WO2007074598A1 - 電気回路装置 - Google Patents

電気回路装置 Download PDF

Info

Publication number
WO2007074598A1
WO2007074598A1 PCT/JP2006/323451 JP2006323451W WO2007074598A1 WO 2007074598 A1 WO2007074598 A1 WO 2007074598A1 JP 2006323451 W JP2006323451 W JP 2006323451W WO 2007074598 A1 WO2007074598 A1 WO 2007074598A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
circuit device
plates
conductor plates
current
Prior art date
Application number
PCT/JP2006/323451
Other languages
English (en)
French (fr)
Inventor
Kazuya Niki
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to US12/159,104 priority Critical patent/US8027146B2/en
Priority to JP2007551867A priority patent/JP4912324B2/ja
Priority to CN200680049176XA priority patent/CN101346787B/zh
Publication of WO2007074598A1 publication Critical patent/WO2007074598A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/35Feed-through capacitors or anti-noise capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0014Capacitor filters, i.e. capacitors whose parasitic inductance is of relevance to consider it as filter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electric circuit device, and more particularly to an electric circuit device having a low impedance.
  • LSI Large Scale Integrated circuit
  • the high-frequency current generated in the LSI or the like is not limited to the vicinity of the LSI but spreads over a wide area in the mounting circuit board such as a printed circuit board, and is inductively coupled to the signal wiring and ground wiring. It leaks as electromagnetic waves.
  • This transmission line type noise filter includes first and second conductors, a dielectric layer, and first and second anodes. Each of the first and second conductors has a plate shape, and the dielectric layer is disposed between the first and second conductors.
  • the first anode is connected to one end in the length direction of the first conductor, and the second anode is connected to the other end in the length direction of the first conductor body.
  • the second conductor functions as a cathode for connection to the reference potential.
  • the first conductor, the dielectric layer, and the second conductor constitute a capacitor. Further, the thickness of the first conductor is set so as to substantially suppress the temperature rise caused by the direct current component of the current flowing through the first conductor.
  • the transmission line type noise filter is connected between the power source and the LSI, and the current from the power source is connected to the LSI by a path including the first anode, the first conductor, and the second anode.
  • the AC current generated in the LSI is attenuated.
  • the transmission line type noise filter is a noise filter having a capacitor configuration and using the first and second conductors constituting the two electrodes of the capacitor as the transmission line.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-80773
  • the transmission line type noise filter has an impedance represented by (inductance / capacitance) 1/2 and does not employ a means for reducing the inductance.
  • the impedance shifts from a region where the capacitance is dominant to a region where the inductance is dominant as the frequency increases.
  • the conventional transmission line type noise filter has a problem that it cannot realize an impedance lower than the impedance determined by the inductance inherent in the transmission line type noise filter.
  • the present invention has been made in order to solve the problem, and an object of the present invention is to provide an electric circuit device capable of reducing impedance by reducing inductance.
  • Another object of the present invention is to provide an electric circuit device capable of suppressing leakage of a high-frequency current generated in an electric load circuit to the power supply side.
  • the electric circuit device includes an electric element and a current control member.
  • the electrical element is connected between the first and second terminals.
  • the current control member causes at least an alternating current component of the first current supplied with the first terminal force to flow through the conductor plate in the electrical element, and supplies a second current that is a return current of the first current to the second current.
  • the terminal force is received, and the AC component of the received second current flows at least on the conductor plate in the electric element.
  • the electrical element includes n (n is a positive integer) first conductor plates and m (m is a positive integer) second conductor plates. n first Each of the conductor plates causes at least the alternating current component of the first current to flow from the first terminal side to the second terminal side.
  • the m second conductor plates are alternately stacked with the n first conductor plates, and each causes an AC component of the second current to flow from at least the second terminal side to the first terminal side.
  • the electric element further includes first and second anode electrodes and first and second cathode electrodes.
  • the first anode electrode is disposed on the first terminal side and connected to one end of the n first conductor plates.
  • the second anode electrode is disposed on the second terminal side and is connected to the other end of the n first conductor plates.
  • the first cathode electrode is disposed on the first terminal side and connected to one end of the m second conductor plates.
  • the second cathode electrode is disposed on the second terminal side and connected to the other ends of the m second conductor plates.
  • the current control member includes a third conductor plate connected to the first and second cathode electrodes and having an impedance larger than the impedance of the m second conductor plates.
  • the electric element further includes first and second anode electrodes and first and second cathode electrodes.
  • the first anode electrode is disposed on the first terminal side and connected to one end of the n first conductor plates.
  • the second anode electrode is disposed on the second terminal side and is connected to the other end of the n first conductor plates.
  • the first cathode electrode is disposed on the first terminal side and connected to one end of the m second conductor plates.
  • the second cathode electrode is disposed on the second terminal side and connected to the other ends of the m second conductor plates.
  • the current control member causes the alternating current component of the first current to flow through the n first conductor plates due to the skin effect, and causes the direct current component of the first current to flow from the first anode electrode to the second anode. Flow to electrode.
  • an electric circuit device includes a substrate and an electric element.
  • the electrical element is disposed on the substrate and connected between the first and second terminals.
  • the electrical element includes first and second anode electrodes, first and second cathode electrodes, n (n is a positive integer) number of first conductor plates, and m (m is a positive integer).
  • Second conductor plates The first anode electrode is disposed on the first terminal side.
  • the second anode electrode is disposed on the second terminal side.
  • the first cathode electrode is disposed on the first terminal side.
  • the second cathode electrode is disposed on the second terminal side.
  • the n first conductor plates are connected to the first and second anode electrodes.
  • the m second conductor plates are alternately stacked with the n first conductor plates, and are connected to the first and second cathode electrodes.
  • the substrate includes first to fourth conductor portions.
  • the first conductor portion is connected to the first anode electrode. Connected.
  • the second conductor portion is provided separately from the first conductor portion, and is connected to the second anode electrode.
  • the third conductor portion is connected to the first cathode electrode.
  • the fourth conductor portion is provided separately from the third conductor portion, and is connected to the second cathode electrode.
  • the electric circuit device includes a substrate and an electric element.
  • the electrical element is disposed on the substrate and connected between the first and second terminals.
  • the electrical element includes first and second anode electrodes, first and second cathode electrodes, n (n is a positive integer) number of first conductor plates, and m (m is a positive integer). ) Second conductor plates.
  • the first anode electrode is disposed on the first terminal side.
  • the second anode electrode is disposed on the second terminal side.
  • the first cathode electrode is disposed on the first terminal side.
  • the second cathode electrode is disposed on the second terminal side.
  • the n first conductor plates are connected to the first and second anode electrodes.
  • the m second conductor plates are alternately stacked with the n first conductor plates, and are connected to the first and second cathode electrodes.
  • the substrate includes first to fourth conductor portions and first and second slits.
  • the first conductor portion is connected to the first anode electrode.
  • the second conductor portion is connected to the second anode electrode.
  • the first slit is provided between the first conductor portion and the second conductor portion.
  • the third conductor portion is connected to the first cathode electrode.
  • the fourth conductor portion is connected to the second cathode electrode.
  • the second slit is provided between the third conductor portion and the fourth conductor portion.
  • the first slit is formed of the same slit as the second slit.
  • the electric circuit device includes an electric element and a first conductor plate.
  • the electrical element is connected between the first and second terminals.
  • the first conductor plate is connected to both ends of the electric element.
  • the electrical element includes first and second anode electrodes, first and second anode electrodes, n (n is a positive integer) number of second conductor plates, and m (m is a positive integer).
  • the first anode electrode is disposed on the first terminal side.
  • the second anode electrode is disposed on the second terminal side.
  • the first cathode electrode is disposed on the first terminal side.
  • the second cathode electrode is disposed on the second terminal side.
  • the n second conductor plates are connected to the first and second anode electrodes.
  • the m third conductor plates are alternately stacked with the n second conductor plates, and are connected to the first and second cathode electrodes.
  • the first conductor plate is connected between the first and second anode electrodes and has a concavo-convex portion having a depth equal to or greater than the minimum depth on the surface.
  • the minimum depth is the flatness of the surface of the first conductor plate shallower than the skin depth d due to the skin effect. This is the depth to suppress the AC component of the current flowing in the surface layer of the first conductor plate due to the skin effect.
  • the first conductor plate includes first and second connection portions.
  • the first connection portion is a connection portion with the first anode electrode.
  • the second connection portion is a connection portion with the second anode electrode.
  • the first and second connection portions have a width wider than the width of the electric element.
  • the first conductor plate includes first and second connection portions.
  • the first connection portion is a connection portion with the first anode electrode.
  • the second connection portion is a connection portion with the second anode electrode.
  • the first and second connecting portions have extending portions extending in the width direction of the electric element and in the Z direction or the length direction of the electric element.
  • the minimum depth is the first due to a skin effect shallower than a skin depth determined by the highest frequency among the AC current components generated by the electric load circuit connected to the element.
  • the depth is set to suppress the alternating current component having the highest frequency flowing through the surface layer of the conductor plate.
  • the concavo-convex portion has a depth equal to or greater than the skin depth.
  • the skin depth is the skin depth determined by the highest frequency.
  • the concavo-convex portion has a depth not less than the skin depth and not more than the maximum depth.
  • the maximum depth is based on the cross-sectional area of the first conductor plate that is required to flow the DC current supplied to one electric load circuit to the first conductor plate when there is one electric load circuit.
  • j j is an integer of 2 or more
  • the direct current supplied to the entire j electric load circuits is passed through the first conductor plate. This is determined on the basis of the cross-sectional area of the first conductor plate necessary for this purpose.
  • the skin depth is the skin depth at the lowest frequency among the frequencies of the alternating current component generated by the electric load circuit.
  • the alternating current component of the current is passed through the conductor plate in the electrical element, and the alternating current component of the return current is passed through the other conductor plate in the electrical element.
  • the conductor plate is magnetically coupled to other conductor plates, and the effective inductance of the conductor plate is smaller than the self-inductance of the conductor plate.
  • the impedance of the electric circuit device can be reduced. Also, the AC component of the return current can be confined in the electric element, and leakage of the AC component to the power source can be suppressed.
  • ⁇ 1 It is a schematic diagram showing a configuration of an electric circuit device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of the electric element shown in FIG.
  • FIG. 3 is a diagram for explaining dimensions of a dielectric layer and a conductor plate shown in FIG. 1.
  • FIG. 4 is a plan view of two adjacent conductor plates.
  • FIG. 5 is a cross-sectional view of electrical element 100 taken along line V—V shown in FIG.
  • FIG. 6 is a cross-sectional view of electrical element 100 between lines VI and VI shown in FIG.
  • FIG. 7 is a first process diagram for explaining a method of manufacturing the electrical element shown in FIG.
  • FIG. 8 is a second process diagram for explaining a method of manufacturing the electrical element shown in FIG.
  • FIG. 9 is a third process diagram for explaining a method of manufacturing the electrical element shown in FIG.
  • FIG. 10 is a fourth process diagram for explaining the manufacturing method of the electric element shown in FIG. [11]
  • FIG. 11 is a fifth process chart for explaining the method for manufacturing the electrical element shown in FIG. [12]
  • FIG. 12 is a perspective view for explaining the function of the electric element shown in FIG.
  • FIG. 13 is a diagram for explaining a magnetic flux density generated by a current flowing through a conducting wire.
  • FIG. 14 is a diagram for explaining the effective inductance when magnetic interference occurs between two conductors.
  • FIG. 15 is a first conceptual diagram for explaining a mechanism for reducing the inductance of the electric element shown in FIG.
  • FIG. 16 is a second conceptual diagram for explaining a mechanism for reducing the inductance of the electric element shown in FIG.
  • FIG. 17 is a diagram showing the frequency dependence of the impedance of the electrical element shown in FIG. [18]
  • FIG. 18 is a conceptual diagram showing a usage state of the electric element shown in FIG.
  • FIG. 19 is a perspective view showing a configuration of the substrate shown in FIG. 1.
  • FIG. 20 A perspective view for explaining the electric circuit device shown in FIG. 1 in detail.
  • FIG. 21 is a cross-sectional view of the electric circuit device between XXI and XXI shown in FIG.
  • FIG. 22 is a cross-sectional view of the electric circuit device between lines XXII and XXII shown in FIG.
  • FIG. 23] is a diagram showing the frequency dependence of the impedance of the electric circuit device shown in FIG. 20.
  • ⁇ 24] is a diagram showing the relationship between the electrical separation degree and the frequency between the two conductor plates shown in FIG.
  • FIG. 25 is another perspective view showing the configuration of the substrate shown in FIG. 1.
  • FIG. 26 is still another perspective view showing the configuration of the substrate shown in FIG.
  • FIG. 27 is still another perspective view showing the configuration of the substrate shown in FIG.
  • FIG. 28] is still another perspective view showing the configuration of the substrate shown in FIG.
  • FIG. 29 is still another perspective view showing the configuration of the substrate shown in FIG.
  • FIG. 30 is a plan view showing another configuration of the substrate shown in FIG. 1.
  • FIG. 31 is a plan view showing another configuration of the substrate shown in FIG. 1.
  • FIG. 32 is a plan view showing another configuration of the substrate shown in FIG. 1.
  • FIG. 33 is a plan view showing another configuration of the substrate shown in FIG. 1.
  • FIG. 34 is a diagram showing the relationship between the impedance and frequency of the electric circuit device using the substrates shown in FIGS. 30 to 33, respectively.
  • FIG. 35 is a plan view showing another configuration of the substrate shown in FIG. 1.
  • FIG. 36 is a diagram showing a change in impedance with respect to the length of a slit composed of three slits when an electric circuit device is manufactured using the substrate shown in FIG.
  • FIG. 37 is a plan view showing another configuration of the substrate shown in FIG. 1.
  • FIG. 38 is a diagram showing the relationship between the slit length shown in FIG. 37 and S 21.
  • FIG. 39 is a plan view showing another configuration of the substrate shown in FIG. 1.
  • FIG. 40 is a plan view showing another configuration of the substrate shown in FIG. 1.
  • FIG. 41 is a plan view showing another configuration of the substrate shown in FIG. 1.
  • FIG. 42 is a plan view showing another configuration of the substrate shown in FIG. 1.
  • FIG. 43 is a plan view showing another configuration of the substrate shown in FIG. 1.
  • FIG. 44 is a sectional view of the substrate taken along line XXXXIV—XXXXIV shown in FIG. 43.
  • FIG. 45 is a conceptual diagram showing another configuration of the electric circuit device according to the first embodiment.
  • FIG. 46 is another plan view of two adjacent conductor plates. 47 is a diagram showing the frequency dependence of the impedance of the electric circuit device shown in FIG. 45.
  • FIG. 48 is a perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • FIG. 49 is a perspective view of the conductor plate shown in FIG. 48.
  • FIG. 50 is a cross-sectional view in the length direction of the conductor plate shown in FIG. 49.
  • FIG. 50 is a cross-sectional view in the length direction of the conductor plate shown in FIG. 49.
  • FIG. 51 is a first conceptual diagram for explaining a depth range of the uneven surface shown in FIG. 50.
  • FIG. 52 is a second conceptual diagram for explaining the depth range of the uneven surface shown in FIG. 50.
  • FIG. 53 is a first conceptual diagram showing a connection pattern between an electric circuit device and a CPU.
  • FIG. 54 is a second conceptual diagram showing a connection pattern between the electric circuit device and the CPU.
  • FIG. 55 is another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • FIG. 56 is still another perspective view showing the configuration of the electric circuit device according to Embodiment 2.
  • FIG. 57 is still another perspective view showing the configuration of the electric circuit device according to Embodiment 2.
  • FIG. 58 is still another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • FIG. 59 is still another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • FIG. 60 is still another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • FIG. 61 is still another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • FIG. 62 is still another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • FIG. 63 is still another perspective view showing the configuration of the electric circuit device according to Embodiment 2.
  • FIG. 64 is still another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • FIG. 1 is a schematic diagram showing a configuration of an electric circuit device according to Embodiment 1 of the present invention.
  • an electric circuit device 101 according to Embodiment 1 of the present invention includes an electric element 100 and a substrate 200.
  • the electric element 100 is disposed on one main surface 201A of the substrate 200.
  • FIG. 2 is a schematic diagram showing the configuration of the electric element 100 shown in FIG. Refer to Figure 2
  • the element 100 includes dielectric layers 1 to 5, conductor plates 11, 12, 21 to 23, side anode electrodes 10A and 10B, anode electrodes IOC and 10D, side cathode electrodes 20A, 20B, 20C, and 20D. And cathode electrodes 20E and 20F.
  • the dielectric layers 1 to 5 are sequentially stacked.
  • Each of the conductor plates 11, 12, 21 to 23 has a flat plate shape.
  • the conductor plate 21 is disposed between the dielectric layers 1 and 2, and the conductor plate 11 is disposed between the dielectric layers 2 and 3.
  • the conductor plate 22 is disposed between the dielectric layers 3 and 4, the conductor plate 12 is disposed between the dielectric layers 4 and 5, and the conductor plate 23 is disposed on one main surface 5A of the dielectric layer 5. .
  • the dielectric layers 1 to 5 support the conductor plates 21, 11, 22, 12, and 23, respectively.
  • the side anode electrode 10A is connected to one end of the conductor plates 11 and 12, and is formed on the side surface 100A of the electric element 100 (the side surface that is the side surface of the dielectric layers 1 to 4).
  • the side anode electrode 10B is connected to the other ends of the conductor plates 11 and 12, and is formed on a side surface 100B (a side surface which is a side surface of the dielectric layers 1 to 4) facing the side surface 100A of the electric element 100.
  • the side anode electrode 10B is disposed to face the side anode electrode 10A.
  • Anode electrode 10C is arranged on bottom surface 100C of electric element 100, and is connected to side anode electrode 10A.
  • the anode electrode 10D is disposed on the bottom surface 100C of the electric element 100 and connected to the side anode electrode 10B.
  • the side cathode electrode 20A is connected to the conductor plates 21 to 23 on one end side of the conductor plates 21 to 23, and is disposed on the front surface 100D of the electric element 100.
  • the side cathode electrode 20B is connected to the conductor plates 21 to 23 on one end side of the conductor plates 21 to 23, and is disposed on the back surface 100E facing the front surface 100D of the electric element 100.
  • the side cathode electrode 20B is disposed to face the side cathode electrode 20A.
  • the side cathode electrode 20C is connected to the conductor plates 21 to 23 on the other end side of the conductor plates 21 to 23, and is disposed on the front surface 100D of the electric element 100.
  • the side cathode electrode 20D is connected to the conductor plates 21 to 23 on the other end side of the conductor plates 21 to 23, and is disposed on the back surface 100E facing the front surface 100D of the electric element 100.
  • the side cathode electrode 20D is disposed to face the side cathode electrode 20C.
  • the cathode electrode 20E is connected to the side cathode electrodes 20A and 20B, and is arranged on the bottom surface 100C of the electric element 100.
  • Cathode electrode 20F is connected to side cathode electrodes 20C and 20D, Located on the bottom 100C of the child 100.
  • the electric element 100 has a structure in which the conductor plates 11, 12, 21 to 23 are alternately arranged with the dielectric layers 1 to 5 interposed therebetween, and the two anode electrodes IOC and 10D, It has two cathode electrodes 20E and 20F.
  • Each of the dielectric layers 1 to 5 is made of, for example, barium titanate (BaTiO 3),
  • Electrode electrodes 10A, 10B, anode electrodes IOC, 10D, conductor plates 11, 12, 21-23, side cathode electrodes 20A, 20B, 20C, 20D and cathode electrodes 20E, 20F are made of, for example, nickel (Ni) Become.
  • FIG. 3 is a diagram for explaining the dimensions of the dielectric layers 1 and 2 and the conductor plates 11 and 21 shown in FIG.
  • each of dielectric layers 1 and 2 has length L1 in direction DR1 in which current flows through conductor plates 11 and 21, and width W1 in direction DR2 perpendicular to direction DR1.
  • the length L1 is set to 15 mm, for example, the width W1 is set to 13 mm, for example, and the thickness D1 is set to 25 m, for example.
  • the conductive plate 11 has a length L1 and a width W2.
  • the width W2 is set to 11 mm, for example.
  • the conductor plate 21 has a length L2 and a width W1.
  • the length L2 is set to 13 mm, for example.
  • each of the conductor plates 11 and 21 has a film thickness in the range of 10 m to 20 ⁇ m, for example.
  • Each of dielectric layers 3 to 5 has the same length L1, the same width W1, and the same thickness D1 as dielectric layers 1 and 2 shown in FIG.
  • the conductor plate 12 has the same length Ll, the same width W2, and the same film thickness as the conductor plate 11 shown in FIG. 3, and each of the conductor plates 22 and 23 is the same as the conductor plate 21 shown in FIG. Has the same length L2, the same width W1, and the same film thickness.
  • the conductor plates 11 and 12 have different lengths and different widths from the conductor plates 21 to 23. This is to prevent the side anode electrodes 10A, 10B connected to the conductor plates 11, 12 from being short-circuited with the side cathode electrodes 20A, 20B, 20C, 20D connected to the conductor plates 21-23.
  • FIG. 4 is a plan view of two adjacent conductor plates. Referring to FIG. 4, when conductor plate 11 and conductor plate 21 are projected onto one plane, conductor plates 11 and 21 have overlapping portions 20.
  • the overlapping portion 20 between the conductor plate 11 and the conductor plate 21 has a length L2 and a width W2.
  • the overlapping portion of conductor plate 11 and conductor plate 22, the overlapping portion of conductor plate 12 and conductor plate 22, and the overlapping portion of conductor plate 12 and conductor plate 23 are also the same length L2 and the same width W2 as overlap portion 20.
  • length L2 and width W2 are set so that W2 ⁇ L2.
  • FIG. 5 is a cross-sectional view of electrical element 100 taken along line V—V shown in FIG. Figure 6 shows
  • FIG. 3 is a cross-sectional view of the electric element 100 between lines VI and VI shown in FIG.
  • conductor plate 21 is in contact with both dielectric layers 1 and 2
  • conductor plate 11 is in contact with both dielectric layers 2 and 3.
  • Conductor plate 22 is in contact with both dielectric layers 3 and 4, and conductor plate 1
  • the side cathode electrodes 20C, 20D are not connected to the conductor plates 11, 12, but are connected to the conductor plates 21-23.
  • the cathode electrode 20F is disposed on the back surface 1A of the dielectric layer 1 and connected to the side cathode electrodes 20C and 20D (see FIG. 5).
  • the side anode electrodes 10A and 10B are not connected to the conductor plates 21 to 23 but are connected to the conductor plates 11 and 12.
  • the anode electrodes IOC and 10D are disposed on the back surface 1A of the dielectric layer 1, and are connected to the side anode electrodes 1OA and 1OB, respectively (see FIG. 6).
  • conductor plate 21Z dielectric layer 2Z conductor plate 11 conductor plate 11Z dielectric layer 3Z conductor plate
  • 3 constitutes four capacitors connected in parallel between the anode electrodes IOC, 10D and the cathode electrodes 20E, 20F.
  • the electrode area of each capacitor is equal to the area of the overlapping portion 20 (see Fig. 4) of two adjacent conductor plates.
  • FIGS. 7 to 11 are first to fifth process diagrams for explaining a method of manufacturing the electrical element 100 shown in FIG. 2, respectively.
  • the length L2 and the width W1 are applied to the surface IB of the green sheet to be a dielectric layer l (BaTiO) having a length Ll, a width W1 and a thickness D1.
  • Ni paste is applied by screen printing to the area having the conductive layer 21 to form a conductive plate 21 made of Ni on the surface 1B of the dielectric layer 1.
  • dielectric layers 3 and 5 made of BaTiO were fabricated, and the fabricated dielectric layers 3
  • a dielectric layer 2 (BaTiO 3) having a length Ll, a width Wl, and a thickness D1 is formed.
  • a Ni paste is applied by screen printing to a region 2 having a length L1 and a width W2 on the surface 2A of the three-sheet, and a conductor plate 11 such as N is formed on the surface 2A of the dielectric layer 2.
  • a conductive plate 12 made of Ni is formed on the substrate (see Fig. 8).
  • the dielectric sheets 1 to 5 on which the conductor plates 21, 11, 22, 12, and 23 are respectively formed are sequentially laminated (see FIG. 9).
  • the conductor plates 11 and 12 connected to the anode electrodes IOC and 10D and the conductor plates 21 to 23 connected to the cathode electrodes 20E and 20F are alternately laminated.
  • Ni paste is applied by screen printing to form side anode electrodes 10A, 10B, cathode electrodes IOC, 10D, side cathode electrodes 20A, 20B, 20C, 20D, and cathode electrodes 20E, 2 OF (Fig. 10 and Figure 11). Thereafter, the device manufactured up to FIG. 11 is fired at a firing temperature of 1350 ° C., and the electric device 100 is completed.
  • a material having a lower melting point and higher conductivity than the internal electrodes can be used for the side electrodes (external electrodes) by a post-fire.
  • the side electrode (external electrode) in consideration of solder wettability, etc., it may be treated with Ni, Au, Su, etc. after firing as necessary.
  • a dielectric paste is printed and dried, a conductor is printed thereon, and further a dielectric paste is printed. There is also a method of performing the same process and stacking.
  • FIG. 12 is a perspective view for explaining the function of electric element 100 shown in FIG. Referring to FIG. 12, when a current is passed through electrical element 100, cathode electrodes 20E and 20F are connected to the ground potential, and the current flowing through conductor plates 11 and 12 is opposite to the current flowing through conductor plates 21 to 23. An electric current is passed through the electric element 100 so that
  • a current is passed through the electric element 100 so that the current flows from the anode electrode 10C to the anode electrode 10D. Then, the current flows from the anode electrode 10C to the conductor plates 11 and 12 through the side anode electrode 10A, flows through the conductor plates 11 and 12 in the direction of the arrow 30, and further passes through the side anode electrode 10B. Flows to anode electrode 10D.
  • the return current of the current flowing through the conductor plates 11 and 12 also flows through the cathode plates 20F through the side cathode electrodes 20C and 20D to the conductor plates 21 to 23, and the conductor plates 21 to 23 are opposite to the arrow 30. Flows in the direction of the arrow 40 which is the direction of the current, and further flows to the cathode electrode 20E via the side cathode electrodes 20A and 20B.
  • the current II flowing through the conductor plates 11 and 12 and the current 12 flowing through the conductor plates 21 to 23 are equal in magnitude and reverse in direction.
  • FIG. 13 is a diagram for explaining the magnetic flux density generated by the current flowing through the conducting wire.
  • FIG. 14 is a diagram for explaining the effective inductance when magnetic interference occurs between two conductors.
  • is the permeability of the vacuum.
  • the effective inductance L of the conductor A is determined by the mutual inductance L between the conductors B and the self-induction of the conductor A.
  • FIG. 15 and FIG. 16 are first and second conceptual diagrams for explaining a mechanism for reducing the inductance of the electric element 100 shown in FIG. 2, respectively.
  • the conductor plate 11 is disposed at the position of the conductor plates 21, 22 to 25 m
  • the conductor plate 12 is disposed at the position of the conductor plates 22, 23 to 25 / zm.
  • the self-inductances of the conductor plates 11 and 12 are the conductor plates 11 and 12 and the conductor plates 21 to 23.
  • the length L2 in the overlapping portion 20 is greater than or equal to the width W2
  • the length L2 in the overlapping portion 20 is shorter than the width W2 and is greatly reduced. The reason will be described with reference to FIG. 15 and FIG.
  • FIG. 15 shows a case where the length L2 in the overlapping portion 20 is greater than or equal to the width W2 and FIG. 16 shows a case where the length L2 in the overlapping portion 20 is shorter than the width W2.
  • the arrow represents a current having a spread in the direction DR2.
  • the area of the overlapping portion 20 is the same.
  • the current II introduced into the conductor plate 11 from the side anode electrode 10A is longer than the impedance when the current II spreads in the width direction DR2 of the conductor plate 11 This is because the impedance when flowing to DR1 becomes smaller.
  • the current 12 introduced from the side cathode electrodes 20C, 20D to the conductor plate 21 is larger than the impedance when the conductor plate 21 spreads in the width direction DR2. This is because the impedance when 12 flows in the length direction DR1 of the conductor plate 21 becomes smaller.
  • the current II flows through the substantially central portion of the overlapping portion 20 in the width direction DR2, and the current 12 is overlapped in the width direction DR2. Flows near the end of 20.
  • the magnetic interference between the conductor plate 11 and the conductor plate 21 is relatively reduced, and the effective inductance of the conductor plate 11 is less than that of the conductor plate 21.
  • the degree of being smaller than the self-inductance of the conductor plate 11 due to the mutual inductance between them is relatively small. The same applies to the degree to which the effective inductance of the conductor plate 12 is smaller than the self-inductance of the conductor plate 12.
  • the impedance Zs of the electric element 100 is expressed by the following equation.
  • the effective capacitance C in the low frequency region where the capacitance is dominant, the effective capacitance C is increased, so that the impedance Zs is decreased, and the inductance is dominant in the high frequency region where the inductance is dominant.
  • the impedance Zs decreases due to the decrease in the effective inductance L described above.
  • the electric element 100 has a relatively low impedance Zs in a wide frequency range.
  • FIG. 17 is a diagram showing the frequency dependence of the impedance of the electric element 100 shown in FIG.
  • the horizontal axis represents frequency
  • the vertical axis represents impedance.
  • the curve kl is the impedance circumference when the length L2 at the overlapping portion 20 is equal to or greater than the width W2.
  • the curve k2 shows the frequency dependence
  • the curve k2 shows the frequency dependence of the impedance when the length L2 in the overlapping portion 20 is shorter than the width W2.
  • the low frequency region below 0.006 GHz is the frequency region where capacitance is dominant
  • the high frequency region above 0.01 GHz is the frequency region where inductance is dominant.
  • the effective inductance of the electrical element 100 is relatively larger than when the length L2 of the overlapping portion 20 is shorter than the width W2. Inductance is dominant because the impedance decreases (in the high frequency region of 0.01 GHz or higher).
  • the impedance (curved line kl) of the electric element 100 in which the length L2 of the overlapping portion 20 is equal to or larger than the width W2 is the overlapping portion 20
  • the length L2 of 20 is less than the impedance (curve k2) of the electrical element shorter than the width W2 / J.
  • the impedance of the electric element 100 is reduced in the frequency region where the inductance is dominant. it can.
  • FIG. 18 is a conceptual diagram showing a usage state of electric element 100 shown in FIG.
  • electric element 100 is connected between a power supply 90 and a CPU (Central Processing Unit) 110.
  • the cathode electrodes 20E and 20F of the electric element 100 are connected to the ground potential.
  • the power supply 90 has a positive terminal 91 and a negative terminal 92.
  • the CPU 110 has a positive terminal 111 and a negative terminal 112.
  • the lead wire 121 has one end connected to the positive terminal 91 of the power source 90 and the other end connected to the anode electrode 10C of the electric element 100.
  • the lead wire 122 has one end connected to the negative terminal 92 of the power source 90 and the other end connected to the cathode electrode 20E of the electric element 100.
  • Lead wire 123 has one end connected to anode electrode 10D of electric element 100 and the other end C. Connected to the positive terminal 111 of PU110.
  • the lead wire 124 has one end connected to the negative electrode 20F of the electric element 100 and the other end connected to the negative terminal 112 of the SCPU 110.
  • the current I output from the positive electrode terminal 91 of the power supply 90 flows to the anode electrode 10C of the electric element 100 via the lead wire 121, and the side anode electrode 10A, the conductor plate 11, and the like pass through the electric element 100. 12, side anode electrode 10B and anode electrode 10D flow in this order. Then, the current I flows from the anode electrode 10D to the CPU 110 via the lead wire 123 and the positive electrode terminal 111.
  • the current I is supplied to the CPU 110 as a power supply current.
  • the CPU 110 is driven by the current I and outputs a return current Ir having the same magnitude as the current I from the negative terminal 112.
  • the return current Ir flows to the cathode electrode 20F of the electric element 100 via the lead wire 124, and in the electric element 100, the side cathode electrodes 20C and 20D, the conductor plates 21 to 23, and the side cathode electrodes 20A and 20B And the cathode electrode 20E.
  • the return current Ir flows from the cathode electrode 20E to the power source 90 via the lead wire 122 and the negative electrode terminal 92.
  • the current I flows through the conductor plates 11 and 12 to the power source 90 side CPU1 10 side, and the return current Ir flows from the CPU 110 side to the power source 90 side through the conductor plates 21 to 23.
  • the effective inductance L of the electric element 100 is relatively decreased.
  • the electric element 100 includes four capacitors connected in parallel, the effective capacitance C of the electric element 100 is increased. Therefore, the impedance Zs of the electric element 100 is reduced.
  • the CPU 110 is driven by the current I supplied from the power supply 90 via the electric element 100, and generates an unnecessary high-frequency current.
  • This unnecessary high-frequency current leaks to the electric element 100 via the lead wires 123 and 124. Since the electric element 100 has a low impedance Zs as described above, the unnecessary high-frequency current is generated by the electric element 100 and the CPU 110. The leakage from the electric element 100 to the power source 90 side is suppressed.
  • the operating frequency of CPU 110 tends to shift to higher frequencies, and operation at around 1 GHz is also assumed.
  • the impedance Zs of the electrical element 100 is mainly determined by the effective inductance L, and the effective inductance L
  • the electric element 100 functions as a noise filter that traps unnecessary high-frequency current generated by the CPU 110 operating at a high operating frequency in the vicinity of the CPU 110.
  • length L2 and width W2 of overlapping portion 20 are set so that L2 ⁇ W2. Then, as the operating frequency of the CPU 110 becomes relatively high, L2Z W2 is set to a relatively large value. As a result, the impedance of the electric element 100 in the high frequency region is greatly reduced.
  • electrical element 100 is connected between power supply 90 and CPU 110 and functions as a noise filter that traps unnecessary high-frequency current generated by CPU 110 in the vicinity of CPU 110.
  • the conductor plates 11, 12, 21 to 23 are connected as transmission lines. That is, a capacitor formed using the conductive plates 11 and 12 connected to the anode electrodes 10C and 10D and the conductive plates 21 to 23 connected to the cathode electrodes 20E and 20F is connected to the transmission line via the terminals.
  • the conductor plates 11, 12, 21 to 23 are connected as part of the transmission line.
  • the conductor plates 1 1 and 12 are conductors for the current I output from the power source 90 to flow from the power source 90 side to the CPU 110 side, and the conductor plates 21 to 23 have a return current Ir of both the CPU 110 side and the power source 90 side. It is a conductor to flow to.
  • the equivalent series inductance can be eliminated as much as possible.
  • the current flowing through the conductive plates 11 and 12 connected to the anode electrodes IOC and 10D is opposite to the current flowing through the conductive plates 21 to 23 connected to the cathode electrodes 20E and 20F. Therefore, magnetic interference is generated between the conductive plates 11 and 12 and the conductive plates 21 to 23, and the self-inductance of the conductive plates 11 and 12 is set to the conductive plates 11 and 12 and the conductive plates 21 to 2 3. Reduced by mutual inductance between. As a result, the effective inductance of the electric element 100 is reduced and the impedance Zs of the electric element 100 is reduced.
  • the first feature is that the conductor plates 11, 12, 21 to 23 constituting the capacitor electrode are connected as part of the transmission line, and the anode electrodes IOC, 10D are connected to the anode electrodes IOC, 10D.
  • a reverse current is passed through the connected conductive plates 11 and 12 and the conductive plates 21 to 23 connected to the cathode electrodes 20E and 20F to magnetically connect the conductive plates 11 and 12 and the conductive plates 21 to 23.
  • the effective inductance of the conductor plates 11 and 12 is made smaller than the self-inductance of the conductor plates 11 and 12, thereby reducing the impedance Zs of the electrical element 100.
  • the third feature is that each of the conductive plates 11 and 12 through which current flows is sandwiched between two conductive plates (conductor plates 21 and 22 or conductor plates 22 and 23) connected to the ground potential.
  • This second feature is realized by adopting a configuration in which the return current Ir from the CPU 110 is passed through the conductor plates 21 to 23 arranged inside the electric element 100.
  • the equivalent series inductance can be eliminated as much as possible by the first feature, and an unnecessary high-frequency current can be confined in the vicinity of the CPU 110 by the second feature.
  • the third feature can suppress the noise of the electric element 100 from being emitted to the outside, and can suppress the electric element 100 from being affected by noise from the outside.
  • FIG. 19 is a perspective view showing the configuration of the substrate 200 shown in FIG. Referring to FIG. 19, substrate 200 includes dielectric 201, signal lines 202 and 203, and conductor plates 204 and 205.
  • the signal lines 202 and 203 are arranged on one main surface 201A of the dielectric 201 with a predetermined gap therebetween.
  • the conductor plates 204 and 205 are arranged on one main surface 201B facing the one main surface 201A of the dielectric 201 with a predetermined interval.
  • the substrate 200 has a microstrip line substrate force in which the signal lines 202 and 203 are arranged on one main surface 201A and the conductor plates 204 and 205 are arranged on the other main surface 201B.
  • the conductor plates 204 and 205 are grounded.
  • FIG. 20 is a perspective view for explaining the electric circuit device 101 shown in FIG. 1 in detail.
  • dielectric layers 1-5, conductor plates 11, 12, 21-23, side anode electrodes 10A, 10B, anode electrodes IOC, 10D, side cathode electrodes 20A, 20B, 20C, 20D and cathode The electrodes 2 OE and 20F are disposed on one main surface 201A of the dielectric 201 of the substrate 200.
  • the side anode electrode 10A and the anode electrode 10C are connected to the signal line 202, and the side anode electrode 10B and the anode electrode 10D are connected to the signal line 203.
  • Side cathode electrode 20A and cathode electrode 20E are connected to conductor plate 204 by conductor 206, and side cathode electrode 20C and cathode electrode 20F are connected to conductor plate 205 by conductor 207.
  • the side cathode electrode 20B is connected to the conductor plate 204 by a conductor (not shown), and the side cathode electrode 20D is connected to the conductor plate 205 by a conductor (not shown). Is done.
  • the conductor plates 204 and 205 are conductor plates through which a return current Ir flows when the current I flows through the conductor plates 11 and 12.
  • the return current Ir flows from the conductor plate 205 to the side cathode electrodes 20C and 20D via the conductor 207 and the conductor (not shown), and flows to the side cathode electrodes 20A and 20B via the conductor plates 21 to 23.
  • the return current Ir flowing to the side cathode electrodes 20A, 20B flows to the conductor plate 204 via the conductor 206 and the conductor (not shown), and from the conductor plate 204 to the outside of the electric circuit device 101. Flowing.
