミセル溶液 Iを得る。 ここで、 硝酸ガ リウム (ΙΠ) n水和物は和光純薬工業株式会社製の純度 99 · 9 %で n = 7〜 9 の試薬を使用し、 事前にこの試薬の定量分析を行つて nを特定してから仕込み 量を算出した。
このときの仕込み組成は、 Gaと F eのモル比を Ga : F e = x : (2-χ) と表すとき x = 0.47である。 '
• ミセル溶液 IIの作製 25%アンモニア水 2 mLを純水 4 mLに混ぜて撹拌し、 その液に、 さらに n—オクタン 18.3mLと 1—ブタノール 3.7 m Lを加えてよく撹拌する。 そ の溶液に、 界面活性剤として臭化セチルトリメチルアンモニゥムを、 (純水 +ァ ンモユア中の水分) Z界面活性剤のモル比が 30となるような量で添加し、 溶 解させ、 ミセル溶液 IIを得る。
〔手順 2〕
ミセル溶液 Iをよく撹拌しながら、 ミセル I溶液に対してミセル溶液 IIを滴 下する。 滴下終了後、 混合液を 30分間撹拌しつづける。
〔手順 3〕
手順 2で得られた混合液を撹拌しながら、 当該混合液にテトラエトキシシラ ン (TEOS) l.OmLを加える。 約 1日そのまま、 撹拌し続ける。
〔手順 4〕
手順 3で得られた溶液を遠心分離機にセットして遠心分離処理する。 この処 理で得られた沈殿物を回収する。 回収された沈殿物をクロロホルムとメタノー ルの混合溶液を用いて複数回洗浄する。
〔手順 5〕
手順 4で得られた沈殿物を乾燥した後、 大気雰囲気の炉内で 1100°Cで 4 時間の熱処理を施す。
〔手順 6〕
手順 5で得られた熱処理粉を 2モル/ Lの N a OH水溶液中で 24時間撹拌 し、 粒子表面に存在するであろうシリカの除去処理を行う。 次いで、 ろ過 '水 洗し、 乾燥する。
以上の手順 1から 6を経ることによって、 目的とする試料 (電波吸収材料の 粉体) を得た。 その製造条件を表 1にまとめてある。
この粉体の TEM写真を図 3 (a)に示す。 TEM平均粒子径は 33.0 nm、 標準偏差は 17.3 nmであった。 (標準偏差/ T EM平均粒径) X 100で定義 される変動係数は 52.5%であった。
得られた試料を粉末 X線回折 (XRD : リガク製 R I NT 2000、 線源 C uKa線、 電圧 40 k V、 電流 3 OmA) に供したところ、 図 1 (a) に示す 回折パターンが得られた。 この回折パターンにおいて、 ε— F e 23の結晶構 造 (斜方晶、 空間群 Pn a 2j に対応するピーク以外は観察されなかった。 得られた試料を蛍光: X線分析 (日本電子製 J SX— 3220) に供したとこ ろ、 Gaと F eのモル比を G a : F e = x : (2— x) と表すとき、 仕込み組成 は X == 0.47であったのに対し、 分析組成は X = 0.46であった。 不純物の鉄 酸化物結晶は、 ほとんど検出されなかったことから、 得られた磁性結晶はほぼ ε -G a 0. 46F e !. 5403組成の結晶であるとみなせる。
また、 得られた試料について、 常温 (300K) における磁気ヒステリシス ループを測定した。 磁気ヒステリシスループを図 4 (a) に示す。 磁気ヒステ リシスループの測定は、 カンタムデザィン社製の MPMS 7の超伝導量子干渉 計 (SQU I D) を用いて、 印加磁界 7 O kOe (5.57 X 106A/m) の条 件で行った。 測定された磁気モーメントの値は酸ィヒ鉄の質量で規格化してある。. その際、 試料中の S i、 F e、 G aの各元素は全て S i 02、 Ga XF e 2_x03 で存在しているものと仮定し、 各元素の含有割合については上記の蛍光 X線分 析で求めた。 印加磁界 70 kOe (5.57 X 106A/m) の測定条件での保磁 力 Heは 7.30 k O e (5.81 X 106A/m)、飽和磁化 σ sは 28.61 em u/g (A - m2/k g) であった。
次に、 得られた試料を用い、 厚さ 10mmの電波吸収体を模して、 粒子の充 填構造を形成し、 自由空間法により、 その電波吸収特性を測定した。 自由空間 法とは、 自由空間に置かれた測定試料に平面波を照射し、 そのときの Sパラメ ータを測定することにより電波吸収特性を求める方法である。 粉末を直径 26. 8mmX厚さ 10 mmの円柱状に装填できる石英製の試料ケースを用意し、 こ の試料ケースに上記の試料粉末 1 2.33 gを装填することにより直径 26.8 mmX厚さ 10mmの円柱状の充填構造を形成した。 この充填構造からなる構 造体をここでは 「電波吸収体試料」 と呼ぶ。 電波吸収体試料を送信アンテナと 受信アンテナの中央に置いて、 電磁波を試料に垂直に照射し、 反射波および透 過波 (すなわち反射係数 S„および透過係数 S21) を測定した。 そして、 エネ ルギー吸収量を、 1— I S„ I 2— I S21 I 2により算出し、 これを電波吸収量
(d B) として表示した。 測定は、 25〜: 1 10 GHz帯域 (Kaバンド、 V 67351
バンド、 Wバンドで行った)。 結果を図 2 (a) の中に示す。
表 2に、 得られた G a置換 ε— F e 2 O 3結晶からなる磁性酸化物の分析組成 および特性をまとめてある。
《実施例 2〜 6》
手順 1におけるミセル溶液 Iの仕込み組成を表 1に示すように変更した以外、 実施例 1と同様に Ga置換 ε— F e 203結晶からなる磁性酸化物を作成し、 実 施例 1と同様に特性を調べた。 これらいずれの G a置換 ε— F e23結晶も図 1 (a) と同様の X線回折パターンを呈した。 各粉体の TEM写真を図 3 (b) 〜図 3 (f ) に示す。 また、 電波吸収特性を図 2 (a) 中に示す。 表 2に、 各 磁性酸化物の分析組成および特性をまとめて示す。
《実施例 7〜 9》
手順 1におけるミセル溶液 Iの仕込み組成を表 1に示すように変更した以外、 実施例 1と同様に G a置換 ε— F e 23結晶からなる磁性酸化物を作成した。 得られた Ga置換 ε— F e 23結晶は図 1 (a) と同様の X線回折パターンを 呈した。 また、 得られた粒子の TEM写真を図 3 (g) 〜 (i) に示す。
この酸化物粉末を直径 4 OmmX高さ 10 mmの紙筒の中に装填することに よって充填構造を形成し、 96〜 140 GH zの範囲で電波吸収特性を調べた。 8GHz〜l 1.8GHzのネットワークアナライザーと、 12倍のアップコン バーターを用いて上記のような高周波測定を実現した。 送信^、 受信側のアン テナはホーンアンテナである。 結果を図 2 (b) の中に示す。 表 2中にこの磁 性酸化物の分析組成および特性を示す。 表 1
Figure imgf000018_0001
(注 1) 仕込み時の Gaと Feのモル比を、 Ga:Fe=x:(2 - x)としたときの xの値
表 2
Figure imgf000019_0001
(注 1) 仕込み時の Gaと Feのモル比を、 Ga:Fe=¾:(2 - x)としたときの xの値
