WO2007072894A1 - 熱硬化性導電ペースト及びそれを用いて形成した外部電極を有する積層セラミック部品 - Google Patents

熱硬化性導電ペースト及びそれを用いて形成した外部電極を有する積層セラミック部品 Download PDF

Info

Publication number
WO2007072894A1
WO2007072894A1 PCT/JP2006/325462 JP2006325462W WO2007072894A1 WO 2007072894 A1 WO2007072894 A1 WO 2007072894A1 JP 2006325462 W JP2006325462 W JP 2006325462W WO 2007072894 A1 WO2007072894 A1 WO 2007072894A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
component
thermosetting conductive
external electrode
metal powder
Prior art date
Application number
PCT/JP2006/325462
Other languages
English (en)
French (fr)
Inventor
Senichi Ikarashi
Kiminori Yokoyama
Original Assignee
Namics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corporation filed Critical Namics Corporation
Priority to JP2007551136A priority Critical patent/JP5180588B2/ja
Priority to KR1020087017879A priority patent/KR101358977B1/ko
Priority to US12/086,622 priority patent/US8168889B2/en
Priority to CN2006800482332A priority patent/CN101341557B/zh
Priority to EP06842970.3A priority patent/EP1965397B1/en
Publication of WO2007072894A1 publication Critical patent/WO2007072894A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • H01G4/2325Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/148Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals embracing or surrounding the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/18Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a multilayer ceramic electronic component having a thermosetting conductive paste and an external electrode formed using the same.
  • the present invention relates to a thermosetting conductive paste capable of forming an external electrode suitable for mounting on a substrate and a multilayer ceramic electronic component such as a multilayer ceramic capacitor having an external electrode formed using the paste.
  • FIG. 1 shows a multilayer ceramic capacitor 1 which is an example of a multilayer ceramic electronic component.
  • the external electrode 4 of the multilayer ceramic capacitor 1 is generally formed by the following method using a fired conductive paste or a thermosetting conductive paste.
  • a fired conductive paste in which conductive particles such as Ag powder and Cu powder are mixed in a vehicle and glass frit is applied to the take-out surface of the internal electrode 3 of the multilayer ceramic composite, After drying, the external electrode 4 is formed by firing at a high temperature of 500 to 900 ° C.
  • thermosetting conductive paste in which conductive particles such as Ag powder are mixed with a thermosetting resin is applied to the take-out surface of the internal electrode 3 of the multilayer ceramic composite, and then 150 to 250 ° C.
  • the external electrode 4 is formed by thermosetting at a low temperature (see, for example, Patent Document 1).
  • the third method is to use a thermosetting conductive paste in which a thermosetting resin is mixed with a heat decomposable organometallic material such as silver acetate, conductive particles such as Ag powder, and the like for the internal electrode 3 of the multilayer ceramic composite.
  • a thermosetting resin is mixed with a heat decomposable organometallic material such as silver acetate, conductive particles such as Ag powder, and the like for the internal electrode 3 of the multilayer ceramic composite.
  • This is a method of forming the external electrode 4 by applying it to the take-out surface and then thermosetting at 350 ° C. (for example, see Patent Document 2).
  • thermosetting conductive paste containing conductive particles having a high melting point and a metal powder having a melting point of 300 ° C or less is applied to the take-out surface of the internal electrode 3 of the multilayer ceramic composite.
  • the external electrode 4 is formed by thermosetting at a low temperature of 80 to 400 ° C. (For example, see Patent Document 3).
  • a plating 5 is applied to the electrode layer surface as necessary.
  • Ni plating is applied to the surface of the external electrode by electric plating in a watt bath or the like, and then solder plating or Sn plating is further performed by electric plating.
  • the capacitor having the external electrode obtained by the first method described above has a problem that the glass frit component in the conductive paste diffuses inside the capacitor element during high-temperature firing, so that There are problems such as cracking during mounting.
  • there is a problem in the reliability of the capacitor performance such as the penetration of the plating solution into the sintered body during the plating process, resulting in the capacitance falling below the design value or the deterioration of the insulation resistance.
  • the capacitor having an external electrode obtained by the second method has a power that can solve the problem at the time of mounting on the above-mentioned substrate.
  • the solid phase diffusion of the metal between the conductive particles such as powder and the internal electrode does not proceed, and the designed electrical characteristics such as the capacitance cannot be obtained due to poor bonding between the internal and external electrodes, resulting in poor reliability.
  • the capacitor having an external electrode obtained by the third method has problems such as a shortened pot life of paste due to the added silver acetate and amin, and deterioration of insulation in a moisture-resistant life.
  • the capacitor having the external electrode obtained by the fourth method has a higher solder reflow temperature when mounting electronic components on the board due to the recent trend of lead-free due to the lead problem. There is a possibility of solder explosion due to remelting of low melting metal powder.
  • Patent Document 1 JP-A-6_267784
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-182883
  • Patent Document 3 International Publication No. 2004Z053901 Pamphlet
  • thermosetting conductive paste has Thermosetting that can solve the problem of bonding properties of inner and outer electrodes, provide good electrical properties (capacitance, tan ⁇ ), and can form external electrodes suitable for soldering treatment when mounted on a substrate
  • thermosetting conductive paste has Thermosetting that can solve the problem of bonding properties of inner and outer electrodes, provide good electrical properties (capacitance, tan ⁇ ), and can form external electrodes suitable for soldering treatment when mounted on a substrate
  • a multilayer ceramic electronic component having a conductive paste and an external electrode formed using the conductive paste.
  • the present invention relates to a thermosetting material comprising (i) a metal powder having a melting point of 700 ° C or higher, (B) a metal powder having a melting point of more than 300 ° C and less than 700 ° C, and (C) a thermosetting resin.
  • the present invention relates to a multilayer ceramic electronic component having an external electrode formed of a conductive paste.
  • thermosetting conductive paste of the present invention the laminated ceramic having excellent electrical properties (capacitance, tan ⁇ ) excellent in bondability with internal electrodes, suitable for mounting on a substrate, and having good electrical characteristics (capacitance, tan ⁇ ).
  • External electrodes for electronic components are provided.
  • a metal powder having a melting point of more than 300 ° C. and less than 700 ° C. is used for the thermosetting conductive paste in addition to the metal powder having a melting point of 700 ° C. or higher corresponding to the conventional conductive particles. Therefore, it is presumed that solid-phase diffusion between the metal powder in the conductive paste and the internal electrode is progressing, and as a result, good internal electrode / external electrode bonding properties and electrical characteristics can be obtained.
  • FIG. 1 is a schematic diagram of a multilayer ceramic capacitor, which is an example of a multilayer ceramic electronic component.
  • thermosetting conductive paste of the present invention comprises (A) a metal powder having a melting point of 700 ° C or higher, and (B) a melting point of 30 It contains a metal powder of more than 0 ° C and less than 700 ° C, and (C) a thermosetting resin.
  • Component (A) is a metal powder having a melting point of 700 ° C or higher.
  • the metal powder can be used alone or in combination of two or more.
  • the melting point is preferably 800 ° C or higher.
  • metal powders of Ag, Cu, Ni, Pd, Au, and Pt which are metals having a melting point of 700 ° C. or more, can be mentioned.
  • alloys of Ag, Cu, Ni, Pd, Au, and Pt which include metal powders with melting points of S700 ° C or higher, specifically consisting of Ag, Cu, Ni, Pd, Au, and Pt.
  • An alloy metal powder composed of two or more elements selected from the group can be used.
  • binary alloys include AgCu alloys, AgAu alloys, AgPd alloys, AgNi alloys, and the like
  • ternary alloys include AgPdCu alloys, AgCuNi alloys, and the like.
  • the metal powder is an alloy composed of one or more elements selected from Ag, Cu, Ni, Pd, Au and Pt and one or more other elements
  • the melting point as an alloy is 700 ° C. If it is more, it can be used. Examples of other elements include Zn and A1.
  • Ag since excellent conductivity can be obtained relatively easily, Cu, Ni, Ag, and Ag alloy metal powders are preferred. Ag and Ag alloy metal powders are particularly preferred. Examples of the Ag alloy include an Ag Cu alloy, an AgAu alloy, an AgPd alloy, and an AgNi alloy.
  • the shape of the metal powder may be any shape such as a spherical shape, a flake shape, or a needle shape.
  • These average particle diameters are preferably from 0.04 to 30 ⁇ , which gives an excellent surface state after printing or coating, and also gives an excellent conductivity lifetime to the formed electrode. 20 ⁇ is more preferable. From the viewpoint of printing or coating, it is preferable to use spherical and flaky silver particles in combination.
  • the average particle diameter means the average of the particle diameter in the case of a sphere, the long diameter of the particle flake in the case of flakes, and the length in the case of needles.
  • the average particle diameter of primary particles is 40 to: 100 nm, preferably f is 50 to 80 nm; It is preferable to use Ag fine powder that is 20 to 70 nm, preferably f is 20 to 50 nm, and (c) the ratio of the average particle size to the crystallite size is:! To 5, preferably 1 to 4 .
  • the crystallite size was calculated from the Scherrer equation by calculating the half width of the plane index (1, 1, 1) plane peak from the powder X-ray diffraction method using Cu K-wire as the source. Say the result.
  • the above Ag fine powder is prepared by mixing a silver salt of a carboxylic acid and an aliphatic primary amine in the presence or absence of an organic solvent, then adding a reducing agent, and a reaction temperature of 20 to 80 ° C. It can be obtained by reacting with C to precipitate fine Ag powder.
  • the silver salt of the carboxylic acid is not particularly limited, but is preferably a silver salt of an aliphatic monocarboxylic acid, and more preferably silver acetate, silver propionate or silver butyrate. They are
  • the aliphatic primary amine is not particularly limited, but may be a chain aliphatic primary amine.
  • It may be a cycloaliphatic primary amine. 3-Methoxypropylamine, 3-aminopropanol or 1,2-diaminocyclohexane is preferred. These can be used alone or
  • Two or more types can be used in combination.
  • the amount of the primary aliphatic amine used is preferably 1 equivalent or more with respect to 1 equivalent of the silver salt of the carboxylic acid. Considering: 1.
  • the silver salt of the carboxylic acid and the aliphatic primary amine can be mixed in the absence or presence of an organic solvent.
  • organic solvent include alcohols such as ethanol, propanol, and butanol, Examples include ethers such as propylene glycol dibutyl ether, and aromatic hydrocarbons such as toluene. These can be used alone or in combination of two or more.
  • the amount of the organic solvent used can be arbitrarily determined from the viewpoint of convenience of mixing and the productivity of Ag fine powder in the subsequent process.
  • the mixing of the silver salt of the carboxylate and the aliphatic primary amine is preferably performed at a temperature of 20 to 80 ° C, more preferably 20 to 60 ° C. .
  • the reducing agent is preferably formic acid, honolemanolide, ascorbic acid or hydrazine, more preferably formic acid from the viewpoint of controlling the reaction. These can be used alone or in combination of two or more.
  • the amount of the reducing agent used is usually at least the redox equivalent relative to the silver salt of the carboxylic acid, and the redox equivalent is preferably 0.5 to 5 times, more preferably 1 to 3 times. If the silver salt of rubonic acid is a silver salt of monocarboxylic acid and formic acid is used as the reducing agent, The amount of formic acid used in terms of moles is preferably 0.5 to 1.5 moles per mole of silver salt of carboxylic acid S, more preferably 0.5 to 1.0 monole, More preferably, it is 0.5 to 0.75 monole.
  • the temperature is maintained at 20 ° C to 80 ° C, preferably 20 to 70 ° C, more preferably 20 to 60 ° C.
  • the fine Ag powder precipitated by the reaction is allowed to settle, and the supernatant is removed by decantation or the like, or a solvent such as methanol, ethanol, TVneol or the like is added and fractionated. it can.
  • the layer containing Ag fine powder may be used as it is for the thermosetting conductive paste.
  • Component (B) is a metal powder having a melting point of more than 300 ° C and less than 700 ° C. Component (B) contributes to the bondability with the internal electrode when the external electrode of the multilayer ceramic is formed using the thermosetting conductive paste.
  • the metal powder can be used alone or in combination of two or more.
  • a metal powder having a melting point of more than 300 ° C and less than 400 ° C can be used, for example, a metal powder having a melting point of more than 300 ° C and less than 390 ° C.
  • a metal powder having a melting point of more than 300 ° C and less than 390 ° C is an alloy of Sn, In and Bi, and includes a metal powder having a melting point of more than 300 ° C and less than 400 ° C. Since Sn, In or Bi are all metals with melting points of less than 300 ° C, other elements constituting the alloy are high melting point metals such as Ag, Cu, Ni, Zn, Al, Pd, Au.
  • One or more elements selected from Sn, In, and Bi, and one or more elements selected from Ag, Cu, Ni, Zn, Al, Pd, Au, and Pt An alloy composed of these elements is mentioned. Specifically, it is a binary alloy such as SnZn alloy, SnAg alloy, SnCu alloy, SnAl alloy, InAg alloy, InZn alloy, BiAg alloy, BiNi alloy, BiZn alloy or BiPb alloy, melting point over 300 ° C, 400 °
  • ternary alloys include ternary alloys such as AgCuSn alloy, AgCu In alloy or AgBiCu alloy, and metal powders with melting points above 300 ° C and below 400 ° C. It is done.
  • a metal powder having a melting point of more than 400 ° C and less than 700 ° C can be used, for example, a metal powder having a melting point of more than 400 ° C and less than 660 ° C.
  • it is an alloy of Sn, In and Bi, and includes a metal powder having a melting point of more than 400 ° C and less than 700 ° C.
  • Sn, In or Bi are all metals with melting points of less than 300 ° C.
  • These elements are one or more of high melting point metals such as Ag, Cu, Ni, Zn, Al, Pd, Au and Pt, for example, one or more selected from Sn, In and Bi.
  • an alloy composed of one or more elements selected from Ag, Cu, Ni, Zn, Al, Pd, Au, and Pt an alloy composed of one or more elements selected from Ag, Cu, Ni, Zn, Al, Pd, Au, and Pt.
