WO2021230320A1 - 電磁波吸収体、及び電磁波吸収体形成用ペースト - Google Patents

電磁波吸収体、及び電磁波吸収体形成用ペースト Download PDF

Info

Publication number
WO2021230320A1
WO2021230320A1 PCT/JP2021/018230 JP2021018230W WO2021230320A1 WO 2021230320 A1 WO2021230320 A1 WO 2021230320A1 JP 2021018230 W JP2021018230 W JP 2021018230W WO 2021230320 A1 WO2021230320 A1 WO 2021230320A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
wave absorber
mass
crystal
conductive material
Prior art date
Application number
PCT/JP2021/018230
Other languages
English (en)
French (fr)
Inventor
慎一 大越
飛鳥 生井
まりえ 吉清
正之 原
隆宏 浅井
Original Assignee
国立大学法人 東京大学
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, 東京応化工業株式会社 filed Critical 国立大学法人 東京大学
Priority to JP2022522198A priority Critical patent/JPWO2021230320A1/ja
Priority to EP21804603.5A priority patent/EP4152908A4/en
Priority to US17/996,704 priority patent/US20230307844A1/en
Priority to CN202180034239.9A priority patent/CN115553081A/zh
Publication of WO2021230320A1 publication Critical patent/WO2021230320A1/ja
Priority to JP2024100510A priority patent/JP2024117814A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles

Definitions

  • the present invention relates to an electromagnetic wave absorber and a paste for forming an electromagnetic wave absorber.
  • electromagnetic wave absorbers are used in order to reduce the influence of unnecessary electromagnetic waves that should not be received originally.
  • various electromagnetic wave absorbers capable of satisfactorily absorbing electromagnetic waves in a high frequency band have been proposed.
  • an electromagnetic wave absorbing sheet containing a carbon nanocoil and a resin for example, Patent Document 1 is known.
  • an electromagnetic wave in the 76 GHz band is used in an in-vehicle radar for detecting an inter-vehicle distance or the like. It is predicted that the use of electromagnetic waves in a high frequency band of, for example, 100 GHz or higher will expand in various applications, not limited to automobile driving support systems. Therefore, an electromagnetic wave absorber capable of satisfactorily absorbing electromagnetic waves in the 76 GHz band or a higher frequency band than that is desired.
  • an electromagnetic wave absorber capable of satisfactorily absorbing electromagnetic waves in a wide range in a high frequency band
  • an electromagnetic wave absorbing layer containing a magnetic crystal made of an ⁇ -Fe 2 O 3 iron oxide is provided.
  • Electromagnetic wave absorbers have been proposed (for example, Patent Document 2 and Non-Patent Documents 1 to 3).
  • heat may be accumulated in the electromagnetic wave absorber depending on the usage environment.
  • the material constituting the electromagnetic wave absorber may be deformed or deteriorated.
  • the electromagnetic wave absorber may accumulate heat, which may adversely affect the entire device. Therefore, it is strongly desired to impart heat dissipation to the electromagnetic wave absorber without excessively impairing the good electromagnetic wave absorption characteristics of the electromagnetic wave absorber in the high frequency band.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and is used to manufacture an electromagnetic wave absorber capable of achieving both good electromagnetic wave absorption characteristics in a high frequency band and good heat dissipation, and the electromagnetic wave absorber. It is an object of the present invention to provide a paste for forming an electromagnetic wave absorber which is preferably used.
  • the present inventors provide a composite layer composed of an electromagnetic wave absorbing material and a heat conductive material, and the electromagnetic wave absorbing material includes ⁇ -Fe 2 O 3 crystals, and the crystals and the space group are ⁇ -. It is the same as Fe 2 O 3, and a part of the Fe site of the ⁇ -Fe 2 O 3 crystal is replaced with an element M other than Fe, and is represented by the formula ⁇ -M x Fe 2-x O 3 . It has been found that the above-mentioned problems can be solved by containing one or more kinds of epsilon-type iron oxide selected from crystals in which x is more than 0 and less than 2, and the present invention has been completed.
  • the first aspect of the present invention is A composite layer made of an electromagnetic wave absorbing material and a heat conductive material is provided.
  • the electromagnetic wave absorbing material contains epsilon-type iron oxide,
  • the epsilon-type iron oxide has the same crystal and space group as ⁇ -Fe 2 O 3 crystal and ⁇ -Fe 2 O 3 crystal, and a part of Fe site of ⁇ -Fe 2 O 3 crystal is other than Fe. has been substituted with an element M, is represented by the formula ⁇ -M x Fe 2-x O 3, wherein x is 0 1 or more selected from ultra 2 below a crystal is the electromagnetic wave absorber ..
  • the second aspect of the present invention is Including electromagnetic wave absorbing material and heat conductive material
  • the electromagnetic wave absorbing material contains epsilon-type iron oxide
  • the epsilon-type iron oxide has the same crystal and space group as ⁇ -Fe 2 O 3 crystal and ⁇ -Fe 2 O 3 crystal, and a part of Fe site of ⁇ -Fe 2 O 3 crystal is other than Fe.
  • an electromagnetic wave absorber which is substituted with the element M, is represented by the formula ⁇ -M x Fe 2-x O 3 , and is one or more selected from crystals in which x is more than 0 and less than 2. It is a paste.
  • an electromagnetic wave absorber capable of achieving both good electromagnetic wave absorption characteristics in a high frequency band and good heat dissipation, and an electromagnetic wave absorber forming paste suitably used for manufacturing the electromagnetic wave absorber are provided.
  • FIG. It is a figure which shows the reflection attenuation amount of the film-like electromagnetic wave absorber of Example 1.
  • FIG. It is a figure which shows the reflection attenuation rate of the film-like electromagnetic wave absorber of Example 3.
  • FIG. It is a figure which shows the reflection attenuation amount of the film-like electromagnetic wave absorber of Example 4.
  • the electromagnetic wave absorber includes a composite layer made of an electromagnetic wave absorbing material and a heat conductive material.
  • the electromagnetic wave absorber may consist only of such a composite layer, or may include a base material layer that supports the composite layer.
  • electromagnetic wave absorber from the viewpoint of being able to more reliably absorb high frequency electromagnetic waves in the millimeter wave band or higher, electromagnetic waves in the frequency band of 30 GHz (GHz) or higher, preferably 30 GHz or higher and 300 GHz or lower, more preferably 40 GHz or higher and 200 GHz or lower. Is preferable to absorb. Further, it is preferable that a peak having an absolute value of 15 dB or more exists in the amount of reflection attenuation of the electromagnetic wave absorber. The amount of reflection attenuation is a value measured with respect to the surface on which the composite layer is exposed.
  • the form of the electromagnetic wave absorber is not particularly limited, but it is preferably a sheet shape or a film shape, and preferably a film shape.
  • the shape of the electromagnetic wave absorber is a film shape
  • the shape of the film may have a curved surface or may be composed of only a flat surface, and a flat plate shape is preferable.
  • the thickness of the film as an electromagnetic wave absorber is preferably 1000 ⁇ m or less, more preferably 900 ⁇ m or less, still more preferably 450 ⁇ m or less, from the viewpoint of thinning or downsizing the film without impairing the effect of the present invention. 300 ⁇ m or less is particularly preferable.
  • the thickness of the film as an electromagnetic wave absorber may be uniform or non-uniform.
  • the composite layer contains a heat conductive material as well as an electromagnetic wave absorbing material.
  • the form of the composite layer is not particularly limited.
  • the composite layer may be a laminated composite layer including at least one layer made of an electromagnetic wave absorbing material and at least one layer containing a heat conductive material, and may be a single layer containing an electromagnetic wave absorbing material and a heat conductive material. It may be a composite layer of the type. Since the heat accumulated in the electromagnetic wave absorber can be easily and evenly and efficiently dissipated, the composite layer is preferably a single-layer composite layer containing an electromagnetic wave absorbing material and a heat conductive material.
  • the thickness of the composite layer is not particularly limited as long as it does not impair the object of the present invention.
  • the thickness of the composite layer is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, from the viewpoint of the balance between the thinning of the electromagnetic wave absorber and the electromagnetic wave absorption performance.
  • the lower limit of the thickness of the composite layer is not particularly limited as long as the effect of the present invention is not impaired, and examples thereof include 1 ⁇ m or more and 10 ⁇ m or more.
  • the thickness of the composite layer may be uniform or non-uniform.
  • the electromagnetic wave absorbing material contains epsilon-type iron oxide.
  • Electromagnetic wave absorbing material An electromagnetic wave absorber provided with a composite layer containing an epsilon-type iron oxide absorbs electromagnetic waves of high frequencies above the millimeter wave band well, and has electromagnetic wave absorption characteristics even when used in combination with a heat conductive material described later. Hard to be hindered.
  • the electromagnetic wave absorbing material may contain a magnetic material having an ability to absorb electromagnetic waves together with epsilon-type iron oxide.
  • Preferred examples of the magnetic material that can be used together with epsilon-type iron oxide include barium ferrite magnetic material and strontium ferrite magnetic material.
  • the ratio of the mass of epsilon-type iron oxide to the total mass of the mass of epsilon-type iron oxide and the mass of magnetic substances other than epsilon-type iron oxide is 70% by mass or more in that the electromagnetic wave absorption characteristics of the electromagnetic wave absorber are good.
  • 80% by mass or more is more preferable, 90% by mass or more is further preferable, 95% by mass or more is even more preferable, and 100% by mass is particularly preferable.
  • the electromagnetic wave absorbing material preferably contains a binder resin for the purpose of uniformly dispersing the epsilon-type iron oxide in the electromagnetic wave absorbing material and for the purpose of easily forming the composite layer.
  • the epsilon-type iron oxide and the binder resin which are the main materials constituting the electromagnetic wave absorbing material, will be described.
  • Any ⁇ -Fe 2 O 3 crystal can be used. It has the same crystal structure and space group as ⁇ -Fe 2 O 3, and in which a part of the Fe site of ⁇ -Fe 2 O 3 crystals is substituted by an element M other than Fe, wherein epsilon-M x A crystal represented by Fe 2-x O 3 and having x of 0 or more and 2 or less (preferably 0 or more and less than 2) will be described later.
  • ⁇ -M x Fe 2-x O 3 in which a part of the Fe site of the ⁇ -Fe 2 O 3 crystal is substituted with the substitution element M is also referred to as “M-substituted ⁇ -Fe 2 O 3”. ..
  • the particle size of the particles having the ⁇ -Fe 2 O 3 crystal and / or the M-substituted ⁇ -Fe 2 O 3 crystal in the magnetic phase is not particularly limited as long as the object of the present invention is not impaired.
  • particles having a magnetic phase of epsilon-type iron oxide, which are produced by a method described later have an average particle diameter of 5 nm or more and 200 nm or less as measured from a TEM (transmission electron microscope) photograph. be.
  • the coefficient of variation (standard deviation of particle size / average particle size) of particles having a magnetic crystal of epsilon-type iron oxide as a magnetic layer is in the range of less than 80% and is relatively relatively. It is a group of fine particles with a uniform particle size.
  • the powder of such magnetic particles of epsilon-type iron oxide (that is, particles having ⁇ -Fe 2 O 3 crystals and / or M-substituted ⁇ -Fe 2 O 3 crystals in the magnetic phase) is powdered. It is used as a magnetic material that is an electromagnetic wave absorbing material in the composite layer.
  • the "magnetic phase” here is the part responsible for the magnetism of the powder.
  • Having a ⁇ -Fe 2 O 3 crystal and / or an M-substituted ⁇ -Fe 2 O 3 crystal as a magnetic phase means that the magnetic phase is an ⁇ -Fe 2 O 3 crystal and / or an M-substituted ⁇ -Fe 2 O 3 It means that it is composed of crystals, and includes the case where impurity magnetic crystals that are unavoidable in production are mixed in the magnetic phase.
  • the magnetic crystal of epsilon-type iron oxide is an impurity crystal of iron oxide having a different space group and oxidation state from the ⁇ -Fe 2 O 3 crystal (specifically, ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O). 3, FeO, and Fe 3 O 4, and part of Fe in these crystals may include crystals) substituted with another element.
  • the magnetic crystal of epsilon-type iron oxide contains impurity crystals, it is preferable that the magnetic crystal of ⁇ -Fe 2 O 3 and / or M-substituted ⁇ -Fe 2 O 3 is the main phase.
  • the ratio of the magnetic crystals of ⁇ -Fe 2 O 3 and / or the M-substituted ⁇ -Fe 2 O 3 is 50 in terms of molar ratio as a compound. Those having a molar% or more are preferable.
  • the abundance ratio of crystals can be determined by analysis by the Rietveld method based on the X-ray diffraction pattern.
  • a non-magnetic compound such as silica (SiO 2 ) formed in the sol-gel process may be attached around the magnetic phase.
  • M substitution ⁇ -Fe 2 O 3 As long as the condition that the crystal and the space group are the same as ⁇ -Fe 2 O 3 and a part of the Fe site of the ⁇ -Fe 2 O 3 crystal is substituted with an element M other than Fe is satisfied.
  • the type of the element M in the M substitution ⁇ -Fe 2 O 3 is not particularly limited.
  • the M-substituted ⁇ -Fe 2 O 3 may contain a plurality of types of elements M other than Fe.
  • the element M include In, Ga, Al, Sc, Cr, Sm, Yb, Ce, Ru, Rh, Ti, Co, Ni, Mn, Zn, Zr, and Y.
  • In, Ga, Al, Ti, Co and Rh are preferable.
  • M is Al
  • x is preferably in the range of 0 or more and less than 0.8, for example.
  • M is Ga x is preferably in the range of 0 or more and less than 0.8, for example.
  • M is In x is preferably in the range of 0 or more and less than 0.3, for example.
  • M is Rh x is preferably in the range of 0 or more and less than 0.3, for example.
  • M is Ti and Co x is preferably in the range of, for example, 0 or more and less than 1.
  • the frequency at which the amount of electromagnetic wave absorption is maximum can be adjusted by adjusting at least one of the type and the amount of substitution of the element M in the M substitution ⁇ -Fe 2 O 3.
  • Such an M-substituted ⁇ -Fe 2 O 3 magnetic crystal can be synthesized, for example, by a step of combining the inverse micelle method and the sol-gel method and a firing step described later. Further, M-substituted ⁇ -Fe 2 O 3 magnetic crystals can be synthesized by a step of combining a direct synthesis method and a sol-gel method and a calcination step as disclosed in JP-A-2008-174405. ..
  • the M-substituted ⁇ -Fe 2 O 3 magnetic crystal can be obtained by a step combining the reverse micelle method and the sol-gel method and a firing step as described in the above.
  • micelle solution I raw material micelle
  • micelle solution II neutralizing agent micelle
  • a silica coat is applied to the surface of the iron hydroxide fine particles generated in the micelle by the sol-gel method.
  • the iron hydroxide fine particles provided with the silica coat layer are separated from the liquid and then subjected to heat treatment in an atmospheric atmosphere at a predetermined temperature (within a range of 700 to 1300 ° C.). By this heat treatment , fine particles of ⁇ -Fe 2 O 3 crystals are obtained.
  • an M-substituted ⁇ -Fe 2 O 3 magnetic crystal is produced as follows.
  • iron (III) nitrate as an iron source and M nitrate (in the case of Al, aluminum nitrate) as an M element source for substituting a part of iron in the aqueous phase of micelle solution I having n-octane as an oil phase.
  • M nitrate in the case of Al, aluminum nitrate
  • M element source for substituting a part of iron in the aqueous phase of micelle solution I having n-octane as an oil phase.
  • cobalt (II) nitrate hexahydrate), and a surfactant eg, cetyltrimethylammonium bromide
  • nitrate of alkaline earth metal Ba, Sr, Ca, etc.
  • This nitrate functions as a shape control agent.
  • the alkaline earth metal is present in the liquid , particles of rod-shaped M-substituted ⁇ -Fe 2 O 3 magnetic crystals are finally obtained.
  • particles of M-substituted ⁇ -Fe 2 O 3 magnetic crystals that are close to spherical can be obtained.
  • the alkaline earth metal added as a shape control agent may remain on the surface layer of the generated M-substituted ⁇ -Fe 2 O 3 magnetic crystal.
  • An aqueous ammonia solution is used for the aqueous phase of the micelle solution II having n-octane as the oil phase.
  • the sol-gel method After mixing the micelle solutions I and II, apply the sol-gel method. That is, stirring is continued while dropping silane (for example, tetraethyl orthosilane) into the mixed solution of the micelle solution, and the reaction for producing iron hydroxide or iron hydroxide containing the element M is allowed to proceed in the micelle. As a result, the particle surface of the fine iron hydroxide precipitate formed in the micelle is coated with silica generated by the hydrolysis of silane.
  • silane for example, tetraethyl orthosilane
  • the particle powder obtained by separating, washing, and drying the silica-coated M element-containing iron hydroxide particles from the liquid is charged into the furnace, and the temperature is 700 ° C. or higher and 1300 ° C. or lower, preferably 900 ° C. in the air.
  • Heat treatment (firing) is performed in a temperature range of 1200 ° C. or lower, more preferably 950 ° C. or higher and 1150 ° C. or lower. By this heat treatment, the oxidation reaction proceeds in the silica coating, and the fine particles of the fine M element-containing iron hydroxide are changed into the fine M-substituted ⁇ -Fe 2 O 3 particles.
  • the presence of the silica coat is not a crystal of ⁇ -Fe 2 O 3 or ⁇ -Fe 2 O 3 , but an M-substituted ⁇ -Fe 2 O having the same spatial group as ⁇ -Fe 2 O 3. 3 Contributes to the formation of crystals and prevents sintering of particles. Further, when an appropriate amount of alkaline earth metal coexists, the particle shape tends to grow into a rod shape.
  • the M-substituted ⁇ -Fe 2 O 3 magnetic crystal is obtained by a step of combining the direct synthesis method and the sol-gel method and a firing step as disclosed in JP-A-2008-174405. It can be synthesized economically.
  • a precursor consisting of an iron hydroxide (some of which may be replaced by another element) is formed.
  • a sol-gel method is applied to form a silica coating layer on the surface of the precursor particles.
  • heat treatment is performed at a predetermined temperature to obtain fine particles of M-substituted ⁇ -Fe 2 O 3 magnetic crystals.
  • iron oxide crystals having different space groups and oxidation states from the ⁇ -Fe 2 O 3 crystals may be generated.
  • the most universal polymorphs having the composition of Fe 2 O 3 but different crystal structures are ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 .
  • examples of other iron oxides include FeO and Fe 3 O 4 .
  • the inclusion of such impurity crystals is not preferable in order to bring out the characteristics of the M-substituted ⁇ -Fe 2 O 3 crystals as high as possible, but it is allowed as long as the effects of the present invention are not impaired.
  • the coercive force H c of M-substituted ⁇ -Fe 2 O 3 magnetic crystal is changed according to the substitution amount by the substituting element M.
  • the substitution amount by substitution element M in the M-substituted ⁇ -Fe 2 O 3 magnetic crystal it is possible to adjust the coercive force H c of M-substituted ⁇ -Fe 2 O 3 magnetic crystal.
  • the substituent element M if the Ga or the like is used as the substituent element M, the more amount of substitution increases, the coercive force H c of M-substituted ⁇ -Fe 2 O 3 magnetic crystal is lowered.
  • Rh etc.
  • the substituent element M As a substituent element M, the more amount of substitution increases, the coercive force H c of M-substituted ⁇ -Fe 2 O 3 magnetic crystal increases. From the viewpoint of easily adjusting the coercive force H c of M-substituted ⁇ -Fe 2 O 3 magnetic crystal Depending on the substitution amount by the substituent element M, the substituent element M, Ga, Al, In, Ti, Co and Rh are preferred ..
  • the electromagnetic wave absorption amount of epsilon-type iron oxide is also shifted frequency of the peak with a maximum in the low frequency side or the higher frequency side. That is, the frequency of the peak of the electromagnetic wave absorption amount can be controlled by the substitution amount of the M element.
  • the particle size of epsilon-type iron oxide can be controlled, for example, by adjusting the heat treatment (calcination) temperature in the above step.
  • the average particle size of the epsilon-type iron oxide is more preferably 10 nm or more, and more preferably 20 nm or more.
  • the average particle size which is the number average particle size
  • the diameter in the long axis direction of the particles observed on the TEM image is used as the diameter of the average particles. Calculate the diameter.
  • the number of particles to be measured is not particularly limited as long as it is a sufficiently large number for calculating the average value, but it is preferably 300 or more.
  • a silica coat coated on the surface of iron hydroxide fine particles by the sol-gel method may be present on the surface of the M-substituted ⁇ -Fe 2 O 3 magnetic crystal after heat treatment (calcination).
  • a non-magnetic compound such as silica
  • the non-magnetic compound include silica and heat-resistant compounds such as alumina and zirconia.
  • the non-magnetic compound adhered is silica, by weight of Si in M-substituted ⁇ -Fe 2 O 3 magnetic crystals, the mass of the substitution elements M in M-substituted ⁇ -Fe 2 O 3 magnetic crystal, the sum of the mass of Fe On the other hand, it is preferably 100% by mass or less. Part or most of the silica adhering to the M-substituted ⁇ -Fe 2 O 3 magnetic crystals can be removed by immersing in an alkaline solution. The amount of silica adhered can be adjusted to any amount by such a method.
  • the relative magnetic permeability of the composite layer is not particularly limited, but is preferably 1.0 or more and 1.5 or less.
  • the method for adjusting the relative magnetic permeability of the composite layer is not particularly limited.
  • As a method for adjusting the specific magnetic permeability of the composite layer a method for adjusting the amount of substitution by the substitution element M in the epsilon-type iron oxide, the content of the epsilon-type iron oxide in the composite layer and other magnetic substances other than the epsilon-type iron oxide. There is a method of adjusting.
  • the content of epsilon-type iron oxide in the composite layer is not particularly limited as long as it does not impair the object of the present invention.
  • the content of the magnetic material is preferably 30% by mass or more, more preferably 40% by mass or more, particularly preferably 60% by mass or more, and most preferably 60% by mass or more and 91% by mass or less with respect to the solid content mass of the composite layer. preferable.
  • the electromagnetic wave absorbing material typically contains a binder resin.
  • a binder resin By using the binder resin, epsilon-type iron oxide and other magnetic substances are well dispersed in the binder resin. Further, since the electromagnetic wave absorbing material contains the binder resin, it is easy to form a composite layer having a desired shape.
  • the binder resin may be an elastic material such as an elastomer or rubber. Further, the binder resin may be a thermoplastic resin or a curable resin. When the binder resin is a curable resin, the curable resin may be a photocurable resin or a thermosetting resin.
  • Suitable examples when the binder resin is a thermoplastic resin include polyacetal resin, polyamide resin, polycarbonate resin, polyester resin (polybutylene terephthalate, polyethylene terephthalate, polyarylate, etc.), FR-AS resin, FR-ABS resin, and the like.
  • the binder resin is a thermosetting resin
  • the binder resin is a thermosetting resin
  • the photocurable resin various vinyl monomers and resins obtained by photocuring various monomers having unsaturated bonds such as (meth) acrylic acid esters can be used.
  • the binder resin is an elastic material
  • the binder resin is an elastic material
  • the binder resin is an elastic material
  • an olefin-based elastomer a styrene-based elastomer, a polyamide-based elastomer, a polyester-based elastomer, a polyurethane-based elastomer, and the like.
  • the binder resin it is preferable to use an aromatic ester-urethane copolymer.
  • an aromatic ester-urethane copolymer as the binder resin, a film-like film that exhibits excellent electromagnetic wave absorption characteristics even if it is thin, while satisfactorily dispersing epsilon-type iron oxide and other magnetic substances in the binder resin. It can form an electromagnetic absorber.
  • the glass transition temperature of the binder resin is preferably 100 ° C. or lower, more preferably 0 ° C. or lower. Therefore, the glass transition temperature of the aromatic ester-urethane copolymer is preferably 100 ° C. or lower, more preferably 0 ° C. or lower.
  • the aromatic ester-urethane copolymer contains an ester bond (-CO-O-) and a urethane bond (-NH-CO-O-), and contains an aromatic group in the main chain skeleton.
  • the aromatic group in the main chain skeleton may be an aromatic hydrocarbon group or a heterocyclic aromatic group, and an aromatic hydrocarbon group is preferable.
  • the aromatic ester-urethane copolymer may be a random copolymer in which an ester bond and a urethane bond are randomly introduced in the molecular chain, and may be composed of one or more ester blocks and one or more urethane blocks. It may be a block copolymer composed of.
  • the method for producing the aromatic ester-urethane copolymer is not particularly limited.
  • the aromatic ester-urethane copolymer is typically one selected from the group consisting of a diol component (a1), a dicarboxylic acid (a2), a hydroxycarboxylic acid component (a3), and a diisocyanate component (a4).
  • the above monomers can be produced by polymerizing in one step or in multiple steps.
  • the dicarboxylic acid component (a2) and the hydroxycarboxylic acid component (a3) may be used as an ester derivative such as a methyl ester or an ethyl ester, an ester such as a carboxylic acid halide such as a carboxylic acid chloride, or a urethane-forming derivative.
  • the above-mentioned monomer used for producing an aromatic ester-urethane copolymer contains a divalent hydrocarbon group having a non-branched structure and two functional groups selected from the group consisting of a hydroxyl group, a carboxy group, and an isocyanate group. It is preferably a bound compound.
  • the divalent hydrocarbon group having a non-branched structure include an alkylene group, an alkenylene group, an alkynylene group, an arylene group, or a combination thereof.
  • the alkylene group, alkenylene group, and alkynylene group preferably have a linear structure.
  • the divalent hydrocarbon group having a non-branched structure is an alkylene group, an alkenylene group, or an alkynylene group
  • the number of carbon atoms of these groups is preferably 1 or more and 8 or less, more preferably 2 or more and 6 or less, and 2 or more. 4 or less is more preferable.
  • the arylene group is preferably a phenylene group or a naphthylene group, more preferably a phenylene group, and even more preferably a p-phenylene group.
  • an alkylene group and an arylene group and a combination of an alkylene group and an arylene group are preferable.
  • Suitable specific examples of the diol component (a1) include ethylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, and Examples thereof include 1,5-pentanediol.
  • Suitable specific examples of the dicarboxylic acid (a2) include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, and 1,4-cyclohexanedicarboxylic acid.
  • hydroxycarboxylic acid component (a3) include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxynaphthalen-2-carboxylic acid, glycolic acid, lactic acid, ⁇ -hydroxybutyric acid and the like. Be done.
  • Suitable specific examples of the diisocyanate component (a4) include ethylene diisocyanate, trimethylene diisocinenate, tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, m-xylylene diisocyanate, p-phenylenedi isocyanate, and tolylene diisocyanate, 4. , 4'-diphenylmethane diisocyanate, 1,5-naphthalenediisocyanate and the like.
  • the weight average molecular weight (Mw) of the aromatic ester-urethane copolymer is preferably 5000 or more and 500,000 or less, and more preferably 10,000 or more and 200,000 or less.
  • the weight average molecular weight (Mw) is a polystyrene-equivalent weight average molecular weight measured by GPC.
  • Examples of commercially available aromatic ester-urethane copolymers include the Byron series (trade name) (manufactured by Toyobo Co., Ltd.). More specifically, Byron UR-1400, Byron UR-1410, Byron UR-1700, Byron UR-2300, Byron UR-3200, Byron UR-3210, Byron UR-3500, Byron UR-6100, Byron UR-8300. , And Byron UR-8700 and the like can be preferably used.
  • the content of the binder resin in the electromagnetic wave absorbing material is not particularly limited as long as it does not impair the object of the present invention.
  • the electromagnetic wave absorbing material contains a binder resin of preferably 5% by mass or more and 30% by mass or less, more preferably 5% by mass or more and 25% by mass or less, based on the solid content mass of the composite layer.
  • the electromagnetic wave absorbing material may contain a dielectric for the purpose of adjusting the relative permittivity of the composite layer.
  • the relative permittivity of the composite layer is not particularly limited, but is preferably 6.5 or more and 65 or less, more preferably 10 or more and 50 or less, and further preferably 15 or more and 30 or less.
  • the dielectric include barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, zirconium titanate, zinc titanate, and titanium dioxide.
  • the electromagnetic wave absorbing material may contain a combination of powders of a plurality of types of dielectrics.
  • the particle size of the dielectric powder used for adjusting the relative permittivity of the composite layer is not particularly limited as long as it does not impair the object of the present invention.
  • the average particle size of the dielectric powder is preferably 1 nm or more and 100 nm or less, and more preferably 5 nm or more and 50 nm or less.
  • the average particle diameter of the dielectric powder is the number average diameter of the primary particles of the dielectric powder observed by an electron microscope.
  • the amount of the dielectric powder used is not particularly limited as long as the relative permittivity of each composite layer is within a predetermined range.
  • the amount of the dielectric powder used is preferably 0% by mass or more and 20% by mass or less, and more preferably 5% by mass or more and 10% by mass or less with respect to the solid content mass of the composite layer.
  • carbon nanotube By including carbon nanotubes in the electromagnetic wave absorbing material, the relative permittivity of the composite layer can be adjusted.
  • the carbon nanotubes may be used in combination with the above-mentioned dielectric powder.
  • the amount of the carbon nanotubes blended in the electromagnetic wave absorbing material is not particularly limited as long as the relative permittivity of the composite layer is within the above-mentioned predetermined range. However, since carbon nanotubes are also conductive materials, if the amount of carbon nanotubes used is excessive, the electromagnetic wave absorption characteristics provided by the composite layer may be impaired.
  • the amount of carbon nanotubes used is preferably 0% by mass or more and 20% by mass or less, more preferably 1% by mass or more and 10% by mass or less, based on the solid content mass of the composite layer.
  • the heat conductive material is not particularly limited as long as it is a material amount recognized by those skilled in the art as a material having high heat conductivity.
  • the thermal conductivity of the heat conductive material is preferably 15 W / m ⁇ K or more, more preferably 20 W / m ⁇ K or more, further preferably 50 W / m ⁇ K or more, and particularly preferably 200 W / m ⁇ K or more. ..
  • examples of the substance exhibiting a thermal conductivity of 15 W / m ⁇ K or more include alumina, aluminum nitride, silicon carbide, and boron nitride. Two or more kinds of these heat conductive materials may be used in combination. Among these, alumina and silicon carbide are preferable because they are easily available and it is easy to obtain an electromagnetic wave absorber having excellent heat dissipation and electromagnetic wave absorption characteristics.
  • the shape of the heat conductive material is not particularly limited as long as it does not impair the object of the present invention.
  • the thermally conductive material is preferably a granular or scaly powder.
  • the thermally conductive material having such a shape has a small aspect ratio and is difficult to be oriented in the composite layer. Therefore, when a thermally conductive material which is a granular or scaly powder is used, it is easy to suppress breakage, cracking, tearing, etc. of the composite layer due to the orientation of the thermally conductive material.
  • the aspect ratio (average major axis length / average minor axis length) of the heat conductive material is preferably less than 6, more preferably 5 or less, still more preferably 3 or less.
  • the average major axis length and the average minor axis length of the heat conductive material can be obtained as a number average length by, for example, microscopic observation, SEM observation, or the like. Further, by using a granular heat conductive material in combination with a scaly heat conductive material, it is easy to increase the thermal diffusivity of the electromagnetic wave absorber. In particular, when granular alumina and scaly boron nitride are used in combination, not only the thermal diffusivity but also the thermal conductivity tends to be remarkably increased.
  • the mass ratio of the sex material is preferably 7% by mass or more and 50% by mass or less, preferably 10% by mass or more and 50% by mass, in terms of both the effect of improving thermal conductivity and the film forming property of the paste for forming an electromagnetic wave absorber. % Or less is more preferable, and 15% by mass or more and 40% by mass or less is further preferable.
  • the heat conductive material which is the granular or scaly powder, is preferably dispersed in the matrix made of the electromagnetic wave absorbing material from the viewpoint of good heat dissipation of the electromagnetic wave absorber.
  • the amount of the heat conductive material used is not particularly limited, and is appropriately adjusted according to the level of heat dissipation performance desired by the electromagnetic wave absorber.
  • the composite layer contains, preferably 30 parts by mass or more and 300 parts by mass or less, and more preferably 40 parts by mass or more and 200 parts by mass or less of a heat conductive material with respect to 100 parts by mass of the electromagnetic wave absorbing material.
  • Thermally conductive materials are preferably used.
  • the composite layer may contain various additives other than the above-mentioned components as long as the object of the present invention is not impaired.
  • the additive that can be contained in the composite layer include a dispersant, a colorant, an antioxidant, an ultraviolet absorber, a flame retardant, a flame retardant aid, a plasticizer, and a surfactant. These additives are used in consideration of the amount conventionally used, as long as the object of the present invention is not impaired.
  • the high-frequency band is formed by forming a film of the electromagnetic wave absorbing material, the heat conductive material, and other components described above while complexing them, for example, by a method using a paste for forming an electromagnetic wave absorber, which will be described later.
  • a composite layer that can be used as an electromagnetic wave absorber capable of achieving both good electromagnetic wave absorption characteristics and good heat dissipation can be obtained.
  • the above-mentioned composite layer may be laminated on the base material layer.
  • the base material layer may be a layer containing any base material as long as the effect of the present invention is not impaired, and examples thereof include a layer containing a resin.
  • the resin include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), acrylic (PMMA), polycarbonate (PC), cycloolefin polymer (COP), polyether sulfone, polyimide, polyamide-imide and the like.
  • PET is preferable because it has excellent heat resistance and has a good balance between dimensional stability and cost.
  • the shape of the base material layer may have a curved surface or may be composed of only a flat surface, and a flat plate shape is preferable.
  • the thickness of the base material layer is preferably 800 ⁇ m or less, more preferably 500 ⁇ m or less, further preferably 300 ⁇ m or less, still more preferably 150 ⁇ m or less, from the viewpoint of thinning or downsizing the film without impairing the effect of the present invention. Is particularly preferable.
  • the lower limit of the thickness of the base material layer is not particularly limited as long as the effect of the present invention is not impaired, and examples thereof include 1 ⁇ m or more, 10 ⁇ m or more, 50 ⁇ m or more, and the like.
  • a metal layer may be provided on the surface of the electromagnetic wave absorber opposite to the surface on which the composite layer of the base material layer is provided.
  • the metal layer is provided, the electromagnetic wave reflected by the metal layer can be attenuated.
  • the metal constituting the metal layer for example, aluminum, titanium, SUS, copper, brass, silver, gold, platinum and the like are preferable.
  • the thickness of the metal layer is not particularly limited, and is preferably 600 ⁇ m or less, more preferably 400 ⁇ m or less, further preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less from the viewpoint of thinning the electromagnetic wave absorber.
  • the lower limit of the thickness of the metal layer is not particularly limited as long as the effect of the present invention is not impaired, and examples thereof include 0.1 ⁇ m or more, 1 ⁇ m or more, 5 ⁇ m or more, and 10 ⁇ m or more.
  • the electromagnetic wave absorber described above includes various elements (vehicle-mounted elements, high-frequency antenna elements, etc.) in various information communication systems such as mobile phones, wireless LANs, ETC systems, intelligent transportation systems, automobile driving support road systems, and satellite broadcasting. It can be preferably used as a film for absorbing electromagnetic waves used in.).
  • a paste for forming an electromagnetic wave absorber is used because the composite layer can be formed with high efficiency without any limitation on the thickness and the composite layer can be formed directly on the base material layer.
  • the method of forming is preferable.
  • the paste for forming an electromagnetic wave absorber includes the above-mentioned electromagnetic wave absorbing material and a heat conductive material.
  • the paste for forming an electromagnetic wave absorber preferably further contains the above-mentioned binder resin.
  • the paste for forming an electromagnetic wave absorber may contain a substance added for adjusting the relative permittivity, the relative magnetic permeability, and the like, and other components described above for the electromagnetic wave absorbing material.
  • the paste for forming an electromagnetic wave absorber contains a compound which is a precursor of the curable resin.
  • the paste for forming an electromagnetic wave absorber contains a curing agent, a curing accelerator, a polymerization initiator and the like, if necessary.
  • the coating film may be exposed or heated as necessary to form a composite layer.
  • the paste for forming an electromagnetic wave absorber further contains a dispersion medium.
  • a dispersion medium water, an organic solvent, and an aqueous solution of the organic solvent can be used.
  • an organic solvent is preferable because it is easy to dissolve organic components, has low latent heat of vaporization, and is easy to remove by drying.
  • Suitable examples of organic solvents used as dispersion media are N, N, N', N'-tetramethylurea (TMU), N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (N, N-dimethylacetamide).
  • N-dimethylisobutylamide N, N-diethylacetamide, N, N-dimethylformamide (DMF), N, N-diethylformamide, N-methylcaprolactam, 1,3-dimethyl-2-imidazolidi
  • Nitrogen-containing polar solvents such as non- (DMI) and pyridine; ketones such as diethyl ketone, methyl butyl ketone, dipropyl ketone and cyclohexanone; n-pentanol, 4-methyl-2-pentanol, cyclohexanol and diacetone alcohol Alcohols such as: ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol di
  • Saturated aliphatic monocarboxylic acid alkyl esters such as acetate-n-butyl and amyl acetate
  • Lactic acid esters such as ethyl lactate and lactic acid-n-butyl
  • Ketones such as acetone, methyl ethyl ketone, cyclohexanone, acetophenone and benzophenone.
  • the solid content concentration of the electromagnetic wave absorber forming paste is appropriately adjusted according to the method of applying the electromagnetic wave absorber forming paste, the thickness of the composite layer, and the like.
  • the solid content concentration of the paste for forming an electromagnetic wave absorber is preferably 3% by mass or more and 60% by mass or less, and more preferably 10% by mass or more and 50% by mass or less.
  • the solid content concentration of the paste is a value calculated by adding the mass of the component not dissolved in the dispersion medium and the mass of the component dissolved in the dispersion medium as the mass of the solid content.
  • the paste for forming an electromagnetic wave absorber contains a dispersant for the purpose of satisfactorily dispersing the above-mentioned epsilon-type iron oxide and the substance used for adjusting the relative permittivity and the relative permeability of the composite layer in the composite layer. May be good.
  • the dispersant may be uniformly mixed with the above-mentioned epsilon-type iron oxide or binder resin. The dispersant may be blended in the binder resin. Further, the epsilon-type iron oxide previously treated with a dispersant or a substance added for adjusting the relative permittivity and the relative magnetic permeability may be blended with the material constituting the composite layer.
  • a dispersant is not particularly limited as long as it does not impair the object of the present invention.
  • a dispersant can be selected from various dispersants conventionally used for dispersing various inorganic fine particles and organic fine particles.
  • the dispersant include a silane coupling agent (for example, phenyltrimethoxysilane), a titanate coupling agent, a zirconate coupling agent, an aluminate coupling agent and the like.
  • a silane coupling agent for example, phenyltrimethoxysilane
  • a titanate coupling agent for example, phenyltrimethoxysilane
  • a zirconate coupling agent for example, an aluminate coupling agent and the like.
  • the content of the dispersant is not particularly limited as long as it does not impair the object of the present invention.
  • the content of the dispersant is preferably 0.1% by mass or more and 30% by mass or less, more preferably 1% by mass or more and 15% by mass or less, and 1% by mass or more with respect to the solid content mass of the paste for forming an electromagnetic wave absorber. 10% by mass or less is particularly preferable.
  • the method for manufacturing the above-mentioned electromagnetic wave absorber is not particularly limited as long as the electromagnetic wave absorber having a predetermined structure can be manufactured.
  • a composite is formed by applying the above-mentioned paste containing an electromagnetic wave absorbing material and a heat conductive material on a base material layer to form a coating film, and then drying the coating film to form a composite layer. Examples thereof include a method including a layer forming step.
  • the method of applying the electromagnetic wave absorber forming paste on the base material layer is not particularly limited as long as the electromagnetic wave absorber having a desired thickness can be formed.
  • the coating method include a spray coating method, a dip coating method, a roll coating method, a curtain coating method, a spin coating method, a screen printing method, a doctor blade method, an applicator method and the like.
  • the drying method is not particularly limited, and for example, (1) a method of drying on a hot plate at a temperature of 80 ° C. or higher and 180 ° C. or lower, preferably 90 ° C. or higher and 160 ° C. or lower for 1 minute or longer and 30 minutes or lower, (2). Examples thereof include a method of leaving the mixture at room temperature for several hours to several days, and (3) a method of putting it in a hot air heater or an infrared heater for several tens of minutes to several hours to remove the solvent.
  • the method for manufacturing an electromagnetic wave absorber is to cut a composite layer or a laminate having a base material layer and a composite layer obtained in the composite layer forming step to obtain an electromagnetic wave absorber having a predetermined size. It may include a cutting step.
  • the electromagnetic wave absorber includes a composite layer made of an electromagnetic wave absorbing material and a heat conductive material, it is possible to achieve both good electromagnetic wave absorbing characteristics in a high frequency band and good heat dissipation.
  • Example 1 (Preparation of paste for forming electromagnetic wave absorber) With respect to 25.1 parts by mass of TMU, which is a dispersion medium, 39 parts by mass of the following epsilon-type iron oxide as an electromagnetic wave absorbing material, 2.4 parts by mass of the following carbon nanotube (CNT), and 8.6 parts by mass of a binder resin, and heat. 21.4 parts by mass of granular alumina powder as a conductive material was added. The binder resin was added as the following binder resin solution. The mixture was stirred with a rotation / revolution mixer to uniformly dissolve or disperse each component to obtain a paste for forming an electromagnetic wave absorber.
  • TMU which is a dispersion medium
  • CNT carbon nanotube
  • ⁇ -Ga 0.45 Fe 1.55 O 3 was used as the epsilon-type iron oxide.
  • the average particle size of epsilon-type iron oxide was 20 nm or more and 30 nm or less.
  • the CNT multi-walled carbon nanotubes having a major axis of 150 nm (trade name: VGCF-H; manufactured by Showa Denko KK) were used. Phenyltrimethoxysilane was used as the dispersant.
  • an aromatic ester-urethane copolymer manufactured by Toyobo Co., Ltd., consisting of Byron UR-3210, glass transition temperature -3 ° C, weight average molecular weight 40,000, resin 5 parts by mass and methyl ethyl ketone 15 parts by mass was used. Using.
  • the PET film (thickness 125 ⁇ m) was coated with the above-mentioned paste for forming an electromagnetic wave absorber by an applicator. Then, the coating film was dried under the conditions of 90 ° C. for 10 minutes and 130 ° C. for 10 minutes to form a composite layer having a thickness of 35 ⁇ m, and a film-shaped electromagnetic wave absorber was obtained.
  • the film-shaped electromagnetic wave absorber obtained immediately after drying was cut into a square shape of 5 cm square to prepare the following test pieces for evaluation.
  • FIG. 1 shows the reflection attenuation (Reflectance (dB)) of the film-like electromagnetic wave absorber of Example 1 in the frequency range of 40 to 120 GHz.
  • the thermal conductivity and thermal diffusivity of the obtained film-shaped electromagnetic wave absorber were measured by the following methods. The results of these measurements are shown in Table 1.
  • the thermal diffusivity was measured by the periodic heating method. Specifically, the thermal diffusivity was measured using a periodic heating method thermal diffusivity measuring device (FTC-1 type) manufactured by ULVAC Riko Co., Ltd.
  • the thermal conductivity ⁇ was calculated from the following formula based on the thermal diffusivity ⁇ measured by the above method.
  • the specific heat C ⁇ applied to the following formula was measured by the DSC method using Hitachi High-Tech Science Co., Ltd. (X-DSC 7000 type) at a measurement temperature of 25 ° C.
  • Example 2 A film-shaped electromagnetic wave absorber was obtained in the same manner as in Example 1 except that the amount of TMU added was changed to 35 parts by mass and the amount of granular alumina powder used was changed to 50 parts by mass. The thermal conductivity and thermal diffusivity of the obtained film-shaped electromagnetic wave absorber were measured in the same manner as in Example 1. The results of these measurements are shown in Table 1.
  • Example 3 With respect to 35 parts by mass of TMU, which is a dispersion medium, 29.5 parts by mass of epsilon-type iron oxide as an electromagnetic wave absorbing material, 2.5 parts by mass of carbon nanotube (CNT), and 13 parts by mass of a binder resin, and 13 parts by mass of a binder resin, as a heat conductive material. 55 parts by mass of granular alumina powder was added. The binder resin was added as the following binder resin solution. The mixture was stirred with a rotation / revolution mixer to uniformly dissolve or disperse each component to obtain a paste for forming an electromagnetic wave absorber.
  • a film-shaped electromagnetic wave absorber was obtained in the same manner as in Example 1.
  • the amount of reflection attenuation (Reflectance (dB)) in the frequency range of 40 to 120 GHz was measured in the same manner as in Example 1.
  • the measurement results are shown in FIG.
  • the thermal conductivity and thermal diffusivity of the obtained film-shaped electromagnetic wave absorber were measured in the same manner as in Example 1. The results of these measurements are shown in Table 1.
  • Example 4 A film-like electromagnetic wave absorber was obtained in the same manner as in Example 3 except that 55 parts by mass of the granular alumina powder was changed to 50 parts by mass of the granular alumina powder and 5 parts by mass of the scaly boron nitride powder. .. With respect to the obtained film-shaped electromagnetic wave absorber, the amount of reflection attenuation (Reflectance (dB)) in the frequency range of 40 to 120 GHz was measured in the same manner as in Example 1. The measurement results are shown in FIG. Further, the thermal conductivity and thermal diffusivity of the obtained film-shaped electromagnetic wave absorber were measured in the same manner as in Example 1. The results of these measurements are shown in Table 1.
  • Example 5 A film-like electromagnetic wave absorber was obtained in the same manner as in Example 3 except that 55 parts by mass of the granular alumina powder was changed to 45 parts by mass of the granular alumina powder and 10 parts by mass of the scaly boron nitride powder. .. With respect to the obtained film-shaped electromagnetic wave absorber, the amount of reflection attenuation (Reflectance (dB)) in the frequency range of 40 to 120 GHz was measured in the same manner as in Example 1. The measurement results are shown in FIG. Further, the thermal conductivity and thermal diffusivity of the obtained film-shaped electromagnetic wave absorber were measured in the same manner as in Example 1. The results of these measurements are shown in Table 1.
  • Example 6 A film-like electromagnetic wave absorber was obtained in the same manner as in Example 3 except that 55 parts by mass of the granular alumina powder was changed to 40 parts by mass of the granular alumina powder and 15 parts by mass of the scaly boron nitride powder. .. With respect to the obtained film-shaped electromagnetic wave absorber, the amount of reflection attenuation (Reflectance (dB)) in the frequency range of 40 to 120 GHz was measured in the same manner as in Example 1. The measurement results are shown in FIG. Further, the thermal conductivity and thermal diffusivity of the obtained film-shaped electromagnetic wave absorber were measured in the same manner as in Example 1. The results of these measurements are shown in Table 1.
  • Example 7 A film-shaped electromagnetic wave absorber was obtained in the same manner as in Example 3 except that 55 parts by mass of the granular alumina powder was changed to 35 parts by mass of the granular alumina powder and 20 parts by mass of the scaly boron nitride powder. .. With respect to the obtained film-shaped electromagnetic wave absorber, the amount of reflection attenuation (Reflectance (dB)) in the frequency range of 40 to 120 GHz was measured in the same manner as in Example 1. The measurement results are shown in FIG. Further, the thermal conductivity and thermal diffusivity of the obtained film-shaped electromagnetic wave absorber were measured in the same manner as in Example 1. The results of these measurements are shown in Table 1.
  • Example 8 A film-shaped electromagnetic wave absorber was obtained in the same manner as in Example 2 except that the granular alumina powder was changed to the granular silicon carbide powder. With respect to the obtained film-shaped electromagnetic wave absorber, the amount of reflection attenuation (Reflectance (dB)) in the frequency range of 40 to 120 GHz was measured in the same manner as in Example 1. The measurement results are shown in FIG. Further, the thermal conductivity and thermal diffusivity of the obtained film-shaped electromagnetic wave absorber were measured in the same manner as in Example 1. The results of these measurements are shown in Table 1.
  • Example 9 A film-shaped electromagnetic wave absorber in the same manner as in Example 2 except that 50 parts by mass of the granular alumina powder is changed to 40 parts by mass of the granular silicon carbide powder and 10 parts by mass of the scaly boron nitride powder.
  • the amount of reflection attenuation (Reflectance (dB)) in the frequency range of 40 to 120 GHz was measured in the same manner as in Example 1.
  • the measurement results are shown in FIG.
  • the thermal conductivity and thermal diffusivity of the obtained film-shaped electromagnetic wave absorber were measured in the same manner as in Example 1. The results of these measurements are shown in Table 1.
  • Example 10 A film-shaped electromagnetic wave absorber was obtained in the same manner as in Example 2 except that the granular alumina powder was changed to a scaly boron nitride powder. With respect to the obtained film-shaped electromagnetic wave absorber, the amount of reflection attenuation (Reflectance (dB)) in the frequency range of 40 to 120 GHz was measured in the same manner as in Example 1. The measurement results are shown in FIG. Further, the thermal conductivity and thermal diffusivity of the obtained film-shaped electromagnetic wave absorber were measured in the same manner as in Example 1. The results of these measurements are shown in Table 1.
  • Example 1 A film-shaped electromagnetic wave absorber was obtained in the same manner as in Example 1 except that powdered alumina was not used. The thermal conductivity and thermal diffusivity of the obtained film-shaped electromagnetic wave absorber were measured in the same manner as in Example 1. The results of these measurements are shown in Table 1.
  • the above-mentioned Examples 1 to 10 include a composite layer composed of an electromagnetic wave absorbing material and a heat conductive material, wherein the electromagnetic wave absorbing material contains a predetermined epsilon-type iron oxide. It can be seen that the electromagnetic wave absorber can achieve both good electromagnetic wave absorption characteristics in the high frequency band and good heat dissipation. On the other hand, from Comparative Example 1, it can be seen that when the electromagnetic wave absorbing material does not contain the heat conductive material, the thermal diffusivity and the heat conductivity of the electromagnetic wave absorber are low. Further, according to the comparison between Examples 8 and 9, and the comparison between Examples 2 and 3 and Examples 4 to 7, granular heat conductive materials and scaly heat conductive materials.
  • the thermal diffusivity is higher than when only the granular heat conductive material is used.
  • only the granular alumina powder can be obtained by using the granular alumina powder and the scaly boron nitride powder in combination. It can be seen that the thermal diffusivity and the thermal conductivity can be significantly increased as compared with the case of using.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

高周波帯域における良好な電磁波吸収特性と、良好な放熱性とを両立し得る電磁波吸収体と、当該電磁波吸収体の製造に好適に使用される電磁波吸収体形成用ペーストとを提供すること。 電磁波吸収体において、電磁波吸収材料と、熱伝導性材料とからなる複合層を設け、電磁波吸収材料に、ε-Fe結晶、及び、結晶と空間群がε-Feと同じであって、ε-Fe結晶のFeサイトの一部がFe以外の元素Mで置換されたものであり、式ε-MFe2-xで表され、前記xが0超2未満である結晶から選択される1種以上であるイプシロン型酸化鉄を含有させる。

Description

電磁波吸収体、及び電磁波吸収体形成用ペースト
 本発明は、電磁波吸収体と、電磁波吸収体形成用ペーストとに関する。
 携帯電話、無線LAN、ETCシステム、高度道路交通システム、自動車走行支援道路システム、衛星放送等の種々の情報通信システムにおいて、高周波帯域の電磁波の使用が広がっている。しかし、高周波帯域の電磁波の利用の拡大には、電子部品同士の干渉による電子機器の故障や誤動作等を招く懸念がある。このような問題の対策として、不要な電磁波を電磁波吸収体により吸収する方法がとられている。
 このため、高周波帯域の電磁波を利用するレーダー等においても、本来受信されるべきでない不要な電磁波の影響を軽減するために、電磁波吸収体が利用されている。
 このような要求に応えるため、高周波数帯域の電磁波を良好に吸収できる電磁波吸収体が種々提案されている。具体例としては、例えば、カーボンナノコイル及び樹脂を含有する電磁波吸収シート(例えば、特許文献1)が知られている。
 高周波帯域の電磁波の用途の中でも、自動車の運転支援システムについて研究が進んでいる。かかる自動車の運転支援システムでは、車間距離等を検知するための車載レーダーにおいて、76GHz帯域の電磁波が利用されている。そして、自動車の運転支援システムに限らず、種々の用途において、例えば100GHz以上の高周波数帯域の電磁波の利用が広がると予測される。このため、76GHz帯域やそれよりも高周波数帯域の電磁波を良好に吸収できる電磁波吸収体が望まれている。
 このような要求に応えるため、高周波数帯域における広い範囲において良好に電磁波を吸収できる電磁波吸収体として、例えば、ε―Fe系の鉄酸化物からなる磁性結晶を含む電磁波吸収層を備える電磁波吸収体が提案されている(例えば、特許文献2、非特許文献1~3)。
特開2009-060060号公報 特開2008-277726号公報
A.Namai,S.Sakurai,M.Nakajima,T.Suemoto,K.Matsumoto,M.Goto,S.Sasaki, and S.Ohkoshi, J.Am.Chem.Soc.,131,1170-1173(2009). A.Namai,M.Yoshikiyo,K.Yamada,S.Sakurai,T.Goto,T.Yoshida,T Miyazaki,M.Nakajima,T.Suemoto,H.Tokoro, and S.Ohkoshi,Nature Communications,3,1035/1-6(2012). S.Ohkoshi,S.Kuroki,S.Sakurai,K.Matsumoto,K.Sato, and S.Sasaki,Angew.Chem.Int.Ed.,46,8392-8395(2007). A.Namai,K.Ogata,M.Yoshikiyo,and S.Ohkoshi,Bull.Chem.Soc.Jpn.,93,20-25(2020).
 しかしながら、特許文献1に記載されるような電磁波吸収体について、使用環境によっては電磁波吸収体に熱が蓄積される場合がある。電磁波吸収体に熱が蓄積されると、電磁波吸収体を構成する材料が変形したり劣化したりする場合がある。また、電磁波吸収体が熱を蓄積することで、装置全体に悪影響を及ぼす場合がある。このため、電磁波吸収体の、高周波数帯域における良好な電磁波吸収特性を過度に損なうことなく、電磁波吸収体に放熱性を付与することが強く望まれている。
 本発明は、上記従来技術の問題点に鑑みなされたものであって、高周波帯域における良好な電磁波吸収特性と、良好な放熱性とを両立し得る電磁波吸収体と、当該電磁波吸収体の製造に好適に使用される電磁波吸収体形成用ペーストとを提供することを目的とする。
 本発明者らは、電磁波吸収体において、電磁波吸収材料と、熱伝導性材料とからなる複合層を設け、電磁波吸収材料に、ε-Fe結晶、及び、結晶と空間群がε-Feと同じであって、ε-Fe結晶のFeサイトの一部がFe以外の元素Mで置換されたものであり、式ε-MFe2-xで表され、前記xが0超2未満である結晶から選択される1種以上であるイプシロン型酸化鉄を含有させることにより、上記の課題を解決できることを見出し、本発明を完成するに至った。
 本発明の第1の態様は、
 電磁波吸収材料と、熱伝導性材料とからなる複合層を備え、
 電磁波吸収材料が、イプシロン型酸化鉄を含み、
 イプシロン型酸化鉄は、ε-Fe結晶、及び、結晶と空間群がε-Feと同じであって、ε-Fe結晶のFeサイトの一部がFe以外の元素Mで置換されたものであり、式ε-MFe2-xで表され、前記xが0超2未満である結晶から選択される1種以上である、電磁波吸収体である。
 本発明の第2の態様は、
 電磁波吸収材料と、熱伝導性材料とを含み、
 電磁波吸収材料が、イプシロン型酸化鉄を含み、
 イプシロン型酸化鉄は、ε-Fe結晶、及び、結晶と空間群がε-Feと同じであって、ε-Fe結晶のFeサイトの一部がFe以外の元素Mで置換されたものであり、式ε-MFe2-xで表され、前記xが0超2未満である結晶から選択される1種以上である、電磁波吸収体形成用ペーストである。
 本発明によれば、高周波帯域における良好な電磁波吸収特性と、良好な放熱性とを両立し得る電磁波吸収体と、当該電磁波吸収体の製造に好適に使用される電磁波吸収体形成用ペーストとを提供することができる。
実施例1のフィルム状の電磁波吸収体の反射減衰量を示す図である。 実施例3のフィルム状の電磁波吸収体の反射減衰率を示す図である。 実施例4のフィルム状の電磁波吸収体の反射減衰量を示す図である。 実施例5のフィルム状の電磁波吸収体の反射減衰量を示す図である。 実施例6のフィルム状の電磁波吸収体の反射減衰量を示す図である。 実施例7のフィルム状の電磁波吸収体の反射減衰量を示す図である。 実施例8のフィルム状の電磁波吸収体の反射減衰量を示す図である。 実施例9のフィルム状の電磁波吸収体の反射減衰量を示す図である。 実施例10のフィルム状の電磁波吸収体の反射減衰量を示す図である。
 以下、本発明の実施態様について詳細に説明するが、本発明は、以下の実施態様に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
≪電磁波吸収体≫
 電磁波吸収体は、電磁波吸収材料と、熱伝導性材料とからなる複合層を備える。電磁波吸収体は、かかる複合層のみからなってもよく、複合層を支持する基材層を備えていてもよい。
 電磁波吸収体について、ミリ波帯域以上の高周波数の電磁波をより確実に吸収し得る観点から、30ギガヘルツ(GHz)以上、好ましくは30GHz以上300GHz以下、より好ましくは40GHz以上200GHz以下の周波数帯域の電磁波を吸収するのが好ましい。また、電磁波吸収体の反射減衰量において、絶対値が15dB以上のピークが存在することが好ましい。なお、反射減衰量は、複合層が露出した面に対して測定した値である。
 電磁波吸収体の形態は特に限定されないが、シート形状、又はフィルム形状であるのが好ましく、フィルム形状であるのが好ましい。
 電磁波吸収体の形状がフィルム形状である場合、フィルムの形状は、曲面を有していてもよく、平面のみから構成されていてもよく、平板状が好ましい。
 電磁波吸収体としてのフィルムの厚さは、本発明の効果を損なうことなく、該フィルムを薄くしたり小型化したりする観点から、1000μm以下が好ましく、900μm以下がより好ましく、450μm以下がさらに好ましく、300μm以下が特に好ましい。
 電磁波吸収体としてのフィルムの厚さは、均一であってもよく、不均一であってもよい。
<複合層>
 前述の通り複合層は、電磁波吸収材料とともに熱伝導性材料を含む。複合層の形態は特に限定されない。複合層は、電磁波吸収材料からなる少なくとも1層と、熱伝導性材料を含む少なくとも1層とを含む積層型の複合層であってもよく、電磁波吸収材料と熱伝導性材料とを含む単層型の複合層であってもよい。
 電磁波吸収体に蓄積する熱を、むらなく効率よく放熱しやすいことから、複合層は、電磁波吸収材料と熱伝導性材料とを含む単層型の複合層が好ましい。
 複合層の厚さは、本発明の目的を阻害しない範囲で特に限定されない。複合層の厚さは、電磁波吸収体の薄膜化と、電磁波吸収性能とのバランスの点から、100μm以下が好ましく、50μm以下がより好ましい。
 複合層の厚さの下限値としては本発明の効果を損なわない限り特に制限はないが、例えば、1μm以上、10μm以上等が挙げられる。
 複合層の厚さは、均一であってもよく、不均一であってもよい。
 以下、複合層の必須又は任意の構成について説明する。
〔電磁波吸収材料〕
 電磁波吸収材料は、イプシロン型酸化鉄を含む。電磁波吸収材料イプシロン型酸化鉄を含む複合層を備える電磁波吸収体は、ミリ波帯域以上の高周波数の電磁波を良好に吸収し、且つ後述する熱伝導性材料と併用されても、電磁波吸収特性が阻害されにくい。
 電磁波吸収材料は、イプシロン型酸化鉄とともに、電磁波を吸収する性能を有する磁性体を含んでいてもよい。イプシロン型酸化鉄とともに使用され得る磁性体の好ましい例としては、バリウムフェライト磁性体、及びストロンチウムフェライト磁性体が挙げられる。
 電磁波吸収体の電磁波吸収特性が良好である点で、イプシロン型酸化鉄の質量と、イプシロン型酸化鉄以外の磁性体の質量の合計に対するイプシロン型酸化鉄の質量の比率は、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、95質量%以上がさらにより好ましい、100質量%が特に好ましい。
 電磁波吸収材料は、電磁波吸収材料中にイプシロン型酸化鉄を均一に分散させる目的と、複合層を容易に成形可能にする目的とで、典型的には、バインダー樹脂を含むのが好ましい。
 以下、電磁波吸収材料を構成する主たる材料である、イプシロン型酸化鉄、及びバインダー樹脂について説明する。
(イプシロン型酸化鉄)
 イプシロン型酸化鉄としては、ε-Fe結晶、及び、結晶構造と空間群がε-Feと同じであって、ε-Fe結晶のFeサイトの一部がFe以外の元素Mで置換されたものであり、式ε-MFe2-xで表され、前記xが0以上2以下(好ましくは0以上2未満)である結晶よりなる群から選択される少なくとも1種であることが好ましい。このようなイプシロン型酸化鉄の結晶は磁性結晶であるため、本願の明細書では、その結晶について「磁性結晶」と呼ぶことがある。
 ε-Fe結晶については、任意のものを用いることができる。結晶構造と空間群がε-Feと同じであって、ε-Fe結晶のFeサイトの一部がFe以外の元素Mで置換されたものであり、式ε-MFe2-xで表され、前記xが0以上2以下(好ましくは0以上2未満)である結晶については、後述する。
 なお、本願明細書においてε-Fe結晶のFeサイトの一部が置換元素Mで置換されたε-MFe2-xを「M置換ε-Fe」とも呼ぶ。
 ε-Fe結晶及び/又はM置換ε-Fe結晶を磁性相に持つ粒子の粒子径は本発明の目的を阻害しない範囲で特に限定されない。例えば、後述するような方法で製造される、イプシロン型酸化鉄の磁性結晶を磁性相に持つ粒子は、TEM(透過型電子顕微鏡)写真から計測される平均粒子径が5nm以上200nm以下の範囲にある。
 また、後述するような方法で製造される、イプシロン型酸化鉄の磁性結晶を磁性層に持つ粒子の変動係数(粒子径の標準偏差/平均粒子径)は80%未満の範囲にあり、比較的微細で粒子径の整った粒子群である。
 好適な複合層において、このようなイプシロン型酸化鉄の磁性粒子(すなわち、ε-Fe結晶及び/又はM置換ε-Fe結晶を磁性相に持つ粒子)の粉体を、複合層中の電磁波吸収材料である磁性体として用いる。ここでいう「磁性相」は当該粉体の磁性を担う部分である。
 「ε-Fe結晶及び/又はM置換ε-Fe結晶を磁性相に持つ」とは、磁性相がε-Fe結晶及び/又はM置換ε-Fe結晶からなることを意味し、その磁性相に製造上不可避的な不純物磁性結晶が混在する場合を含む。
 イプシロン型酸化鉄の磁性結晶は、ε-Fe結晶と空間群や酸化状態を異にする鉄酸化物の不純物結晶(具体的には、α-Fe、γ-Fe、FeO、及びFe、並びにこれらの結晶においてFeの一部が他の元素で置換された結晶)を含んでいてもよい。
 イプシロン型酸化鉄の磁性結晶が不純物結晶を含む場合、ε-Fe及び/又はM置換ε-Feの磁性結晶が主相であるのが好ましい。すなわち、電磁波吸収材料を構成するイプシロン鉄酸化物の磁性結晶の中で、ε-Fe及び/又はM置換ε-Feの磁性結晶の割合が、化合物としてのモル比で50モル%以上であるものが好ましい。
 結晶の存在比は、X線回折パターンに基づくリートベルト法による解析で求めることができる。磁性相の周囲にはゾル-ゲル過程で形成されたシリカ(SiO)等の非磁性化合物が付着していることがある。
(M置換ε-Fe
 結晶と空間群がε-Feと同じであって、ε-Fe結晶のFeサイトの一部がFe以外の元素Mで置換されたものであるとの条件を満たす限り、M置換ε-Feにおける元素Mの種類は特に限定されない。M置換ε-Feは、Fe以外の元素Mを複数種含んでいてもよい。
 元素Mの好適な例としては、In、Ga、Al、Sc、Cr、Sm、Yb、Ce、Ru、Rh、Ti、Co、Ni、Mn、Zn、Zr、及びYが挙げられる。これらの中では、In、Ga、Al、Ti、Co及びRhが好ましい。MがAlである場合、ε-MFe2-xで表される組成において、xは例えば0以上0.8未満の範囲内であるのが好ましい。MがGaである場合、xは例えば0以上0.8未満の範囲内であるのが好ましい。MがInである場合、xは例えば0以上0.3未満の範囲内であるのが好ましい。MがRhである場合、xは例えば0以上0.3未満の範囲であることが好ましい。MがTi及びCoである場合は、xは例えば0以上1未満の範囲であることが好ましい。
 電磁波吸収量が最大となる周波数は、M置換ε-Feにおける元素Mの種類及び置換量の少なくとも一方を調整することにより調整することができる。
 このようなM置換ε-Fe磁性結晶は、例えば後述の、逆ミセル法とゾル-ゲル法を組み合わせた工程及び焼成工程によって合成することができる。また、特開2008-174405号公報に開示されるような、直接合成法とゾル-ゲル法とを組み合わせた工程、及び焼成工程によってM置換ε-Fe磁性結晶を合成することができる。
 具体的には、
 Jian Jin,Shin-ichi Ohkoshi and Kazuhito Hashimoto,ADVANCED MATERIALS 2004,16,No.1、January 5,p.48-51、
 Shin-ichi Ohkoshi,Shunsuke Sakurai,Jian Jin,Kazuhito Hashimoto,JOURNAL OF APPLIED PHYSICS,97,10K312(2005)、
 Shunsuke Sakurai,Jian Jin,Kazuhito Hashimoto and Shin-ichi Ohkoshi,JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN,Vol.74,No.7,July,2005、p.1946-1949、
 Asuka Namai,Shunsuke Sakurai,Makoto Nakajima,Tohru Suemoto,Kazuyuki Matsumoto,Masahiro Goto,Shinya Sasaki,and Shin-ichi Ohkoshi,Journal of the American Chemical Society, Vol.131,p.1170-1173,2009.等に記載されるような、逆ミセル法とゾル-ゲル法を組み合わせた工程及び焼成工程により、M置換ε-Fe磁性結晶を得ることができる。
 逆ミセル法では、界面活性剤を含んだ2種類のミセル溶液、すなわちミセル溶液I(原料ミセル)とミセル溶液II(中和剤ミセル)を混合することによって、ミセル内で水酸化鉄の沈殿反応を進行させる。次に、ゾル-ゲル法によって、ミセル内で生成した水酸化鉄微粒子の表面にシリカコートを施す。シリカコート層を備える水酸化鉄微粒子は、液から分離されたあと、所定の温度(700~1300℃の範囲内)で大気雰囲気下での熱処理に供される。この熱処理によりε-Fe結晶の微粒子が得られる。
 より具体的には、例えば以下のようにしてM置換ε-Fe磁性結晶が製造される。
 まず、n-オクタンを油相とするミセル溶液Iの水相に、鉄源としての硝酸鉄(III)と、鉄の一部を置換させるM元素源としてのM硝酸塩(Alの場合、硝酸アルミニウム(III)9水和物、Gaの場合、硝酸ガリウム(III)水和物、Inの場合、硝酸インジウム(III)3水和物、Ti及びCoである場合、硫酸チタン(IV)の水和物と硝酸コバルト(II)6水和物)と、界面活性剤(例えば臭化セチルトリメチルアンモニウム)とを溶解させる。
 ミセル溶液Iの水相には、適量のアルカリ土類金属(Ba、Sr、Ca等)の硝酸塩を溶解させておくことができる。この硝酸塩は形状制御剤として機能する。アルカリ土類金属が液中に存在すると、最終的にロッド形状のM置換ε-Fe磁性結晶の粒子が得られる。形状制御剤がない場合は、球状に近いM置換ε-Fe磁性結晶の粒子が得られる。
 形状制御剤として添加したアルカリ土類金属は、生成するM置換ε-Fe磁性結晶の表層部に残存することがある。M置換ε-Fe磁性結晶におけるアルカリ土類金属の質量は、M置換ε-Fe磁性結晶における置換元素Mの質量と、Feの質量との合計に対して、20質量%以下であるのが好ましく、10質量%以下であるのがより好ましい。
 n-オクタンを油相とするミセル溶液IIの水相にはアンモニア水溶液を用いる。
 ミセル溶液I及びIIを混合した後、ゾル-ゲル法を適用する。すなわち、シラン(例えばテトラエチルオルトシラン)をミセル溶液の混合液に滴下しながら撹拌を続け、ミセル内で水酸化鉄、又は元素Mを含有する水酸化鉄の生成反応を進行させる。これにより、ミセル内で生成した微細な水酸化鉄の沈殿の粒子表面が、シランの加水分解によって生成するシリカでコーティングされる。
 次いで、シリカコーティングされたM元素含有水酸化鉄粒子を液から分離・洗浄・乾燥して得た粒子粉体を炉内に装入し、空気中で700℃以上1300℃以下、好ましくは900℃以上1200℃以下、さらに好ましくは950℃以上1150℃以下の温度範囲で熱処理(焼成)する。
 この熱処理によりシリカコーティング内で酸化反応が進行して、微細なM元素含有水酸化鉄の微細な粒子が、微細なM置換ε-Feの粒子に変化する。
 この酸化反応の際に、シリカコートの存在がα-Feやγ-Feの結晶ではなく、ε-Feと空間群が同じであるM置換ε-Fe結晶の生成に寄与するとともに、粒子同士の焼結を防止する作用を果たす。また、適量のアルカリ土類金属が共存していると、粒子形状がロッド状に成長しやすい。
 また、前述の通り、特開2008-174405号公報に開示されるような、直接合成法とゾル-ゲル法とを組み合わせた工程、及び焼成工程によってM置換ε-Fe磁性結晶をより経済的に有利に合成することができる。
 簡潔に説明すれば、初めに3価の鉄塩と置換元素M(Ga、Al等)の塩が溶解している水溶媒に、撹拌状態でアンモニア水等の中和剤を添加することで、鉄の水酸化物(一部が別元素で置換されていることもある)からなる前駆体が形成される。
 その後にゾル-ゲル法を適用し、前駆体粒子表面にシリカの被覆層を形成させる。このシリカ被覆粒子を液から分離した後に、所定の温度で熱処理(焼成)を行うと、M置換ε-Fe磁性結晶の微粒子が得られる。
 上記のようなM置換ε-Feの合成において、ε-Fe結晶と空間群や酸化状態を異にする鉄酸化物結晶(不純物結晶)が生成する場合がある。Feの組成を有しながら結晶構造が異なる多形(polymorphism)には最も普遍的なものとしてα-Fe及びγ-Feがある。その他の鉄酸化物としてはFeO、Fe等が挙げられる。
 このような不純物結晶の含有は、M置換ε-Fe結晶の特性をできるだけ高く引き出す上で好ましいとは言えないが、本発明の効果を阻害しない範囲で許容される。
 また、M置換ε-Fe磁性結晶の保磁力Hは、置換元素Mによる置換量に応じて変化する。つまり、M置換ε-Fe磁性結晶における置換元素Mによる置換量を調整することで、M置換ε-Fe磁性結晶の保磁力Hを調整することができる。
 具体的には、例えばAl、Ga等を置換元素Mとして用いた場合には、置換量が増えるほど、M置換ε-Fe磁性結晶の保磁力Hが低下する。一方、Rh等を置換元素Mとして用いた場合には、置換量が増えるほど、M置換ε-Fe磁性結晶の保磁力Hは増大する。
 置換元素Mによる置換量に応じてM置換ε-Fe磁性結晶の保磁力Hを調整しやすい点からは、置換元素Mとして、Ga、Al、In、Ti、Co及びRhが好ましい。
 そして、この保磁力Hの低下に伴い、イプシロン型酸化鉄の電磁波吸収量が最大となるピークの周波数も低周波数側あるいは高周波数側にシフトする。つまり、M元素の置換量により電磁波吸収量のピークの周波数をコントロールすることができる。
 一般的に用いられている電磁波吸収体の場合、電磁波の入射角度や周波数が設計した値から外れてしまうと吸収量がほとんどゼロになる。これに対し、イプシロン型酸化鉄を用いた場合、少し値が外れても、広い周波数範囲及び電磁波入射角度で電磁波吸収を呈する。このため、幅広い周波数帯域の電磁波を吸収可能な複合層を提供することができる。
 イプシロン型酸化鉄の粒子径について、例えば上記工程において熱処理(焼成)温度を調整することによりコントロール可能である。
 前述の逆ミセル法とゾル-ゲル法を組み合わせた手法や、特開2008-174405号公報に開示される直接合成法とゾル-ゲル法を組み合わせた手法によれば、TEM(透過型電子顕微鏡)写真から計測される平均粒子径として、5nm以上200nm以下の範囲の粒子径を有するイプシロン型酸化鉄の粒子を合成することが可能である。イプシロン型酸化鉄の平均粒子径は、10nm以上がより好ましく、20nm以上がより好ましい。
 なお、数平均粒子径である平均粒子径を求める際、イプシロン型酸化鉄の粒子がロッド状である場合、TEM画像上で観察される粒子の長軸方向の径を当該粒子の径として平均粒子径を算出する。平均粒子径を求める際の、計測対象の粒子数は平均値を算出に当たり十分に多い数であれば特に限定されないが、300個以上であるのが好ましい。
 また、ゾル-ゲル法で水酸化鉄微粒子の表面にコーティングされたシリカコートが、熱処理(焼成)後のM置換ε-Fe磁性結晶の表面に存在することがある。結晶の表面にシリカのような非磁性化合物が存在する場合、磁性結晶の取り扱い性や、耐久性、耐候性等が向上する点で好ましい。
 非磁性化合物の好適な例としては、シリカのほか、アルミナやジルコニア等の耐熱性化合物が挙げられる。
 ただし、非磁性化合物の付着量があまり多いと、粒子同士が激しく凝集する場合があり好ましくない。
 非磁性化合物がシリカである場合、M置換ε-Fe磁性結晶におけるSiの質量は、M置換ε-Fe磁性結晶における置換元素Mの質量と、Feの質量との合計に対して、100質量%以下であるのが好ましい。
 M置換ε-Fe磁性結晶に付着したシリカの一部又は大部分は、アルカリ溶液に浸す方法によって除去できる。シリカ付着量はこのような方法で任意の量に調整可能である。
 複合層の比透磁率は特に限定されないが、1.0以上1.5以下が好ましい。複合層の比透磁率を調整する方法は特に限定されない。複合層の比透磁率の調整方法としては、イプシロン型酸化鉄における置換元素Mによる置換量を調整する方法、複合層におけるイプシロン型酸化鉄と、イプシロン型酸化鉄以外の他の磁性体の含有量を調整する方法等が挙げられる。
 複合層におけるイプシロン型酸化鉄の含有量は、本発明の目的を阻害しない範囲で特に限定されない。磁性体の含有量は、複合層の固形分質量に対して、30質量%以上が好ましく、40質量%以上がより好ましく、60質量%以上が特に好ましく、60質量%以上91質量%以下が最も好ましい。
(バインダー樹脂)
 電磁波吸収材料は、典型的にはバインダー樹脂を含む。バインダー樹脂を用いることにより、バインダー樹脂中にイプシロン型酸化鉄やその他の磁性体が良好に分散する。また、電磁波吸収材料がバインダー樹脂を含むことにより、所望する形状の複合層の形成が容易である。
 バインダー樹脂は、例えば、エラストマーやゴムのような弾性材料であってもよい。また、バインダー樹脂は、熱可塑性樹脂であっても硬化性樹脂であってもよい。バインダー樹脂が硬化性樹脂である場合、硬化性樹脂は、光硬化性樹脂であっても熱硬化性樹脂であってもよい。
 バインダー樹脂が熱可塑性樹脂である場合の好適な例としては、ポリアセタール樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエステル樹脂(ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリアリレート等)、FR-AS樹脂、FR-ABS樹脂、AS樹脂、ABS樹脂、ポリフェニレンオキサイド樹脂、ポリフェニレンサルファイド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、フッ素系樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミドビスマレイミド樹脂、ポリエーテルイミド樹脂、ポリベンゾオキサゾール樹脂、ポリベンゾチアゾール樹脂、ポリベンゾイミダゾール樹脂、BT樹脂、ポリメチルペンテン、超高分子量ポリエチレン、FR-ポリプロピレン、セルロース樹脂(例えば、メチルセルロース、エチルセルロース)、(メタ)アクリル樹脂(ポリメチルメタクリレート等)、及びポリスチレン等が挙げられる。
 バインダー樹脂が熱硬化性樹脂である場合の好適な例としては、フェノール樹脂、メラミン樹脂、エポキシ樹脂、及びアルキド樹脂等が挙げられる。光硬化性樹脂としては、種々のビニルモノマーや、種々の(メタ)アクリル酸エステル等の不飽和結合を有する単量体を光硬化させた樹脂を用いることができる。
 バインダー樹脂が弾性材料である場合の好適な例としては、オレフィン系エラストマー、スチレン系エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマー、及びポリウレタン系エラストマー等が挙げられる。
 また、バインダー樹脂としては、芳香族エステル-ウレタン共重合体を用いるのが好ましい。バインダー樹脂として芳香族エステル-ウレタン共重合体を用いることによって、イプシロン型酸化鉄や他の磁性体をバインダー樹脂中に良好に分散させつつ、薄くても優れた電磁波吸収特性を示す、フィルム状の電磁波吸収体を形成できる。
 また、バインダー樹脂として芳香族エステル-ウレタン共重合体を用いる場合、複合層に折り曲げ時や切断時のクラック耐性や、低反り性を付与することができる。
 複合層のクラック耐性や低反り性が良好である点からは、バインダー樹脂のガラス転移温度は、100℃以下が好ましく、0℃以下がより好ましい。このため、芳香族エステル-ウレタン共重合体のガラス転移温度も、100℃以下が好ましく、0℃以下がより好ましい。
 芳香族エステル-ウレタン共重合体は、エステル結合(-CO-O-)と、ウレタン結合(-NH-CO-O-)とを含み、且つ主鎖骨格中に芳香族基を含む共重合体である。
主鎖骨格中の芳香族基は、芳香族炭化水素基であっても、複素環式芳香族基であってもよく、芳香族炭化水素基が好ましい。芳香族エステル-ウレタン共重合体は、分子鎖中にエステル結合と、ウレタン結合とがランダムに導入されたランダム共重合体であってもよく、1以上のエステルブロックと、1以上のウレタンブロックとからなるブロック共重合体であってもよい。
 芳香族エステル-ウレタン共重合体の製造方法は特に限定されない。芳香族エステル-ウレタン共重合体は、典型的には、ジオール成分(a1)、ジカルボン酸(a2)、ヒドロキシカルボン酸成分(a3)、及びジイソシアネート成分(a4)からなる群より選択される1種以上の単量体を、一段階、又は多段階で重合させることにより製造することができる。
 ジカルボン酸成分(a2)及びヒドロキシカルボン酸成分(a3)は、メチルエステルやエチルエステル等のエステル誘導体、カルボン酸クロリド等のカルボン酸ハライド等のエステル又はウレタン形成性の誘導体として使用されてもよい。
 芳香族エステル-ウレタン共重合体の製造に用いられる上記のモノマーは、非分岐構造の2価の炭化水素基に、水酸基、カルボキシ基、及びイソシアネート基からなる群より選択される2つの官能基が結合した化合物であるのが好ましい。
 非分岐構造の2価の炭化水素基としては、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、又はこれらの基の組み合わせが挙げられる。アルキレン基、アルケニレン基、及びアルキニレン基は、直鎖構造であるのが好ましい。
 非分岐構造の2価の炭化水素基がアルキレン基、アルケニレン基、又はアルキニレン基である場合、これらの基の炭素原子数は、1以上8以下が好ましく、2以上6以下がより好ましく、2以上4以下がさらに好ましい。
 非分岐構造の2価の炭化水素基がアリーレン基である場合、当該アリーレン基としては、フェニレン基、及びナフチレン基が好ましく、フェニレン基がより好ましく、p-フェニレン基がさらに好ましい。
 以上説明した非分岐構造の2価の炭化水素基の中では、アルキレン基、及びアリーレン基、並びにアルキレン基とアリーレン基との組み合わせが好ましい。
 ジオール成分(a1)の好適な具体例としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、及び1,5-ペンタンジオール等が挙げられる。
 ジカルボン酸(a2)の好適な具体例としては、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,4-シクロヘキサンジカルボン酸、コハク酸、グルタル酸、アジピン酸、シュウ酸、及びマロン酸等が挙げられる。
 ヒドロキシカルボン酸成分(a3)の好適な具体例としては、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシナフタレン-2-カルボン酸、グリコール酸、乳酸、及びγ-ヒドロキシ酪酸等が挙げられる。
 ジイソシアネート成分(a4)の好適な具体例としては、エチレンジイソシアネート、トリメチレンジイソシネナート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、m-キシリレンジイソシアネート、p-フェニレンジイソシアネート、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、及び1,5-ナフタレンジイソシアネート等が挙げられる。
 芳香族エステル-ウレタン共重合体の重量平均分子量(Mw)は、5000以上500000以下が好ましく、10000以上200000以下がより好ましい。本出願の明細書において、重量平均分子量(Mw)とは、GPCにより測定したポリスチレン換算による重量平均分子量である。
 芳香族エステル-ウレタン共重合体の市販品としては、バイロンシリーズ(商品名)(東洋紡(株)製)等が挙げられる。より具体的には、バイロンUR-1400、バイロンUR-1410、バイロンUR-1700、バイロンUR-2300、バイロンUR-3200、バイロンUR-3210、バイロンUR-3500、バイロンUR-6100、バイロンUR-8300、及びバイロンUR-8700等を好ましく用いることができる。
 電磁波吸収材料におけるバインダー樹脂の含有量は、本発明の目的を阻害しない範囲で特に限定されない。電磁波吸収材料は、複合層の固形分質量に対して、好ましくは5質量%以上30質量%以下、より好ましくは5質量%以上25質量%以下のバインダー樹脂を含む。
(誘電体)
 電磁波吸収材料は、複合層の比誘電率を調製する目的で、誘電体を含んでいてもよい。複合層中の誘電体の含有量を調整することにより、複合層の比誘電率を調整できる。
 複合層の比誘電率としては特に制限はないが、6.5以上65以下であることが好ましく、10以上50以下であることがより好ましく、15以上30以下であることがさらに好ましい。
 誘電体の好適な例としては、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、及び二酸化チタンが挙げられる。電磁波吸収材料は、複数の種類の誘電体の粉末を組み合わせて含んでいてもよい。
 複合層の比誘電率の調整に用いられる誘電体の粉末の粒子径は、本発明の目的を阻害しない範囲で特に限定されない。誘電体の粉末の平均粒子径は、1nm以上100nm以下が好ましく、5nm以上50nm以下がより好ましい。ここで、誘電体の粉末の平均粒子径は、電子顕微鏡により観察される、誘電体の粉末の一次粒子の数平均径である。
 誘電体の粉末を用いて複合層の比誘電率を調整する場合、複合層各々の比誘電率が所定の範囲内である限り、誘電体の粉末の使用量は特に限定されない。誘電体の粉末の使用量は、複合層の固形分質量に対して、0質量%以上20質量%以下が好ましく、5質量%以上10質量%以下がより好ましい。
(カーボンナノチューブ)
 電磁波吸収材料にカーボンナノチューブを含有させることにより複合層の比誘電率を調整することができる。カーボンナノチューブは、上記の誘電体の粉末と併用してもよい。
 電磁波吸収材料へのカーボンナノチューブの配合量は、複合層の比誘電率が上記の所定の範囲内である量であれば特に限定されない。ただし、カーボンナノチューブは導電性材料でもあるため、カーボンナノチューブの使用量が過多であると、複合層によりもたらされる電磁波吸収特性が損なわれる場合がある。
 カーボンナノチューブの使用量は、複合層の固形分質量に対して、0質量%以上20質量%以下が好ましく、1質量%以上10質量%以下がより好ましい。
〔熱伝導性材料〕
 熱伝導性材料は、当業者に高い熱伝導性を有する材料として認識されている材量であれば特に限定されない。
 例えば、熱伝導性材料の熱伝導率は、15W/m・K以上が好ましく、20W/m・K以上がより好ましく、50W/m・K以上がさらに好ましく、200W/m・K以上が特に好ましい。
 例えば、15W/m・K以上の熱伝導率を示す物質としては、アルミナ、窒化アルミニウム、炭化ケイ素、及び窒化ホウ素が挙げられる。これらの熱伝導性材料は2種以上組み合わせて使用されてもよい。これらの中では、入手が容易で、放熱性、及び電磁波吸収特性に優れる電磁波吸収体を得やすいことからアルミナ、及び炭化ケイ素が好ましい。
 熱伝導性材料の形状は、本発明の目的を阻害しない範囲で特に限定されない。熱伝導性材料は、粒状、又は鱗片状の粉体であるのが好ましい。このような形状の熱伝導性材料はアスペクト比が小さく、複合層中で配向しにくい。このため、粒状、又は鱗片状の粉体である熱伝導性材料を用いると、熱伝導性材料の配向に起因する複合層の折れ、割れ、裂け等を抑制しやすい。
 熱伝導性材料のアスペクト比(平均長軸長さ/平均短軸長さ)は、6未満が好ましく、5以下がより好ましく、3以下がさらに好ましい。熱伝導性材料の平均長軸長さ、及び平均短軸長さは、例えばマイクロスコープ観察や、SEM観察等により数平均長として求めることができる。
 また、粒状の熱伝導性材料と、鱗片状の熱伝導性材料とを組み合わせて用いることにより、電磁波吸収体の熱拡散率を高めやすい。
 特に、粒状のアルミナと、鱗片状の窒化ホウ素とをも組み合わせて用いると、熱拡散率のみならず熱伝導率も顕著に高まる傾向がある。
 粒状の熱伝導性材料と、鱗片状の熱伝導性材料とを組み合わせて用いる場合、粒状の熱伝導性材料の質量と、鱗片状の熱伝導性材料の質量との合計に対する鱗片状の熱伝導性材料の質量の比率は、熱伝導性の改良効果と、電磁波吸収体形成用ペーストの成膜性との両立の点で、7質量%以上50質量%以下が好ましく、10質量%以上50質量%以下がより好ましく、15質量%以上40質量%以下がさらに好ましい。
 上記の粒状、又は鱗片状の粉体である熱伝導性材料は、電磁波吸収体の放熱性が良好である観点から、前述の電磁波吸収材料からなるマトリックス中に分散しているのが好ましい。
 熱伝導性材料の使用量は特に限定されず、電磁波吸収体の所望する放熱性能の水準に合わせて適宜調整される。典型的には、複合層が、電磁波吸収材料100質量部に対して、好ましくは30質量部以上300質量部以下、より好ましくは40質量部以上200質量部以下の熱伝導性材料を含むように、熱伝導性材料が使用されるのが好ましい。
〔その他の成分〕
 複合層は、本発明の目的を阻害しない範囲で、上記の成分以外の種々の添加剤を含んでいてもよい。複合層が含み得る添加剤としては、分散剤、着色剤、酸化防止剤、紫外線吸収剤、難燃剤、難燃助剤、可塑剤、及び界面活性剤等が挙げられる。これらの添加剤は、本発明の目的を阻害しない範囲で、それらが従来使用される量を勘案して使用される。
 以上説明した、電磁波吸収材料と、熱伝導性材料と、必要に応じてその他の成分とを、例えば後述する電磁波吸収体形成用ペーストを用いる方法により、複合化しつつ製膜することによって、高周波帯域における良好な電磁波吸収特性と、良好な放熱性とを両立し得る電磁波吸収体として用いることができる複合層が得られる。
<基材層>
 前述の複合層は、基材層上に積層されてもよい。基材層としては、本発明の効果を損なわない限り任意の基材を含む層であってよいが、例えば、樹脂を含む層等が挙げられる。
 上記樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、アクリル(PMMA)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリエーテルスルフォン、ポリイミド、ポリアミドイミド等が挙げられる。なかでも、耐熱性に優れ、寸法安定性とコストとのバランスがよいことからPETが好ましい。
 基材層の形状は、曲面を有していてもよく、平面のみから構成されていてもよく、平板状が好ましい。
 基材層の厚さとしては、本発明の効果を損なうことなく、該フィルムを薄くしたり小型化したりする観点から、800μm以下が好ましく、500μm以下がより好ましく、300μm以下がさらに好ましく、150μm以下が特に好ましい。
 基材層の厚さの下限値としては本発明の効果を損なわない限り特に制限はないが、例えば、1μm以上、10μm以上、50μm以上等が挙げられる。
<金属層>
 電磁波吸収体が基材層を備える場合、電磁波吸収体において、基材層の複合層が設けられている面と反対側の面には金属層が設けられてもよい。金属層を設ける場合、金属層により反射される電磁波を減衰させることができる。金属層を構成する金属としては、例えば、アルミニウム、チタン、SUS、銅、真鍮、銀、金、及び白金等が好ましい。
 金属層の厚さは特に限定されず、電磁波吸収体を薄くする観点から、600μm以下が好ましく、400μm以下がより好ましく、100μm以下がさらに好ましく、50μm以下が特に好ましい。
 金属層の厚さの下限値としては本発明の効果を損なわない限り特に制限はないが、例えば、0.1μm以上、1μm以上、5μm以上、10μm以上等が挙げられる。
 以上説明した、所定の成分を含む複合層を、必要に応じて基材層、又は基材層と金属層と組み合わせることにより、高周波帯域における良好な電磁波吸収特性と、良好な放熱性とを両立し得る電磁波吸収体が得られる。
 以上説明した電磁波吸収体は、携帯電話、無線LAN、ETCシステム、高度道路交通システム、自動車走行支援道路システム、衛星放送等の種々の情報通信システムにおける各種素子(車載素子、高周波アンテナ素子等を含む。)に用いられる電磁波吸収用のフィルムとして好ましく使用し得る。
≪電磁波吸収体形成用ペースト≫
 電磁波吸収体を形成する方法としては、特に厚さの制限なく高効率で複合層を形成できる点と、基材層上に直接複合層を形成できる点とから、電磁波吸収体形成用ペーストを用いて形成する方法が好ましい。
 電磁波吸収体形成用ペーストは、前述の電磁波吸収材料と、熱伝導性材料とを含む。電磁波吸収体形成用ペーストは、さらに上記バインダー樹脂を含有することが好ましい。電磁波吸収体形成用ペーストは、電磁波吸収材料について前述した、比誘電率、比透磁率等の調整のために添加される物質、及びその他の成分等を含有していてもよい。なお、バインダー樹脂が硬化性樹脂を含む場合、電磁波吸収体形成用ペーストは、硬化性樹脂の前駆体である化合物を含む。この場合、電磁波吸収体形成用ペーストは、硬化剤、硬化促進剤、及び重合開始剤等を必要に応じて含有する。
 また、電磁波吸収体形成用ペーストが光重合性又は熱重合性の化合物を含む場合、塗布膜に対して、必要に応じて露光又は加熱を行い、複合層を形成してもよい。
 電磁波吸収体形成用ペーストは、分散媒をさらに含むことが好ましい。分散媒としては、水、有機溶剤、及び有機溶剤の水溶液を用いることができる。分散媒としては、有機成分を溶解させやすい点や、蒸発潜熱が低く乾燥による除去が容易であること等から、有機溶剤が好ましい。
 分散媒として使用される有機溶剤の好適な例としては、N,N,N’,N’-テトラメチルウレア(TMU)、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルイソブチルアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、1,3-ジメチル-2-イミダゾリジノン(DMI)、ピリジン等の含窒素極性溶剤;ジエチルケトン、メチルブチルケトン、ジプロピルケトン、シクロヘキサノン等のケトン類;n-ペンタノール、4-メチル-2-ペンタノール、シクロヘキサノール、ジアセトンアルコール等のアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等のエーテル系アルコール類;酢酸-n-ブチル、酢酸アミル等の飽和脂肪族モノカルボン酸アルキルエステル類;乳酸エチル、乳酸-n-ブチル等の乳酸エステル類;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン、ベンゾフェノン等のケトン類;メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、2-メトキシブチルアセテート、3-メトキシブチルアセテート、4-メトキシブチルアセテート、2-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-エチル-3-メトキシブチルアセテート、2-エトキシブチルアセテート、4-エトキシブチルアセテート、4-プロポキシブチルアセテート、2-メトキシペンチルアセテート等のエーテル系エステル類等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
 電磁波吸収体形成用ペーストの固形分濃度は、電磁波吸収体形成用ペーストを塗布する方法、複合層の厚さ等に応じて適宜調整される。典型的には電磁波吸収体形成用ペーストの固形分濃度は、3質量%以上60質量%以下が好ましく、10質量%以上50質量%以下がより好ましい。なお、ペーストの固形分濃度は、分散媒に溶解していない成分の質量と、分散媒に溶解している成分の質量との合計を固形分の質量として算出される値である。
(分散剤)
 上記イプシロン型酸化鉄や、複合層の比誘電率及び比透磁率を調整するために用いられる物質を複合層中で良好に分散させる目的で、電磁波吸収体形成用ペーストは分散剤を含んでいてもよい。分散剤は、上記イプシロン型酸化鉄やバインダー樹脂とともに均一に混合されてもよい。分散剤はバインダー樹脂中に配合されてもよい。また、分散剤により予め処理された、上記イプシロン型酸化鉄、又は比誘電率及び比透磁率を調整するために添加される物質を、複合層を構成する材料に配合してもよい。
 分散剤の種類は本発明の目的を阻害しない範囲で特に限定されない。従来から種々の無機微粒子や有機微粒子の分散用途で使用されている種々の分散剤の中から、分散剤を選択できる。
 分散剤の好適な例としては、シランカップリング剤(例えば、フェニルトリメトキシシラン)、チタネートカップリング剤、ジルコネートカップリング剤、及びアルミネートカップリング剤等が挙げられる。
 分散剤の含有量は、本発明の目的を阻害しない範囲で特に限定されない。分散剤の含有量は、電磁波吸収体形成用ペーストの固形分質量に対して、0.1質量%以上30質量%以下が好ましく、1質量%以上15質量%以下がより好ましく、1質量%以上10質量%以下が特に好ましい。
≪電磁波吸収体の製造方法≫
 前述の電磁波吸収体を製造する方法は、所定の構造の電磁波吸収体を製造できる限り特に限定されない。
 好ましい方法としては、基材層上に、電磁波吸収材料と、熱伝導性材料とを含む前述のペーストを塗布して塗布膜を形成した後、塗布膜を乾燥させて複合層を形成する、複合層形成工程を含む方法が挙げられる。
 基材層上に電磁波吸収体形成用ペーストを塗布する方法は、所望する厚さの電磁波吸収体を形成できる限り特に限定されない。塗布方法としては、例えば、スプレーコート法、ディップコート法、ロールコート法、カーテンコート法、スピンコート法、スクリーン印刷法、ドクターブレード法、及びアプリケーター法等が挙げられる。
 上記の方法により形成される塗布膜を乾燥させて分散媒を除去することで基材層上に複合膜を形成し、これにより電磁波吸収体が得られる。塗布膜の膜厚は、乾燥後に得られる複合膜の厚さが所望の厚さになるように適宜調整される。
 乾燥方法は、特に限定されず、例えば、(1)ホットプレートにて80℃以上180℃以下、好ましくは90℃以上160℃以下の温度にて1分間以上30分間以下乾燥させる方法、(2)室温にて数時間~数日間放置する方法、(3)温風ヒータや赤外線ヒータ中に数十分間~数時間入れて溶剤を除去する方法等が挙げられる。
 電磁波吸収体の製造方法は、複合層形成工程で得られた、複合層、又は基材層と複合層とを備える積層体を切断して、予め定められたサイズの電磁波吸収体を取得する、切断工程を含んでいてもよい。
 前述の通り、電磁波吸収体は、電磁波吸収材料と、熱伝導性材料とからなる複合層を備えるため、高周波帯域における良好な電磁波吸収特性と、良好な放熱性とを両立し得る。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されない。
〔実施例1〕
(電磁波吸収体形成用ペーストの調製)
 分散媒であるTMU25.1質量部に対して、電磁波吸収材料としての下記イプシロン型酸化鉄39質量部、下記カーボンナノチューブ(CNT)2.4質量部、及びバインダー樹脂8.6質量部と、熱伝導材料としての粒状のアルミナ粉末21.4質量部とを加えた。バインダー樹脂は、下記バインダー樹脂溶液として加えた。自転・公転ミキサーにより撹拌して、各成分を均一に溶解又は分散させて電磁波吸収体形成用ペーストを得た。
 イプシロン型酸化鉄としてε-Ga0.45Fe1.55を用いた。イプシロン型酸化鉄の平均粒子径は、20nm以上30nm以下であった。
 CNTとしては、長径150nmの多層カーボンナノチューブ(商品名VGCF-H;昭和電工社製)を用いた。
 分散剤としては、フェニルトリメトキシシランを用いた。
 バインダー樹脂溶液として、芳香族エステル-ウレタン共重合体(東洋紡(株)製、バイロンUR-3210、ガラス転移温度-3℃、重量平均分子量40000、樹脂5質量部及びメチルエチルケトン15質量部からなる)を用いた。
(電磁波吸収体フィルムの製造)
 PETフィルム(厚さ125μm)に上記電磁波吸収体形成用ペーストを用いてアプリケーターにより塗布した。その後、塗布膜を90℃10分及び130℃10分の条件で乾燥させて、厚さ35μmの複合層を形成し、フィルム状の電磁波吸収体を得た。乾燥直後に得られたフィルム状の電磁波吸収体を5cm角の正方形形状に切断して、以下の評価用の試験片を作製した。
<反射減衰量>
 5cm角の正方形のフィルム状の電磁波吸収体の試料をアルミニウム板上に貼り付けた。アルミニウム板上の測定用試料に対して、40~120GHzの電磁波を入射させ、その反射減衰量をテラヘルツ時間領域分光装置(アドバンテスト社製)を用いて測定した。
 周波数fにおける反射減衰量RL(f)は、RL(f)=-10Log(R(f)/100)で求められる。ここで、R(f)は反射率(%)である。
 周波数(Frequency)40~120GHzの範囲における、実施例1のフィルム状の電磁波吸収体の反射減衰量(Reflectance(dB))を図1に示す。
<熱伝導率、及び熱拡散率>
 得られたフィルム状の電磁波吸収体について、下記の方法により熱伝導率、及び熱拡散率を測定した。これらの測定結果を表1に記す。
 熱拡散率については、周期加熱法により測定を行った。具体的には、アルバック理工社製の周期加熱法熱拡散率測定装置(FTC-1型)を用いて、熱拡散率の測定を行った。
 熱伝導率λは、上記方法により測定された熱拡散率αに基づき、以下の式から算出した。なお、下記式に適用する比熱Cρは、測定温度25℃にて、日立ハイテクサイエンス社製(X-DSC 7000型)を用いてDSC法により測定した。
λ=α×Cρ×ρ×100
λ:熱伝導率(W/(m・K))
α:熱拡散率(cm/s)
ρ:比熱(J/(g・K))
ρ:密度(g/cm
〔実施例2〕
 TMUの添加量を35質量部へ変更することと、粒状のアルミナ粉末の使用量を50質量部に変更することの他は、実施例1と同様にしてフィルム状の電磁波吸収体を得た。得られたフィルム状の電磁波吸収体について、実施例1と同様にして熱伝導率、及び熱拡散率を測定した。これらの測定結果を表1に記す。
〔実施例3〕
 分散媒であるTMU35質量部に対して、電磁波吸収材料としてのイプシロン型酸化鉄29.5質量部、カーボンナノチューブ(CNT)2.5質量部、及びバインダー樹脂13質量部と、熱伝導材料としての粒状のアルミナ粉末55質量部とを加えた。バインダー樹脂は、下記バインダー樹脂溶液として加えた。自転・公転ミキサーにより撹拌して、各成分を均一に溶解又は分散させて電磁波吸収体形成用ペーストを得た。得られた電磁波吸収体形成用ペーストを用いて、実施例1と同様にしてフィルム状の電磁波吸収体を得た。得られたフィルム状の電磁波吸収体について、実施例1と同様にして、周波数(Frequency)40~120GHzの範囲における、反射減衰量(Reflectance(dB))を測定した。測定結果を図2に示す。また、得られたフィルム状の電磁波吸収体について、実施例1と同様にして熱伝導率、及び熱拡散率を測定した。これらの測定結果を表1に記す。
〔実施例4〕
 粒状のアルミナ粉末55質量部を、粒状のアルミナ粉末50質量部、及び鱗片状の窒化ホウ素粉末5質量部に変えることの他は、実施例3と同様にしてフィルム状の電磁波吸収体を得た。得られたフィルム状の電磁波吸収体について、実施例1と同様にして、周波数(Frequency)40~120GHzの範囲における、反射減衰量(Reflectance(dB))を測定した。測定結果を図3に示す。また、得られたフィルム状の電磁波吸収体について、実施例1と同様にして熱伝導率、及び熱拡散率を測定した。これらの測定結果を表1に記す。
〔実施例5〕
 粒状のアルミナ粉末55質量部を、粒状のアルミナ粉末45質量部、及び鱗片状の窒化ホウ素粉末10質量部に変えることの他は、実施例3と同様にしてフィルム状の電磁波吸収体を得た。得られたフィルム状の電磁波吸収体について、実施例1と同様にして、周波数(Frequency)40~120GHzの範囲における、反射減衰量(Reflectance(dB))を測定した。測定結果を図4に示す。また、得られたフィルム状の電磁波吸収体について、実施例1と同様にして熱伝導率、及び熱拡散率を測定した。これらの測定結果を表1に記す。
〔実施例6〕
 粒状のアルミナ粉末55質量部を、粒状のアルミナ粉末40質量部、及び鱗片状の窒化ホウ素粉末15質量部に変えることの他は、実施例3と同様にしてフィルム状の電磁波吸収体を得た。得られたフィルム状の電磁波吸収体について、実施例1と同様にして、周波数(Frequency)40~120GHzの範囲における、反射減衰量(Reflectance(dB))を測定した。測定結果を図5に示す。また、得られたフィルム状の電磁波吸収体について、実施例1と同様にして熱伝導率、及び熱拡散率を測定した。これらの測定結果を表1に記す。
〔実施例7〕
 粒状のアルミナ粉末55質量部を、粒状のアルミナ粉末35質量部、及び鱗片状の窒化ホウ素粉末20質量部に変えることの他は、実施例3と同様にしてフィルム状の電磁波吸収体を得た。得られたフィルム状の電磁波吸収体について、実施例1と同様にして、周波数(Frequency)40~120GHzの範囲における、反射減衰量(Reflectance(dB))を測定した。測定結果を図6に示す。また、得られたフィルム状の電磁波吸収体について、実施例1と同様にして熱伝導率、及び熱拡散率を測定した。これらの測定結果を表1に記す。
〔実施例8〕
 粒状のアルミナ粉末を、粒状の炭化ケイ素粉末に変更することの他は、実施例2と同様にしてフィルム状の電磁波吸収体を得た。得られたフィルム状の電磁波吸収体について、実施例1と同様にして、周波数(Frequency)40~120GHzの範囲における、反射減衰量(Reflectance(dB))を測定した。測定結果を図7に示す。また、得られたフィルム状の電磁波吸収体について、実施例1と同様にして熱伝導率、及び熱拡散率を測定した。これらの測定結果を表1に記す。
〔実施例9〕
 粒状のアルミナ粉末50質量部を、粒状の炭化ケイ素粉末40質量部と、鱗片状の窒化ホウ素粉末10質量部とに変更することの他は、実施例2と同様にしてフィルム状の電磁波吸収体を得た。得られたフィルム状の電磁波吸収体について、実施例1と同様にして、周波数(Frequency)40~120GHzの範囲における、反射減衰量(Reflectance(dB))を測定した。測定結果を図8に示す。また、得られたフィルム状の電磁波吸収体について、実施例1と同様にして熱伝導率、及び熱拡散率を測定した。これらの測定結果を表1に記す。
〔実施例10〕
 粒状のアルミナ粉末を、鱗片状の窒化ホウ素粉末に変更することの他は、実施例2と同様にしてフィルム状の電磁波吸収体を得た。得られたフィルム状の電磁波吸収体について、実施例1と同様にして、周波数(Frequency)40~120GHzの範囲における、反射減衰量(Reflectance(dB))を測定した。測定結果を図9に示す。また、得られたフィルム状の電磁波吸収体について、実施例1と同様にして熱伝導率、及び熱拡散率を測定した。これらの測定結果を表1に記す。
〔比較例1〕
 粉末状のアルミナを用いないことの他は、実施例1と同様にしてフィルム状の電磁波吸収体を得た。得られたフィルム状の電磁波吸収体について、実施例1と同様にして熱伝導率、及び熱拡散率を測定した。これらの測定結果を表1に記す。
Figure JPOXMLDOC01-appb-T000001
 表1、及び図1~図9によれば、電磁波吸収材料と、熱伝導性材料とからなる複合層を備え、電磁波吸収材料が、所定のイプシロン型酸化鉄を含む、上記実施例1~10の電磁波吸収体は、高周波帯域における良好な電磁波吸収特性と、良好な放熱性とを両立できることが分かる。
 他方、比較例1より、電磁波吸材料が熱伝導性材料を含まない場合、電磁波吸収体の熱拡散率及び熱伝導率が低いことが分かる。
 また、実施例8と実施例9との比較、並びに実施例2及び実施例3と、実施例4~7との比較によれば、粒状の熱伝導性材料と、鱗片状の熱伝導性材料とを組み合わせて使用することにより、粒状の熱伝導性材料のみを用いるよりも熱拡散率が高まることが分かる。
 特に、実施例2及び実施例3と、実施例4~7との比較によれば、粒状のアルミナ粉末と、鱗片状の窒化ホウ素粉末とを組み合わせて使用することにより、粒状のアルミナ粉末のみを用いる場合よりも、熱拡散率と熱伝導率とを顕著に高められることが分かる。

Claims (11)

  1.  電磁波吸収材料と、熱伝導性材料とからなる複合層を備え、
     前記電磁波吸収材料が、イプシロン型酸化鉄を含み、
     前記イプシロン型酸化鉄は、ε-Fe結晶、及び、結晶と空間群がε-Feと同じであって、ε-Fe結晶のFeサイトの一部がFe以外の元素Mで置換されたものであり、式ε-MFe2-xで表され、前記xが0超2未満である結晶から選択される1種以上である、電磁波吸収体。
  2.  前記電磁波吸収材料がカーボンナノチューブを含む、請求項1に記載の電磁波吸収体。
  3.  前記電磁波吸収材料がバインダー樹脂を含む、請求項1又は2に記載の電磁波吸収体。
  4.  前記電磁波吸収材料において、前記イプシロン型酸化鉄、又は前記イプシロン型酸化鉄と前記カーボンナノチューブとが前記バインダー樹脂中に分散している、請求項3に記載の電磁波吸収体。
  5.  前記熱伝導性材料が、粒状、及び/又は鱗片状の粉体であり、
     前記熱伝導性材料が、前記電磁波吸収材料からなるマトリックス中に分散している、請求項3又は4に記載の電磁波吸収体。
  6.  前記熱伝導性材料が、アルミナ、炭化ケイ素、及び窒化ホウ素からなる群より選択される1種以上を含む、請求項1~5のいずれか1項に記載の電磁波吸収体。
  7.  前記熱伝導性材料が、粒状の熱伝導性材料と、鱗片状の熱伝導性材料とを組み合わせ含む、請求項5に記載の電磁波吸収体。
  8.  前記熱伝導性材料が、粒状のアルミナと、鱗片状の窒化ホウ素とを組み合わせて含む、請求項5~7のいずれか1項に記載の電磁波吸収体。
  9.  前記複合層が、前記電磁波吸収材料100質量部に対して、30質量部以上300質量以下の前記熱伝導性材料を含む、請求項1~8のいずれか1項に記載の電磁波吸収体。
  10.  フィルム形状である、請求項1~9のいずれか1項に記載の電磁波吸収体。
  11.  電磁波吸収材料と、熱伝導性材料とを含み、
     前記電磁波吸収材料が、イプシロン型酸化鉄を含み、
     前記イプシロン型酸化鉄は、ε-Fe結晶、及び、結晶と空間群がε-Feと同じであって、ε-Fe結晶のFeサイトの一部がFe以外の元素Mで置換されたものであり、式ε-MFe2-xで表され、前記xが0超2未満である結晶から選択される1種以上である、電磁波吸収体形成用ペースト。
PCT/JP2021/018230 2020-05-13 2021-05-13 電磁波吸収体、及び電磁波吸収体形成用ペースト WO2021230320A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022522198A JPWO2021230320A1 (ja) 2020-05-13 2021-05-13
EP21804603.5A EP4152908A4 (en) 2020-05-13 2021-05-13 ELECTROMAGNETIC WAVE ABSORBER AND PASTE FOR FORMING AN ELECTROMAGNETIC WAVE ABSORBER
US17/996,704 US20230307844A1 (en) 2020-05-13 2021-05-13 Radio wave absorber and paste for forming radio wave absorber
CN202180034239.9A CN115553081A (zh) 2020-05-13 2021-05-13 电磁波吸收体及电磁波吸收体形成用糊剂
JP2024100510A JP2024117814A (ja) 2020-05-13 2024-06-21 電磁波吸収体、及び電磁波吸収体形成用ペースト

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020084720 2020-05-13
JP2020-084720 2020-05-13

Publications (1)

Publication Number Publication Date
WO2021230320A1 true WO2021230320A1 (ja) 2021-11-18

Family

ID=78524496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018230 WO2021230320A1 (ja) 2020-05-13 2021-05-13 電磁波吸収体、及び電磁波吸収体形成用ペースト

Country Status (5)

Country Link
US (1) US20230307844A1 (ja)
EP (1) EP4152908A4 (ja)
JP (2) JPWO2021230320A1 (ja)
CN (1) CN115553081A (ja)
WO (1) WO2021230320A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115745627A (zh) * 2022-11-30 2023-03-07 南京信息工程大学 一种SiCN陶瓷吸波剂及其制备方法
WO2024203732A1 (ja) * 2023-03-24 2024-10-03 国立大学法人 東京大学 電磁波吸収体、及び電磁波吸収体形成用ペースト

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026204A (ja) * 2000-07-07 2002-01-25 Kitagawa Ind Co Ltd 熱伝導材,電磁波シールド構造,及び熱伝導材の製造方法
JP2008174405A (ja) 2007-01-16 2008-07-31 Univ Of Tokyo ε−Fe2O3結晶の製法
JP2008277726A (ja) 2006-09-01 2008-11-13 Univ Of Tokyo 電波吸収材料用の磁性結晶および電波吸収体
JP2009060060A (ja) 2007-09-03 2009-03-19 Osaka Industrial Promotion Organization 電磁波吸収シート
JP2016111341A (ja) * 2014-12-03 2016-06-20 国立大学法人 東京大学 電磁波吸収体及び膜形成用ペースト
WO2018147228A1 (ja) * 2017-02-09 2018-08-16 デクセリアルズ株式会社 電磁波抑制熱伝導シート、電磁波抑制熱伝導シートの製造方法及び半導体装置
WO2019017471A1 (ja) * 2017-07-20 2019-01-24 マクセルホールディングス株式会社 電磁波吸収性組成物、電磁波吸収体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374092A (ja) * 2001-06-15 2002-12-26 Polymatech Co Ltd 放熱性電波吸収体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026204A (ja) * 2000-07-07 2002-01-25 Kitagawa Ind Co Ltd 熱伝導材,電磁波シールド構造,及び熱伝導材の製造方法
JP2008277726A (ja) 2006-09-01 2008-11-13 Univ Of Tokyo 電波吸収材料用の磁性結晶および電波吸収体
JP2008174405A (ja) 2007-01-16 2008-07-31 Univ Of Tokyo ε−Fe2O3結晶の製法
JP2009060060A (ja) 2007-09-03 2009-03-19 Osaka Industrial Promotion Organization 電磁波吸収シート
JP2016111341A (ja) * 2014-12-03 2016-06-20 国立大学法人 東京大学 電磁波吸収体及び膜形成用ペースト
WO2018147228A1 (ja) * 2017-02-09 2018-08-16 デクセリアルズ株式会社 電磁波抑制熱伝導シート、電磁波抑制熱伝導シートの製造方法及び半導体装置
WO2019017471A1 (ja) * 2017-07-20 2019-01-24 マクセルホールディングス株式会社 電磁波吸収性組成物、電磁波吸収体

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
A.NAMAIK.OGATAM.YOSHIKIYOS.OHKOSHI, BULL.CHEM.SOC.JPN., vol. 93, 2020, pages 20 - 25
A.NAMAIM.YOSHIKIYOK.YAMADAS.SAKURAIT.GOTOT.YOSHIDAT.MIYA ZAKIM.NAKAJIMAT.SUEMOTOH.TOKORO, NATURE COMMUNICATIONS, vol. 3, no. 1035, 2012, pages 1 - 6
A.NAMAIS.SAKURAIM.NAKAJIMAT.SUEMOTOK.MATSUMOTOM.GOTOS.SA SAKIS.OHKOSHI, J.AM.CHEM.SOC., vol. 131, 2009, pages 1170 - 1173
ASUKA NAMAISHUNSUKE SAKURAIMAKOTO NAKAJIMATOHRU SUEMOTOKAZUYUKI MATSUMOTOMASAHIRO GOTOSHINYA SASAKISHINICHI OHKOSHI, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, 2009, pages 1170 - 1173
JIAN JINSHINICHI OHKOSHIKAZUHITO HASHIMOTO, ADVANCED MATERIALS, vol. 16, no. 1, 5 January 2004 (2004-01-05), pages 48 - 51
S.OHKOSHIS.KUROKIS.SAKURAIK.MATSUMOTOK.SATOS.SASAKI, ANGEW.CHEM.INT.ED., vol. 46, 2007, pages 8392 - 8395
See also references of EP4152908A4
SHIN-ICHI OHKOSHISHUNSUKE SAKURAIJIAN JINKAZUHITO HASHIMOTO, JOURNAL OF APPLIED PHYSICS, vol. 97, no. 10K312, 2005
SHUNSUKE SAKURAIJIAN JINKAZUHITO HASHIMOTOSHINICHI OHKOSHI, JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, vol. 74, no. 7, July 2005 (2005-07-01), pages 1946 - 1949

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115745627A (zh) * 2022-11-30 2023-03-07 南京信息工程大学 一种SiCN陶瓷吸波剂及其制备方法
WO2024203732A1 (ja) * 2023-03-24 2024-10-03 国立大学法人 東京大学 電磁波吸収体、及び電磁波吸収体形成用ペースト

Also Published As

Publication number Publication date
JPWO2021230320A1 (ja) 2021-11-18
US20230307844A1 (en) 2023-09-28
EP4152908A1 (en) 2023-03-22
EP4152908A4 (en) 2024-06-12
JP2024117814A (ja) 2024-08-29
CN115553081A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
JP6616653B2 (ja) 電磁波吸収体及び膜形成用ペースト
KR102271402B1 (ko) 고주파 안테나 소자, 및 고주파 안테나 모듈
JP7464944B2 (ja) 電波吸収積層フィルム、その製造方法、及びそれを含む素子
US9806427B2 (en) Electromagnetic wave absorber and film forming paste
WO2021230320A1 (ja) 電磁波吸収体、及び電磁波吸収体形成用ペースト
JP5360947B2 (ja) 樹脂組成物
Rusly et al. Microwave absorption properties of single-and double-layer coatings based on strontium hexaferrite and graphite nanocomposite
Peymanfar et al. Preparation and identification of bare and capped CuFe2O4 nanoparticles using organic template and investigation of the size, magnetism, and polarization on their microwave characteristics
Peymanfar et al. Preparation and characterization of MWCNT/Zn 0.25 Co 0.75 Fe 2 O 4 nanocomposite and investigation of its microwave absorption properties at X-band frequency using silicone rubber polymeric matrix
Syazwan et al. Co–Ti-and Mn–Ti-substituted barium ferrite for electromagnetic property tuning and enhanced microwave absorption synthesized via mechanical alloying
WO2008069059A1 (ja) 樹脂組成物
Li et al. Microwave absorption characteristic of a double-layer X-band absorber based on MWCNTs/La0. 6Sr0. 4Mn0. 5Fe0. 5O4 coated with PEDOT polymer
JP7071513B2 (ja) マグネトプランバイト型六方晶フェライトの粉体の製造方法及び電波吸収体の製造方法
Jayaseelan et al. The impacts of Mn ion incorporation on the structural, optical, and magnetic properties of hematite NPs
WO2021033517A1 (ja) 電波吸収体フィルム、及びその製造方法
WO2024203732A1 (ja) 電磁波吸収体、及び電磁波吸収体形成用ペースト
Cheng et al. Ba 3 Co 2 Fe 24 O 41/polyimide composites with magnetic and dielectric properties
Chopra et al. Fullerene containing polyurethane nanocomposites for microwave applications
Kıvrak et al. Investigation of structural, magnetic and microwave absorption properties of NixCo1-xFe2O4/Ni: ZnO (x: 0.0, 0.5, and 1.0) embedded epoxy composites
JP7273953B2 (ja) 電波吸収体
Chopra et al. Synthesis and characterization of magnetic nanocomposites of fullerene‐containing polyurethane films for microwave applications
WO2022092137A1 (ja) 電磁波吸収シート
TWI812620B (zh) 電磁波吸收薄片
JP2024000812A (ja) 電磁波吸収材
JP2022126933A (ja) 電波吸収シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522198

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021804603

Country of ref document: EP

Effective date: 20221213