(注 2) 得られた粒子の分析値における Gaと Feのモル比を、 Ga:Fe=¾:(2- x)としたときの xの値
(注 3) ※印は印加磁場 7Tで測定、それ以外は 5Tで測定
《実施例 10》
置換元素 Mを G aから A 1に変えたものを作成した。 すなわちここでは、 手 順 1においてミセル溶液 Iの仕込み原料のうち硝酸ガリウム (III) n水和物を 硝酸アルミニウム (ΙΠ) 9水和物に変え、 A 1と F eのモル比を A 1 : F e =
X: (2-x) と表すとき、 x = 0.30となるように仕込み組成を調整した。 そ れ以外は実施例 1と同様の手順を経て A 1置換 ε— F e 203結晶からなる磁性 酸化物を得た。 X線回折パターンからこの結晶は ε -F e 203結晶と空間群が 同じであることが確かめられた。 得られた粒子の TEM写真を図 3 (k) に示 す。
組成分析の結果、 F e : 46.0質量%、 A 1 : 4.43質量%であり、 分析に よる置換量は x = 0.33と求まった。
この磁性酸化物の 300 Kにおける保磁力 (He) は 13 k〇 e、 飽和磁化 (Ms) は 26.6 emu/ であった。
この酸化物粉末を用いて充填構造を形成し、 電波吸収特性を測定した。 測定 方法は実施例 7〜 9と同様である。 測定結果を図 2 (b) の中に示す。
図 2 (a)、 図 2 (b) に見られるように、 実施例 1〜8、 10の各電波吸収 体試料は、 25〜140GHzの間に電波吸収量のピークを有していた。 これ らの試料は、 後述の対照例のもの (置換元素無添加の ε— F e 203) より保磁 力 H cが低下し、 それに伴って磁気共鳴周波数が低下したことにより、 電波吸 収量のピークが 140 GHz以下の領域に現れたものと考えられる。
実施例 9は 140 GHzまで周波数を高めても、 さらに電波吸収量が増大し ていく挙動を呈した (図 2 (b))。 これより高周波数側での電波吸収特性につ いては、 現時点で直接測定する方法が確立されていない。 そこで、 ローレンツ 関数によりスぺクトルを補外して共鳴周波数を推算することを試みた。 その結 果を図 5に示す。 それによると 147 GHz近傍に電波吸収ピークを有すると 考えられる結果が得られた。
図 6に保磁力 H cと電波吸収ピーク周波数の関係を示す。 実施例 1〜 8、 1 0の実測データによるプロットからわかるように、 保磁力 H cと電波吸収ピー ク周波数は直線的な相関関係を有している。 また、 実施例 9については実測さ れた保磁力 Heと推算による電波吸収ピーク周波数の値をプロットしたが、 こ れについてもほぼ上記実測データ直線の延長上に位置している。 一方、 置換元 素 Mが Ga、 A 1、 I nなどである場合、 Mと F eのモル比を M: F e = x: (2 一 X) と表すときの Xの値が大きくなるほど (すなわち Mによる置換量が多く なるほど) 保磁力 Heは低下する (表 2および前述の表 3参照)。 したがって、 この種の置換元素 Mを用いると、 Mの置換量 (すなわち Xの値) を変化させる ことにより、 電波吸収ピークの位置を所望の周波数に精度良くコントロールす ることが可能である。 この点が M置換 ε— F e 2 O 3結晶の大きな特長の 1つで ある。 Ga、 A l、 I nなどの置換量を調整することにより電波吸収ピークが 160GHz近傍にある電波吸収体を構築することが十分可能であることは、 実施例 9の上記推算結果からも支持されるとおりである。 また、 図 2 (a)、 図 2 (b) に見られるように、 各電波吸収体試料はピークを外れた周波数領域に おいても広く電波吸収現象を発現することがわかる。 このような電波吸収挙動 も M置換 ε— F e 203結晶に特有の性質である。 なお、 図 2 (a) の実施例 1 のピーク付近で曲線が分断しているが、 これはアンテナ切り替えの操作に起因 するものである。
《対照例》
本例は、 置換元素 Mを添加しない、 ε— F e 2 O 3組成の結晶を合成した例で ある。
実施例 1において以下の点を変更した。
[1] 手順 1において、 ミセル溶液 Iの調整に用いた硝酸鉄 (III) 9水和物 の添加量を 0.002295モルから 0.0030モルに変更し、 また硝酸ガリゥ ム (III) n水和物を添加しなかった。
[ 2 ] 手順 1において、 ミセル溶液 Iの調整に際し、 形状制御剤として硝酸 バリウム 0.00030モルを添加した。
[3] 手順 3において、 テトラエトキシシラン (TEOS) の添加量を 6 m Lとした。
[4] 手順 5において、 焼成温度を 1000°Cとした。
上記以外は、 実施例 1と同じ手順を繰り返した。 このときの仕込み組成は、 G aと F eのモル比を G a : F e =x : (2_x) と表すとき x = 0である。
この粉体の TEM写真を図 3 ( j )に示す。 TEM平均粒子径は 34.8 nm、 標準偏差は 28.9 n m、 動係数は 83.1 %であった。
得られた試料を実施例 1と同様に X線回折に供したところ、 図 1 (b) に示 す回折パターンが得られた。 この回折パターンにおいて、 ε— F e2O3の結晶 構造 (斜方晶、 空間群 Pn a S^ に対応するピーク以外は観察されなかった。 また、 得られた試料について、 実施例 1と同様に常温 (300K) における 磁気ヒステリシスループを測定した。 ただし、 印加磁界を 50 kOe (3.98 X 106A/m) とした。 結果を図 4 (b) に示す。 印加磁界 50 kOe (3. 98 X 106A/m) の測定条件での保磁力 H cは 19.7 kOe (1.57 X 1 06A/m)、 飽和磁化 12.0 emu/g (A - m2/k g) であった。
次に、 粉末を直径 46.8mmX厚さ 10 mmの円柱状に装填できる石英製の 試料ケースを用意し、 この試料ケースに当該試料粉末 16.3 gを装填すること により直径 46.8 mm X厚さ 10 mmの円柱状の充填構造を形成した。 この充 填構造からなる電波吸収体試料について、 実施例 1と同様の手法により電波吸 収特性を調べた。 結果を図 2 (a)、 図 2 (b) に示す。
図 2 (a)、 図 2 (b) からわかるように、 この電波吸収体試料では、 1 10 GH z以下の領域に電波吸収量のピークは観測されなかった。 さらに高い周波 数域に電波吸収量のピークが存在するものと推測される。. 表 3
if:換元 M
Al In
He He He
X X X
(kOe) (kOe) (kOe)
0.10 16.0 0.21 14.0 0.12 14.0
0.15 13.8 0.30 13.0 0.24 9.0
0.23 11.6 0.34 11.6
0.30 10.0 0.37 11.1
0.35 9.3 0.45 9.7
0.40 8.8 0.56 7.6
0.47 7.3 0.76 3.6
0.54 5.5
0.63 4.7