  • the substrate 200 includes the conductor plates 204 and 205 that guide the return current Ir to the conductor plates 21 to 23 in the electric circuit device 101.
  • FIG. 21 is a cross-sectional view of the electric circuit device 101 between lines XXI and XXI shown in FIG.
  • FIG. 22 is a cross-sectional view of the electric circuit device 101 between line XXII and the cage shown in FIG.
  • cathode electrode 20F is arranged on one main surface 201A of dielectric 201, and conductor plate 205 is formed on one main surface 201B of dielectric 201 over the entire width of dielectric 201. Arranged.
  • the conductor plate 205 is connected to the side cathode electrode 20C and the cathode electrode 2OF by a conductor 207, and is connected to the side cathode electrode 20D and the cathode electrode 20F by a conductor 208.
  • the conductor plate 204 is connected to the side cathode electrodes 20A, 20B and the cathode electrode 20E by the same method as the conductor plate 205.
  • signal line 202 is connected to side anode electrode 10A and anode electrode 10C
  • signal line 203 is connected to side anode electrode 10B and anode electrode 10D.
  • Conductor plate 204 is arranged on one main surface 201B with a predetermined distance L3 from conductor plate 205.
  • the predetermined interval L3 is basically set to an interval at which a return current Ir having a predetermined frequency does not flow between the conductor plate 204 and the conductor plate 205.
  • the return current Ir does not flow between the conductor plates 204 and 205, so that It can lead to the conductor plates 21 to 23 in the circuit device 101.
  • FIG. 23 is a diagram showing the frequency dependence of the impedance of the electric circuit device 101 shown in FIG.
  • the vertical axis represents impedance
  • the horizontal axis represents frequency
  • Curve k3 is the frequency dependence of impedance in the electric circuit device 101.
  • the impedance of the electric circuit device 101 is almost the same as the impedance of the electric element 100 (curves kl, k3 reference).
  • the impedance of the electric circuit device 101 is much lower than the impedance of the electric element 100 (see curves kl and k3).
  • the return current Ir can be guided to the conductor plates 21 to 23 in the electric element 100.
  • unnecessary high-frequency current generated by the CPU 110 which is an electric load circuit, can be confined in the electric element 100.
  • FIG. 24 is a diagram showing the relationship between the electrical separation degree and the frequency between the two conductor plates 204 and 205 shown in FIG.
  • the vertical axis represents Isolation
  • the horizontal axis represents frequency. Isolation means that the smaller the value, the greater the electrical isolation.
  • Curves k4, k5, and k6 indicate cases where the predetermined distance L3 force is i. 5 mm, 3.0 mm, and 4.5 mm, respectively.
  • the predetermined distance L3 by increasing the predetermined distance L3 from 1.5 mm to 3.0 mm, the isolation between the conductor plates 204 and 205 is reduced in the frequency range of 2 to 3 GHz. In addition, the degree of electrical separation between the conductor plates 204 and 205 is increased. The isolation between the conductor plates 204 and 205 hardly changes in the frequency range of 2 to 3 GHz even when the predetermined distance L3 is increased to 3.0 mm force to 4.5 mm. Therefore, the predetermined interval L3 Is preferably set to 3. Omm or more.
  • the electric circuit device 101 includes the electric element 100 in which the conductive plates 11 and 12 and the conductive plates 21 to 23 are alternately stacked, and the conductive plate 204 arranged at a predetermined interval L3. , 205 and the substrate 200 having a relatively low impedance due to the reduction of the effective inductance described above, and the substrate 200 flows current from the conductor plate 202 to the conductor plates 11 and 12 in the electric element 100.
  • the return current Ir of the current I is passed through the conductor plate 21 to 23 mm in the electric element 100. That is, the substrate 200 has a function of flowing current through the conductor plates 11, 12, 21 to 23 in the electric element 100.
  • the electric circuit device 101 can supply a direct current to the CPU 110 with the power source 90, and can confine unnecessary high-frequency current generated by the CPU 110 in the electric element 100.
  • FIG. 25 is another perspective view showing the configuration of the substrate 200 shown in FIG.
  • the substrate 200 shown in FIG. 1 may be composed of the substrate 200A shown in FIG.
  • substrate 200A is the same as substrate 200 except that conductor plates 204 and 205 of substrate 200 shown in FIG. 19 are replaced with conductor plates 209 and 210, respectively.
  • the conductor plate 209 up to the main surface 201A of the dielectric 201, is composed of flat plate members 2091 and 2092. Further, the flat plate members 2091, 2092, and one main surface 201 A of the dielectric 201 are arranged on both sides of the signal line 202.
  • the conductor plate 210 is disposed on one main surface 201A of the dielectric 201, and is composed of flat plate members 2101 and 2102.
  • the flat plate members 2101 and 2102 are arranged on both sides of the signal line 203 on one main surface 201A of the dielectric 201.
  • the interval between the flat plate member 2091 and the flat plate member 2101 and the interval between the flat plate member 2092 and the flat plate member 2102 are set to a predetermined interval L3.
  • the conductor plates 209 and 210 are arranged on the same main surface 201A as the signal lines 202 and 203 at a predetermined interval L3 on the substrate 200.
  • the conductor plates 209 and 210 are made of flat plate members 2091 and 2092; 2101 and 2102 respectively placed on both ends J of the signal lines 202 and 203. Accordingly, the substrate 200A is a coplanar substrate.
  • the flat plate member 2091 of the conductor plate 209 is connected to the side cathode electrode 20A and the cathode electrode 20E by a conductor (not shown), and the flat plate member 2092 is connected to the conductor ( Side cathode electrode 20B and cathode electrode 2 by not shown) Connected to OE.
  • the flat plate member 2101 of the conductor plate 210 is connected to the side cathode electrode 20C and the cathode electrode 20F by a conductor (not shown), and the flat plate member 2102 is connected to the side cathode electrode 20D and the cathode electrode 20F by a conductor (not shown). Connected to.
  • the conductor plates 209 and 210 are grounded.
  • the board 200A includes the two conductor plates 209 and 210 arranged at a predetermined distance L3, and therefore, the current I flows through the conductor plates 11 and 12 in the electric element 100, and the return current Ir is electrically supplied. Flow through conductor plates 21 to 23 in element 100.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 to 23, and the effective inductance of the conductor plates 11 and 12 is the self-efficiency of the conductor plates 11 and 12. It becomes smaller than the inductance.
  • a direct current can be supplied from the power supply 90 to the CPU 110, and an unnecessary high frequency current generated by the CPU 110 can be confined in the electric element 100.
  • FIG. 26 is still another perspective view showing the configuration of the substrate 200 shown in FIG.
  • the substrate 200 shown in FIG. 1 may have a substrate 200B force shown in FIG.
  • substrate 200B is the same as substrate 200 except that conductive plates 209 and 210 are added to substrate 200 shown in FIG.
  • the conductive plates 209 and 210 are as described in FIG.
  • the substrate 200B is placed on the same principal surface 201A as the signal lines 202 and 203 on the principal surface 201A on which the conductor plates 209 and 210 are disposed at a predetermined interval L3 and the signal lines 202 and 203 are disposed.
  • Conductor plates 204 and 205 arranged at a predetermined interval L3 are provided on one opposing main surface 201B.
  • the conductor plates 204, 205, 209, and 210 are grounded.
  • Such a substrate 200B is referred to as a backside GND coplanar substrate.
  • the flat plate member 2091 and the conductive plate 204 of the conductive plate 209 are connected to the side cathode electrode 20A and the cathode electrode 20E by a conductor (not shown), and the conductive plate
  • the flat plate member 2092 and the conductive plate 204 of 209 are connected to the side cathode electrode 20B and the cathode electrode 20E by a conductor (not shown).
  • the flat plate member 2101 and the conductor plate 205 of 210 are connected to the side cathode electrode 20C and the cathode electrode 20F by a conductor (not shown), and the flat plate member 2102 and the conductor plate 205 of the conductor plate 210 are conductors (not shown). Are connected to the side cathode electrode 20D and the cathode electrode 20F.
  • the conductor plates 204, 205, 209, 210 are grounded.
  • the board 200B includes the two conductor plates 204 and 205 and the two conductor plates 209 and 210 arranged at a predetermined interval L3, so that the current I is supplied to the conductor plates 11 and 12 in the electric element 100.
  • the return current Ir is caused to flow through the conductor plates 21 to 23 in the electric element 100.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 to 23, and the effective inductance of the conductor plates 11 and 12 is the same as that of the conductor plates 11 and 12. / J, less than self-inductance.
  • the impedance of the electric circuit device 101 can be greatly reduced.
  • a direct current is supplied from the power source 90 to the CP.
  • FIG. 27 is still another perspective view showing the configuration of the substrate 200 shown in FIG.
  • the substrate 200 shown in FIG. 1 may have the substrate 200C force shown in FIG. Referring to Figure 27, board 2
  • 00C is obtained by adding a dielectric 211 and conductor plates 212 and 213 to the substrate 200B shown in FIG. 26, and the other components are the same as those of the substrate 200B.
  • the dielectric 211 is arranged so that its one principal surface 211A is in contact with the conductor plates 204, 205.
  • the conductor plates 212 and 213 are arranged at a predetermined interval L3 on one main surface 211B opposite to one main surface 211A of the dielectric 211.
  • the substrate 200C is formed by laminating a plurality of dielectrics 201, 211, and conductor plates 204, 205, 209, 210, 212 on the front and back surfaces of each of the laminated dielectrics 201, 211. , 213 are arranged at a predetermined interval L3.
  • the conductor plates 204, 205, 209, 210, 212, 213 are grounded.
  • Such a substrate 200C is called a multilayer substrate.
  • the flat plate member 2091 of the conductor plate 209 and the conductor plates 204 and 212 are connected to the side cathode electrode 20A and the negative electrode by a conductor (not shown).
  • the flat plate member 2092 of the conductor plate 209 and the conductor plates 204 and 212 are connected to the electrode electrode 20E, and are connected to the side cathode electrode 20B and the cathode electrode 20E by a conductor (not shown).
  • the flat plate member 2101 and the conductive plates 205 and 213 of the conductive plate 210 are connected to the side cathode electrode 20C and the negative electrode 20F by a conductor (not shown), and the flat plate member 2 102 and the conductive plate of the conductive plate 210 are connected.
  • 205 and 215 are connected to the side cathode electrode 20D and the cathode electrode 20F by a conductor (not shown).
  • the conductor plates 204, 205, 209, 210, 212, and 213 are grounded.
  • the board 200C includes the two conductor plates 204, 205, the two conductor plates 209, 210, and the two conductor plates 212, 213 that are arranged with a predetermined gap L3.
  • the return current Ir is passed through the conductor plates 21 to 23 in the electric element 100 and flows through the conductor plates 11 and 12 in the element 100.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 to 23, and the effective inductance of the conductor plates 11 and 12 is the self-equivalence of the conductor plates 11 and 12. It becomes smaller than the inductance.
  • the direct current is supplied from the power source 90 to C.
  • Electric element that can supply PU110 and unnecessary high frequency current generated by CPU 110 1
  • the substrate 200C has two dielectrics 201 and 211.
  • the substrate 200C is not limited to this, and the substrate 200C may generally include three or more dielectrics.
  • a plurality of dielectrics may be provided.
  • FIG. 28 is still another perspective view showing the configuration of the substrate 200 shown in FIG.
  • the substrate 200 shown in FIG. 1 may have the substrate 200D force shown in FIG. Referring to Figure 28, board 2
  • 00D is the same as the substrate 200 except that the substrate 200 shown in FIG. 19 and via holes BH1 and BH2 are added.
  • the via hole BH1 is provided on the signal line 202 side, passes through the dielectric 201, and is connected to the conductor plate 204.
  • the via hole BH2 is provided on the signal line 203 side, penetrates the dielectric 201, and is connected to the conductor plate 205. [0155]
  • the signal line 202 is connected to the side anode electrode 10A
  • the signal line 203 is connected to the side anode electrode 10B
  • the via hole BH1 is connected to the cathode electrode 20E
  • the via hole BH2 is connected to the cathode electrode 20F.
  • the cathode electrodes 20E and 20F are connected to the grounded conductor plates 204 and 205 through the via holes BH1 and BH2, respectively.
  • the return current Ir is determined by the conductor plate 205, the via hole BH2, the cathode electrode 20F, the side cathode electrodes 20C and 20D, the conductor plates 21 and 22, the side cathode electrodes 20A and 20B, the negative electrode 20E, the via hole BH1 and the conductor.
  • the effective inductance of the conductive plates 11 and 12 is smaller than the self-inductance of the conductive plates 11 and 12.
  • the board 200D includes two conductor plates 204 and 205 arranged at a predetermined distance L3, and via holes BH1 and BH2 connected to the two conductor plates 204 and 205, respectively. Is passed through the conductor plates 11 and 12 in the electric element 100, and the return current Ir is passed through the conductor plates 21 to 23 in the electric element 100. As a result, in the electric circuit device 101 using the substrate 200D, the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 to 23, and the effective inductance of the conductor plates 11 and 12 is as follows. It becomes smaller than the self-inductance.
  • the impedance of the electric circuit device 101 can be greatly reduced.
  • a direct current can be supplied from the power supply 90 to the CPU 110, and unnecessary high-frequency current generated by the CPU 110 can be confined in the electric element 100.
  • FIG. 29 is still another perspective view showing the configuration of the substrate 200 shown in FIG.
  • the substrate 200 shown in FIG. 1 may have the substrate 200E force shown in FIG. Referring to FIG. 29, substrate 200E is obtained by adding current suppressing unit 220 to substrate 200 shown in FIG.
  • Current suppression unit 220 is made of, for example, impedance, and has one end connected to conductor plate 204 and the other end connected to conductor plate 205.
  • the current flowing through the conductor plates 21 to 23 of the electric element 100 is defined as current Ir 1
  • the current flowing from the conductor plate 205 through the current suppressing unit 220 into the conductor plate 204 is defined as current Ir 2.
  • 220 is the current Ir2 Make it smaller than rl. That is, the conductor plates 204 and 205 and the current suppressing unit 220 constitute a “conductor plate” having an impedance larger than the impedance of the conductor plates 21 to 23.
  • the return current Ir mainly flows through the electric element 100 via the conductor plates 21 to 23, and the effective inductance of the conductor plates 11 and 12 is smaller than the self-inductance of the conductor plates 11 and 12. .
  • the conductor plate 204 is connected to the side cathode electrodes 20A, 20B and the cathode electrode 20E by a conductor (not shown), and the conductor plate 205 is connected to the conductor (not shown). Are not connected to the side cathode electrodes 20C and 20D and the cathode electrode 20F.
  • the conductor plates 204 and 205 are grounded.
  • the board 200E is composed of two conductor plates 204 and 205 arranged at a predetermined interval L3, and a current Ir2 flowing between the two conductor plates 204 and 205 from a current Irl flowing through the conductor plates 21 to 23.
  • Current suppression unit 220 that suppresses current also flows current I through conductor plates 11 and 12 in electrical element 100, and returns current Ir through conductor plates 21 to 23 in electrical element 100.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 to 23, and the effective inductance of the conductor plates 11 and 12 is the conductor plates 11 and 12 / J, than the self-inductance of.
  • a direct current can be supplied from the power source 90 to the CPU 110, and unnecessary high-frequency current generated by the CPU 110 can be confined in the electric element 100.
  • the substrate 200 shown in FIG. 1 may be a substrate cover provided with a current suppressing portion 220 between the flat plate members 2091 and 2101 and between the flat plate members 2092 and 2102 of the substrate 200A shown in FIG.
  • a substrate force in which the current suppressing portion 220 is provided between the conductor plates 204 and 205f3 ⁇ 4, the flat plate members 2091 and 2101f3 ⁇ 4, and the flat plate members 2092 and 2102 of the substrate 200B shown in FIG.
  • the current suppression unit 220 is placed between the conductive plates 204 and 205 of the substrate 200D shown in FIG.
  • the provided substrate force may be sufficient. Even when these substrates are used, the impedance of the electric circuit device 101 can be reduced in a high frequency region where the inductance is dominant.
  • FIG. 30 and FIG. 33 are plan views showing other configurations of the substrate 200 shown in FIG.
  • substrate 200F includes a conductor plate 301, slits 302 to 304, and via holes 309.
  • the conductor plate 301 is formed on the entire main surface of a dielectric (not shown).
  • the slits 302 to 304 are formed on one main surface of a dielectric (not shown) by cutting out a part of the conductor plate 301.
  • the conductor portions 305 to 308 are formed on one main surface of the dielectric (not shown).
  • the substrate 200F has another conductor plate formed on the other main surface of the dielectric (not shown) so as to face the conductor plate 301.
  • the via hole 309 is formed in a grid shape so as to electrically connect the conductor plate 301 and another conductor plate.
  • the conductor portions 305 and 306 constitute a signal line
  • the conductor plate 301 and the other conductor plate are connected to the ground potential
  • the anode electrode IOC , 10D are connected to the conductor portions 305, 306, respectively
  • the cathode electrodes 20E, 20F are connected to the conductor portions 307, 308, respectively.
  • the return current flows through the conductor plates 21 to 23 rather than the conductor plate 301 of the substrate 200F and the other conductor plate.
  • the substrate 200F includes the slits 302 to 304 and the conductor rods 305 to 308, the current I flows through the conductor plates 11 and 12 in the electric element 100, and the return current Ir flows to the electric element 100. Flow through inner conductor plates 21-23.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 to 23, and the effective inductance of the conductor plates 11 and 12 is as follows. It becomes smaller than the self-inductance.
  • the impedance of the electric circuit device 101 can be greatly reduced.
  • substrate 200G is obtained by adding via Hornores 310 and 311 to substrate 200F shown in FIG. 30, and is otherwise the same as substrate 200F.
  • the via holes 310 and 311 are formed in the conductor portions 307 and 308, respectively.
  • the conductor portions 305 and 306 constitute a signal line
  • the conductor plate 301 and the other conductor plate are connected to the ground potential
  • the anode electrode IOC , 10D are connected to the conductor portions 305, 306, respectively
  • the cathode electrodes 20E, 20F are connected to the conductor portions 307, 308, respectively.
  • the return current flows through the conductor plates 21 to 23 rather than the conductor plate 301 of the substrate 200G and the other conductor plate.
  • the substrate 200G includes the slits 302 to 304, the conductor rods 305 to 308, and the via Honores 3 10 and 311. Therefore, the current I flows through the conductor plates 11 and 12 in the electric element 100, A return current Ir is passed through the conductor plates 21 to 23 in the electric element 100.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 to 23, and the effective inductance of the conductor plates 11 and 12 is that of the conductor plates 11 and 12. It is less than J / J from self-inductance.
  • the impedance of the electric circuit device 101 can be greatly reduced.
  • a direct current can be supplied from the power supply 90 to the CPU 110, and an unnecessary high frequency current generated by the CPU 110 can be confined in the electric element 100.
  • substrate 200H is the same as substrate 200F except that slits 312 and 313 are added to substrate 200F.
  • the slits 312 and 313 are formed on one main surface of a dielectric (not shown) so as to be connected to the slit 303 by cutting out a part of the conductor plate 301.
  • a slit composed of the slits 303, 312, and 313 is formed on the entire substrate 200H in a direction orthogonal to the length direction of the conductor portions 305 and 306 constituting the signal line.
  • the conductor portions 305 and 306 constitute a signal line, and the conductor plate 301 and the other conductor plate are connected to the ground potential, and the anode electrode IOC and 10D are connected to conductor parts 305 and 306, respectively, and cathode electrodes 20E and 20F are They are connected to the conductor portions 307 and 308, respectively.
  • the return current flows through the conductor plates 21 to 23 rather than the conductor plate 301 of the substrate 200H and the other conductor plate.
  • the substrate 200H includes the slits 302 to 304, 312, and 313 and the conductor rods 305 to 308. Therefore, the current I flows through the conductor plates 11 and 12 in the electric element 100, and the return current Ir Is passed through the conductor plates 21 to 23 in the electric element 100.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 to 23, and the effective inductance of the conductor plates 11 and 12 is the self-efficiency of the conductor plates 11 and 12. It becomes smaller than the inductance.
  • a direct current can be supplied from the power supply 90 to the CPU 110, and an unnecessary high frequency current generated by the CPU 110 can be confined in the electric element 100.
  • substrate 200J is the same as substrate 200G except that slits 312 and 313 are added to substrate 200G. Also in the substrate 200J, the slits 312 and 313 are formed on one main surface of a dielectric (not shown) so as to be connected to the slit 303 by cutting out a part of the conductor plate 301. A slit composed of the slits 303, 312, and 313 is formed on the entire substrate 200J in a direction orthogonal to the length direction of the conductor portions 305 and 306 constituting the signal line.
  • the conductor portions 305 and 306 constitute a signal line
  • the conductor plate 301 and the other conductor plate are connected to the ground potential
  • the anode electrode IOC , 10D are connected to the conductor portions 305, 306, respectively
  • the cathode electrodes 20E, 20F are connected to the conductor portions 307, 308, respectively.
  • the return current flows through the conductor plates 21 to 23 rather than the conductor plate 301 and the other conductor plate of the substrate 200J.
  • the substrate 200J includes the slits 302 to 304, 312, and 313, the conductor rods 305 to 308, and the via holes 310 and 311. Therefore, the current I is applied to the conductor plates 11 and 12 in the electric element 100.
  • the return current Ir is passed through the conductor plates 21 to 23 in the electric element 100.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 to 23, and the effective inductance of the conductor plates 11 and 12 is the same as that of the conductor plates 11 and 12. Self-induct It's less than Jance / J.
  • a direct current can be supplied from the power supply 90 to the CPU 110, and an unnecessary high-frequency current generated by the CPU 110 can be confined in the electric element 100.
  • FIG. 34 is a diagram showing the relationship between the impedance and the frequency of the electric circuit device 101 using the substrates 200F, 200G, 200 ⁇ , and 200J shown in FIG.
  • the horizontal axis represents frequency
  • the vertical axis represents impedance.
  • Curve k7 shows the case using substrate 200F
  • curve k8 shows the case using substrate 200G
  • curve k9 shows the case using substrate 200H
  • curve klO used the substrate 200J. Show the case.
  • the impedance decreases in the frequency region where the inductance of about 10MHz or more is dominant (curve (See k7 and k8).
  • impedance of about 10 MHz or more is controlled in the impedance frequency region. (See curves k7 to k9).
  • via holes 310 and 311 are provided in the conductor portions 307 and 308 to which the cathode electrodes 20E and 20F are connected, respectively, and slits 312 and 3 13 longer than the slit 303 are provided between the conductor rods 308.
  • the impedance drops in the frequency range above about 1 GHz (see curves k9 and klO). This is because the current flow from the conductor plate 301 provided on one side of the slits 312, 313 to the conductor plate 301 provided on the other side of the slits 312, 313 is blocked by the slits 312, 313, and The conductor plates 21 to 23, 21A, 22A, and 23A are allowed to flow.
  • FIG. 35 is a plan view showing another configuration of the substrate 200 shown in FIG.
  • substrate 200K is obtained by adding slits 314 and 315 to substrate 200G shown in FIG. 31, and is otherwise the same as substrate 200G.
  • the slits 314 and 315 are formed on one main surface of a dielectric (not shown) so as to be connected to the slit 303 by cutting out a part of the conductor plate 301.
  • a slit formed of the slits 303, 314, and 315 is formed in a part of the substrate 200K in a direction orthogonal to the length direction of the conductor portions 305 and 306 constituting the signal line.
  • FIG. 36 is a diagram showing a change in impedance with respect to the length of the three slits 303, 314, and 315 when an electric circuit device is manufactured using the substrate 200K shown in FIG.
  • the horizontal axis represents the length of the slit
  • the vertical axis represents the impedance.
  • the curve kl l shows the simulation result
  • the curve kl2 shows the actual measurement value.
  • the slit 303 has a width of 5 mm and a frequency of 100 MHz.
  • the substrate 200K includes the slits 302 to 304, 314, and 315 and the conductor rods 305 to 308. Therefore, the current I flows through the conductor plates 11 and 12 in the electric element 100, and the return current Ir Is passed through the conductor plates 21 to 23 in the electric element 100. As a result, in the electric circuit device 101 using the substrate 200K, the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 to 23, and the effective inductance of the conductor plates 11 and 12 is the self-equivalence of the conductor plates 11 and 12. It becomes smaller than the inductance.
  • the impedance of the electric circuit device 101 can be greatly reduced.
  • a direct current is supplied from the power source 90 to C.
  • Electric element that can supply PU110 and unnecessary high frequency current generated by CPU 110 1
  • FIG. 37 is a plan view showing another configuration of the substrate shown in FIG. Referring to Figure 37, the board
  • the 200L is the same as the substrate 200K except that the lines 316 and 317 are added to the substrate 200K shown in FIG.
  • the slit 316 is substantially suspended from one end of the slit 314 by cutting out a part of the conductor plate 301. It is formed on one main surface of a dielectric (not shown) so as to be directly connected. The slit 316 has a predetermined length and extends on both sides of the slit 314 by the same length. The slit 317 is formed on one main surface of a dielectric (not shown) so as to be connected substantially perpendicularly to one end of the slit 315 by cutting out a part of the conductor plate 301. The slit 317 has the same length as the slit 316 and extends on both sides of the slit 315 by the same length.
  • FIG. 38 is a diagram showing the relationship between the lengths of the slits 316 and 317 shown in FIG. 37 and S21.
  • the vertical axis represents S21
  • the horizontal axis represents the slit length.
  • S21 is the current transfer characteristic of the conductor plate 301 on one side of the slits 314 and 315 to the conductor plate 301 on the other side of the slits 314 and 315.
  • transfer characteristic S21 decreases.
  • the current flows through the portion of the conductor plate 301 where the slits 314 and 315 are not formed. This is to prevent the conductor plate 301 on the other side from going around. The degree to which this current wraparound is prevented increases as the slit length of the slits 316 and 317 is increased.
  • the return current can easily flow through the conductor plates 21 to 23 inside the electric element, and the effective inductance of the conductor plates 11 and 12 can be made smaller than the self-inductance.
  • the substrate 200L includes the slits 302 to 304 and 314 to 317 and the conductor rods 305 to 308. Therefore, the current I flows through the conductor plates 11 and 12 in the electric element 100, and the return current Ir Is passed through the conductor plates 21 to 23 in the electric element 100.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 to 23, and the effective inductance of the conductor plates 11 and 12 is the same as that of the conductor plates 11 and 12. It becomes smaller than the self-inductance.
  • FIG. 39 is a plan view showing another configuration of the substrate 200 shown in FIG.
  • substrate 200M is the same as substrate 200L except that slits 316 and 317 of substrate 200L shown in FIG. 37 are replaced with slits 318 and 319, respectively.
  • the slit 318 is formed on one main surface of a dielectric (not shown) so as to be connected to one end of the slit 314 by cutting out a part of the conductor plate 301.
  • the slit 319 is formed on one main surface of a dielectric (not shown) so as to be connected to one end of the slit 315 by cutting out a part of the conductor plate 301.
  • Slit 318 ⁇ , straight line 318A, 318B, 318C force A straight line 318 ⁇ is formed substantially perpendicular to the slit 314.
  • the straight portion 318B extends in a direction that forms a predetermined angle with the straight portion 318A from one end of the straight portion 318A.
  • the straight portion 318C extends from the other end of the straight portion 318A in a direction that forms a predetermined angle with the straight portion 318A.
  • the straight portions 318B and 318C are arranged in a substantially square shape with respect to the direction of force in the slit 303 at both ends of the straight portion 318A.
  • the slit 319 is formed substantially perpendicular to the slit 315, and the 0 straight rod 319A made up of the straight rods 319A, 319B, and 319C.
  • the straight portion 319 ⁇ extends in a direction in which one end force of the straight portion 319 ⁇ also forms a predetermined angle with the straight portion 319 ⁇ .
  • the straight portion 319C extends from the other end of the straight portion 319A in a direction that forms a predetermined angle with the straight portion 319A.
  • the straight portions 319B and 319C are arranged in a substantially square shape with respect to the direction of force in the slit 303 at both ends of the straight portion 319A.
  • the transmission characteristic S21 is reduced and the current force slits 314 and 315 are not formed.
  • the force of the conductor plate 301 on one side of the slits 314 and 315 can also be prevented from entering the conductor plate 301 on the other side of the slits 314 and 315.
  • the slits 303, 314, 315, 318, 319 suppress the return current Ir from flowing through the conductor plate 301.
  • the substrate 200M has slits 302 to 304, 314, 315, 318, 319 and a conductor
  • a direct current can be supplied from the power supply 90 to the CPU 110, and an unnecessary high-frequency current generated by the CPU 110 can be confined in the electric element 100.
  • FIG. 40 is a plan view showing another configuration of the substrate 200 shown in FIG.
  • substrate 200N is the same as substrate 200L except that slits 316 and 317 of substrate 200L shown in FIG. 37 are replaced with slits 320 and 321, respectively.
  • the slit 320 is formed on one main surface of a dielectric (not shown) so as to be connected to one end of the slit 314 by cutting out a part of the conductor plate 301.
  • the slit 321 is formed on one main surface of a dielectric (not shown) so as to be connected to one end of the slit 315 by cutting out a part of the conductor plate 301.
  • the slit 320 also has a straight portion 320A, 320B, 320C force.
  • the straight portion 320A is formed substantially perpendicular to the slit 314.
  • the straight portion 320B extends in a direction in which one end force of the straight portion 320A forms a predetermined angle with the straight portion 320A.
  • the straight portion 320C extends from the other end of the straight portion 320A in a direction that forms a predetermined angle with the straight portion 320A.
  • the straight portions 320B and 320C are arranged in a substantially square shape with respect to the opposite direction to the slit 303 at both ends of the straight portion 318A.
  • Slit 321 ⁇ , straight line 321A, 321B, 321C force A straight line 321 ⁇ is formed substantially perpendicular to the slit 315.
  • the linear portion 321B extends in a direction in which one end force of the linear portion 321A forms a predetermined angle with the linear portion 321A.
  • the straight portion 321C extends from the other end of the straight portion 321A in a direction that forms a predetermined angle with the straight portion 321A.
  • the straight portions 321B and 321C are arranged in a substantially square shape with respect to the opposite direction to the slit 303 at both ends of the straight portion 321A.
  • the slits 320 and 321 are provided, similarly to the case of the slits 316 and 317, the transmission characteristic S21 is reduced, and the portion of the conductor plate 301 in which the current force slits 314 and 315 are not formed. It is possible to prevent the force of the conductor plate 301 on one side of the slits 314 and 315 from entering the conductor plate 301 on the other side of the slits 314 and 315 via the minute. As a result, the slits 303, 314, 315, 320, and 321 suppress the return current Ir from flowing through the conductor plate 301.
  • the substrate 200N includes the slits 302 to 304, 314, 315, 320, and 321 and the conductor rods 30 5 to 308. Therefore, the current I is supplied to the conductor plates 11 and 12 in the electric element 100.
  • the return current Ir is passed through the conductor plates 21 to 23 in the electric element 100.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 to 23, and the effective inductance of the conductor plates 11 and 12 is that of the conductor plates 11 and 12. It is less than J / J from self-inductance.
  • a direct current can be supplied from the power supply 90 to the CPU 110, and unnecessary high-frequency current generated by the CPU 110 can be confined in the electric element 100.
  • FIG. 37, FIG. 39 and FIG. 40 This is a force that shows the substrates 200L, 200M, 20 ON with various slits.
  • the present invention is not limited to this, and FIG. 37, FIG. 39 and FIG.
  • a substrate having a shape as shown in FIG. 40 generally has a slit having a shape that suppresses transmission from one side of the high frequency current force S slit to the other side of the slit.
  • FIG. 41 is a plan view showing another configuration of the substrate 200 shown in FIG. Referring to FIG. 41, substrate 200 is shown in FIG. 30 and slits 302 to 304 of substrate 200F shown here are replaced with slits 322 to 324, and the rest is the same as substrate 200F.
  • the slit 322 is formed on one main surface of a dielectric (not shown) by cutting out a part of the conductor plate 301. Then, by forming the slit 322, the conductor portions 325 to 328 are formed on one main surface of the dielectric (not shown).
  • the slit 323 is formed on one main surface of a dielectric (not shown) by cutting out a part of the conductor plate 301, and is connected to the slit 322 on one side of the slit 322.
  • the slit 324 is formed on one main surface of a dielectric (not shown) by cutting out a part of the conductor plate 301, and is connected to the slit 322 on the other side of the slit 322.
  • the conductor portions 325 and 328 constitute a signal line
  • the conductor plate 301 and the other conductor plate are connected to the ground potential
  • the anode electrode IOC , 10D are connected to the conductor portions 325, 328, respectively
  • the cathode electrodes 20E, 20F are connected to the conductor portions 326, 327, respectively.
  • the return current flows through the conductor plates 21 to 23 rather than the conductor plate 301 and the other conductor plate of the substrate 200P.
  • the substrate 200P includes the slits 322 to 324 and the conductor rods 325 to 328. Therefore, the current I flows through the conductor plates 11 and 12 in the electric element 100, and the return current Ir flows to the electric element 100. Flow through inner conductor plates 21-23. As a result, in the electric circuit device 101 using the substrate 200P, the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 to 23, and the effective inductance of the conductor plates 11 and 12 is as follows. It becomes smaller than the self-inductance.
  • a direct current can be supplied from the power supply 90 to the CPU 110, and an unnecessary high-frequency current generated by the CPU 110 can be confined in the electric element 100.
  • FIG. 42 is a plan view showing another configuration of the substrate 200 shown in FIG.
  • substrate 200Q is the same as substrate 200P except that slits 323 and 324 of substrate 200P shown in FIG. 41 are replaced with slits 314 and 315, respectively.
  • the slits 314 and 315 are formed on one main surface of a dielectric (not shown) so as to be connected to the slit 322 by cutting out a part of the conductor plate 301.
  • a slit formed of the slits 322, 314, and 315 is formed in a part of the substrate 200Q in a direction orthogonal to the length direction of the conductor portions 325 and 328 constituting the signal line.
  • the board 200Q includes the slits 314, 315, 322 and the conductors 325 to 328. Therefore, the current I flows through the conductor plates 11 and 12 in the electric element 100, and the return current Ir flows. Flow through conductor plates 21-23 in element 100. As a result, in the electric circuit device 101 using the substrate 200Q, the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 to 23, and the effective inductance of the conductor plates 11 and 12 is the self-efficiency of the conductor plates 11 and 12. It becomes smaller than the inductance.
  • a direct current can be supplied from the power supply 90 to the CPU 110, and an unnecessary high-frequency current generated by the CPU 110 can be confined in the electric element 100.
  • FIG. 43 is a plan view showing another configuration of the substrate 200 shown in FIG.
  • FIG. 44 is a cross-sectional view of the substrate 200R taken along line XXXXIV-XXXXIV shown in FIG.
  • substrate 200R includes conductive plates 401, 403, 405, 407 and dielectrics 402, 4
  • the conductor plate 401 is formed on the surface of the dielectric 402
  • the conductor plate 403 is formed on the surface of the dielectric 404
  • the conductor plate 405 is formed on the surface of the dielectric 406,
  • the conductor plate 407 is It is formed on the back surface of the dielectric 406.
  • the dielectric body 404 on which the conductor plate 403 is formed is composed of the conductor plate 4
  • the dielectric body 402 having the conductor plate 401 formed thereon is laminated on the dielectric body 404 having the conductor plate 403 formed thereon.
  • the slits 411 to 414 are formed on the surface of the dielectric 402 by cutting out a part of the conductor plate 401. Then, the slits 411, 412, and 414 ⁇ are arranged in the width direction of the substrate 200R on this straight line.
  • the slit 413 is formed so that both ends are connected to the slit 412 and surround the slit 411.
  • the width of the slit 413 is determined according to the wavelength of the high-frequency current and the relative permittivity of the dielectric 402, and the high-frequency current is formed outside the slit 413 from the conductor portion 421 formed inside the slit 413. It is set to a value that does not jump to the conductor section 426.
  • the conductor plate 401 is separated into the conductor portion 421 and the conductor portion 426.
  • Conductor portions 416 to 419 are formed on the surface of the dielectric 402. In this case, both ends of the conductor portion 417 are connected to the conductor portion 421, and both ends of the conductor portion 418 are connected to the conductor portion 426.
  • the conductor portion 415 is formed on the surface of the dielectric 404 by cutting out a part of the conductor plate 403.
  • the conductor portion 415 is connected to the conductor portion 416 through the via hole 423.
  • the conductor portion 420 is formed on the surface of the dielectric 404 by cutting out a part of the conductor plate 403.
  • the conductor portion 420 is connected to the conductor portion 419 through a via hole 426.
  • the conductor portion 417 is connected to the conductor plate 405 by a via hole 424, and the conductor portion 418 is connected to the conductor plate 407 by a via hole 425.
  • the conductor portion 421 is connected to the conductor plate 405 through a via hole, and the conductor portion 426 is connected to the conductor plate 407 through a via hole.
  • the conductor plates 401, 405, 407 are connected to the ground potential.
  • the conductor portions 415, 416, 419, 420 and the via holes 423, 426 constitute a signal line
  • the anode electrode 10C is connected to the conductor portion 415.
  • the anode electrode 10D is connected to the conductor part 420
  • the cathode electrode 20E is connected to the conductor part 417
  • the cathode electrode 20F is connected to the conductor part 418.
  • the return current flows through the conductor plates 21 to 23 in the electric element 100 because the conductor portions 417 and 418 to which the cathode electrodes 20E and 20F are connected are separated by the slit 413, respectively.
  • the conductor portions 421 and 426 are connected to the conductor portions 421 and 426, and the conductor portions 421 and 426 are forces connected to different conductor plates 405 and 407, respectively.
  • the return current can be completely passed through the conductor plates 21 to 23 in the electric element 100, and the effective inductance of the conductor plates 11 and 12 is smaller than the self-inductance. it can. As a result, the impedance of the electric circuit device 101 is reduced.
  • DC current can be supplied from the power supply 90 to the CPU 110 to the electrical circuit device 101 using the substrate 200R, and unnecessary high-frequency current generated by the CPU 110 is confined in the electrical element 100. be able to.
  • FIG. 45 is a conceptual diagram showing another configuration of the electric circuit device according to the first embodiment.
  • the electric circuit device according to the first embodiment may be an electric circuit device 102 shown in FIG. Referring to FIG. 45, electric circuit device 102 is the same as electric circuit device 101 except that electric element 100 of electric circuit device 101 shown in FIG.
  • Electric element 100A is obtained by replacing conductor plates 11, 12, 21 to 23 of electric element 100 shown in FIG. 2 with conductor plates 11A, 12A, and 21A to 23A, respectively. Same as 100.
  • Conductor plate 21A is disposed between dielectric layers 1 and 2, and conductor plate 11A is disposed between dielectric layers 2 and 3. Be placed.
  • the conductor plate 22A is disposed between the dielectric layers 3 and 4, the conductor plate 12A is disposed between the dielectric layers 4 and 5, and the conductor plate 23A is disposed on one main surface 5A of the dielectric layer 5. Be placed.
  • Conductor plates 11A and 12A have one end connected to side anode electrode 10A and the other end connected to side anode electrode 10B.
  • the conductor plates 21A to 23A have one end connected to the side cathode electrodes 20A and 20B and the other end connected to the side cathode electrodes 20C and 20D.
  • the cross section of the electric element 100A between the lines XXI and XXI is the same as the cross section of the electric element 100 shown in FIG. 21, and the cross section of the electric element 100A between the lines XXII and XXII is shown in FIG. It is the same as the sectional view of the electric element 100 shown. 21 and 22, the conductor plates 11, 12, 21 to 23 are replaced with the conductor plates 11A, 12A, and 21A to 23A.
  • FIG. 46 is another plan view of two adjacent conductor plates.
  • conductor plate 11 ⁇ has a length L4 and a width W5
  • conductor plate 21A has a length L5 and a width W4.
  • W5 ⁇ L4 between the length L4 and the width W5
  • W4 ⁇ L5 between the length L5 and the width W4.
  • the conductor plates 11A and 21A have a shape force that is longer in the width direction DR2 than in the length direction DR1.
  • the conductive plate 12A has the same size as the conductive plate 11A, and the conductive plates 22A and 23A have the same size as the conductive plate 21A.