  • binary alloys such as SnZn alloy, SnAg alloy, SnCu alloy, SnAl alloy, InAg alloy, In Zn alloy, BiAg alloy, BiNi alloy, BiZn alloy or BiPb alloy, melting point over 400 ° C, 700
  • ternary alloys include ternary alloys such as AgCuSn alloy, AgCuIn alloy or AgBiCu alloy, melting point of over 400 ° C and less than 700 ° C. Is mentioned.
  • an alloy containing Sn is preferable.
  • an SnAg alloy having a weight ratio of Sn and Ag of 89:11 to 25.5: 74.5 can be given.
  • the behavior of Sn during the curing process is thought to lead to better bonding with the internal electrode.
  • the metal powder having a melting point of more than 300 ° C and less than 400 ° C includes a metal powder having a weight ratio of Sn and Ag of 89:11 or less and more than 72:28, and 89:11 to 82:28. Metal powders are included.
  • Examples of the metal powder having a melting point of more than 400 ° C and less than 700 ° C include SnAg alloys in which the weight ratio of Sn to Ag is 72: 28-25.5: 74.5.
  • the point strength of the bondability with the internal electrode when forming the external electrode is preferably 70: 30-30: 30 SnAg alloy.
  • the weight ratio of the constituent metal of the alloy in the metal powder with melting point above 300 ° C and below 700 ° C can be determined within a certain range once the constituent metal is determined.
  • the shape of the metal powder may be any shape such as a spherical shape, a flake shape, or a needle shape. These average particle diameters are preferably 0.05 to 30 ⁇ , preferably giving an excellent surface state after printing or coating, and giving an excellent conductivity lifetime to the formed electrode. More preferably, ⁇ 20 ⁇ m.
  • thermosetting resin of component (C) functions as a binder and is an amino resin such as urea resin, melamine resin, and guanamine resin; bisphenol A type, bisphenol F type, phenol novolac type Epoxy resin such as alicyclic, oxetane resin, phenolic resin such as resol type, alkylresole type, novolac type, alkyl novolak type, aralkyl novolak type; silicone resin such as silicone epoxy and silicone polyester Of organic resin, bismaleimide, polyimide resin and the like are preferable. Also, for example, BT resin can be used. These resins can be used alone or in combination of two or more.
  • a resin that is liquid at room temperature because the amount of the organic solvent used as a diluent can be reduced.
  • liquid resins include liquid epoxy resins and liquid phenol resins.
  • a resin that is compatible with these liquid resins and that exhibits a solid or extremely high viscosity at normal temperature may be further added and mixed within a range in which the mixed system exhibits fluidity.
  • resins include epoxy resins such as high molecular weight bisphenol A epoxy resin, diglycidinorebiphenyl, novolac epoxy resin, tetrabromobisphenol A epoxy resin; resol phenol resin, novola resin.
  • An example is Ku-type phenol resin.
  • the curing mechanism may be a self-curing resin, or a curing agent or curing catalyst such as amines, imidazoles, acid hydrates or onium salts.
  • a curing agent or curing catalyst such as amines, imidazoles, acid hydrates or onium salts.
  • An amino resin or phenol resin may function as a curing agent for the epoxy resin.
  • the epoxy resin used in the thermosetting conductive paste is preferably cured by a phenol resin.
  • the phenol resin if it is a phenol resin initial condensate that is usually used as a curing agent for epoxy resins, it can be either a resol type or a novolak type. The stress at the time of curing is relieved, and excellent heat cycle resistance is obtained. Therefore, it is preferable that 50% by weight or more of them is an alkylresole type or alkyl novolac type phenol resin. In the case of an alkylresole type phenol resin, the average molecular weight is preferably 2,000 or more in order to obtain excellent printability.
  • alkyl groups having 1 to 18 carbon atoms can be used, such as ethyl, propyl, butyl, pentyl, hexyl, octyl, noninore, decyl. Those having 2 to 10 carbon atoms are preferred.
  • bisphenol type epoxy resin and resol type phenolic resin are preferred because of excellent adhesiveness and excellent heat resistance, and bisphenol type epoxy resin and resol type phenolic resin are preferred.
  • a combination of resins When using a combination of bisphenol type epoxy resin and resol type phenol resin, The weight specific force between the poxy resin and the phenol resin is preferably in the range of 4: 1 to 1: 4: 4: 1 to 1: 2 force S, more preferably.
  • polyfunctional epoxy resins having many benzene rings for example, tetrafunctional epoxy resins
  • phenol resins, polyimide resins, and the like are also effective from the viewpoint of heat resistance.
  • thermoplastic resin may be used in combination with the thermosetting resin as long as the effects of the present invention are not impaired.
  • thermoplastic resin polysulfone, polyethersulfone, maleimide resin and the like are preferable.
  • thermosetting conductive paste From the viewpoint of the printability of the thermosetting conductive paste and the conductivity of the obtained external electrode layer, the components
  • the component (A) and (B) force is 60 to 98% by weight, more preferably 70 to 95% by weight, based on the total weight of (A), component (B) and component (C).
  • the component (C) is preferably 30 to 5% by weight, more preferably 40 to 2% by weight.
  • the weight ratio of component (A) to component (B) is preferably 99: 0 :! to 30:70.
  • component (B) is a metal powder having a melting point of more than 300 ° C and less than 400 ° C
  • the weight ratio of component (A) to component (B) (component (A): component (B)) is 99. 9: 0. 1 to 60: 40 is preferable, more preferably 99: 1 to 67: 43, and particularly preferably 95: 5 to 65: 35.
  • component ( ⁇ ) is a metal powder having a melting point of more than 400 ° C and less than 700 ° C
  • the weight ratio of component (A) to component (B) (component (A): component (B)) is 90:10 to 30:70 is more preferable, and 80:20 to 40:60 is particularly preferable, and 75:25 to 45:55 is particularly preferable.
  • component ( ⁇ ) is SnAg alloy powder
  • Sn contained in the component (B) is 5 to 70% by weight out of the total 100% by weight of the component (A) and the component (B). More preferably, it is 10 to 50% by weight.
  • component (B) is SnAg alloy powder
  • Ag powder is preferred as the combined component (A).
  • thermosetting conductive paste the type and amount of components (A), (B) and (C) are selected, and if necessary, a diluent is used to make a ceramic composite of the desired electronic component. Depending on the method of printing or coating, it can be adjusted to an appropriate viscosity. For example, when used for screen printing, the apparent viscosity of the conductive paste at room temperature is preferably 10 to 500 Pa's, more preferably 15 to 300 Pa's.
  • an organic solvent is used as the diluent. The organic solvent is selected according to the type of the resin, and the amount used is the components (A), (B) and (C) and the composition ratio thereof and the method of printing or applying the conductive paste are arbitrarily selected.
  • organic solvent examples include aromatic hydrocarbons such as toluene, xylene, mesitylene, and tetralin; ethers such as tetrahydrofuran; methylethylketone, methylisobutylketone, cyclohexanone, and isophorone.
  • aromatic hydrocarbons such as toluene, xylene, mesitylene, and tetralin
  • ethers such as tetrahydrofuran
  • the amount of the organic solvent used is arbitrarily selected according to the type and amount ratio of the components (A), (B) and (C) used and the method of printing or applying the conductive paste.
  • an aluminum chelate compound such as diisopropoxy (ethylacetoacetate) aluminum as a dispersion aid; Titanic acid ester such as stearoyl titanate; aliphatic polycarboxylic acid ester; unsaturated fatty acid amine salt; surfactant such as sorbitan monooleate; or polymer compound such as polyesteramine salt and polyamide May be used.
  • organic pigments, organic pigments, silane coupling agents, leveling agents, thixotropic agents, antifoaming agents, and the like may be blended.
  • thermosetting conductive paste can be prepared by uniformly mixing the compounding components by a mixing means such as a reika machine, a propeller stirrer, a kneader, a tool, or a pot mill.
  • the preparation temperature is not particularly limited, but can be prepared at room temperature, for example, 20-30 ° C.
  • thermosetting conductive paste By using the thermosetting conductive paste thus obtained, a laminated ceramic electronic component having an external electrode can be formed according to a known method.
  • a thermosetting conductive paste is applied to the internal electrode extraction surface of the ceramic composite of the multilayer ceramic capacitor.
  • Printing or coating is performed by any method such as clean printing, transfer, or dip coating.
  • the thickness of the external electrode after curing is preferably printed or applied to a thickness of:! To 300 xm, more preferably 20 to 100 zm.
  • an organic solvent is used, it is dried at room temperature or by heating after printing or coating.
  • curing can be performed at, for example, 80 to 450 ° C, specifically, 80 to 400 ° C.
  • thermosetting conductive paste of the present invention is simple because it does not need to be placed in an inert gas atmosphere during curing.
  • the curing time is a force that can be changed depending on the curing temperature and the like. However, when curing at 250 ° C. or lower, a force of 20 to 60 minutes is preferable from the viewpoint of bondability with the internal electrode.
  • the resin in the paste is an epoxy resin using a phenol resin as a hardener
  • the external electrode can be obtained by curing at 200 to 450 ° C. for 5 to 60 minutes.
  • rapid heating for example, rapid heating above 300 ° C).
  • the ceramic composite of the multilayer ceramic electronic component used in the present invention may be produced by any known method.
  • the ceramic composite refers to a fired laminate in which ceramic layers and internal electrode layers are alternately laminated, or a laminate in which resin ceramics, hybrid materials and internal electrodes are alternately laminated.
  • the ceramic layer or the resin-ceramic hybrid material has properties suitable for the desired electronic component, for example, a dielectric if it is a capacitor, and may be obtained by any known method.
  • the internal electrode layer is not particularly limited, but it is preferable to use a base metal that is inexpensive and easily available, such as Ni or Cu, as the internal electrode.
  • the multilayer ceramic electronic component of the present invention may be, for example, a capacitor, a capacitor array, a thermistor, a varistor, an inductor, and an LC, CR, LR and LCR composite component.
  • the obtained multilayer ceramic electronic component is subjected to plating on the electrode layer surface as necessary in order to further increase the adhesive strength when soldered and mounted on a substrate or the like.
  • Measure processing is publicly known However, it is preferable that Pb-free plating is applied in consideration of the environment. For example, Ni plating is applied to the surface of the external electrode by electric plating in a watt bath or the like, and then solder plating or Sn plating is further performed by electric plating.
  • the multilayer ceramic electronic component in which the surface of the external electrode formed of the thermosetting conductive paste of the present invention obtained in this way is coated is excellent in electrical characteristics such as the bondability of the internal and external electrodes. It is useful for mounting on a circuit board or the like.
  • composition of the conductive paste used in the examples and comparative examples is as shown in Table 1 below.
  • Component (A) in Table 1 is as follows.
  • Single spherical Ag powder A average particle size 0, purity 99.5% or more
  • a paste containing fine Ag powder A paste containing fine Ag powder:
  • the manufacturing method is as follows. 3-Methoxypropylamine 3. Ok g (30.9 mol) was placed in a 10 L glass reaction vessel. While stirring, while maintaining the reaction temperature at 45 ° C. or lower, 5.0 kg (30. Omol) of silver acetate was added. Immediately after the addition, the solution became a transparent solution and dissolved, but as the addition was progressed, the solution gradually became turbid, and when the entire amount was added, it became a grayish brownish viscous solution. Thereto was slowly added dropwise 1.0 kg (21. Omol) of 95% by weight of formic acid. Severe exotherm was observed immediately after the addition, but the reaction temperature was maintained at 30-45 ° C during that time.
  • the turbid viscous solution changed from brown to black.
  • the reaction was terminated after the entire amount was added dropwise.
  • the upper layer is a yellow transparent liquid, and black silver fine particles settled in the lower layer.
  • the upper layer liquid did not contain a silver component.
  • the liquid in the upper layer was removed with decantation, and the layers were separated using methanol to obtain a paste containing Ag fine powder having a silver content of 89% by weight.
  • the average particle size is about 0.5g of Ag fine powder-containing paste added to 50cc of dispersed water (AEROSOL 0.5% water) and dispersed for 5 minutes with an ultrasonic disperser. It is a value measured by a diffraction scattering type particle size distribution analyzer (LS230), and the crystallite diameter is measured by a X-ray diffractometer (Ml 8XHF 22) manufactured by Mac Science Co.
  • the half-width of the plane index (1, 1, 1) plane peak is calculated from the Scherrer equation.
  • the component (B) in Table 1 is as follows.
  • Sn80Ag alloy powder Sn: Ag weight ratio (Sn: Ag) is 80:20. Melting point 330 ° C, average particle size 2.5 ⁇ m, purity 99% or more
  • Sn Ag weight ratio (Sn: Ag) is 35:65. Melting point 590 ° C, average particle size 2.5 ⁇ , purity 99% or more [0065]
  • Component (C) in Table 1 is as follows.
  • Epoxy resin A Bisphenol A type, number average molecular weight 1800
  • a conductive paste having the composition shown in Table 1 was applied to the internal electrode lead-out surface of a ceramic composite (1608 type, B characteristics, Ni internal electrode, theoretical capacity 1 ⁇ F) of a chip multilayer capacitor.
  • the film was uniformly dip-coated to a thickness of about ⁇ m, dried at 150 ° C for 10 minutes, and then cured in air at 300 ° C for 30 minutes to form external electrodes. Subsequently, Ni plating was performed in a watt bath, and then Sn plating was performed by electric plating to obtain a chip multilayer capacitor.
  • the initial electrical characteristics (capacitance, tan ⁇ ) of the chip multilayer capacitor element obtained above were measured with an Agilent 4278 mm, and the bonding strength (shear strength) of the external electrode to the substrate was measured by Aikoichi Engineering's desktop strength tester. After the measurement, electrical characteristics and bonding strength after a heat cycle resistance test (one 55 ° C Z125 ° C (30 minutes Z30 minutes); 250 cycles) were similarly measured. The results are shown in Table 2.
  • thermosetting conductive paste of the present invention does not require firing at a high temperature, problems associated with high-temperature firing at the time of external electrode formation in a laminated ceramic electronic component can be avoided, which is favorable. Electrical characteristics can be easily secured. In addition, it is possible to obtain a multilayer ceramic electronic component having an external electrode suitable for mounting on a substrate, which is highly useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Conductive Materials (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Powder Metallurgy (AREA)