Claims

請 求 の 範 囲
1. ε — F e 203結晶と空間群が同じであり、 ε — F e 2 O 3結晶の F eサイト の一部が Mで置換された ε一 MXF e 2x03、ただし 0 < x < 1、の構造を有す る、 電波吸収材料用の磁性結晶。
2. ε —F e 203結晶と空間群が同じであり、 ε — F e 2 O 3結晶の F eサイト の一部が Mで置換された ε -MXF e 2x03、ただし 0 < xく 1、の構造を有す る、 電波吸収材料用の磁性結晶。
ここで、 Mは、 前記置換により ε — F e 203結晶からなる磁性酸化物の保磁 力 H eを低下させる作用を有する 3価の元素からなる。
3. Mは、 A l、 G a、 I nの 1種以上からなる請求項 1または 2に記載の電波 吸収材料用の磁性結晶。
4. Mが A 1であり、 Xが 0.2〜 0.8である請求項 1または 2に記載の電波吸 収材料用の磁性結晶。
5. Mが G aであり、 Xが 0.:!〜 0.8である請求項 1または 2に記載の電波吸 収材料用の磁性結晶。
6. Mが I nであり、 Xが 0.0 1〜0.3である請求項 1または 2に記載の電波 吸収材料用の磁性結晶。
7. 請求項 1〜 6のいずれかに記載の磁性結晶を磁性相にもつ粒子の粉体から なる電波吸収材料。
8. 請求項 1〜 6のいずれかに記載の磁性結晶を磁性相にもつ粒子の充填構造 を有する電波吸収体。
9. 請求項 1〜 6のいずれかに記載の磁性結晶を磁性相にもつ粒子の充填構造 を有し、 横軸に周波数、 縦軸に電波吸収量をとつたグラフにおいて、 25〜1 60GHz帯域に電波吸収量のピークを有する電波吸収体。
10. 請求項 1〜 6のいずれかに記載の磁性結晶を磁性相にもつ粒子の充填構造 を有し、 横軸に周波数、 縦軸に電波吸収量をとつたグラフにおいて、 76GH Z ± 10 GH z帯域に電波吸収量のピークを有する電波吸収体。
11. 請求項 1〜 6のいずれかに記載の磁性結晶を磁性相にもつ粒子が非磁性高 分子化合物をパインダ一として固着されることにより、 当該粒子の充填構造を 形成している電波吸収体。
12. Mが Gaであり、 Xが 0.:!〜 0.65である請求項 1に記載の磁性結晶を 磁性相にもつ粒子の充填構造を有し、 横軸に周波数、 縦軸に電波吸収量をとつ たグラフにおいて、 50〜16 O.GH z帯域に電波吸収量のピークを有する電 波吸収体。
13. Mが A 1であり、 Xが 0.2〜 0.8である請求項 1に記載の磁性結晶を磁 性相にもつ粒子の充填構造を有し、 横軸に周波数、 縦軸に電波吸収量をとつた グラフにおいて、 40〜160 GHz帯域に電波吸収量のピークを有する電波 吸収体。
PCT/JP2007/067351 2006-09-01 2007-08-30 Cristal magnétique pour matériau d'absorption d'onde radio et absorbant d'onde radio WO2008029861A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/310,525 US8072365B2 (en) 2006-09-01 2007-08-30 Magnetic crystal for electromagnetic wave absorbing material and electromagnetic wave absorber
CN200780032109.1A CN101512686B (zh) 2006-09-01 2007-08-30 电波吸收材料用磁性晶体和电波吸收体
EP07806793.1A EP2058824B1 (en) 2006-09-01 2007-08-30 Magnetic crystal for radio wave absorbing material and radio wave absorbent

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006238363 2006-09-01
JP2006-238363 2006-09-01
JP2007095445 2007-03-30
JP2007-095445 2007-03-30

Publications (1)

Publication Number Publication Date
WO2008029861A1 true WO2008029861A1 (fr) 2008-03-13

Family

ID=39157287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067351 WO2008029861A1 (fr) 2006-09-01 2007-08-30 Cristal magnétique pour matériau d'absorption d'onde radio et absorbant d'onde radio

Country Status (5)