  • the conductor plates 11A and 21A When the conductor plate 11A and the conductor plate 21A are projected onto one plane, the conductor plates 11A and 21A have an overlapping portion 200A.
  • the overlapping portion 20OA of the conductor plate 11A and the conductor plate 21A has a length L5 and a width W5.
  • the overlapping portion of the conductive plate 11A and the conductive plate 22A, the overlapping portion of the conductive plate 12A and the conductive plate 22A, and the overlapping portion of the conductive plate 12A and the conductive plate 23A also have the same length L5 and the same width W5 as the overlapping portion 200A.
  • length L5 and width W5 are set so that W5 ⁇ L5.
  • the ratio of the return current flowing through the conductor plates 21A to 23A is increased as compared with the case where the substrate 200 has the conductor plate electrically connected between the cathode electrodes 20E and 20F on one main surface 201B.
  • the degree to which the effective inductance of the conductor plates 11A and 12A is smaller than the self-inductance of the conductor plates 11A and 12A is relatively large.
  • FIG. 47 is a diagram showing the frequency dependence of the impedance of the electric circuit device 102 shown in FIG.
  • the horizontal axis represents frequency
  • the vertical axis represents impedance.
  • Curve kl3 shows the frequency dependence of the impedance when the width W5 in the overlapped portion 200A is equal to or greater than the length L5 and the separated conductor plates 204 and 205 are provided, and the curve kl4 is in the overlapped portion 200A. This shows the frequency dependence of impedance when the width W5 is equal to or greater than the length L5 and the conductor plates 204 and 205 are electrically connected.
  • the low frequency region below 0.006 GHz is the frequency region where capacitance is dominant
  • the high frequency region above 0.01 GHz is the frequency region where inductance is dominant.
  • the impedance (curved line kl3) of the electric circuit device 102 when the conductive plates 204 and 205 are electrically disconnected is the conductive plate 204.
  • 205 is almost the same as the impedance (curve kl4) of the electric circuit device 102 when electrically connected.
  • the impedance (curve kl3) of the electric circuit device 102 when the conductor plates 204 and 205 are electrically disconnected is the conductor plate. It becomes smaller than the impedance (curve kl4) of the electric circuit device 102 when 204 and 205 are electrically conducted.
  • the inductors of the electric circuit device 102 are provided by providing the electrically separated conductor plates 204 and 205 on the substrate 200. Can be reduced.
  • Electric circuit device 102 [Koo! ⁇ ⁇ ⁇ , board 200 [substitute board 200 ⁇ , 200 ⁇ , 200C, 20 OD, 200 ⁇ , 200F, 200G, 200 ⁇ , 200J, 200 ⁇ , 200L, 200 ⁇ , 200 ⁇ , Use 200 ⁇ , 200Q, and 200R! And when using any of 200 ⁇ , 200 ⁇ , 200C, 200D, 200 ⁇ , 200F, 200G, 200 ⁇ , 200J, 200 ⁇ , 200L, 200 ⁇ , 200 ⁇ , 200 ⁇ , 2 OOQ, 200R, substrate 200 was used As in the case, the impedance of the electric circuit device 102 can be reduced.
  • the board 200, 200mm, 200mm, 200C, 200D, 200mm, 200F, 200G, 20 OH, 200J, 200mm, 200L, 200mm, 200mm, 200mm, 200Q, 200R are the conductor plates 11A, 12A.
  • the impedance is reduced in a high frequency region where the inductance is dominant.
  • PCB 200, 200mm, 200mm, 200C, 200D, 200mm, 200F, 200G, 200mm, 200J, 200mm, 200L, 200mm, 200mm, 200mm, 200Q, 200R are unnecessary high frequency generated by CPU110 A substrate that confines electric current in the electric element 100.
  • the dielectric layers 1 to 5 are all made of the same dielectric material (BaTiO).
  • the present invention is not limited to this, and the dielectric layers 1 to 5 are made of two kinds of dielectric materials, which may be made of different dielectric materials. In general, it is sufficient that it is composed of one or more dielectric materials. In this case, each dielectric material constituting the dielectric layers 1 to 5 preferably has a relative dielectric constant of 3000 or more.
  • anode electrodes IOC, 10D, side anode electrodes 10A, 10B, conductor plates 11, 12, 21-23, side cathode electrodes 20A, 20B, 20C, 20D and cathode electrodes 20E, 2 OF are In this invention, the positive electrode IOC, 10D, the side anode electrodes 10A, 10B, the conductor plates 11, 12, 21-23, and the side negative electrode 20A are explained.
  • cathode electrodes 20E, 20F are silver (Ag), no ⁇ radium (Pd), silver palladium alloy (Ag-Pd), platinum (Pt), gold (Au), copper (Cu), Rubidium (Ru) and Tungsten (W) may consist of either!
  • the electric element 100 includes the dielectric layers 1 to 5.
  • the present invention is not limited thereto, and the electric element 100 includes the dielectric layers 1 to 5. You don't have to. This is because even if the dielectric layers 1 to 5 are not provided, magnetic interference occurs between the conductor plates 11 and 12 and the conductor plates 21 to 23, and the impedance of the electric element 100 is reduced by the above-described mechanism.
  • the number of conductor plates connected to the cathode electrodes 20E and 20F is 3 (conductor plates 21 to 23). However, the present invention is not limited to this.
  • the number of conductive plates connected to the positive electrodes 10C and 10D and the number of conductive plates connected to the cathode electrodes 20E and 20F are increased. And increase.
  • the conductor plate connected to the anode electrodes 10C and 10D and the cathode plate connected to the cathode electrodes 20E and 20F are a plurality of conductor plates, the plurality of conductor plates include two anode electrodes (10C and 10D).
  • the number of conductor plates connected to the electrodes IOC, 10D and the number of conductor plates connected to the cathode electrodes 20E, 20F increase the amount of calories.
  • Increasing the number of conductor plates connected to the electrodes IOC and 10D and the number of conductor plates connected to the cathode electrodes 20E and 20F increases the number of capacitors connected in parallel, and This is because the impedance decreases as the effective capacitance increases.
  • the electric element 100 is connected to the CPU 110.
  • the present invention is not limited to this, and the electric element 100 is an electric load circuit that operates at a predetermined frequency. How, if any, can be connected to the electrical load circuit.
  • the electric element 100 is a force described as being used as a noise filter for confining unnecessary high-frequency current generated by the CPU 110 in the vicinity of the CPU 110.
  • the electric element 100 is not limited to this.
  • Element 100 is also used as a capacitor. Since the electric element 100 includes four capacitors connected in parallel as described above, it can also be used as a capacitor.
  • the electric element 100 includes a notebook computer, a CD-RWZDVD device, a game machine, an information home appliance, a digital camera, an automotive electrical device, an automotive digital device, an MPU peripheral circuit, a DCZDC converter, and the like. Used for.
  • the electric circuit device 101 includes the electric element 100 and the substrates 200, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 200J, 200K, 200L, 20 OM, Equipped with 200N, 200P, 200Q, 200R, the electric circuit device 102 has an electric element 100 A and substrates 200, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 200 J, 200K, 200L, 200M , 200N, 200P, 200Q, 200R, board 200, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 200J, 200K, 200 L, 200M, 200N, 200P, 200Q, 200R
  • the current I is passed through the conductor plates 11 and 12 in the electrical element 100 or the conductor plates 11A and 12A in the electrical element 100A, and the return current Ir of the current I is the conductor in the conductor plates 21 to 23 in the electrical element
  • the conductive plates 11 and 12 are magnetically coupled to the conductive plates 21 to 23, and the effective inductance of the conductive plates 11 and 12 is smaller than the self-inductance of the conductive plates 11 and 12, and the conductive plates 11A and 12A Causes magnetic coupling with the conductor plates 21A to 23A, and the effective inductance of the conductor plates 11A and 12A is smaller than the self-inductance of the conductor plates 11A and 12A.
  • the impedance of the electric circuit devices 101 and 102 can be reduced. Further, unnecessary high-frequency current generated in the CPU 110 can be confined in the electric element 100.
  • FIG. 48 is a perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • electric circuit device 103 according to Embodiment 2 includes electric element 100 and conductor plate 500.
  • the conductor plate 23 of the electric element 100 is deleted, and the side anode electrode 10A includes the entire side surface 100A of the electric element 100, the bottom surface 100C of the electric element 100A, and the front surface 100D.
  • the side anode electrode 10B is formed on the entire side surface 100B of the electric element 100 and the bottom surface 100C, the front surface 100D, the back surface 100E, and a part of the upper surface 100F of the electric element 100A. It is formed.
  • the side cathode electrodes 20A, 20B, 20C, and 20D are also formed on a part of the upper surface 100F of the electric element 100.
  • the conductor plate 500 is disposed on the upper surface 100F of the electric element 100 and is connected to the side anode electrodes 10A and 10B.
  • the conductor plate 500 is made of silver, copper, gold, aluminum, brass, nickel, It consists of any of iron, platinum, tin and lead.
  • FIG. 49 is a perspective view of conductor plate 500 shown in FIG. Referring to FIG. 49, conductive plate 500 has notches 501, 502. As a result, the conductor plate 500 also has a force with the wide portions 503 and 504 and the narrow portion 505. The narrow part 505 is disposed between the wide part 503 and the wide part 504.
  • the conductor plate 500 has a length L6 in the direction DR1 in which a current flows through the conductor plates 11 and 12 of the electric element 100. This length L6 is approximately equal to the length of the electrical element 100 in the direction DR1.
  • the wide portions 503, 504 of the conductor plate 500 have a width W6 in the direction DR2 orthogonal to the direction DR1, and the narrow portion 505 of the conductor plate 500 has a width W7.
  • the width W6 has the same width as the electric element 100 in the direction DR2, and the width W7 is narrower than the width W6.
  • the width W6 is set to 5 mm, for example, and the width W7 is set to 3 mm, for example.
  • FIG. 50 is a cross-sectional view in the length direction DR1 of the conductor plate 500 shown in FIG.
  • conductive plate 500 has an uneven surface 500A. Note that the concave / convex surface 500A corresponds to the conductor plate 50A.
  • the uneven surface 500A has a depth d. This depth d is set to the skin depth d of the conductor through which the alternating current flows due to the skin effect when an alternating current flows through the conductor. Then the conductor s
  • the conductor plate 500 allows a direct current to flow without passing an alternating current.
  • Table 1 shows the skin depth d in the skin effect of various metal materials constituting the conductor plate 500.
  • the impedance is reduced by reducing the effective inductance as described above.
  • the conductor plate 500 supplies the DC current supplied from the power supply 90 to the CPU 110, and suppresses unnecessary high-frequency current generated by the CPU 110 by the skin effect. It flows in the conductor plates 21 to 23 in the electric element 100 and suppresses unnecessary high-frequency current from leaking to the power supply 90 side.
  • the depth d of the concavo-convex surface 500A of the conductor plate 500 is determined according to the frequency of an unnecessary high-frequency current generated by the CPU 110 (electric load circuit) connected to the electric circuit device 103.
  • the depth d is the epidermis determined by the lowest frequency fl of the frequencies fl to f2.
  • the skin depth determined by the lowest ⁇ frequency f 1 is the deepest of the skin depths determined by the frequencies included in the frequency range of fl to f 2 and therefore has a frequency in the range of fl to f 2 This is because high-frequency current can be suppressed from flowing through the conductor plate 500.
  • FIGS. 51 and 52 illustrate the range of the depth d of the uneven surface 500A shown in FIG. 50, respectively. It is the 1st and 2nd conceptual diagram for doing.
  • uneven surface 5 OOA of conductive plate 500 has a depth equal to or greater than minimum depth d. This minimum depth d is the surface of the conductor plate 500.
  • the minimum depth d is preferably determined by CPU 110.
  • the uneven surface 500A of the conductor plate 500 has a depth not greater than the maximum depth d.
  • the maximum depth d is determined by the CPU 110 (electric load circuit) connected to the electric circuit device 103.
  • 53 and 54 are first and second conceptual diagrams showing connection patterns between the electric circuit device 103 and the CPU 110, respectively.
  • electric circuit device 103 supplies DC current I to CPU 110.
  • the direct current I flows through the area 506 of the conductor plate 500A, and the direct current
  • the current value of current I is determined by the cross-sectional area of region 506. Guide when the surface is flat
  • I VX (D- 2 X d) X (W7- 2 X d)
  • the maximum depth d of the uneven surface 500A of the conductor plate 500 is I +1 +1 max 1 2
  • the minimum depth d and the minimum maximum depth d of the depth d of the uneven surface 500A of the conductor plate 500 are determined.
  • the depth d of the concavo-convex surface 500A of the conductor plate 500 is the minimum depth max
  • the depth should be set to a depth greater than d.
  • the uneven surface of the conductor plate 500 is 5 mm.
  • the OOA depth d need only be set to a depth equal to or greater than the skin depth d. Furthermore, preferably
  • the depth d of the uneven surface 500A of the conductive plate 500 is the skin depth d determined by the highest frequency among the frequencies of the high-frequency current generated by the CPU 110.
  • the depth d of the uneven surface 500A of the conductor plate 500 is not less than the minimum depth d and is the maximum depth d.
  • the depth d of the uneven surface 500A of the conductor plate 500 is not less than the skin depth d and not more than the maximum depth d.
  • the depth d of the uneven surface 500A of the conductor plate 500 is the skin depth d determined by the highest frequency among the frequencies of the high-frequency current generated by the CPU 110.
  • the depth d of the uneven surface 500A of the conductor plate 500 is not less than the skin depth d determined by the lowest frequency among the frequencies of the high-frequency current generated by the CPU 110, and
  • the uneven surface 500A is illustrated as having the same shape of unevenness on the front and back surfaces. In the present invention, the uneven surface 500A is not limited to this. You may have unevenness
  • the electric circuit device 103 is disposed on the substrate 200.
  • the side anode electrode 10A is connected to the conductor plate 202
  • the side anode electrode 10B is connected to the conductor plate 203
  • the side cathode electrodes 20A and 20B are connected to the conductor plate 204 via conductors (not shown).
  • the side negative electrodes 20C and 20D are connected to the conductor plate 205 via a conductor (not shown).
  • electric circuit device 103 receives current I at side anode electrode 10 A through conductor plate 202. Then, the conductor plate 500 of the electric circuit device 103 causes the DC component of the current I to flow to the side positive electrode 10B, and causes the AC component of the current I to flow to the conductor plates 11 and 12 in the electric element 100. As a result, the DC component of current I flows from side anode electrode 10A ⁇ conductor plate 500 ⁇ side anode electrode 10B ⁇ conductor plate 203, and the AC component of current I is side anode electrode 10A ⁇ conductor plates 11, 12 ⁇ side. Flows as anode electrode 10B ⁇ conductor plate 203.
  • the return current Ir of the current I is suppressed from flowing through the conductor plate 500 due to the skin effect of the conductor plate 500, and the side cathode electrode passes through the conductor (not shown) from the conductor plate 205 of the substrate 200.
  • the conductor plates 11 and 12 of the electric element 100 are magnetically coupled to the conductor plates 21 and 22, and the effective inductance of the conductor plates 11 and 12 is smaller than the self-inductance of the conductor plates 11 and 12. It will be.
  • the impedance of electric circuit device 103 can be reduced.
  • unnecessary high-frequency current generated by CPU 110 which is return current Ir of current I, can be confined in electrical element 100, and leakage of unnecessary high-frequency current to power supply 90 can be suppressed.
  • FIG. 55 is another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • the electric circuit device according to the second embodiment may be an electric circuit device 104 shown in FIG.
  • electric circuit device 104 is the same as electric circuit device 104 except that conductor plate 500 of electric circuit device 103 shown in FIG.
  • the conductor plate 501 is disposed on a part of the top surface 100F, the side surface 100B, and the bottom surface 100C of the electric element 100, and is connected to the side anode electrodes 10A and 10B.
  • the conductor plate 501 is made of any force of silver, copper, gold, aluminum, brass, nickel, iron, platinum, tin and lead.
  • the conductor plate 501 has the same uneven surface as the uneven surface 500A of the conductor plate 500.
  • the conductor plate 501 has the skin depth in the skin effect as the depth of the concave portion, like the conductor plate 500, so that the DC component of the current I flows and the AC component of the current I flows in the electric element 100. Flow through conductor plates 11 and 12.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 and 22, and the effective inductance of the conductor plates 11 and 12 is the self-inductance of the conductor plates 11 and 12. Than / J, it will be a little.
  • the impedance of the electric circuit device 104 can be reduced.
  • unnecessary high-frequency current generated in CPU 110 can be confined in electric element 100, and leakage of unnecessary high-frequency current to power supply 90 can be suppressed.
  • the contact area between the conductor plate 501 and the side anode electrode 10B is larger than that of the conductor plate 500, the contact resistance between the conductor plate 501 and the side anode electrode 10B can be reduced. Heat generation at the contact portion with the anode electrode 10B can be reduced.
  • FIG. 56 is still another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • the electric circuit device according to the second embodiment may be an electric circuit device 105 shown in FIG.
  • the electric circuit device 105 is a conductor plate of the electric circuit device 103 shown in FIG.
  • the conductive plate 502 is composed of the top surface 100F, the side surfaces 100A and 100B, and the bottom surface 100 of the electric element 100. Arranged in a part of C and connected to the side anode electrodes 10A and 10B.
  • the conductive plate 502 can be any of silver, copper, gold, aluminum, brass, nickel, iron, platinum, tin, and lead.
  • the conductor plate 502 has the same uneven surface as the uneven surface 500A of the conductor plate 500.
  • the conductor plate 502 has the skin depth in the skin effect as the depth of the concave portion, like the conductor plate 500, so that the DC component of the current I flows and the AC component of the current I flows in the electric element 100. Flow through conductor plates 11 and 12.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 and 22, and the effective inductance of the conductor plates 11 and 12 is the self-inductance of the conductor plates 11 and 12. Than / J, it will be a little.
  • the impedance of electric circuit device 105 can be reduced.
  • unnecessary high-frequency current generated in CPU 110 can be confined in electric element 100, and leakage of unnecessary high-frequency current to power supply 90 can be suppressed.
  • the heat generation at the contact portion between the conductor plate 502 and the side anode electrodes 10A and 10B can be reduced.
  • FIG. 57 is still another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • the electric circuit device according to the second embodiment may be an electric circuit device 106 shown in FIG.
  • electric circuit device 106 is the same as electric circuit device 103 except that conductor plate 500 of electric circuit device 103 shown in FIG. 48 is replaced with conductor plate 503. .
  • Conductor plate 503 is disposed on part of top surface 100F, side surface 100B, and bottom surface 100C of electrical element 100, and is connected to side anode electrodes 10A and 10B, and extends in the width direction DR2 of electrical element 100.
  • the extended portion 5031 is provided.
  • the conductor plate 503 also has an extended portion extending in the opposite direction to the extended portion 5031.
  • the conductor plate 503 is made of any one of silver, copper, gold, aluminum, brass, nickel, iron, platinum, tin, and lead.
  • the conductor plate 503 has the same uneven surface as the uneven surface 500A of the conductor plate 500.
  • conductor plate 503 Since conductor plate 503 has the skin depth in the skin effect as the depth of the recess, as with conductor plate 500, the direct current component of current I flows and the alternating current component of current I flows in electrical element 100. Flow through conductor plates 11 and 12.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 and 22, and the effective inductance of the conductor plates 11 and 12 is the self-inductance of the conductor plates 11 and 12. Than / J, it will be a little.
  • the impedance of the electric circuit device 106 can be reduced.
  • unnecessary high-frequency current generated in CPU 110 can be confined in electrical element 100, and leakage of unnecessary high-frequency current to power supply 90 can be suppressed.
  • the conductor plate 503 includes the extending portion 5031, when the electric circuit device 106 is disposed on the substrate 200, the contact area with the conductor plate 203 can be increased, and the electric circuit device 106 and the substrate 200 can be increased. The heat resistance at the contact portion between the electric circuit device 106 and the substrate 200 can be suppressed.
  • FIG. 58 is still another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • the electric circuit device according to the second embodiment may be an electric circuit device 107 shown in FIG.
  • electric circuit device 107 is the same as electric circuit device 103 except that conductor plate 500 of electric circuit device 103 shown in FIG. 48 is replaced with conductor plate 504. .
  • the conductor plate 504 is disposed on a part of the upper surface 100F, the side surfaces 100A and 100B, and the bottom surface 100C of the electric element 100, and has connection portions 504A and 504B.
  • the conductor plate 504 is connected to the side anode electrode 10A by the connection portion 504A, and is connected to the side anode electrode 10B by the connection portion 504B.
  • the connecting portion 504A has extending portions 5042 and 5043 extending in the width direction DR2 of the electric element 100
  • the connecting portion 504B has an extending portion 5041 extending in the width direction DR2 of the electric element 100.
  • the connecting portion 504B is It also has a stretched portion stretched in the opposite direction to stretched portion 5041.
  • the conductor plate 504 is made of any one of silver, copper, gold, aluminum, brass, nickel, iron, platinum, tin, and lead.
  • the conductor plate 504 has the same uneven surface as the uneven surface 500A of the conductor plate 500.
  • the conductor plate 504 has the skin depth in the skin effect as the depth of the concave portion, like the conductor plate 500, so that the DC component of the current I flows and the AC component of the current I flows in the electric element 100. Flow through conductor plates 11 and 12.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 and 22, and the effective inductance of the conductor plates 11 and 12 is the self-inductance of the conductor plates 11 and 12. Than / J, it will be a little.
  • the impedance of the electric circuit device 107 can be reduced.
  • unnecessary high-frequency current generated in CPU 110 can be confined in electric element 100, and leakage of unnecessary high-frequency current to power supply 90 can be suppressed.
  • heat generation at the contact portion between the conductor plate 504 and the side anode electrodes 10A and 10B can be reduced.
  • the conductor plate 504 includes the extending portions 5041 to 5043, when the electric circuit device 107 is disposed on the substrate 200, the contact area with the conductor plates 202 and 203 can be increased, and the electric circuit device The contact resistance between 107 and substrate 200 can be reduced, and heat generation at the contact portion between electric circuit device 107 and substrate 200 can be suppressed.
  • FIG. 59 is still another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • the electric circuit device according to the second embodiment may be an electric circuit device 108 shown in FIG.
  • electric circuit device 108 is the same as electric circuit device 103 except that conductor plate 500 of electric circuit device 103 shown in FIG. 48 is replaced with conductor plate 505. .
  • the side cathode electrodes 20A, 20C of the electric element 100 are arranged on the front surface 100D of the electric element 100, and the side cathode electrodes 20B, 20D are arranged on the back surface 100E of the electric element 100.
  • the conductor plate 505 has the same width as the width W6 of the wide portions 503 and 504 of the conductor plate 500, and the electric element
  • the upper surface 100F, the side surfaces 100A and 100B, and a part of the bottom surface 100C of the 100 are arranged and connected to the side anode electrodes 10A and 10B.
  • the conductor plate 505 is made of any of silver, copper, gold, aluminum, brass, nickel, iron, platinum, tin, and lead.
  • the conductor plate 505 has the same uneven surface as the uneven surface 500A of the conductor plate 500.
  • the conductor plate 505 has the skin depth in the skin effect as the depth of the recess, like the conductor plate 500, so that the DC component of the current I flows and the AC component of the current I flows in the electric element 100. Flow through conductor plates 11 and 12.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 and 22, and the effective inductance of the conductor plates 11 and 12 is the self-inductance of the conductor plates 11 and 12. Than / J, it will be a little.
  • the impedance of the electric circuit device 108 can be reduced.
  • unnecessary high-frequency current generated in CPU 110 can be confined in electric element 100, and leakage of unnecessary high-frequency current to power supply 90 can be suppressed.
  • the heat generation at the contact portion between the conductor plate 505 and the side anode electrodes 10A and 10B can be reduced.
  • FIG. 60 is still another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • the electric circuit device according to the second embodiment may be an electric circuit device 109 shown in FIG.
  • electric circuit device 109 is the same as electric circuit device 108 except that conductor plate 505 of electric circuit device 108 shown in FIG. 59 is replaced with conductor plate 506. .
  • the conductor plate 506 is disposed on the entire top surface 100F and side surfaces 100A and 100B of the electrical element 100 and on a part of the bottom surface 100C, front surface 100D and back surface 100E, and is connected to the side anode electrodes 10A and 10B. .
  • the conductor plate 506 is made of any one of silver, copper, gold, aluminum, brass, nickel, iron, platinum, tin, and lead.
  • the conductor plate 506 is the same as the uneven surface 500A of the conductor plate 500. Have uneven surfaces.
  • the conductor plate 506 has the skin depth in the skin effect as the depth of the recess, like the conductor plate 500, so that the DC component of the current I flows and the AC component of the current I flows in the electric element 100. Flow through conductor plates 11 and 12.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 and 22, and the effective inductance of the conductor plates 11 and 12 is the self-inductance of the conductor plates 11 and 12. Than / J, it will be a little.
  • the impedance of the electric circuit device 109 can be reduced.
  • unnecessary high-frequency current generated in CPU 110 can be confined in electrical element 100, and leakage of unnecessary high-frequency current to power supply 90 can be suppressed.
  • heat generation at the contact portion between the conductor plate 506 and the side anode electrodes 10A and 10B can be reduced.
  • FIG. 61 is still another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • the electric circuit device according to the second embodiment may be an electric circuit device 120 shown in FIG.
  • electric circuit device 120 is the same as electric circuit device 108 except that conductor plate 505 of electric circuit device 108 shown in FIG. 55 is replaced with conductor plate 507. .
  • the conductor plate 507 is disposed on a part of the upper surface 100F, the side surfaces 100A and 100B, and the bottom surface 100C of the electric element 100, and has connection portions 507A and 507B.
  • the conductor plate 507 is connected to the side anode electrode 10A by the connecting portion 507A, and is connected to the side anode electrode 10B by the connecting portion 507B.
  • the connecting portion 507A has extending portions 5072 and 5073 extending in the width direction DR2 of the electric element 100
  • the connecting portion 507B has an extending portion 5071 extending in the width direction DR2 of the electric element 100.
  • FIG. 61 three extending portions 507 1 to 5073 extending in the width direction DR2 of the electric element 100 are shown, but in reality, the connecting portion 507B is opposite to the extending portion 5071. It also has a stretched part stretched in the direction.
  • the conductive plate 507 is made of silver, copper, gold, aluminum, brass, nickel, iron, platinum, tin. And either lead or lead.
  • the conductor plate 507 has the same uneven surface as the uneven surface 500A of the conductor plate 500.
  • the conductor plate 507 has the skin depth in the skin effect as the depth of the recessed portion, like the conductor plate 500, so that the DC component of the current I flows and the AC component of the current I flows in the electric element 100. Flow through conductor plates 11 and 12.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 and 22, and the effective inductance of the conductor plates 11 and 12 is the self-inductance of the conductor plates 11 and 12. Than / J, it will be a little.
  • the impedance of the electric circuit device 120 can be reduced.
  • unnecessary high-frequency current generated in CPU 110 can be confined in electric element 100, and leakage of unnecessary high-frequency current to power supply 90 can be suppressed.
  • heat generation at the contact portion between the conductor plate 507 and the side anode electrodes 10A and 10B can be reduced.
  • the conductor plate 507 has the extending portions 5071 to 5073, when the electric circuit device 120 is disposed on the substrate 200, the contact area with the conductor plates 202 and 203 can be increased, and the electric circuit device The contact resistance between 120 and substrate 200 can be reduced, and heat generation at the contact portion between electric circuit device 120 and substrate 200 can be suppressed.
  • FIG. 62 is still another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • the electric circuit device according to the second embodiment may be an electric circuit device 121 shown in FIG.
  • electric circuit device 120 is the same as electric circuit device 109 except that conductor plate 506 of electric circuit device 109 shown in FIG. 60 is replaced with conductor plate 508. .
  • the conductor plate 508 is disposed on a part of the upper surface 100F, the side surfaces 100A and 100B, and the bottom surface 100C of the electric element 100, and has connection portions 508A and 508B.
  • the conductor plate 508 is connected to the side anode electrode 10A by the connection portion 508A, and is connected to the side anode electrode 10B by the connection portion 508B.
  • the connecting portion 508A has extending portions 5082 and 5083 extending in the width direction DR2 of the electric element 100, and the connecting portion 508B extends in the width direction DR2 of the electric element 100. It has an extended portion 5081. 62, the force in which three extending portions 5081 to 5083 extending in the width direction DR2 of the electric element 100 are illustrated.
  • the connecting portion 508B extends in the opposite direction to the extending portion 5081. It also has an extended part.
  • the conductor plate 508 is made of any one of silver, copper, gold, aluminum, brass, nickel, iron, platinum, tin, and lead.
  • the conductor plate 508 has the same uneven surface as the uneven surface 500A of the conductor plate 500.
  • the conductor plate 508 has the skin depth in the skin effect as the depth of the recessed portion, like the conductor plate 500, so that the DC component of the current I flows and the AC component of the current I flows in the electric element 100. Flow through conductor plates 11 and 12.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 and 22, and the effective inductance of the conductor plates 11 and 12 is the self-inductance of the conductor plates 11 and 12. Than / J, it will be a little.
  • the impedance of the electric circuit device 121 can be reduced.
  • unnecessary high-frequency current generated in CPU 110 can be confined in electric element 100, and leakage of unnecessary high-frequency current to power supply 90 can be suppressed.
  • heat generation at the contact portion between the conductor plate 508 and the side anode electrodes 10A and 10B can be reduced.
  • the conductor plate 508 has the extending portions 5081 to 5083, when the electric circuit device 121 is disposed on the substrate 200, the contact area with the conductor plates 202 and 203 can be increased, and the electric circuit device The contact resistance between 121 and the substrate 200 can be reduced, and heat generation at the contact portion between the electric circuit device 121 and the substrate 200 can be suppressed.
  • FIG. 63 is still another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • the electric circuit device according to the second embodiment may be an electric circuit device 122 shown in FIG.
  • electric circuit device 122 is a conductive plate of electric circuit device 120 shown in FIG.
  • the conductor plate 509 is the top surface 100F, side surfaces 100A, 100B, and bottom surface 100 of the electric element 100. It is arranged in a part of C and has connection parts 509A and 509B. Then, the conductor plate 509 is connected to the side anode electrode 10A by the connection portion 509A, and is connected to the side anode electrode 10B by the connection portion 509B.
  • the connecting portion 509A has extending portions 5092 and 5093 extending in the width direction DR2 of the electric element 100, and the connecting portion 509B has an extending portion 5091 extending in the width direction DR2 of the electric element 100. Note that in FIG. 63, the force in which three extending portions 5091 to 5093 extending in the width direction DR2 of the electric element 100 are illustrated. In practice, the connecting portion 509B extends in the opposite direction to the extending portion 5091. It also has an extended part.
  • the conductor plate 509 is made of any one of silver, copper, gold, aluminum, brass, nickel, iron, platinum, tin, and lead.
  • the conductor plate 509 has the same uneven surface as the uneven surface 500 A of the conductor plate 500.
  • the conductor plate 509 has the skin depth in the skin effect as the depth of the recess, so that the DC component of the current I flows and the AC component of the current I flows in the electrical element 100. Flow through conductor plates 11 and 12.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 and 22, and the effective inductance of the conductor plates 11 and 12 is the self-inductance of the conductor plates 11 and 12. Than / J, it will be a little.
  • the impedance of the electric circuit device 122 can be reduced.
  • unnecessary high-frequency current generated by CPU 110 can be confined in electric element 100, and leakage of unnecessary high-frequency current to power supply 90 can be suppressed.
  • the contact area between the conductor plate 509 and the side anode electrodes 10A and 10B is larger than that of the conductor plate 500, the contact resistance between the conductor plate 509 and the side anode electrodes 10A and 10B can be reduced. Heat generation at the contact portion between the plate 509 and the side anode electrodes 10A and 10B can be reduced.
  • the conductor plate 509 has the extending portions 5091 to 5095, when the electric circuit device 122 is arranged on the substrate 200, the contact area with the conductor plates 202 and 203 can be increased, and the electric circuit device The contact resistance between 122 and substrate 200 can be reduced, and heat generation at the contact portion between electric circuit device 122 and substrate 200 can be suppressed.
  • FIG. 64 is still another perspective view showing the configuration of the electric circuit device according to the second embodiment.
  • the electric circuit device according to the second embodiment may be the electric circuit device 123 shown in FIG. Yes.
  • electric circuit device 123 is the same as electric circuit device 121 except that conductor plate 508 of electric circuit device 121 shown in FIG. .
  • the conductor plate 510 is disposed on a part of the upper surface 100F, the side surfaces 100A and 100B, and the bottom surface 100C of the electric element 100, and has connection portions 510A and 510B.
  • the conductor plate 510 is connected to the side anode electrode 10A by the connecting portion 510A, and is connected to the side anode electrode 10B by the connecting portion 510B.
  • the connecting portion 510A includes extending portions 5102 and 5103 extending in the width direction DR2 of the electric element 100
  • the connecting portion 510B includes an extending portion 5101 extending in the width direction DR2 of the electric element 100.
  • FIG. 64 the force in which three extending portions 5101 to 5103 extending in the width direction DR2 of the electric element 100 are illustrated.
  • the connecting portion 510B extends in the opposite direction to the extending portion 5101. It also has an extended part.
  • the conductor plate 510 is made of any one of silver, copper, gold, aluminum, brass, nickel, iron, platinum, tin, and lead.
  • the conductor plate 510 has the same uneven surface as the uneven surface 500A of the conductor plate 500.
  • the conductor plate 510 has the skin depth in the skin effect as the depth of the concave portion, like the conductor plate 500, so that the DC component of the current I flows and the AC component of the current I flows in the electric element 100. Flow through conductor plates 11 and 12.
  • the impedance of the electric circuit device 123 can be reduced.
  • unnecessary high-frequency current generated in CPU 110 can be confined in electric element 100, and leakage of unnecessary high-frequency current to power supply 90 can be suppressed.
  • the contact area between the conductor plate 510 and the side anode electrodes 10A and 10B is larger than that of the conductor plate 500, the contact resistance between the conductor plate 510 and the side anode electrodes 10A and 10B can be reduced. Heat generation at the contact portion between the plate 510 and the side anode electrodes 10A and 10B can be reduced.
  • the conductor plate 510 has the extending portions 5101 to 5105, when the electric circuit device 123 is disposed on the substrate 200, the contact area with the conductor plates 202 and 203 can be increased, and the electric circuit The contact resistance between the path device 123 and the substrate 200 can be reduced, and heat generation at the contact portion between the electric circuit device 123 and the substrate 200 can be suppressed.
  • the electric circuit devices 103 109 and 120 123 according to the second embodiment have uneven surfaces in which the depth of the concave portion is not less than the minimum depth d due to the skin effect and not more than the maximum depth d.
  • the conductor plate 500 510 having 200 A allows the direct current component of the current I to flow, and allows the alternating current component of the current I to flow through the conductor plates 11 and 12 in the electric element 100. Further, the return current Ir of the current I flows through the conductor plates 21 and 22 in the electric element 100.
  • the conductor plates 11 and 12 are magnetically coupled to the conductor plates 21 and 22, and the effective inductance of the conductor plates 11 and 12 is smaller than the self-inductance of the conductor plates 11 and 12.
  • the impedance of electric circuit devices 103 109 and 120 123 can be reduced.
  • unnecessary high-frequency current generated in CPU 110 can be confined in electric element 100, and unnecessary high-frequency current can be prevented from leaking to power supply 90 side.
  • the electric circuit device 103 109, 120 123 is mounted on a substrate, the above-mentioned substrate 200, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 200J, 200K, 200L, 200M, 200N, 200P, 200Q, and 200R!
  • the AC component of the current I is caused to flow to the conductor plates 11 and 12 in the electric element 100 by the conductor plate 500 510 disposed outside the electric element 100, and the return current Ir is the substrate 200 0, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 200J, 200K, 200L, 200M, 200M, 200N, 200P, 200Q, 200R, conductors 21 and 2 Dttd in the electric element 100 are generated.
  • the electric circuit devices 103 to 109, 120 to 123 are electric elements instead of the electric element 100.
  • the thickness of the conductor plates 500 to 510 may be determined according to the current value of the DC current supplied to the CPU 110.
  • the conductor plates 500 to 510 have a plurality of strip shapes that are not limited to one conductor plate. The power of the conductor plate is good.
  • the electric element 100 is connected between the power supply 90 and the CPU 110.
  • the electric element 100 is not limited thereto, and the electric element 100 includes the first terminal and the second terminal. It is only necessary to be connected to the terminal.
  • the side anode electrode 10A and the anode electrode 1 OC are arranged on the first terminal side
  • the side anode electrode 10B and the anode electrode 10D are arranged on the second terminal side
  • the electrode 20E is disposed on the first terminal side
  • the side cathode electrodes 20C and 20D and the cathode electrode 20F are disposed on the second terminal side.
  • the electric circuit devices 103 to 109, 120 to 123 may include a conductor plate having only an extending portion extending in the length direction DR1 of the electric element 100. It is only necessary to have a conductor plate having a stretched portion extending in the zero length direction DR1 and Z or the width direction DR2.
  • this invention [0418] In addition, this invention [This is the board! 200, 200 mm, 200 mm, 200 C, 200 D, 200 mm, 2 OOF, 200 G, 200 mm, 200 J, 200 mm, 200 L, 200 mm, 200 mm, 200 mm, 200 mm, 200 mm, Each of 200Q and 200R constitutes a “current control member”, and each of the conductor plates 500 to 510 constitutes a “current control member”.
  • the conductor plates 11, 12; 11A, 12A constitute " ⁇ first conductor plates” or “ ⁇ second conductor plates”
  • the conductor plates 21 to 23; 21 to 23 Eight constitutes “m second conductor plates” or “m third conductor plates”.
  • the side anode electrode 10A and the anode electrode 10C constitute a "first anode electrode”
  • the side anode electrode 10B and the anode electrode 10D constitute a "second anode electrode”
  • the side anode The electrodes 20A, 20B and the cathode electrode 20E constitute a “first cathode electrode”
  • the side cathode electrodes 20C, 20D and the cathode electrode 20F constitute a “second cathode electrode”.
  • the conductor plate 202 and the conductor portions 305; 325; 415, 416, 422 constitute a "first conductor portion”
  • the conductor plate 203 and the conductor portions 306, 328, 419, 420, 425 are
  • the ⁇ second conductor part '' is constituted
  • the conductor plates 204, 209, 212, the via holes BH1, 423 and the conductor parts 307, 310, 326, 417 constitute the ⁇ third conductor part ''
  • the conductor plates 205, 210, 213, via holes BH2, 424 and conductor portions 308, 311, 327, 418 constitute a "fourth conductor portion".
  • the conductor portions 305, 325, 415, 416 and the via hole 422 constitute a "first conductor portion”
  • the conductor portions 306, 328, 419, 420 and the via hole 425 constitute a "second conductor portion”.
  • the slits 303, 312 to 324, and 411 to 414 constitute the “first slit” and the conductor portion 3
  • the uneven surface 500A constitutes an "uneven portion”
  • the connection portions 504A, 507A, 508A, 509 A, 510A constitute a "first connection portion”
  • the connection portions 504B, 507B, 508B , 509B, 510B constitute a “second connecting portion”.
  • the present invention is applied to an electric circuit device capable of reducing impedance by reducing inductance.
  • the present invention is also applied to an electric circuit device capable of suppressing leakage of a high-frequency current generated in an electric load circuit to the power supply side.

Abstract

電気回路装置(101)は、電気素子(100)と、基板(200)とを備える。電気素子(100)は、導体板(11,12)と、導体板(21~23)と、導体(11,12)に接続されたサイド陽極電極(10A,10B)と、導体板(21~23)に接続されたサイド陰極電極(20A,20B,20C,20D)とを含む。導体板(11,12)は、導体板(21~23)と交互に積層される。基板(200)は、誘電体(201)と、導体板(202~205)とを含む。導体板(202)は、サイド陽極電極(10A)に接続され、導体板(203)は、サイド陽極電極(10B)に接続され、導体板(204)は、サイド陰極電極(20A,20B)に接続され、導体板(205)は、サイド陰極電極(20C,20D)に接続される。

Description

明 細 書
電気回路装置
技術分野
[0001] この発明は、電気回路装置に関し、特に、低いインピーダンスを有する電気回路装 置に関するものである。
背景技術
[0002] 最近、 LSI (Large Scale Integrated circuit)等のデジタル回路技術は、コン ピュータおよび通信関連機器だけでなぐ家庭電ィ匕製品および車載用機器にも使用 されている。
[0003] そして、 LSI等で発生した高周波電流は、 LSI近傍にとどまらず、プリント回路基板 等の実装回路基板内の広い範囲に広がり、信号配線およびグランド配線に誘導結 合し、信号ケーブル等から電磁波として漏洩する。
[0004] 従来のアナログ回路の一部をデジタル回路に置き換えた回路、およびアナログ入 出力を持つデジタル回路等のアナログ回路とデジタル回路とが混載される回路では 、デジタル回路力もアナログ回路への電磁干渉問題が深刻になってきて!/、る。
[0005] この対策には、高周波電流の発生源である LSIを供給電源系から高周波的に分離 すること、すなわち、電源デカップリングの手法が有効である。そして、この電源デカ ップリングの手法を用いたノイズフィルタとして伝送線路型ノイズフィルタが知られて ヽ る(特開 2004— 80773号公報)。
[0006] この伝送線路型ノイズフィルタは、第 1および第 2の導電体と、誘電体層と、第 1およ び第 2の陽極とを備える。そして、第 1および第 2の導電体の各々は、板状形状からな り、誘電体層は、第 1および第 2の導電体間に配置される。
[0007] 第 1の陽極は、第 1の導電体の長さ方向における一方端に接続され、第 2の陽極は 、第 1の導体体の長さ方向における他方端に接続される。第 2の導電体は、基準電位 に接続するための陰極として機能する。また、第 1の導電体、誘電体層および第 2の 導電体は、コンデンサを構成する。さらに、第 1の導電体の厚さは、第 1の導電体に 流れる電流の直流成分によって生じる温度上昇を実質的に抑制するように設定され る。
[0008] そして、伝送線路型ノイズフィルタは、電源と LSIとの間に接続され、電源カゝらの電 流を第 1の陽極、第 1の導電体および第 2の陽極からなる経路によって LSIへ流すと ともに、 LSIで発生した交流電流を減衰する。
[0009] このように、伝送線路型ノイズフィルタは、コンデンサの構成を有し、コンデンサの 2 つの電極を構成する第 1および第 2の導電体を伝送線路として用いたノイズフィルタ である。
特許文献 1:特開 2004— 80773号公報
発明の開示
[0010] しかし、伝送線路型ノイズフィルタは、(インダクタンス/キャパシタンス) 1/2によって 表されるインピーダンスを有し、インダクタンスを低減する手段を採用していない。ま た、インピーダンスは、周波数が高くなるに従ってキャパシタンスが支配的な領域から インダクタンスが支配的な領域へ移行する。その結果、従来の伝送線路型ノイズフィ ルタにおいては、伝送線路型ノイズフィルタが元来的に有するインダクタンスによって 決定されるインピーダンスよりも低 ヽインピーダンスを実現できな ヽと ヽぅ問題がある。
[0011] また、 CPU等の電気負荷回路で発生する不要な高周波電流が電源側へ漏洩する のを抑制することが困難であるという問題がある。
[0012] そこで、この発明は、力かる問題を解決するためになされたものであり、その目的は 、インダクタンスの低減によってインピーダンスを低減可能な電気回路装置を提供す ることである。
[0013] また、この発明の別の目的は、電気負荷回路で発生した高周波電流の電源側への 漏洩を抑制可能な電気回路装置を提供することである。
[0014] この発明によれば、電気回路装置は、電気素子と、電流制御部材とを備える。電気 素子は、第 1および第 2の端子間に接続される。電流制御部材は、第 1の端子力 供 給された第 1の電流の交流成分を少なくとも電気素子内の導体板に流すとともに、第 1の電流のリターン電流である第 2の電流を第 2の端子力 受け、その受けた第 2の電 流の交流成分を少なくとも電気素子内の導体板に流す。電気素子は、 n (nは正の整 数)個の第 1の導体板と、 m (mは正の整数)個の第 2の導体板とを含む。 n個の第 1の 導体板の各々は、第 1の電流の交流成分を少なくとも第 1の端子側から第 2の端子側 へ流す。 m個の第 2の導体板は、 n個の第 1の導体板と交互に積層され、各々が第 2 の電流の交流成分を少なくとも第 2の端子側から第 1の端子側へ流す。
[0015] 好ましくは、電気素子は、第 1および第 2の陽極電極と、第 1および第 2の陰極電極 とをさら〖こ含む。第 1の陽極電極は、第 1の端子側に配置され、 n個の第 1の導体板の 一方端に接続される。第 2の陽極電極は、第 2の端子側に配置され、 n個の第 1の導 体板の他方端に接続される。第 1の陰極電極は、第 1の端子側に配置され、 m個の 第 2の導体板の一方端に接続される。第 2の陰極電極は、第 2の端子側に配置され、 m個の第 2の導体板の他方端に接続される。そして、電流制御部材は、第 1および第 2の陰極電極に接続され、 m個の第 2の導体板のインピーダンスよりも大きいインピー ダンスを有する第 3の導体板を含む。
[0016] 好ましくは、電気素子は、第 1および第 2の陽極電極と、第 1および第 2の陰極電極 とをさら〖こ含む。第 1の陽極電極は、第 1の端子側に配置され、 n個の第 1の導体板の 一方端に接続される。第 2の陽極電極は、第 2の端子側に配置され、 n個の第 1の導 体板の他方端に接続される。第 1の陰極電極は、第 1の端子側に配置され、 m個の 第 2の導体板の一方端に接続される。第 2の陰極電極は、第 2の端子側に配置され、 m個の第 2の導体板の他方端に接続される。そして、電流制御部材は、表皮効果に よって第 1の電流の交流成分を n個の第 1の導体板に流すとともに、第 1の電流の直 流成分を第 1の陽極電極から第 2の陽極電極へ流す。
[0017] また、この発明によれば、電気回路装置は、基板と、電気素子とを備える。電気素 子は、基板上に配置され、第 1および第 2の端子間に接続される。そして、電気素子 は、第 1および第 2の陽極電極と、第 1および第 2の陰極電極と、 n (nは正の整数)個 の第 1の導体板と、 m (mは正の整数)個の第 2の導体板とを含む。第 1の陽極電極は 、第 1の端子側に配置される。第 2の陽極電極は、第 2の端子側に配置される。第 1の 陰極電極は、第 1の端子側に配置される。第 2の陰極電極は、第 2の端子側に配置さ れる。 n個の第 1の導体板は、第 1および第 2の陽極電極に接続される。 m個の第 2の 導体板は、 n個の第 1の導体板と交互に積層され、第 1および第 2の陰極電極に接続 される。基板は、第 1から第 4の導体部を含む。第 1の導体部は、第 1の陽極電極に 接続される。第 2の導体部は、第 1の導体部と分離されて設けられ、第 2の陽極電極 に接続される。第 3の導体部は、第 1の陰極電極に接続される。第 4の導体部は、第 3 の導体部と分離されて設けられ、第 2の陰極電極に接続される。
[0018] さらに、この発明によれば、電気回路装置は、基板と、電気素子とを備える。電気素 子は、基板上に配置され、第 1および第 2の端子間に接続される。そして、電気素子 は、第 1および第 2の陽極電極と、第 1および第 2の陰極電極と、 n (nは正の整数)個 の第 1の導体板と、 m (mは正の整数)個の第 2の導体板とを含む。第 1の陽極電極は 、第 1の端子側に配置される。第 2の陽極電極は、第 2の端子側に配置される。第 1の 陰極電極は、第 1の端子側に配置される。第 2の陰極電極は、第 2の端子側に配置さ れる。 n個の第 1の導体板は、第 1および第 2の陽極電極に接続される。 m個の第 2の 導体板は、 n個の第 1の導体板と交互に積層され、第 1および第 2の陰極電極に接続 される。基板は、第 1から第 4の導体部と、第 1および第 2のスリットとを含む。第 1の導 体部は、第 1の陽極電極に接続される。第 2の導体部は、第 2の陽極電極に接続され る。第 1のスリットは、第 1の導体部と第 2の導体部との間に設けられる。第 3の導体部 は、第 1の陰極電極に接続される。第 4の導体部は、第 2の陰極電極に接続される。 第 2のスリットは、第 3の導体部と第 4の導体部との間に設けられる。
[0019] 好ましくは、第 1のスリットは、第 2のスリットと同じスリットからなる。
[0020] さらに、この発明によれば、電気回路装置は、電気素子と、第 1の導体板とを備える 。電気素子は、第 1および第 2の端子間に接続される。第 1の導体板は、電気素子の 両端に接続される。電気素子は、第 1および第 2の陽極電極と、第 1および第 2の陰 極電極と、 n(nは正の整数)個の第 2の導体板と、 m (mは正の整数)個の第 3の導体 板とを含む。第 1の陽極電極は、第 1の端子側に配置される。第 2の陽極電極は、第 2 の端子側に配置される。第 1の陰極電極は、第 1の端子側に配置される。第 2の陰極 電極は、第 2の端子側に配置される。 n個の第 2の導体板は、第 1および第 2の陽極 電極に接続される。 m個の第 3の導体板は、 n個の第 2の導体板と交互に積層され、 第 1および第 2の陰極電極に接続される。そして、第 1の導体板は、第 1および第 2の 陽極電極間に接続されるとともに、最小深さ以上の深さを有する凹凸部を表面に有 する。最小深さは、表皮効果による表皮深さ dよりも浅ぐ第 1の導体板の表面が平 坦である場合に表皮効果によって第 1の導体板の表面層に流れる電流の交流成分 を抑制する深さである。
[0021] 好ましくは、第 1の導体板は、第 1および第 2の接続部を含む。第 1の接続部は、第 1の陽極電極との接続部である。第 2の接続部は、第 2の陽極電極との接続部である 。第 1および第 2の接続部は、電気素子の幅よりも広い幅を有する。
[0022] 好ましくは、第 1の導体板は、第 1および第 2の接続部を含む。第 1の接続部は、第 1の陽極電極との接続部である。第 2の接続部は、第 2の陽極電極との接続部である 。第 1および第 2の接続部は、電気素子の幅方向および Zまたは電気素子の長さ方 向に延伸した延伸部を有する。
[0023] 好ましくは、最小深さは、電素素子に接続される電気負荷回路が発生する交流電 流成分のうち、最も高い周波数によって決定される表皮深さよりも浅ぐ表皮効果によ つて第 1の導体板の表面層を流れる最も高い周波数を有する交流電流成分を抑制 する深さに設定される。
[0024] 好ましくは、凹凸部は、表皮深さ以上の深さを有する。
[0025] 好ましくは、表皮深さは、最も高い周波数によって決定される表皮深さである。
[0026] 好ましくは、凹凸部は、表皮深さ以上、かつ、最大深さ以下の深さを有する。最大 深さは、電気負荷回路が 1個である場合、 1個の電気負荷回路に供給される直流電 流を第 1の導体板に流すために必要な第 1の導体板の断面積に基づいて決定され、 j (jは 2以上の整数)個の電気負荷回路が電気素子に並列に接続される場合、 j個の 電気負荷回路の全体に供給される直流電流を第 1の導体板に流すために必要な第 1の導体板の断面積に基づいて決定される。
[0027] 好ましくは、表皮深さは、電気負荷回路が発生する交流電流成分の周波数のうち、 最も低 、周波数における表皮深さである。
[0028] この発明による電気回路装置においては、電流の交流成分は、電気素子内の導体 板に流され、電流のリターン電流の交流成分は、電気素子内の他の導体板に流され る。その結果、導体板は、他の導体板と磁気的結合を生じ、導体板の実効インダクタ ンスは、導体板の自己インダクタンスよりも小さくなる。
[0029] したがって、この発明によれば、電気回路装置のインピーダンスを低減できる。また 、リターン電流の交流成分を電気素子内に閉じ込め、交流成分の電源側への漏洩を 抑制できる。
図面の簡単な説明
圆 1]この発明の実施の形態 1による電気回路装置の構成を示す概略図である。
[図 2]図 1に示す電気素子の構成を示す概略図である。
[図 3]図 1に示す誘電体層および導体板の寸法を説明するための図である。
[図 4]隣接する 2つの導体板の平面図である。
[図 5]図 2に示す線 V—V間における電気素子 100の断面図である。
[図 6]図 2に示す線 VI— VI間における電気素子 100の断面図である。
圆 7]図 2に示す電気素子の製造方法を説明するための第 1の工程図である。
圆 8]図 2に示す電気素子の製造方法を説明するための第 2の工程図である。
圆 9]図 2に示す電気素子の製造方法を説明するための第 3の工程図である。
圆 10]図 2に示す電気素子の製造方法を説明するための第 4の工程図である。 圆 11]図 2に示す電気素子の製造方法を説明するための第 5の工程図である。 圆 12]図 2に示す電気素子の機能を説明するための斜視図である。
[図 13]導線を流れる電流によって生成される磁束密度を説明するための図である。
[図 14]2つの導線間において磁気的干渉が生じた場合の実効インダクタンスを説明 するための図である。
圆 15]図 2に示す電気素子のインダクタンスが小さくなる機構を説明するための第 1 の概念図である。
圆 16]図 2に示す電気素子のインダクタンスが小さくなる機構を説明するための第 2 の概念図である。
[図 17]図 2に示す電気素子のインピーダンスの周波数依存性を示す図である。 圆 18]図 2に示す電気素子の使用状態を示す概念図である。
[図 19]図 1に示す基板の構成を示す斜視図である。
圆 20]図 1に示す電気回路装置を詳細に説明するための斜視図である。
[図 21]図 20に示す線 XXI— XXI間の電気回路装置の断面図である。
[図 22]図 20に示す線 XXII— XXII間の電気回路装置の断面図である。 図 23]図 20に示す電気回路装置のインピーダンスの周波数依存性を示す図である 圆 24]図 20に示す 2つの導体板間における電気的な分離度と周波数の関係を示す 図である。
[図 25]図 1に示す基板の構成を示す他の斜視図である。
圆 26]図 1に示す基板の構成を示すさらに他の斜視図である。
圆 27]図 1に示す基板の構成を示すさらに他の斜視図である。
圆 28]図 1に示す基板の構成を示すさらに他の斜視図である。
圆 29]図 1に示す基板の構成を示すさらに他の斜視図である。
[図 30]図 1に示す基板の他の構成を示す平面図である。
[図 31]図 1に示す基板の他の構成を示す平面図である。
[図 32]図 1に示す基板の他の構成を示す平面図である。
[図 33]図 1に示す基板の他の構成を示す平面図である。
圆 34]図 30から図 33にそれぞれ示す基板を用いた電気回路装置のインピーダンス と周波数との関係を示す図である。
[図 35]図 1に示す基板の他の構成を示す平面図である。
圆 36]図 35に示す基板を用いて電気回路装置を作製した場合における 3個のスリツ トからなるスリットの長さに対するインピーダンスの変化を示す図である。
[図 37]図 1に示す基板の他の構成を示す平面図である。
[図 38]図 37に示すスリットの長さと S21との関係を示す図である。
[図 39]図 1に示す基板の他の構成を示す平面図である。
[図 40]図 1に示す基板の他の構成を示す平面図である。
[図 41]図 1に示す基板の他の構成を示す平面図である。
[図 42]図 1に示す基板の他の構成を示す平面図である。
[図 43]図 1に示す基板の他の構成を示す平面図である。
[図 44]図 43に示す線 XXXXIV— XXXXIV間における基板の断面図である。
圆 45]実施の形態 1による電気回路装置の他の構成を示す概念図である。
[図 46]隣接する 2つの導体板の他の平面図である。 [図 47]図 45に示す電気回路装置のインピーダンスの周波数依存性を示す図である
[図 48]実施の形態 2による電気回路装置の構成を示す斜視図である。
[図 49]図 48に示す導体板の斜視図である。
[図 50]図 49に示す導体板の長さ方向における断面図である。
[図 51]図 50に示す凹凸面の深さの範囲を説明するための第 1の概念図である。
[図 52]図 50に示す凹凸面の深さの範囲を説明するための第 2の概念図である。
[図 53]電気回路装置と CPUとの接続パターンを示す第 1の概念図である。
[図 54]電気回路装置と CPUとの接続パターンを示す第 2の概念図である。
[図 55]実施の形態 2による電気回路装置の構成を示す他の斜視図である。
[図 56]実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である。
[図 57]実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である。
[図 58]実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である。
[図 59]実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である。
[図 60]実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である。
[図 61]実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である。
[図 62]実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である。
[図 63]実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である。
[図 64]実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である。 発明を実施するための最良の形態
[0031] 本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同 一または相当部分には同一符号を付してその説明は繰返さない。
[0032] [実施の形態 1]
図 1は、この発明の実施の形態 1による電気回路装置の構成を示す概略図である。 図 1を参照して、この発明の実施の形態 1による電気回路装置 101は、電気素子 100 と、基板 200とを備える。電気素子 100は、基板 200の一主面 201A上に配置される
[0033] 図 2は、図 1に示す電気素子 100の構成を示す概略図である。図 2を参照して、電 気素子 100は、誘電体層 1〜5と、導体板 11, 12, 21〜23と、サイド陽極電極 10A, 10Bと、陽極電極 IOC, 10Dと、サイド陰極電極 20A, 20B, 20C, 20Dと、陰極電 極 20E, 20Fとを含む。
[0034] 誘電体層 1〜5は、順次、積層される。導体板 11, 12, 21〜23の各々は、平板形 状からなる。そして、導体板 21は、誘電体層 1, 2間に配置され、導体板 11は、誘電 体層 2, 3間に配置される。導体板 22は、誘電体層 3, 4間に配置され、導体板 12は 、誘電体層 4, 5間に配置され、導体板 23は、誘電体層 5の一主面 5Aに配置される。 その結果、誘電体層 1〜5は、それぞれ、導体板 21, 11, 22, 12, 23を支持する。
[0035] サイド陽極電極 10Aは、導体板 11, 12の一方端に接続され、電気素子 100の側 面 100A (誘電体層 1〜4の側面カゝらなる側面)に形成される。サイド陽極電極 10Bは 、導体板 11, 12の他方端に接続され、電気素子 100の側面 100Aに対向する側面 1 00B (誘電体層 1〜4の側面カゝらなる側面)に形成される。その結果、サイド陽極電極 10Bは、サイド陽極電極 10Aに対向して配置される。
[0036] 陽極電極 10Cは、電気素子 100の底面 100Cに配置され、サイド陽極電極 10Aに 接続される。陽極電極 10Dは、電気素子 100の底面 100Cに配置され、サイド陽極 電極 10Bに接続される。
[0037] サイド陰極電極 20Aは、導体板 21〜23の一方端側において導体板 21〜23に接 続され、電気素子 100の正面 100Dに配置される。サイド陰極電極 20Bは、導体板 2 1〜23の一方端側において導体板 21〜23に接続され、電気素子 100の正面 100D に対向する裏面 100Eに配置される。これにより、サイド陰極電極 20Bは、サイド陰極 電極 20Aに対向して配置される。
[0038] サイド陰極電極 20Cは、導体板 21〜23の他方端側において導体板 21〜23に接 続され、電気素子 100の正面 100Dに配置される。サイド陰極電極 20Dは、導体板 2 1〜23の他方端側において導体板 21〜23に接続され、電気素子 100の正面 100D に対向する裏面 100Eに配置される。これにより、サイド陰極電極 20Dは、サイド陰極 電極 20Cに対向して配置される。
[0039] 陰極電極 20Eは、サイド陰極電極 20A, 20Bに接続され、電気素子 100の底面 10 0C〖こ配置される。陰極電極 20Fは、サイド陰極電極 20C, 20Dに接続され、電気素 子 100の底面 100Cに配置される。
[0040] このように、電気素子 100は、導体板 11, 12, 21〜23が誘電体層 1〜5を挟んで 交互に配置された構造からなり、 2個の陽極電極 IOC, 10Dと、 2個の陰極電極 20E , 20Fとを有する。
[0041] 誘電体層 1〜5の各々は、たとえば、チタン酸バリウム(BaTiO )からなり、サイド陽
3
極電極 10A, 10B、陽極電極 IOC, 10D、導体板 11, 12, 21〜23、サイド陰極電 極 20A, 20B, 20C, 20Dおよび陰極電極 20E, 20Fの各々は、たとえば、ニッケル (Ni)からなる。
[0042] 図 3は、図 1に示す誘電体層 1, 2および導体板 11, 21の寸法を説明するための図 である。図 3を参照して、誘電体層 1, 2の各々は、導体板 11, 21を電流が流れる方 向 DR1に長さ L1を有し、方向 DR1に直交する方向 DR2に幅 W1を有し、厚さ D1を 有する。長さ L1は、たとえば、 15mmに設定され、幅 W1は、たとえば、 13mmに設 定され、厚さ D1は、たとえば、 25 mに設定される。
[0043] 導体板 11は、長さ L1および幅 W2を有する。そして、幅 W2は、たとえば、 11mmに 設定される。また、導体板 21は、長さ L2および幅 W1を有する。そして、長さ L2は、 たとえば、 13mmに設定される。さらに、導体板 11, 21の各々は、たとえば、 10 m 〜20 μ mの範囲の膜厚を有する。
[0044] 誘電体層 3〜5の各々は、図 3に示す誘電体層 1, 2と同じ長さ Ll、同じ幅 W1およ び同じ厚さ D1を有する。また、導体板 12は、図 3に示す導体板 11と同じ長さ Ll、同 じ幅 W2および同じ膜厚を有し、導体板 22, 23の各々は、図 3に示す導体板 21と同 じ長さ L2、同じ幅 W1および同じ膜厚を有する。
[0045] このように、導体板 11, 12は、導体板 21〜23と異なる長さおよび異なる幅を有する 。これは、導体板 11, 12に接続されるサイド陽極電極 10A, 10Bが導体板 21〜23 に接続されるサイド陰極電極 20A, 20B, 20C, 20Dと短絡するのを防止するためで ある。
[0046] 図 4は、隣接する 2つの導体板の平面図である。図 4を参照して、導体板 11および 導体板 21を 1つの平面へ投影すると、導体板 11および 21は、重複部分 20を有する 。そして、導体板 11と導体板 21との重複部分 20は、長さ L2および幅 W2を有する。 導体板 11と導体板 22との重複部分、導体板 12と導体板 22との重複部分および導 体板 12と導体板 23との重複部分も、重複部分 20と同じ長さ L2および同じ幅 W2を 有する。そして、実施の形態 1においては、 W2≤L2になるように、長さ L2および幅 W2が設定される。
[0047] 図 5は、図 2に示す線 V—V間における電気素子 100の断面図である。また、図 6は
、図 2に示す線 VI— VI間における電気素子 100の断面図である。
[0048] 図 5を参照して、導体板 21は、誘電体層 1, 2の両方に接し、導体板 11は、誘電体 層 2, 3の両方に接する。また、導体板 22は、誘電体層 3, 4の両方に接し、導体板 1
2は、誘電体層 4, 5の両方に接する。さらに、導体板 23は、誘電体層 5に接する。
[0049] サイド陰極電極 20C, 20Dは、導体板 11, 12には接続されず、導体板 21〜23に 接続される。また、陰極電極 20Fは、誘電体層 1の裏面 1Aに配置され、サイド陰極電 極 20C, 20Dに接続される(図 5参照)。
[0050] サイド陽極電極 10A, 10Bは、導体板 21〜23に接続されず、導体板 11, 12に接 続される。また、陽極電極 IOC, 10Dは、誘電体層 1の裏面 1Aに配置され、それぞ れ、サイド陽極電極 1 OA, 1 OBに接続される(図 6参照)。
[0051] その結果、導体板 21Z誘電体層 2Z導体板 11、導体板 11Z誘電体層 3Z導体板
22、導体板 22,誘電体層 4,導体板 12、および導体板 12,誘電体層 5,導体板 2
3は、陽極電極 IOC, 10Dと陰極電極 20E, 20Fとの間に並列に接続された 4個のコ ンデンサを構成する。
[0052] この場合、各コンデンサの電極面積は、隣接する 2つの導体板の重複部分 20 (図 4 参照)の面積に等しい。
[0053] 図 7から図 11は、それぞれ、図 2に示す電気素子 100の製造方法を説明するため の第 1から第 5の工程図である。図 7を参照して、長さ Ll、幅 W1および厚さ D1を有 する誘電体層 l (BaTiO )となるグリーンシートの表面 IBに、長さ L2および幅 W1を
3
有する領域に Niペーストをスクリーン印刷により塗布し、誘電体層 1の表面 1Bに Niか らなる導体板 21を形成する。
[0054] 同じようにして、 BaTiOからなる誘電体層 3, 5を作製し、その作製した誘電体層 3
3
, 5上にそれぞれ Niからなる導体板 22, 23を形成する(図 7参照)。 [0055] 引き続いて、長さ Ll、幅 Wlおよび厚さ D1を有する誘電体層 2 (BaTiO )となるダリ
3 ーンシートの表面 2Aに、長さ L1および幅 W2を有する領域に Niペーストをスクリーン 印刷により塗布し、誘電体層 2の表面 2Aに N ゝらなる導体板 11を形成する。
[0056] 同じようにして、 BaTiOからなる誘電体層 4を作製し、その作製した誘電体層 4上
3
に Niからなる導体板 12を形成する(図 8参照)。
[0057] その後、導体板 21, 11, 22, 12, 23がそれぞれ形成された誘電体層 1〜5のダリ ーンシートを順次積層する(図 9参照)。これによつて、陽極電極 IOC, 10Dに接続さ れる導体板 11, 12および陰極電極 20E, 20Fに接続される導体板 21〜23は、交互 に積層される。
[0058] さらに、 Niペーストをスクリーン印刷によって塗布し、サイド陽極電極 10A, 10B、陽 極電極 IOC, 10D、サイド陰極電極 20A, 20B, 20C, 20Dおよび陰極電極 20E, 2 OFを形成する(図 10および図 11参照)。その後、図 11まで作製された素子を 1350 °Cの焼成温度で焼成して電気素子 100が完成する。または、ポストフアイヤーにより、 内部電極 (導体板 11, 12, 21〜23)よりも融点が低ぐ導電率が高い材料をサイド電 極 (外部電極)に使用することも可能である。また、サイド電極 (外部電極)に関しては 、ハンダ濡れ性等を考慮し、必要に応じて焼成後に Ni, Au, Su等によってメツキ処 理を行うこともある。
[0059] なお、電気素子 100の作製においては、グリーンシートを使用せず、誘電体のぺー ストを印刷して乾燥させ、その上に導体を印刷し、さらに、誘電体のペーストを印刷し て同様な工程を行い、積層していく方法もある。
[0060] 図 12は、図 2に示す電気素子 100の機能を説明するための斜視図である。図 12を 参照して、電気素子 100に電流を流す場合、陰極電極 20E, 20Fを接地電位に接 続し、導体板 11, 12に流れる電流が導体板 21〜23に流れる電流と逆向きになるよ うに電流を電気素子 100に流す。
[0061] たとえば、電流が陽極電極 10Cから陽極電極 10Dの方向へ流れるように電流を電 気素子 100に流す。そうすると、電流は、陽極電極 10Cカゝらサイド陽極電極 10Aを介 して導体板 11, 12へ流れ、導体板 11, 12を矢印 30の方向へ流れ、さらに、サイド陽 極電極 10Bを介して陽極電極 10Dへ流れる。 [0062] また、導体板 11, 12を流れる電流のリターン電流は、陰極電極 20F力もサイド陰極 電極 20C, 20Dを介して導体板 21〜23に流れ、導体板 21〜23を矢印 30と反対方 向である矢印 40の方向へ流れ、さらに、サイド陰極電極 20A, 20Bを介して陰極電 極 20Eへ流れる。
[0063] そうすると、導体板 11, 12を流れる電流 IIと、導体板 21〜23を流れる電流 12とは、 大きさが等しぐかつ、向きが逆方向の電流となる。
[0064] 図 13は、導線を流れる電流によって生成される磁束密度を説明するための図であ る。また、図 14は、 2つの導線間において磁気的干渉が生じた場合の実効インダクタ ンスを説明するための図である。
[0065] 図 13を参照して、無限に長い直線導線に電流 Iが流れているとき、導線から距離 a の位置に存在する点 Pに生じる磁束密度 Bは、
[0066] [数 1]
Figure imgf000015_0001
[0067] によって表される。ただし、 μ は、真空の透磁率である。
0
[0068] また、図 13に示す導線が 2本になり、お互いに磁気的な干渉が生じたときには、 2 本の導線の自己インダクタンスをそれぞれ L , L とし、結合係数を k(0<kく 1)とし
11 22
、 2本の導線の相互インダクタンスを L とすると、相互インダクタンス L は、次式によ
12 12
つて表される。
[0069] [数 2]
Figure imgf000015_0002
[0070] ここで、 L =L の場合、相互インダクタンス L は、次式になる [0071] [数 3]
Figure imgf000016_0001
[0072] 図 14を参照して、導線 Αと導線 Βとがリード線 Cによって接続され、大きさが等しぐ かつ、向きが逆方向の電流が導線 A, Bに流れる場合を想定すると、導線 Aの実効ィ ンダクタンス L は、次式によって表される。
llefrective
[0073] [数 4]
{effective = l ~ 2 … ("0
[0074] このように、 2本の導線 A, B間に磁気的干渉が生じる場合、導線 Aの実効インダク タンス L は、導線 Bとの間の相互インダクタンス L によって導線 Aの自己イン
11 effective 12
ダクタンス L よりも小さくなる。これは、導線 Aに流れる電流 Iが導線 Bを流れる電流
11
Iと反対方向である場合、導線 Aと導線 Bとの間の磁気的干渉が大きくなり、相互ィ ンダクタンス L が導線 Aの自己インダクタンス L よりも大きくなる力らである。
12 11
[0075] 図 15および図 16は、それぞれ、図 2に示す電気素子 100のインダクタンスが小さく なる機構を説明するための第 1および第 2の概念図である。電気素子 100において は、上述したように、導体板 11は、導体板 21, 22から 25 mの位置に配置され、導 体板 12は、導体板 22, 23から 25 /z mの位置に配置されるため、導体板 11と導体板 21, 22との間および導体板 12と導体板 22, 23との間に磁気的干渉が生じ、導体板 11, 12を流れる電流 IIは、導体板 21〜23を流れる電流 12と大きさが等しぐかつ、 向きが逆方向であるため、導体板 11, 12の実効インダクタンスは、導体板 11, 12と 導体板 21〜23との間の相互インダクタンスによって導体板 11, 12の自己インダクタ ンスよりも/ J、さくなる。
[0076] この場合、導体板 11, 12の自己インダクタンスは、導体板 11, 12と導体板 21〜23 との重複部分 20における長さ L2が幅 W2以上である場合の方が重複部分 20におけ る長さ L2が幅 W2よりも短 、場合よりも大きく低下する。その理由を図 15および図 16 を参照して説明する。
[0077] 図 15は、重複部分 20における長さ L2が幅 W2以上である場合を示し、図 16は、重 複部分 20における長さ L2が幅 W2よりも短い場合を示す。なお、図 15および図 16に おいて、矢印は、方向 DR2へ広がりを持った電流を表す。また、図 15および図 16に おいて、重複部分 20の面積は等しい。
[0078] 図 15を参照して、電流 IIが導体板 11を流れ、電流 12が導体板 21を流れる。そうす ると、重複部分 20における長さ L2が幅 W2以上である場合、電流 II, 12は、重複部 分 20の幅 W2のほぼ全体に広がって、それぞれ、導体板 11, 21を流れる。その結果 、導体板 11と導体板 21との間の磁気的干渉が相対的に大きくなり、導体板 11の実 効インダクタンスが導体板 21との間の相互インダクタンスによって導体板 11の自己ィ ンダクタンスよりも小さくなる度合が相対的に大きくなる。導体板 12の実効インダクタ ンスが導体板 12の自己インダクタンスよりも小さくなる度合についても同様である。
[0079] 図 16を参照して、重複部分 20における長さ L2が幅 W2よりも短い場合、電流 IIは 、方向 DR2において導体板 11のほぼ中央部を流れ、電流 12は、方向 DR2において 導体板 21の端に近い部分を流れる。
[0080] 長さ L2が幅 W2よりも短 、場合、サイド陽極電極 10Aから導体板 11に導入された 電流 IIが導体板 11の幅方向 DR2へ広がるときのインピーダンスよりも電流 IIが長さ 方向 DR1へ流れるときのインピーダンスの方が小さくなるからである。
[0081] また、長さ L2が幅 W2よりも短 、場合、サイド陰極電極 20C, 20Dから導体板 21に 導入された電流 12が導体板 21の幅方向 DR2へ広がるときのインピーダンスよりも電 流 12が導体板 21の長さ方向 DR1へ流れるときのインピーダンスの方が小さくなるか らである。
[0082] そうすると、重複部分 20における長さ L2が幅 W2よりも短い場合、電流 IIは、幅方 向 DR2において重複部分 20のほぼ中央部を流れ、電流 12は、幅方向 DR2におい て重複部分 20の端に近い部分を流れる。その結果、導体板 11と導体板 21との間の 磁気的干渉が相対的に小さくなり、導体板 11の実効インダクタンスが導体板 21との 間の相互インダクタンスによって導体板 11の自己インダクタンスよりも小さくなる度合 が相対的に小さくなる。導体板 12の実効インダクタンスが導体板 12の自己インダクタ ンスよりも小さくなる度合についても同様である。
[0083] このように、重複部分 20における長さ L2が幅 W2以上である場合、導体板 11, 12 の実効インダクタンスが導体板 11, 12の自己インダクタンスよりも小さくなる度合は、 相対的に大きくなる。
[0084] その結果、電気素子 100における全体の実効インダクタンス Lは、相対的に大きく 低下する。
[0085] 電気素子 100全体の実効キャパシタンスを Cとすると、電気素子 100のインピーダ ンス Zsは、次式によって表される。
[0086]
Figure imgf000018_0001
[0087] 電気素子 100においては、上述したように、並列に接続された 4個のコンデンサが 形成されるので、 1個のコンデンサが形成される場合に比べ、実効キャパシタンス C は大さくなる。
[0088] したがって、電気素子 100においては、キャパシタンスが支配的な低周波数領域に おいては、実効キャパシタンス Cが大きくなることによってインピーダンス Zsが低下し、 インダクタンスが支配的な高周波数領域にぉ ヽては、上述した実効インダクタンス L の低下によってインピーダンス Zsが低下する。
[0089] その結果、電気素子 100は、広い周波数領域において、相対的に低いインピーダ ンス Zsを有する。
[0090] 図 17は、図 2に示す電気素子 100のインピーダンスの周波数依存性を示す図であ る。図 17において、横軸は、周波数を表し、縦軸は、インピーダンスを表す。また、曲 線 klは、重複部分 20における長さ L2が幅 W2以上である場合のインピーダンスの周 波数依存性を示し、曲線 k2は、重複部分 20における長さ L2が幅 W2よりも短い場合 のインピーダンスの周波数依存性を示す。
[0091] 図 17を参照して、 0. 006GHz以下の低周波数領域は、キャパシタンスが支配的な 周波数領域であり、 0. 01GHz以上の高周波数領域は、インダクタンスが支配的な 周波数領域である。上述したように、重複部分 20の長さ L2が幅 W2以上である場合 および重複部分 20の長さ L2が幅 W2よりも短 、場合、重複部分 20の面積は等 ヽ ので、キャパシタンスが支配的である 0. 006GHz以下の低周波数領域においては、 重複部分 20の長さ L2が幅 W2以上である電気素子 100のインピーダンス(曲線 kl) は、重複部分 20の長さ L2が幅 W2よりも短い電気素子のインピーダンス(曲線 k2)と ほぼ同じである。
[0092] 一方、重複部分 20の長さ L2が幅 W2以上である場合、電気素子 100の実効インダ クタンスは、重複部分 20の長さ L2が幅 W2よりも短い場合に比べ、相対的に大きく低 下するので、インダクタンスが支配的である 0. 01GHz以上の高周波数領域におい ては、重複部分 20の長さ L2が幅 W2以上である電気素子 100のインピーダンス(曲 線 kl)は、重複部分 20の長さ L2が幅 W2よりも短い電気素子のインピーダンス(曲線 k2)よりち/ J、さくなる。
[0093] したがって、導体板 11, 12と導体板 21〜23との重複部分 20における長さ L2を幅 W2以上に設定することにより、インダクタンスが支配的な周波数領域において電気 素子 100のインピーダンスを小さくできる。
[0094] 図 18は、図 2に示す電気素子 100の使用状態を示す概念図である。図 18を参照し て、電気素子 100は、電源 90と、 CPU (Central Processing Unit) 110との間に 接続される。そして、電気素子 100の陰極電極 20E, 20Fは、接地電位に接続される 。電源 90は、正極端子 91および負極端子 92を有する。 CPU110は、正極端子 111 および負極端子 112を有する。
[0095] リード線 121は、一方端が電源 90の正極端子 91に接続され、他方端が電気素子 1 00の陽極電極 10Cに接続される。リード線 122は、一方端が電源 90の負極端子 92 に接続され、他方端が電気素子 100の陰極電極 20Eに接続される。
[0096] リード線 123は、一方端が電気素子 100の陽極電極 10Dに接続され、他方端が C PU110の正極端子 111に接続される。リード線 124は、一方端が電気素子 100の陰 極電極 20Fに接続され、他方端力 SCPU110の負極端子 112に接続される。
[0097] そうすると、電源 90の正極端子 91から出力された電流 Iは、リード線 121を介して電 気素子 100の陽極電極 10Cに流れ、電気素子 100内をサイド陽極電極 10A、導体 板 11, 12、サイド陽極電極 10Bおよび陽極電極 10Dの順に流れる。そして、電流 I は、陽極電極 10Dからリード線 123および正極端子 111を介して CPU110へ流れ込 む。
[0098] これによつて、電流 Iは、電源電流として CPU110へ供給される。そして、 CPU110 は、電流 Iによって駆動され、電流 Iと同じ大きさのリターン電流 Irを負極端子 112から 出力する。
[0099] そうすると、リターン電流 Irは、リード線 124を介して電気素子 100の陰極電極 20F へ流れ、電気素子 100内をサイド陰極電極 20C, 20D、導体板 21〜23、サイド陰極 電極 20A, 20Bおよび陰極電極 20Eの順に流れる。そして、リターン電流 Irは、陰極 電極 20Eからリード線 122および負極端子 92を介して電源 90に流れる。
[0100] その結果、電気素子 100において、電流 Iが導体板 11, 12を電源 90側力 CPU1 10側へ流れ、リターン電流 Irが導体板 21〜23を CPU110側から電源 90側へ流れ るため、電気素子 100の実効インダクタンス Lは、上述したように相対的に大きく低下 する。また、電気素子 100は、並列に接続された 4個のコンデンサを含むので、電気 素子 100の実効キャパシタンス Cは、大きくなる。したがって、電気素子 100のインピ 一ダンス Zsは小さくなる。
[0101] そして、 CPU110は、電源 90から電気素子 100を介して供給された電流 Iによって 駆動され、不要な高周波電流を発生する。この不要な高周波電流は、リード線 123, 124を介して電気素子 100へ漏れる力 電気素子 100は、上述したように、低いイン ピーダンス Zsを有するため、不要な高周波電流は、電気素子 100および CPU110 からなる回路を流れ、電気素子 100から電源 90側への漏洩が抑制される。
[0102] CPU110の動作周波数は、高周波数側へシフトする傾向にあり、 1GHz程度での 動作も想定される。このような高い動作周波数の領域においては、電気素子 100のィ ンピーダンス Zsは、主に実効インダクタンス Lによって決定され、実効インダクタンス L は、上述したように相対的に大きく低下するので、電気素子 100は、高い動作周波数 で動作する CPU110が発生する不要な高周波電流を CPU110の近傍に閉じ込め るノイズフィルタとして機能する。
[0103] 実施の形態 1においては、 L2≥W2になるように重複部分 20の長さ L2および幅 W 2を設定する。そして、 CPU110の動作周波数が相対的に高くなるに従って、 L2Z W2は、相対的に大きな値に設定される。これによつて、高周波数領域における電気 素子 100のインピーダンスが大きく低下する。
[0104] 上述したように、電気素子 100は、電源 90と CPU110との間に接続され、 CPU11 0が発生する不要な高周波電流を CPU110の近傍に閉じ込めるノイズフィルタとして 機能する。そして、電気素子 100が電源 90と CPU110との間に接続される場合、導 体板 11, 12, 21〜23は、伝送線路として接続される。すなわち、陽極電極 10C, 10 Dに接続された導体板 11, 12と、陰極電極 20E, 20Fに接続された導体板 21〜23 とを用いて構成されるコンデンサが端子を介して伝送線路に接続されるのではなぐ 導体板 11, 12, 21〜23が伝送線路の一部として接続される。したがって、導体板 1 1, 12は、電源 90から出力された電流 Iが電源 90側から CPU110側へ流れるための 導体であり、導体板 21〜23は、リターン電流 Irが CPU110側力も電源 90側へ流れ るための導体である。その結果、等価直列インダクタンスを極力排除できる。
[0105] また、電気素子 100においては、陽極電極 IOC, 10Dに接続された導体板 11, 12 に流れる電流を、陰極電極 20E, 20Fに接続された導体板 21〜23に流れる電流と 逆向きに設定することによって、導体板 11, 12と導体板 21〜23との間に磁気的干 渉を生じさせ、導体板 11, 12の自己インダクタンスを導体板 11, 12と導体板 21〜2 3との間の相互インダクタンスによって減少させる。そして、これによつて、電気素子 1 00の実効インダクタンスを減少させ、電気素子 100のインピーダンス Zsを低下させる
[0106] このように、この発明においては、コンデンサの電極を構成する導体板 11, 12, 21 〜23を伝送線路の一部として接続することを第 1の特徴とし、陽極電極 IOC, 10Dに 接続された導体板 11, 12と、陰極電極 20E, 20Fに接続された導体板 21〜23とに 逆向きの電流を流して導体板 11, 12と導体板 21〜23との間に磁気的干渉を生じさ せることによって導体板 11, 12の実効インダクタンスを導体板 11, 12の自己インダク タンスよりも小さくし、それによつて電気素子 100のインピーダンス Zsを小さくすること を第 2の特徴とし、電源電流を構成する電流を流す導体板 11, 12の各々が接地電 位に接続される 2つの導体板 (導体板 21, 22または導体板 22, 23)によって挟まれ ることを第 3の特徴とする。
[0107] この第 2の特徴は、 CPU110からのリターン電流 Irを電気素子 100の内部に配置さ れた導体板 21〜23に流す構成を採用することによって実現される。
[0108] そして、第 1の特徴によって等価直列インダクタンスを極力排除でき、第 2の特徴に よって不要な高周波電流を CPU110の近傍に閉じ込めることができる。また、第 3の 特徴によって電気素子 100のノイズが外部へ出るのを抑制できるとともに、電気素子 100が外部からのノイズに影響されるのを抑制できる。
[0109] 図 19は、図 1に示す基板 200の構成を示す斜視図である。図 19を参照して、基板 200は、誘電体 201と、信号線 202, 203と、導体板 204, 205とを含む。
[0110] 信号線 202, 203は、所定の間隔を隔てて誘電体 201の一主面 201A上に配置さ れる。導体板 204, 205は、所定の間隔を隔てて誘電体 201の一主面 201Aに対向 する一主面 201Bに配置される。このように、基板 200は、信号線 202, 203がー方 の一主面 201A上に配置され、導体板 204, 205が他方の一主面 201Bに配置され たマイクロストリップライン基板力 なる。
[0111] そして、基板 200が電気回路装置 101に用いられる場合、導体板 204, 205は、接 地される。
[0112] 図 20は、図 1に示す電気回路装置 101を詳細に説明するための斜視図である。図 20を参照して、誘電体層 1〜5、導体板 11, 12, 21〜23、サイド陽極電極 10A, 10 B、陽極電極 IOC, 10D、サイド陰極電極 20A, 20B, 20C, 20Dおよび陰極電極 2 OE, 20Fは、基板 200の誘電体 201の一主面 201Aに配置される。
[0113] そして、サイド陽極電極 10Aおよび陽極電極 10Cは、信号線 202に接続され、サイ ド陽極電極 10Bおよび陽極電極 10Dは、信号線 203に接続される。サイド陰極電極 20Aおよび陰極電極 20Eは、導体 206によって導体板 204に接続され、サイド陰極 電極 20Cおよび陰極電極 20Fは、導体 207によって導体板 205に接続される。なお 、図 20においては、図示されていないが、サイド陰極電極 20Bは、導体(図示せず) によって導体板 204に接続され、サイド陰極電極 20Dは、導体(図示せず)によって 導体板 205に接続される。
[0114] 導体板 204, 205は、電流 Iが導体板 11, 12を流れたときのリターン電流 Irが流れ るための導体板である。そして、リターン電流 Irは、導体板 205から導体 207および 導体(図示せず)を介してサイド陰極電極 20C, 20Dへ流れ、導体板 21〜23を介し てサイド陰極電極 20A, 20Bへ流れる。
[0115] そして、サイド陰極電極 20A, 20Bへ流れたリターン電流 Irは、導体 206および導 体(図示せず)を介して導体板 204へ流れ、導体板 204から電気回路装置 101の外 部へ流れる。
[0116] このように、基板 200は、リターン電流 Irを電気回路装置 101内の導体板 21〜23 に導く導体板 204, 205を備える。
[0117] 図 21は、図 20に示す線 XXI— XXI間の電気回路装置 101の断面図である。また、 図 22は、図 20に示す線 XXII— ΧΧΠ間の電気回路装置 101の断面図である。
[0118] 図 21を参照して、陰極電極 20Fは、誘電体 201の一主面 201A上に配置され、導 体板 205は、誘電体 201の一主面 201Bに誘電体 201の幅全体にわたって配置され る。そして、導体板 205は、導体 207によってサイド陰極電極 20Cおよび陰極電極 2 OFに接続され、導体 208によってサイド陰極電極 20Dおよび陰極電極 20Fに接続さ れる。
[0119] なお、導体板 204は、導体板 205と同じ方法によってサイド陰極電極 20A, 20Bお よび陰極電極 20Eに接続される。
[0120] 図 22を参照して、信号線 202は、サイド陽極電極 10Aおよび陽極電極 10Cに接続 され、信号線 203は、サイド陽極電極 10Bおよび陽極電極 10Dに接続される。
[0121] 導体板 204は、導体板 205と所定の間隔 L3を隔てて一主面 201Bに配置される。
所定の間隔 L3は、基本的には、所定の周波数を有するリターン電流 Irが導体板 204 と導体板 205との間で流れな 、間隔に設定される。
[0122] このように、導体板 204, 205を所定の間隔 L3を隔てて誘電体 201の一主面 201B に配置することによって、リターン電流 Irを導体板 204, 205間で流すことなく、電気 回路装置 101内の導体板 21〜23へ導くことができる。
[0123] その結果、導体板 11, 12は、導体板 21〜23との磁気的結合が相対的に大きくな り、上述した機構により、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自 己インダクタンスよりも大きく低下する。
[0124] 図 23は、図 20に示す電気回路装置 101のインピーダンスの周波数依存性を示す 図である。図 23において、縦軸は、インピーダンスを表し、横軸は、周波数を表す。 また、曲線 k3は、電気回路装置 101におけるインピーダンスの周波数依存性である
[0125] 図 23を参照して、キャパシタンスが支配的である 0. 006GHz以下の低周波数領域 においては、電気回路装置 101のインピーダンスは、電気素子 100のインピーダンス とほぼ同じである(曲線 kl, k3参照)。
[0126] 一方、インダクタンスが支配的である 0. 01GHz以上の高周波数領域においては、 電気回路装置 101のインピーダンスは、電気素子 100のインピーダンスよりもさらに 大きく低下する(曲線 kl, k3参照)。
[0127] したがって、 2つの導体板 204, 205が所定の間隔 L3を隔てて配置された基板 20 0を用いることによって、リターン電流 Irを電気素子 100内の導体板 21〜23に導くこ とができ、電気負荷回路である CPU110で発生した不要な高周波電流を電気素子 1 00内に閉じ込めることができる。
[0128] 図 24は、図 20に示す 2つの導体板 204, 205間における電気的な分離度と周波数 の関係を示す図である。図 24において、縦軸は、 Isolationを表し、横軸は、周波数 を表す。そして、 Isolationは、その値が小さい方が電気的な分離度が大きいことを意 味する。また、曲線 k4, k5, k6は、それぞれ、所定の間隔 L3力 i. 5mm、 3. 0mm および 4. 5mmである場合を示す。
[0129] 図 24を参照して、所定の間隔 L3を 1. 5mmから 3. 0mmまで大きくすることによつ て、導体板 204, 205間における Isolationは、 2〜3GHzの周波数範囲において低 下し、導体板 204, 205間における電気的な分離度が大きくなる。そして、導体板 20 4, 205間における Isolationは、所定の間隔 L3を 3. 0mm力 4. 5mmまで大きくし ても、 2〜3GHzの周波数範囲において殆ど変化しない。したがって、所定の間隔 L3 は、好ましくは、 3. Omm以上に設定される。
[0130] 上述したように、電気回路装置 101は、導体板 11, 12と導体板 21〜23とが交互に 積層された電気素子 100と、所定の間隔 L3を隔てて配置された導体板 204, 205を 有する基板 200とを備えるので、上述した実効インダクタンスの低下によって相対的 に低いインピーダンスを有し、基板 200は、電流を導体板 202から電気素子 100内 の導体板 11, 12に流すとともに、電流 Iのリターン電流 Irを電気素子 100内の導体板 21〜23〖こ流す。すなわち、基板 200は、電流を電気素子 100内の導体板 11, 12, 21〜23に流す機能を有する。その結果、電気回路装置 101は、直流電流を電源 90 力も CPU110へ供給するとともに、 CPU110で発生した不要な高周波電流を電気 素子 100内に閉じ込めることができる。
[0131] 図 25は、図 1に示す基板 200の構成を示す他の斜視図である。図 1に示す基板 20 0は、図 25に示す基板 200Aからなつていてもよい。図 25を参照して、基板 200Aは 、図 19に示す基板 200の導体板 204, 205をそれぞれ導体板 209, 210に代えたも のであり、その他は、基板 200と同じである。
[0132] 導体板 209ίま、誘電体 201の一主面 201Aに酉己置され、平板咅材 2091, 2092カゝ らなる。そして、平板咅材 2091, 2092»,誘電体 201の一主面 201A【こお!ヽて信号 線 202の両側に配置される。
[0133] 導体板 210は、誘電体 201の一主面 201Aに配置され、平板部材 2101, 2102力 らなる。そして、平板部材 2101, 2102は、誘電体 201の一主面 201Aにおいて信号 線 203の両側に配置される。そして、平板部材 2091と平板部材 2101との間隔およ び平板部材 2092と平板部材 2102との間隔は、所定の間隔 L3に設定される。
[0134] このように、基板 200Αにお!/ヽては、導体板 209, 210は、信号線 202, 203と同じ 一主面 201Aに所定の間隔 L3で配置される。そして、導体板 209, 210は、それぞ れ、信号線 202, 203の両佃 Jに酉己置された平板部材 2091, 2092 ; 2101, 2102カゝ らなる。したがって、基板 200Aは、コプレーナ基板からなる。
[0135] 基板 200Aが電気回路装置 101に用いられる場合、導体板 209の平板部材 2091 は、導体(図示せず)によってサイド陰極電極 20Aおよび陰極電極 20Eに接続され、 平板部材 2092は、導体(図示せず)によってサイド陰極電極 20Bおよび陰極電極 2 OEに接続される。また、導体板 210の平板部材 2101は、導体(図示せず)によって サイド陰極電極 20Cおよび陰極電極 20Fに接続され、平板部材 2102は、導体(図 示せず)によってサイド陰極電極 20Dおよび陰極電極 20Fに接続される。そして、導 体板 209, 210は、接地される。
[0136] 基板 200Aは、所定の間隔 L3を隔てて配置された 2つの導体板 209, 210を備え るので、電流 Iを電気素子 100内の導体板 11, 12に流し、リターン電流 Irを電気素子 100内の導体板 21〜23に流す。その結果、基板 200Aを用いた電気回路装置 101 において、導体板 11, 12は、導体板 21〜23と磁気的結合が生じ、導体板 11, 12の 実効インダクタンスは、導体板 11, 12の自己インダクタンスよりも小さくなる。
[0137] したがって、基板 200Aを用いた場合も、電気回路装置 101のインピーダンスを大 幅に低減できる。
[0138] また、基板 200Aを用いた電気回路装置 101において、直流電流を電源 90から C PU110へ供給できるとともに、 CPU 110で発生した不要な高周波電流を電気素子 1 00内に閉じ込めることができる。
[0139] 図 26は、図 1に示す基板 200の構成を示すさらに他の斜視図である。図 1に示す 基板 200は、図 26に示す基板 200B力もなつていてもよい。図 26を参照して、基板 2 00Bは、図 19に示す基板 200に導体板 209, 210を追加したものであり、その他は、 基板 200と同じである。導体板 209, 210については、図 25において説明したとおり である。
[0140] したがって、基板 200Bは、信号線 202, 203と同じ一主面 201Aに所定の間隔 L3 で配置された導体板 209, 210と、信号線 202, 203が配置された一主面 201Aに対 向する一主面 201Bに所定の間隔 L3で配置された導体板 204, 205とを備える。そ して、基板 200Bが電気回路装置 101に用いられる場合、導体板 204, 205, 209, 210は、接地される。このような基板 200Bを裏面 GND付コプレーナ基板という。
[0141] 基板 200Bが電気回路装置 101に用いられる場合、導体板 209の平板部材 2091 および導体板 204は、導体(図示せず)によってサイド陰極電極 20Aおよび陰極電 極 20Eに接続され、導体板 209の平板部材 2092および導体板 204は、導体(図示 せず)によってサイド陰極電極 20Bおよび陰極電極 20Eに接続される。また、導体板 210の平板部材 2101および導体板 205は、導体(図示せず)によってサイド陰極電 極 20Cおよび陰極電極 20Fに接続され、導体板 210の平板部材 2102および導体 板 205は、導体(図示せず)によってサイド陰極電極 20Dおよび陰極電極 20Fに接 続される。そして、導体板 204, 205, 209, 210は、接地される。
[0142] 基板 200Bは、所定の間隔 L3を隔てて配置された 2つの導体板 204, 205と 2つの 導体板 209, 210とを備えるので、電流 Iを電気素子 100内の導体板 11, 12に流し、 リターン電流 Irを電気素子 100内の導体板 21〜23に流す。その結果、基板 200Bを 用いた電気回路装置 101において、導体板 11, 12は、導体板 21〜23と磁気的結 合が生じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダクタン スよりも/ J、さくなる。
[0143] したがって、基板 200Bを用いた場合も、電気回路装置 101のインピーダンスを大 幅に低減できる。
[0144] また、基板 200Bを用いた電気回路装置 101において、直流電流を電源 90から CP
U110へ供給できるとともに、 CPU110で発生した不要な高周波電流を電気素子 10
0内に閉じ込めることができる。
[0145] 図 27は、図 1に示す基板 200の構成を示すさらに他の斜視図である。図 1に示す 基板 200は、図 27に示す基板 200C力もなつていてもよい。図 27を参照して、基板 2
00Cは、図 26に示す基板 200Bに誘電体 211および導体板 212, 213を追加したも のであり、その他は、基板 200Bと同じである。
[0146] 誘電体 211は、その一主面 211Aが導体板 204, 205に接するように配置される。
導体板 212, 213は、誘電体 211の一主面 211Aに対向する一主面 211Bに所定の 間隔 L3で配置される。
[0147] したがって、基板 200Cは、複数の誘電体 201, 211を積層し、その積層した複数 の誘電体 201, 211の各誘電体の表面および裏面に導体板 204, 205, 209, 210 , 212, 213を所定の間隔 L3で配置した構造力もなる。そして、導体板 204, 205, 2 09, 210, 212, 213は、接地される。このような基板 200Cを多層基板という。
[0148] 基板 200Cが電気回路装置 101に用いられる場合、導体板 209の平板部材 2091 および導体板 204, 212は、導体(図示せず)によってサイド陰極電極 20Aおよび陰 極電極 20Eに接続され、導体板 209の平板部材 2092および導体板 204, 212は、 導体(図示せず)によってサイド陰極電極 20Bおよび陰極電極 20Eに接続される。ま た、導体板 210の平板部材 2101および導体板 205, 213は、導体(図示せず)によ つてサイド陰極電極 20Cおよび陰極電極 20Fに接続され、導体板 210の平板部材 2 102および導体板 205, 215は、導体(図示せず)によってサイド陰極電極 20Dおよ び陰極電極 20Fに接続される。そして、導体板 204, 205, 209, 210, 212, 213は 、接地される。
[0149] 基板 200Cは、所定の間隔 L3を隔てて配置された 2つの導体板 204, 205と 2つの 導体板 209, 210と、 2つの導体板 212, 213とを備えるので、電流 Iを電気素子 100 内の導体板 11, 12に流し、リターン電流 Irを電気素子 100内の導体板 21〜23に流 す。その結果、基板 200Cを用いた電気回路装置 101において、導体板 11, 12は、 導体板 21〜23と磁気的結合が生じ、導体板 11, 12の実効インダクタンスは、導体 板 11, 12の自己インダクタンスよりも小さくなる。
[0150] したがって、基板 200Cを用いた場合も、電気回路装置 101のインピーダンスを大 幅に低減できる。
[0151] また、基板 200Cを用いた電気回路装置 101において、直流電流を電源 90から C
PU110へ供給できるとともに、 CPU 110で発生した不要な高周波電流を電気素子 1
00内に閉じ込めることができる。
[0152] 基板 200Cは、 2個の誘電体 201, 211を有すると説明した力 この発明において は、これに限らず、基板 200Cは、 3個以上の誘電体を備えていてもよぐ一般的には
、複数の誘電体を備えていればよい。
[0153] 図 28は、図 1に示す基板 200の構成を示すさらに他の斜視図である。図 1に示す 基板 200は、図 28に示す基板 200D力もなつていてもよい。図 28を参照して、基板 2
00Dは、図 19〖こ示す基板 200〖こビアホール BH1, BH2を追加したものであり、その 他は、基板 200と同じである。
[0154] ビアホール BH1は、信号線 202側に設けられ、誘電体 201を貫通して導体板 204 に接続される。ビアホール BH2は、信号線 203側に設けられ、誘電体 201を貫通し て導体板 205に接続される。 [0155] 基板 200Dが電気回路装置 101に用いられる場合、信号線 202がサイド陽極電極 10Aに接続され、信号線 203がサイド陽極電極 10Bに接続され、ビアホール BH1が 陰極電極 20Eに接続され、ビアホール BH2が陰極電極 20Fに接続される。
[0156] このように、基板 200Dが電気回路装置 101に用いられる場合、陰極電極 20E, 20 Fは、それぞれ、ビアホール BH1, BH2を介して、接地された導体板 204, 205に接 続される。これによつて、リターン電流 Irは、導体板 205、ビアホール BH2、陰極電極 20F、サイド陰極電極 20C, 20D、導体板 21, 22、サイド陰極電極 20A, 20B、陰 極電極 20E、ビアホール BH1および導体板 204の順で流れ、導体板 11, 12の実効 インダクタンスは、導体板 11, 12の自己インダクタンスよりも小さくなる。
[0157] 基板 200Dは、所定の間隔 L3を隔てて配置された 2つの導体板 204, 205と、 2つ の導体板 204, 205にそれぞれ接続されたビアホール BH1, BH2とを備えるので、 電流 Iを電気素子 100内の導体板 11, 12に流し、リターン電流 Irを電気素子 100内 の導体板 21〜23に流す。その結果、基板 200Dを用いた電気回路装置 101におい て、導体板 11, 12は、導体板 21〜23と磁気的結合が生じ、導体板 11, 12の実効ィ ンダクタンスは、導体板 11, 12の自己インダクタンスよりも小さくなる。
[0158] したがって、基板 200Dを用いた場合も、電気回路装置 101のインピーダンスを大 幅に低減できる。
[0159] また、基板 200Dを用いた電気回路装置 101において、直流電流を電源 90から C PU110へ供給できるとともに、 CPU 110で発生した不要な高周波電流を電気素子 1 00内に閉じ込めることができる。
[0160] 図 29は、図 1に示す基板 200の構成を示すさらに他の斜視図である。図 1に示す 基板 200は、図 29に示す基板 200E力もなつていてもよい。図 29を参照して、基板 2 00Eは、図 19に示す基板 200に電流抑制部 220を追カ卩したものであり、その他は、 基板 200と同じである。
[0161] 電流抑制部 220は、たとえば、インピーダンスからなり、一方端が導体板 204に接 続され、他方端が導体板 205に接続される。リターン電流 Irのうち、電気素子 100の 導体板 21〜23に流れる電流を電流 Ir 1とし、導体板 205から電流抑制部 220を介し て導体板 204に流れる電流を電流 Ir2とすると、電流抑制部 220は、電流 Ir2を電流 I rlよりも小さくする。つまり、導体板 204, 205および電流抑制部 220は、導体板 21 〜23のインピーダンスよりも大き ヽインピーダンスを有する「導体板」を構成する。
[0162] その結果、リターン電流 Irは、主に導体板 21〜23を介して電気素子 100内を流れ 、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダクタンスよりも 小さくなる。
[0163] 基板 200Eが電気回路装置 101に用いられる場合、導体板 204は、導体(図示せ ず)によってサイド陰極電極 20A, 20Bおよび陰極電極 20Eに接続され、導体板 20 5は、導体(図示せず)によってサイド陰極電極 20C, 20Dおよび陰極電極 20Fに接 続される。そして、導体板 204, 205は、接地される。
[0164] 基板 200Eは、所定の間隔 L3を隔てて配置された 2つの導体板 204, 205と、 2つ の導体板 204, 205間に流れる電流 Ir2を導体板 21〜23に流れる電流 Irlよりも抑 制する電流抑制部 220とを備えるので、電流 Iを電気素子 100内の導体板 11, 12に 流し、リターン電流 Irを電気素子 100内の導体板 21〜23に流す。その結果、基板 2 00Eを用いた電気回路装置 101において、導体板 11, 12は、導体板 21〜23と磁 気的結合が生じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己イン ダクタンスよりも/ J、さくなる。
[0165] したがって、基板 200Eを用いた場合も、電気回路装置 101のインピーダンスを大 幅に低減できる。
[0166] また、基板 200Eを用いた電気回路装置 101において、直流電流を電源 90から CP U110へ供給できるとともに、 CPU110で発生した不要な高周波電流を電気素子 10 0内に閉じ込めることができる。
[0167] なお、図 1に示す基板 200は、図 25に示す基板 200Aの平板部材 2091, 2101間 および平板部材 2092, 2102間に電流抑制部 220を設けた基板カゝらなっていてもよ ヽし、図 26【こ示す基板 200Bの導体板 204, 205f¾、平板咅材 2091, 2101f¾およ び平板部材 2092, 2102間に電流抑制部 220を設けた基板力もなつていてもよいし 、図 27に示す基板 200Cの導体板 204, 205間、平板部材 2091, 2101間、平板部 材 2092, 2102間および導体板 212, 213間に電流抑制部 220を設けた基板力もな つていてもよし、図 28に示す基板 200Dの導体板 204, 205間に電流抑制部 220を 設けた基板力もなつていてもよい。そして、これらの基板を用いた場合にも、電気回 路装置 101のインピーダンスをインダクタンスが支配的な高周波数領域において低 減できる。
[0168] 図 30力ゝら図 33は、図 1に示す基板 200の他の構成を示す平面図である。図 30を 参照して、基板 200Fは、導体板 301と、スリット 302〜304と、ビアホール 309とを備 える。導体板 301は、誘電体(図示せず)の一主面の全体に形成される。スリット 302 〜304は、導体板 301の一部を切り欠くことにより誘電体(図示せず)の一主面に形 成される。スリット 302〜304が誘電体(図示せず)の一主面に形成されることにより、 導体部 305〜308が誘電体(図示せず)の一主面に形成される。
[0169] 図 30には、図示されていないが、基板 200Fは、誘電体(図示せず)のもう 1つの一 主面に導体板 301に対向するように形成されたもう 1つの導体板を備える。そして、ビ ァホール 309は、導体板 301と、もう 1つの導体板とを電気的に接続するように碁盤 目状に形成される。
[0170] 基板 200Fを用いて電気回路装置を作製する場合、導体部 305, 306は、信号ライ ンを構成し、導体板 301およびもう 1つの導体板は、接地電位に接続され、陽極電極 IOC, 10Dは、それぞれ、導体部 305, 306に接続され、陰極電極 20E, 20Fは、そ れぞれ、導体部 307, 308に接続される。その結果、リターン電流は、基板 200Fの 導体板 301およびもう 1つの導体板よりも導体板 21〜23を流れる。
[0171] このように、基板 200Fは、スリット 302〜304と、導体咅 305〜308とを備えるので、 電流 Iを電気素子 100内の導体板 11, 12に流し、リターン電流 Irを電気素子 100内 の導体板 21〜23に流す。その結果、基板 200Fを用いた電気回路装置 101におい て、導体板 11, 12は、導体板 21〜23と磁気的結合が生じ、導体板 11, 12の実効ィ ンダクタンスは、導体板 11, 12の自己インダクタンスよりも小さくなる。
[0172] したがって、基板 200Fを用いた場合も、電気回路装置 101のインピーダンスを大 幅に低減できる。
[0173] また、基板 200Fを用いた電気回路装置 101において、直流電流を電源 90から CP U110へ供給できるとともに、 CPU110で発生した不要な高周波電流を電気素子 10 0内に閉じ込めることができる。 [0174] 図 31を参照して、基板 200Gは、図 30に示す基板 200Fにビアホーノレ 310, 311を 追加したものであり、その他は、基板 200Fと同じである。ビアホール 310, 311は、そ れぞれ、導体部 307, 308に形成される。
[0175] 基板 200Gを用いて電気回路装置を作製する場合、導体部 305, 306は、信号ライ ンを構成し、導体板 301およびもう 1つの導体板は、接地電位に接続され、陽極電極 IOC, 10Dは、それぞれ、導体部 305, 306に接続され、陰極電極 20E, 20Fは、そ れぞれ、導体部 307, 308に接続される。その結果、リターン電流は、基板 200Gの 導体板 301およびもう 1つの導体板よりも導体板 21〜23を流れる。
[0176] このように、基板 200Gは、スリット 302〜304と、導体咅 305〜308と、ビアホーノレ 3 10, 311とを備えるので、電流 Iを電気素子 100内の導体板 11, 12に流し、リターン 電流 Irを電気素子 100内の導体板 21〜23に流す。その結果、基板 200Gを用いた 電気回路装置 101において、導体板 11, 12は、導体板 21〜23と磁気的結合が生 じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダクタンスより ち/ J、さくなる。
[0177] したがって、基板 200Gを用いた場合も、電気回路装置 101のインピーダンスを大 幅に低減できる。
[0178] また、基板 200Gを用いた電気回路装置 101において、直流電流を電源 90から C PU110へ供給できるとともに、 CPU 110で発生した不要な高周波電流を電気素子 1 00内に閉じ込めることができる。
[0179] 図 32を参照して、基板 200Hは、基板 200Fにスリット 312, 313を追加したもので あり、その他は、基板 200Fと同じである。スリット 312, 313は、導体板 301の一部を 切り欠くことにより、スリット 303に連結されるように誘電体(図示せず)の一主面に形 成される。そして、スリット 303, 312, 313からなるスリットは、信号ラインを構成する 導体部 305, 306の長さ方向と直交する方向において、基板 200Hの全体に形成さ れる。
[0180] 基板 200Hを用いて電気回路装置を作製する場合、導体部 305, 306は、信号ラ インを構成し、導体板 301およびもう 1つの導体板は、接地電位に接続され、陽極電 極 IOC, 10Dは、それぞれ、導体部 305, 306に接続され、陰極電極 20E, 20Fは、 それぞれ、導体部 307, 308に接続される。その結果、リターン電流は、基板 200H の導体板 301およびもう 1つの導体板よりも導体板 21〜23を流れる。
[0181] このように、基板 200Hは、スリット 302〜304, 312, 313と、導体咅 305〜308とを 備えるので、電流 Iを電気素子 100内の導体板 11, 12に流し、リターン電流 Irを電気 素子 100内の導体板 21〜23に流す。その結果、基板 200Hを用いた電気回路装置 101において、導体板 11, 12は、導体板 21〜23と磁気的結合が生じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダクタンスよりも小さくなる。
[0182] したがって、基板 200Hを用いた場合も、電気回路装置 101のインピーダンスを大 幅に低減できる。
[0183] また、基板 200Hを用いた電気回路装置 101において、直流電流を電源 90から C PU110へ供給できるとともに、 CPU 110で発生した不要な高周波電流を電気素子 1 00内に閉じ込めることができる。
[0184] 図 33を参照して、基板 200Jは、基板 200Gにスリット 312, 313を追加したものであ り、その他は、基板 200Gと同じである。基板 200Jにおいても、スリット 312, 313は、 導体板 301の一部を切り欠くことにより、スリット 303に連結されるように誘電体(図示 せず)の一主面に形成される。そして、スリット 303, 312, 313からなるスリットは、信 号ラインを構成する導体部 305, 306の長さ方向と直交する方向において、基板 20 0Jの全体に形成される。
[0185] 基板 200Jを用いて電気回路装置を作製する場合、導体部 305, 306は、信号ライ ンを構成し、導体板 301およびもう 1つの導体板は、接地電位に接続され、陽極電極 IOC, 10Dは、それぞれ、導体部 305, 306に接続され、陰極電極 20E, 20Fは、そ れぞれ、導体部 307, 308に接続される。その結果、リターン電流は、基板 200Jの導 体板 301およびもう 1つの導体板よりも導体板 21〜23を流れる。
[0186] このように、基板 200Jは、スリット 302〜304, 312, 313と、導体咅 305〜308と、 ビアホール 310, 311とを備えるので、電流 Iを電気素子 100内の導体板 11, 12に流 し、リターン電流 Irを電気素子 100内の導体板 21〜23に流す。その結果、基板 200 Jを用いた電気回路装置 101において、導体板 11, 12は、導体板 21〜23と磁気的 結合が生じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダク タンスよりち/ J、さくなる。
[0187] したがって、基板 200Jを用いた場合も、電気回路装置 101のインピーダンスを大幅 に低減できる。
[0188] また、基板 200Jを用いた電気回路装置 101において、直流電流を電源 90から CP U110へ供給できるとともに、 CPU110で発生した不要な高周波電流を電気素子 10 0内に閉じ込めることができる。
[0189] 図 34ίま、図 30力ら図 33にそれぞれ示す基板 200F, 200G, 200Η, 200Jを用!ヽ た電気回路装置 101のインピーダンスと周波数との関係を示す図である。図 34にお いて、横軸は、周波数を表し、縦軸は、インピーダンスを表す。また、曲線 k7は、基板 200Fを用いた場合を示し、曲線 k8は、基板 200Gを用いた場合を示し、曲線 k9は、 基板 200Hを用いた場合を示し、曲線 klOは、基板 200Jを用いた場合を示す。
[0190] 陰極電極 20E, 20Fがそれぞれ接続される導体部 307, 308〖こビアホール 310, 3 11を設けることにより、約 10MHz以上のインダクタンスが支配的な周波数領域にお いてインピーダンスが低下する(曲線 k7, k8参照)。
[0191] また、陰極電極 20E, 20Fがそれぞれ接続される導体部 307, 308間にスリット 303 よりも長いスリット 312, 313を設けることにより、約 10MHz以上のインダクタンスが支 配的な周波数領域においてインピーダンスが低下する(曲線 k7〜k9参照)。
[0192] さら〖こ、陰極電極 20E, 20Fがそれぞれ接続される導体部 307, 308にビアホール 310, 311を設け、力つ、導体咅 308間にスリット 303よりも長いスリット 312, 3 13を設けることにより、約 1GHz以上の周波数領域においてインピーダンスが低下す る(曲線 k9, klO参照)。これは、スリット 312, 313の一方側に設けられた導体板 30 1からスリット 312, 313の他方側に設けられた導体板 301への電流の流れがスリット 312, 313によって阻止され、電気素子内の導体板 21〜23, 21A, 22A, 23Aを流 れるカゝらである。
[0193] 図 35は、図 1に示す基板 200の他の構成を示す平面図である。図 35を参照して、 基板 200Kは、図 31に示す基板 200Gにスリット 314, 315を追加したものであり、そ の他は、基板 200Gと同じである。スリット 314, 315は、導体板 301の一部を切り欠く ことにより、スリット 303に連結されるように誘電体(図示せず)の一主面に形成される 。そして、スリット 303, 314, 315からなるスリットは、信号ラインを構成する導体部 30 5, 306の長さ方向と直交する方向において、基板 200Kの一部分に形成される。
[0194] 図 36は、図 35に示す基板 200Kを用いて電気回路装置を作製した場合における 3 個のスリット 303, 314, 315からなるスリットの長さに対するインピーダンスの変化を 示す図である。
[0195] 図 36において、横軸は、スリットの長さを表し、縦軸は、インピーダンスを表す。また 、曲線 kl lは、シミュレーション結果を示し、曲線 kl2は、実測値を示す。さらに、スリ ット 303の幅は、 5mmであり、周波数は、 100MHzである。
[0196] 図 36に示す結果より、スリット 303, 314, 315力らなるスリットの長さを 5mm以上に 設定することにより、インピーダンスは、低下する。すなわち、スリット 303, 314, 315 力もなるスリットの長さをスリット 303の幅(= 5mm)よりも長くすることにより、インピー ダンスが低下する。このように、基板 200Kの一部にスリット 303, 314, 315からなる スリットを設けることにより、電気回路装置 101のインピーダンスを低下させることがで きる。
[0197] このように、基板 200Kは、スリット 302〜304, 314, 315と、導体咅 305〜308とを 備えるので、電流 Iを電気素子 100内の導体板 11, 12に流し、リターン電流 Irを電気 素子 100内の導体板 21〜23に流す。その結果、基板 200Kを用いた電気回路装置 101において、導体板 11, 12は、導体板 21〜23と磁気的結合が生じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダクタンスよりも小さくなる。
[0198] したがって、基板 200Kを用いた場合も、電気回路装置 101のインピーダンスを大 幅に低減できる。
[0199] また、基板 200Kを用いた電気回路装置 101において、直流電流を電源 90から C
PU110へ供給できるとともに、 CPU 110で発生した不要な高周波電流を電気素子 1
00内に閉じ込めることができる。
[0200] 図 37は、図 1に示す基板の他の構成を示す平面図である。図 37を参照して、基板
200Lは、図 35に示す基板 200Kにスジッ卜 316, 317を追カロしたちのであり、その他 は、基板 200Kと同じである。
[0201] スリット 316は、導体板 301の一部を切り欠くことにより、スリット 314の一方端に略垂 直に連結されるように誘電体(図示せず)の一主面に形成される。そして、スリット 316 は、所定の長さを有し、スリット 314の両側に同じ長さだけ延伸する。スリット 317は、 導体板 301の一部を切り欠くことにより、スリット 315の一方端に略垂直に連結される ように誘電体(図示せず)の一主面に形成される。そして、スリット 317は、スリット 316 と同じ長さを有し、スリット 315の両側に同じ長さだけ延伸する。
[0202] 図 38は、図 37に示すスリット 316, 317の長さと S21との関係を示す図である。図 3 8において、縦軸は、 S21を表し、横軸は、スリット長を表す。そして、 S21は、スリット 314, 315の一方側の導体板 301力もスリット 314, 315の他方側の導体板 301への 電流の伝達特性である。
[0203] 図 38を参照して、スリット 316, 317のスリット長が 5mm、 10mmおよび 15mmと長 くなることに伴って、伝達特性 S21は、低下する。これは、スリット 316, 317を設ける ことによって、電流が、スリット 314, 315が形成されていない導体板 301の部分を介 してスリット 314, 315の一方側の導体板 301力もスリット 314, 315の他方側の導体 板 301へ回り込むのを防止するためである。そして、この電流の回り込みを防止する 度合は、スリット 316, 317のスリット長を長くする程、大きくなる。
[0204] 従って、基板 200Lを用いることによって、リターン電流が電気素子内部の導体板 2 1〜23を流れ易くなり、導体板 11, 12の実効インダクタンスを自己インダクタンスより も更に小さくできる。
[0205] このように、基板 200Lは、スリット 302〜304, 314〜317と、導体咅 305〜308と を備えるので、電流 Iを電気素子 100内の導体板 11, 12に流し、リターン電流 Irを電 気素子 100内の導体板 21〜23に流す。その結果、基板 200Lを用いた電気回路装 置 101において、導体板 11, 12は、導体板 21〜23と磁気的結合が生じ、導体板 11 , 12の実効インダクタンスは、導体板 11, 12の自己インダクタンスよりも小さくなる。
[0206] したがって、基板 200Lを用いた場合も、電気回路装置 101のインピーダンスを大 幅に低減できる。
[0207] また、基板 200Lを用いた電気回路装置 101において、直流電流を電源 90力 CP U110へ供給できるとともに、 CPU110で発生した不要な高周波電流を電気素子 10 0内に閉じ込めることができる。 [0208] 図 39は、図 1に示す基板 200の他の構成を示す平面図である。図 39を参照して、 基板 200Mは、図 37に示す基板 200Lのスリット 316, 317をそれぞれスリット 318, 3 19に代えたものであり、その他は、基板 200Lと同じである。
[0209] スリット 318は、導体板 301の一部を切り欠くことにより、スリット 314の一方端に連結 されるように誘電体(図示せず)の一主面に形成される。スリット 319は、導体板 301 の一部を切り欠くことにより、スリット 315の一方端に連結されるように誘電体(図示せ ず)の一主面に形成される。
[0210] スリット 318ίま、直線咅 318A, 318B, 318C力らなる。直線咅 318Αίま、スリット 31 4に略垂直に形成される。直線部 318Bは、直線部 318Aの一方端カゝら直線部 318A と所定の角度を成す方向に延伸する。直線部 318Cは、直線部 318Aの他方端から 直線部 318Aと所定の角度を成す方向に延伸する。その結果、直線部 318B, 318 Cは、直線部 318Aの両端においてスリット 303に向力 方向に対して略ノヽの字状に 配置される。
[0211] スリット 319は、直線咅 319A, 319B, 319C力らなる 0直線咅 319Aは、スリット 31 5に略垂直に形成される。直線部 319Βは、直線部 319Αの一方端力も直線部 319Α と所定の角度を成す方向に延伸する。直線部 319Cは、直線部 319Aの他方端から 直線部 319Aと所定の角度を成す方向に延伸する。その結果、直線部 319B, 319 Cは、直線部 319Aの両端においてスリット 303に向力 方向に対して略ノヽの字状に 配置される。
[0212] スリット 318, 319を備える場合も、スリット 316, 317を備える場合と同様に、伝達特 性 S21が小さくなり、電流力 スリット 314, 315が形成されていない導体板 301の部 分を介してスリット 314, 315の一方側の導体板 301力もスリット 314, 315の他方側 の導体板 301へ回り込むのを防止できる。その結果、スリット 303, 314, 315, 318, 319は、リターン電流 Irが導体板 301を流れるのを抑制する。
[0213] このように、基板 200Mは、スリット 302〜304, 314, 315, 318, 319と、導体咅
05〜308とを備えるので、電流 Iを電気素子 100内の導体板 11, 12に流し、リターン 電流 Irを電気素子 100内の導体板 21〜23に流す。その結果、基板 200Mを用いた 電気回路装置 101において、導体板 11, 12は、導体板 21〜23と磁気的結合が生 じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダクタンスより ち/ J、さくなる。
[0214] したがって、基板 200Mを用いた場合も、電気回路装置 101のインピーダンスを大 幅に低減できる。
[0215] また、基板 200Mを用いた電気回路装置 101において、直流電流を電源 90から C PU110へ供給できるとともに、 CPU 110で発生した不要な高周波電流を電気素子 1 00内に閉じ込めることができる。
[0216] 図 40は、図 1に示す基板 200の他の構成を示す平面図である。図 40を参照して、 基板 200Nは、図 37に示す基板 200Lのスリット 316, 317をそれぞれスリット 320, 3 21に代えたものであり、その他は、基板 200Lと同じである。
[0217] スリット 320は、導体板 301の一部を切り欠くことにより、スリット 314の一方端に連結 されるように誘電体(図示せず)の一主面に形成される。スリット 321は、導体板 301 の一部を切り欠くことにより、スリット 315の一方端に連結されるように誘電体(図示せ ず)の一主面に形成される。
[0218] スリット 320は、直線部 320A, 320B, 320C力もなる。直線部 320Aは、スリット 31 4に略垂直に形成される。直線部 320Bは、直線部 320Aの一方端力も直線部 320A と所定の角度を成す方向に延伸する。直線部 320Cは、直線部 320Aの他方端から 直線部 320Aと所定の角度を成す方向に延伸する。その結果、直線部 320B, 320 Cは、直線部 318Aの両端においてスリット 303と反対方向に対して略ノヽの字状に配 置される。
[0219] スリット 321ίま、直線咅 321A, 321B, 321C力らなる。直線咅 321Αίま、スリット 31 5に略垂直に形成される。直線部 321Bは、直線部 321Aの一方端力も直線部 321A と所定の角度を成す方向に延伸する。直線部 321Cは、直線部 321Aの他方端から 直線部 321Aと所定の角度を成す方向に延伸する。その結果、直線部 321B, 321 Cは、直線部 321Aの両端においてスリット 303と反対方向に対して略ノヽの字状に配 置される。
[0220] スリット 320, 321を備える場合も、スリット 316, 317を備える場合と同様に、伝達特 性 S21が小さくなり、電流力 スリット 314, 315が形成されていない導体板 301の部 分を介してスリット 314, 315の一方側の導体板 301力もスリット 314, 315の他方側 の導体板 301へ回り込むのを防止できる。その結果、スリット 303, 314, 315, 320, 321は、リターン電流 Irが導体板 301を流れるのを抑制する。
[0221] このように、基板 200Nは、スリット 302〜304, 314, 315, 320, 321と、導体咅 30 5〜308とを備えるので、電流 Iを電気素子 100内の導体板 11, 12に流し、リターン 電流 Irを電気素子 100内の導体板 21〜23に流す。その結果、基板 200Nを用いた 電気回路装置 101において、導体板 11, 12は、導体板 21〜23と磁気的結合が生 じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダクタンスより ち/ J、さくなる。
[0222] したがって、基板 200Nを用いた場合も、電気回路装置 101のインピーダンスを大 幅に低減できる。
[0223] また、基板 200Nを用いた電気回路装置 101において、直流電流を電源 90から C PU110へ供給できるとともに、 CPU 110で発生した不要な高周波電流を電気素子 1 00内に閉じ込めることができる。
[0224] 図 37、図 39および図 40【こお!ヽて、各種のスリットを備える基板 200L, 200M, 20 ONを示した力 この発明においては、これに限らず、図 37、図 39および図 40に示 すような形状の基板は、一般的には、高周波電流力 Sスリットの一方側からスリットの他 方側へ伝達するのを抑制する形状のスリットを備えて 、ればよ 、。
[0225] 図 41は、図 1に示す基板 200の他の構成を示す平面図である。図 41を参照して、 基板 200Ρίま、図 30【こ示す基板 200Fのスリット 302〜304をスリット 322〜324【こ代 えたものであり、その他は、基板 200Fと同じである。
[0226] スリット 322は、導体板 301の一部を切り欠くことによって誘電体(図示せず)の一主 面に形成される。そして、スリット 322を形成することによって、導体部 325〜328が誘 電体(図示せず)の一主面に形成される。
[0227] スリット 323は、導体板 301の一部を切り欠くことによって誘電体(図示せず)の一主 面に形成され、スリット 322の一方側でスリット 322に連結される。また、スリット 324は 、導体板 301の一部を切り欠くことによって誘電体(図示せず)の一主面に形成され、 スリット 322の他方側でスリット 322に連結される。 [0228] 基板 200Pを用いて電気回路装置を作製する場合、導体部 325, 328は、信号ライ ンを構成し、導体板 301およびもう 1つの導体板は、接地電位に接続され、陽極電極 IOC, 10Dは、それぞれ、導体部 325, 328に接続され、陰極電極 20E, 20Fは、そ れぞれ、導体部 326, 327に接続される。その結果、リターン電流は、基板 200Pの 導体板 301およびもう 1つの導体板よりも導体板 21〜23を流れる。
[0229] このように、基板 200Pは、スリット 322〜324と、導体咅 325〜328とを備えるので、 電流 Iを電気素子 100内の導体板 11, 12に流し、リターン電流 Irを電気素子 100内 の導体板 21〜23に流す。その結果、基板 200Pを用いた電気回路装置 101におい て、導体板 11, 12は、導体板 21〜23と磁気的結合が生じ、導体板 11, 12の実効ィ ンダクタンスは、導体板 11, 12の自己インダクタンスよりも小さくなる。
[0230] したがって、基板 200Pを用いた場合も、電気回路装置 101のインピーダンスを大 幅に低減できる。
[0231] また、基板 200Pを用いた電気回路装置 101において、直流電流を電源 90から CP U110へ供給できるとともに、 CPU110で発生した不要な高周波電流を電気素子 10 0内に閉じ込めることができる。
[0232] 図 42は、図 1に示す基板 200の他の構成を示す平面図である。図 42を参照して、 基板 200Qは、図 41に示す基板 200Pのスリット 323, 324をそれぞれスリット 314, 3 15に代えたものであり、その他は、基板 200Pと同じである。
[0233] スリット 314, 315は、導体板 301の一部を切り欠くことにより、スリット 322に連結さ れるように誘電体(図示せず)の一主面に形成される。そして、スリット 322, 314, 31 5からなるスリットは、信号ラインを構成する導体部 325, 328の長さ方向と直交する 方向において、基板 200Qの一部分に形成される。
[0234] このように、基板 200Qは、スリット 314, 315, 322と、導体咅 325〜328とを備える ので、電流 Iを電気素子 100内の導体板 11, 12に流し、リターン電流 Irを電気素子 1 00内の導体板 21〜23に流す。その結果、基板 200Qを用いた電気回路装置 101 において、導体板 11, 12は、導体板 21〜23と磁気的結合が生じ、導体板 11, 12の 実効インダクタンスは、導体板 11, 12の自己インダクタンスよりも小さくなる。
[0235] したがって、基板 200Qを用いた場合も、電気回路装置 101のインピーダンスを大 幅に低減できる。
[0236] また、基板 200Qを用いた電気回路装置 101において、直流電流を電源 90から C PU110へ供給できるとともに、 CPU 110で発生した不要な高周波電流を電気素子 1 00内に閉じ込めることができる。
[0237] 図 43は、図 1に示す基板 200の他の構成を示す平面図である。また、図 44は、図 4 3に示す線 XXXXIV—XXXXIV間における基板 200Rの断面図である。図 43およ び図 44を参照して、基板 200Rは、導体板 401, 403, 405, 407と、誘電体 402, 4
04, 406と、スリット 411, 412, 413, 414と、導体言 416, 417, 418, 419, 4 20, 421, 426とを備える。
[0238] 導体板 401は、誘電体 402の表面に形成され、導体板 403は、誘電体 404の表面 に形成され、導体板 405は、誘電体 406の表面に形成され、導体板 407は、誘電体 406の裏面に形成される。そして、導体板 403が形成された誘電体 404は、導体板 4
05, 407が形成された誘電体 406上に積層され、導体板 401が形成された誘電体 4 02は、導体板 403が形成された誘電体 404上に積層される。
[0239] スリット 411〜414は、導体板 401の一部を切り欠くことによって誘電体 402の表面 【こ形成される。そして、スリット 411, 412, 414ίま、基板 200Rの幅方向【こ直線上【こ 配置される。また、スリット 413は、両端がスリット 412に連結され、スリット 411を囲む ように形成される。この場合、スリット 413の幅は、高周波電流の波長および誘電体 4 02の比誘電率に応じて決定され、高周波電流がスリット 413の内側に形成された導 体部 421からスリット 413の外側に形成された導体部 426へ飛び越えない値に設定 される。
[0240] その結果、導体板 401は、導体部 421と導体部 426とに分離される。また、導体部 416〜419が誘電体 402の表面に形成される。この場合、導体部 417は、その両端 が導体部 421に連結され、導体部 418は、その両端が導体部 426に連結される。
[0241] 導体部 415は、導体板 403の一部を切り欠くことによって誘電体 404の表面に形成 される。そして、導体部 415は、ビアホール 423によって導体部 416に接続される。ま た、導体部 420は、導体板 403の一部を切り欠くことによって誘電体 404の表面に形 成される。そして、導体部 420は、ビアホール 426によって導体部 419に接続される。 [0242] 導体部 417は、ビアホール 424によって導体板 405に接続され、導体部 418は、ビ ァホール 425によって導体板 407に接続される。なお、導体部 421は、ビアホールに よって導体板 405に接続され、導体部 426は、ビアホールによって導体板 407に接 続されている。そして、導体板 401, 405, 407は、接地電位に接続されている。
[0243] 基板 200Rを用いて電気回路装置を作製する場合、導体部 415, 416, 419, 420 およびビアホール 423, 426は、信号ラインを構成し、陽極電極 10Cは、導体部 415 に接続され、陽極電極 10Dは、導体部 420に接続され、陰極電極 20Eは、導体部 4 17に接続され、陰極電極 20Fは、導体部 418に接続される。その結果、リターン電流 は、電気素子 100内の導体板 21〜23を流れる。
[0244] このように、リターン電流が電気素子 100内の導体板 21〜23を流れるのは、陰極 電極 20E, 20Fが接続される導体部 417, 418は、それぞれ、スリット 413によって分 離された導体部 421, 426に接続され、導体部 421, 426は、それぞれ、異なる導体 板 405, 407に接続されている力らである。
[0245] このように、基板 200Rを用いることによって、リターン電流を完全に電気素子 100 内の導体板 21〜23に流すことができ、導体板 11, 12の実効インダクタンスを自己ィ ンダクタンスよりも小さくできる。その結果、電気回路装置 101のインピーダンスを小さ くでさる。
[0246] また、基板 200Rを用いた電気回路装置 101にお!/、て、直流電流を電源 90から CP U110へ供給できるとともに、 CPU110で発生した不要な高周波電流を電気素子 10 0内に閉じ込めることができる。
[0247] 図 45は、実施の形態 1による電気回路装置の他の構成を示す概念図である。実施 の形態 1による電気回路装置は、図 45に示す電気回路装置 102であってもよい。図 45を参照して、電気回路装置 102は、図 1に示す電気回路装置 101の電気素子 10 0を電気素子 100Aに代えたものであり、その他は、電気回路装置 101と同じである。
[0248] 電気素子 100Aは、図 2に示す電気素子 100の導体板 11, 12, 21〜23をそれぞ れ導体板 11A, 12A, 21A〜23Aに代えたものであり、その他は、電気素子 100と 同じである。
[0249] 導体板 21Aは、誘電体層 1, 2間に配置され、導体板 11Aは、誘電体層 2, 3間に 配置される。また、導体板 22Aは、誘電体層 3, 4間に配置され、導体板 12Aは、誘 電体層 4, 5間に配置され、導体板 23Aは、誘電体層 5の一主面 5Aに配置される。
[0250] 導体板 11A, 12Aは、その一方端がサイド陽極電極 10Aに接続され、他方端がサ イド陽極電極 10Bに接続される。導体板 21A〜23Aは、その一方端がサイド陰極電 極 20A, 20Bに接続され、他方端がサイド陰極電極 20C, 20Dに接続される。
[0251] 線 XXI— XXI間における電気素子 100Aの断面図は、図 21に示す電気素子 100 の断面図と同じであり、線 XXII— XXII間における電気素子 100Aの断面図は、図 2 2に示す電気素子 100の断面図と同じである。そして、図 21および図 22において、 導体板 11, 12, 21〜23を導体板 11A, 12A, 21A〜23A【こ代えれ ί よ!ヽ。
[0252] 図 46は、隣接する 2つの導体板の他の平面図である。図 46を参照して、導体板 11 Αは、長さ L4と幅 W5とを有し、導体板 21Aは、長さ L5と幅 W4とを有する。そして、 長さ L4と幅 W5との間には、 W5≥L4の関係があり、長さ L5と幅 W4との間には、 W4 ≥L5の関係がある。このように、導体板 11A, 21Aは、長さ方向 DR1よりも幅方向 D R2に長い形状力 なる。
[0253] 導体板 12Aは、導体板 11Aと同じサイズを有し、導体板 22A, 23Aは、導体板 21 Aと同じサイズを有する。
[0254] 導体板 11Aおよび導体板 21Aを 1つの平面へ投影すると、導体板 11Aおよび 21 Aは、重複部分 200Aを有する。そして、導体板 11Aと導体板 21Aとの重複部分 20 OAは、長さ L5および幅 W5を有する。導体板 11Aと導体板 22Aとの重複部分、導体 板 12Aと導体板 22Aとの重複部分および導体板 12Aと導体板 23Aとの重複部分も 、重複部分 200Aと同じ長さ L5および同じ幅 W5を有する。そして、実施の形態 3に おいては、 W5≥L5になるように、長さ L5および幅 W5が設定される。
[0255] 重複部分 200Aの幅 W5が長さ L5以上である場合、図 15に示すように、導体板 11 Aを流れる電流 IIは、幅方向 DR2において重複部分 200Aのほぼ中央部を流れ、 導体板 21 Aを流れる電流 12は、幅方向 DR2において重複部分 200Aの端に近い部 分を流れる。その結果、上述したように、導体板 11 A, 12Aの実効インダクタンスが導 体板 11A, 12Aの自己インダクタンスよりも小さくなる度合は、相対的に低下する。
[0256] しかし、電気回路装置 102は、所定の間隔 L3で配置された導体板 204, 205を備 えるので、導体板 204, 205は、リターン電流 Ir( =電流 12)を電気素子 100A内の導 体板 21A〜23Aに流す。
[0257] その結果、基板 200が陰極電極 20E, 20F間で電気的に接続された導体板を一主 面 201Bに有する場合に比べ、導体板 21A〜23Aに流れるリターン電流の割合が増 加し、導体板 11A, 12Aの実効インダクタンスが導体板 11 A, 12Aの自己インダクタ ンスよりも小さくなる度合は、相対的に大きくなる。
[0258] したがって、重複部分 200Aの幅 W5が長さ L5以上であっても、リターン電流 Irが流 れる方向に電気的に分離された導体板 204, 205を備えることによって電気回路装 置 102のインダクタンスを /J、さくできる。
[0259] 図 47は、図 45に示す電気回路装置 102のインピーダンスの周波数依存性を示す 図である。図 47において、横軸は、周波数を表し、縦軸は、インピーダンスを表す。 また、曲線 kl3は、重複部分 200Aにおける幅 W5が長さ L5以上であり、かつ、分離 された導体板 204, 205を備える場合のインピーダンスの周波数依存性を示し、曲線 kl4は、重複部分 200Aにおける幅 W5が長さ L5以上であり、かつ、導体板 204, 20 5が電気的に導通した場合のインピーダンスの周波数依存性を示す。
[0260] 図 47を参照して、 0. 006GHz以下の低周波数領域は、キャパシタンスが支配的な 周波数領域であり、 0. 01GHz以上の高周波数領域は、インダクタンスが支配的な 周波数領域である。
[0261] キャパシタンスが支配的である 0. 006GHz以下の低周波数領域においては、導体 板 204, 205が電気的に切断された場合の電気回路装置 102のインピーダンス(曲 線 kl3)は、導体板 204, 205が電気的に導通された場合の電気回路装置 102のィ ンピーダンス(曲線 kl4)とほぼ同じである。
[0262] 一方、インダクタンスが支配的である 0. 01GHz以上の高周波数領域においては、 導体板 204, 205が電気的に切断された場合の電気回路装置 102のインピーダンス (曲線 kl3)は、導体板 204, 205が電気的に導通された場合の電気回路装置 102 のインピーダンス(曲線 kl4)よりも小さくなる。
[0263] したがって、重複部分 200Aの幅 W5が長さ L5以上であっても、電気的に分離され た導体板 204, 205を基板 200に設けることによって電気回路装置 102のインダクタ ンスを小さくできる。
[0264] 電気回路装置 102【こお!ヽて ίま、基板 200【こ代えて基板 200Α, 200Β, 200C, 20 OD, 200Ε, 200F, 200G, 200Η, 200J, 200Κ, 200L, 200Μ, 200Ν, 200Ρ, 200Q, 200Rの!ヽずれ力を用!ヽてもよ!/ヽ。そして、基板 200Α, 200Β, 200C, 200 D, 200Ε, 200F, 200G, 200Η, 200J, 200Κ, 200L, 200Μ, 200Ν, 200Ρ, 2 OOQ, 200Rのいずれかを用いた場合も、基板 200を用いた場合と同様に電気回路 装置 102のインピーダンスを小さくできる。
[0265] また、基板 200Α, 200Β, 200C, 200D, 200Ε, 200F, 200G, 200Η, 200J, 2 00Κ, 200L, 200Μ, 200Ν, 200Ρ, 200Q, 200Rの!ヽずれ力を用!ヽた場合も、基 板 200を用いた場合と同様に CPU110で発生した不要な高周波電流を電気素子 1 00内に閉じ込めることができる。
[0266] した力つて、基板 200, 200Α, 200Β, 200C, 200D, 200Ε, 200F, 200G, 20 OH, 200J, 200Κ, 200L, 200Μ, 200Ν, 200Ρ, 200Q, 200Rは、導体板 11A, 12Aと導体板 21Α〜23Αとの重複部分 200Αにおける幅 W5が長さ L5以上である 電気回路装置 102において、インダクタンスが支配的な高周波数領域でインピーダ ンスを小さくする基板である。
[0267] また、基板 200, 200Α, 200Β, 200C, 200D, 200Ε, 200F, 200G, 200Η, 2 00J, 200Κ, 200L, 200Μ, 200Ν, 200Ρ, 200Q, 200Rは、 CPU110で発生し た不要な高周波電流を電気素子 100内に閉じ込める基板である。
[0268] 上記においては、誘電体層 1〜5は、全て同じ誘電体材料 (BaTiO )により構成さ
3
れると説明したが、この発明においては、これに限らず、誘電体層 1〜5は、相互に異 なる誘電体材料により構成されていてもよぐ 2種類の誘電体材料により構成されてい てもよく、一般的には、 1種類以上の誘電体材料により構成されていればよい。この場 合、誘電体層 1〜5を構成する各誘電体材料は、好ましくは、 3000以上の比誘電率 を有する。
[0269] そして、 BaTiO以外の誘電体材料としては、 Ba (Ti, Sn) 0 , Bi Ti O , (Ba, Sr
3 3 4 3 12
, Ca)TiO , (Ba, Ca) (Zr, Ti) 0 , (Ba, Sr, Ca) (Zr, Ti) 0 , SrTiO , CaTiO ,
3 3 3 3 3
PbTiO , Pb (Zn, Nb) O , Pb (Fe, W) 0 , Pb (Fe, Nb) O , Pb (Mg, Nb) 0 , P b (Ni, W) 0 , Pb (Mg, W) 0 , Pb (Zr, Ti) O , Pb (Li, Fe, W) O , Pb Ge O お
3 3 3 3 5 3 11 よび CaZrO等を用いることができる。
3
[0270] また、上記においては、陽極電極 IOC, 10D、サイド陽極電極 10A, 10B、導体板 11, 12, 21〜23、サイド陰極電極 20A, 20B, 20C, 20Dおよび陰極電極 20E, 2 OFは、ニッケル (Ni)力もなると説明したが、この発明においては、これに限らず、陽 極電極 IOC, 10D、サイド陽極電極 10A, 10B、導体板 11, 12, 21〜23、サイド陰 極電極 20A, 20B, 20C, 20Dおよび陰極電極 20E, 20Fは、銀 (Ag)、ノ《ラジウム( Pd)、銀パラジウム合金 (Ag-Pd)、白金(Pt)、金 (Au)、銅(Cu)、ルビジウム (Ru) およびタングステン (W)の 、ずれかにより構成されてもよ!、。
[0271] さらに、上記においては、電気素子 100は、誘電体層 1〜5を備えると説明したが、 この発明においては、これに限らず、電気素子 100は、誘電体層 1〜5を備えていな くてもよい。誘電体層 1〜5がなくても、導体板 11, 12と導体板 21〜23との間で磁気 的干渉が生じ、上述した機構によって電気素子 100のインピーダンスが低下するから である。
[0272] さら〖こ、上記においては、陽極電極 IOC, 10Dに接続される導体板の個数は、 2個
(導体板 11, 12)であり、陰極電極 20E, 20Fに接続される導体板の個数は、 3個( 導体板 21〜23)であると説明したが、この発明においては、これに限らず、電気素子 100は、陽極電極 IOC, 10Dに接続される n (nは正の整数)個の導体板と、陰極電 極 20E, 20Fに接続される m (mは正の整数)個の導体板とを備えていればよい。こ の場合、電気素子 100は、; j (j =m+n)個の誘電体層を備える。陽極電極 10C, 10 Dに接続される導体板と、陰極電極 20E, 20Fに接続される導体板とを少なくとも 1個 備えていれば、磁気的干渉を生じさせることができ、実効インダクタンスを小さくできる 力 である。
[0273] そして、この発明においては、電気素子 100に流れる電流が増加するに従って、陽 極電極 10C, 10Dに接続される導体板の個数と、陰極電極 20E, 20Fに接続される 導体板の個数とを増加させる。陽極電極 10C, 10Dに接続される導体板および陰極 電極 20E, 20Fに接続される導体板が複数の導体板カゝらなるとき、複数の導体板は 、 2個の陽極電極(10C, 10D)間、または 2個の陰極電極(20E, 20F)間に並列に 接続されるので、陽極電極 IOC, 10Dに接続される導体板の個数と、陰極電極 20E , 20Fに接続される導体板の個数とを増加させれば、電気素子 100に流れる電流を 増加できるからである。
[0274] また、この発明においては、電気素子 100のインピーダンスを相対的に低下させる 場合、電極 IOC, 10Dに接続される導体板の個数と、陰極電極 20E, 20Fに接続さ れる導体板の個数とを増カロさせる。電極 IOC, 10Dに接続される導体板の個数と、 陰極電極 20E, 20Fに接続される導体板の個数とを増カロさせれば、並列接続される コンデンサの個数が増加し、電気素子 100の実効キャパシタンスが大きくなつてイン ピーダンスが低下するからである。
[0275] さら〖こ、上記においては、導体板 11, 12は、導体板 21〜23に平行に配置されると 説明したが、この発明においては、これに限らず、導体板 11, 12と導体板 21〜23と の間隔が長さ方向 DR1に対して変化するように導体板 11, 12, 21〜23を配置して ちょい。
[0276] さらに、上記においては、電気素子 100は、 CPU110に接続されると説明したが、 この発明においては、これに限らず、電気素子 100は、所定の周波数で動作する電 気負荷回路であれば、どのように電気負荷回路に接続されてもょ 、。
[0277] さらに、上記においては、電気素子 100は、 CPU110が発生する不要な高周波電 流を CPU 110の近傍に閉じ込めるノイズフィルタとして用いられると説明した力 この 発明においては、これに限らず、電気素子 100は、コンデンサとしても使用される。電 気素子 100は、上述したように、並列に接続された 4個のコンデンサを含むので、コン デンサとしても使用可能である。
[0278] そして、より具体的には、電気素子 100は、ノートパソコン、 CD— RWZDVD装置 、ゲーム機、情報家電、デジタルカメラ、自動車電装用、自動車用デジタル機器、 M PU周辺回路および DCZDCコンバータ等に用いられる。
[0279] したがって、ノートパソコンおよび CD— RWZDVD装置等にコンデンサとして用い られて 、るが、電源 90と CPU110との間で使用されて CPU110が発生する不要な 高周波電流を CPU110の近傍に閉じ込めるノイズフィルタの機能を有する電気素子 は、この発明による電気素子 100に含まれる。 [0280] 実施の形態 1によれば、電気回路装置 101は、電気素子 100と、基板 200, 200A , 200B, 200C, 200D, 200E, 200F, 200G, 200H, 200J, 200K, 200L, 20 OM, 200N, 200P, 200Q, 200Rとを備え、電気回路装置 102は、電気素子 100 Aと、基板 200, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 200 J, 200K, 200L, 200M, 200N, 200P, 200Q, 200Rとを備えるので、基板 200, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 200J, 200K, 200 L, 200M, 200N, 200P, 200Q, 200Rは、電流 Iを電気素子 100内の導体板 11, 12または電気素子 100Aの導体板 11A, 12Aに流し、電流 Iのリターン電流 Irを電気 素子 100内の導体板 21〜23または電気素子 100A内の導体板 21A〜23Aに流す 。その結果、導体板 11, 12は、導体板 21〜23と磁気的結合を生じ、導体板 11, 12 の実効インダクタンスは、導体板 11, 12の自己インダクタンスよりも小さくなり、導体 板 11A, 12Aは、導体板 21A〜23Aと磁気的結合を生じ、導体板 11A, 12Aの実 効インダクタンスは、導体板 11A, 12Aの自己インダクタンスよりも小さくなる。
[0281] したがって、この発明によれば、電気回路装置 101, 102のインピーダンスを低減 できる。また、 CPU110で発生した不要な高周波電流を電気素子 100内に閉じ込め ることがでさる。
[0282] [実施の形態 2]
図 48は、実施の形態 2による電気回路装置の構成を示す斜視図である。図 48を参 照して、実施の形態 2による電気回路装置 103は、電気素子 100と、導体板 500とを 備える。
[0283] なお、電気回路装置 103においては、電気素子 100の導体板 23は、削除され、サ イド陽極電極 10Aは、電気素子 100の側面 100Aの全体と、電気素子 100Aの底面 100C、正面 100D、裏面 100Eおよび上面 100Fの一部とに形成され、サイド陽極 電極 10Bは、電気素子 100の側面 100Bの全体と、電気素子 100Aの底面 100C、 正面 100D、裏面 100Eおよび上面 100Fの一部とに形成される。また、サイド陰極電 極 20A, 20B, 20C, 20Dは、電気素子 100の上面 100Fの一部にも形成される。
[0284] 導体板 500は、電気素子 100の上面 100Fに配置され、サイド陽極電極 10A, 10 Bに接続される。そして、導体板 500は、銀、銅、金、アルミニウム、黄銅、ニッケル、 鉄、白金、すずおよび鉛のいずれかからなる。
[0285] 図 49は、図 48に示す導体板 500の斜視図である。図 49を参照して、導体板 500 は、切欠部 501, 502を有する。その結果、導体板 500は、幅広部 503, 504と、幅 狭部 505と力もなる。幅狭部 505は、幅広部 503と幅広部 504との間に配置される。
[0286] 切欠部 501は、サイド陰極電極 20A, 20Cの一部が電気素子 100の一主面(=上 面 100F)に配置されるための切欠部であり、切欠部 502は、サイド陰極電極 20B, 2 0Dの一部が電気素子 100の一主面(=上面 100F)に配置されるための切欠部であ る。
[0287] また、導体板 500は、電気素子 100の導体板 11, 12を電流が流れる方向 DR1に おいて、長さ L6を有する。この長さ L6は、方向 DR1における電気素子 100の長さに 略等しい。
[0288] さらに、導体板 500の幅広部 503, 504は、方向 DR1に直交する方向 DR2におい て、幅 W6を有し、導体板 500の幅狭部 505は、幅 W7を有する。そして、幅 W6は、 方向 DR2における電気素子 100の幅と同じ幅を有し、幅 W7は、幅 W6よりも狭い。こ の場合、幅 W6は、たとえば、 5mmに設定され、幅 W7は、たとえば、 3mmに設定さ れる。
[0289] 図 50は、図 49に示す導体板 500の長さ方向 DR1における断面図である。図 50を 参照して、導体板 500は、凹凸面 500Aを有する。なお、凹凸面 500Aは、導体板 50
0の表裏面のみならず、導体板 500の幅方向 DR2の両側面にも形成される。そして、 凹凸面 500Aは、深さ dを有する。この深さ dは、交流電流が導体に流れる場合に、表 皮効果によって交流電流が流れる導体の表皮深さ dに設定される。そうすると、導体 s
板 500の凹凸面 500Aは、長さ方向 DR1に対して、不連続になるので、導体板 500 は、交流電流を殆ど流さず、直流電流を流す。
[0290] 表 1は、導体板 500を構成する各種の金属材料の表皮効果における表皮深さ dと
S
周波数との関係を示す。
[0291] [表 1] 周波数 (GHz) 0.1 0.3 0.5 1 3 5 10 30
銀 6.44 3.72 2.88 2.04 1.18 0.91 0.64 0.37 銅 6.61 3.82 2.96 2.09 1.21 0.93 0.66 0.38 金 7.86 4.54 3.52 2.49 1.44 1.11 0.79 0.45 アルミニゥム 7.96 4.59 3.56 2.52 1.45 1.13 0.80 0.46 黄銅 9.87 5.70 4.41 3.12 1.80 1.40 0.99 0.57 表皮深さ(jum)
ニッケル 13.0 7.50 5.81 4.11 2.37 1.84 1.30 0.75 鉄 15.9 9.19 7.12 5.03 2.91 2.25 1.59 0.92 白金 16.6 9.58 7.42 5.25 3.03 2.35 1.66 0.96 すず 16.8 9.69 7.50 5.31 3.06 2.37 1.68 0.97 飴 22.5 13.0 10.1 7.12 4.11 3.18 2.25 1.30
[0292] 表 1に示すように、表皮効果における表皮深さ dは、周波数が高くなるに従って浅く
S
なる。また、電気回路装置 103は、電気素子 100を備えるので、上述したように実効 インダクタンスの低減によってインピーダンスが小さくなる。そして、電気回路装置 10 3においては、導体板 500は、電源 90から供給された直流電流を CPU110へ供給 するとともに、 CPU110で発生した不要な高周波電流を表皮効果によって抑制して 不要な高周波電流を電気素子 100内の導体板 21〜23に流し、不要な高周波電流 が電源 90側へ漏洩するのを抑制する。
[0293] したがって、導体板 500の凹凸面 500Aの深さ dは、電気回路装置 103に接続され た CPU110 (電気負荷回路)が発生する不要な高周波電流の周波数に応じて決定 される。
[0294] より具体的には、じ?11110が 〜£2( <£2)の範囲の周波数を有する不要な高 周波電流を発生する場合、深さ dは、周波数 fl〜f2のうち、最も低い周波数 flによつ て決定される表皮深さに設定される。最も低 ヽ周波数 f 1によって決定された表皮深さ は、 fl〜f 2の周波数範囲に含まれる周波数によって決定された表皮深さの中で最も 深いので、 fl〜f 2の範囲の周波数を有する高周波電流が導体板 500を流れるのを 抑制できるからである。
[0295] 図 51および図 52は、それぞれ、図 50に示す凹凸面 500Aの深さ dの範囲を説明 するための第 1および第 2の概念図である。図 51を参照して、導体板 500の凹凸面 5 OOAは、最小深さ d 以上の深さを有する。この最小深さ d は、導体板 500の表面
mm mm
が平坦である場合に電気素子 100内の導体板 11, 12に流れる電流の交流成分より も多くの交流成分を表皮効果によって電気素子 100内の導体板 11, 12に流す深さ である。すなわち、最小深さ d
mmは、表皮効果による表皮深さ d
Sよりも浅ぐ導体板 50
0の表面が平坦である場合に表皮効果によって導体板 500の表面層に流れる電流 の交流成分を抑制する深さである。そして、最小深さ d は、好ましくは、 CPU110が
min
発生する高周波電流(=電流の交流成分)のうち、最も高い周波数によって決定され る表皮深さよりも浅ぐ表皮効果によって導体板 500の表面層を流れる最も高い周波 数を有する高周波電流を抑制する深さに設定される。
[0296] 図 52を参照して、導体板 500の凹凸面 500Aは、最大深さ d 以下の深さを有す
max
る。そして、最大深さ d は、電気回路装置 103に接続される CPU110 (電気負荷回
max
路)に供給される直流電流の電流値に応じて決定される。図 53および図 54は、それ ぞれ、電気回路装置 103と CPU110との接続パターンを示す第 1および第 2の概念 図である。
[0297] 図 53を参照して、 1個の CPU110が電気回路装置 103に接続される場合、電気回 路装置 103は、直流電流 Iを CPU110へ供給する。導体板 500の凹凸面 500Aが
0
最大深さ d を有する場合、直流電流 Iは、導体板 500Aの領域 506を流れ、直流電
max
流 Iの電流値は、領域 506の断面積によって決定される。表面が平坦であるときの導
0
体板 500の厚みを Dとし、導体板 500の比抵抗を pとすると、領域 506の断面積 Sは 、S= (D— 2 X d ) X (W7- 2 X d )によって決定される。そして、直流電流 Iを流
max max
すときの電圧を Vとすると、直流電流 Iは、 I =VX (D- 2 X d ) X (W7- 2 X d )
0 max max
/ ( p X L6)によって決定される。
[0298] 直流電流 Iの電流値および電圧 Vの電圧値が決定されれば、厚み D、比抵抗 、
0
幅 W7および長さ L6は、既知であるので、 I =V X (D- 2 X d ) X (W7- 2 X d )
0 max max
/ { β X L6)によって導体板 500の凹凸面 500Aの最大深さ d を決定できる。
max
[0299] 図 54を参照して、 4個の CPU110A, HOB, HOC, 110Dが電気回路装置 103 に並列に接続される場合、電気回路装置 103は、 CPU110A, HOB, HOC, 110 Dにそれぞれ供給する直流電流 I , I , I , Iの合計 I +1 +1 +1の直流電流を導体
1 2 3 4 1 2 3 4
板 500に流す。したがって、導体板 500の凹凸面 500Aの最大深さ d は、 I +1 +1 max 1 2
+ 1 =VX (D-2Xd ) XW7Z(P XL6)を用いることによって決定される。そし
3 4 max
て、電気回路装置 103に並列に接続される CPU110の個数が j (jは 2以上の整数) 個である場合、導体板 500の凹凸面 500Aの最大深さ d は、 I +1 + · · · +1 =V max 1 2 j
X (D-2Xd ) X (W7-2Xd )Z( /0 XL6)を用いることによって決定される。
max max
[0300] なお、 CPU110A, HOB, HOC, 110Dにそれぞれ供給される直流電流 I,1 , 1
1 2 3
, Iの電流値が等しい場合、導体板 500の凹凸面 500Aの最大深さ d は、 4X1 =
4 max 1
VX (D-2Xd ) XW7/(p XL6)を用いることによって決定される。そして、電気 max
回路装置 103に並列に接続される CPU110の個数が j個であり、各 CPU110に供給 される直流電流の電流値が等 、場合、導体板 500の凹凸面 500Aの最大深さ d max は、 jXI =VX (D— 2Xd ) X (W7-2Xd )Z( P XL6)を用いることによって
1 max max
決定される。
[0301] 上述した方法によって、導体板 500の凹凸面 500Aの深さ dの最小深さ d および min 最大深さ d が決定される。そして、導体板 500の凹凸面 500Aの深さ dは、最小深 max
さ d 以上の深さに設定されていればよい。また、好ましくは、導体板 500の凹凸面 5 mm
OOAの深さ dは、表皮深さ d以上の深さに設定されていればよい。さらに、好ましくは
S
、導体板 500の凹凸面 500Aの深さ dは、 CPU110が発生する高周波電流の周波数 のうち、最も高い周波数によって決定される表皮深さ d
S以上の深さに設定されていれ ばよい。さらに、好ましくは、導体板 500の凹凸面 500Aの深さ dは、最小深さ d 以 mm 上、かつ、最大深さ d
max以下の深さに設定されていればよい。さらに、好ましくは、導 体板 500の凹凸面 500Aの深さ dは、表皮深さ d以上、かつ、最大深さ d 以下の深
S max さに設定されていればよい。さらに、好ましくは、導体板 500の凹凸面 500Aの深さ d は、 CPU110が発生する高周波電流の周波数のうち、最も高い周波数によって決定 される表皮深さ d
S以上、かつ、最大深さ d
max以下の深さに設定されて 、ればよ 、。さ らに、好ましくは、導体板 500の凹凸面 500Aの深さ dは、 CPU110が発生する高周 波電流の周波数のうち、最も低い周波数によって決定される表皮深さ d以上、かつ、
S
最大深さ d 以下の深さに設定されていればよい。 [0302] なお、図 50から図 52においては、凹凸面 500Aは、表裏面に同じ形状の凹凸を有 するものとして図示されている力 この発明においては、これに限らず、凹凸面 500A は、表裏面に異なる形状の凹凸を有していてもよい。
[0303] 電気回路装置 103は、基板 200上に配置される。この場合、サイド陽極電極 10A は、導体板 202に接続され、サイド陽極電極 10Bは、導体板 203に接続され、サイド 陰極電極 20A, 20Bは、導体(図示せず)を介して導体板 204に接続され、サイド陰 極電極 20C, 20Dは、導体(図示せず)を介して導体板 205に接続される。
[0304] そうすると、電気回路装置 103は、導体板 202を介してサイド陽極電極 10Aに電流 Iを受ける。そして、電気回路装置 103の導体板 500は、電流 Iの直流成分をサイド陽 極電極 10Bへ流し、電流 Iの交流成分を電気素子 100内の導体板 11, 12に流す。 その結果、電流 Iの直流成分は、サイド陽極電極 10A→導体板 500→サイド陽極電 極 10B→導体板 203と流れ、電流 Iの交流成分は、サイド陽極電極 10A→導体板 11 , 12→サイド陽極電極 10B→導体板 203と流れる。
[0305] また、電流 Iのリターン電流 Irは、導体板 500の表皮効果によって導体板 500を流 れるのを抑制され、基板 200の導体板 205から導体(図示せず)を介してサイド陰極 電極 20C, 20Dへ流れ、電気素子 100内をサイド陰極電極 20C, 20D、導体板 21, 22およびサイド陰極電極 20A, 20Bの順に流れ、導体を介して導体板 204に流れる
[0306] その結果、電気素子 100の導体板 11, 12は、導体板 21, 22と磁気的結合を生じ、 導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダクタンスよりも小 さくなる。
[0307] したがって、この発明によれば、電気回路装置 103のインピーダンスを低減できる。
[0308] また、電流 Iのリターン電流 Irである CPU110で発生した不要な高周波電流を電気 素子 100内に閉じ込め、不要な高周波電流が電源 90側へ漏洩するのを抑制できる
[0309] さらに、電気回路装置 103においては、直流成分は、電気素子 100の外部(=上 面 100F)に配置された導体板 500を流れるので、電気素子 100における温度上昇 を抑制できる。 [0310] 図 55は、実施の形態 2による電気回路装置の構成を示す他の斜視図である。実施 の形態 2による電気回路装置は、図 55に示す電気回路装置 104であってもよい。図 55を参照して、電気回路装置 104は、図 48に示す電気回路装置 103の導体板 500 を導体板 501に代えたものであり、その他は、電気回路装置 104と同じである。
[0311] 導体板 501は、電気素子 100の上面 100F、側面 100B、および底面 100Cの一部 に配置され、サイド陽極電極 10A, 10Bに接続される。そして、導体板 501は、銀、 銅、金、アルミニウム、黄銅、ニッケル、鉄、白金、すずおよび鉛のいずれ力からなる。 また、導体板 501は、導体板 500の凹凸面 500Aと同じ凹凸面を有する。
[0312] 導体板 501は、導体板 500と同じように表皮効果における表皮深さを凹部の深さと して有するので、電流 Iの直流成分を流し、電流 Iの交流成分を電気素子 100内の導 体板 11, 12に流す。
[0313] その結果、電気回路装置 104において、導体板 11, 12は、導体板 21, 22と磁気 的結合を生じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダ クタンスよりも/ J、さくなる。
[0314] したがって、この発明によれば、電気回路装置 104のインピーダンスを低減できる。
[0315] また、 CPU110で発生した不要な高周波電流を電気素子 100内に閉じ込め、不要 な高周波電流が電源 90側へ漏洩するのを抑制できる。
[0316] さらに、導体板 501は、サイド陽極電極 10Bとの接触面積が導体板 500に比べ大き くなるので、導体板 501とサイド陽極電極 10Bとの接触抵抗を低減でき、導体板 501 とサイド陽極電極 10Bとの接触部における発熱を低減できる。
[0317] なお、電気回路装置 104においては、導体板 501に代えてサイド陽極電極 10Aと の接触面積を大きくできる導体板を用いてもょ 、。
[0318] 図 56は、実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である
。実施の形態 2による電気回路装置は、図 56に示す電気回路装置 105であってもよ い。
[0319] 図 56を参照して、電気回路装置 105は、図 48に示す電気回路装置 103の導体板
500を導体板 502に代えたものであり、その他は、電気回路装置 103と同じである。
[0320] 導体板 502は、電気素子 100の上面 100F、側面 100A, 100B、および底面 100 Cの一部に配置され、サイド陽極電極 10A, 10Bに接続される。そして、導体板 502 は、銀、銅、金、アルミニウム、黄銅、ニッケル、鉄、白金、すずおよび鉛のいずれか 力もなる。また、導体板 502は、導体板 500の凹凸面 500Aと同じ凹凸面を有する。
[0321] 導体板 502は、導体板 500と同じように表皮効果における表皮深さを凹部の深さと して有するので、電流 Iの直流成分を流し、電流 Iの交流成分を電気素子 100内の導 体板 11, 12に流す。
[0322] その結果、電気回路装置 105において、導体板 11, 12は、導体板 21, 22と磁気 的結合を生じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダ クタンスよりも/ J、さくなる。
[0323] したがって、この発明によれば、電気回路装置 105のインピーダンスを低減できる。
[0324] また、 CPU110で発生した不要な高周波電流を電気素子 100内に閉じ込め、不要 な高周波電流が電源 90側へ漏洩するのを抑制できる。
[0325] さらに、導体板 502は、サイド陽極電極 10A, 10Bとの接触面積が導体板 500に比 ベ大きくなるので、導体板 502とサイド陽極電極 10A, 10Bとの接触抵抗を低減でき
、導体板 502とサイド陽極電極 10A, 10Bとの接触部における発熱を低減できる。
[0326] 図 57は、実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である
。実施の形態 2による電気回路装置は、図 57に示す電気回路装置 106であってもよ い。
[0327] 図 57を参照して、電気回路装置 106は、図 48に示す電気回路装置 103の導体板 500を導体板 503に代えたものであり、その他は、電気回路装置 103と同じである。
[0328] 導体板 503は、電気素子 100の上面 100F、側面 100B、および底面 100Cの一部 に配置され、サイド陽極電極 10A, 10Bに接続されるとともに、電気素子 100の幅方 向 DR2に延伸した延伸部 5031を有する。なお、図 57においては、電気素子 100の 幅方向 DR2の一方へ延伸した延伸部 5031のみを示す力 実際には、導体板 503 は、延伸部 5031と反対方向に延伸した延伸部も有する。
[0329] そして、導体板 503は、銀、銅、金、アルミニウム、黄銅、ニッケル、鉄、白金、すず および鉛のいずれかからなる。また、導体板 503は、導体板 500の凹凸面 500Aと同 じ凹凸面を有する。 [0330] 導体板 503は、導体板 500と同じように表皮効果における表皮深さを凹部の深さと して有するので、電流 Iの直流成分を流し、電流 Iの交流成分を電気素子 100内の導 体板 11, 12に流す。
[0331] その結果、電気回路装置 106において、導体板 11, 12は、導体板 21, 22と磁気 的結合を生じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダ クタンスよりも/ J、さくなる。
[0332] したがって、この発明によれば、電気回路装置 106のインピーダンスを低減できる。
[0333] また、 CPU110で発生した不要な高周波電流を電気素子 100内に閉じ込め、不要 な高周波電流が電源 90側へ漏洩するのを抑制できる。
[0334] さらに、導体板 503は、サイド陽極電極 10Bとの接触面積が導体板 500に比べ大き くなるので、導体板 503とサイド陽極電極 10Bとの接触抵抗を低減でき、導体板 503 とサイド陽極電極 10Bとの接触部における発熱を低減できる。
[0335] さらに、導体板 503は、延伸部 5031を有するので、電気回路装置 106が基板 200 上に配置される場合、導体板 203との接触面積を大きくでき、電気回路装置 106と基 板 200との接触抵抗を低減して電気回路装置 106と基板 200との接触部における発 熱を抑制できる。
[0336] 図 58は、実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である 。実施の形態 2による電気回路装置は、図 58に示す電気回路装置 107であってもよ い。
[0337] 図 58を参照して、電気回路装置 107は、図 48に示す電気回路装置 103の導体板 500を導体板 504に代えたものであり、その他は、電気回路装置 103と同じである。
[0338] 導体板 504は、電気素子 100の上面 100F、側面 100A, 100B、および底面 100 Cの一部に配置され、接続部 504A, 504Bを有する。そして、導体板 504は、接続 部 504Aによってサイド陽極電極 10Aに接続され、接続部 504Bによってサイド陽極 電極 10Bに接続される。接続部 504Aは、電気素子 100の幅方向 DR2に延伸した 延伸部 5042, 5043を有し、接続部 504Bは、電気素子 100の幅方向 DR2に延伸し た延伸部 5041を有する。なお、図 58においては、電気素子 100の幅方向 DR2に延 伸した 3個の延伸部 5041〜5043が図示されている力 実際には、接続部 504Bは、 延伸部 5041と反対方向に延伸した延伸部も有する。
[0339] そして、導体板 504は、銀、銅、金、アルミニウム、黄銅、ニッケル、鉄、白金、すず および鉛のいずれかからなる。また、導体板 504は、導体板 500の凹凸面 500Aと同 じ凹凸面を有する。
[0340] 導体板 504は、導体板 500と同じように表皮効果における表皮深さを凹部の深さと して有するので、電流 Iの直流成分を流し、電流 Iの交流成分を電気素子 100内の導 体板 11, 12に流す。
[0341] その結果、電気回路装置 107において、導体板 11, 12は、導体板 21, 22と磁気 的結合を生じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダ クタンスよりも/ J、さくなる。
[0342] したがって、この発明によれば、電気回路装置 107のインピーダンスを低減できる。
[0343] また、 CPU110で発生した不要な高周波電流を電気素子 100内に閉じ込め、不要 な高周波電流が電源 90側へ漏洩するのを抑制できる。
[0344] さらに、導体板 504は、サイド陽極電極 10A, 10Bとの接触面積が導体板 500に比 ベ大きくなるので、導体板 504とサイド陽極電極 10A, 10Bとの接触抵抗を低減でき
、導体板 504とサイド陽極電極 10A, 10Bとの接触部における発熱を低減できる。
[0345] さらに、導体板 504は、延伸部 5041〜5043を有するので、電気回路装置 107が 基板 200上に配置される場合、導体板 202, 203との接触面積を大きくでき、電気回 路装置 107と基板 200との接触抵抗を低減して電気回路装置 107と基板 200との接 触部における発熱を抑制できる。
[0346] 図 59は、実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である
。実施の形態 2による電気回路装置は、図 59に示す電気回路装置 108であってもよ い。
[0347] 図 59を参照して、電気回路装置 108は、図 48に示す電気回路装置 103の導体板 500を導体板 505に代えたものであり、その他は、電気回路装置 103と同じである。 なお、電気回路装置 108においては、電気素子 100のサイド陰極電極 20A, 20Cは 、電気素子 100の正面 100Dに配置され、サイド陰極電極 20B, 20Dは、電気素子 1 00の裏面 100Eに配置される。 [0348] 導体板 505は、導体板 500の幅広部 503, 504の幅 W6と同じ幅を有し、電気素子
100の上面 100F、側面 100A, 100B、および底面 100Cの一部に配置され、サイド 陽極電極 10A, 10Bに接続される。
[0349] そして、導体板 505は、銀、銅、金、アルミニウム、黄銅、ニッケル、鉄、白金、すず および鉛のいずれかからなる。また、導体板 505は、導体板 500の凹凸面 500Aと同 じ凹凸面を有する。
[0350] 導体板 505は、導体板 500と同じように表皮効果における表皮深さを凹部の深さと して有するので、電流 Iの直流成分を流し、電流 Iの交流成分を電気素子 100内の導 体板 11, 12に流す。
[0351] その結果、電気回路装置 108において、導体板 11, 12は、導体板 21, 22と磁気 的結合を生じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダ クタンスよりも/ J、さくなる。
[0352] したがって、この発明によれば、電気回路装置 108のインピーダンスを低減できる。
[0353] また、 CPU110で発生した不要な高周波電流を電気素子 100内に閉じ込め、不要 な高周波電流が電源 90側へ漏洩するのを抑制できる。
[0354] さらに、導体板 505は、サイド陽極電極 10A, 10Bとの接触面積が導体板 500に比 ベ大きくなるので、導体板 505とサイド陽極電極 10A, 10Bとの接触抵抗を低減でき
、導体板 505とサイド陽極電極 10A, 10Bとの接触部における発熱を低減できる。
[0355] 図 60は、実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である
。実施の形態 2による電気回路装置は、図 60に示す電気回路装置 109であってもよ い。
[0356] 図 60を参照して、電気回路装置 109は、図 59に示す電気回路装置 108の導体板 505を導体板 506に代えたものであり、その他は、電気回路装置 108と同じである。
[0357] 導体板 506は、電気素子 100の上面 100Fおよび側面 100A, 100Bの全面と、底 面 100C、正面 100Dおよび裏面 100Eの一部とに配置され、サイド陽極電極 10A, 10Bに接続される。
[0358] そして、導体板 506は、銀、銅、金、アルミニウム、黄銅、ニッケル、鉄、白金、すず および鉛のいずれかからなる。また、導体板 506は、導体板 500の凹凸面 500Aと同 じ凹凸面を有する。
[0359] 導体板 506は、導体板 500と同じように表皮効果における表皮深さを凹部の深さと して有するので、電流 Iの直流成分を流し、電流 Iの交流成分を電気素子 100内の導 体板 11, 12に流す。
[0360] その結果、電気回路装置 109において、導体板 11, 12は、導体板 21, 22と磁気 的結合を生じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダ クタンスよりも/ J、さくなる。
[0361] したがって、この発明によれば、電気回路装置 109のインピーダンスを低減できる。
[0362] また、 CPU110で発生した不要な高周波電流を電気素子 100内に閉じ込め、不要 な高周波電流が電源 90側へ漏洩するのを抑制できる。
[0363] さらに、導体板 506は、サイド陽極電極 10A, 10Bとの接触面積が導体板 505に比 ベ大きくなるので、導体板 506とサイド陽極電極 10A, 10Bとの接触抵抗を低減でき
、導体板 506とサイド陽極電極 10A, 10Bとの接触部における発熱を低減できる。
[0364] 図 61は、実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である
。実施の形態 2による電気回路装置は、図 61に示す電気回路装置 120であってもよ い。
[0365] 図 61を参照して、電気回路装置 120は、図 55に示す電気回路装置 108の導体板 505を導体板 507に代えたものであり、その他は、電気回路装置 108と同じである。
[0366] 導体板 507は、電気素子 100の上面 100F、側面 100A, 100B、および底面 100 Cの一部に配置され、接続部 507A, 507Bを有する。そして、導体板 507は、接続 部 507Aによってサイド陽極電極 10Aに接続され、接続部 507Bによってサイド陽極 電極 10Bに接続される。接続部 507Aは、電気素子 100の幅方向 DR2に延伸した 延伸部 5072, 5073を有し、接続部 507Bは、電気素子 100の幅方向 DR2に延伸し た延伸部 5071を有する。
[0367] なお、図 61においては、電気素子 100の幅方向 DR2に延伸した 3個の延伸部 507 1〜5073が図示されているが、実際には、接続部 507Bは、延伸部 5071と反対方 向に延伸した延伸部も有する。
[0368] そして、導体板 507は、銀、銅、金、アルミニウム、黄銅、ニッケル、鉄、白金、すず および鉛のいずれかからなる。また、導体板 507は、導体板 500の凹凸面 500Aと同 じ凹凸面を有する。
[0369] 導体板 507は、導体板 500と同じように表皮効果における表皮深さを凹部の深さと して有するので、電流 Iの直流成分を流し、電流 Iの交流成分を電気素子 100内の導 体板 11, 12に流す。
[0370] その結果、電気回路装置 120において、導体板 11, 12は、導体板 21, 22と磁気 的結合を生じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダ クタンスよりも/ J、さくなる。
[0371] したがって、この発明によれば、電気回路装置 120のインピーダンスを低減できる。
[0372] また、 CPU110で発生した不要な高周波電流を電気素子 100内に閉じ込め、不要 な高周波電流が電源 90側へ漏洩するのを抑制できる。
[0373] さらに、導体板 507は、サイド陽極電極 10A, 10Bとの接触面積が導体板 500に比 ベ大きくなるので、導体板 507とサイド陽極電極 10A, 10Bとの接触抵抗を低減でき
、導体板 507とサイド陽極電極 10A, 10Bとの接触部における発熱を低減できる。
[0374] さらに、導体板 507は、延伸部 5071〜5073を有するので、電気回路装置 120が 基板 200上に配置される場合、導体板 202, 203との接触面積を大きくでき、電気回 路装置 120と基板 200との接触抵抗を低減して電気回路装置 120と基板 200との接 触部における発熱を抑制できる。
[0375] 図 62は、実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である
。実施の形態 2による電気回路装置は、図 62に示す電気回路装置 121であってもよ い。
[0376] 図 62を参照して、電気回路装置 120は、図 60に示す電気回路装置 109の導体板 506を導体板 508に代えたものであり、その他は、電気回路装置 109と同じである。
[0377] 導体板 508は、電気素子 100の上面 100F、側面 100A, 100B、および底面 100 Cの一部に配置され、接続部 508A, 508Bを有する。そして、導体板 508は、接続 部 508Aによってサイド陽極電極 10Aに接続され、接続部 508Bによってサイド陽極 電極 10Bに接続される。接続部 508Aは、電気素子 100の幅方向 DR2に延伸した 延伸部 5082, 5083を有し、接続部 508Bは、電気素子 100の幅方向 DR2に延伸し た延伸部 5081を有する。なお、図 62においては、電気素子 100の幅方向 DR2に延 伸した 3個の延伸部 5081〜5083が図示されている力 実際には、接続部 508Bは、 延伸部 5081と反対方向に延伸した延伸部も有する。
[0378] そして、導体板 508は、銀、銅、金、アルミニウム、黄銅、ニッケル、鉄、白金、すず および鉛のいずれかからなる。また、導体板 508は、導体板 500の凹凸面 500Aと同 じ凹凸面を有する。
[0379] 導体板 508は、導体板 500と同じように表皮効果における表皮深さを凹部の深さと して有するので、電流 Iの直流成分を流し、電流 Iの交流成分を電気素子 100内の導 体板 11, 12に流す。
[0380] その結果、電気回路装置 121において、導体板 11, 12は、導体板 21, 22と磁気 的結合を生じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダ クタンスよりも/ J、さくなる。
[0381] したがって、この発明によれば、電気回路装置 121のインピーダンスを低減できる。
[0382] また、 CPU110で発生した不要な高周波電流を電気素子 100内に閉じ込め、不要 な高周波電流が電源 90側へ漏洩するのを抑制できる。
[0383] さらに、導体板 508は、サイド陽極電極 10A, 10Bとの接触面積が導体板 500に比 ベ大きくなるので、導体板 508とサイド陽極電極 10A, 10Bとの接触抵抗を低減でき
、導体板 508とサイド陽極電極 10A, 10Bとの接触部における発熱を低減できる。
[0384] さらに、導体板 508は、延伸部 5081〜5083を有するので、電気回路装置 121が 基板 200上に配置される場合、導体板 202, 203との接触面積を大きくでき、電気回 路装置 121と基板 200との接触抵抗を低減して電気回路装置 121と基板 200との接 触部における発熱を抑制できる。
[0385] 図 63は、実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である
。実施の形態 2による電気回路装置は、図 63に示す電気回路装置 122であってもよ い。
[0386] 図 63を参照して、電気回路装置 122は、図 61に示す電気回路装置 120の導体板
507を導体板 509に代えたものであり、その他は、電気回路装置 120と同じである。
[0387] 導体板 509は、電気素子 100の上面 100F、側面 100A, 100B、および底面 100 Cの一部に配置され、接続部 509A, 509Bを有する。そして、導体板 509は、接続 部 509Aによってサイド陽極電極 10Aに接続され、接続部 509Bによってサイド陽極 電極 10Bに接続される。接続部 509Aは、電気素子 100の幅方向 DR2に延伸した 延伸部 5092, 5093を有し、接続部 509Bは、電気素子 100の幅方向 DR2に延伸し た延伸部 5091を有する。なお、図 63においては、電気素子 100の幅方向 DR2に延 伸した 3個の延伸部 5091〜5093が図示されている力 実際には、接続部 509Bは、 延伸部 5091と反対方向に延伸した延伸部も有する。
[0388] そして、導体板 509は、銀、銅、金、アルミニウム、黄銅、ニッケル、鉄、白金、すず および鉛のいずれかからなる。また、導体板 509は、導体板 500の凹凸面 500Aと同 じ凹凸面を有する。
[0389] 導体板 509は、導体板 500と同じように表皮効果における表皮深さを凹部の深さと して有するので、電流 Iの直流成分を流し、電流 Iの交流成分を電気素子 100内の導 体板 11, 12に流す。
[0390] その結果、電気回路装置 122において、導体板 11, 12は、導体板 21, 22と磁気 的結合を生じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダ クタンスよりも/ J、さくなる。
[0391] したがって、この発明によれば、電気回路装置 122のインピーダンスを低減できる。
[0392] また、 CPU110で発生した不要な高周波電流を電気素子 100内に閉じ込め、不要 な高周波電流が電源 90側へ漏洩するのを抑制できる。
[0393] さらに、導体板 509は、サイド陽極電極 10A, 10Bとの接触面積が導体板 500に比 ベ大きくなるので、導体板 509とサイド陽極電極 10A, 10Bとの接触抵抗を低減でき 、導体板 509とサイド陽極電極 10A, 10Bとの接触部における発熱を低減できる。
[0394] さらに、導体板 509は、延伸部 5091〜5095を有するので、電気回路装置 122が 基板 200上に配置される場合、導体板 202, 203との接触面積を大きくでき、電気回 路装置 122と基板 200との接触抵抗を低減して電気回路装置 122と基板 200との接 触部における発熱を抑制できる。
[0395] 図 64は、実施の形態 2による電気回路装置の構成を示すさらに他の斜視図である 。実施の形態 2による電気回路装置は、図 64に示す電気回路装置 123であってもよ い。
[0396] 図 64を参照して、電気回路装置 123は、図 62に示す電気回路装置 121の導体板 508を導体板 510に代えたものであり、その他は、電気回路装置 121と同じである。
[0397] 導体板 510は、電気素子 100の上面 100F、側面 100A, 100B、および底面 100 Cの一部に配置され、接続部 510A, 510Bを有する。そして、導体板 510は、接続 部 510Aによってサイド陽極電極 10Aに接続され、接続部 510Bによってサイド陽極 電極 10Bに接続される。接続部 510Aは、電気素子 100の幅方向 DR2に延伸した 延伸部 5102, 5103を有し、接続部 510Bは、電気素子 100の幅方向 DR2に延伸し た延伸部 5101を有する。なお、図 64においては、電気素子 100の幅方向 DR2に延 伸した 3個の延伸部 5101〜5103が図示されている力 実際には、接続部 510Bは、 延伸部 5101と反対方向に延伸した延伸部も有する。
[0398] そして、導体板 510は、銀、銅、金、アルミニウム、黄銅、ニッケル、鉄、白金、すず および鉛のいずれかからなる。また、導体板 510は、導体板 500の凹凸面 500Aと同 じ凹凸面を有する。
[0399] 導体板 510は、導体板 500と同じように表皮効果における表皮深さを凹部の深さと して有するので、電流 Iの直流成分を流し、電流 Iの交流成分を電気素子 100内の導 体板 11, 12に流す。
[0400] その結果、電気回路装置 123において、導体板 11, 12は、導体板 21, 22と磁気 的結合を生じ、導体板 11, 12の実効インダクタンスは、導体板 11, 12の自己インダ クタンスよりも/ J、さくなる。
[0401] したがって、この発明によれば、電気回路装置 123のインピーダンスを低減できる。
[0402] また、 CPU110で発生した不要な高周波電流を電気素子 100内に閉じ込め、不要 な高周波電流が電源 90側へ漏洩するのを抑制できる。
[0403] さらに、導体板 510は、サイド陽極電極 10A, 10Bとの接触面積が導体板 500に比 ベ大きくなるので、導体板 510とサイド陽極電極 10A, 10Bとの接触抵抗を低減でき 、導体板 510とサイド陽極電極 10A, 10Bとの接触部における発熱を低減できる。
[0404] さらに、導体板 510は、延伸部 5101〜5105を有するので、電気回路装置 123が 基板 200上に配置される場合、導体板 202, 203との接触面積を大きくでき、電気回 路装置 123と基板 200との接触抵抗を低減して電気回路装置 123と基板 200との接 触部における発熱を抑制できる。
[0405] 上述したように、実施の形態 2による電気回路装置 103 109, 120 123は、凹 部の深さが表皮効果による最小深さ d 以上、かつ、最大深さ d 以下である凹凸面
mm max
200Aを有する導体板 500 510を備えるので、導体板 500 510は、電流 Iの直流 成分を流し、電流 Iの交流成分を電気素子 100内の導体板 11, 12に流す。また、電 流 Iのリターン電流 Irは、電気素子 100内の導体板 21, 22を流れる。
[0406] その結果、導体板 11, 12は、導体板 21, 22と磁気的結合を生じ、導体板 11, 12 の実効インダクタンスは、導体板 11, 12の自己インダクタンスよりも小さくなる。
[0407] したがって、この発明によれば、電気回路装置 103 109, 120 123のインピー ダンスを低減できる。
[0408] また、 CPU110で発生した不要な高周波電流を電気素子 100内に閉じ込め、不要 な高周波電流が電源 90側へ漏洩するのを抑制できる。
[0409] 電気回路装置 103 109, 120 123は、基板に実装される場合、上述した基板 2 00, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 200J, 200K, 200L, 200M, 200N, 200P, 200Q, 200Rの!ヽずれ力の基板上に酉己置される。
[0410] その結果、電気回路装置 103から 109, 120 123においては、電流 Iの直流成分 は、導体板 500 510を流れ、電流 Iの交流成分は、電気素子 100内の導体板 11, 12を流れ、さらに、電流 Iのリターン電流 Irは、電気素子 100内の導体板 21, 22を流 れる。つまり、電流 Iの交流成分は、電気素子 100の外部に配置された導体板 500 510によって電気素子 100内の導体板 11, 12に流され、リターン電流 Irは、基板 20 0, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 200J, 200K, 2 00L, 200M, 200N, 200P, 200Q, 200Rによって電気素子 100内の導体 21, 2 Dttdれる。
[0411] したがって、上述した機構によって、電気回路装置 103 109, 120 123のイン ピーダンスをさらに低減できる。
[0412] また、 CPU110で発生した不要な高周波電流を電気素子 100内にさらに閉じ込め
、不要な高周波電流が電源 90側へ漏洩するのをさらに抑制できる。 [0413] なお、電気回路装置 103〜109, 120〜123は、電気素子 100に代えて電気素子
100Aを備えていてもよい。
[0414] また、導体板 500〜510の厚みは、 CPU110に供給する直流電流の電流値に応じ て決定されてもよぐ導体板 500〜510は、 1枚の導体板ではなぐ複数の短冊状の 導体板力 なって 、てもよ 、。
[0415] その他は、実施の形態 1と同じである。
[0416] 上記においては、電気素子 100は、電源 90と CPU110との間に接続されると説明 したが、この発明においては、これに限らず、電気素子 100は、第 1の端子と第 2の端 子との間に接続されていればよい。この場合、サイド陽極電極 10Aおよび陽極電極 1 OCは、第 1の端子側に配置され、サイド陽極電極 10Bおよび陽極電極 10Dは、第 2 の端子側に配置され、サイド陰極電極 20A, 20Bおよび陰極電極 20Eは、第 1の端 子側に配置され、サイド陰極電極 20C, 20Dおよび陰極電極 20Fは、第 2の端子側 に配置される。
[0417] また、電気回路装置 103〜109, 120〜123は、電気素子 100の長さ方向 DR1へ 延伸した延伸部のみを有する導体板を備えていてもよぐ一般的には、電気素子 10 0の長さ方向 DR1および Zまたは幅方向 DR2へ延伸した延伸部を有する導体板を 備えていればよい。
[0418] さら【こ、この発明【こお!ヽて ίま、基板 200, 200Α, 200Β, 200C, 200D, 200Ε, 2 OOF, 200G, 200Η, 200J, 200Κ, 200L, 200Μ, 200Ν, 200Ρ, 200Q, 200R の各々は、「電流制御部材」を構成し、導体板 500〜510の各々は、「電流制御部材 」を構成する。
[0419] さらに、導体板 11, 12 ; 11A, 12Aは、「η個の第 1の導体板」または「η個の第 2の 導体板」を構成し、導体板21〜23 ; 21〜23八は、「m個の第 2の導体板」または「m 個の第 3の導体板」を構成する。
[0420] さらに、サイド陽極電極 10Aおよび陽極電極 10Cは、「第 1の陽極電極」を構成し、 サイド陽極電極 10Bおよび陽極電極 10Dは、「第 2の陽極電極」を構成し、サイド陰 極電極 20A, 20Bおよび陰極電極 20Eは、「第 1の陰極電極」を構成し、サイド陰極 電極 20C, 20Dおよび陰極電極 20Fは、「第 2の陰極電極」を構成する。 [0421] さらに、導体板 202および導体部 305 ; 325 ;415, 416, 422は、「第 1の導体部」 を構成し、導体板 203および導体部 306, 328, 419, 420, 425は、「第 2の導体部 」を構成し、導体板 204, 209, 212、ビアホール BH1, 423および導体部 307, 310 , 326, 417は、「第 3の導体部」を構成し、導体板 205, 210, 213、ビアホール BH2 , 424および導体部 308, 311, 327, 418は、「第 4の導体部」を構成する。
[0422] さらに、導体部 305, 325, 415, 416およびビアホール 422は、「第 1の導体部」を 構成し、導体部 306, 328, 419, 420およびビアホール 425は、「第 2の導体部」を 構成し、スリット 303, 312〜324, 411〜414は、「第 1のスリット」を構成し、導体部 3
07, 310, 326, 417およびビアホール 423は、「第 3の導体部」を構成し、導体部 30
8, 311, 327, 418およびビアホール 424は、「第 4の導体部」を構成し、スリット 303 , 312〜324, 411〜414は、「第 2のスリット」を構成する。
[0423] さらに、凹凸面 500Aは、「凹凸部」を構成し、接続部 504A, 507A, 508A, 509 A, 510Aは、「第 1の接続部」を構成し、接続部 504B, 507B, 508B, 509B, 510 Bは、「第 2の接続部」を構成する。
[0424] 今回開示された実施の形態はすべての点で例示であって制限的なものではないと 考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特 許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのす ベての変更が含まれることが意図される。
産業上の利用可能性
[0425] この発明は、インダクタンスの低減によってインピーダンスを低減可能な電気回路 装置に適用される。また、この発明は、電気負荷回路で発生した高周波電流の電源 側への漏洩を抑制可能な電気回路装置に適用される。

Claims

請求の範囲
[1] 第 1および第 2の端子間に接続される電気素子(100, 100A)と、
前記第 1の端子から供給された第 1の電流の交流成分を少なくとも前記電気素子( 100, 100A)内の導体板(11, 12, 11A, 12A)に流すとともに、前記第 1の電流の リターン電流である第 2の電流を前記第 2の端子から受け、その受けた第 2の電流の 交流成分を少なくとも前記電気素子(100, 100A)内の導体板(21〜23, 21A〜23 A)〖こ流す電流制御部材(200, 200A, 200B, 200C, 200D, 200E, 200F, 200 G, 200H, 200J, 200K, 200L, 200M, 200N、 200P, 200Q, 200R, 500〜5 10)とを備え、
前記電気素子(100, 100A)は、
各々が前記第 1の電流の交流成分を少なくとも前記第 1の端子側から前記第 2の端 子側へ流す n (nは正の整数)個の第 1の導体板(11, 12, 11A, 12A)と、
前記 n個の第 1の導体板(11, 12, 11A, 12A)と交互に積層され、各々が前記第 2の電流の交流成分を少なくとも前記第 2の端子側から前記第 1の端子側へ流す m ( mは正の整数)個の第 2の導体板(21〜23, 21A〜23A)とを含む、電気回路装置。
[2] 前記電気素子(100, 100A)は、
前記第 1の端子側に配置され、前記 n個の第 1の導体板(11, 12, 11A, 12A)の 一方端に接続された第 1の陽極電極(10A, 10C)と、
前記第 2の端子側に配置され、前記 n個の第 1の導体板(11, 12, 11A, 12A)の 他方端に接続された第 2の陽極電極(10B, 10D)と、
前記第 1の端子側に配置され、前記 m個の第 2の導体板(21〜23、 21A〜23A) の一方端に接続された第 1の陰極電極(20A, 20B, 20E)と、
前記第 2の端子側に配置され、前記 m個の第 2の導体板(21〜23, 21A〜23A) の他方端に接続された第 2の陰極電極(20C, 20D, 20F)とをさらに含み、
前記電流制御部材(200, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 200J, 200K, 200L, 200M, 200N、 200P, 200Q, 200R)は、前記第 1 および第 2の陰極電極(20A, 20B, 20E ; 20C, 20D, 20F)〖こ接続され、前記 m個 の第 2の導体板(21〜23, 21A〜23A)のインピーダンスよりも大きいインピーダンス を有する導体部(204, 205 ; 204, 205, 220 ; 209, 210 ; 307, 308 ; 326, 327 ;4 17, 418)を含む、請求の範囲第 1項に記載の電気回路装置。
前記電気素子(100, 100A)は、
前記第 1の端子側に配置され、前記 n個の第 1の導体板(11, 12, 11A, 12A)の 一方端に接続された第 1の陽極電極(10A, 10C)と、
前記第 2の端子側に配置され、前記 n個の第 1の導体板(11, 12, 11A, 12A)の 他方端に接続された第 2の陽極電極(10B, 10D)と、
前記第 1の端子側に配置され、前記 m個の第 2の導体板(21〜23, 21A〜23A) の一方端に接続された第 1の陰極電極(20A, 20B, 20E)と、
前記第 2の端子側に配置され、前記 m個の第 2の導体板(21〜23, 21A〜23A) の他方端に接続された第 2の陰極電極(20C, 20D, 20F)とをさらに含み、
前記電流制御部材(500〜510)は、表皮効果によって前記第 1の電流の交流成 分を前記 n個の第 1の導体板に流すとともに、前記第 1の電流の直流成分を前記第 1 の陽極電極(10A, 10C)から前記第 2の陽極電極(10B, 10D)へ流す、請求の範 囲第 1項に記載の電気回路装置。
基板(200, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 200J, 200K, 200L, 200M, 200N、 200P, 200Q, 200R)と、
前記基板(200, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 2 OOJ, 200K, 200L, 200M, 200N、 200P, 200Q, 200R)上に配置され、第 1お よび第 2の端子間に接続された電気素子(100, 100A)とを備え、
前記電気素子(100, 100A)は、
前記第 1の端子側に配置された第 1の陽極電極(10A, 10C)と、
前記第 2の端子側に配置された第 2の陽極電極(10B, 10D)と、
前記第 1の端子側に配置された第 1の陰極電極(20A, 20B, 20E)と、
前記第 2の端子側に配置された第 2の陰極電極(20C, 20D, 20F)と、
前記第 1および第 2の陽極電極(1 OA, 10C ; 10B, 10D)に接続された n(nは正の 整数)個の第 1の導体板(11, 12, 11A, 12A)と、
前記 n個の第 1の導体板(11, 12, 11A, 12A)と交互に積層され、前記第 1および 第 2の陰極電極(20A, 20B, 20E;20C, 20D, 20F)に接続された m(mは正の整 数)個の第 2の導体板(21〜23, 21A〜23A)とを含み、
前記基板(200, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 2 00J, 200K, 200L, 200M, 200N、 200P, 200Q, 200R)は、
前記第 1の陽極電極(1 OA, 10C)に接続された第 1の導体部(202; 305; 325 ;41 5, 416, 422)と、
前記第 1の導体部(202 ;305 ;325 ;415, 416, 422)と分離されて設けられ、前記 第 2の陽極電極(10B, 10D)に接続された第 2の導体部(203 ;306 ;328 ;419, 42 0, 425)と、
前記第 1の陰極電極(20 A, 20B, 20E)に接続された第 3の導体部(204 ;209 ;2 04, 209 ;204, 209, 212;204, BH1;307;307, 310;326;417, 423)と、 前記第 3の導体部(204 ;209 ;204, 209 ;204, 209, 211 ;204, BH1;307;30 7, 310;326;417, 423)と分離されて設けられ、前記第 2の陰極電極(20C, 20D , 20F)に接続された第 4の導体部(205 ;210 ;205, 210 ;205, 210, 213 ;205, BH2;308;308, 311;327;418, 424)とを含む、電気回路装置。
基板(200, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 200J, 200K, 200L, 200M, 200N、 200P, 200Q, 200R)と、
前記基板(200, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 2 OOJ, 200K, 200L, 200M, 200N、 200P, 200Q, 200R)上に配置され、第 1お よび第 2の端子間に接続された電気素子(100, 100A)とを備え、
前記電気素子(100, 100A)は、
前記第 1の端子側に配置された第 1の陽極電極(10A, 10C)と、
前記第 2の端子側に配置された第 2の陽極電極(10B, 10D)と、
前記第 1の端子側に配置された第 1の陰極電極(20A, 20B, 20E)と、
前記第 2の端子側に配置された第 2の陰極電極(20C, 20D, 20F)と、
前記第 1および第 2の陽極電極(1 OA, 10C;10B, 10D)に接続された n(nは正の 整数)個の第 1の導体板(11, 12, 11A, 12A)と、
前記 n個の第 1の導体板(11, 12, 11A, 12A)と交互に積層され、前記第 1および 第 2の陰極電極(20A, 20B, 20E, 20C, 20D, 20F)に接続された m(mは正の整 数)個の第 2の導体板(21〜23, 21A〜23A)とを含み、
前記基板(200, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 2 00J, 200K, 200L, 200M, 200N、 200P, 200Q, 200R)は、
前記第 1の陽極電極(1 OA, 10C)に接続された第 1の導体部(305 ;325 ;415, 4 16, 422)と、
前記第 2の陽極電極(10B, 10D)に接続された第 2の導体部(306 ;328 ;419, 4 20, 425)と、
前記第 1の導体部(305 ;325 ;415, 416, 422)と前記第 2の導体部(306 ;328; 419, 420, 425)との間に設けられた第 1のスリット(303 ;303, 312, 313 ;303, 31 4, 315;303, 314〜317;303, 314, 315, 318, 319;303, 314, 315, 320, 3 21;322~324;314, 315, 322;411〜414)とを含み、
前記第 1の陰極電極(20 A, 20B, 20E)に接続された第 3の導体部(307 ;307, 3 10;326;417, 423)と、
前記第 2の陰極電極(20C, 20D, 20F)に接続された第 4の導体部(308 ;308, 3 11;327;418, 424)と、
前記第 3の導体部(307 ;307, 310 ;326 ;417, 423)と前記第 4の導体部(308; 308, 311;327;418, 424)との間に設けられた第 2のスリット(303 ;303, 312, 31 3;303, 314, 315;303, 314〜317;303, 314, 315, 318, 319;303, 314, 3 15, 320, 321;322~324;314, 315, 322;411〜414)とを含む、電気回路装置 前記第 1のスリット 03 ;303, 312, 313;303, 314, 315;303, 314~317;30 3, 314, 315, 318, 319;303, 314, 315, 320, 321 ;322~324;314, 315, 3 22;411〜414)は、前記第 2のスリット(303 ;303, 312, 313;303, 314, 315;30 3, 314〜317;303, 314, 315, 318, 319;303, 314, 315, 320, 321;322~3 24 ;314, 315, 322;411〜414)と同じスリット力らなる、請求の範囲第 5項に記載 の電気回路装置。
第 1および第 2の端子間に接続された電気素子(100, 100A)と、 前記電気素子(100, 100A)の両端に接続された第 1の導体板(500〜510)とを 備え、
前記電気素子(100, 100A)は、
前記第 1の端子側に配置された第 1の陽極電極(10A, 10C)と、
前記第 2の端子側に配置された第 2の陽極電極 810B, 10D)と、
前記第 1の端子側に配置された第 1の陰極電極(20A, 20B, 20E)と、 前記第 2の端子側に配置された第 2の陰極電極(20C, 20D, 20F)と、 前記第 1および第 2の陽極電極(1 OA, 10C ; 10B, 10D)に接続された n(nは正の 整数)個の第 2の導体板(11, 12, 11A, 12A)と、
前記 n個の第 2の導体板(11, 12, 11A, 12A)と交互に積層され、前記第 1および 第 2の陰極電極(20A, 20B, 20E ; 20C, 20D, 20F)に接続された m (mは正の整 数)個の第 3の導体板(21〜23, 21A〜23A)とを含み、
前記第 1の導体板(500〜510)は、前記第 1および第 2の陽極電極(10A, 10C ; 1
OB, 10D)間に接続されるとともに、最小深さ以上の深さを有する凹凸部(500A)を 表 ιϋに ¾し、
前記最小深さは、表皮効果による表皮深さ dよりも浅ぐ前記第 1の導体板(500〜
S
510)の表面が平坦である場合に表皮効果によって前記第 1の導体板(500〜510) の表面層に流れる電流の交流成分を抑制する深さである、電気回路装置。
[8] 前記第 1の導体板(500〜510)は、
前記第 1の陽極電極(1 OA, 10C)との接続部である第 1の接続部(504A, 507A, 508A, 509A, 510A)と、
前記第 2の陽極電極(10B, 10D)との接続部である第 2の接続部(504B, 507B, 508B, 509B, 510B)とを含み、
前記第 1および第 2の接続部(504A, 507A, 508A, 509A, 510A; 504B, 507 B, 508B, 509B, 510B)は、前記電気素子(100, 100A)の幅よりも広い幅を有す る、請求の範囲第 7項に記載の電気回路装置。
[9] 前記第 1の導体板(500〜510)は、
前記第 1の陽極電極(1 OA, 10C)との接続部である第 1の接続部(504A, 507A, 508A, 509A, 510A)と、
前記第 2の陽極電極(10B, 10D)との接続部である第 2の接続部(504B, 507B, 508B, 509B, 510B)とを含み、
前記第 1および第 2の接続部は、前記電気素子(100, 100A)の幅方向および Z または前記電気素子(100, 100A)の長さ方向に延伸した延伸部(5031, 5041- 5043, 5071〜5073, 5081〜5083, 5091〜5095, 5101〜5105)を有する、請 求の範囲第 7項に記載の電気回路装置。
[10] 前記最小深さは、前記電素素子(100)に接続される電気負荷回路(110)が発生 する交流電流成分のうち、最も高い周波数によって決定される表皮深さよりも浅ぐ表 皮効果によって前記第 1の導体板(500〜510)の表面層を流れる前記最も高い周 波数を有する交流電流成分を抑制する深さに設定される、請求の範囲第 7項に記載 の電気回路装置。
[11] 前記凹凸部(500A)は、前記表皮深さ以上の深さを有する、請求の範囲第 10項に 記載の電気回路装置。
[12] 前記表皮深さは、前記最も高い周波数によって決定される表皮深さである、請求の 範囲第 11に記載の電気回路装置。
[13] 前記凹凸部(500A)は、前記表皮深さ以上、かつ、最大深さ以下の深さを有し、 前記最大深さは、前記電気負荷回路(110)が 1個である場合、 1個の電気負荷回 路(110)に供給される直流電流を前記第 1の導体板(500〜510)に流すために必 要な前記第 1の導体板(500〜510)の断面積に基づいて決定され、 j (jは 2以上の 整数)個の電気負荷回路(110A, HOB, HOC, 110D)が前記電気素子(100)に 並列に接続される場合、 j個の電気負荷回路(110A, HOB, HOC, 110D)の全体 に供給される直流電流を前記第 1の導体板(500〜510)に流すために必要な前記 第 1の導体板(500〜510)の断面積に基づいて決定される、請求の範囲第 11項に 記載の電気回路装置。
[14] 前記表皮深さは、前記電気負荷回路(110)が発生する交流電流成分の周波数の うち、最も低い周波数における表皮深さである、請求の範囲第 13項に記載の電気回 路装置。
PCT/JP2006/323451 2005-12-26 2006-11-24 電気回路装置 WO2007074598A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/159,104 US8027146B2 (en) 2005-12-26 2006-11-24 Electric circuit device enabling impedance reduction
JP2007551867A JP4912324B2 (ja) 2005-12-26 2006-11-24 電気回路装置
CN200680049176XA CN101346787B (zh) 2005-12-26 2006-11-24 电路装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005372844 2005-12-26
JP2005-372844 2005-12-26

Publications (1)

Publication Number Publication Date
WO2007074598A1 true WO2007074598A1 (ja) 2007-07-05

Family

ID=38214448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323451 WO2007074598A1 (ja) 2005-12-26 2006-11-24 電気回路装置

Country Status (5)

Country Link
US (1) US8027146B2 (ja)
JP (1) JP4912324B2 (ja)
CN (2) CN101346787B (ja)
TW (1) TW200746201A (ja)
WO (1) WO2007074598A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201419A (ja) * 2005-12-26 2007-08-09 Sanyo Electric Co Ltd 電気回路装置およびそれに用いる基板
JP2007202103A (ja) * 2005-12-27 2007-08-09 Sanyo Electric Co Ltd 電気回路装置
US7898363B2 (en) 2005-09-02 2011-03-01 Sanyo Electric Co., Ltd. Electric element and electric circuit
US8027146B2 (en) 2005-12-26 2011-09-27 Sanyo Electric Co., Ltd. Electric circuit device enabling impedance reduction

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140034376A1 (en) * 2012-08-01 2014-02-06 Samtec, Inc. Multi-layer transmission lines
WO2015113215A1 (en) 2014-01-28 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) Capacitor structure and capacitor using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456207A (ja) * 1990-06-25 1992-02-24 Marcon Electron Co Ltd 積層セラミックコンデンサ及びそれを使用した回路

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847716Y2 (ja) 1978-06-12 1983-10-31 株式会社東芝 印刷回路基板用電源母線
JPS5956831U (ja) 1982-10-04 1984-04-13 株式会社ケンウッド ラインフイルタ回路
JPS59127311A (ja) 1982-12-30 1984-07-23 日本メクトロン株式会社 コンデンサ内蔵型積層母線
JPS6165609U (ja) 1984-10-04 1986-05-06
JPS63148610A (ja) * 1986-12-12 1988-06-21 日本電信電話株式会社 四端子構造コンデンサ
JPS6345917U (ja) 1987-07-23 1988-03-28
JP2552317Y2 (ja) 1991-02-13 1997-10-29 株式会社村田製作所 積層型ノイズフィルタ
JPH06260364A (ja) 1993-03-08 1994-09-16 Masusaku Okumura チップ部品
JPH06267802A (ja) * 1993-03-16 1994-09-22 Nitsuko Corp 低インピーダンス形固体電解コンデンサ
JPH09153752A (ja) 1995-11-30 1997-06-10 Kyocera Corp フィルタ
JPH104027A (ja) 1996-06-14 1998-01-06 Murata Mfg Co Ltd 積層型電子部品
JPH10112216A (ja) * 1996-08-09 1998-04-28 Toray Ind Inc 感光性導電ペースト、それを用いた電極およびその製造方法
JPH11102839A (ja) 1997-09-26 1999-04-13 Murata Mfg Co Ltd 電子部品
JP2991175B2 (ja) 1997-11-10 1999-12-20 株式会社村田製作所 積層コンデンサ
JP3455096B2 (ja) 1997-11-27 2003-10-06 京セラ株式会社 ノイズフィルタ
JP3515698B2 (ja) 1998-02-09 2004-04-05 松下電器産業株式会社 4端子コンデンサ
US6185091B1 (en) 1998-02-09 2001-02-06 Matsushita Electric Industrial Co., Ltd. Four-terminal capacitor
JPH11251178A (ja) 1998-03-04 1999-09-17 Taiyo Yuden Co Ltd 4端子型積層コンデンサ
JP3134841B2 (ja) * 1998-04-27 2001-02-13 株式会社村田製作所 差動伝送線路用積層型ノイズフィルタ
JP2000223351A (ja) 1999-01-28 2000-08-11 Murata Mfg Co Ltd 積層セラミックコンデンサ
JP3548821B2 (ja) 1999-05-10 2004-07-28 株式会社村田製作所 積層コンデンサ、ならびにこれを用いた電子装置および高周波回路
JP4993800B2 (ja) * 1999-06-15 2012-08-08 キャラハン セルラー エルエルシー 電子部品
JP3760364B2 (ja) 1999-07-21 2006-03-29 Tdk株式会社 誘電体磁器組成物および電子部品
JP2001210542A (ja) * 2000-01-28 2001-08-03 Tdk Corp 積層型電子部品
JP3563664B2 (ja) * 2000-03-30 2004-09-08 Tdk株式会社 積層型電子回路部品及び積層型電子回路部品の製造方法
WO2001099237A1 (fr) 2000-06-20 2001-12-27 Fujitsu Limited Tableau et borne d'alimentation
TWI304718B (en) * 2002-03-19 2008-12-21 Nec Tokin Corp Electronic device for supplying dc power and having noise filter mounted with excellent noise reduction
JP4085665B2 (ja) * 2002-03-22 2008-05-14 株式会社村田製作所 コンデンサの実装構造
US6791159B2 (en) 2002-06-03 2004-09-14 Sumitomo Electric Industries, Ltd. Optical module
JP4479168B2 (ja) 2002-06-03 2010-06-09 住友電気工業株式会社 光モジュール
JP3833145B2 (ja) 2002-06-11 2006-10-11 Tdk株式会社 積層貫通型コンデンサ
JP2004080773A (ja) 2002-07-31 2004-03-11 Nec Tokin Corp 伝送線路型ノイズフィルタ
TW200409153A (en) * 2002-09-04 2004-06-01 Nec Corp Strip line element, printed circuit board carrying member, circuit board, semiconductor package and method for forming same
JP2004179316A (ja) * 2002-11-26 2004-06-24 Rohm Co Ltd 貫通型コンデンサ
TWI229878B (en) 2003-03-12 2005-03-21 Tdk Corp Multilayer capacitor
US6950300B2 (en) 2003-05-06 2005-09-27 Marvell World Trade Ltd. Ultra low inductance multi layer ceramic capacitor
JP4296866B2 (ja) * 2003-07-10 2009-07-15 株式会社村田製作所 積層貫通型コンデンサおよび積層貫通型コンデンサアレイ
JP3850398B2 (ja) * 2003-08-21 2006-11-29 Tdk株式会社 積層コンデンサ
JP4059181B2 (ja) * 2003-09-29 2008-03-12 株式会社村田製作所 多端子型積層セラミック電子部品の製造方法
JP4392237B2 (ja) 2003-12-26 2009-12-24 ローム株式会社 固体電解コンデンサ
JP4097268B2 (ja) 2004-02-26 2008-06-11 Tdk株式会社 積層コンデンサ
US7016176B1 (en) * 2005-04-07 2006-03-21 Honeywell International Inc. Low ESL and ESR chip capacitor
JP2006324555A (ja) * 2005-05-20 2006-11-30 Nec Tokin Corp 積層型コンデンサ及びその製造方法
US7408763B2 (en) * 2005-07-19 2008-08-05 Apurba Roy Low inductance multilayer capacitor
JP2007096272A (ja) 2005-09-02 2007-04-12 Sanyo Electric Co Ltd 電気素子および電気回路
JP2007096147A (ja) * 2005-09-30 2007-04-12 Toshiba Corp コンデンサ
JP4912110B2 (ja) 2005-12-26 2012-04-11 三洋電機株式会社 電気回路装置およびそれに用いる基板
JP4912324B2 (ja) 2005-12-26 2012-04-11 三洋電機株式会社 電気回路装置
JP4716951B2 (ja) 2005-12-27 2011-07-06 三洋電機株式会社 電気回路装置
KR100843434B1 (ko) * 2006-09-22 2008-07-03 삼성전기주식회사 적층형 칩 커패시터

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456207A (ja) * 1990-06-25 1992-02-24 Marcon Electron Co Ltd 積層セラミックコンデンサ及びそれを使用した回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7898363B2 (en) 2005-09-02 2011-03-01 Sanyo Electric Co., Ltd. Electric element and electric circuit
JP2007201419A (ja) * 2005-12-26 2007-08-09 Sanyo Electric Co Ltd 電気回路装置およびそれに用いる基板
US8027146B2 (en) 2005-12-26 2011-09-27 Sanyo Electric Co., Ltd. Electric circuit device enabling impedance reduction
JP2007202103A (ja) * 2005-12-27 2007-08-09 Sanyo Electric Co Ltd 電気回路装置

Also Published As

Publication number Publication date
TWI346343B (ja) 2011-08-01
CN100570946C (zh) 2009-12-16
US8027146B2 (en) 2011-09-27
JPWO2007074598A1 (ja) 2009-06-04
CN101346787A (zh) 2009-01-14
CN101346787B (zh) 2011-07-20
CN1992425A (zh) 2007-07-04
JP4912324B2 (ja) 2012-04-11
US20100277851A1 (en) 2010-11-04
TW200746201A (en) 2007-12-16

Similar Documents

Publication Publication Date Title
JP5023069B2 (ja) 電気素子
JP4666401B2 (ja) キャパシタ内蔵型印刷回路基板
JP4864271B2 (ja) 積層コンデンサ
KR102127811B1 (ko) 적층 전자부품 및 그 제조방법
CN105161300B (zh) 多层陶瓷电容器及其上安装有多层陶瓷电容器的板
JP4000701B2 (ja) 積層コンデンサ
US7898363B2 (en) Electric element and electric circuit
US10707021B2 (en) Multilayer ceramic electronic component and board having the same
WO2007074598A1 (ja) 電気回路装置
US11476034B2 (en) Coil electronic component
JP2007035877A (ja) 積層コンデンサ
KR101994713B1 (ko) 적층 세라믹 커패시터 및 그 실장 기판
JP4912110B2 (ja) 電気回路装置およびそれに用いる基板
KR101514532B1 (ko) 적층 세라믹 커패시터
JP4716951B2 (ja) 電気回路装置
CN212752225U (zh) 线圈部件以及包括其的滤波器电路
JP4693588B2 (ja) バンドパスフィルタ
JP2007005694A (ja) 積層コンデンサ
JPH07226331A (ja) 積層セラミックコンデンサー
KR102198540B1 (ko) 적층 세라믹 커패시터 및 그 실장 기판
JP5156637B2 (ja) 電気素子
KR102048099B1 (ko) 적층 칩 전자부품 및 그 실장 기판
JPH04278508A (ja) チップ型積層セラミックコンデンサ
KR20210133049A (ko) 수평 어레이 일체형 구조를 갖는 전자부품 및 이의 제조방법
JP2002111421A (ja) ノイズフィルタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049176.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007551867

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12159104

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833255

Country of ref document: EP

Kind code of ref document: A1