Abstract

 積層セラミック電子部品の外部電極としたときに、内外電極との接合性に優れ、基板への実装やメッキ処理に適し、良好な電気特性(静電容量、tanδ)をもたらす熱硬化性導電ペーストを提供する。(A)融点700°C以上の金属粉末、(B)融点300°C超、700°C未満の金属粉末、及び(C)熱硬化性樹脂を含む熱硬化性導電ペースト。

Description

明 細 書
熱硬化性導電ペースト及びそれを用いて形成した外部電極を有する積層 セラミック部品
技術分野
[0001] 本発明は、熱硬化性導電ペースト及びそれを用いて形成した外部電極を有する積 層セラミック電子部品に関する。特に、基板への実装ゃメツキ処理に適した外部電極 を形成することが可能な熱硬化性導電ペースト、及びそれを用いて形成した外部電 極を有する積層セラミックコンデンサ等の積層セラミック電子部品に関する。
背景技術
[0002] 積層セラミック電子部品の一例である、積層セラミックコンデンサ 1を図 1に示す。積 層セラミックコンデンサ 1の外部電極 4は、一般に焼成型導電ペースト又は熱硬化性 導電ペーストを用い、以下のような方法により形成される。
[0003] 第一の方法は、例えば、ビヒクルに Ag粉末、 Cu粉末等の導電粒子とガラスフリット とを混合した焼成型導電ペーストを、積層セラミック複合体の内部電極 3の取り出し面 に塗布し、乾燥させた後、 500〜900°Cの高温で焼成することにより、外部電極 4を 形成する方法である。
[0004] 第二の方法は、熱硬化性樹脂に Ag粉末等の導電粒子を混合した熱硬化性導電 ペーストを、積層セラミック複合体の内部電極 3の取り出し面に塗布後、 150〜250 °Cの低温で熱硬化させることにより、外部電極 4を形成する方法である(例えば、特許 文献 1参照。)。
[0005] 第三の方法は、熱硬化性樹脂に酢酸銀等の熱分解性有機金属体、 Ag粉末等の 導電粒子を混合した熱硬化性導電ペーストを、積層セラミック複合体の内部電極 3の 取り出し面に塗布後、 350°Cで熱硬化させることにより、外部電極 4を形成する方法 である(例えば、特許文献 2参照。)。
[0006] 第四の方法は、熱硬化樹脂に高融点の導電粒子及び融点が 300°C以下の金属粉 末を含む熱硬化性導電ペーストを積層セラミック複合体の内部電極 3の取り出し面に 塗布後、 80〜400°Cの低温で熱硬化させることにより、外部電極 4を形成する方法で ある (例えば、特許文献 3参照。)。
[0007] いずれの方法においても、得られたコンデンサ素子を基板等へはんだ付け実装す る際の接着強度を高めるため、必要に応じて電極層表面にメツキ 5が施される。例え ば外部電極の表面に、ワット浴等で電気メツキにより Niメツキが施され、その後さらに 、電気メツキによりはんだメツキや Snメツキが施される。
[0008] し力 ながら、上記第一の方法で得られた外部電極を有するコンデンサは、高温焼 成時に導電ペースト中のガラスフリット成分がコンデンサ素子内部に拡散することによ り、基板へのはんだ付け実装時のクラック発生等の不具合がある。さらにメツキ処理 時に焼結体にメツキ液が浸透することにより、静電容量が設計値を下回ったり、絶縁 抵抗の劣化が起こる等、コンデンサ性能の信頼性に問題がある。
[0009] 一方、第二の方法で得られた外部電極を有するコンデンサは、上述の基板への実 装時ゃメツキ処理時の課題は解決し得る力 硬化温度が低いため、導電ペースト中 の Ag粉末等の導電粒子と内部電極との金属同士の固相拡散が進行せず、内外電 極の接合不良により設計された静電容量等の電気特性が得られず信頼性に劣る。
[0010] また、第三の方法で得られた外部電極を有するコンデンサは、添加された酢酸銀と ァミンにより、ペーストのポットライフが短くなる、耐湿寿命における絶縁劣化が起こる 等の不具合がある。
[0011] また、第四の方法で得られた外部電極を有するコンデンサは、近年の鉛問題による 鉛フリー化の動きの中で、電子部品の基板実装時のはんだリフロー温度が高くなり、 それに伴レ、、低融点の金属粉末の再溶融によるはんだ爆ぜが発生する可能性があ る。
特許文献 1:特開平 6 _ 267784号公報
特許文献 2:特開 2000— 182883号公報
特許文献 3:国際公開第 2004Z053901号パンフレット
発明の開示
発明が解決しょうとする課題
[0012] 本発明は、外部電極の形成及び続くメツキ処理における、従来技術が抱える上述 の課題を解決することを目的とする。すなわち、上記熱硬化性導電ペーストの有する 内外電極の接合性の課題を解決し、良好な電気特性 (静電容量、 tan δ )をもたらす ことができ、基板への実装ゃメツキ処理に適した外部電極を形成することができる熱 硬化性導電ペースト及びそれを用いて形成した外部電極を有する積層セラミック電 子部品を提供することを目的とする。
課題を解決するための手段
[0013] 本発明は、(Α)融点 700°C以上の金属粉末、(B)融点 300°C超、 700°C未満の金 属粉末、及び (C)熱硬化性樹脂を含む熱硬化性導電ペーストで形成された外部電 極を有する積層セラミック電子部品に関する。
発明の効果
[0014] 本発明の熱硬化性導電ペーストによれば、内部電極との接合性に優れ、基板への 実装ゃメツキ処理に適し、良好な電気特性 (静電容量、 tan δ )を有する積層セラミツ ク電子部品の外部電極が提供される。本発明においては、熱硬化性導電ペーストに 、従来の導電粒子に相当する融点 700°C以上の金属粉末に加えて、融点 300°C超 、 700°C未満の金属粉末が使用されているため、導電ペースト中の金属粉末と内部 電極との固相拡散が進行していると推測され、その結果、良好な内外電極の接合性 及び電気特性が得られると考えられる。
図面の簡単な説明
[0015] [図 1]積層セラミック電子部品の一例である、積層セラミックコンデンサの模式図であ る。
[0016] 符号の説明
1…積層セラミックコンデンサ
2…セラミック誘電体
3…内部電極層
4…外部電極層
5…メツキ処理層
発明を実施するための最良の形態
[0017] 本発明の熱硬化性導電ペーストは、(A)融点 700°C以上の金属粉末、(B)融点 30 0°C超、 700°C未満の金属粉末、及び (C)熱硬化樹脂を含むことを特徴とする。
[0018] 成分 (A)は、融点が 700°C以上の金属粉末である。金属粉末は、単独で、又は 2 種以上を併用することができる。融点は、好ましくは、 800°C以上である。
[0019] 具体的には、 700°C以上の融点を有する金属である Ag、 Cu、 Ni、 Pd、 Au及び Pt の金属粉末が挙げられる。また、 Ag、 Cu、 Ni、 Pd、 Au及び Ptの合金であって、融点 力 S700°C以上の金属粉末が挙げられ、具体的には Ag、 Cu、 Ni、 Pd、 Au及び Ptか らなる群より選ばれる 2種以上の元素で構成される合金の金属粉末を使用することが できる。例えば、 2元系の合金としては、 AgCu合金、 AgAu合金、 AgPd合金、 AgNi 合金等が挙げられ、 3元系の合金としては、 AgPdCu合金、 AgCuNi合金等が挙げ られる。ただし、 Ag、 Cu、 Ni、 Pd、 Au及び Ptから選ばれる 1種以上の元素と他の 1 種以上の元素で構成される合金の金属粉末であっても、合金としての融点が 700°C 以上であれば、使用することができる。他の元素としては、例えば Zn、 A1が挙げられ る。
[0020] 優れた導電性が比較的容易に得られることから、 Cu、 Ni、 Ag及び Ag合金の金属 粉末が好ましぐ Ag及び Ag合金の金属粉末が特に好ましい。 Ag合金としては、 Ag Cu合金、 AgAu合金、 AgPd合金、 AgNi合金が挙げられる。
[0021] 金属粉末の形状は、球状、りん片状、針状等、どのような形状のものであってもよい 。これらの平均粒子径は、印刷又は塗布の後に優れた表面状態を与え、また、形成 した電極に優れた導電十生を与えること力ら、 0. 04〜30 μ πιカ好ましく、 0. 05〜20 μ πιがより好ましい。また、印刷又は塗布の点から、球状とりん片状の銀粒子を併用 することが好ましい。なお、本明細書において、平均粒子径とは、球状の場合は粒子 径、りん片状の場合は粒子薄片の長径、針状の場合は長さのそれぞれ平均をいう。
[0022] 特に、電気特性の安定化の点から、金属粉末として、 (a) 1次粒子の平均粒子径が 40〜: 100nm、好ましく fま 50〜80nmであり、(b)結晶子径カ 20〜70nm、好ましく fま 2 0〜50nmであり、かつ(c)結晶子径に対する平均粒子径の比が:!〜 5、好ましくは 1 〜4である、 Ag微粉末を使用することが好ましい。ここで、結晶子径は、 Cuの Kひ線 を線源とした粉末 X線回折法による測定から、面指数(1 , 1 , 1)面ピークの半値幅を 求め、 Scherrerの式より計算した結果をいう。 [0023] 上記の Ag微粉末は、有機溶媒の存在又は非存在下に、カルボン酸の銀塩と脂肪 族第一級ァミンを混合し、次いで還元剤を添加して、反応温度 20〜80°Cで反応させ て、 Ag微粉末を析出させることにより得られる。
[0024] なお、カルボン酸の銀塩は、特に制限されないが、好ましくは脂肪族モノカルボン 酸の銀塩であり、より好ましくは酢酸銀、プロピオン酸銀又は酪酸銀である。これらは
、単独で、又は 2種以上を併用することができる。
[0025] 脂肪族第一級ァミンは、特に制限されないが、鎖状脂肪族第一級ァミンであっても
、環状脂肪族第一級ァミンであってもよい。好ましくは 3—メトキシプロピルァミン、 3- ァミノプロパノール又は 1 , 2—ジアミノシクロへキサンである。これらは、単独で、又は
2種以上を併用することができる。
[0026] 脂肪族第一級ァミンの使用量は、カルボン酸の銀塩 1当量に対して、 1当量以上で あることが好ましぐ過剰な脂肪族第一級ァミンの環境等への影響を考慮すると、 1.
0〜3. 0当量であることが好ましぐより好ましくは 1. 0〜: 1. 5当量、特に好ましくは 1
. 0〜: 1. 1当量である。
[0027] カルボン酸の銀塩と脂肪族第一級ァミンとの混合は、有機溶媒の非存在下又は存 在下に行うことができ、有機溶媒としては、エタノール、プロパノール、ブタノール等の アルコール類、プロピレングリコールジブチルエーテル等のエーテル類、トルエン等 の芳香族炭化水素等が挙げられる。これらは、単独で、又は 2種以上を併用すること ができる。有機溶媒の使用量は、混合の利便性、後続の工程での Ag微粉末の生産 性の点から、任意の量とすることができる。
[0028] カルボン酸塩の銀塩と脂肪族第一級ァミンとの混合は、温度を、 20〜80°Cに維持 して行うことが好ましぐより好ましくは、 20〜60°Cである。
[0029] 還元剤としては、反応の制御の点から、ギ酸、ホノレムァノレデヒド、ァスコルビン酸又 はヒドラジンが好ましぐより好ましくは、ギ酸である。これらは単独で、又は 2種以上を 併用すること力 Sできる。