Country Link
US (1) US8072365B2 (ja)
EP (2) EP2410832B1 (ja)
JP (1) JP4859791B2 (ja)
CN (3) CN103956246B (ja)
WO (1) WO2008029861A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124691A (ja) * 2007-10-24 2009-06-04 Keycom Corp ミリ波帯非可逆素子
JP2009224414A (ja) * 2008-02-20 2009-10-01 Univ Of Tokyo 電波吸収材料および当該電波吸収材料を用いた電波吸収体、並びに電磁波吸収率測定方法
JP2016135737A (ja) * 2015-01-19 2016-07-28 国立大学法人 東京大学 ε酸化鉄を含む配向体とその製造方法、並びに製造装置
WO2016117511A1 (ja) * 2015-01-19 2016-07-28 国立大学法人 東京大学 ε酸化鉄を含む配向体とその製造方法、並びに製造装置
JP2018056492A (ja) * 2016-09-30 2018-04-05 マクセルホールディングス株式会社 電波吸収シート
WO2019189282A1 (ja) 2018-03-29 2019-10-03 国立大学法人 東京大学 鉄系酸化物磁性粉およびその製造方法
US10504548B2 (en) 2014-09-24 2019-12-10 Dowa Electronics Materials Co., Ltd. Iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder
US10622127B2 (en) 2015-01-09 2020-04-14 Dowa Electronics Materials Co., Ltd. Iron-based oxide magnetic particle powder, method for producing same, coating material, and magnetic recording medium
US10919778B2 (en) 2015-07-27 2021-02-16 Dowa Electronics Materials Co., Ltd. Method for producing iron-based oxide magnetic particle powder
US11097956B2 (en) 2015-03-13 2021-08-24 Dowa Electronics Materials Co., Ltd. Surface-modified iron-based oxide magnetic particle powder

