WO2019189282A1 - 鉄系酸化物磁性粉およびその製造方法 - Google Patents

鉄系酸化物磁性粉およびその製造方法 Download PDF

Info

Publication number
WO2019189282A1
WO2019189282A1 PCT/JP2019/013048 JP2019013048W WO2019189282A1 WO 2019189282 A1 WO2019189282 A1 WO 2019189282A1 JP 2019013048 W JP2019013048 W JP 2019013048W WO 2019189282 A1 WO2019189282 A1 WO 2019189282A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
magnetic powder
based oxide
slurry
particles
Prior art date
Application number
PCT/JP2019/013048
Other languages
English (en)
French (fr)
Inventor
慎一 大越
飛鳥 生井
堅之 坂根
哲也 川人
Original Assignee
国立大学法人 東京大学
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, Dowaエレクトロニクス株式会社 filed Critical 国立大学法人 東京大学
Priority to CN201980018108.4A priority Critical patent/CN111819642A/zh
Priority to EP19776115.8A priority patent/EP3780023A4/en
Priority to US16/979,241 priority patent/US11401170B2/en
Publication of WO2019189282A1 publication Critical patent/WO2019189282A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles

Definitions

  • the present invention relates to an iron-based oxide magnetic powder suitable for high-density magnetic recording media, radio wave absorbers, and the like, in particular, a magnetic powder having an average particle diameter of nanometer order and a method for producing the same.
  • ⁇ -Fe 2 O 3 is an extremely rare phase among iron oxides, but at room temperature, particles with a nanometer order size have a huge coercive force (Hc) of about 20 kOe (1.59 ⁇ 10 6 A / m).
  • Hc coercive force
  • ⁇ -Fe 2 O 3 a part of the Fe site, by substituting other metals having excellent heat resistance, the general formula ⁇ -a x B y Fe 2 -x-y O 3 or ⁇ -a x B y C z Fe 2-x -Yz O 3 (where A is a divalent metal element such as Co, Ni, Mn, Zn, B is a tetravalent metal element such as Ti, and C is a trivalent metal such as In, Ga, Al, etc.) Elemental), various partial ⁇ -Fe 2 O 3 substitutes have been developed that have a reduced particle size, variable coercive force, and excellent environmental stability and thermal stability. (Patent Document 3, Non-Patent Document 6).
  • ⁇ -Fe 2 O 3 is obtained as a stable phase with a size on the order of nanometers, a special method is required for its production.
  • ⁇ -Fe is prepared by using a fine crystal of iron oxyhydroxide generated by a liquid phase method as a precursor, and coating the silicon oxide on the precursor by a sol-gel method, followed by heat treatment.
  • a method for producing 2 O 3 is disclosed, and as a liquid phase method, a reverse micelle method using an organic solvent as a reaction medium and a method using only an aqueous solution as a reaction medium are disclosed.
  • the partial substitution of ⁇ -Fe 2 O 3 or ⁇ -Fe 2 O 3 obtained by these methods has a variation in magnetic properties. Therefore, the silicon oxide coating is removed after heat treatment, and classification treatment is performed. It has been proposed to improve their magnetic properties by performing.
  • Patent Document 4 and Patent Document 5 disclose a technique of centrifuging a partially substituted ⁇ -Fe 2 O 3 or ⁇ -Fe 2 O 3 produced by a reverse micelle method in ultrapure water. Yes.
  • the reason why ultrapure water is used as the dispersion medium here is to increase the dispersibility of the slurry by reducing the ionic strength of the medium.
  • ⁇ -Fe 2 O 3 or a partial substitution product of ⁇ -Fe 2 O 3 does not exhibit good dispersibility in the vicinity of neutrality.
  • Patent Document 6 As an improvement of the dispersion treatment method, NaOH is added to a slurry containing particles of ⁇ -Fe 2 O 3 or ⁇ -Fe 2 O 3 partially substituted produced using an aqueous solvent. A technique for adding and adjusting the pH of the dispersion to 10 or more and 11 or less and performing a classification treatment is disclosed.
  • the ⁇ -type iron-based oxide magnetic powder obtained by this method has a particle size distribution and a coercive force distribution compared to the magnetic powder obtained by the method described in Patent Document 4 or Patent Document 5 described above. Although it was narrow and contained a small amount of nonmagnetic component, the particle size distribution and coercive force distribution were not sufficient for applying it to magnetic recording media.
  • JP 2008-174405 A International Publication No. 2008/029861 International Publication No. 2008/149785 JP 2008-063199 A JP 2008-063201 A JP 2016-174135 A
  • the ⁇ -type iron-based oxide magnetic powder produced by the conventional production methods disclosed in Patent Documents 1 to 5 described above has excellent magnetic properties, depending on the production conditions, the coercive force distribution may be reduced. In some cases, variation was observed. According to the study by the present inventors, it has been found that the variation in the coercive force distribution is caused by the presence of fine particles having a small coercive force contained in the iron-based oxide magnetic powder.
  • the ⁇ -type iron-based oxide magnetic powder obtained by the production method disclosed in Patent Document 6 has a finer particle size than the magnetic powder produced by the production methods of Patent Documents 1 to 5. Although the content is low, it is necessary to further reduce the content of fine particles when considering use as a coating type high recording density magnetic recording medium.
  • a differential BH curve obtained by numerical differentiation of a magnetic hysteresis curve (BH curve) measured for a magnetic powder obtained by a conventional method. Is done.
  • the peak appearing at a position where the applied magnetic field is high that is, the magnetic powder corresponding to the high Hc component contributes to magnetic recording
  • the peak appearing at the position where the applied magnetic field is low ie, the magnetic powder corresponding to the low Hc component. Is considered not to contribute to magnetic recording.
  • the peak of the low Hc component of the differential BH curve is lowered.
  • the magnetic properties of the magnetic powder are improved by reducing the content of the fine particles. Is possible.
  • the reason why the Hc of the fine particles is low is unknown at present, but for ⁇ -type iron-based oxides such as ⁇ -type iron-based oxides and ⁇ -type iron-based oxides. It is presumed that this is due to the inclusion of a heterogeneous phase, or superparamagnetism due to the small particle size.
  • the present invention provides a method for producing an ⁇ -type iron-based oxide magnetic powder in which the characteristics of particle size distribution and coercive force distribution are greatly improved.
  • the present inventors set the pH of the slurry containing ⁇ -type iron-based iron oxide magnetic powder to an alkaline region in which the magnetic powder has good dispersibility, and further quaternary ammonium salts that dissociate in the alkaline region, preferably tetra
  • the alkylammonium salt as a surface modifier in the state of coexisting in the slurry, it was found that a magnetic powder having a significantly reduced content of the fine particles can be obtained. Completed.
  • an iron-based oxide magnetic powder having an I L / I H value defined below of 0.55 or less is provided.
  • I H is applied magnetic field 3979 kA / m (50 kOe), M measurement range 0.005 A ⁇ m 2 (5 emu), applied magnetic field change rate 13 (kA / m ⁇ s), time constant 0.03 sec, wait time 0
  • This is the intensity of the peak appearing on the high magnetic field side in the differential BH curve obtained by numerically differentiating the BH curve obtained by measurement under the condition of 0.8 sec.
  • the I L is the intensity of the intercept of the vertical axis at a zero magnetic field of the differential B-H curve.
  • a part of Fe site whose average particle diameter measured by a transmission electron microscope is 8 nm or more and 30 nm or less and whose variation coefficient of particle diameter is 30% or less is other metal element, preferably Particles of ⁇ iron oxide substituted with one or more of Ga, Co and Ti (hereinafter referred to as ⁇ type in combination with ⁇ iron oxide or ⁇ iron oxide in which part of Fe site is replaced with other metal element)
  • ⁇ type in combination with ⁇ iron oxide or ⁇ iron oxide in which part of Fe site is replaced with other metal element An iron-based oxide magnetic powder having a value of I L / I H defined below of 0.55 or less is provided.
  • I H is applied magnetic field 1035 kA / m (13 kOe), M measurement range 0.005 A ⁇ m 2 (5 emu), applied magnetic field change rate 15 (kA / m ⁇ s), time constant 0.03 sec, wait time 0
  • It is the intensity of a peak appearing on the high magnetic field side in a differential BH curve obtained by numerically differentiating a B-curve obtained by measurement under the condition of 1 sec.
  • the I L is the intensity of the intercept of the vertical axis at a zero magnetic field of the differential B-H curve.
  • These iron-based oxide magnetic powders preferably have a squareness ratio SQ of 0.54 or more.
  • a slurry containing ⁇ -type iron-based oxide particles having an average particle diameter of 5 nm to 100 nm measured by a transmission electron microscope and a coefficient of variation of the particle diameter of 70% or less is prepared.
  • a step of adding a quaternary ammonium salt, preferably a tetraalkylammonium salt, more preferably a tetraalkylammonium hydroxide as a surface modifier to the slurry in a concentration of 0.009 mol / kg to 1.0 mol / kg.
  • the average secondary particle size of the iron-based oxide measured with a dynamic light scattering particle size distribution measuring device is preferably 65 nm or less.
  • the conductivity of the slurry containing the iron-based oxide particles is preferably 15 mS / m or less.
  • the supernatant is removed after the iron-based oxide-dispersed slurry is applied to a centrifuge, and the centrifugal acceleration when applied to the centrifuge is preferably 40000 G or more.
  • the particle size distribution is narrow, especially the content of fine particles that do not contribute to the improvement of magnetic recording characteristics is small, and as a result, the coercive force distribution is narrow and suitable for increasing the recording density of magnetic recording media.
  • Iron-based oxide magnetic powder can be obtained.
  • FIG. 6 is a differential BH curve for the iron-based oxide magnetic powder obtained in Comparative Example 2.
  • 6 is a differential BH curve for the iron-based oxide magnetic powder obtained in Example 4.
  • FIG. 2 is a differential BH curve for the iron-based oxide magnetic powder obtained in Example 10.
  • the production method of the present invention is for producing an ⁇ -type iron-based oxide magnetic powder with improved particle size distribution and coercive force distribution.
  • an ⁇ -type iron-based oxide that can be used as a starting material The following can be mentioned.
  • the type substituted only with the C element has the advantage that it is easy to obtain the same space group as ⁇ -Fe 2 O 3 in addition to being able to arbitrarily control the coercive force of the magnetic particles, but it is somewhat inferior in thermal stability. Therefore, it is preferable to simultaneously substitute with the A or B element.
  • the type substituted with the two elements A and B has excellent thermal stability and can maintain high coercivity of the magnetic particles at room temperature, but a single phase in the same space group as ⁇ -Fe 2 O 3 is somewhat difficult to obtain. .
  • a three-element substitution type of A, B, and C is the most preferable because it has the best balance of the above-mentioned characteristics, and is excellent in heat resistance, ease of obtaining a single phase, and controllability of coercive force.
  • the substitution element include Co, Ni, Mn, and Zn as A, Ti, Sn, and the like as B, and In, Ga, Al, and the like as C.
  • the metal element that substitutes a part of the Fe site is Ga, Co, and Ti from the viewpoint of a balance of practical characteristics.
  • the preferred ranges of the substitution amounts x, y and z of the three-element substitution product are as follows.
  • x and y can take arbitrary ranges of 0 ⁇ x ⁇ 1 and 0 ⁇ y ⁇ 1, but considering the magnetic recording application, the coercive force of the magnetic particles of the three-element substituted body is not changed. Since it is necessary to change to some extent from that of ⁇ -Fe 2 O 3 , it is preferable to satisfy 0.01 ⁇ x ⁇ 0.2 and 0.01 ⁇ y ⁇ 0.2.
  • z may be in the range of 0 ⁇ z ⁇ 1, but from the viewpoint of coercive force control and ease of obtaining a single phase, 0 ⁇ z ⁇ 0.5 may be set. preferable.
  • the ⁇ -type iron-based oxide used as a starting material is capable of maintaining a high coercive force at room temperature by appropriately adjusting the values of y or x and y.
  • the coercive force can be controlled to a desired value by adjusting x, y and z.
  • the iron-based oxide magnetic powder of the present invention contains ⁇ -type iron-based oxide, ⁇ -type iron-based oxide, and Fe 3 O 4 crystal as impurities in addition to the ⁇ -type iron-based oxide crystal. There are also, but they are called iron-based oxide magnetic powder.
  • the magnetic particles of the ⁇ -type iron-based oxide used as a starting material are preferably fine enough that each particle has a single domain structure.
  • the average particle size measured with the transmission electron microscope is preferably 100 nm or less, more preferably 30 nm or less. However, if the average particle size becomes too small, the proportion of fine particles that do not contribute to the above-described improvement in magnetic properties increases, and the magnetic properties per unit weight of the magnetic particle powder deteriorate, so it is preferably 5 nm or more.
  • the ⁇ -type iron-based oxide which is a starting material in the present invention may be prepared by any method including the production methods described in Patent Documents 1 to 6.
  • the average particle diameter after classification using the production method of the present invention is preferably 8 nm or more and 30 nm or less.
  • the coefficient of variation (hereinafter referred to as CV value) of the average particle diameter of the magnetic particles of ⁇ -type iron-based oxide obtained by the conventional production method is usually about 35% to 70%.
  • the CV value after classification is preferably 30% or less, more preferably 25% or less, and 20% or less. More preferably.
  • the lower limit of the CV value is preferably as small as possible. However, in order to reduce the CV value, it is necessary to increase the load of the manufacturing process.
  • magnetic particles of an ⁇ -type iron-based oxide having a small CV value can be obtained.
  • a quaternary ammonium salt is used as a surface modifier described later, it is difficult to disperse conventionally. This is because agglomerates of particles having an average particle diameter of 8 nm or less can be dispersed, and particles of 8 nm or less can be removed by the subsequent classification operation.
  • the component on the low Hc side is a component that does not contribute to increasing the recording density when the iron-based oxide magnetic powder is used in a magnetic recording medium.
  • the peak on the low Hc side of the differential BH curve can be obtained by reducing the proportion of particles that are much finer than the average particle size contained in the iron-based oxide magnetic powder by changing the production conditions or by classification. It can be seen that the fine particles have a low Hc component.
  • the ⁇ -type iron-based oxide magnetic particles when the intercept of the vertical axis in the zero magnetic field of the differential BH curve is I L and the peak height on the high Hc side is I H As the peak height ratio I L / I H is lower, the number of particles that do not contribute to magnetic recording decreases, and the recording density increases.
  • the ⁇ -type iron-based oxide magnetic particles those having an I L / I H value of usually 3.0 or less are usually obtained.
  • the ⁇ -type iron-based oxide magnetic particles used as a starting material preferably have an I L / I H value of 2.7 or less.
  • the iron-based oxide magnetic powder obtained by the present invention preferably has a squareness ratio SQ of 0.54 or more.
  • a high squareness ratio (SQ) of magnetic powder is required from the viewpoint of magnetic powder suitable for a recording system.
  • magnetic powder with a high SQ is required.
  • a slurry is prepared in which magnetic particles of ⁇ -type iron-based oxide serving as a starting material are dispersed in pure water.
  • the conductivity of the solvent constituting the slurry is preferably set to ⁇ 15 mS / m.
  • the conductivity of the solvent is increased using pure water. It is preferable to wash until ⁇ 15 mS / m.
  • a quaternary ammonium salt is added to the slurry, and the pH of the slurry is adjusted to 11 or more and 14 or less.
  • the pH of the slurry is in the above range without adding another alkali.
  • the value of pH described in this specification was measured using a glass electrode based on JIS Z8802.
  • the pH standard solution refers to a value measured by a pH meter calibrated using an appropriate buffer solution corresponding to the pH range to be measured.
  • the pH described in the present specification is a value obtained by directly reading a measured value indicated by a pH meter compensated by a temperature compensation electrode under reaction temperature conditions.
  • a quaternary ammonium ion is a cation in which all four hydrogen atoms of an ammonium ion (NH 4 + ) are substituted with an organic group, and an alkyl group or an aryl group is usually used as the substituent.
  • a quaternary ammonium ion that is stable in a strong alkali region in which the dispersibility of the magnetic particles is good is used as the surface modifier of the magnetic particles of the ⁇ -type iron-based oxide.
  • the tetraalkylammonium ion is a quaternary ammonium cation and a polyatomic ion whose molecular formula is represented by NR 4 + (R is an arbitrary alkyl group).
  • Tetraalkylammonium salts are completely dissociated salts and tetraalkylammonium ions exist as stable ions in an alkaline aqueous solution. Therefore, in the production method of the present invention, the dispersibility of the ⁇ -type iron-based oxide in the slurry is reduced. Used as a surface modifier for improvement. There are hydroxides, chlorides, bromides, etc. as sources of tetraalkylammonium ions.
  • Tetraalkylammonium ion hydroxides themselves are strong alkalis, so adding them to the slurry will remove other alkalis. Even if it is not added, the pH of the slurry falls within the above preferable pH range, and therefore it is more preferable to use tetraalkylammonium hydroxide as the surface modifier. Tetraalkylammonium ion chloride or bromide can be used as a source of tetraalkylammonium ions, but in that case, when these salts are added to the slurry, the increase in pH is suppressed, and the pH is adjusted. Therefore, the dispersibility of the ⁇ -type iron-based oxide is slightly inferior to that when a hydroxide is used.
  • tetraalkylammonium salts include quaternary ammonium salts having the same alkyl group such as tetramethylammonium salt, tetrapropylammonium salt, and tetrabutylammonium salt, and quaternary ammonium salts having different alkyl groups.
  • the concentration of tetraalkylammonium ions is set to 0.009 mol / kg or more and 1.0 mol / kg or less in order to improve the dispersibility by modifying the surface of the ⁇ -type iron-based oxide particles in the slurry. Even if the concentration is less than 0.009 mol% or more than 1.0 mol / kg, the effect of improving dispersibility becomes insufficient, and a CV value of 30% or less cannot be obtained after classification.
  • the surface modifier-containing slurry to which the surface modifier is added is subjected to a dispersion treatment to obtain an iron-based oxide dispersion slurry.
  • the dispersion treatment is a treatment for loosening the aggregation of the ⁇ -type iron oxide aggregates contained in the surface modifier-containing slurry.
  • a dispersion treatment method a known method such as dispersion using an ultrasonic disperser, grinding using a medium such as a bead mill, stirring blades, a shaker, and stirring using a shaker can be employed.
  • the dispersion treatment of the surface modifier-containing slurry is preferably carried out until the average secondary particle diameter (DLS particle diameter) of the iron-based oxide measured with a dynamic light scattering particle size distribution measuring device is 65 nm or less.
  • the DLS particle diameter exceeds 65 nm, when the particle diameter is small, such as a TEM average particle diameter of 20 nm or less, a CV value of 30% or less cannot be obtained.
  • the surface modifier-containing slurry to which the surface modifier is added is subjected to a dispersion treatment, and the iron oxide dispersion slurry is classified.
  • a known wet classification means such as a centrifugal separation method can be employed. Fine particles can be removed by removing the supernatant after centrifuging, and coarse particles can be removed by removing the precipitate after centrifuging. As gravity acceleration at the time of centrifugation, 40000 G or more is preferable.
  • the classification operation is preferably repeated three or more times. After the classification operation, the iron-based oxide magnetic powder is recovered using a known solid-liquid separation means, washed with water as necessary, and then dried.
  • TEM observation The TEM observation of the iron-based oxide magnetic powder obtained by the production method of the present invention was performed under the following conditions. JEM-1011 manufactured by JEOL Ltd. was used for TEM observation. For particle observation, TEM photographs taken at a magnification of 10,000 times and a magnification of 100,000 times were used. (Use after removing the silicon oxide coating). -Measurement of average particle size and particle size distribution (coefficient of variation (%))- Digitization was used for TEM average particle size and particle size distribution evaluation (variation coefficient (%)). Mac-View Ver. 4.0 was used as the image processing software.
  • the particle diameter of a certain particle is calculated as the length of the long side of the rectangle having the smallest area among the rectangles circumscribing the particle. About 200 pieces or more were measured.
  • the selection criteria for the particles to be measured were as follows. [1] Do not measure particles that are partially outside the field of view of the photograph. [2] Measure particles that are well-defined and exist in isolation. [3] Even when deviating from the average particle shape, particles that are independent and can be measured as single particles are measured. [4] Particles that overlap each other but whose boundaries are clear and the shape of the whole particle can be determined are measured as individual particles.
  • the average secondary particle size (DLS particle size) of the surface modifier-containing slurry obtained by the production method of the present invention was measured under the following conditions. Otsuka Electronics Co., Ltd. (FPAR-1000K high-sensitivity specification) was used as the dynamic light scattering particle size distribution analyzer, and a dilute probe was used as the fiber probe. The measurement conditions were as follows: measurement time (seconds) 180 seconds, number of repetitions once, solvent setting water. The analysis mode was the Cumulant method.