[0030] 還元剤の使用量は、通常、カルボン酸の銀塩に対して酸化還元当量以上であり、 酸化還元当量が、 0. 5〜5倍であることが好ましぐより好ましくは 1〜3倍である。力 ルボン酸の銀塩がモノカルボン酸の銀塩であり、還元剤としてギ酸を使用する場合、 ギ酸のモル換算での使用量は、カルボン酸の銀塩 1モルに対して、 0. 5〜: 1. 5モル であること力 S好ましく、より好ましくは 0. 5〜: 1. 0モノレ、さらに好ましくは 0. 5〜0. 75 モノレである。
[0031] 還元剤の添加及びその後の反応においては、温度を 20°C〜80°Cに維持すること とし、好ましくは 20〜70°C、より好ましくは 20〜60°Cに維持する。
[0032] 反応により析出した Ag微粉末は沈降させて、デカンテーシヨン等により上澄みを除 去するか、又はメタノーノレ、エタノール、テレビネオール等のアルコール等の溶媒を 添加して分取することができる。また、 Ag微粉末を含む層をそのまま、熱硬化性導電 ペーストに使用してもよい。
[0033] 成分 (B)は、融点 300°C超、 700°C未満の金属粉末である。成分 (B)は、熱硬化 性導電ペーストを用いて積層セラミックの外部電極を形成した場合に、内部電極との 接合性に寄与する。金属粉末は、単独で、又は 2種以上を併用することができる。
[0034] 成分 (B)としては、融点 300°C超、 400°C未満の金属粉末を使用することができ、 例えば融点が 300°C超、 390°C未満の金属粉末である。具体的には、 Sn、 In及び B iの合金であって、融点 300°C超、 400°C未満の金属粉末が挙げられる。 Sn、 In又は Biは、いずれも融点が 300°C未満の金属であることから、合金を構成する他の元素 は、高融点の金属、例えば Ag、 Cu、 Ni、 Zn、 Al、 Pd、 Au及び Pt等の 1種又は 2種 以上であり、 Sn、 In及び Biから選ばれる 1種以上の元素と、 Ag、 Cu、 Ni、 Zn、 Al、 P d、 Au及び Ptから選ばれる 1種以上の元素とで構成される合金が挙げられる。具体 的には、 SnZn合金、 SnAg合金、 SnCu合金、 SnAl合金、 InAg合金、 InZn合金、 BiAg合金、 BiNi合金、 BiZn合金又は BiPb合金等の 2元系合金で、融点 300°C超 、 400°C未満の金属粉末が挙げられ、 3元系の合金としては、 AgCuSn合金、 AgCu In合金又は AgBiCu合金等の 3元系の合金で、融点 300°C超、 400°C未満の金属 粉末が挙げられる。
[0035] また、成分 (B)としては、融点 400°C超、 700°C未満の金属粉末を使用することが でき、例えば融点が 400°C超、 660°C未満の金属粉末である。具体的には、 Sn、 In 及び Biの合金であって、融点 400°C超、 700°C未満の金属粉末が挙げられる。 Sn、 In又は Biは、いずれも融点が 300°C未満の金属であることから、合金を構成する他 の元素は、高融点の金属、例えば Ag、 Cu、 Ni、 Zn、 Al、 Pd、 Au及び Pt等の 1種又 は 2種以上であり、例えば、 Sn、 In及び Biから選ばれる 1種以上の元素と Ag、 Cu、 N i、 Zn、 Al、 Pd、 Au及び Ptから選ばれる 1種以上の元素で構成される合金が挙げら れる。具体的には、 SnZn合金、 SnAg合金、 SnCu合金、 SnAl合金、 InAg合金、 In Zn合金、 BiAg合金、 BiNi合金、 BiZn合金又は BiPb合金等の 2元系合金で、融点 400°C超、 700°C未満の金属粉末が挙げられ、 3元系の合金としては、 AgCuSn合 金、 AgCuIn合金又は AgBiCu合金等の 3元系の合金で、融点 400°C超、 700°C未 満の金属粉末が挙げられる。
[0036] 内部電極との接合性からは、 Snを含む合金が好ましぐ例えば、 Snと Agの重量割 合が 89 : 11〜25. 5 : 74. 5の SnAg合金が挙げられる。このような粉末を使用した場 合、硬化の過程での Snの挙動が内部電極との一層良好な接合をもたらすと考えられ る。
[0037] 融点 300°C超、 400°C未満の金属粉末としては、 Snと Agの重量割合が 89: 11以 下、 72 : 28超の金属粉末が挙げられ、 89 : 11〜82 : 28の金属粉末が包含される。
[0038] また、融点 400°C超、 700°C未満の金属粉末としては、 Snと Agの重量割合が 72: 28-25. 5 : 74. 5の SnAg合金が挙げられる。外部電極を形成した際の内部電極と の接合性の点力 70 : 30〜30: 70の SnAg合金が好ましレ、。融点 300°C超、 700°C 未満の金属粉末における、合金の構成金属の重量割合については、構成金属が定 まれば一定範囲が定まるものとレ、える。
[0039] 金属粉末の形状は、球状、りん片状、針状等、どのような形状のものであってもよい 。これらの平均粒子径は、印刷又は塗布の後に優れた表面状態を与え、また、形成 した電極に優れた導電十生を与えること力ら、 0. 05〜30 μ πιカ好ましく、 0.:!〜 20 μ mがより好ましい。
[0040] 成分(C)の熱硬化性樹脂は、バインダとして機能するものであり、尿素樹脂、メラミ ン樹脂、グアナミン樹脂のようなァミノ樹脂;ビスフエノール A型、ビスフエノール F型、 フエノールノボラック型、脂環式等のエポキシ樹脂;ォキセタン樹脂;レゾール型、ァ ルキルレゾール型、ノボラック型、アルキルノボラック型、ァラルキルノボラック型のよう なフエノール樹脂;シリコーンエポキシ、シリコーンポリエステルのようなシリコーン変 性有機樹脂、ビスマレイミド、ポリイミド樹脂等が好ましい。また、例えば、 BTレジンも 使用することができる。これらの樹脂は、単独で用いても、 2種以上を併用してもよレ、
[0041] 樹脂として、常温で液状である樹脂を用レ、ると、希釈剤としての有機溶剤の使用量 を低減することができるため好ましい。このような液状樹脂としては、液状エポキシ樹 脂、液状フエノール樹脂等が例示される。また、これらの液状樹脂に相溶性があり、 力つ常温で固体ないし超高粘性を呈する樹脂を、混合系が流動性を示す範囲内で さらに添加混合してもよい。そのような樹脂として、高分子量のビスフエノール A型ェ ポキシ樹脂、ジグリシジノレビフエニル、ノボラック型エポキシ樹脂、テトラブロモビスフ ェノール A型エポキシ樹脂のようなエポキシ樹脂;レゾール型フエノール樹脂、ノボラ ック型フエノール樹脂等が例示される。
[0042] エポキシ樹脂を用いる場合、硬化機構としては、自己硬化性樹脂を用いても、アミ ン類、イミダゾール類、酸水物又はォニゥム塩のような硬化剤や硬化触媒を用いても よぐァミノ樹脂やフエノール樹脂を、エポキシ樹脂の硬化剤として機能させてもよい。
[0043] 熱硬化性導電ペーストに使用されるエポキシ樹脂は、フエノール樹脂によって硬化 するものが好ましい。フエノール樹脂としては、エポキシ樹脂の硬化剤として通常用い られるフエノール樹脂初期縮合物であればよぐレゾール型でもノボラック型でもよレヽ 力 硬化の際の応力が緩和され、優れた耐ヒートサイクル性を得るためには、その 50 重量%以上がアルキルレゾール型又はアルキルノボラック型のフエノール樹脂である ことが好ましい。また、アルキルレゾール型フエノール樹脂の場合、優れた印刷適性 を得るためには、平均分子量が 2, 000以上であることが好ましい。これらのアルキル レゾール型又はアルキルノボラック型フエノール樹脂において、アルキル基としては、 炭素数 1〜18のものを用いることができ、ェチル、プロピル、ブチル、ペンチル、へキ シル、ォクチル、ノニノレ、デシルのような炭素数 2〜10のものが好ましい。
[0044] これらのうち、優れた接着性が得られ、また耐熱性も優れていることから、ビスフヱノ ール型エポキシ樹脂及びレゾール型フエノール樹脂が好ましぐビスフエノール型ェ ポキシ樹脂及びレゾール型フエノール樹脂の組み合わせが特に好ましレ、。ビスフエノ ール型エポキシ樹脂及びレゾール型フエノール樹脂の組み合わせを用いる場合、ェ ポキシ樹脂とフエノール樹脂の重量比力 4 : 1〜: 1 : 4の範囲が好ましぐ 4 : 1〜: 1: 2 力 Sさらに好ましい。また、ベンゼン環を多数有した多官能エポキシ樹脂(例えば 4官能 エポキシ樹脂)、フエノール樹脂、ポリイミド樹脂なども耐熱性の観点から有効である。
[0045] なお、本発明の効果を損なわない範囲で、熱硬化性樹脂と併せて熱可塑性樹脂を 使用してもよレ、。熱可塑性樹脂としては、ポリスルホン、ポリエーテルスルホン、マレイ ミド樹脂等が好ましい。
[0046] 熱硬化性導電ペーストの印刷適性、得られた外部電極層の導電性の点から、成分
(A)、成分 (B)及び成分(C)の合計重量に対して、成分 (A)及び (B)力 60〜98重 量%であることが好ましぐより好ましくは 70〜95重量%であり、成分(C)が、 40〜2 重量%が好ましぐ 30〜5重量%がより好ましい。
[0047] また成分 (A)と成分 (B)の重量割合 (成分 (A) :成分 (B) )は、 99 : 0. :!〜 30 : 70が 好ましい。
[0048] 特に、成分 (B)が融点 300°C超、 400°C未満の金属粉末の場合、成分 (A)と成分( B)の重量割合 (成分 (A):成分 (B) )は、 99. 9 : 0. 1〜60 : 40が好ましく、より好まし く ίま 99: 1〜67: 43であり、特に好ましく ίま 95: 5〜65: 35である。
[0049] 特に、成分 (Β)が融点 400°C超、 700°C未満の金属粉末の場合、成分 (A)と成分( B)の重量割合 (成分 (A):成分 (B) )は、 90 : 10〜30 : 70が好ましぐより好ましくは 8 0: 20〜40: 60であり、特に好ましく ίま 75: 25〜45: 55である。
[0050] また、成分 (Β)が SnAg合金粉末である場合、成分 (A)及び成分 (B)の合計 100 重量%のうち、成分(B)に含まれる Snが 5〜70重量%であることが好ましぐより好ま しくは 10〜50重量%である。成分 (B)が SnAg合金粉末の場合、組み合わせる成分 (A)としては Ag粉末が好ましレ、。
[0051] 熱硬化性導電ペーストは、成分 (A)、(B)及び(C)の種類と量を選択し、また必要 に応じて希釈剤を用いることにより、所望の電子部品のセラミック複合体に印刷又は 塗布する方法に応じて、適切な粘度に調製することが出来る。例えば、スクリーン印 刷に用いられる場合、常温における導電ペーストの見掛粘度は、 10〜500Pa' sが好 ましぐ 15〜300Pa' sがより好ましい。希釈剤としては、有機溶剤が用いられるが、有 機溶剤は樹脂の種類に応じて選択され、その使用量は用いられる成分 (A)、(B)及 び(c)の種類とその構成比、並びに導電ペーストを印刷又は塗布する方法等により 任意に選択される。
[0052] 有機溶剤としては、トルエン、キシレン、メシチレン、テトラリンのような芳香族炭化水 素類;テトラヒドロフランのようなエーテル類;メチルェチルケトン、メチルイソブチルケ トン、シクロへキサノン、イソホロンのようなケトン類;2—ピロリドン、 1 _メチル _ 2—ピ 口リドンのようなラタトン類;エチレングリコールモノメチルエーテル、エチレングリコー ノレモノェチノレエーテノレ、エチレングリコーノレモノブチノレエーテノレ、ジエチレングリコー ルモノメチルエーテル、ジエチレングリコールモノェチルエーテル、ジエチレングリコ ールモノブチルエーテル、更にこれらに対応するプロピレングリコール誘導体のよう なエーテルアルコール類;それらに対応する酢酸エステルのようなエステル類;並び にマロン酸、コハク酸等のジカルボン酸のメチルエステル、ェチルエステルのようなジ エステル類が例示される。有機溶剤の使用量は、用いられる成分 (A)、 (B)及び(C) の種類と量比、並びに導電ペーストを印刷又は塗布する方法等により、任意に選択 される。
[0053] 熱硬化性導電ペーストには、このほか、必要に応じて、分散助剤として、ジイソプロ ポキシ(ェチルァセトァセタト)アルミニウムのようなアルミニウムキレートイ匕合物;イソプ 口ピルトリイソステアロイルチタナートのようなチタン酸エステル;脂肪族多価カルボン 酸エステル;不飽和脂肪酸アミン塩;ソルビタンモノォレエートのような界面活性剤;又 はポリエステルアミン塩、ポリアミドのような高分子化合物等を用いてもよい。また、無 機及び有機顔料、シランカップリング剤、レべリング剤、チキソトロピック斉 lj、消泡剤等 を配合してもよい。
[0054] 熱硬化性導電ペーストは、配合成分を、ライカイ機、プロペラ撹拌機、ニーダー、口 ール、ポットミル等のような混合手段により、均一に混合して調製することが出来る。 調製温度は、特に限定されないが、例えば常温、 20〜30°Cで調製することが出来る
[0055] このようにして得られた熱硬化性導電ペーストを用いて、外部電極を有する積層セ ラミック電子部品を公知の方法に従って形成することができる。例えば熱硬化性導電 ペーストを、積層セラミックコンデンサのセラミック複合体の内部電極取り出し面に、ス クリーン印刷、転写、浸漬塗布等、任意の方法で印刷又は塗布する。通常、硬化後 の外部電極の厚さは、好ましくは:!〜 300 x m、より好ましくは 20〜100 z mになるよう な厚さに印刷又は塗布する。有機溶剤を用いる場合は、印刷又は塗布の後、常温で 、又は加熱によって、乾燥させる。次いで、外部電極を得るために、例えば 80〜450 °Cで、具体的には 80〜400°Cで硬化をさせることができる。また、 80〜160°Cで乾 燥させた後、 200〜450°Cで硬化させることもできる。なお、成分 (B)が SnAg合金粉 末の場合、配合の効果を十分に発揮させるためには、硬化温度は 250〜350°Cであ ること力 S好ましい。本発明の熱硬化性導電ペーストは、硬化の際に、特に不活性ガス 雰囲気下に置く必要がないため、簡便である。
[0056] 硬化時間は、硬化温度等により変化させることができる力 作業性の点から:!〜 60 分が好ましい。ただし、 250°C以下で硬化させる場合は、 20〜60分とすること力 内 部電極との接合性の点から好ましい。例えばペースト中の樹脂がフエノール樹脂を硬 化剤として用いるエポキシ樹脂の場合、 200〜450°Cで、 5〜60分の硬化を行い、 外部電極を得ることができる。ペースト中の揮発成分が一気に気化し、塗膜にふくれ やクラックが発生することを防止するためには、急激な加熱 (例えば 300°C以上に急 激に加熱する)を避けることがのぞましい。
[0057] 本発明で用いられる積層セラミック電子部品のセラミック複合体は、いずれか公知 の方法で作製されるものであってよい。なお本発明においてセラミック複合体とは、セ ラミック層と内部電極層を交互に積層した積層体を焼成したものや、樹脂 'セラミック ノ、イブリツド材料と内部電極を交互に積層した積層体をいう。セラミック層又は樹脂- セラミックハイブリッド材料は、その所望の電子部品に適した性質、例えばコンデンサ であれば誘電性、を有するもので、いずれか公知の方法で得られるものであってよい 。また内部電極層も特に限定されるものではなレ、が、安価で入手の容易な卑金属、 例えば Ni、 Cu等を内部電極として使用しているものが好ましい。本発明の積層セラミ ック電子部品は、例えばコンデンサ、コンデンサアレイ、サーミスタ、バリスター、イン ダクタ並びに LC、 CR、 LR及び LCR複合部品等であってよい。
[0058] 得られた積層セラミック電子部品は、基板等へはんだ付け実装する際の接着強度 をさらに高めるため、必要に応じて電極層表面にメツキが施される。メツキ処理は公知 の方法に従って行なわれるが、環境への配慮から Pbフリーメツキが施されるのが好ま しい。例えば外部電極の表面に、ワット浴等で電気メツキにより Niメツキが施され、そ の後さらに、電気メツキによりはんだメツキや Snメツキが施される。
[0059] このようにして得られた本発明の熱硬化性導電ペーストで形成された外部電極の表 面にメツキを施した積層セラミック電子部品は、内外電極の接合性等、電気特性に優 れ、回路基板等への実装に適した有用なものである。
実施例
[0060] 以下、実施例及び比較例によって、本発明をさらに詳細に説明する。本発明はこれ らの実施例によって限定されるものではない。
[0061] 〔導電ペーストの調製〕
実施例及び比較例で使用した導電ペーストの組成 (表中の数字は、断りのない限り 重量部である)は、以下の表 1のとおりである。
[0062] [表 1]
表 1
Figure imgf000013_0001
[0063] 表 1における成分 (A)は、以下のとおりである。 一球状 Ag粉末 A:平均粒子径 0. 、純度 99. 5%以上
—フレーク状 Ag粉末:平均粒子径 12 μ m、純度 99%以上
一 Ag微粉末含有ペースト:
製造方法は次のとおり。 10Lのガラス製反応容器に 3—メトキシプロピルァミン 3. Ok g (30. 9mol)を入れた。撹拌しながら、反応温度を 45°C以下に保持しつつ、酢酸銀 5. 0kg (30. Omol)を添カ卩した。添加直後は、透明な溶液となり溶解していくが、添カロ が進むにつれ溶液が次第に濁り、全量を添加すると灰茶濁色の粘調溶液となった。 そこへ 95重量%のギ酸 1. 0kg (21. Omol)をゆっくり滴下した。滴下直後から激しい 発熱が認められたが、その間、反応温度を 30〜45°Cに保持した。当初、灰濁色の粘 調溶液が、茶色から黒色へ変化した。全量を滴下した後反応を終了させた。反応混 合物を 40°Cで静置すると二層に分かれた。上層は黄色の透明な液であり、下層には 黒色の銀微粒子が沈降した。上層の液には、銀成分が含まれていなかった。上層の 液をデカンテーシヨンで除去し、メタノールを使用して層分離させて銀含有率 89重量 %の Ag微粉末含有ペーストを得た。
ペースト中の Ag微粉末は次のとおり。平均粒子径 61nm、結晶子径 40nm、平均粒 子径 /結晶子径 = 1. 5。平均粒子径は、 Ag微粉末含有ペースト約 0. 5gを、分散水 (AEROSOL0. 5%含有水) 50ccに添加し、超音波分散機で 5分間分散し、試料を 、ベックマン'コールター社製レーザ回折散乱式粒度分布測定装置 (LS230)により 測定した値であり、結晶子径は、マックサイエンス社製 X線回折測定装置 (Ml 8XHF 22)による測定によって、 Cuの Kひ線を線源とした面指数(1 , 1 , 1)面ピークの半値 幅を求め、 Scherrerの式より計算した値である。
_球状0185八§合金粉末:〇1と八§の重量割合(01 :八§)が85 : 15。融点 1010°C、 平均粒子径 2. 5 μ m、純度 99%以上
表 1における成分(B)は、以下のとおりである。
—球状 Sn80Ag合金粉末: Snと Agの重量割合(Sn: Ag)が 80: 20。融点 330°C、 平均粒子径 2. 5 μ m、純度 99%以上
—球状 Sn35Ag合金粉末: Snと Agの重量割合(Sn: Ag)が 35: 65。融点 590°C、 平均粒子径 2. 5 μ πι、純度 99%以上 [0065] 表 1における成分(C)は、以下のとおりである。
—エポキシ樹脂 A:ビスフエノール A型、数平均分子量 1800
[0066] —フヱノール樹脂 A:レゾール型、数平均分子量 3000
[0067] 表 1に示す組成に基づいて、成分 (A)〜(C)、溶剤等を配合し、ロールミルにより均 一になるまで混練した後、さらに溶剤をカ卩ぇペースト粘度が 40Pa's/25°Cになるよう に調整した。
[0068] 〔積層セラミックコンデンサ試料の作成〕
表 1に示した組成を有する導電ペーストを、チップ積層コンデンサのセラミック複合 体(1608タイプ、 B特性、 Ni内部電極、理論容量 1 μ F)の内部電極取り出し面に、 硬化後の厚さが 50 μ m程度になるように均一に浸漬塗布し、 150°Cで 10分間乾燥し た後、大気中で 300°C、 30分間硬化を行い外部電極を形成した。続いてワット浴で Niメツキを行レ、、次いで電気メツキにより Snメツキを行い、チップ積層コンデンサを得 た。
[0069] 圆定コ
上記で得られたチップ積層コンデンサ素子の初期電気特性(静電容量、 tan δ )を Agilent製 4278Αで測定し、外部電極の基板との接合強度(せん断強度)をアイコ 一エンジニアリング製卓上強度試験機で測定した後、耐ヒートサイクル性試験 (一 55 °CZ125°C (30分 Z30分); 250サイクル)後の電気特性及び接合強度を同様に測 定した。結果を表 2に示す。
[0070] [表 2]
表 2
実施例 実施例 実施例 実施例 実施例 比較例 比較例 比較例
1 2 3 4 5 1 2 3 容量 (ju F) 初期 1.02 0.99 1.00 1.00 0.94 1.00 1.00 0.97 ヒ-トサイクル後 0.93 0.96 0.95 0.96 0.94 0.94 0.53 0.94 tanS (%) 初期 2.9 2.8 2.9 2.9 2.9 3.4 2.9 2.8 ヒ-トサイクル後 2.9 2.9 3.0 2.9 3.0 6.6 77.5 17.0 接合強度 初期 1.9 1.6 1.8 2.1 1.2 1.8 1.9 1.1
(kN/cm2)
ヒ-トサイクル後 1.8 1.5 1.5 1.9 1.1 1.5 1.6 0.9 [0071] 実施例:!〜 5はヒートサイクル後も安定した電気特性及び良好な接合強度を示し、 コンデンサとして優れていることがわかる。一方、比較例:!〜 3は、特にヒートサイクノレ 後の特性が劣る結果となった。
産業上の利用可能性
[0072] 本発明の熱硬化性導電ペーストは、高温での焼成を必要としないので、積層セラミ ック電子部品における外部電極形成時の高温焼成に伴う不具合を回避することがで き、良好な電気特性を容易に確保できる。また、基板への実装ゃメツキ処理に適した 外部電極を有する積層セラミック電子部品を得ることを可能とし、有用性が高い。

Claims

請求の範囲
[1] (A)融点 700°C以上の金属粉末、(B)融点 300°C超、 700°C未満の金属粉末、及 び (C)熱硬化性樹脂を含む熱硬化性導電ペースト。
[2] 成分 (B)が、融点 300°C超、 400°C未満の金属粉末である、請求項 1記載の熱硬 化性導電ペースト。
[3] 成分 (B)力 融点 400°C以上、 700°C未満の金属粉末である、請求項 1記載の熱 硬化性導電ペースト。
[4] 成分 (A)力 Ag、 Cu、 Ni、 Pd、 Au及び Pt、並びにこれらの合金からなる群から選 択される金属粉末である、請求項 1〜3のいずれ力 1項記載の熱硬化性導電ペースト
[5] 成分 (A)が、
(a) 1次粒子の平均粒子径が 50〜80nmであり、
(b)結晶子径が 20〜50nmであり、かつ
(c)結晶子径に対する平均粒子径の比が:!〜 4である、
Ag微粉末である、請求項 1〜4のいずれ力 1項記載の熱硬化性導電ペースト。
[6] 成分(B) 、 Sn、 In及び Biから選択される 1種以上の元素と、 Ag、 Cu、 Ni、 Zn、 A
1、 Pd、 Au及び Ptから選択される 1種以上の元素とで構成される合金の金属粉末で ある、請求項 1〜5のいずれ力 4項記載の熱硬化性導電ペースト。
[7] 積層セラミック電子部品の外部電極形成用の請求項:!〜 6のいずれか 1項記載の 熱硬化性導電ペースト。
[8] 請求項 1〜7のいずれ力 1項記載の熱硬化性導電ペーストを用いて形成した外部 電極を有する積層セラミック部品。
[9] 請求項 1〜7のいずれ力 1項記載の熱硬化性導電ペーストと、外部電極を設けようと するセラミック複合体とを準備し;
(2)セラミック複合体の内部電極取り出し面に、熱硬化性導電ペーストを印刷又は 塗布し、場合により乾燥させ;そして
(3) (2)で得られたセラミック複合体を、 80°C〜400°Cで、 1分〜 60分間保持し、外 部電極を形成する ことにより得られる、積層セラミック電子部品。
[10] 外部電極の表面に、更に Ni層を形成し、次いで Sn層を形成した、請求項 8又は 9 記載の積層セラミック電子部品。
[11] 積層セラミック電子部品力 コンデンサ、コンデンサアレイ、サーミスタ、ノ リスター並 びに LC、 CR、 LR及び LCR複合部品のいずれかである、請求項 8〜10のいずれか に 1項記載の積層セラミック電子部品。
PCT/JP2006/325462 2005-12-22 2006-12-21 熱硬化性導電ペースト及びそれを用いて形成した外部電極を有する積層セラミック部品 WO2007072894A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007551136A JP5180588B2 (ja) 2005-12-22 2006-12-21 熱硬化性導電ペースト及びそれを用いて形成した外部電極を有する積層セラミック部品
KR1020087017879A KR101358977B1 (ko) 2005-12-22 2006-12-21 열경화성 도전 페이스트 및 그것을 사용하여 형성한 외부전극을 가진 적층 세라믹 부품
US12/086,622 US8168889B2 (en) 2005-12-22 2006-12-21 Thermosetting conductive paste and multilayer ceramic part having an external electrode formed using the same
CN2006800482332A CN101341557B (zh) 2005-12-22 2006-12-21 热固性导电糊以及具有使用其形成的外部电极的层叠陶瓷部件
EP06842970.3A EP1965397B1 (en) 2005-12-22 2006-12-21 Thermosetting conductive paste and multilayer ceramic component having external electrode which is formed by using such thermosetting conductive paste