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5013505B2 (ja) * 2006-03-31 2012-08-29 国立大学法人 東京大学 磁性材料
JP5036443B2 (ja) * 2007-07-31 2012-09-26 国立大学法人 東京大学 光触媒材料
JP5102154B2 (ja) * 2008-01-31 2012-12-19 国立大学法人 東京大学 磁性材スラリー、その磁性材スラリーの製造方法、磁性薄膜及び磁性体
CN102548903B (zh) * 2009-09-30 2014-10-22 国立大学法人东京大学 ε-型氧化铁的矫顽力提高方法和ε-型氧化铁
CN102530108A (zh) * 2011-12-31 2012-07-04 衡阳泰豪通信车辆有限公司 一种具有毫米雷达波及厘米雷达波吸收涂层的隐身方舱
JP5762453B2 (ja) 2012-09-28 2015-08-12 富士フイルム株式会社 六方晶フェライト磁性粒子の製造方法およびこれにより得られた六方晶フェライト磁性粒子、ならびにそれらの利用
JP2014232860A (ja) 2012-11-30 2014-12-11 富士フイルム株式会社 六方晶フェライト磁性粒子の製造方法およびこれにより得られた六方晶フェライト磁性粒子、ならびにそれらの利用
CN103011792B (zh) * 2012-12-18 2014-04-30 电子科技大学 一种毫米波段电磁波吸收剂的制备方法
JP5906214B2 (ja) * 2013-04-23 2016-04-20 富士フイルム株式会社 磁気記録用磁性粒子の製造方法
JP5917452B2 (ja) * 2013-07-08 2016-05-18 富士フイルム株式会社 六方晶フェライト磁性粒子の製造方法、および磁気記録媒体の製造方法
JP6255783B2 (ja) * 2013-08-06 2018-01-10 日立化成株式会社 複合磁性材料及びその製造方法並びに複合磁性材料の原料セット
CN106471581B (zh) * 2014-06-24 2019-11-08 索尼公司 磁记录介质
EP3029771B1 (en) 2014-12-03 2019-10-16 The University of Tokyo Electromagnetic wave absorber and film forming paste
JP6616653B2 (ja) * 2014-12-03 2019-12-04 国立大学法人 東京大学 電磁波吸収体及び膜形成用ペースト
US10807880B2 (en) * 2015-06-12 2020-10-20 The University Of Tokyo Epsilon iron oxide and method for producing the same, magnetic coating material and magnetic recording medium
CN108698852A (zh) * 2016-01-20 2018-10-23 国立大学法人东京大学 磁性材料、磁性调色剂、和磁性粉末
JP6661445B2 (ja) * 2016-03-31 2020-03-11 国立大学法人 東京大学 高周波アンテナ素子、及び高周波アンテナモジュール
US20190215994A1 (en) * 2016-06-22 2019-07-11 Maxell Holdings, Ltd. Electric wave absorption sheet
US11264155B2 (en) * 2016-09-30 2022-03-01 Dowa Electronics Materials Co., Ltd. Epsilon-type iron oxide magnetic particles and method for producing the same, magnetic powder, magnetic coating material and magnetic recording medium containing magnetic particles
CN109845428B (zh) * 2016-11-04 2020-09-18 麦克赛尔控股株式会社 电磁波吸收片
CN109937618B (zh) 2016-11-04 2020-09-18 麦克赛尔控股株式会社 电磁波吸收片
WO2018168859A1 (ja) * 2017-03-13 2018-09-20 マクセルホールディングス株式会社 電磁波吸収シート
JP7162414B2 (ja) * 2017-06-13 2022-10-28 日東電工株式会社 電磁波吸収体及び電磁波吸収体付成形品
US11804659B2 (en) 2017-07-20 2023-10-31 Maxell, Ltd. Electromagnetic wave absorbing composition, and electromagnetic wave absorption body
JP6900286B2 (ja) * 2017-09-27 2021-07-07 富士フイルム株式会社 コアシェル粒子、コアシェル粒子の焼成物、コアシェル粒子の製造方法、イプシロン型酸化鉄系化合物粒子、イプシロン型酸化鉄系化合物粒子の製造方法、磁気記録媒体、及び磁気記録媒体の製造方法
US11587705B2 (en) 2017-09-29 2023-02-21 Maxell, Ltd. Electromagnetic wave absorbing composition and electromagnetic wave absorbing body
JP7105435B2 (ja) * 2018-02-15 2022-07-25 国立大学法人 東京大学 磁性材料およびその製造方法、並びに電磁波吸収用シート
TWI812620B (zh) * 2018-05-03 2023-08-21 日商麥克賽爾股份有限公司 電磁波吸收薄片
TWI783148B (zh) * 2018-06-04 2022-11-11 日商麥克賽爾股份有限公司 電磁波吸收體
KR102450588B1 (ko) 2018-06-06 2022-10-04 고쿠리츠다이가쿠호우진 도쿄다이가쿠 전파 흡수 적층 필름, 그 제조 방법, 및 그것을 포함하는 소자
JPWO2019235539A1 (ja) * 2018-06-08 2021-07-08 マクセルホールディングス株式会社 電磁波吸収体、および、電磁波吸収体用組成物
JP7077241B2 (ja) * 2019-01-11 2022-05-30 富士フイルム株式会社 六方晶ストロンチウムフェライト粉末、磁気記録媒体および磁気記録再生装置
US20220089456A1 (en) * 2019-03-05 2022-03-24 Dowa Electronics Materials Co., Ltd. Substitution-type epsilon-iron oxide magnetic particle powder, method for producing substitution-type epsilon-iron oxide magnetic particle powder, green compact, method for producing green compact, and electromagnetic wave
JP2020150249A (ja) * 2019-03-05 2020-09-17 Dowaエレクトロニクス株式会社 置換型ε酸化鉄磁性粒子粉、置換型ε酸化鉄磁性粒子粉の製造方法、圧粉体、圧粉体の製造方法および電波吸収体
US20220162089A1 (en) * 2019-03-28 2022-05-26 Dowa Electronics Materials Co., Ltd. Substituted epsilon-iron oxide magnetic particle powder, production method for substituted epsilon-iron oxide magnetic particle powder, green compact, production method for green compact, and electromagnetic wave absorber