  • composition analysis by high frequency inductively coupled plasma optical emission spectrometry The composition of the obtained ⁇ -type iron-based oxide magnetic powder was analyzed.
  • ICP-720ES manufactured by Agilent Technologies was used, and the measurement wavelength (nm) was Fe: 259.940 nm, Ga: 294.363 nm, Co: 230.786 nm, Ti: 336.122 nm.
  • the coercive force Hc, saturation magnetization ⁇ s, SFD, and squareness ratio SQ were evaluated using the BH curve, and the low Hc component that does not contribute to magnetic recording was evaluated using the differential BH curve.
  • the intercept of the vertical axis in the zero magnetic field of the differential BH curve was I L
  • the peak height on the high Hc side was I H.
  • SFD refers to a value obtained by dividing the half-width of the peak on the high Hc side by the coercive force Hc.
  • “high temperature superconducting VSM measurement program” software (Ver. 1.0.0.1) was used.
  • VSM vibrating sample magnetometer
  • the coercive force Hc, saturation magnetization ⁇ s, SFD, and squareness ratio SQ were evaluated using the BH curve, and the low Hc component that does not contribute to magnetic recording was evaluated using the differential BH curve.
  • the intercept of the vertical axis in the zero magnetic field of the differential BH curve was I L
  • the peak height on the high Hc side was I H.
  • SFD refers to a value obtained by dividing the half-width of the peak on the high Hc side by the coercive force Hc.
  • attached software (Ver. 2.1) manufactured by Toei Industry Co., Ltd. was used.
  • the measurement conditions differ between ⁇ iron oxide and ⁇ iron oxide in which a part of the Fe site is substituted with another metal element.
  • the coercive force Hc changes depending on the amount of substitution of the metal element at the Fe site, and magnetic saturation can be achieved. This is because the applied magnetic field is different.
  • the squareness ratio SQ is for the entire BH curve.
  • TEOS tetraethoxysilane
  • the dried powder was subjected to a heat treatment at 971 ° C. for 4 hours in a furnace in an air atmosphere to obtain silicon oxide.
  • a powder of substitutional ⁇ -iron oxide coated with was obtained.
  • the hydrolysis product of the silane compound changes to an oxide when heat-treated in an air atmosphere (procedure 3).
  • the substituted ⁇ iron oxide powder coated with silicon oxide obtained in step 3 in a 20% by mass NaOH aqueous solution at about 60 ° C. for 24 hours to remove the silicon oxide on the particle surface.
  • a slurry containing iron-based oxide particles was obtained. (Procedure 4)
  • the TEM average particle size was 17.8 nm and the coefficient of variation (CV value) was 39%.
  • the slurry obtained in the procedure 4 was washed until the electrical conductivity was ⁇ 15 mS / m, so that the washed slurry according to Example 1 was obtained.
  • a 1% by weight sulfuric acid aqueous solution is added to the obtained slurry after washing to adjust the pH to 6.5, and then the membrane is filtered. After the cake is recovered and dried, the iron-based oxide magnetic powder before classification treatment is dried. Obtained.
  • the iron-based oxide magnetic powder before classification has a coercive force of 171 (kA / m), a saturation magnetization of 15.7 (Am 2 / kg), a squareness ratio of 0.433, an SFD of 1.40, and I L /
  • the value of I H was 0.82, and the BET specific surface area was 85.5 m 2 / g.
  • TMAOH tetramethylammonium hydroxide
  • the amount of the TMAOH aqueous solution added was such that the TMAOH concentration in the surface modifier-containing slurry was 0.065 mol / kg. In this case, the pH of the slurry was 13. In the examples of the present invention, it was confirmed that the pH of the slurry was 11 or more and 14 or less when the TMAOH concentration was 0.009 mol / kg or more and 1.0 mol / kg or less.
  • the obtained surface modifying agent-containing slurry (40 g) was subjected to ultrasonic dispersion treatment with an ultrasonic cleaner (Branson (Yamato Scientific), Yamato 5510) for 1 hour, and then centrifuged (Hitachi Koki Co., Ltd.).
  • Himac CR21GII Himac CR21GII
  • R20A2 rotor Rotadifugal rotor
  • 33 g of the supernatant containing fine particles was removed to obtain a precipitate.
  • the gravitational acceleration in the centrifugation process was 48000G.
  • it was 29 nm when the average secondary particle diameter (DLS particle diameter) of the iron-type oxide in the surface modifier containing slurry after performing an ultrasonic treatment was measured.
  • Example 1 A slurry of iron-based oxide magnetic powder was obtained.
  • the TEM average particle size was 18.8 nm, and the coefficient of variation (CV value) was 29%.
  • FIG. 1 shows a TEM photograph of the iron-based oxide magnetic powder obtained in this example.
  • the length shown by the white vertical line displayed on the left center part of the TEM photograph is 50 nm.
  • Example 1 After 33 g of pure water was added to the obtained iron oxide magnetic powder slurry according to Example 1, 1 mass% sulfuric acid aqueous solution was added to adjust the pH to 6.5, membrane filtration was performed, and the cake was recovered. By drying, an iron-based oxide magnetic powder according to Example 1 was obtained.
  • the chemical composition of the obtained iron-based oxide magnetic powder was calculated such that the total value of the molar ratios of Fe, Ga, Co, and Ti was 2.0.
  • the value of I L / I H was 0.25.
  • Table 1 shows the production conditions of each Example and Comparative Example of the present invention
  • Table 2 shows the characteristic values of the iron-based oxide magnetic powder obtained in each Example and Comparative Example.
  • Example 2 To 7 g of the iron-based oxide magnetic powder slurry obtained in Example 1, 33 g of 0.065 mol / kg TMAOH aqueous solution was added, and 1 hour in an ultrasonic washer (Branson (Yamato Scientific) Yamato 5510). After ultrasonic dispersion treatment, centrifugal separation treatment was performed at 18000 rpm for 15 minutes with an R20A2 rotor of a centrifuge (manufactured by Hitachi Koki Co., Ltd., himac CR21GII) to remove 33 g of the supernatant containing fine particles. To obtain a precipitate. The gravitational acceleration in the centrifugation process was 39000G.
  • the obtained precipitate was subjected to a centrifugal separation process at a rotation speed of 14,000 rpm (gravity acceleration 24000G) for 15 minutes, a centrifugal treatment at a rotation speed of 12000 rpm (gravity acceleration 17000G) for 15 minutes, and a rotation speed of 10,000 rpm (gravity acceleration 12000G). The same operation was repeated three times under the conditions of the centrifugation treatment for 1 minute.
  • the supernatant of the iron-based oxide magnetic powder according to Example 2 was obtained by mixing the supernatant removed in the first, second, and third repetitions of the centrifugal separation at a rotation speed of 10,000 rpm.
  • the TEM average particle diameter was 21.0 nm, and the coefficient of variation (CV value) was 22%.
  • 30 g of pure water was added to the slurry of the iron-based oxide magnetic powder according to Example 2 and 1 mass% sulfuric acid aqueous solution was added to adjust the pH to 6.5, the membrane was filtered, and the cake was recovered.
  • the iron-based oxide magnetic powder according to Example 2 was obtained by drying.
  • the dried powder was subjected to a heat treatment at 1025 ° C. for 4 hours in a furnace in an air atmosphere to obtain silicon oxide.
  • a powder of substitutional ⁇ -iron oxide coated with was obtained.
  • the hydrolysis product of the silane compound changes to an oxide when heat-treated in an air atmosphere (Procedure 7).
  • the substituted ⁇ iron oxide powder coated with silicon oxide obtained in step 7 in a 20% by mass NaOH aqueous solution at about 60 ° C. for 24 hours to remove the silicon oxide on the particle surface.
  • a slurry containing iron-based oxide particles was obtained.
  • (Procedure 8) When the slurry obtained in Procedure 8 was observed with a transmission electron microscope, the TEM average particle size was 14.9 nm and the coefficient of variation (CV) was 40%.
  • the post-cleaning slurry according to Example 2 was obtained by cleaning the slurry obtained in Procedure 8 until the conductivity was ⁇ 1 mS / m. A 1% by weight sulfuric acid aqueous solution is added to the obtained slurry after washing to adjust the pH to 6.5, and then the membrane is filtered. After the cake is recovered and dried, the iron-based oxide magnetic powder before classification treatment is dried. Obtained.
  • the iron-based oxide magnetic powder before classification has a coercive force of 224 (kA / m), saturation magnetization of 14.7 (Am 2 / kg), squareness ratio of 0.474, SFD of 1.55, I L / The I H value was 0.91, and the BET specific surface area was 89.0 m 2 / g.
  • a 25% by mass TMAOH aqueous solution having an amount of TMAOH in the surface modifier-containing slurry of 0.018 mol / kg is added as a surface modifier to the post-cleaning slurry, Obtained.
  • the pH of the surface modifier-containing slurry was 12.
  • the obtained surface modifying agent-containing slurry (40 g) was subjected to ultrasonic dispersion treatment with an ultrasonic cleaner (Branson (Yamato Scientific), Yamato 5510) for 1 hour, and then centrifuged (Hitachi Koki Co., Ltd.).
  • Himac CR21GII Himac CR21GII
  • Himac CR21GII was centrifuged at 20,000 rpm for 15 minutes using an R20A2 rotor, and 33 g of the supernatant containing fine particles was removed to obtain a precipitate.
  • the gravitational acceleration in the centrifugation process was 48000G. Moreover, it was 54 nm when the average secondary particle diameter of the surface modifier containing slurry after performing an ultrasonic treatment was measured. Thereafter, 33 g of 0.018 mol / kg TMAOH aqueous solution as a surface modifier is added to the obtained precipitate, and the ultrasonic dispersion treatment, the centrifugal separation treatment, and the removal of the supernatant 33 g are repeated nine times.
  • Example 4 To the slurry after washing, an amount of TMAOH in which the TMAOH concentration in the surface modifier-containing slurry is 0.065 mol / kg is added as a surface modifier and added to the precipitate obtained after centrifugation and removal of the supernatant.
  • a surface modifier-containing slurry, an iron-based oxide magnetic powder slurry, and an iron-based oxide magnetic powder were obtained by the same procedure as in Example 3 except that the concentration of the TMAOH aqueous solution was set to 0.065 mol / kg. In this case, the pH of the surface modifier-containing slurry was 13.
  • FIG. 2 and FIG. 3 show (normalized) differential BH curves for the ⁇ -type iron-based oxide magnetic powders obtained in Comparative Example 2 and this example, respectively. These figures are normalized so that the peaks on the high Hc side have the same height, and the vertical axis (dB / dH) is an arbitrary intensity. Two peaks were clearly observed in the differential BH curve, and the ratio I L / I H of the low Hc component was 0.28. The value of I L / I H is superior to that of the ⁇ iron oxide magnetic powder obtained in Comparative Example 2 described later.
  • the production method of the present invention reduces the value of I L / I H. It can be seen that the coercive force distribution becomes narrow.
  • Example 5 An amount of TMAOH in which the TMAOH concentration in the surface modifying agent-containing slurry is 0.57 mol / kg is added as a surface modifying agent to the slurry after washing, and is added to the precipitate obtained after centrifugation and removal of the supernatant.
  • a surface modifier-containing slurry, an iron-based oxide magnetic powder slurry, and an iron-based oxide magnetic powder were obtained by the same procedure as in Example 3 except that the concentration of the TMAOH aqueous solution was 0.57 mol / kg. In this case, the pH of the surface modifier-containing slurry was 14.
  • Example 6 It is the same as that of Example 4 except having replaced with the ultrasonic dispersion process by an ultrasonic disperser, and performed the shake process on the conditions of 1500 rpm with a shaker (ASONE high-speed shaker, model name: cute mixer). By the procedure, a surface modifier-containing slurry, a slurry of iron-based oxide magnetic powder, and iron-based oxide magnetic powder were obtained. In this case, the pH of the surface modifier-containing slurry was 13.
  • Example 1 A slurry of iron-based oxide magnetic powder and iron-based oxide magnetic powder were obtained by the same procedure as in Example 3 except that the TMAOH aqueous solution was not added to the slurry after washing. In addition, instead of the TMAOH aqueous solution, pure water was added to the precipitate obtained after the centrifugation treatment and the supernatant removal. The average secondary particle size after the ultrasonic dispersion treatment was performed on the slurry after washing was 81 nm.
  • Example 7 In a 5 L reactor, 2689.7 g of pure water and 40.4 g of 99.0% ferric chloride (III) hexahydrate were mechanically stirred by a stirring blade in an air atmosphere at 20 ° C. Dissolved with stirring. While mechanically stirring with a stirring blade at 20 ° C. in an air atmosphere, 267.1 g of a 23.0% ammonia solution was added at once and stirring was continued for 2 hours (first neutralization step). Next, 288.8 g of citric acid solution having a citric acid concentration of 20% by mass as hydroxycarboxylic acid was continuously added over 1 hour under the condition of 20 ° C.
  • the dried powder was subjected to a heat treatment at 1042 ° C. for 4 hours in a furnace in an air atmosphere to obtain silicon oxide.
  • a powder of ⁇ iron oxide coated with was obtained.
  • the hydrolysis product of the silane compound changes to an oxide when heat-treated in an air atmosphere (procedure 3).
  • the iron oxide powder coated with silicon oxide obtained in step 3 was stirred in a 20% by mass NaOH aqueous solution at about 60 ° C. for 24 hours to remove the silicon oxide on the surface of the particles.
  • a slurry containing system oxide particles was obtained. (Procedure 4)
  • the TEM average particle size was 16.2 nm and the coefficient of variation (CV) was 43%.
  • the slurry obtained in the procedure 4 was washed until the electrical conductivity was ⁇ 1 mS / m, so that the washed slurry according to Example 7 was obtained.
  • a 1% by weight sulfuric acid aqueous solution is added to the obtained slurry after washing to adjust the pH to 6.5, and then the membrane is filtered. After the cake is recovered and dried, the iron-based oxide magnetic powder before classification treatment is dried. Obtained.
  • the iron-based oxide magnetic powder before classification has a coercive force of 1385 (kA / m), a saturation magnetization of 15.1 (Am 2 / kg), a squareness ratio of 0.533, an SFD of 0.73, and I L /
  • the I H value was 0.30, and the BET specific surface area was 80.6 m 2 / g.
  • a 25% by mass TMAOH aqueous solution in an amount such that the TMAOH concentration in the surface modifier-containing slurry is 0.065 mol / kg is added as a surface modifier to the post-cleaning slurry. Obtained.
  • the obtained surface modifying agent-containing slurry (40 g) was subjected to ultrasonic dispersion treatment with an ultrasonic cleaner (Branson (Yamato Scientific), Yamato 5510) for 1 hour, and then centrifuged (Hitachi Koki Co., Ltd.). , Himac CR21GII) was centrifuged at 20,000 rpm for 15 minutes using an R20A2 rotor, and 33 g of the supernatant containing fine particles was removed to obtain a precipitate. The gravitational acceleration in the centrifugation process was 48000G. Moreover, it was 59 nm when the average secondary particle diameter of the surface modifier containing slurry after performing an ultrasonic treatment was measured.
  • Example 8 The supernatant slurry according to Example 7 was subjected to ultrasonic dispersion treatment for 1 hour with an ultrasonic washer (Branson (Yamato Scientific), Yamato 5510), and then centrifuged (Hitachi Koki Co., Ltd.). , Himac CR21GII) was subjected to centrifugal separation for 15 minutes at a rotational speed of 20000 rpm, and 30 g of the supernatant containing fine particles was removed to obtain a precipitate. The gravitational acceleration in the centrifugation process was 48000G.
  • the operation of adding 0.065 mol / kg of TMAOH aqueous solution, ultrasonic dispersion, centrifugation 20000 rpm and supernatant removal was repeated twice. Thereafter, 30 g of a 0.065 mol / kg TMAOH aqueous solution was added to the obtained precipitate, and after ultrasonic dispersion treatment for 1 hour with an ultrasonic washer (Branson (Yamato Kagaku), Yamato 5510), centrifugation was performed.
  • an ultrasonic washer Branson (Yamato Kagaku), Yamato 5510
  • the same operation was repeatedly performed on the obtained precipitate under the conditions of a centrifugal treatment for 15 minutes at a rotational speed of 16000 rpm (gravity acceleration: 31000 G) and a centrifugal treatment for 15 minutes at a rotational speed of 14000 rpm (gravity acceleration: 24000 G).
  • the supernatant of the iron oxide magnetic powder according to Example 8 was obtained by mixing the supernatants removed at the first, second, and third repetitions of the centrifugal separation at 14,000 rpm.
  • the TEM average particle diameter was 13.5 nm, and the coefficient of variation (CV value) was 15%.
  • the iron-based oxide magnetic powder according to Example 8 was obtained by drying.
  • Example 9 In a 10 L reaction vessel, pure water 4945.8 g, purity 99.3% ferric nitrate (III) nonahydrate 697.1 g, purity 99% ferric chloride (III) hexahydrate 233.9 g 181.4 g of Ga (III) nitrate solution with a Ga concentration of 11.6%, 20.3 g of 97% purity cobalt (II) nitrate hexahydrate, and 21.4 g of titanium (IV) sulfate with a Ti concentration of 15.1%. Dissolve in an air atmosphere at 20 ° C. with mechanical stirring by a stirring blade.
  • first neutralization step 545.1 g of a 22.3% ammonia solution is added at once and stirring is continued for 2 hours (first neutralization step).
  • hydroxycarboxylic acid 577.5 g of citric acid solution having a citric acid concentration of 20% by mass was continuously added over 1 hour under the condition of 20 ° C. (hydroxycarboxylic acid addition step), and then 22.3% After adding 368.0 g of an ammonia solution at a time, the mixture was kept for 1 hour under stirring at a temperature of 20 ° C. to produce crystals of iron oxyhydroxide containing a precursor substitution element as an intermediate product (Procedure) 1, second neutralization step).
  • the dried powder was subjected to a heat treatment at 975 ° C. for 4 hours in a furnace in an air atmosphere to obtain silicon oxide.
  • a powder of substitutional ⁇ -iron oxide coated with was obtained.
  • the hydrolysis product of the silane compound changes to an oxide when heat-treated in an air atmosphere (procedure 3).
  • the substituted ⁇ iron oxide powder coated with silicon oxide obtained in step 3 in a 20% by mass NaOH aqueous solution at about 60 ° C. for 24 hours to remove the silicon oxide on the particle surface.
  • a slurry containing iron-based oxide particles was obtained. (Procedure 4)
  • the TEM average particle size was 11.1 nm and the coefficient of variation (CV) was 38%.
  • the slurry obtained in the procedure 4 was washed until the electrical conductivity was ⁇ 1 mS / m, so that the washed slurry according to Example 9 was obtained.
  • a 1% by weight sulfuric acid aqueous solution is added to the obtained slurry after washing to adjust the pH to 6.5, and then the membrane is filtered. After the cake is recovered and dried, the iron-based oxide magnetic powder before classification treatment is dried. Obtained.
  • the iron-based oxide magnetic powder before classification has a coercive force of 73 (kA / m), a saturation magnetization of 15.3 (Am 2 / kg), a squareness ratio of 0.261, an SFD of 6.23, and I L /
  • the I H value was 2.52 and the BET specific surface area was 126.1 m 2 / g.
  • a 25% by mass TMAOH aqueous solution in an amount such that the TMAOH concentration in the surface modifier-containing slurry is 0.065 mol / kg is added as a surface modifier to the post-cleaning slurry. Obtained.
  • the obtained surface modifying agent-containing slurry (40 g) was subjected to ultrasonic dispersion treatment with an ultrasonic cleaner (Branson (Yamato Scientific), Yamato 5510) for 1 hour, and then centrifuged (Hitachi Koki Co., Ltd.).
  • Himac CR21GII was subjected to centrifugal separation for 15 minutes at a rotational speed of 20000 rpm, and 30 g of the supernatant containing fine particles was removed to obtain a precipitate.
  • the gravitational acceleration in the centrifugation process was 48000G. Moreover, it was 31 nm when the average secondary particle diameter of the surface modifier containing slurry after performing an ultrasonic treatment was measured.
  • the obtained precipitate was subjected to a centrifugal separation process at a rotation speed of 16000 rpm (gravity acceleration: 31000 G) for 15 minutes, a centrifugation process at a rotation speed of 14000 rpm (gravity acceleration: 24000 G) for 15 minutes, and a rotation speed of 12000 rpm (gravity acceleration: 17000 G).
  • the same operation was repeated three times under the conditions of the centrifugation treatment for 1 minute.
  • the supernatant of the iron-based oxide magnetic powder according to Example 9 was obtained by mixing the supernatants removed in the first, second, and third repetitions of the centrifugal treatment at a rotational speed of 12,000 rpm.
  • the TEM average particle size was 15.1 nm
  • the coefficient of variation (CV value) was 23%.
  • iron-based oxide magnetic powder was obtained in the same manner as in Example 1 except that the amount of supernatant removed was 30 g, the number of repetitions of the centrifugal separation treatment was 11, and the firing temperature was changed to 981 ° C.
  • the transmission electron microscope observation was performed on the slurry obtained in Procedure 4
  • the TEM average particle size was 14.7 nm
  • the coefficient of variation (CV value) was 38%.
  • a surface modifier-containing slurry is obtained by adding an aqueous solution of a quaternary ammonium salt as a surface modifier to a slurry containing iron-based oxide particles, and the surface modifier-containing slurry is dispersed.
  • the average secondary particle diameter of the slurry after dispersion treatment such as ultrasonic irradiation to the surface modifier-containing slurry can be 65 nm or less, as a result, the particle size It can be seen that the iron-based oxide magnetic powder having a narrow distribution and a narrow coercive force distribution and suitable for increasing the recording density of the magnetic recording medium can be obtained.
  • the concentration of the surface modifier is outside the range of the production method of the present invention even when no surface modifier is added or when a TMAOH aqueous solution is added as the surface modifier.
  • the average secondary particle size of the slurry after irradiating the surface modifying agent-containing slurry or the pH-adjusted slurry with ultrasonic waves cannot be made 65 nm or less, and the present invention is intended as a result. It can be seen that iron-based oxide magnetic powder that satisfies the characteristics of particle size distribution and coercive force distribution cannot be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Magnetic Record Carriers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

【課題】粒度分布が狭く、かつ、磁気記録特性に寄与しない微細粒子の含有量が少なく、その結果として保磁力分布が狭く、磁気記録媒体の高記録密度化に適した鉄系酸化物磁性粉の製造方法を提供する。 【解決手段】湿式法によりεタイプの鉄系酸化物磁性粉を得た後、当該磁性粉を含むスラリーに、表面改質剤として0.009mol/kg以上1.0mol/kg以下のテトラアルキルアンモニウム塩を添加するとともに、pHを11以上14以下とし、分散処理を施した後に分級することにより粒度分布が狭く、かつ、保磁力分布が狭い鉄系酸化物磁性粉が得られる。

Description

鉄系酸化物磁性粉およびその製造方法
 本発明は、高密度磁気記録媒体、電波吸収体等に好適な鉄系酸化物磁性粉、特に、粒子の平均粒子径がナノメートルオーダーの磁性粉およびその製造方法に関する。
 ε-Feは酸化鉄の中でも極めて稀な相であるが、室温において、ナノメートルオーダーのサイズの粒子が20kOe(1.59×10A/m)程度の巨大な保磁力(Hc)を示すため、ε-Feを単相で合成する製造方法の検討が従来よりなされてきている(特許文献1、非特許文献1、2)。また、ε-Feを磁気記録媒体に用いた場合、現時点ではそれに対応する、高レベルの飽和磁束密度を有する磁気ヘッド用の材料が存在しないため、ε-FeのFeサイトの一部をAl、Ga、In等の3価の金属で置換することにより、保磁力を調整することも行われており、保磁力と電波吸収特性の関係も調べられている(特許文献2、非特許文献3、4、5)。
 一方、磁気記録の分野では、再生信号レベルと粒子性ノイズの比(C/N比:Carrier to Noise Ratio)の高い磁気記録媒体の開発が行われており、記録の高密度化のために、磁気記録層を構成する磁性粒子の微細化が求められている。しかし、一般に、磁性粒子の微細化はその耐環境安定性、熱安定性の劣化を招き易く、使用もしくは保存環境下における磁性粒子の磁気特性低下が懸念されるので、ε-FeのFeサイトの一部を、耐熱性に優れた他の金属で置換することにより、一般式ε-AFe2-x-yまたはε-AFe2-x-y-z(ここでAはCo、Ni、Mn、Zn等の2価の金属元素、BはTi等の4価の金属元素、CはIn、Ga、Al等の3価の金属元素)で表される、粒子サイズを低下させ、保磁力を可変とするとともに、耐環境安定性、熱安定性にも優れた各種のε-Feの一部置換体が開発されている(特許文献3、非特許文献6)。
 ε-Feはナノメートルオーダーのサイズで安定相として得られるため、その製造には特殊な方法を必要とする。上述の特許文献1~3には、液相法で生成したオキシ水酸化鉄の微細結晶を前駆体として用い、その前駆体にゾル-ゲル法によりシリコン酸化物を被覆した後に熱処理するε-Feの製造方法が開示されており、液相法としては反応媒体として有機溶媒を用いる逆ミセル法と、反応媒体として水溶液のみを用いる方法がそれぞれ開示されている。しかし、これらの方法により得られたε-Feまたはε-Feの一部置換体は、磁気的性質にバラつきがあるため、熱処理後にシリコン酸化物被覆を除去し、分級処理を行うことによりそれらの磁気特性を改善することが提案されている。
 例えば、特許文献4および特許文献5には、逆ミセル法により製造したε-Feまたはε-Feの一部置換体を超純水中で遠心分離する技術が開示されている。ここで分散媒として超純水を用いるのは、媒体のイオン強度を小さくしてスラリーの分散性を上げるためである。しかし、ε-Feまたはε-Feの一部置換体は、本来中性付近では良好な分散性を示さないため、特許文献4および特許文献5に開示の分級方法の場合には、中性域で良好な分散性を得るためにε-Feまたはε-Feの一部置換体にシリコン酸化物被覆を一部残存させる必要があり、分級処理後に再度シリコン酸化物被覆除去を行う必要があるという問題があった。
 特許文献6には、前記の分散処理方法を改善したものとして、水系溶媒を用いて製造したε-Feまたはε-Feの一部置換体の粒子を含むスラリーにNaOHを添加し、分散液のpHを10以上11以下に調整した後に分級処理を行う技術が開示されている。この方法で得られたεタイプの鉄系酸化物磁性粉は、上述の特許文献4または特許文献5に記載の方法により得られた比べた磁性粉と比較して、粒度分布や保磁力分布が狭く、非磁性成分の含有量が少ないものであったが、それを磁気記録媒体に適用するには、粒度分布ならびに保磁力分布が充分とはいえなかった。
特開2008-174405号公報 国際公開第2008/029861号 国際公開第2008/149785号 特開2008-063199号公報 特開2008-063201号公報 特開2016-174135号公報
S. Ohkoshi, A. Namai, K. Imoto, M. Yoshikiyo, W. Tarora, K. Nakagawa, M. Komine, Y. Miyamoto, T. Nasu, S. Oka, and H. Tokoro, Scientific Reports, 5, 14414/1-9 (2015). S. Sakurai, A. Namai, K. Hashimoto, and S. Ohkoshi, J. Am. Chem. Soc., 131, 18299-18303 (2009). A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi, J. Am. Chem. Soc., 131, 1170-1173 (2009). A. Namai, M. Yoshikiyo, K. Yamada, S. Sakurai, T. Goto, T. Yoshida, T Miyazaki, M. Nakajima, T. Suemoto, H. Tokoro, and S. Ohkoshi, Nature Communications, 3, 1035/1-6 (2012). S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, Angew. Chem. Int. Ed., 46, 8392-8395 (2007). S. Ohkoshi, A. Namai, M. Yoshikiyo, K. Imoto, K. Tamasaki, K. Matsuno, O. Inoue, T. Ide, K. Masada, M. Goto, T. Goto, T. Yoshida and T. Miyazaki, Angew. Chem. Int. Ed., 55, 11403-11406 (2016). (Hot Paper)
 上述の特許文献1~5に開示された従来の製造方法により製造されたεタイプの鉄系酸化物磁性粉は、優れた磁気特性を有するものであるが、製造条件によっては、保磁力分布にバラツキが観察される場合があった。本発明者等の検討によると、この保磁力分布のバラツキは、鉄系酸化物磁性粉中に含まれる、保磁力の小さな微細粒子の存在に起因するものであることが判明した。また、特許文献6に開示された製造方法により得られたεタイプの鉄系酸化物磁性粉は、特許文献1~5の製造方法により製造された磁性粉と比較して、前記の微細粒子の含有量は少なくなっているが、塗布型の高記録密度磁気記録媒体としての使用を考えた場合には、微細粒子の含有量をさらに低下する必要がある。
 すなわち、従来法により得られた磁性粉について測定した磁気ヒステリシス曲線(B-H曲線)を数値微分して得られる曲線(以下、微分B-H曲線と呼ぶ。)には、二つのピークが観察される。これらのピークのうち、印加磁場が高い位置に現れるピーク、すなわち高Hc成分に対応する磁性粉は磁気記録に寄与するが、印加磁場が低い位置に現れるピーク、すなわち低Hc成分に対応する磁性粉は磁気記録に寄与しないものであると考えられる。前記の微細粒子の含有量が減少すると、微分B-H曲線の低Hc成分のピークが低下することから、前記の微細粒子の含有量を低下させることにより、磁性粉の磁気特性を改善することが可能である。
 なお、前記の微細粒子のHcが低い理由については、現在のところ不明であるが、αタイプの鉄系酸化物やγタイプの鉄系酸化物等のような、εタイプの鉄系酸化物にとっての異相を含むためか、粒子径が小さいため超常磁性を示すためか、いずれかであろうと推定される。
 本発明においては、上記の問題点に鑑み、粒度分布ならびに保磁力分布の特性が大幅に改善された、εタイプの鉄系酸化物磁性粉の製造方法を提供する。
 本発明者等は、εタイプの鉄系 酸化物磁性粉を含むスラリーのpHを、当該 磁性粉の分散性の良好なアルカリ性域とし、さらに、アルカリ性域で解離する4級アンモニウム塩、好ましくはテトラアルキルアンモニウム塩を表面改質剤としてスラリー中に共存させた状態で分級することにより、前記の微細粒子の含有量を著しく低下させた磁性粉が得られることを見出して、以下に述べる本発明を完成させた。
 上記の課題を解決するために、本発明においては、透過電子顕微鏡で測定した平均粒子径が8nm以上30nm以下であり、かつ、粒子径の変動係数が30%以下であるε酸化鉄の粒子からなり、下記で定義するI/Iの値が0.55以下である、鉄系酸化物磁性粉が提供される。
 ここでIは、印加磁場3979kA/m(50kOe)、M測定レンジ0.005A・m(5emu)、印加磁場変化速度13(kA/m・s)、時定数0.03sec、ウエイトタイム0.8secの条件下で測定して得られたB-H曲線を数値微分して得られる微分B-H曲線において高磁場側に現れるピークの強度である。またIは、前記微分B-H曲線のゼロ磁場における縦軸の切片の強度である。
 また、本発明においては、透過電子顕微鏡で測定した平均粒子径が8nm以上30nm以下であり、かつ、粒子径の変動係数が30%以下であるFeサイトの一部が他の金属元素、好ましくはGa、CoおよびTiの一種または二種以上、で置換されたε酸化鉄の粒子(以下、ε酸化鉄またはFeサイトの一部が他の金属元素で置換されたε酸化鉄を併せてεタイプの鉄系酸化物と称する)からなり、下記で定義するI/Iの値が0.55以下である、鉄系酸化物磁性粉が提供される。
 ここでIは、印加磁場1035kA/m(13kOe)、M測定レンジ0.005A・m(5emu)、印加磁場変化速度15(kA/m・s)、時定数0.03sec、ウエイトタイム0.1secの条件下で測定して得られたB-曲線を数値微分して得られる微分B-H曲線において高磁場側に現れるピークの強度である。またIは、前記微分B-H曲線のゼロ磁場における縦軸の切片の強度である。
 これらの鉄系酸化物磁性粉は、角形比SQが0.54以上であることが好ましい。
 また、本発明においては、透過電子顕微鏡で測定した平均粒子径が5nm以上100nm以下であり、かつ、粒子径の変動係数が70%以下のεタイプの鉄系酸化物の粒子を含むスラリーを準備する工程と、前記のスラリーに表面改質剤として4級アンモニウム塩、好ましくはテトラアルキルアンモニウム塩、さらに好ましくはテトラアルキルアンモニウム水酸化物を、0.009mol/kg以上1.0mol/kg以下の濃度になるように添加するとともに、pHを11以上14以下とする工程と、前記の表面改質剤含有スラリーを分散処理に供して、εタイプの鉄系酸化物分散スラリーを得る工程と、前記のεタイプの鉄系酸化物分散スラリーを分級する工程とを含む、鉄系酸化物磁性粉の製造方法が提供される。
 前記のεタイプの鉄系酸化物分散スラリー中の、動的光散乱式粒度分布測定装置で測定された鉄系酸化物の平均二次粒子径は、65nm以下である、ことが好ましい。また、前記の鉄系酸化物の粒子を含むスラリーの導電率は15mS/m以下であることが好ましい。
 前記の分級工程は、前記の鉄系酸化物分散スラリーを遠心分離機にかけた後にその上澄みを除去するものであり、遠心分離機にかける際の遠心加速度が40000G以上であることが好ましい。
 本発明の製造方法を用いることにより、粒度分布が狭く、特に磁気記録特性向上に寄与しない微細粒子の含有量が少なく、その結果として保磁力分布が狭く、磁気記録媒体の高記録密度化に適した鉄系酸化物磁性粉を得ることができる。
実施例1において得られた鉄系酸化物磁性粉のTEM写真である。 比較例2において得られた鉄系酸化物磁性粉についての微分B-H曲線である。 実施例4において得られた鉄系酸化物磁性粉についての微分B-H曲線である。 実施例10において得られた鉄系酸化物磁性粉についての微分B-H曲線である。
[鉄系酸化物磁性粉]
 本発明の製造方法は、粒度分布ならびに保磁力分布を改良したεタイプの鉄系酸化物磁性粉を製造するためのものであり、出発物質として利用が可能なεタイプの鉄系酸化物としては、以下が挙げられる。
一般式ε-Feで表される、置換元素を含まないもの。
 一般式ε-CFe2-z(ここでCは3価の金属元素)で表されるもの。
 一般式ε-AFe2-x-y(ここでAは2価の金属元素、Bは4価の金属元素)で表されるもの。
 一般式ε-AFe2-x-z(ここでAは2価の金属元素、Cは3価の金属元素)で表されるもの。
 一般式ε-BFe2-y-z(ここでBは4価の金属元素、Cは3価の金属元素)で表されるもの。
 一般式ε-AFe2-x-y-z(ここでAは2価の金属元素、Bは4価の金属元素、Cは3価の金属元素)で表されるもの。
 ここでC元素のみで置換したタイプは、磁性粒子の保磁力を任意に制御できることに加え、ε-Feと同じ空間群を得易いという利点を有するが、熱的安定性にやや劣るので、AまたはB元素で同時に置換することが好ましい。
 AおよびBの2元素で置換したタイプは、熱的安定性に優れ、磁性粒子の常温における保磁力を高く維持できるが、ε-Feと同じ空間群の単一相がやや得にくい。
 A、BおよびCの三元素置換タイプは、上述の特性のバランスが最も良く取れたもので、耐熱性、単一相の得易さ、保磁力の制御性に優れるものであり、最も好ましい。
置換元素としては、AとしてCo、Ni、Mn、Zn等、BとしてTi、Sn等、CとしてIn、Ga、Al等が挙げられる。三元素置換タイプの場合には、実用上の特性のバランスの観点から、前記のFeサイトの一部を置換する金属元素がGa、CoならびにTiであることが好ましい。
 三元素置換体の置換量x、yおよびzの好適な範囲は、以下の通りである。
 xおよびyは、0<x<1、0<y<1の任意の範囲を取ることが可能であるが、磁気記録用途を考えると、三元素置換体の磁性粒子の保磁力を無置換のε-Feのそれとはある程度変化させる必要があるので、0.01≦x≦0.2、0.01≦y≦0.2とすることが好ましい。zも、x、yと同様に0<z<1の範囲であれば良いが、保磁力制御および単一相の得易さの観点から、0<z≦0.5の範囲とすることが好ましい。
 本発明の製造方法において、出発物質として用いられるεタイプの鉄系酸化物は、yまたはxおよびyの値を適度に調整することにより常温で高い保磁力を維持することが可能なものであり、さらに、x、yおよびzを調整することにより保磁力を所望の値に制御することも可能である。
 本発明の鉄系酸化物磁性粉には、εタイプの鉄系酸化物結晶以外に、不純物としてαタイプの鉄系酸化物、γタイプの鉄系酸化物、Fe結晶が存在する場合もあるが、それらを含めて鉄系酸化物磁性粉と呼ぶ。
[平均粒子径]
 本発明の製造方法において、出発物質として用いられるεタイプの鉄系酸化物の磁性粒子は、各粒子が単磁区構造となる程度に微細であることが好ましい。その透過電子顕微鏡で測定した平均粒子径が100nm以下であることが好ましく、より好ましくは30nm以下である。しかし、平均粒子径が小さくなり過ぎると、上述した磁気特性向上に寄与しない微細粒子の存在割合が増大し、磁性粒子粉単位重量当たりの磁気特性が劣化するので、5nm以上であることが好ましい。本発明において出発物質となるεタイプの鉄系酸化物は、特許文献1~6に記載されている製造方法を含め、いかなる方法を用いて調製しても構わない。本発明の製造方法を用いて分級した後の平均粒子径は、8nm以上30nm以下であることが好ましい。
[変動係数]
 従来の製造方法により得られたεタイプの鉄系酸化物の磁性粒子の平均粒子径の変動係数(以下、CV値と称する。)は、通常35%から70%程度である。
 本発明の製造方法を用いて分級することによりCV値が減少するが、分級後のCV値としては30%以下であることが好ましく、25%以下であることがより好ましく、20%以下であることが一層好ましい。CV値の下限は小さいほど好ましいが、CV値を低減させるためには製造工程の負荷を大きくする必要が生じるので、通常は10%以上とする。
 本発明の製造方法を用いるとCV値の小さなεタイプの鉄系酸化物の磁性粒子が得られるのは、後述する表面改質剤として4級アンモニウム塩を用いると、従来分散させることが困難だった平均粒径8nm以下の粒子の凝集物を分散させることが可能になり、その後の分級操作により8nm以下粒子を除去できるようになったためである。
[I/I
 液相法により生成した鉄系酸化物磁性粉についてB-H曲線を測定する際、減磁を終了して外部磁場を増加させて行くと、ゼロ磁場付近にて磁束密度の増加曲線に小さなショルダー(凹み)が存在する。そのため、このB-H曲線を数値微分して得られる微分B-H曲線には、二つのピークが観察される。このことは、鉄系酸化物磁性粉について測定されたB-H曲線が、保磁力Hcの異なる二つのB-H曲線の合成されたものであり、鉄系酸化物磁性粉が磁気特性の異なる二つの成分を含有していることを意味する。
 ここで低Hc側の成分は、鉄系酸化物磁性粉を磁気記録媒体に使用した際に、記録密度を高めることに寄与しない成分である。製造条件を変更や分級等の手段により、鉄系酸化物磁性粉中に含まれる平均粒径よりも非常に微細な粒子の存在割合を減少させると、微分B-H曲線の低Hc側のピークの高さが減少することが観察されることから、その微細粒子が低Hc成分であることが判る。
 今、鉄系酸化物磁性粉を磁気記録媒体に使用することを考えると、微分B-H曲線の0磁場における縦軸の切片をI、高Hc側のピーク高さをIとした時、ピーク高さの比I/Iの値が低いほど、磁気記録に寄与しない粒子が減り、記録密度が増大することになる。
 従来の製造方法では、εタイプの鉄系酸化物の磁性粒子としては、通常、I/Iの値が通常3.0以下のものが得られている。本発明の製造方法において、出発物質として用いられるεタイプの鉄系酸化物の磁性粒子は、そのI/Iの値が2.7以下であることが好ましい。
[角形比SQ]
 また、本発明により得られる鉄系酸化物磁性粉は、角形比SQが0.54以上であることが好ましい。塗布型磁気記録媒体の分野では、記録するシステムに適した磁性粉という観点から、磁性粉の角形比(SQ)が大きいことが要求される。その角形比(SQx=σr/σs)は,磁場を印加した際の磁性粉の飽和磁化σsに対する磁性粉の残留磁化σrの比であり、このSQが高いと出力が向上するので、高性能な塗布型記録媒体を作るためには、SQが高くなるような磁性粉が求められている。
[鉄系酸化物粒子含有スラリー]
 本発明の製造方法においては、最初に、出発物質となるεタイプの鉄系酸化物の磁性粒子を純水に分散させたスラリーを準備する。その場合、鉄系酸化物の凝集抑制および不純物低減の観点から、スラリーを構成する溶媒の導電率を≦15mS/mにすることが好ましい。湿式法により製造し、アルカリ溶液中でシリコン酸化物被覆を除去した直後のεタイプの鉄系酸化物磁性粒子を含むスラリーを出発物質として用いる場合には、純水を用いて溶媒の導電率が≦15mS/mになるまで洗浄することが好ましい。その後、スラリーに4級アンモニウム塩を添加し、スラリーのpHを11以上14以下に調節する。なお、後述するように、4級アンモニウム塩としてテトラアルキルアンモニウム塩の水酸化物を使用した場合には、他のアルカリを添加しなくても、スラリーのpHは前記の範囲となる。
 なお、本明細書に記載のpHの値は、JIS Z8802に基づき、ガラス電極を用いて測定した。pH標準液は、測定するpH領域に応じた適切な緩衝液を用いて校正したpH計により測定した値をいう。また、本明細書に記載のpHは、温度補償電極により補償されたpH計の示す測定値を、反応温度条件下で直接読み取った値である。
[4級アンモニウムイオン]
 4級アンモニウムイオンは、アンモニウムイオン(NH )の水素原子4個が全て有機基により置換されたカチオンであり、置換基としては通常、アルキル基、アリール基が用いられる。本発明の製造方法においては、εタイプの鉄系酸化物の磁性粒子の表面改質剤として、当該磁性粒子の分散性が良好な強アルカリ域で安定な4級アンモニウムイオンを用いる。4級アンモニウムイオンの中では、工業的に入手し易いテトラアルキルアンモニウムイオンを用いることが好ましい。テトラアルキルアンモニウムイオンは第四級アンモニウムカチオンで、分子式がNR (Rは任意のアルキル基)で表される多原子イオンである。テトラアルキルアンモニウム塩は完全解離の塩で、テトラアルキルアンモニウムイオンはアルカリ水溶液中で安定なイオンとして存在するので、本発明の製造方法においては、スラリー中のεタイプの鉄系酸化物の分散性を改善するための表面改質剤として用いる。テトラアルキルアンモニウムイオンの供給源としては、水酸化物、塩化物、臭化物等があるが、テトラアルキルアンモニウムイオンの水酸化物はそれ自身が強アルカリなので、それをスラリーに添加すると、他のアルカリを加えなくてもスラリーのpHが前記の好ましいpH範囲となるので、表面改質剤として水酸化テトラアルキルアンモニウムを用いることがさらに好ましい。
 テトラアルキルアンモニウムイオンの供給源としてテトラアルキルアンモニウムイオンの塩化物や臭化物を用いることも可能であるが、その場合、スラリーにそれらの塩を添加した場合にpHの上昇が抑制され、pH調整のために余分なアルカリが必要となり、系のイオン強度が増加するので、εタイプの鉄系酸化物の分散性が、水酸化物を使用した場合のそれと比較してやや劣る。
 テトラアルキルアンモニウム塩としては、テトラメチルアンモニウム塩、テトラプロピルアンモニウム塩、テトラブチルアンモニウム塩等のアルキル基が同一の第四級アンモニウム塩や、異なったアルキル基を有する第四級アンモニウム塩があり、いずれを用いることも可能であるが、それぞれ水酸化テトラメチルアンモニウム(テトラメチルアンモニウムヒドロキシド)、水酸化テトラプロピルアンモニウム(テトラプロピルアンモニウムヒドロキシド)、水酸化テトラブチルアンモニウム(テトラブチルアンモニウムヒドロキシド)等の水酸化物を用いることが好ましい。
 テトラアルキルアンモニウムイオンの濃度はスラリー中のεタイプの鉄系酸化物粒子の表面を改質し、分散性を高めるために0.009 mol/kg以上1.0mol/kg以下とする。濃度が0.009mol%未満、1.0mol/kg超のいずれであっても、分散性改善効果が不十分となり、分級後にCV値が30%以下のものが得られない。
[分散処理]
 本発明の製造方法においては、前記の表面改質剤を添加した表面改質剤含有スラリーに分散処理を施し、鉄系酸化物分散スラリーを得る。ここで分散処理とは、表面改質剤含有スラリーに含まれるεタイプの鉄系酸化物の凝集物の凝集をほぐす処理である。分散処理方法としては、超音波分散機による分散、ビーズミルなどメディアを用いた粉砕、撹拌羽根、振とう機およびシェイカーによる撹拌のような公知の方法を採用できる。
 表面改質剤含有スラリーの分散処理は、動的光散乱式粒度分布測定装置で測定された鉄系酸化物の平均二次粒子径(DLS粒子径)が65nm以下になるまで行うことが好ましい。DLS粒子径が65nmを超えた状態では、TEM平均粒径20nm以下など粒径が小さい場合に、CV値が30%以下のものを得られないので好ましくない。
[分級操作]
 本発明の製造方法においては、表面改質剤を添加した表面改質剤含有スラリーに分散処理を施し、記の鉄系酸化物分散スラリーに分級操作を行う。分級操作としては、遠心分離法等の公知の湿式分級手段を採用することが可能である。遠心分離機にかけた後に上澄みを除去すれば微細粒子の除去ができ、遠心分離機にかけた後に沈殿を除去すれば粗大粒子の除去ができる。遠心分離時の重力加速度としては、40000G以上が好ましい。また、分級操作は3回以上繰り返すことが好ましい。 分級操作の後、公知の固液分離手段を用いて鉄系酸化物磁性粉を回収し、必要に応じて水洗を施した後、乾燥する。
[透過電子顕微鏡(TEM)観察]
 本発明の製造法により得られた鉄系酸化物磁性粉のTEM観察は、以下の条件で行った。TEM観察には日本電子株式会社製JEM-1011を使用した。粒子観察については、倍率10,000倍、倍率100,000倍で撮影したTEM写真を用いた。(シリコン酸化物被覆を除去後のものを使用)。
-平均粒子径、粒度分布評価(変動係数(%))の測定-
 TEM平均粒子径、粒度分布評価(変動係数(%))にはデジタイズを使用した。画像処理ソフトウェアとして、Mac-View Ver.4.0を使用した。この画像処理ソフトウェアを使用した場合、ある粒子の粒子径は、その粒子に外接する長方形のうち、面積が最小となる長方形の長辺の長さとして算出される。個数については200個以上を測定した。
 透過型電子顕微鏡写真上に映っている粒子のうち、測定する粒子の選定基準は次のとおりとした。
 [1] 粒子の一部が写真の視野の外にはみだしている粒子は測定しない。
 [2] 輪郭がはっきりしており、孤立して存在している粒子は測定する。
 [3] 平均的な粒子形状から外れている場合でも、独立しており単独粒子として測定が可能な粒子は測定する。
 [4] 粒子同士に重なりがあるが、両者の境界が明瞭で、粒子全体の形状も判断可能な粒子は、それぞれの粒子を単独粒子として測定する。
 [5] 重なり合っている粒子で、境界がはっきりせず、粒子の全形も判らない粒子は、粒子の形状が判断できないものとして測定しない。
 以上の基準で選定された粒子の粒子径の個数平均値を算出し、鉄酸化物磁性粉のTEM観察による平均粒子径とした。また、「選定された粒子の粒子径の標準偏差」を「選択された粒子の粒子径の個数平均値(=平均粒子径)」で除した値を算出して、鉄酸化物磁性粉のTEM観察による粒子径の変動係数とした。
[平均二次粒子径測定]
 本発明の製造法により得られた、表面改質剤含有スラリーの平均二次粒子径(DLS粒子径)は、以下の条件で測定した。
 動的光散乱式粒度分布測定装置としては大塚電子株式会社製(FPAR-1000K高感度仕様)を用い、ファイバープローブとしては希薄系プローブを使用した。測定条件は、測定時間(秒)180秒、繰返し回数1回、溶媒設定Waterにて実施した。解析モードはCumulant法とした。
[高周波誘導結合プラズマ発光分光分析法(ICP)による組成分析]
 得られたεタイプの鉄系酸化物磁性粉の組成分析を行った。組成分析にあたっては、アジレントテクノロジー製ICP-720ESを使用し、測定波長(nm)についてはFe;259.940nm、Ga;294.363nm、Co;230.786nm、Ti;336.122nmにて行った。
[磁気ヒステリシス曲線(B-H曲線)の測定]
 得られたεタイプの鉄系酸化物磁性粉の磁気特性を以下の条件で測定した。
 ε酸化鉄の粒子からなる鉄系酸化物磁性粉の場合には、磁気特性測定装置として振動試料型磁力計(VSM)(東英工業社製VSM-5HSC)を用い、印加磁場3979kA/m(50kOe)、M測定レンジ0.005A・m(5emu)、印加磁場変化速度13(kA/m・s)、時定数0.03sec、ウエイトタイム0.8secで磁気特性を測定した。B-H曲線により、保磁力Hc、飽和磁化σs、SFD、角形比SQについて評価を行い、微分B-H曲線により、磁気記録に寄与しない低Hc成分評価を実施した。その場合、微分B-H曲線の0磁場における縦軸の切片をI、高Hc側のピーク高さをIとした。なお、SFDとは、高Hc側のピークの半値幅を保磁力Hcで割った値を指す。また、本測定、評価には「高温超電導VSM測定プログラム」ソフト(Ver. 1.0.0.1)を使用した。
 Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子からなる鉄系酸化物磁性粉の場合には、磁気特性測定装置として振動試料型磁力計(VSM)(東英工業社製VSM-5)を用い、印加磁場1035kA/m(13kOe)、M測定レンジ0.005A・m(5emu)、印加磁場変化速度15(kA/m・s)、時定数0.03sec、ウエイトタイム0.1secで磁気特性を測定した。B-H曲線により、保磁力Hc、飽和磁化σs、SFD、角形比SQについて評価を行い、微分B-H曲線により、磁気記録に寄与しない低Hc成分評価を実施した。その場合、微分B-H曲線の0磁場における縦軸の切片をI、高Hc側のピーク高さをIとした。なお、SFDとは、高Hc側のピークの半値幅を保磁力Hcで割った値を指す。また、本測定、評価には東英工業社製付属ソフト(Ver.2.1)を使用した。なお、ε酸化鉄とFeサイトの一部が他の金属元素で置換されたε酸化鉄で測定条件が異なるのは、Feサイトの金属元素の置換量により保磁力Hcは変化し、磁気飽和できる印加磁場が異なるためである。また、角形比SQは、全体のB-H曲線に対するものである。
[実施例1]
 5L反応槽にて、純水2453.58gに、純度99.7%硝酸第二鉄(III)9水和物465.93g、Ga濃度12.0質量%の硝酸Ga(III)溶液152.80g、純度97%硝酸コバルト(II)6水和物15.78g、Ti濃度15.1質量%の硫酸チタン(IV)溶液11.91gを大気雰囲気中、40℃の条件下で、撹拌羽根により機械的に撹拌しながら溶解した。この仕込み溶液中の金属イオンのモル比は、Fe:Ga:Co:Ti=1.530:0.350:0.070:0.050である。
 大気雰囲気中、40℃で、撹拌羽根により機械的に撹拌しながら、22.4%のアンモニア水溶液268.52gを一挙添加し、2時間撹拌を続けた(第一の中和工程)。添加初期は茶色で濁った液であったが、2時間後には透明感のある茶色の反応液となり、そのpHは1.9であった。
 次に、ヒドロキシカルボン酸として、クエン酸濃度20質量%のクエン酸溶液288.75gを、40℃の条件下で、1時間かけて連続添加した後(ヒドロキシカルボン酸添加工程)、22.4%のアンモニア溶液を152.86g一挙添加した後、温度40℃の条件下、1時間撹拌しながら保持し、中間生成物である前駆体の置換元素を含むオキシ水酸化鉄の結晶を生成した(手順1、第二の中和工程)。アンモニア溶液152.86gを一挙添加した後のpHは、8.6であった。
 その後、大気雰囲気中、40℃で、撹拌しながら、手順1で得られた前駆体スラリーにテトラエトキシシラン(TEOS)416.89gを35分で添加する。約1日そのまま撹拌し続け、加水分解により生成したシラン化合物の加水分解生成物で被覆した。その後、得られた溶液を洗浄・固液分離し、ケーキとして回収する(手順2)。
 手順2で得られた沈殿物(ゲル状SiOコートされた前駆体)を乾燥した後、その乾燥粉に対し、大気雰囲気の炉内で、971℃で4時間の熱処理を施し、シリコン酸化物で被覆された置換型ε酸化鉄の粉末を得た。なお、前記のシラン化合物の加水分解生成物は、大気雰囲気で熱処理した際に、酸化物に変化する(手順3)。
 手順3で得られたシリコン酸化物で被覆された置換型ε酸化鉄の粉末を20質量%NaOH水溶液中で約60℃、24時間撹拌し、粒子表面のシリコン酸化物の除去処理を行うことで、鉄系酸化物粒子を含むスラリーを得た。(手順4)
 手順4で得られたスラリーに対して透過型電子顕微鏡観察を行ったところ、TEM平均粒子径は17.8nm、変動係数(CV値)は39%であった。
 手順4で得られたスラリーを、導電率が≦15mS/mまで洗浄することで、実施例1に係る洗浄後スラリーを得た。得られた洗浄後スラリーに1質量%の硫酸水溶液を添加してpHを6.5に調整した後にメンブレン濾過し、ケーキ回収した後に乾燥することで、分級処理前の鉄系酸化物磁性粉を得た。この分級前の鉄系酸化物磁性粉の保磁力は171(kA/m)、飽和磁化は15.7(Am/kg)、角形比は0.433、SFDは1.40、I/Iの値は0.82であり、BET比表面積は85.5m/gであった。
 次に、洗浄後スラリーに表面改質剤として25質量%のテトラメチルアンモニウムヒドロキシド(以下、TMAOHと称する)水溶液を添加して、実施例1に係る表面改質剤含有スラリーを得た。TMAOH水溶液の添加量は、表面改質剤含有スラリー中のTMAOH濃度が0.065mol/kgとなる量とした。この場合、スラリーのpHは13になった。なお、本発明の実施例の場合、TMAOH濃度を0.009mol/kg以上1.0mol/kg以下にするとスラリーのpHが11以上14以下になることが確認できた。
 得られた表面改質剤含有スラリー40gを超音波洗浄機(ブランソン(ヤマト科学)社製、Yamato5510)にて1時間、超音波分散処理を行った後、遠心分離機(日立工機株式会社製、himac CR21GII)のR20A2ローターにて、回転数20000rpmで15分の遠心分離処理を行い、微粒子を含む上澄み33gを除去して沈殿物を得た。遠心分離処理における重力加速度は48000Gとした。また、超音波処理を行った後の表面改質剤含有スラリー中の鉄系酸化物の平均二次粒子径(DLS粒子径)を測定したところ、29nmであった。
 その後、得られた沈殿物に0.065mol/kgのTMAOH水溶液33gを加え、前記の超音波分散処理、前記の遠心分離処理、ならびに上澄み33gを除去する操作を9回繰り返すことで、実施例1に係る鉄系酸化物磁性粉のスラリーを得た。
 得られた実施例1に係る鉄系酸化物磁性粉のスラリーに対してTEM観察を行ったところ、TEM平均粒子径は18.8nm、変動係数(CV値)は29%であった。スラリーに対するTEM観察とは、スラリーをグリッド上のコロジオン膜に滴下して付着させ、自然乾燥させた後にカーボン蒸着を施して、TEM観察に供することを指す。図1に、本実施例において得られた鉄系酸化物磁性粉のTEM写真を示す。なお、TEM写真の左側中央部に表示した白い縦線で示す長さが50nmである。
 得られた実施例1に係る鉄系酸化物磁性粉のスラリーに純水33gを加え、1質量%の硫酸水溶液を添加してpHを6.5に調整した後にメンブレン濾過し、ケーキ回収した後に乾燥することで実施例1に係る鉄系酸化物磁性粉を得た。
 得られた鉄系酸化物磁性粉の化学組成を、Fe、Ga、Co、Tiのモル比の合計値が2.0となるようにして算出したところ、表2の通りであった。また、I/Iの値は0.25であった。
 表1に、本発明の各実施例および比較例の製造条件を、表2に、各実施例および比較例で得られた鉄系酸化物磁性粉の特性値を併せて示す。
[実施例2]
 実施例1で得られた鉄系酸化物磁性粉のスラリー7gに対し、0.065mol/kgのTMAOH水溶液33gを加え、超音波洗浄機(ブランソン(ヤマト科学)社製、Yamato5510)にて1時間、超音波分散処理を行った後、遠心分離機(日立工機株式会社製、himac CR21GII)のR20A2ローターにて、回転数18000rpmで15分の遠心分離処理を行い、微粒子を含む上澄み33gを除去して沈殿物を得た。遠心分離処理における重力加速度は39000Gとした。得られた沈殿物に対して、以上のTMAOH水溶液添加、超音波分散、遠心分離18000rpmおよび上澄み除去の操作をさらに2回繰り返した。
 その後、得られた沈殿物に0.065mol/kgのTMAOH水溶液33gを加え、超音波洗浄機(ブランソン(ヤマト科学)社製、Yamato5510)にて1時間、超音波分散処理を行った後、遠心分離機(日立工機株式会社製、himac CR21GII)のR20A2ローターにて、回転数16000rpmで15分の遠心分離処理を行い、微粒子を含む上澄み30gを除去して沈殿物を得た。遠心分離処理における重力加速度は31000Gとした。得られた沈殿物に対して、以上のTMAOH水溶液添加、超音波分散、遠心分離16000rpmおよび上澄み除去の操作をさらに2回繰り返した。
 得られた沈殿物に対し、回転数14000rpm(重力加速度24000G)で15分の遠心分離処理、回転数12000rpm(重力加速度17000G)で15分の遠心分離処理、回転数10000rpm(重力加速度12000G)で15分の遠心分離処理の条件で、同様の操作を3回ずつ繰り返し行った。回転数10000rpmでの遠心分離処理の繰り返しの1回目、2回目、および3回目で除去された上澄みを混合することで、実施例2に係る鉄系酸化物磁性粉のスラリーを得た。
 実施例2により得られた鉄系酸化物磁性粉のスラリーに対してTEM観察を行ったところ、TEM平均粒子径は21.0nm、変動係数(CV値)は22%であった。
 得られた実施例2に係る鉄系酸化物磁性粉のスラリーに純水30gを加え、1質量%の硫酸水溶液を添加してpHを6.5に調整した後にメンブレン濾過し、ケーキ回収した後に乾燥することで実施例2に係る鉄系酸化物磁性粉を得た。
[実施例3]
 50L反応槽にて、純水23.74kgに、純度99.5%硝酸第二鉄(III)9水和物4.93kg、Ga濃度13.2%の硝酸Ga(III)溶液1.05kg、純度97%硝酸コバルト(II)6水和物101.5g、Ti濃度15.1%の硫酸チタン(IV)178.7gを大気雰囲気中、40℃の条件下で、撹拌羽根により機械的に撹拌しながら溶解する。この仕込み溶液中の金属イオンのモル比は、Fe:Ga:Co:Ti=1.615:0.265:0.045:0.075である。
 大気雰囲気中、40℃で、撹拌羽根により機械的に撹拌しながら、23.6%のアンモニア溶液2.51kgを一挙添加し、2時間撹拌を続ける(第一の中和工程)。添加初期は茶色で濁った液であったが、2時間後には透明感のある茶色の反応液となり、そのpHは1.9であった。
 次に、ヒドロキシカルボン酸として、クエン酸濃度20質量%のクエン酸溶液2.88kgを、40℃の条件下で、1時間かけて連続添加した後(ヒドロキシカルボン酸添加工程)、23.6%のアンモニア溶液1.70kgを一挙添加した後、温度40℃の条件下、1時間撹拌しながら保持し、中間生成物である前駆体の置換元素を含むオキシ水酸化鉄の結晶を生成した(手順5、第二の中和工程)。アンモニア溶液1.70kgを一挙添加した後のpHは、8.8であった。
 その後、大気雰囲気中、40℃で、撹拌しながら、手順5で得られた前駆体スラリーにテトラエトキシシラン8.55kgを35分で添加する。約1日そのまま撹拌し続け、加水分解により生成したシラン化合物の加水分解生成物で被覆した。その後、得られた溶液を洗浄・固液分離し、ケーキとして回収する(手順6)。
 手順6で得られた沈殿物(ゲル状SiOコートされた前駆体)を乾燥した後、その乾燥粉に対し、大気雰囲気の炉内で、1025℃で4時間の熱処理を施し、シリコン酸化物で被覆された置換型ε酸化鉄の粉末を得た。なお、前記のシラン化合物の加水分解生成物は、大気雰囲気で熱処理した際に、酸化物に変化する(手順7)。
 手順7で得られたシリコン酸化物で被覆された置換型ε酸化鉄の粉末を20質量%NaOH水溶液中で約60℃、24時間撹拌し、粒子表面のシリコン酸化物の除去処理を行うことで、鉄系酸化物粒子を含むスラリーを得た。(手順8)
 手順8で得られたスラリーに対して透過型電子顕微鏡観察を行ったところ、TEM平均粒子径は14.9nm、変動係数(CV)は40%であった。
 手順8で得られたスラリーを、導電率が≦1mS/mまで洗浄することで、実施例2に係る洗浄後スラリーを得た。得られた洗浄後スラリーに1質量%の硫酸水溶液を添加してpHを6.5に調整した後にメンブレン濾過し、ケーキ回収した後に乾燥することで、分級処理前の鉄系酸化物磁性粉を得た。この分級前の鉄系酸化物磁性粉の保磁力は224(kA/m)、飽和磁化は14.7(Am/kg)、角形比は0.474、SFDは1.55、I/Iの値は0.91、BET比表面積は89.0m/gであった。
 次に、洗浄後スラリーに、表面改質剤含有スラリー中のTMAOH濃度が0.018mol/kgとなる量の25質量%TMAOH水溶液を表面改質剤として添加して、表面改質剤含有スラリーを得た。この場合、表面改質剤含有スラリーのpHは12になった。
 得られた表面改質剤含有スラリー40gを超音波洗浄機(ブランソン(ヤマト科学)社製、Yamato5510)にて1時間、超音波分散処理を行った後、遠心分離機(日立工機株式会社製、himac CR21GII)のR20A2ローターにて、回転数20000rpmで15分の遠心分離処理を行い、微粒子を含む上澄み33gを除去して沈殿物を得た。遠心分離処理における重力加速度は48000Gとした。また、超音波処理を行った後の表面改質剤含有スラリーの平均二次粒子径を測定したところ、54nmであった。
 その後、得られた沈殿物に、表面改質剤として0.018mol/kgのTMAOH水溶液33gを加え、前記の超音波分散処理、前記の遠心分離処理、ならびに上澄み33gを除去する操作を9回繰り返すことで、実施例3に係る鉄系酸化物磁性粉のスラリーを得た。得られた鉄系酸化物磁性粉のスラリーに対してTEM観察を行ったところ、TEM平均粒子径は16.8nm、変動係数(CV値)は29%であった。
 得られた鉄系酸化物磁性粉のスラリーに純水33gを加え、1質量%の硫酸水溶液を添加してpHを6.5に調整した後にメンブレン濾過し、ケーキ回収した後に乾燥することで鉄系酸化物磁性粉を得た。
[実施例4]
 洗浄後スラリーに、表面改質剤含有スラリー中のTMAOH濃度が0.065mol/kgとなる量のTMAOHを表面改質剤として添加し、遠心分離処理および上澄み除去後に得られた沈殿物に添加するTMAOH水溶液の濃度を0.065mol/kgとした以外は、実施例3と同様の手順により、表面改質剤含有スラリー、鉄系酸化物磁性粉のスラリーならびに鉄系酸化物磁性粉を得た。この場合、表面改質剤含有スラリーのpHは13になった。
 図2および図3に、それぞれ比較例2および本実施例において得られたεタイプの鉄系酸化物磁性粉についての(規格化した)微分B-H曲線を示す。なお、これらの図は、高Hc側のピークが同一の高さになるように規格化しており、縦軸(dB/dH)は任意強度である。
 微分B-H曲線には2本のピークが明瞭に観察され、低Hc成分の比率I/Iは0.28であった。I/Iの値は後述する比較例2により得られたε酸化鉄磁性粉についてのそれよりも優れたものであり、本発明の製造方法により、I/Iの値が低減し、保磁力分布が狭くなることが判る。
[実施例5]
 洗浄後スラリーに、表面改質剤含有スラリー中のTMAOH濃度が0.57mol/kgとなる量のTMAOHを表面改質剤として添加し、遠心分離処理および上澄み除去後に得られた沈殿物に添加するTMAOH水溶液の濃度を0.57mol/kgとした以外は、実施例3と同様の手順により、表面改質剤含有スラリー、鉄系酸化物磁性粉のスラリーならびに鉄系酸化物磁性粉を得た。この場合、表面改質剤含有スラリーのpHは14になった。
[実施例6]
 超音波分散機による超音波分散処理に代えて、シェイカー(AS ONE製高速振とう機、機種名:キュートミキサー)により1500rpmの条件での振とう処理を行った以外は、実施例4と同様の手順により、表面改質剤含有スラリー、鉄系酸化物磁性粉のスラリーならびに鉄系酸化物磁性粉を得た。この場合、表面改質剤含有スラリーのpHは13になった。
[比較例1]
洗浄後スラリーにTMAOH水溶液を添加しなかった以外は、実施例3と同様の手順により、鉄系酸化物磁性粉のスラリーならびに鉄系酸化物磁性粉を得た。なお、遠心分離処理および上澄み除去後に得られた沈殿物には、TMAOH水溶液に代えて、純水を添加した。
洗浄後スラリーに対して、超音波分散処理を行った後の平均二次粒子径は、81nmであった。
[比較例2]
 洗浄後スラリーに、表面改質剤含有スラリー中のTMAOH濃度が0.0012mol/kgとなる量の25質量%TMAOH水溶液を表面改質剤として添加し、遠心分離処理ならびに上澄み除去後に得られた沈殿物に添加するTMAOH水溶液の濃度を0.0012mol/kgとした以外は、実施例3と同様の手順により、表面改質剤含有スラリー、鉄系酸化物磁性粉のスラリーならびに鉄系酸化物磁性粉を得た。この場合、表面改質剤含有スラリーのpHは9になった。
[比較例3]
 洗浄後スラリーに、表面改質剤含有スラリー中のTMAOH濃度が0.0036mol/kgとなる量の25質量%TMAOH水溶液を表面改質剤として添加し、遠心分離処理ならびに上澄み除去後に得られた沈殿物に添加するTMAOH水溶液の濃度を0.0036mol/kgとした以外は、実施例3と同様の手順により、表面改質剤含有スラリー、鉄系酸化物磁性粉のスラリーならびに鉄系酸化物磁性粉を得た。この場合、表面改質剤含有スラリーのpHは10になった。
[比較例4]
 洗浄後スラリーに、表面改質剤含有スラリー中のTMAOH濃度が0.0072mol/kgとなる量の25質量%TMAOH水溶液を表面改質剤として添加し、遠心分離処理ならびに上澄み除去後に得られた沈殿物に添加するTMAOH水溶液の濃度を0.0072mol/kgとした以外は、実施例3と同様の手順により、表面改質剤含有スラリー、鉄系酸化物磁性粉のスラリーならびに鉄系酸化物磁性粉を得た。この場合、表面改質剤含有スラリーのpHは11になった。
[比較例5]
 洗浄後スラリーに、10質量%NaOH水溶液を添加してpHを11に調整し、遠心分離処理および上澄み除去後に得られた沈殿物に、TMAOH水溶液に代えてpH11のNaOH水溶液を添加した以外は、実施例3と同様の手順により、表面改質剤含有スラリー、鉄系酸化物磁性粉のスラリーならびに鉄系酸化物磁性粉を得た。
[実施例7]
 5L反応槽にて、純水2689.7gに、純度99.0%塩化第二鉄(III)6水和物410.4gを大気雰囲気中、20℃の条件下で、撹拌羽根により機械的に撹拌しながら溶解した。
 大気雰囲気中、20℃で、撹拌羽根により機械的に撹拌しながら、23.0%のアンモニア溶液267.1gを一挙添加し、2時間撹拌を続けた(第一の中和工程)。
 次に、ヒドロキシカルボン酸として、クエン酸濃度20質量%のクエン酸溶液288.8gを、20℃の条件下で、1時間かけて連続添加した後(ヒドロキシカルボン酸添加工程)、23.0%のアンモニア溶液180.4gを一挙添加した後、温度20℃の条件下、1時間撹拌しながら保持し、中間生成物である前駆体のオキシ水酸化鉄の結晶を生成した(手順1、第二の中和工程)。
 その後、大気雰囲気中、40℃で、撹拌しながら、手順1で得られた前駆体スラリーにテトラエトキシシラン834.2gを35分で添加する。約1日そのまま撹拌し続け、加水分解により生成したシラン化合物の加水分解生成物で被覆した。その後、得られた溶液を洗浄・固液分離し、ケーキとして回収する(手順2)。
 手順2で得られた沈殿物(ゲル状SiOコートされた前駆体)を乾燥した後、その乾燥粉に対し、大気雰囲気の炉内で、1042℃で4時間の熱処理を施し、シリコン酸化物で被覆されたε酸化鉄の粉末を得た。なお、前記のシラン化合物の加水分解生成物は、大気雰囲気で熱処理した際に、酸化物に変化する(手順3)。
 手順3で得られたシリコン酸化物で被覆されたε酸化鉄の粉末を20質量%NaOH水溶液中で約60℃、24時間撹拌し、粒子表面のシリコン酸化物の除去処理を行うことで、鉄系酸化物粒子を含むスラリーを得た。(手順4)
 手順4で得られたスラリーに対して透過型電子顕微鏡観察を行ったところ、TEM平均粒子径は16.2nm、変動係数(CV)は43%であった。
 手順4で得られたスラリーを、導電率が≦1mS/mまで洗浄することで、実施例7に係る洗浄後スラリーを得た。得られた洗浄後スラリーに1質量%の硫酸水溶液を添加してpHを6.5に調整した後にメンブレン濾過し、ケーキ回収した後に乾燥することで、分級処理前の鉄系酸化物磁性粉を得た。この分級前の鉄系酸化物磁性粉の保磁力は 1385(kA/m)、飽和磁化は15.1(Am/kg)、角形比は0.533、SFDは0.73、I/Iの値は0.30、BET比表面積は80.6m/gであった。
 次に、洗浄後スラリーに、表面改質剤含有スラリー中のTMAOH濃度が0.065mol/kgとなる量の25質量%TMAOH水溶液を表面改質剤として添加して、表面改質剤含有スラリーを得た。
 得られた表面改質剤含有スラリー40gを超音波洗浄機(ブランソン(ヤマト科学)社製、Yamato5510)にて1時間、超音波分散処理を行った後、遠心分離機(日立工機株式会社製、himac CR21GII)のR20A2ローターにて、回転数20000rpmで15分の遠心分離処理を行い、微粒子を含む上澄み33gを除去して沈殿物を得た。遠心分離処理における重力加速度は48000Gとした。また、超音波処理を行った後の表面改質剤含有スラリーの平均二次粒子径を測定したところ、59nmであった。
 その後、得られた沈殿物に、表面改質剤として0.065mol/kgのTMAOH水溶液33gを加え、前記の超音波分散処理、前記の遠心分離処理、ならびに上澄み33gを除去する操作を9回繰り返すことで、実施例7に係る鉄系酸化物磁性粉のスラリーを得た。また、繰り返しの1回目、2回目、および3回目で除去された上澄みを混合することで、実施例7に係る上澄みスラリーを得た。この実施例7に係る上澄みスラリーは、後述する実施例8で使用した。得られた実施例7に係る鉄系酸化物磁性粉のスラリーに対してTEM観察を行ったところ、TEM平均粒子径は20.8nm、変動係数(CV値)は28%であった。
 得られた鉄系酸化物磁性粉のスラリーに純水33gを加え、1質量%の硫酸水溶液を添加してpHを6.5に調整した後にメンブレン濾過し、ケーキ回収した後に乾燥することで鉄系酸化物磁性粉を得た。
[実施例8]
 実施例7に係る上澄みスラリー40gに対し、超音波洗浄機(ブランソン(ヤマト科学)社製、Yamato5510)にて1時間、超音波分散処理を行った後、遠心分離機(日立工機株式会社製、himac CR21GII)のR20A2ローターにて、回転数20000rpmで15分の遠心分離処理を行い、微粒子を含む上澄み30gを除去して沈殿物を得た。遠心分離処理における重力加速度は48000Gとした。得られた沈殿物に対して、0.065mol/kgのTMAOH水溶液添加、超音波分散、遠心分離20000rpmおよび上澄み除去の操作を2回繰り返した。
 その後、得られた沈殿物に0.065mol/kgのTMAOH水溶液30gを加え、超音波洗浄機(ブランソン(ヤマト科学)社製、Yamato5510)にて1時間、超音波分散処理を行った後、遠心分離機(日立工機株式会社製、himac CR21GII)のR20A2ローターにて、回転数18000rpmで15分の遠心分離処理を行い、微粒子を含む上澄み30gを除去して沈殿物を得た。遠心分離処理における重力加速度は39000Gとした。得られた沈殿物に対して、以上のTMAOH水溶液添加、超音波分散、遠心分離18000rpmおよび上澄み除去の操作をさらに2回繰り返した。
 得られた沈殿物に対し、回転数16000rpm(重力加速度31000G)で15分の遠心分離処理、回転数14000rpm(重力加速度24000G)で15分の遠心分離処理の条件で、同様の操作を繰り返し行った。回転数14000rpmでの遠心分離処理の繰り返しの1回目、2回目、および3回目で除去された上澄みを混合することで、実施例8に係る鉄系酸化物磁性粉のスラリーを得た。
 実施例8により得られた鉄系酸化物磁性粉のスラリーに対してTEM観察を行ったところ、TEM平均粒子径は13.5nm、変動係数(CV値)は15%であった。
 得られた実施例8に係る鉄系酸化物磁性粉のスラリーに純水30gを加え、1質量%の硫酸水溶液を添加してpHを6.5に調整した後にメンブレン濾過し、ケーキ回収した後に乾燥することで実施例8に係る鉄系酸化物磁性粉を得た。
[実施例9]
 10L反応槽にて、純水4945.8gに、純度99.3%硝酸第二鉄(III)9水和物697.1g、純度99%塩化第二鉄(III)6水和物233.9g、Ga濃度11.6%の硝酸Ga(III)溶液181.4g、純度97%硝酸コバルト(II)6水和物20.3g、Ti濃度15.1%の硫酸チタン(IV)21.4gを大気雰囲気中、20℃の条件下で、撹拌羽根により機械的に撹拌しながら溶解する。この仕込み溶液中の金属イオンのモル比は、Fe:Ga:Co:Ti=1.71:0.200:0.045:0.045である。
 大気雰囲気中、20℃で、撹拌羽根により機械的に撹拌しながら、22.3%のアンモニア溶液545.1gを一挙添加し、2時間撹拌を続ける(第一の中和工程)。
 次に、ヒドロキシカルボン酸として、クエン酸濃度20質量%のクエン酸溶液577.5gを、20℃の条件下で、1時間かけて連続添加した後(ヒドロキシカルボン酸添加工程)、22.3%のアンモニア溶液368.0gを一挙添加した後、温度20℃の条件下、1時間撹拌しながら保持し、中間生成物である前駆体の置換元素を含むオキシ水酸化鉄の結晶を生成した(手順1、第二の中和工程)。
 その後、大気雰囲気中、40℃で、撹拌しながら、手順1で得られた前駆体スラリーにテトラエトキシシラン1690.5gを35分で添加する。約1日そのまま撹拌し続け、加水分解により生成したシラン化合物の加水分解生成物で被覆した。その後、得られた溶液を洗浄・固液分離し、ケーキとして回収する(手順2)。
 手順2で得られた沈殿物(ゲル状SiOコートされた前駆体)を乾燥した後、その乾燥粉に対し、大気雰囲気の炉内で、975℃で4時間の熱処理を施し、シリコン酸化物で被覆された置換型ε酸化鉄の粉末を得た。なお、前記のシラン化合物の加水分解生成物は、大気雰囲気で熱処理した際に、酸化物に変化する(手順3)。
 手順3で得られたシリコン酸化物で被覆された置換型ε酸化鉄の粉末を20質量%NaOH水溶液中で約60℃、24時間撹拌し、粒子表面のシリコン酸化物の除去処理を行うことで、鉄系酸化物粒子を含むスラリーを得た。(手順4)
 手順4で得られたスラリーに対して透過型電子顕微鏡観察を行ったところ、TEM平均粒子径は11.1nm、変動係数(CV)は38%であった。
 手順4で得られたスラリーを、導電率が≦1mS/mまで洗浄することで、実施例9に係る洗浄後スラリーを得た。得られた洗浄後スラリーに1質量%の硫酸水溶液を添加してpHを6.5に調整した後にメンブレン濾過し、ケーキ回収した後に乾燥することで、分級処理前の鉄系酸化物磁性粉を得た。この分級前の鉄系酸化物磁性粉の保磁力は 73(kA/m)、飽和磁化は15.3(Am/kg)、角形比は0.261、SFDは6.23、I/Iの値は2.52、BET比表面積は126.1m/gであった。
 次に、洗浄後スラリーに、表面改質剤含有スラリー中のTMAOH濃度が0.065mol/kgとなる量の25質量%TMAOH水溶液を表面改質剤として添加して、表面改質剤含有スラリーを得た。
 得られた表面改質剤含有スラリー40gを超音波洗浄機(ブランソン(ヤマト科学)社製、Yamato5510)にて1時間、超音波分散処理を行った後、遠心分離機(日立工機株式会社製、himac CR21GII)のR20A2ローターにて、回転数20000rpmで15分の遠心分離処理を行い、微粒子を含む上澄み30gを除去して沈殿物を得た。遠心分離処理における重力加速度は48000Gとした。また、超音波処理を行った後の表面改質剤含有スラリーの平均二次粒子径を測定したところ、31nmであった。得られた沈殿物に対して、以上のTMAOH水溶液添加、超音波分散、遠心分離20000rpmおよび上澄み除去の操作をさらに2回繰り返した。
 その後、得られた沈殿物に0.065mol/kgのTMAOH水溶液30gを加え、超音波洗浄機(ブランソン(ヤマト科学)社製、Yamato5510)にて1時間、超音波分散処理を行った後、遠心分離機(日立工機株式会社製、himac CR21GII)のR20A2ローターにて、回転数18000rpmで15分の遠心分離処理を行い、微粒子を含む上澄み30gを除去して沈殿物を得た。遠心分離処理における重力加速度は39000Gとした。得られた沈殿物に対して、以上のTMAOH水溶液添加、超音波分散、遠心分離18000rpmおよび上澄み除去の操作をさらに2回繰り返した。
 得られた沈殿物に対し、回転数16000rpm(重力加速度31000G)で15分の遠心分離処理、回転数14000rpm(重力加速度24000G)で15分の遠心分離処理、回転数12000rpm(重力加速度17000G)で15分の遠心分離処理の条件で、同様の操作を3回ずつ繰り返し行った。回転数12000rpmでの遠心分離処理の繰り返しの1回目、2回目、および3回目で除去された上澄みを混合することで、実施例9に係る鉄系酸化物磁性粉のスラリーを得た。
 得られた鉄系酸化物磁性粉のスラリーに対してTEM観察を行ったところ、TEM平均粒子径は15.1nm、変動係数(CV値)は23%であった。
 得られた鉄系酸化物磁性粉のスラリーに純水30gを加え、1質量%の硫酸水溶液を添加してpHを6.5に調整した後にメンブレン濾過し、ケーキ回収した後に乾燥することで鉄系酸化物磁性粉を得た。
[実施例10]
 仕込み溶液中の金属イオンの合計モル量を実施例1のそれと合わせ、モル比をFe:Ga:Co:Ti=1.505:0.375:0.070:0.050に変更し、遠心分離処理において上澄み除去量を30gとし、遠心分離処理の繰り返し回数を11回とし、焼成温度を981℃に変更した以外は実施例1と同じ方法で鉄系酸化物磁性粉を得た。
 手順4で得られたスラリーに対して透過型電子顕微鏡観察を行ったところ、TEM平均粒子径は14.7nm、変動係数(CV値)は38%であった。
 以上の実施例から、鉄系酸化物粒子を含むスラリーに表面改質剤として4級アンモニウム塩の水溶液を添加することで表面改質剤含有スラリーを得て、表面改質剤含有スラリーを分散処理に供した後に分級する製法を採用することにより、表面改質剤含有スラリーに超音波を照射など分散処理した後のスラリーの平均二次粒子径を65nm以下とすることができ、その結果として粒度分布が狭く、保磁力分布が狭く、磁気記録媒体の高記録密度化に適した、鉄系酸化物磁性粉を得られることがわかる。
 また、以上の比較例1~5から、表面改質剤を添加しない場合や、表面改質剤としてTMAOH水溶液を添加した場合であっても表面改質剤の濃度が本発明の製法の範囲外である場合には、表面改質剤含有スラリーやpH調整後スラリーに超音波を照射した後のスラリーの平均二次粒子径を65nm以下とすることができず、結果として本発明が目的とする粒度分布や保磁力分布の特性を満たした鉄系酸化物磁性粉を得ることができないことがわかる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (11)

  1.  透過電子顕微鏡で測定した平均粒子径が8nm以上30nm以下であり、かつ、粒子径の変動係数が30%以下であるε酸化鉄の粒子からなり、下記で定義するI/Iの値が0.55以下である、鉄系酸化物磁性粉。
     ここでIは、印加磁場3979kA/m(50kOe)、M測定レンジ0.005A・m(5emu)、印加磁場変化速度13(kA/m・s)、時定数0.03sec、ウエイトタイム0.8secの条件下で測定して得られたB-H曲線を数値微分して得られる微分B-H曲線において高磁場側に現れるピークの強度である。またIは、前記微分B-H曲線のゼロ磁場における縦軸の切片の強度である。
  2.  透過電子顕微鏡で測定した平均粒子径が8nm以上30nm以下であり、かつ、粒子径の変動係数が30%以下であるFeサイトの一部が他の金属元素で置換されたε酸化鉄の粒子からなり、下記で定義するI/Iの値が0.55以下である、鉄系酸化物磁性粉。
     ここでIは、印加磁場1035kA/m(13kOe)、M測定レンジ0.005A・m(5emu)、印加磁場変化速度15(kA/m・s)、時定数0.03sec、ウエイトタイム0.1secの条件下で測定して得られたB-H曲線を数値微分して得られる微分B-H曲線において高磁場側に現れるピークの強度である。またIは、前記微分B-H曲線のゼロ磁場における縦軸の切片の強度である。
  3.  前記のFeサイトの一部を置換する金属元素がGa、CoおよびTiの一種または二種以上である、請求項2に記載の鉄系酸化物磁性粉。
  4.  角形比SQが0.54以上である、請求項1または2に記載の鉄系酸化物磁性粉。
  5.  透過電子顕微鏡で測定した平均粒子径が5nm以上100nm以下であり、かつ、粒子径の変動係数が70%以下のε酸化鉄またはFeサイトの一部が他の金属元素で置換されたε酸化鉄の粒子を含むスラリーを準備する工程と、
     前記のスラリーに表面改質剤として濃度が0.009mol/kg以上1.0mol/kg以下の4級アンモニウム塩を添加するとともに、pHを11以上14以下とする工程と、
     前記の表面改質剤含有スラリーを分散処理に供して、ε酸化鉄またはFeサイトの一部が他の金属元素で置換されたε酸化鉄の粒子の分散スラリーを得る工程と、
     前記のε酸化鉄またはFeサイトの一部が他の金属元素で置換されたε酸化鉄の粒子の分散スラリーを分級する工程と、
    を含む鉄系酸化物磁性粉の製造方法。
  6.  前記の4級アンモニウム塩がテトラアルキルアンモニウム塩である、請求項5に記載の鉄系酸化物磁性粉の製造方法。
  7.  前記の4級アンモニウム塩がテトラアルキルアンモニウム水酸化物である、請求項5に記載の鉄系酸化物磁性粉の製造方法。
  8.  前記のε酸化鉄またはFeサイトの一部が他の金属元素で置換されたε酸化鉄の粒子の分散スラリー中の、動的光散乱式粒度分布測定装置で測定されたε酸化鉄またはFeサイトの一部が他の金属元素で置換されたε酸化鉄の粒子の平均二次粒子径が65nm以下である、請求項5に記載の鉄系酸化物磁性粉の製造方法。
  9.  前記のε酸化鉄またはFeサイトの一部が他の金属元素で置換されたε酸化鉄の粒子を含むスラリーの導電率が15mS/m以下である、請求項5に記載の鉄系酸化物磁性粉の製造方法。
  10.  前記の分級工程が、前記のε酸化鉄またはFeサイトの一部が他の金属元素で置換されたε酸化鉄の粒子の分散スラリーを遠心分離機にかけた後にその上澄みを除去するものである、請求項5に記載の鉄系酸化物磁性粉の製造方法。
  11.  前記の分級工程において、前記遠心分離機にかける際の遠心加速度が40000G以上である、請求項10に記載の鉄系酸化物磁性粉の製造方法。
PCT/JP2019/013048 2018-03-29 2019-03-26 鉄系酸化物磁性粉およびその製造方法 WO2019189282A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980018108.4A CN111819642A (zh) 2018-03-29 2019-03-26 铁系氧化物磁性粉及其制造方法
EP19776115.8A EP3780023A4 (en) 2018-03-29 2019-03-26 MAGNETIC IRON OXIDE POWDER AND METHOD OF PRODUCTION
US16/979,241 US11401170B2 (en) 2018-03-29 2019-03-26 Iron based oxide magnetic powder and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-064856 2018-03-29
JP2018064856 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019189282A1 true WO2019189282A1 (ja) 2019-10-03

Family

ID=68060136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013048 WO2019189282A1 (ja) 2018-03-29 2019-03-26 鉄系酸化物磁性粉およびその製造方法

Country Status (5)

Country Link
US (1) US11401170B2 (ja)
EP (1) EP3780023A4 (ja)
JP (2) JP7258622B2 (ja)
CN (1) CN111819642A (ja)
WO (1) WO2019189282A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115916704A (zh) * 2020-09-10 2023-04-04 同和电子科技有限公司 铁系氧化物磁粉分散浆料及其制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021054710A (ja) * 2019-09-30 2021-04-08 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粉およびその製造方法
JP2021054711A (ja) * 2019-09-30 2021-04-08 国立大学法人 東京大学 鉄系酸化物磁性粉およびその製造方法
JP7303768B2 (ja) * 2020-03-13 2023-07-05 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP7303770B2 (ja) * 2020-03-13 2023-07-05 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029861A1 (fr) 2006-09-01 2008-03-13 The University Of Tokyo Cristal magnétique pour matériau d'absorption d'onde radio et absorbant d'onde radio
JP2008063201A (ja) 2006-09-08 2008-03-21 Univ Of Tokyo 磁気特性を改善したε酸化鉄粉末
JP2008063199A (ja) 2006-09-08 2008-03-21 Univ Of Tokyo ε酸化鉄系の磁性材料
JP2008174405A (ja) 2007-01-16 2008-07-31 Univ Of Tokyo ε−Fe2O3結晶の製法
WO2008149785A1 (ja) 2007-05-31 2008-12-11 The University Of Tokyo 磁性酸化鉄粒子、磁性体、および電波吸収体
JP2016135737A (ja) * 2015-01-19 2016-07-28 国立大学法人 東京大学 ε酸化鉄を含む配向体とその製造方法、並びに製造装置
JP2016174135A (ja) 2014-09-24 2016-09-29 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
JP2017001944A (ja) * 2015-06-12 2017-01-05 国立大学法人 東京大学 イプシロン酸化鉄とその製造方法、磁性塗料および磁気記録媒体
JP2017024981A (ja) * 2015-07-27 2017-02-02 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉の製造方法
WO2018088050A1 (ja) * 2016-11-11 2018-05-17 ソニー株式会社 磁性粉末の製造方法、および磁気記録媒体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5802224B2 (ja) * 2013-01-31 2015-10-28 富士フイルム株式会社 磁気記録媒体
JP6133749B2 (ja) * 2013-04-26 2017-05-24 国立大学法人 東京大学 酸化鉄ナノ磁性粒子粉およびその製造方法、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜およびその製造方法
WO2016047559A1 (ja) * 2014-09-24 2016-03-31 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
WO2016117511A1 (ja) * 2015-01-19 2016-07-28 国立大学法人 東京大学 ε酸化鉄を含む配向体とその製造方法、並びに製造装置
WO2016199937A1 (ja) * 2015-06-12 2016-12-15 国立大学法人 東京大学 イプシロン酸化鉄とその製造方法、磁性塗料および磁気記録媒体
JP7143764B2 (ja) * 2016-10-17 2022-09-29 ソニーグループ株式会社 磁性粉末およびその製造方法、ならびに磁気記録媒体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029861A1 (fr) 2006-09-01 2008-03-13 The University Of Tokyo Cristal magnétique pour matériau d'absorption d'onde radio et absorbant d'onde radio
JP2008063201A (ja) 2006-09-08 2008-03-21 Univ Of Tokyo 磁気特性を改善したε酸化鉄粉末
JP2008063199A (ja) 2006-09-08 2008-03-21 Univ Of Tokyo ε酸化鉄系の磁性材料
JP2008174405A (ja) 2007-01-16 2008-07-31 Univ Of Tokyo ε−Fe2O3結晶の製法
WO2008149785A1 (ja) 2007-05-31 2008-12-11 The University Of Tokyo 磁性酸化鉄粒子、磁性体、および電波吸収体
JP2016174135A (ja) 2014-09-24 2016-09-29 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
JP2016135737A (ja) * 2015-01-19 2016-07-28 国立大学法人 東京大学 ε酸化鉄を含む配向体とその製造方法、並びに製造装置
JP2017001944A (ja) * 2015-06-12 2017-01-05 国立大学法人 東京大学 イプシロン酸化鉄とその製造方法、磁性塗料および磁気記録媒体
JP2017024981A (ja) * 2015-07-27 2017-02-02 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉の製造方法
WO2018088050A1 (ja) * 2016-11-11 2018-05-17 ソニー株式会社 磁性粉末の製造方法、および磁気記録媒体の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. NAMAIM. YOSHIKIYOK. YAMADAS. SAKURAIT. GOTOT. YOSHIDAT MIYAZAKIM. NAKAJIMAT. SUEMOTOH. TOKORO, NATURE COMMUNICATIONS, vol. 3, 2012
A. NAMAIS. SAKURAIM. NAKAJIMAT. SUEMOTOK. MATSUMOTOM. GOTOS. SASAKIS. OHKOSHI, J. AM. CHEM. SOC., vol. 131, 2009, pages 18299 - 18303
S. OHKOSHIA. NAMAIK. IMOTOM. YOSHIKIYOW. TARORAK. NAKAGAWAM. KOMINEY. MIYAMOTOT. NASUS. OKA, SCIENTIFIC REPORTS, vol. 5, 2015
S. OHKOSHIA. NAMAIM. YOSHIKIYOK. IMOTOK. TAMASAKIK. MATSUNOO. INOUET. IDEK. MASADA, M.GOTO, T. GOTO, ANGEW. CHEM. INT. ED., vol. 55, 2016, pages 11403 - 11406
S. OHKOSHIS. KUROKIS. SAKURAIK. MATSUMOTOK. SATOS. SASAKI, ANGEW. CHEM. INT. ED., vol. 46, 2007, pages 8392 - 8395

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115916704A (zh) * 2020-09-10 2023-04-04 同和电子科技有限公司 铁系氧化物磁粉分散浆料及其制造方法

Also Published As

Publication number Publication date
JP2023059917A (ja) 2023-04-27
US20210300779A1 (en) 2021-09-30
JP7458524B2 (ja) 2024-03-29
US11401170B2 (en) 2022-08-02
JP7258622B2 (ja) 2023-04-17
EP3780023A4 (en) 2022-04-20
JP2019175539A (ja) 2019-10-10
EP3780023A1 (en) 2021-02-17
CN111819642A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2019189282A1 (ja) 鉄系酸化物磁性粉およびその製造方法
JP6010181B2 (ja) 鉄系酸化物磁性粒子粉およびその製造方法並びに塗料および磁気記録媒体
JP5966064B1 (ja) 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
JP7033071B2 (ja) イプシロン型鉄酸化物磁性粒子及びその製造方法、磁性粒子から構成される磁性粉ならびに磁性塗料および磁気記録媒体
EP2990382B1 (en) Magnetic iron oxide nanoparticle powder, process for producing same, thin film of magnetic iron oxide nanoparticles comprising said magnetic iron oxide nanoparticle powder, and process for producing same
JP6676493B2 (ja) 鉄系酸化物磁性粒子粉の製造方法
JP6714524B2 (ja) 表面改質鉄系酸化物磁性粒子粉およびその製造方法
WO2016047559A1 (ja) 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
WO2016111224A1 (ja) 鉄系酸化物磁性粒子粉およびその製造方法並びに塗料および磁気記録媒体
WO2021065936A1 (ja) 鉄系酸化物磁性粉およびその製造方法
WO2015194647A1 (ja) 酸化鉄ナノ磁性粉およびその製造方法
JP6480715B2 (ja) 鉄系酸化物磁性粒子粉の前駆体およびそれを用いた鉄系酸化物磁性粒子粉の製造方法
JP2020126942A (ja) 鉄系酸化物磁性粉およびその製造方法
WO2021065935A1 (ja) 鉄系酸化物磁性粉およびその製造方法
JP2021190477A (ja) 鉄系酸化物磁性粉およびその製造方法
WO2022054571A1 (ja) 鉄系酸化物磁性粉分散スラリーおよびその製造方法
WO2021187329A1 (ja) 鉄系酸化物磁性粉の製造方法
JP2022135542A (ja) 鉄系酸化物磁性粉の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019776115

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019776115

Country of ref document: EP

Effective date: 20201029