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005370460 2005-12-22
JP2005370965 2005-12-22
JP2005-370965 2005-12-22
JP2005-370460 2005-12-22

Publications (1)

Publication Number Publication Date
WO2007072894A1 true WO2007072894A1 (ja) 2007-06-28

Family

ID=38188668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325462 WO2007072894A1 (ja) 2005-12-22 2006-12-21 熱硬化性導電ペースト及びそれを用いて形成した外部電極を有する積層セラミック部品

Country Status (7)

Country Link
US (1) US8168889B2 (ja)
EP (1) EP1965397B1 (ja)
JP (1) JP5180588B2 (ja)
KR (1) KR101358977B1 (ja)
CN (1) CN101341557B (ja)
TW (1) TWI408702B (ja)
WO (1) WO2007072894A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170835A (ja) * 2008-01-21 2009-07-30 Panasonic Corp セラミック電子部品
WO2009098938A1 (ja) * 2008-02-06 2009-08-13 Namics Corporation 熱硬化性導電ペースト、及びそれを用いて形成した外部電極を有する積層セラミック電子部品
JP2009285702A (ja) * 2008-05-30 2009-12-10 Denso Corp ろう材、ろう材ペーストおよび熱交換器
JP2010108845A (ja) * 2008-10-31 2010-05-13 Namics Corp 外部電極用導電性ペースト、及びそれを用いて形成した外部電極を備えた積層セラミック電子部品
WO2010074119A1 (ja) * 2008-12-25 2010-07-01 ナミックス株式会社 外部電極用導電性ペースト、及びそれを用いて形成した外部電極を有する積層セラミック電子部品
JP5124691B1 (ja) * 2012-03-21 2013-01-23 有限会社 ナプラ 導電性微粉末、導電性ペースト及び電子部品
JP2013118356A (ja) * 2011-10-31 2013-06-13 Murata Mfg Co Ltd セラミック電子部品及びその製造方法
JP2013118357A (ja) * 2011-10-31 2013-06-13 Murata Mfg Co Ltd セラミック電子部品及びその製造方法
JP2013118358A (ja) * 2011-10-31 2013-06-13 Murata Mfg Co Ltd セラミック電子部品及びその製造方法
CN103183474A (zh) * 2011-12-27 2013-07-03 比亚迪股份有限公司 一种无机玻璃粉及其制备方法、一种导电浆料及其制备方法
JP2013235807A (ja) * 2012-05-04 2013-11-21 Samsung Electro-Mechanics Co Ltd 導電性樹脂組成物、これを含む積層セラミックキャパシタ及びその製造方法
JP2014107157A (ja) * 2012-11-28 2014-06-09 Sumitomo Metal Mining Co Ltd 導電性樹脂ペースト及びそれを用いた電子素子
WO2014097823A1 (ja) * 2012-12-18 2014-06-26 株式会社村田製作所 積層セラミック電子部品
JP2014120382A (ja) * 2012-12-18 2014-06-30 Sumitomo Metal Mining Co Ltd 導電性樹脂ペースト及びそれを用いた電子素子
JP2014160791A (ja) * 2013-02-20 2014-09-04 Samsung Electro-Mechanics Co Ltd 積層セラミック電子部品
JP2014231642A (ja) * 2007-09-07 2014-12-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 銀および少なくとも2種の非銀含有元素を含有する多元素合金粉末
JP2017011145A (ja) * 2015-06-24 2017-01-12 株式会社村田製作所 積層セラミックコンデンサ
JP2017069189A (ja) * 2015-09-29 2017-04-06 三ツ星ベルト株式会社 導電性ペースト並びに電子基板及びその製造方法
JP2017119913A (ja) * 2015-12-28 2017-07-06 Dowaエレクトロニクス株式会社 銀合金粉末およびその製造方法
WO2017115462A1 (ja) * 2015-12-28 2017-07-06 Dowaエレクトロニクス株式会社 銀合金粉末およびその製造方法
JP2018056266A (ja) * 2016-09-28 2018-04-05 株式会社村田製作所 電子部品の製造方法
JP2019007057A (ja) * 2017-06-27 2019-01-17 三菱マテリアル株式会社 Ag合金微粉末
US10575412B2 (en) 2016-12-27 2020-02-25 Mitsuboshi Belting Ltd. Electroconductive paste, electronic substrate, and method for manufacturing said substrate
WO2022065004A1 (ja) * 2020-09-25 2022-03-31 株式会社村田製作所 チップ型セラミック電子部品およびその製造方法
JP2022547367A (ja) * 2020-06-01 2022-11-14 潮州三環(集団)股▲ふん▼有限公司 厚膜抵抗ペースト
US11810721B2 (en) 2021-02-05 2023-11-07 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589891B2 (ja) * 2010-05-27 2014-09-17 株式会社村田製作所 セラミック電子部品及びその製造方法
CN102262914B (zh) * 2010-05-31 2014-04-02 比亚迪股份有限公司 一种太阳能电池导电银浆的制备方法
CN104137194A (zh) * 2012-02-27 2014-11-05 E.I.内穆尔杜邦公司 银浆及其在太阳能电池生产中的用途
CN104145317B (zh) * 2012-03-05 2016-12-21 株式会社村田制作所 电子部件
EP2824681B1 (en) * 2012-03-05 2019-04-10 Murata Manufacturing Co., Ltd. Electronic component and a junction structure between electronic component and object to be joined
CN103325508B (zh) * 2013-05-21 2016-02-10 京东方科技集团股份有限公司 变阻器及其制作方法
JP2015026815A (ja) * 2013-06-19 2015-02-05 株式会社村田製作所 セラミック電子部品およびその製造方法
JP2015026816A (ja) * 2013-06-19 2015-02-05 株式会社村田製作所 セラミック電子部品およびその製造方法
KR101508838B1 (ko) * 2013-08-09 2015-04-06 삼성전기주식회사 다층 세라믹 소자 및 이를 구비하는 실장 구조물
US20150070816A1 (en) * 2013-09-06 2015-03-12 Delphi Technologies, Inc. Capacitor fabrication using nano materials
KR20140038912A (ko) * 2013-10-01 2014-03-31 삼성전기주식회사 적층 세라믹 커패시터 및 그 실장 기판
US9460855B2 (en) * 2013-10-01 2016-10-04 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board having the same
CN106104702B (zh) * 2014-03-20 2021-03-30 纳美仕有限公司 导电性糊剂、层叠陶瓷部件、印刷布线板、以及电子装置
KR20150121603A (ko) * 2014-04-21 2015-10-29 덕산하이메탈(주) 금속입자
JP6365068B2 (ja) * 2014-07-28 2018-08-01 住友金属鉱山株式会社 積層セラミックコンデンサ内部電極用導電性ペーストおよびその製造方法、ならびに、積層セラミックコンデンサ
US20160143145A1 (en) * 2014-11-13 2016-05-19 E I Du Pont De Nemours And Company Electrical device
KR101975133B1 (ko) * 2015-01-30 2019-05-03 가부시키가이샤 무라타 세이사쿠쇼 전자 부품의 제조 방법 및 전자 부품
US10147533B2 (en) 2015-05-27 2018-12-04 Samsung Electro-Mechanics Co., Ltd. Inductor
KR102242667B1 (ko) * 2015-12-22 2021-04-21 삼성전기주식회사 적층 세라믹 전자부품 및 그 제조방법
CN107871605B (zh) * 2016-09-28 2019-10-01 株式会社村田制作所 介质以及电子部件的制造方法
KR20190121210A (ko) 2018-10-17 2019-10-25 삼성전기주식회사 적층 세라믹 전자부품 및 그 제조방법
WO2020195523A1 (ja) * 2019-03-28 2020-10-01 株式会社村田製作所 チップ型セラミック電子部品およびその製造方法
WO2021033387A1 (ja) * 2019-08-22 2021-02-25 株式会社村田製作所 電子部品
CN111739675B (zh) * 2020-06-19 2021-03-05 潮州三环(集团)股份有限公司 一种厚膜电阻浆料
JP2022056742A (ja) * 2020-09-30 2022-04-11 株式会社村田製作所 電子部品の製造方法
CN113891549A (zh) * 2021-11-15 2022-01-04 苏州锦艺新材料科技有限公司 导电糊剂、导电糊剂的制备方法及电路板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823170A (ja) * 1994-07-07 1996-01-23 Fujitsu Ltd セラミック多層基板及びその製造方法
JPH09129479A (ja) * 1995-11-02 1997-05-16 Murata Mfg Co Ltd セラミック電子部品
JPH10154417A (ja) * 1996-11-26 1998-06-09 Toyobo Co Ltd 導電性ペースト
JPH11307930A (ja) * 1998-04-24 1999-11-05 Namics Corp 基板およびその製造方法
JP2001122639A (ja) * 1999-10-21 2001-05-08 Tdk Corp ガラスフリットおよび導体ペースト組成物ならびに積層コンデンサ
JP2004047419A (ja) * 2002-05-17 2004-02-12 Hitachi Chem Co Ltd 導電ペースト
WO2004053901A1 (ja) * 2002-12-09 2004-06-24 Matsushita Electric Industrial Co., Ltd. 外部電極を備えた電子部品
JP2004208535A (ja) * 2002-12-27 2004-07-29 Toyoichi Takahashi 海鼠梅肉混合食品及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267784A (ja) 1992-11-04 1994-09-22 Du Pont Kk 導電性樹脂ペースト及びそれにより成る端子電極を有した積層セラミックチップコンデンサ
JP3602864B2 (ja) * 1994-03-16 2004-12-15 アルプス電気株式会社 導電性ペースト
US7022266B1 (en) * 1996-08-16 2006-04-04 Dow Corning Corporation Printable compositions, and their application to dielectric surfaces used in the manufacture of printed circuit boards
WO1998008362A1 (en) * 1996-08-16 1998-02-26 Craig Hugh P Printable compositions, and their application to dielectric surfaces used in the manufacture of printed circuit boards
JP2000182883A (ja) 1998-12-15 2000-06-30 Matsushita Electric Ind Co Ltd 積層セラミック電子部品の製造方法
JP3534684B2 (ja) * 2000-07-10 2004-06-07 Tdk株式会社 導電ペーストおよび外部電極とその製造方法
JP3450839B2 (ja) * 2000-08-31 2003-09-29 松下電器産業株式会社 導電性接着剤を用いた実装構造体
JP4097900B2 (ja) * 2001-01-11 2008-06-11 Tdk株式会社 電子部品の製造方法
JP2003305588A (ja) * 2002-04-11 2003-10-28 Fujitsu Ltd 接合材料
CN1326155C (zh) * 2002-05-31 2007-07-11 大自达电线股份有限公司 导电糊、使用其的多层基板及其制造方法
WO2004022663A1 (ja) * 2002-09-04 2004-03-18 Namics Corporation 導電性接着剤およびそれを用いた回路
JP4569109B2 (ja) * 2004-01-08 2010-10-27 住友ベークライト株式会社 金属含有ペーストおよび半導体装置
JP4402504B2 (ja) 2004-04-21 2010-01-20 アイシン高丘株式会社 旋削装置
JP2005330529A (ja) * 2004-05-19 2005-12-02 Dowa Mining Co Ltd 球状銀粉およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823170A (ja) * 1994-07-07 1996-01-23 Fujitsu Ltd セラミック多層基板及びその製造方法
JPH09129479A (ja) * 1995-11-02 1997-05-16 Murata Mfg Co Ltd セラミック電子部品
JPH10154417A (ja) * 1996-11-26 1998-06-09 Toyobo Co Ltd 導電性ペースト
JPH11307930A (ja) * 1998-04-24 1999-11-05 Namics Corp 基板およびその製造方法
JP2001122639A (ja) * 1999-10-21 2001-05-08 Tdk Corp ガラスフリットおよび導体ペースト組成物ならびに積層コンデンサ
JP2004047419A (ja) * 2002-05-17 2004-02-12 Hitachi Chem Co Ltd 導電ペースト
WO2004053901A1 (ja) * 2002-12-09 2004-06-24 Matsushita Electric Industrial Co., Ltd. 外部電極を備えた電子部品
JP2004208535A (ja) * 2002-12-27 2004-07-29 Toyoichi Takahashi 海鼠梅肉混合食品及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1965397A4 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231642A (ja) * 2007-09-07 2014-12-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 銀および少なくとも2種の非銀含有元素を含有する多元素合金粉末
JP2009170835A (ja) * 2008-01-21 2009-07-30 Panasonic Corp セラミック電子部品
JP5390408B2 (ja) * 2008-02-06 2014-01-15 ナミックス株式会社 熱硬化性導電ペースト、及びそれを用いて形成した外部電極を有する積層セラミック電子部品
WO2009098938A1 (ja) * 2008-02-06 2009-08-13 Namics Corporation 熱硬化性導電ペースト、及びそれを用いて形成した外部電極を有する積層セラミック電子部品
JP2009285702A (ja) * 2008-05-30 2009-12-10 Denso Corp ろう材、ろう材ペーストおよび熱交換器
JP2010108845A (ja) * 2008-10-31 2010-05-13 Namics Corp 外部電極用導電性ペースト、及びそれを用いて形成した外部電極を備えた積層セラミック電子部品
JP5400801B2 (ja) * 2008-12-25 2014-01-29 ナミックス株式会社 外部電極用導電性ペースト、それを用いて形成した外部電極を有する積層セラミック電子部品及び積層セラミック電子部品の製造方法
WO2010074119A1 (ja) * 2008-12-25 2010-07-01 ナミックス株式会社 外部電極用導電性ペースト、及びそれを用いて形成した外部電極を有する積層セラミック電子部品
JP2013118357A (ja) * 2011-10-31 2013-06-13 Murata Mfg Co Ltd セラミック電子部品及びその製造方法
JP2013118358A (ja) * 2011-10-31 2013-06-13 Murata Mfg Co Ltd セラミック電子部品及びその製造方法
JP2013118356A (ja) * 2011-10-31 2013-06-13 Murata Mfg Co Ltd セラミック電子部品及びその製造方法
CN103183474A (zh) * 2011-12-27 2013-07-03 比亚迪股份有限公司 一种无机玻璃粉及其制备方法、一种导电浆料及其制备方法
CN103183474B (zh) * 2011-12-27 2016-03-30 比亚迪股份有限公司 一种无机玻璃粉及其制备方法、一种导电浆料及其制备方法
JP5124691B1 (ja) * 2012-03-21 2013-01-23 有限会社 ナプラ 導電性微粉末、導電性ペースト及び電子部品
JP2013235807A (ja) * 2012-05-04 2013-11-21 Samsung Electro-Mechanics Co Ltd 導電性樹脂組成物、これを含む積層セラミックキャパシタ及びその製造方法
JP2014107157A (ja) * 2012-11-28 2014-06-09 Sumitomo Metal Mining Co Ltd 導電性樹脂ペースト及びそれを用いた電子素子
JPWO2014097822A1 (ja) * 2012-12-18 2017-01-12 株式会社村田製作所 積層セラミック電子部品
KR101775913B1 (ko) * 2012-12-18 2017-09-07 가부시키가이샤 무라타 세이사쿠쇼 적층 세라믹 전자부품
JP2014120382A (ja) * 2012-12-18 2014-06-30 Sumitomo Metal Mining Co Ltd 導電性樹脂ペースト及びそれを用いた電子素子
WO2014097822A1 (ja) * 2012-12-18 2014-06-26 株式会社村田製作所 積層セラミック電子部品
WO2014097823A1 (ja) * 2012-12-18 2014-06-26 株式会社村田製作所 積層セラミック電子部品
JPWO2014097823A1 (ja) * 2012-12-18 2017-01-12 株式会社村田製作所 積層セラミック電子部品
US9627133B2 (en) 2012-12-18 2017-04-18 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component
TWI585794B (zh) * 2012-12-18 2017-06-01 Murata Manufacturing Co Laminated ceramic electronic parts
US9881737B2 (en) 2012-12-18 2018-01-30 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component
KR101775914B1 (ko) * 2012-12-18 2017-09-07 가부시키가이샤 무라타 세이사쿠쇼 적층 세라믹 전자부품
JP2014160791A (ja) * 2013-02-20 2014-09-04 Samsung Electro-Mechanics Co Ltd 積層セラミック電子部品
JP2017011145A (ja) * 2015-06-24 2017-01-12 株式会社村田製作所 積層セラミックコンデンサ
JP2017069189A (ja) * 2015-09-29 2017-04-06 三ツ星ベルト株式会社 導電性ペースト並びに電子基板及びその製造方法
WO2017115462A1 (ja) * 2015-12-28 2017-07-06 Dowaエレクトロニクス株式会社 銀合金粉末およびその製造方法
JP2017119913A (ja) * 2015-12-28 2017-07-06 Dowaエレクトロニクス株式会社 銀合金粉末およびその製造方法
JP2018056266A (ja) * 2016-09-28 2018-04-05 株式会社村田製作所 電子部品の製造方法
US10575412B2 (en) 2016-12-27 2020-02-25 Mitsuboshi Belting Ltd. Electroconductive paste, electronic substrate, and method for manufacturing said substrate
JP2019007057A (ja) * 2017-06-27 2019-01-17 三菱マテリアル株式会社 Ag合金微粉末
JP7052229B2 (ja) 2017-06-27 2022-04-12 三菱マテリアル株式会社 Ag合金微粉末
JP2022547367A (ja) * 2020-06-01 2022-11-14 潮州三環(集団)股▲ふん▼有限公司 厚膜抵抗ペースト
JP7295973B2 (ja) 2020-06-01 2023-06-21 潮州三環(集団)股▲ふん▼有限公司 厚膜抵抗ペースト
WO2022065004A1 (ja) * 2020-09-25 2022-03-31 株式会社村田製作所 チップ型セラミック電子部品およびその製造方法
JP7494925B2 (ja) 2020-09-25 2024-06-04 株式会社村田製作所 チップ型セラミック電子部品およびその製造方法
US11810721B2 (en) 2021-02-05 2023-11-07 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component