JP2020167365A (ja) * 2019-03-28 2020-10-08 Dowaエレクトロニクス株式会社 置換型ε酸化鉄磁性粒子粉、置換型ε酸化鉄磁性粒子粉の製造方法、圧粉体、圧粉体の製造方法および電波吸収体
WO2020230708A1 (ja) * 2019-05-14 2020-11-19 富士フイルム株式会社 電波吸収体
JPWO2021033517A1 (ja) 2019-08-19 2021-02-25
CN110993241B (zh) * 2019-10-30 2021-11-19 安徽朗基新材料科技有限公司 一种基于纳米颗粒制备的软磁铁氧体材料及其制备方法
WO2021230320A1 (ja) 2020-05-13 2021-11-18 国立大学法人 東京大学 電磁波吸収体、及び電磁波吸収体形成用ペースト
CN113571919B (zh) * 2021-07-07 2023-06-16 佛山(华南)新材料研究院 一种吸波器件及其制备方法
JPWO2023048050A1 (ja) 2021-09-24 2023-03-30
CN114031121A (zh) * 2021-11-09 2022-02-11 淮北师范大学 一种多孔磁性氧化物纳米片及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354972A (ja) 1998-06-10 1999-12-24 Tdk Corp 電波吸収体
JP2004179385A (ja) 2002-11-27 2004-06-24 Toyo Kohan Co Ltd 電波吸収シート
JP2005005286A (ja) * 2003-06-09 2005-01-06 Kenichi Machida GHz帯域電波吸収用微細複合構造磁性体及び電波吸収材
JP2005057093A (ja) 2003-08-05 2005-03-03 Kitagawa Ind Co Ltd 電波吸収体、および電波吸収体の製造方法
JP2005120470A (ja) * 2003-09-25 2005-05-12 Hitachi Metals Ltd 金属微粒子の製造方法および金属微粒子
JP2006097123A (ja) * 2004-02-24 2006-04-13 Hitachi Metals Ltd 金属微粒子およびその製造方法ならびに磁気ビーズ
JP2007007518A (ja) 2005-06-29 2007-01-18 Kansai Paint Co Ltd 圧送塗装装置
JP2007269548A (ja) * 2006-03-31 2007-10-18 Univ Of Tokyo 磁性材料
JP2007281410A (ja) * 2006-03-17 2007-10-25 Univ Of Tokyo 磁性材料並びにそれを用いたメモリーおよびセンサ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023174A (en) * 1958-03-10 1977-05-10 The United States Of America As Represented By The Secretary Of The Navy Magnetic ceramic absorber
US4118704A (en) * 1976-04-07 1978-10-03 Tdk Electronics Co., Ltd. Electromagnetic wave-absorbing wall
US5446459A (en) * 1991-08-13 1995-08-29 Korea Institute Of Science And Technology Wide band type electromagnetic wave absorber
US5668070A (en) * 1996-10-21 1997-09-16 Hong; Sung-Yong Ceramic composition for absorbing electromagnetic wave and a method for manufacturing the same
US5853889A (en) * 1997-01-13 1998-12-29 Symetrix Corporation Materials for electromagnetic wave absorption panels
JP3278373B2 (ja) * 1997-02-06 2002-04-30 ティーディーケイ株式会社 電波吸収体およびその製造方法
CN2438302Y (zh) * 2000-08-10 2001-07-04 陈国梁 具可吸收电磁波的套体构造
JP4028765B2 (ja) * 2002-06-18 2007-12-26 京セラ株式会社 電磁波吸収体及びこれを用いた高周波回路用パッケージ
JP4336088B2 (ja) * 2002-04-25 2009-09-30 京セラ株式会社 電磁波吸収体及びこれを用いた高周波回路用パッケージ
JP2004247603A (ja) * 2003-02-14 2004-09-02 Minebea Co Ltd MnZn系フェライト電波吸収体
JP2004247602A (ja) * 2003-02-14 2004-09-02 Minebea Co Ltd MnZn系フェライト電波吸収体
JP4512919B2 (ja) * 2004-03-16 2010-07-28 香川県 酸化鉄含有廃棄物を用いた高周波帯域用電磁波吸収材料
JP2006089308A (ja) * 2004-09-21 2006-04-06 Toyota Central Res & Dev Lab Inc 酸化鉄複合粒子及びその製造方法
JP5034264B2 (ja) * 2005-03-30 2012-09-26 株式会社豊田中央研究所 酸化物複合体及びその製造方法
JP4728916B2 (ja) * 2006-08-31 2011-07-20 国立大学法人 東京大学 磁性材料
US8335037B2 (en) * 2007-10-24 2012-12-18 The University Of Tokyo Millimeter wave band nonreciprocal device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354972A (ja) 1998-06-10 1999-12-24 Tdk Corp 電波吸収体
JP2004179385A (ja) 2002-11-27 2004-06-24 Toyo Kohan Co Ltd 電波吸収シート
JP2005005286A (ja) * 2003-06-09 2005-01-06 Kenichi Machida GHz帯域電波吸収用微細複合構造磁性体及び電波吸収材
JP2005057093A (ja) 2003-08-05 2005-03-03 Kitagawa Ind Co Ltd 電波吸収体、および電波吸収体の製造方法
JP2005120470A (ja) * 2003-09-25 2005-05-12 Hitachi Metals Ltd 金属微粒子の製造方法および金属微粒子
JP2006097123A (ja) * 2004-02-24 2006-04-13 Hitachi Metals Ltd 金属微粒子およびその製造方法ならびに磁気ビーズ
JP2007007518A (ja) 2005-06-29 2007-01-18 Kansai Paint Co Ltd 圧送塗装装置
JP2007281410A (ja) * 2006-03-17 2007-10-25 Univ Of Tokyo 磁性材料並びにそれを用いたメモリーおよびセンサ
JP2007269548A (ja) * 2006-03-31 2007-10-18 Univ Of Tokyo 磁性材料

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HIDEO KANEKO; MOTOFUMI; HONMA, MAGNETIC MATERIALS, 1977, pages 123
JIAN JIN; KAZUHITO HASHIMOTO; SHINICHI OHKOSHI, JOURNAL OF MATERIALS CHEMISTRY, vol. 15, 2005, pages 1067 - 1071
JIAN JIN; SHINICHI OHKOSHI; KAZUHITO HASHIMOTO, ADVANCED MATERIALS, vol. 16, no. 1, 5 January 2004 (2004-01-05), pages 48 - 51
See also references of EP2058824A4 *
SHUNSUKE SAKURAI ET AL., OURNAL OF THE PHYSICAL SOCIETY OF JAPAN, vol. 74, no. 7, July 2005 (2005-07-01), pages 1946 - 1949
THE CHEMICAL SOCIETY OF JAPAN: "Shunki Nenkai (2006) Koen Yokoshu I", 13 March 2006, pages: 511, XP003021632 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124691A (ja) * 2007-10-24 2009-06-04 Keycom Corp ミリ波帯非可逆素子
JP2009224414A (ja) * 2008-02-20 2009-10-01 Univ Of Tokyo 電波吸収材料および当該電波吸収材料を用いた電波吸収体、並びに電磁波吸収率測定方法
US10504548B2 (en) 2014-09-24 2019-12-10 Dowa Electronics Materials Co., Ltd. Iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder
US10622127B2 (en) 2015-01-09 2020-04-14 Dowa Electronics Materials Co., Ltd. Iron-based oxide magnetic particle powder, method for producing same, coating material, and magnetic recording medium
JP2016135737A (ja) * 2015-01-19 2016-07-28 国立大学法人 東京大学 ε酸化鉄を含む配向体とその製造方法、並びに製造装置
WO2016117511A1 (ja) * 2015-01-19 2016-07-28 国立大学法人 東京大学 ε酸化鉄を含む配向体とその製造方法、並びに製造装置
US10669161B2 (en) 2015-01-19 2020-06-02 The University Of Tokyo Oriented body containing e-iron oxide, method for producing the same, and device for producing the same
US11097956B2 (en) 2015-03-13 2021-08-24 Dowa Electronics Materials Co., Ltd. Surface-modified iron-based oxide magnetic particle powder
US10919778B2 (en) 2015-07-27 2021-02-16 Dowa Electronics Materials Co., Ltd. Method for producing iron-based oxide magnetic particle powder
JP2018056492A (ja) * 2016-09-30 2018-04-05 マクセルホールディングス株式会社 電波吸収シート
WO2019189282A1 (ja) 2018-03-29 2019-10-03 国立大学法人 東京大学 鉄系酸化物磁性粉およびその製造方法
US11401170B2 (en) 2018-03-29 2022-08-02 Dowa Electronics Materials Co., Ltd. Iron based oxide magnetic powder and method for producing same