Also Published As

Publication number Publication date
JPWO2007072894A1 (ja) 2009-06-04
EP1965397A1 (en) 2008-09-03
US20090139754A1 (en) 2009-06-04
CN101341557A (zh) 2009-01-07
CN101341557B (zh) 2011-08-17
KR101358977B1 (ko) 2014-02-06
US8168889B2 (en) 2012-05-01
KR20080080656A (ko) 2008-09-04
JP5180588B2 (ja) 2013-04-10
TW200739611A (en) 2007-10-16
EP1965397B1 (en) 2019-03-20
EP1965397A4 (en) 2014-08-06
TWI408702B (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
WO2007072894A1 (ja) 熱硬化性導電ペースト及びそれを用いて形成した外部電極を有する積層セラミック部品
JP5390408B2 (ja) 熱硬化性導電ペースト、及びそれを用いて形成した外部電極を有する積層セラミック電子部品
JP5400801B2 (ja) 外部電極用導電性ペースト、それを用いて形成した外部電極を有する積層セラミック電子部品及び積層セラミック電子部品の製造方法
TWI284328B (en) Conductive paste
EP1571680B1 (en) Electronic part with external electrode
JP5204623B2 (ja) 外部電極用導電性ペースト、及びそれを用いて形成した外部電極を備えた積層セラミック電子部品
JP6156393B2 (ja) 導電性接着剤組成物及びそれを用いた電子素子
JP5675161B2 (ja) 外部電極用導電性ペースト、及びそれを用いて形成した外部電極を備えた積層セラミック電子部品
CN110462752B (zh) 电极形成用树脂组合物以及芯片型电子部件及其制造方法
TWI588237B (zh) 導電性接著劑
JP2019056104A (ja) 導電性組成物及びそれを用いた配線板
JP2014120382A (ja) 導電性樹脂ペースト及びそれを用いた電子素子
JP5877239B2 (ja) 外部電極用導電性ペースト、及びそれを用いて形成した外部電極を備えた積層セラミック電子部品
WO2012114925A1 (ja) 導電性組成物及びそれを用いた外部電極
JP5134352B2 (ja) 導電性ペースト
JP6852846B2 (ja) 電極用ペーストおよび積層セラミック電子部品
JP3917037B2 (ja) 外部電極及びそれを備えた電子部品
JP6048166B2 (ja) 導電性接着剤組成物及びそれを用いた電子素子
JP2021125520A (ja) プリント回路板、及びプリント回路板の製造方法
JP5764824B2 (ja) 導電性接着剤組成物及びそれを用いた電子素子
WO2019058727A1 (ja) 導電性組成物及びそれを用いた配線板
JP2021125521A (ja) プリント配線板、プリント回路板、及びプリント配線板の製造方法
JP2021143227A (ja) 金属ペースト及び端面形成用電極ペースト
JP2018106907A (ja) 電極用ペーストおよび積層セラミック電子部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680048233.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007551136

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12086622

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006842970

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087017879

Country of ref document: KR