Also Published As

Publication number Publication date
US8072365B2 (en) 2011-12-06
CN101512686A (zh) 2009-08-19
EP2410832A3 (en) 2013-03-06
EP2410832A2 (en) 2012-01-25
US20100238063A1 (en) 2010-09-23
EP2410832B1 (en) 2014-04-23
CN101512686B (zh) 2016-06-29
EP2058824B1 (en) 2013-08-21
EP2058824A1 (en) 2009-05-13
CN102360673B (zh) 2015-04-22
JP4859791B2 (ja) 2012-01-25
EP2058824A4 (en) 2011-04-20
CN103956246A (zh) 2014-07-30
CN102360673A (zh) 2012-02-22
CN103956246B (zh) 2016-11-23
JP2008277726A (ja) 2008-11-13

Similar Documents

Publication Publication Date Title
WO2008029861A1 (fr) Cristal magnétique pour matériau d&#39;absorption d&#39;onde radio et absorbant d&#39;onde radio
JP4787978B2 (ja) 電波吸収性磁性結晶および電波吸収体
JP5071902B2 (ja) 電波吸収材料および当該電波吸収材料を用いた電波吸収体
JP6616653B2 (ja) 電磁波吸収体及び膜形成用ペースト
US6720074B2 (en) Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof
JP6632702B2 (ja) Fe−Co合金粉末の製造方法
CN111014712A (zh) 一种Co/MnO@C复合电磁波吸收材料及其制备方法与应用
Anh et al. A microwave-absorbing property of super-paramagnetic zinc–nickel ferrite nanoparticles in the frequency range of 8–12 GHz
WO2019160040A1 (ja) 磁性材料およびその製造方法、並びに電磁波吸収用シート
JP5097971B2 (ja) 電波吸収体用磁性粉体の製造法
Liu et al. Tunable electromagnetic properties in barium hexagonal ferrites with dual‐ion substitution
Fan et al. A comparative study of microstructure, magnetic, and electromagnetic properties of Zn 2 W hexaferrite prepared by sol–gel and solid-state reaction methods
CN109699165B (zh) 三维多孔氧化锰-钴复合电磁波吸收材料及其制备方法与应用
Gui et al. Investigation on electromagnetic properties of La–Al co-doped Co2W hexagonal ferrites for microwave absorption
JP5391414B2 (ja) 電波吸収体用磁性粉体
JP6607751B2 (ja) Fe−Co合金粉末およびその製造方法並びにアンテナ、インダクタおよびEMIフィルタ
Salgaonkar et al. Influence of B-site Gd+ 3 substitution on various properties of Co-ferrite nanoparticles
US20180033530A1 (en) Magnetic compound, antenna, and electronic device
TWI761154B (zh) 鐵系氧化物磁性粉,以及使用該磁性粉而得的壓粉體及電波吸收體
Kong et al. Magnetic nanomaterials for electromagnetic wave absorption
Gatchakayala et al. Influence of chelating agent on structural, magnetic, and dielectric properties of CoNd0. 075Fe1. 925O4-nanosized spinels ferrites derived from sol–gel auto-combustion method
TWI761153B (zh) 鐵系氧化物磁性粉及其製造方法
JP6064315B2 (ja) 磁性酸化物焼結体、並びにこれを用いたアンテナ及び無線通信機器
Gökçe Magnetic and Microwave Absorption Properties of Barium Hexaferrites synthesized by sol-gel method with addition of PMMA in various ratios
JP2012216865A (ja) 電波吸収体用磁性粉体および電波吸収体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780032109.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806793

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007806793

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12310525

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE