WO2007063989A1 - 電子写真感光体、および画像形成装置 - Google Patents

電子写真感光体、および画像形成装置 Download PDF

Info

Publication number
WO2007063989A1
WO2007063989A1 PCT/JP2006/324101 JP2006324101W WO2007063989A1 WO 2007063989 A1 WO2007063989 A1 WO 2007063989A1 JP 2006324101 W JP2006324101 W JP 2006324101W WO 2007063989 A1 WO2007063989 A1 WO 2007063989A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge transport
charge
general formula
transport material
photosensitive member
Prior art date
Application number
PCT/JP2006/324101
Other languages
English (en)
French (fr)
Inventor
Teruyuki Mitsumori
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to US12/095,647 priority Critical patent/US8404412B2/en
Publication of WO2007063989A1 publication Critical patent/WO2007063989A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0532Macromolecular bonding materials obtained by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0542Polyvinylalcohol, polyallylalcohol; Derivatives thereof, e.g. polyvinylesters, polyvinylethers, polyvinylamines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0532Macromolecular bonding materials obtained by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0546Polymers comprising at least one carboxyl radical, e.g. polyacrylic acid, polycrotonic acid, polymaleic acid; Derivatives thereof, e.g. their esters, salts, anhydrides, nitriles, amides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0592Macromolecular compounds characterised by their structure or by their chemical properties, e.g. block polymers, reticulated polymers, molecular weight, acidity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0596Macromolecular compounds characterised by their physical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06144Amines arylamine diamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06144Amines arylamine diamine
    • G03G5/061446Amines arylamine diamine terphenyl-diamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Definitions

  • Electrophotographic photosensitive member and image forming apparatus Electrophotographic photosensitive member and image forming apparatus
  • the present invention relates to an electrophotographic photosensitive member having a charge transport layer and a charge generation layer on a conductive support. Furthermore, the present invention relates to an electrophotographic photosensitive member having good electrical characteristics, stability and durability, and an image forming apparatus.
  • an inorganic photoconductor such as selenium, arsenic-selenium alloy, cadmium sulfate, or zinc oxide is used.
  • organic photoconductive materials which have the advantages of pollution-free, easy film formation and easy manufacture, has become the mainstream! /
  • the layer structure of the organic photoreceptor includes: a so-called single-layer photoreceptor in which a charge generating material is dispersed in a binder resin; a laminated photoreceptor in which a charge generating layer and a charge transfer layer are laminated.
  • Multilayer photoconductors provide highly sensitive and stable photoconductors by separating the highly efficient charge generating material and charge transfer material into separate layers and combining them together, and the material selection range is wide. It is often used because it is easy to adjust the characteristics.
  • Single layer type photoreceptors are used in a limited manner because they are slightly inferior to laminated type photoreceptors in terms of electrical characteristics and have a narrow material selectivity.
  • the electrophotographic photosensitive member is repeatedly used in an electrophotographic process, that is, a cycle of charging, exposure, development, transfer, taring, neutralization, and the like, it is deteriorated by various stresses during that time.
  • chemical deterioration includes, for example, the strong acidity of ozone and NOx generated by the corona charger that is commonly used as chargers, which can damage the photosensitive layer.
  • repeated use may cause deterioration of electrical stability such as a decrease in chargeability and an increase in residual potential, and image defects associated therewith.
  • the These are largely derived from chemical deterioration of charge transport materials contained in the photosensitive layer.
  • Patent Document 1 JP 2001-056595 A
  • the present invention is excellent in electrical characteristics and image characteristics even when the content of the charge transport material is low, and has a high durability with little deterioration due to small changes in characteristics due to environmental changes.
  • an electrophotographic photoreceptor can be obtained by using a specific amount of a charge transport material having a specific structure.
  • the inventors have found that electrical characteristics, stability of characteristics, and durability can be improved, and have reached the present invention.
  • the present invention has the following gist.
  • the charge transport layer comprises a charge transport material represented by the following general formula (1), and a binder resin. And a mass ratio of the charge transport material to the binder resin (charge transport material Z binder resin) having a force of 5Z100 or more and 45Z100 or less.
  • Ar 1 represents an arylene group which may have a substituent
  • Ar 2 , Ar 3 , Ar 4 , and Ar 5 may have a substituent!
  • N represents an integer from 3 to 6)
  • the charge transport layer contains a charge transport material represented by the following general formula (1). And a plurality of charge transport materials and a binder resin, wherein the mass ratio of the total mass of the plurality of charge transport materials to the binder resin (charge transport material Z binder resin) is 25Z100.
  • Ar 1 is an arylene group which may have a substituent; Ar 2 , Ar 3 , And Ar 5 may have a substituent! Represents an aryl group, and n represents an integer of 3 to 6)
  • the charge transport layer contains a charge transport material represented by the following general formula (1).
  • the charge generation layer contains oxytitanium phthalocyanine, and the oxytitanium phthalocyanine is obtained by chemically treating a phthalocyanine crystal precursor and then contacting an organic solvent, ; Oxitita-um phthalocyanine with main diffraction peaks at Bragg angles (2 ⁇ ⁇ 0.2 °) for characteristic X-rays (wavelength 1.541A) at 9.5 °, 24.1 ° and 27.2 ° An electrophotographic photosensitive member characterized by the above.
  • Ar 1 represents an arylene group which may have a substituent
  • Ar 2 , Ar 3 , Ar 4 , and Ar 5 may have a substituent!
  • N represents an integer from 3 to 6)
  • the charge transport layer comprises a charge transport material represented by the following general formula (1) and a polyarylene.
  • Ar 1 represents an arylene group which may have a substituent
  • Ar 2 , Ar 3 , Ar 4 , and Ar 5 may have a substituent!
  • N represents an integer from 3 to 6)
  • the charge transport layer comprises a charge transport material represented by the following general formula (1), a viscosity average
  • An electrophotographic photoreceptor comprising a binder resin having a molecular weight of 10,000 to 70,000.
  • Ar 1 represents an arylene group which may have a substituent
  • Ar 2 , Ar 3 , Ar 4 , and Ar 5 may have a substituent!
  • N represents an integer from 3 to 6)
  • the charge generation layer has a Bragg angle of an X-ray diffraction spectrum with respect to CuKa characteristic X-rays.
  • An electrophotographic photosensitive member having a charge transport layer containing a charge transport material represented by the following general formula (1) and a charge generation layer is mounted on a conductive support, and the electrophotography An image forming apparatus, wherein an image is formed by exposing a photoreceptor to monochromatic light having a wavelength of 380 to 500 nm.
  • Ar 1 represents an arylene group which may have a substituent
  • Ar 2 , Ar 3 , Ar 4 , and Ar 5 may have a substituent!
  • N represents an integer from 3 to 6)
  • An electrophotographic photoreceptor having a charge transport layer containing a charge transport material represented by the following general formula (1) as an outermost layer is mounted on a conductive support, and the electrophotographic photoreceptor An image forming apparatus characterized in that an image is formed by charging with a charger placed in contact with the electrophotographic photosensitive member.
  • Ar 1 represents an arylene group which may have a substituent
  • Ar 2 , Ar 3 , Ar 4 , and Ar 5 may have a substituent!
  • N represents an integer from 3 to 6)
  • the compatibility between the binder resin in the charge transport layer and the charge transport material is excellent, so that the formation of the photosensitive layer is facilitated.
  • the electrophotographic photosensitive member has excellent electrical characteristics, good stability and durability, and changes in the usage environment, particularly high temperature and high humidity, and excellent printing durability.
  • An electrophotographic photosensitive member can be provided.
  • the photoconductor it is possible to provide an electrophotographic apparatus such as a printer, a facsimile machine, and a copying machine with high image quality and low toner consumption.
  • FIG. 1 is a diagram showing an example of an image forming apparatus of the present invention.
  • FIG. 2 is a powder X-ray diffraction spectrum by CuKa characteristic X-ray of the oxytitanium phthalocyanine composition “CG6” obtained in Production Example 10.
  • FIG. 3 is a mass spectrum of an oxytitanium phthalocyanine composition “CG6” obtained in Production Example 10.
  • the charge transport layer of the electrophotographic photosensitive member according to the present invention contains a charge transport material represented by the following general formula (1).
  • Ar 1 is an arylene group which may have a substituent
  • Ar 2 , Ar 3 , and And Ar 5 may have a substituent!
  • the arylene group represented by Ar 1 may be any group as long as it has aromaticity, for example, has a so-called aromatic ring containing the largest number of non-integrated double bonds. Group.
  • Ar 1 is a group having 1 to 10 aromatic rings, but the aromatic rings are preferably 3 or less.
  • Ar 1 may be an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • Aromatic hydrocarbon groups include groups consisting of aromatic rings such as phenylene, naphthylene, and anthrylene, but indene divalent groups such as indenylene, fluorene divalent groups, and tetralin divalent groups.
  • a group having a condensed ring force between an aromatic ring such as the above and another hydrocarbon ring may also be used.
  • aromatic heterocyclic group may be a monocyclic aromatic heterocyclic group such as a divalent group of furan, a divalent group of thiophene, or a divalent group of pyrrole. Or a complex aromatic heterocyclic group such as divalent group of carbazole or divalent group of rubazole.
  • p-phenylene, m-phenylene, 1,3-naphthylene, 1,4-naphthylene, and the like can be mentioned. From the viewpoint of reducing steric repulsion, p-phenylene or m-phenylene is preferable. In order to improve electrical properties, m-phenylene is preferred when p-phenylene is a problem with the preferred solubility.
  • Ar 1 may have, as a substituent, an alkyl group such as a methyl group, an ethyl group, or a propyl group; an alkenyl group such as an aryl group; an alkoxy group such as a methoxy group, an ethoxy group, or a propoxy group; Examples include aryl groups such as a phenyl group.
  • substituents have the effect of increasing the charge mobility due to the electron donating effect, when the substituent size becomes too large, the charge mobility is reduced by the distortion of the conjugate plane in the molecule and intermolecular steric repulsion. Therefore, a group having 10 or less carbon atoms, particularly 3 or less carbon atoms is preferable, and a methyl group or a methoxy group is preferable.
  • the number of substituents in one Ar 1 is too large, the charge mobility is lowered for the same reason, so it is preferably 3 or less, more preferably 2 or less. Further, the total number of substituents possessed by 3 to 6 Ar 1 forces as a whole is too low, and the charge mobility is lowered for the same reason. Therefore, it is preferably 8 or less, more preferably 6 or less. In particular, when there is no problem in solubility and electrical characteristics, no substitution is preferred. In addition, these substituents may be replaced by linking groups. Alternatively, they may be directly bonded to form a ring in the molecule.
  • the charge transport material represented by the general formula (1) has 3 to 6 Ar 1 in the same molecule.
  • Each Ar 1 may have a different structure.
  • n represents an integer of 3 to 6, and when n is 5 or 6, at least one of Ar 1 in the same molecule contains an m-phenylene group, or Ar it is preferred that 1 to form a ring next to each other to form a condensed polycyclic. n is preferably 3 or 4 in terms of ease of production. When n is 3, it is particularly preferable that all of Ar 1 is a power 3 ⁇ 4—phenylene group.
  • Ar 2 , Ar 3 , And Ar 5 represents an aryl group, but may be any group that has aromaticity, for example, a group having a so-called aromatic ring containing the largest number of non-integrated double bonds. Can be given.
  • Ar 2 , Ar 3 , And Ar 5 is a group having 1 to 10 aromatic rings, and the aromatic rings are preferably 3 or less.
  • Ar 2 , Ar 3 , And Ar 5 may be an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • the aromatic hydrocarbon group even a group consisting of aromatic rings such as phenol, naphthyl and anthryl, a monovalent group of indene such as indur, a monovalent group of fluorene such as fluorenyl, A group having a condensed ring force between an aromatic ring such as a monovalent group of tetralin and another hydrocarbon ring may be used.
  • the aromatic heterocyclic group may be a monocyclic aromatic heterocyclic group such as a monovalent group of furan, a monovalent group of thiophene, or a monovalent group of pyrrole. It may be a complex aromatic heterocyclic group such as a monovalent group or a monovalent group of force rubazole.
  • Ar 2 , Ar 3 , Specific examples of Ar 5 include a phenyl group, a naphthyl group, a acenaphthyl group, an indur group, a fluorine group, a pyryl group, and a chael group. Of these, a phenyl group, a naphthyl group or a chenyl group is preferred from the viewpoint of intramolecular conjugation expansion and reduction of the permanent dipole moment of the molecule!
  • Ar 2 , Ar 3 , And Ar 5 may have a substituent such as an alkyl group such as a methyl group, an ethyl group or a propyl group; an alkenyl group such as a aryl group; an aralkyl group such as a benzyl group; a phenyl group or a tolyl group; Aryl groups; alkoxy groups such as methoxy, ethoxy and propoxy groups.
  • substituents improve the intramolecular charge balance. Although there is an effect of increasing the charge mobility, if the size of the substituent becomes too large, the charge mobility is preferably reduced due to distortion of the conjugate plane in the molecule and intermolecular steric repulsion. Among them, those having 3 or less atoms, particularly 2 or less carbon atoms are preferred, and methyl group or methoxy group is preferred.
  • the number of substituents is preferably 3 or less, more preferably 2 or less. In particular, when there is no problem in solubility and electrical characteristics, no substitution is preferred.
  • these substituents may be linked to each other to form a ring within the molecule.
  • Ar 2 , Ar 3 , And at least one of Ar 5 preferably has one or more substituents. These substituents may form a ring within the molecule by a linking group or directly bonded to each other.
  • a general method for producing the charge transporting material represented by the general formula (1) is not particularly limited, but it is preferable to use a known reaction such as an Ullmann reaction between a secondary amine and a halogenated aryl compound. Can be obtained by using IJ.
  • the charge transport layer of the electrophotographic photosensitive member according to the present invention contains a binder resin.
  • the binder resin include butadiene, styrene, vinyl acetate, vinyl chloride, acrylic acid ester, and methacrylic acid ester.
  • Polymers or copolymers of butyl compounds such as butyl alcohol and ethyl vinyl ether, polybutyl petital, poly buyl formal, partially modified poly butylacetal, polycarbonate, polyester, polyarylate, polyamide, polyurethane, cellulose ether , Phenoxy resin, key resin, epoxy
  • Examples include rosin and poly N vinyl carbazole rosin. Of these, polycarbonate and polyarylate are particularly preferred. These can also be used after being crosslinked with heat, light or the like using an appropriate curing agent or the like.
  • These binder resins can be used in a blend of two or more. The details of Noinda oil will be described later.
  • the ratio of the binder resin to the charge transport material represented by the general formula (1) is 5 parts by mass or more with respect to 100 parts by mass of the binder resin, and further 10 parts by mass or less from the viewpoint of reducing the residual potential.
  • the amount is more preferably 20 parts by mass or more.
  • the viewpoint of thermal stability of the photosensitive layer it is 45 parts by mass or less, and from the viewpoint of compatibility between the charge transport material and the binder resin, preferably 40 parts by mass or less, and from the viewpoint of printing durability.
  • From the viewpoint of scratch resistance which is more preferably 35 parts by mass or less, 30 parts by mass or less is most preferable.
  • the charge transport layer may contain a plurality of types of charge transport materials represented by the general formula (1).
  • ratio of the charge transport material represented by the general formula (1) means the ratio of the total mass of the charge transport material represented by the general formula (1) in the charge transport layer.
  • the combined use with other charge transport materials other than the charge transport material represented by the general formula (1) is preferable for the purpose of good image formation.
  • the total charge transport material contained in the charge transport layer is 25 parts by weight or more with respect to 100 parts by weight of the binder resin, and from the viewpoint of reducing the residual potential. 30 parts by mass or more is preferable, and 40 parts by mass or more is more preferable from the viewpoint of stability and charge mobility when repeatedly used.
  • the viewpoint of thermal stability of the photosensitive layer it is usually 55 parts by mass or less, and preferably from the viewpoint of compatibility between the charge transport material and the binder resin, preferably 50 parts by mass or less, and printing durability.
  • a viewpoint power of 35 parts by mass or less is more preferable.
  • a viewpoint power of scratch resistance is most preferably 45 parts by mass or less.
  • the “plurality of charge transport materials” means “a charge transport material other than the charge transport material represented by the general formula (1)” even if there are a plurality of charge transport materials represented by the general formula (1). “Multiple” may be used in combination with “other charge transport materials”.
  • any material can be used as long as it has charge transporting ability.
  • Preferred examples include the following.
  • R is independently water. Indicates an atomic atom or a substituent.
  • substituent an alkyl group, an alkoxy group, a phenyl group and the like are preferable. Particularly preferred is a methyl group.
  • the conductive support examples include a metal material such as aluminum, aluminum alloy, stainless steel, copper, and nickel, and a resin material imparted with conductivity by adding conductive powder such as metal, carbon, and tin oxide.
  • resin, glass, paper, or the like obtained by depositing or coating a conductive material such as aluminum, nickel, ITO (indium tin oxide alloy) on its surface is mainly used.
  • a drum shape, a sheet shape, a belt shape or the like is used.
  • a conductive material having an appropriate resistance value may be coated on a conductive support made of a metal material to control conductivity / surface properties and to cover defects.
  • the conductive support When a metal material such as an aluminum alloy is used as the conductive support, it may be used after being anodized. When anodizing is performed, it is desirable to perform sealing by a known method.
  • the surface of the support may be smooth, or may be roughened by using a special cutting method or performing a polishing treatment. Further, it may be roughened by mixing particles having an appropriate particle size with the material constituting the support. In order to reduce the cost, it is possible to use the drawn tube as it is without cutting.
  • An undercoat layer may be provided between the conductive support and the photosensitive layer in order to improve adhesion and blocking properties.
  • resin resin obtained by dispersing particles of metal oxide, etc. are used.
  • metal oxide particles used for the undercoat layer include metal oxides containing one kind of metal element such as titanium oxide, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide, and iron oxide.
  • metal oxide particles containing a plurality of metal elements such as particles, calcium titanate, strontium titanate, and barium titanate. Only one type of particle may be used, or a plurality of types of particles may be mixed and used. Of these metal oxide particles, titanium oxide and aluminum oxide are preferred, and titanium oxide is particularly preferred.
  • the titanium oxide particles are formed on the surface by an inorganic substance such as tin oxide, acid aluminum, acid antimony, acid zirconium, silicon oxide, or organic substances such as stearic acid, polyol, and silicone. It may be processed.
  • any of rutile, anatase, brookite, and amorphous can be used. A plurality of crystalline states may be included.
  • the particle size of metal oxide particles is the maximum of any 10 particles observed by SEM photographs in terms of characteristics and liquid stability, among various available forces.
  • the average primary particle size is preferably 10 nm or more and lOOnm or less, particularly preferably lOnm or more and 50 nm or less.
  • the undercoat layer is preferably formed in a form in which metal oxide particles are dispersed in a binder resin.
  • binder resin used in the undercoat layer phenoxy, epoxy, polyvinyl pyrrolidone, polybutyl alcohol, casein, polyacrylic acid, celluloses, gelatin, starch, polyurethane, polyimide, polyamide, etc. are used alone or with a curing agent. Can be used in hardened form.
  • alcohol-soluble copolymerized polyamide, modified polyamide, and the like are preferable because they have good dispersibility and coatability.
  • the mixing ratio of the inorganic particles to the Noinda resin used for the undercoat layer can be selected arbitrarily.
  • Power Use in the range of 10% to 500% by mass with respect to the entire binder resin.
  • Power Stability of dispersion and coating From the viewpoint of sex.
  • the thickness of the undercoat layer can be selected arbitrarily, but is preferably in the range of 0.1 ⁇ m to 20 ⁇ m from the viewpoint of photoreceptor characteristics and coating properties.
  • the undercoat layer may contain a known antioxidant or the like.
  • any constitution applicable to a known electrophotographic photoreceptor having a charge transport layer containing a charge transport material can be adopted.
  • a so-called multilayer photoreceptor having a photosensitive layer composed of a plurality of layers formed by laminating a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material can be mentioned.
  • More preferred is a sequential lamination type photoreceptor in which a charge generation layer and a charge transport layer are laminated in this order on a conductive support.
  • charge generation materials include selenium and its alloys, cadmium sulfate, and other Inorganic photoconductive materials: Organics such as phthalocyanine pigments, azo pigments, dithioketopyrrolopyrrole pigments, squalene pigments, quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, anthanthrone pigments, benzimidazole pigments Various photoconductive materials such as pigments can be used, and organic pigments, phthalocyanine pigments and azo pigments are particularly preferred.
  • the fine particles of these photoconductive materials are, for example, polyester resin, polyvinyl acetate, polyacrylic acid ester, polymethacrylic acid ester, polyester, polycarbonate, polybulacetocetal, polybulupropional, polybulubutyral, Used in the form of binders such as phenoxy resin, epoxy resin, urethane resin, cellulose ester, and cellulose ether.
  • the usage ratio of the photoconductive material in the case of the multilayer photoreceptor is in the range of 30 to 500 parts by mass with respect to 100 parts by mass of the binder resin.
  • the film thickness is usually in the range of 0.1 l ⁇ m to 1 ⁇ m, and preferably in the range of 0.15 ⁇ m to 0.6 ⁇ m.
  • a phthalocyanine compound When a phthalocyanine compound is used as the charge generation material, specifically, a metal-free phthalocyanine; a metal such as copper, indium, gallium, tin, titanium, zinc, vanadium, silicon, germanium, or a metal acid thereof Various crystal forms of coordinated phthalocyanines such as neurogenic compounds, hydroxide compounds, alkoxides, and the like are used.
  • high sensitivity, metal-free phthalocyanine such as X-type and vertical-type; oxytitanium such as A-type (also known as
  • ⁇ type (j8 type), ⁇ type ( ⁇ type), and CuKa characteristics X-ray Bragg angle (2 ⁇ ⁇ 0.2 °) is 27.3 °
  • D-type (Y-type) oxytitanium phthalocyanine, vertical gallium phthalocyanine, V-type hydroxygallium phthalocyanine, G-type oxo gallium phthalocyanine dimer, etc. Is particularly preferred.
  • D-type titanium phthalocyanine is preferred, and in particular, a product prepared after acid paste treatment with sulfuric acid is preferred.
  • a small amount of cyclooxytitanium phthalocyanine contained in D-type titanium phthalocyanine is preferable. That is, in the method (mass spectrum method) described in Japanese Patent Application Laid-Open No. 2001-115054, the strength ratio with respect to chlorooxytitanium phthalocyanine-carboxyxitamum phthalocyanine is preferably 0.005 or less. Moreover, it is preferable to use a raw material synthesized using a non-halogen compound.
  • the phthalocyanine compound only a single compound may be used, or V, a mixture of several phthalocyanine compounds or a mixed crystal state may be used.
  • the mixed or mixed crystal state of some phthalocyanine compounds may be used after mixing each phthalocyanine compound alone, or may be used for synthesis, pigmentation,
  • a mixed state may be generated during the process of manufacturing a phthalocyanine compound such as crystallization.
  • acid paste treatment, “grinding treatment”, solvent treatment and the like are known.
  • two types of crystals are mixed, mechanically ground and made amorphous, and then subjected to a specific treatment by solvent treatment. A method for converting to a crystalline state is mentioned.
  • the charge generation layer of the electrophotographic photoreceptor according to the present invention preferably contains a specific oxytitanium phthalocyanine.
  • the oxytitanium phthalocyanine is obtained by contacting a phthalocyanine precursor with an organic solvent after chemical treatment.
  • oxytitanium phthalocyanine is referred to as “specific oxytitanium phthalocyanine”.
  • the chemical treatment is a treatment used in the step of preparing amorphous oxytitanium phthalocyanine and low crystalline oxytitanium phthalocyanine.
  • Chemical treatment is simply an amorphous oxide using physical force (eg mechanical grinding).
  • This is a treatment method for obtaining amorphous or low-crystalline oxytitanium phthalocyanine by using chemical phenomena such as dissolution and reaction, which is not the case with the method of obtaining titanium phthalocyanine or low-crystalline oxytitanium phthalocyanine.
  • an acid pasting method (in this specification, an "acid pasting method” performed by dissolving a phthalocyanine precursor in a strong acid is simply referred to as an “acid paste method”).
  • Chemical treatment methods such as acid slurry which is dispersed in a strong acid, and oxytitanium phthalocyanine obtained by adding phenol and alcohol to dichlorotitatal phthalocyanine and then releasing it. Can be raised.
  • the acid paste method or the acid slurry method is preferred to obtain a more stable amorphous and low crystalline oxytitanium phthalocyanine, and the acid paste method is more preferred.
  • the acid paste method and the acid slurry method are media in which a pigment is dissolved or suspended or dispersed in a strong acid, and the prepared solution is uniformly mixed with the strong acid so that the pigment hardly dissolves.
  • Medium for example, in the case of oxytitanium phthalocyanine, alcohols such as water, methanol, ethanol, propanol, and ethylene glycol; ethers such as ethylene glycol monomono ether, ethylene glycol ether alcohol, and tetrahydrofuran, etc.
  • ethers such as ethylene glycol monomono ether, ethylene glycol ether alcohol, and tetrahydrofuran, etc.
  • Strong acids such as concentrated sulfuric acid, organic sulfonic acid, organic phosphonic acid, and trihalogenated acetic acid are used in the acid slurry method and the acid paste method. These strong acids can be used as a strong acid alone, a mixture of strong acids or a combination of a strong acid and an organic solvent. In consideration of the solubility of the phthalocyanine precursor, the type of strong acid is more preferably concentrated sulfuric acid in view of the production cost of trihalogen succinic acid and concentrated sulfuric acid.
  • the concentration of concentrated sulfuric acid is preferably 95% by mass because the solubility of the phthalocyanine precursor is taken into account, and more than 90% by mass of concentrated sulfuric acid is preferred, and if the content of concentrated sulfuric acid is low, production efficiency decreases. It is the above concentrated sulfuric acid.
  • the temperature at which the phthalocyanine precursor is dissolved in the strong acid can be dissolved under the temperature conditions described in known literature. However, if the temperature is too high, the precursor phthalocyanine ring is opened and decomposed. Therefore, an electrophotographic photosensitive member that is preferably obtained at 5 ° C or lower is preferable. Considering the effect, o ° c or less is more preferable.
  • Strong acid can be used in any amount If the amount is too small, the solubility of the phthalocyanine precursor will deteriorate, so the amount of strong acid used will be 5 parts by mass or more per 1 part by mass of phthalocyanine precursor If the solid content concentration is too high, the stirring efficiency decreases, so 15 parts by mass or more is preferable, and 20 parts by mass or more is more preferable. Also, if the amount of strong acid used is too large, the amount of waste acid increases. Therefore, 100 parts by mass or less is preferable, and 50 parts by mass or less is more preferable in consideration of production efficiency.
  • Examples of the medium for releasing the acid solution of the obtained phthalocyanine precursor include, for example, water; monohydric alcohols such as methanol, ethanol, 1 propanol, and 2-propanol; polyhydric alcohols such as ethylene glycol and glycerin. ; Cyclic ethers such as tetrahydrofuran, dioxane, dioxolane, tetrahydropyran; and chain ethers such as ethylene glycol monomethyl ether and ethylene glycol jetyl ether.
  • the release medium is a single species. It may be used, or two or more types may be mixed and used. Depending on the type of medium used, the particle shape, crystal state, etc. when re-pigmented change, and this history will affect the electrophotographic photoreceptor characteristics of the final crystal obtained later. Water is also preferred because of the productivity and cost advantages of lower alcohols such as 1 propanol and 2-propanol.
  • the concentrated sulfuric acid solution of the phthalocyanine precursor is released into a release medium, and the re-pigmented oxytitanium phthalocyanine is filtered off as a wet cake.
  • this wet cake contains a large amount of impurities such as sulfate ions of concentrated sulfuric acid present in the release medium, it is washed with a washing medium after being re-pigmented.
  • the medium for washing is, for example, an alkaline aqueous solution such as a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a sodium hydrogen carbonate aqueous solution, a sodium carbonate aqueous solution, a potassium carbonate aqueous solution, a sodium acetate aqueous solution, an aqueous ammonia solution; dilute hydrochloric acid, dilute nitric acid, Examples include acidic aqueous solutions such as dilute acetic acid; water such as ion-exchanged water. Of these, ionic substances remaining in the pigment often adversely affect the characteristics of the electrophotographic photosensitive member, and therefore water from which ionic substances such as ion-exchanged water have been removed is preferred.
  • an alkaline aqueous solution such as a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a sodium hydrogen carbonate aqueous solution, a sodium carbonate aque
  • the oxytitanium lid opening obtained by the acid paste method or the acid slurry method Cyanine has an amorphous force that does not have a clear diffraction peak, a peak, but a low crystallinity that has a peak that is very weak and has a very large half-width peak.
  • the amorphous oxytitanium phthalocyanine or the low crystalline oxytitanium phthalocyanine obtained by the acid paste method or the acid slurry method is brought into contact with an organic solvent, whereby the electrophotographic photoreceptor of the present invention is obtained.
  • Bragg angles (2 ⁇ ⁇ 0.2 °) for CuK characteristic X-rays (wavelength 1.541 A) that can be used have major diffraction peaks at 9.5 °, 24.1 ° and 27.2 °
  • Oxytitanium phthalocyanine or “specific oxytitanium phthalocyanine” having main diffraction peaks at 9.5 °, 9.7 °, 24.2 ° and 27.2 ° can be obtained.
  • the specific oxytitanium phthalocyanine is obtained by contact with an organic solvent after chemical treatment, and the amorphous oxytitanium phthalocyanine and the low crystalline oxytitanium phthalocyanine after chemical treatment are collected together.
  • Low crystalline phthalocyanines ".
  • low-crystalline phthalocyanines means X-ray diffraction (X-ray diffraction: hereinafter sometimes abbreviated as “XRD”) spectrum, CuKa characteristic X-rays. Phthalocyanines that do not have a peak with a Bragg angle (2 0 ⁇ 0.2 °) of 0 to 40 ° (wavelength 1.541 A) and a half-value width of 0.30 ° or less. If this half-value width is too small, the phthalocyanine molecule has a certain degree of regularity and long-term order in the solid, and the specific oxytitanium phthalocyanine can be brought into contact with the organic solvent. In obtaining, crystal form controllability may be reduced. For this reason, the low crystalline phthalocyanines used in the present invention do not have a peak at half-maximum force of usually 0.35 ° or less, further 0.40 ° or less, and particularly 0.45 ° or less. It is preferable.
  • a concentrated optical system powder X-ray diffractometer for example, PW1700, manufactured by PANalytical
  • CuKa CuKa 1 + CuKa 2
  • the measurement conditions of the powder X-ray diffraction spectrum are: scan range (2 ⁇ ) 3.0-40.0 °, scan step width 0.05 °, scan speed 3.0 ° Zmin, divergence slit 1 °, scattering slit 1 °, receiving slit 0.2 mm.
  • the peak half-value width can be calculated by a profile fitting method.
  • the profile fitting can be performed using, for example, powder X-ray diffraction pattern analysis software JADE5.0 + manufactured by MDI.
  • the calculation conditions are as follows.
  • the fitting function using Peason-VII function number in consideration of the contribution of Cu K a 2.
  • the crystals of specific oxytitanium phthalocyanine have a Bragg angle (2 0 ⁇ 0.2 °) of 9.5 °, 24.1 ° and 27.2 ° with respect to CuK ⁇ characteristic X-ray (wavelength 1.54lA). Or 9.5. , 9.7 °, 24.2 ° and 27.2 ° with main diffraction peaks.
  • the low crystalline phthalocyanines having a peak near 27.2 ° have regularity somewhat similar to the above-mentioned specific oxytitanium phthalocyanine, and the crystal type control to the above-mentioned specific crystal type. Excellent in nature.
  • the low crystalline phthalocyanines are those having a half-value width usually not having a peak of 0.30 ° or less, preferably not having a peak of 0.35 ° or less, and more preferably The half-value width does not have a peak of 0.40 ° or less, and more preferably the half-value width does not have a peak of 0.45 ° or less.
  • the low crystalline phthalocyanine has a peak whose half width is usually 0.30 ° or less, and preferably has no peak whose half width is 0.50 ° or less. More preferably, the half width has no peak of 0.70 ° or less, and still more preferably the half width has no peak of 0.90 ° or less.
  • the contact between the low crystalline phthalocyanines and the organic solvent is carried out in the presence of water.
  • the water may be water contained in the water-containing cake obtained by the acid paste method or the acid slurry method, or water may be added later in addition to the water contained in the water-containing cake. Further, the water-containing cake obtained after the acid paste method or the acid slurry method may be dried and then added with water at the time of crystal conversion.
  • the affinity between the pigment and water decreases when dried, the power to use the water contained in the water-containing cake obtained by the acid paste method or the acid slurry method without drying, or the water-containing cake It is preferable to add water later to the water contained in the water.
  • any of a solvent compatible with water and a solvent incompatible with water can be used.
  • the solvent compatible with water include cyclic ethers such as tetrahydrofuran, 1,4 dioxane, and 1,3 dioxolane.
  • solvents incompatible with water include aromatic hydrocarbon solvents such as toluene, naphthalene, methylnaphthalene, etc .; monochrome benzene, dichlorobenzene, chlorotoluene, dichlorotolenene, dichlorophenol.
  • halogenated hydrocarbon solvents such as benzene and 1,2-dichloroethane
  • substituted aromatic solvents such as nitrobenzene, 1,2-methylenedioxybenzene and acetophenone.
  • aromatic hydrocarbon solvents and the like have good electrophotographic properties and are preferred.
  • the crystal obtained after the crystal conversion is subjected to a drying step, and the drying method can be dried by a known method such as, for example, air drying, heat drying, vacuum drying or freeze drying. is there.
  • the crystal of the specific oxytitanium phthalocyanine obtained by the above production method has a Bragg angle (2 0 ⁇ 0.2 °) with respect to CuK a characteristic X-ray (wavelength 1.541 A) of 9.5 °, 24.1 ° And 27.2 °, or 9.5 °, 9.7 °, 24.2 ° and 27.2 °.
  • a crystal having a peak near 26.2 ° is inferior in crystal stability upon dispersion, and therefore it is a crystal that does not have a peak near 26.2 °.
  • the black angle has an error of ⁇ 0.2 °, as indicated by 2 0 ⁇ 0.2 °.
  • Bragg angle (20 ⁇ 0.2 °) is 9.5 ° means a range of 9.3 to 9.7 °. This error range is the same at other angles.
  • a azo compound When a azo compound is used as the charge generation material, various known bisazo pigments and triazo pigments are preferably used.
  • a compound having an oxadiazole ring structure is also preferred. Specific examples of suitable azo compounds are shown below.
  • a binder resin is used to ensure film strength.
  • the photosensitive layer dissolves the binder resin in the solvent together with the above-mentioned charge generating substance.
  • the coating solution obtained by dispersing the coating is on the conductive support (on the undercoat layer if it has an undercoat layer). It can be obtained by coating and drying.
  • Particularly preferred binder resins include polycarbonate resins and polyester resins. These generally have a partial structure of a diol component. Examples of diol components that form these structures include bisphenol residues and biphenol residues.
  • Specific examples include bis (4-hydroxy-1,3,5-dimethylphenol) methane, bis- (4-hydroxyphenol) methane, bis (4-hydroxy-1-methylphenol) methane ⁇ 1, 1-bis (4 hydroxyphenol) ethane, 1, 1-bis (4 hydroxyphenol) propane, 2, 2 bis (4 hydroxyphenol) propane, 2, 2 bis ( 4 Hydroxy-3-methylphenol) propane, 2,2 bis (4 hydroxyphenol) butane, 2,2 bis (4 hydroxyphenol) pentane, 2,2 bis (4 hydroxyphenol) ) —3—Methylbutane, 2,2 bis (4 hydroxyphenol) hexane, 2,2 bis (4 hydroxyphenol) 1 4-methylpentane, 1,1—bis (4 hydroxyphenol) -L) cyclopentane, 1,1-bis (4 hydroxyphenol) cyclohexane, 1- (3-phenyl 4-hydroxyphenol) methane, 1,1-bis- (3-hydroxy 4-hydroxy phenol), 1,1-bis- (3-phenol 4) Hydroxyphenol) propane, 2,2-bis (3
  • preferred compounds are bis (4-hydroxy-1,3,5-dimethylphenol).
  • diol components bisphenol, biphenol etc.
  • polycarbonate resin polycarbonate resin
  • a diol component having the following structure is preferable.
  • Particularly preferred acid components are those having the following structures.
  • dicarboxylic acid components and diol components can be used in combination.
  • the viscosity average molecular weight is preferably 10,000 or more, particularly preferably 20,000 or more.
  • the strength is preferably 70,000 or less, particularly preferably 50,000 or less. The viscosity average molecular weight is measured by the measurement method described in the examples and is defined thereby.
  • the photosensitive layer of the electrophotographic photoreceptor of the present invention preferably contains polyarylate resin.
  • the charge transport layer preferably contains a polyarylate resin.
  • the polyarylate resin functions as a binder resin.
  • the polyarylate resin is a kind of polyester, and is formed by condensation of a divalent alcohol having a ring having aromaticity and a divalent carboxylic acid having a ring having aromaticity.
  • polyarylate resin in combination with the charge transport material represented by the general formula (1) in order to improve mechanical properties.
  • the polyarylate resin used in the present invention will be described in detail.
  • any force usually used in the production of polyarylate resin can be used, preferably bisphenols and ⁇ Alternatively, bifonols are used. These bisphenols and biphenols may each independently have a substituent on the aromatic ring. More specifically, it preferably has an alkyl group, aryl group, halogen group or alkoxy group.
  • the alkyl group is preferably an alkyl group having 6 or less carbon atoms. Includes a methyl group, an ethyl group, and a propyl group.
  • the aryl group is preferably an aryl group having an aromatic ring number of 3 or less, more preferably a phenyl group or a naphthyl group.
  • a halogen group a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like are preferable.
  • an alkoxy group having 1 to 10 carbon atoms in the alkyl group in the alkoxy group is preferred, more preferably an alkoxy group having 1 to 8 carbon atoms, and particularly preferably 1 to 2 carbon atoms.
  • methoxy group, ethoxy group, butoxy group and the like are particularly preferable.
  • dihydric alcohol used in the polyarylate resin examples include those used in the above-described polycarbonate resin and polyester resin.
  • the dihydric alcohols preferably used for polyarylate succinate include bis (4-hydroxyphenol) methane, (2-hydroxyphenol) (4-hydroxyphenol) methane, bis (2-hydroxyphenol) methane, bis (4-hydroxy-3-methylphenol) methane, bis (4-hydroxy-3-ethylphenyl) methane, bis (4-hydroxy-1,3,5-dimethylphenol) ) Methane; 1, 1-bis (4-hydroxyphenol) ethane, 1- (2-hydroxyphenol) 1 1- (4-hydroxyphenol) ethane, 1, 1-bis (2— Hydroxyphenyl) ethane, 1,1-bis (4-hydroxy-1-methylphenol) ethane, 1,1-bis (4-hydroxy-1-ethylphenyl) ethane, 1,1-bis ( 4-hydroxy-1,3,5-dimethylphenol), 1,1-bis (4- Droxy-3-methylphenyl) e
  • a polyarylate resin having a dihydric alcohol having the following structure as a repeating unit structure is particularly preferable.
  • any one usually used in the production of polyarylate resin can be used. Specifically, phthalic acid, isophthalic acid, naphthalene 1,4 dicarboxylic acid, naphthalene 1,2,6 dicarboxylic acid, biphenyl 1,2,2, dicarboxylic acid, biphenyl 4,4, dicarboxylic acid, diphenyl Ether 2,2, -dicarboxylic acid, diphenyl ether 2,3, -dicarboxylic acid, diphenyl ether 2,4, -dicarboxylic acid, diphenyl ether-3,3, -dicarboxylic acid, diphenol ether 3,4'-dicarboxylic acid Diphenyl ether-4,4'-dicarboxylic acid.
  • Preferable examples include isophthalic acid, terephthalic acid, diphenyl ether 2,2′-dicarboxylic acid, diphenyl ether 2,4′-dicarboxylic acid, and diphenyl ether-4,4′-dicarboxylic acid. Particularly preferred are isophthalic acid, terephthalic acid, diphenyl ether 4,4′-dicarboxylic acid, and biphenyl 4,4′-dicarboxylic acid. These dicarboxylic acids can be used in combination.
  • the production method of the polyarylate rosin is not particularly limited, and examples thereof include an interfacial polymerization method and a solution.
  • Known polymerization methods such as a melt polymerization method and a solution polymerization method can be used.
  • a solution in which a divalent phenol component is dissolved in an alkaline aqueous solution and a halogenated hydrocarbon solution in which an aromatic dicarboxylic acid chloride component is dissolved are mixed.
  • a quaternary ammonium salt or a quaternary phosphonium salt may be present as a catalyst.
  • the polymerization temperature is preferably in the range of 0 to 40 ° C., and the polymerization time is preferably in the range of 2 to 20 hours from the viewpoint of productivity.
  • alkali component used in the interfacial polymerization method examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
  • the amount of alkali used is preferably in the range of 1.01 to 3 times equivalent of the phenolic hydroxyl group contained in the reaction system.
  • the halogenated hydrocarbon used as the solvent examples include dichloromethane, chloroform, 1, 2 -Dichloromethane, trichloroethane, tetrachloroethane, dichloroenobenzene and the like can be mentioned.
  • Examples of the quaternary ammonium salt or quaternary phosphonium salt used as the catalyst include, for example, salts of tertiary alkylamines such as tributylamine and trioctylamine, such as hydrochloric acid, bromic acid, and iodic acid; Benzyltriethylammonium chloride, benzyltrimethylammonium chloride, benzyltributylammonium chloride, tetraethylammonium chloride, tetraptylammonium chloride, tetraptylammonium bromide, trioctylmethylammonium chloride, tetrabutylphospho- Examples thereof include umbromide, triethyloctadecylphospho-umbromide, N-lauryl pyridinium chloride, lauryl picolium chloride and the like.
  • a molecular weight modifier in the interfacial polymerization method, can be used.
  • Molecular weight regulators include, for example, phenols; o, m, p-cresol mononole, o, m, p-ethenorephenol, o, m, ⁇ -propylphenol, ⁇ , m, p— (tert —Butyl) phenol, pentylphenol, hexylphenol, octylphenol, norphenol, 2,6-dimethylphenol derivatives, alkylphenols such as 2-methylphenol derivatives; o, m, p-phenol And monofunctional phenols such as urphenol.
  • monofunctional acid halides such as acetic acid chloride, butyric acid chloride, octylic acid chloride, benzoyl chloride, benzenesulfuryl chloride, benzenesulfuryl chloride, sulfieryl chloride, benzenephosphoryl chloride or their substitutes.
  • o, m, p- (tert-butyl) phenol, 2,6-dimethylphenol derivatives, 2-methylphenol are preferred because of their high molecular weight controllability and solution stability.
  • the viscosity average molecular weight of the polyarylate resin is not particularly limited, but is usually 10,000 or more, preferably 15,000 or more, more preferably 20,000 or more, and usually 300,000 or less. Preferred ⁇ is 200,000 or less, more preferred ⁇ is 100,000 or less, and particularly preferred ⁇ is 70,000 or less.
  • the viscosity average molecular weight is measured by the measuring method described in the examples and is defined thereby.
  • the mass ratio of the binder resin and the charge transport material represented by the general formula (1) is Any ratio can be used, but the above-mentioned range is preferred in general binder resin.
  • the binder resin contains polyarylate resin
  • all binders including polyarylate resin in the total mass of the charge transport material represented by the general formula (1) included in the charge transport layer are included.
  • the ratio to the resin mass that is, the general formula (
  • the mass part of the charge transport material represented by 1) (the total mass part when multiple types of charge transport materials represented by the general formula (1) are contained) From the standpoint of reducing the residual potential of the electrophotographic photosensitive member when it is 100 parts by mass, it is preferably 20 parts by mass or more from the viewpoint of stability and charge mobility when used repeatedly. More preferably, it is 25 parts by mass or more. On the other hand, it is 90 parts by mass or less from the viewpoint of thermal stability of the photosensitive layer, and preferably 80 parts by mass or less from the viewpoint of stability of the compound of the general formula (1) in the photosensitive layer. Furthermore, it is more preferable from the viewpoint of durability during image formation. It is preferably 65 parts by mass or less, more preferably 60 parts by mass or less, and particularly preferably 40 parts by mass or less from the viewpoint of scratch resistance.
  • the “mass content of all binder resins” refers to the mass content of all binder resins including those including the binder resins other than the polyarylate resin.
  • the charge transport layer also contains "another charge transport material" other than the charge transport material represented by the general formula (1), including a plurality of charge transport materials.
  • the total charge transport material contained in the charge transport layer is 25 parts by mass or more with respect to 100 parts by mass of the total binder resin including polyarylate resin, and further reduces the residual potential.
  • a viewpoint power of 30 parts by mass or more is preferred, and 40 parts by mass or more is more preferred from the viewpoint of stability and charge mobility when repeatedly used.
  • the viewpoint of thermal stability of the photosensitive layer it is usually 55 parts by mass or less, and the compatibility viewpoint of the charge transport material and the binder resin is preferably 50 parts by mass or less, and from the viewpoint of printing durability. From the viewpoint of the preferred scratch resistance, 45 parts by mass or less is most preferable.
  • the “total charge transport material” refers to both the charge transport material represented by the general formula (1) and “other charge transport material”.
  • the electrophotographic photosensitive member of the present invention preferably contains an anti-oxidation agent.
  • the antioxidant is a kind of stabilizer that is contained to prevent oxidation of members contained in the electrophotographic photosensitive member.
  • the oxidation of the member contained in the electrophotographic photosensitive member is initiated from the surface, so that the anti-oxidation agent is preferably contained in the outermost surface layer of the electrophotographic photosensitive member.
  • the acid-fouling inhibitor functions as a radical scavenger, and specifically includes phenol derivatives, amine compounds, phosphonates, sulfur compounds, vitamins, vitamin derivatives, and the like. Of these, phenol derivatives, amine compounds, vitamins and the like are preferable. Bulky V, hindered phenols having a substituent near the hydroxy group, trialkylamine derivatives and the like are particularly preferable. Furthermore, aryl compound derivatives having two t-butyl groups at the o-position of hydroxy groups, which are preferred for aryl compounds having t-butyl groups at the o-position of hydroxy groups, are preferred.
  • the average fraction measured by gel permeation chromatography of the anti-oxidation agent If the amount is too large, there may be a problem with the ability to prevent acidification, and it is preferable that the number is less than 1500.
  • the antioxidants that can be used in the present invention are shown below.
  • the anti-oxidation agent that can be used in the present invention all known materials such as an anti-oxidation agent used in plastics, rubber, petroleum, oils and fats; an ultraviolet absorber; a light stabilizer and the like are used. Can be used. In particular, a material selected from the following compound group can be preferably used.
  • hindered phenols mean phenols having a bulky substituent in the vicinity of the hydroxy group), that is, octadecyl-3,5-di-tert-butyl-4.
  • octadecyl-3,5 di-tert-butyl-4 hydroquinhydronna 1 ⁇ to (octadecyl—3,5—di-tert-butyl—4—hydroxyhydrocinnamat e) is particularly preferable. Since it is commercially available under the trade name Irganoxl076, it is particularly preferable to use it.
  • the amount of the antioxidant when the outermost surface layer contains an antioxidant is not particularly limited, but is 0.1 per 100 parts by weight of the binder resin. A mass part or more and 20 parts by mass or less are preferable. Outside this range, good electrical characteristics cannot be obtained. Particularly preferred is 1 part by mass or more. On the other hand, if the amount is too large, not only the electric characteristics but also the printing durability is caused. Therefore, the amount is preferably 15 parts by mass or less, more preferably 10 parts by mass or less.
  • the photosensitive layer has a well-known plasticizer, ultraviolet absorber, electron-withdrawing compound, in order to improve film-forming properties, flexibility, coating properties, stain resistance, gas resistance, light resistance, etc. Add additives such as leveling agents.
  • An overcoat layer may be provided on the photosensitive layer for the purpose of preventing or reducing the wear of the photosensitive layer or preventing the deterioration of the photosensitive layer due to discharge products generated from a charger or the like.
  • the overcoat layer is also used for the purpose of reducing frictional resistance and wear on the photoreceptor surface. Fats, silicone oils and the like may be included. In addition, particles containing these resins and particles of inorganic compounds may be included.
  • Each layer constituting these photoreceptors is formed by immersing, coating, spraying, nozzle coating, bar coating, roll coating, blade coating, etc. on a support, a coating solution obtained by dissolving or dispersing a substance to be contained in a solvent.
  • a coating solution obtained by dissolving or dispersing a substance to be contained in a solvent are formed by sequential application by the known method.
  • Examples of the solvent or dispersion medium used for preparing the coating solution include alcohols such as methanol, ethanol, propanol and 2-methoxyethanol; ethers such as tetrahydrofuran, 1,4 dioxane and dimethoxyethane; Esters such as methyl formate and ethyl acetate; Ketones such as acetone, methyl ethyl ketone, cyclohexanone, 4-methoxy-4-methyl-2-pentanone; Aromatic hydrocarbons such as benzene, toluene, xylene; Dichloromethane, Chlorinated hydrocarbons such as chlorohonolem, 1,2-dichlorodiethane, 1,1,2-trichloroethane, 1,1,1 trichloroethane, tetrachloroethane, 1,2-dichloropropane, trichloroethylene n-Butylamine, isopropanolamine,
  • the solid content concentration is preferably 15% by mass or less, more preferably 1 to 10% by mass.
  • the viscosity is preferably 0.1 to: LOcps.
  • an embodiment of an image forming apparatus using the electrophotographic photosensitive member of the present invention (an image forming apparatus of the present invention) will be described with reference to FIG.
  • the embodiment is not limited to the following description, and can be arbitrarily modified without departing from the gist of the present invention.
  • the image forming apparatus includes an electrophotographic photosensitive member 1, a charging device 2, an exposure device 3, and a developing device 4, and further includes a transfer device 5 and a cleaning as necessary.
  • a device 6 and a fixing device 7 are provided.
  • the electrophotographic photosensitive member 1 is not particularly limited as long as it is the above-described electrophotographic photosensitive member of the present invention.
  • the photosensitive layer described above is formed on the surface of a cylindrical conductive support. This shows a drum-shaped photoconductor formed.
  • a charging device 2, an exposure device 3, a developing device 4, a transfer device 5 and a cleaning device 6 are arranged along the outer peripheral surface of the electrophotographic photosensitive member 1, respectively.
  • the charging device 2 charges the electrophotographic photoreceptor 1, and uniformly charges the surface of the electrophotographic photoreceptor 1 to a predetermined potential.
  • the charging device include corona charging devices such as corotron and scorotron, direct charging devices (contact type charging devices) that directly charge a charged member in contact with the surface of the photoreceptor, and charging devices such as charging brushes. Etc. are used.
  • the direct charging means include a contact charger such as a charging roller and a charging brush. In FIG. 1, a roller-type charging device (charging roller) is shown as an example of the charging device 2.
  • the direct charging means either charging with air discharge or injection charging without air discharge is possible.
  • a voltage applied at the time of charging when only a DC voltage is used, an alternating current can be superimposed on a direct current.
  • a direct charging device in which a direct charging member to which voltage is applied is brought into contact with the surface of the electrophotographic photosensitive member for charging is preferable. That is, charging an electrophotographic photosensitive member with a charger placed in contact with the electrophotographic photosensitive member to form an image reduces the load that causes various deteriorations applied to the electrophotographic photosensitive member.
  • the type of exposure apparatus 3 is not particularly limited as long as it can expose the electrophotographic photosensitive member 1 to form an electrostatic latent image on the photosensitive surface of the electrophotographic photosensitive member 1.
  • Specific examples include halogen lamps, fluorescent lamps, lasers such as semiconductor lasers and He-Ne lasers, and LEDs. Further, the exposure may be carried out by a photoconductor internal exposure method.
  • the light used for exposure is arbitrary.
  • monochromatic light with a wavelength of 780 nm monochromatic light with a wavelength slightly shorter than 600 ⁇ m to 700 nm, monochromatic light with a wavelength of 380 nm to 500 nm, etc. It is preferable to perform light. Above all, the wavelength is 380 ⁇ ! It is particularly preferable to form an image by exposure with monochromatic light of ⁇ 500 nm in that a high-resolution image with few image defects can be formed.
  • the developing device 4 is not limited to any particular type, and may be any of a dry development method such as cascade development, one-component insulating toner image, one-component conductive toner development, two-component magnetic brush development, or a wet image method. Can be used.
  • the developing device 4 includes a developing tank 41, an agitator 42, a supply roller 43, a developing roller 44, and a regulating member 45, and has a configuration in which toner T is stored inside the developing tank 41. .
  • a replenishing device (not shown) for replenishing toner T may be attached to the developing device 4. This replenishing device is configured so that the toner T can be replenished from a container such as a bottle or a cartridge.
  • the supply roller 43 is formed of a conductive sponge or the like.
  • the developing roller 44 may be a metal roll such as iron, stainless steel, aluminum, or nickel, or a resin roll in which such a metal roll is coated with silicon resin, urethane resin, fluorine resin, or the like.
  • the surface of the developing roller 44 may be smoothed or roughened as necessary.
  • the developing roller 44 is disposed between the electrophotographic photosensitive member 1 and the supply roller 43, and is in contact with the electrophotographic photosensitive member 1 and the supply roller 43, respectively.
  • the supply roller 43 and the developing roller 44 are rotated by a rotation drive mechanism (not shown).
  • the supply roller 43 carries the stored toner T and supplies it to the developing roller 44.
  • the developing roller 44 carries the toner T supplied by the supply roller 43 and contacts the surface of the electrophotographic photoreceptor 1.
  • the regulating member 45 is made of a resin blade such as silicon resin urethane urethane resin, a metal blade such as stainless steel, aluminum, copper, brass, phosphor bronze, or a blade obtained by coating such metal blade with resin. It is formed by.
  • the regulating member 45 abuts against the developing roller 44 and is pressed against the developing roller 44 side with a predetermined force by a spring or the like (a general blade linear pressure is 5 to 500 gZcm). If necessary, this regulating member 45 may be provided with a function of imparting charge to the toner T by frictional charging with the toner T.
  • Each agitator 42 is rotated by a rotation drive mechanism, and agitates toner T. At the same time, the toner T is conveyed to the supply roller 43 side.
  • Multiple agitators 42 may be provided with different blade shapes and sizes.
  • the transfer device 5 there is no particular limitation on the type, and an apparatus using an arbitrary system such as an electrostatic transfer method such as corona transfer, roller transfer, or belt transfer, pressure transfer method, or adhesive transfer method should be used. Can do.
  • the transfer device 5 includes a transfer charger, a transfer roller, a transfer belt, and the like disposed so as to face the electrophotographic photoreceptor 1.
  • the transfer device 5 applies a predetermined voltage value (transfer voltage) with a polarity opposite to the charging potential of the toner ⁇ , and transfers the toner image formed on the electrophotographic photosensitive member 1 to the recording paper (paper, medium) ⁇ .
  • transfer voltage transfer voltage
  • the cleaning device 6 there are no particular restrictions on the cleaning device 6, and an arbitrary taring device such as a brush cleaner, a magnetic brush cleaner, an electrostatic brush cleaner, a magnetic roller cleaner, or a blade cleaner can be used.
  • the cleaning device 6 scrapes off residual toner adhering to the photoreceptor 1 with a cleaning member and collects the residual toner. However, if there is little or almost no toner remaining on the surface of the photoreceptor, the cleaning device 6 may be omitted.
  • the fixing device 7 includes an upper fixing member (fixing roller) 71 and a lower fixing member (fixing roller) 72.
  • a heating device 73 is provided inside the fixing member 71 or 72.
  • FIG. 1 shows an example in which a heating device 73 is provided inside the upper fixing member 71.
  • the upper and lower fixing members 71 and 72 are made of a known heat fixing member such as a fixing roll in which a metal base tube made of stainless steel, aluminum or the like is coated with silicon rubber, a fixing roll in which fluorine resin is coated, or a fixing sheet. can do. Further, each of the fixing members 71 and 72 may be configured to supply a release agent such as silicone oil in order to improve releasability, or may be configured to force pressure to be mutually forced by a panel or the like.
  • a release agent such as silicone oil
  • the fixing device is not particularly limited in its type, and fixing devices of any type such as heat roller fixing, flash fixing, oven fixing, pressure fixing, etc. can be provided.
  • a predetermined potential for example, ⁇ 600 V
  • charging may be performed by superimposing an AC voltage on a DC voltage that can be charged by a DC voltage!
  • the photosensitive surface of the charged electrophotographic photosensitive member 1 is exposed by the exposure device 3 according to the image to be recorded, and an electrostatic latent image is formed on the photosensitive surface. Then, development of the electrostatic latent image formed on the photosensitive surface of the electrophotographic photosensitive member 1 is performed by the developing device 4.
  • the developing device 4 thins the toner T supplied by the supply roller 43 with a regulating member (developing blade) 45 and has a predetermined polarity (here, the same polarity as the charging potential of the electrophotographic photosensitive member 1). And negatively charged), conveyed while being carried on the developing roller 44, and brought into contact with the surface of the electrophotographic photosensitive member 1.
  • the image forming apparatus may be configured to perform, for example, a static elimination process.
  • the neutralization step is a step of neutralizing the electrophotographic photosensitive member by exposing the electrophotographic photosensitive member, and a fluorescent lamp, LED, or the like is used as the neutralizing device.
  • the light used in the static elimination process is often light having an exposure energy that is at least three times that of the exposure light.
  • the image forming apparatus may be further modified.
  • the image forming apparatus may be configured to perform a pre-exposure process, an auxiliary charging process, or the like, or may be configured to perform offset printing. Further, a full color tandem system configuration using a plurality of types of toners may be used.
  • the electrophotographic photosensitive member 1 is combined with one or more of the charging device 2, the exposure device 3, the developing device 4, the transfer device 5, the tariffing device 6, and the fixing device 7, It is configured as an integrated cartridge (hereinafter referred to as “electrophotographic photosensitive member cartridge” as appropriate).
  • the electrophotographic photosensitive member cartridge may be detachable from the main body of an electrophotographic apparatus such as a copying machine or a laser beam printer. In this case, for example, when the electrophotographic photosensitive member 1 or other member deteriorates, the electrophotographic photosensitive member cartridge is removed from the main body of the image forming apparatus, and another new electrophotographic photosensitive member cartridge is mounted on the main body of the image forming apparatus. This facilitates maintenance and management of the image forming apparatus.
  • H N C, 89.00; H, 6.57; N, 4.50 (theoretical values: C, 88.99; H, 6.49; N, 4.5
  • j8 type oxytitanium phthalocyanine was prepared. 18 parts of the obtained oxytitanium phthalocyanine was added to 720 parts of 95% concentrated sulfuric acid cooled to -10 ° C or lower. At this time, the sulfuric acid solution was slowly added so that the internal temperature did not exceed -5 ° C. After completion of the addition, the concentrated sulfuric acid solution was stirred at ⁇ 5 ° C. or lower for 2 hours.
  • the concentrated sulfuric acid solution was filtered through a glass filter, the insoluble matter was filtered off, and then the concentrated sulfuric acid solution was discharged into 10800 parts of ice water to precipitate oxytitanium phthalocyanine, followed by stirring for 1 hour. After stirring, the solution was filtered off, and the obtained wet cake was washed again in 900 parts of water for 1 hour and filtered. By repeating this washing operation until the ionic conductivity of the filtrate reached 0.5 mSZm, 185 parts of a wet cake of low crystalline oxytitanium phthalocyanine was obtained (oxytitanium phthalocyanine content 9.5%).
  • Production Example except that 50 parts of a wet cake of low crystalline oxytitanium phthalocyanine obtained in Production Example 7 was dispersed in 500 parts of tetrahydrofuran (hereinafter sometimes abbreviated as THF) and stirred at room temperature for 1 hour.
  • THF tetrahydrofuran
  • Bragg angles (2 0 ⁇ 0.2 °) for CuKa characteristic X-rays are mainly diffraction peaks at 9.5 °, 24.1 ° and 27.2 ° 3 parts of oxytitanium phthalocyanine (hereinafter sometimes referred to as “CG2”) having The content of black oxytitanium phthalocyanine contained in the obtained oxytitanium phthalocyanine was examined using a technique (mass spectrum method) described in JP-A-2001-115054. It was confirmed that the intensity ratio was 0.003 or less.
  • Viscosity average molecular weight 3207 X ⁇ L2 ° 5
  • CG 1 oxytitanium phthalocyanine
  • the resulting dispersion was applied onto a 75 ⁇ m thick polyethylene terephthalate film with aluminum deposited on the surface so that the film thickness after drying was 0.3 m to provide a charge generation layer.
  • Binder resin (B 1) Binder resin (B 1)
  • An electrophotographic photoreceptor A2 was obtained in the same manner as in Example 1 except that the charge transport material (2) was used instead of the charge transport material (1).
  • An electrophotographic photosensitive member A3 was obtained in the same manner as in Example 1 except that the charge transport material (3) was used instead of the charge transport material (1).
  • An electrophotographic photoreceptor A4 was obtained in the same manner as in Example 1 except that the charge transport material (4) was used instead of the charge transport material (1).
  • Electrophotographic photoreceptor A5 in the same manner as in Example 1 except that 10 parts of the charge transport material (5) and 30 parts of the charge transport material (4) were used instead of 40 parts of the charge transport material (1).
  • An electrophotographic photosensitive member A6 was obtained in the same manner as in Example 5 except that the charge transport material (6) was used instead of the charge transport material (5).
  • Charge transport material (1) instead of 40 parts, electrophotographic photoconductor as in Example 1, except that 20 parts of charge transport material (1) was used and 10 parts of charge transport material (4) were used. I got A8.
  • electrophotographic photoreceptor A9 is obtained in the same manner as in Example 1 except that 10 parts of charge transport material (1) is used and 30 parts of the following compound (B) is used. It was.
  • binder resin (B1) used in Example 4 the following binder resin (B2) (viscosity average molecular weight 40,000) was used in the same manner as in Example 4, except that the electrophotographic photosensitive member A 10 Got.
  • Example 14 An electrophotographic photosensitive member A13 was obtained in the same manner as in Example 1 except that CG2 was used instead of CG1 used in Example 1. [0179] Example 14
  • An electrophotographic photosensitive member A14 was obtained in the same manner as in Example 10 except that CG2 was used instead of CG1 used in Example 10.
  • An electrophotographic photoreceptor A15 was obtained in the same manner as in Example 11 except that CG2 was used instead of CG1 used in Example 11.
  • An electrophotographic photoreceptor A16 was obtained in the same manner as in Example 7 except that the following compound (D) was used instead of the compound (A) used in Example 7.
  • CG4 oxytitanium phthalocyanine obtained by the method described in “Production Example” of JP-A-8-123052 may be used.
  • the electrophotographic photosensitive member A17 was obtained in the same manner as in Example 1, except that
  • the electrophotographic photosensitive member was obtained in the same manner as in Example 1 except that 60 parts of the charge transport material (1) was used instead of 40 parts of the charge transport material (1). Solid precipitation was observed. [0185] Comparative Example 2
  • An electrophotographic photoreceptor P2 was obtained in the same manner as in Example 2 except that 60 parts of the charge transport material (2) was used instead of 40 parts of the charge transport material (2). After standing for 1 week, whitening of the film was observed.
  • An electrophotographic photosensitive member P3 was obtained in the same manner as in Example 3 except that 60 parts of the charge transport material (3) was used instead of 40 parts of the charge transport material (3). After standing for 1 week, whitening of the film was observed.
  • An electrophotographic photosensitive member P4 was obtained in the same manner as in Example 3 except that 60 parts of the charge transport material (4) was used instead of 40 parts. Crystals were observed after standing for 1 week. Further, gelation of the coating solution was also observed.
  • Charge transport material (5) instead of 10 parts, an electrophotographic photosensitive member was obtained in the same manner as in Example 5 except that 50 parts of the charge transport material (5) was used. 7 precipitates.
  • An electrophotographic photosensitive member P7 was obtained in the same manner as in Example 9 except that 10 parts of the charge transport material (1) was used instead of 10 parts.
  • An electrophotographic photoreceptor P8 was obtained in the same manner as in Example 1 except that the above compound (B) was used in place of the charge transport material (1).
  • An electrophotographic photoreceptor P9 was obtained in the same manner as in Example 1 except that the following compound (E) was used in place of the charge transport material (1). [Chemical 37]
  • An electrophotographic photoreceptor P10 was obtained in the same manner as in Example 1 except that the following compound (F) was used in place of the charge transport material (1). Whitening was observed on a part of the coated surface.
  • An electrophotographic photoreceptor P11 was obtained in the same manner as in Example 1 except that the compound (D) was used in place of the charge transport material (1). Whitening was observed on a part of the coated surface.
  • Example 1 In place of the charge transport material (1) used in Example 1, the above compound (F) was used, and instead of CG1, it was prepared by the method described in “Example 1” of JP-A-2001-115054. An electrophotographic photoreceptor P12 was obtained in the same manner as in Example 1 except that oxytitanium phthalocyanine (hereinafter sometimes referred to as “CG5”) was used.
  • CG5 oxytitanium phthalocyanine
  • the above electrophotographic photoreceptor was produced. One week later, it was affixed to an aluminum drum to form a cylinder. Next, electrical connection between the aluminum drum and the aluminum substrate of the electrophotographic photosensitive member is performed. Then, the drum was rotated at a fixed number of revolutions, and an electrical property evaluation test was performed by a cycle of charging, exposure, potential measurement, and static elimination. At that time, the initial surface potential was set to ⁇ 700 V, exposure was performed at 780 nm, and charge removal was performed at 660 nm using monochromatic light.
  • the time required from the exposure to the potential measurement was set to 100 ms.
  • the measurement environment was a temperature of 25 ° C and a relative humidity of 50%.
  • the electrophotographic photosensitive member of the present invention has high sensitivity, low VL, and good electrical characteristics. It is also excellent in compatibility with various binder resins.
  • the coating solution for charge generation layer and charge transport layer prepared in the same manner as in Example 1 is dipped on a 3 cm diameter, 25.4 cm long aluminum tube that has been anodized and sealed.
  • the electrophotographic photosensitive drum having a charge generation layer of 0.3 ⁇ ⁇ and a charge transport layer of 25 ⁇ m was prepared by sequentially applying and drying by a method.
  • this drum was installed in a laser printer 4 (LJ4) manufactured by Hewlett-Packard Co., and an image test was conducted at a temperature of 35% and humidity of 85% (sometimes called HZH environment), Good images without defects and noise were obtained.
  • LJ4 laser printer 4
  • HZH environment sometimes called HZH environment
  • the coating solution for charge generation layer and charge transport layer prepared in the same manner as in Example 4 is dipped on an aluminum tube with a diameter of 2 cm and a length of 25.1 cm that has been anodized and sealed.
  • the electrophotographic photosensitive drum having a charge generation layer of 0.3 ⁇ ⁇ and a charge transport layer of 15 ⁇ m was prepared by coating and drying sequentially by the method.
  • Four of these drums were installed in Fuji Xerox's tandem color laser printer, C1616, and an image test was performed in an H / H environment. As a result, good images without image defects and noise were obtained.
  • 1000 sheets were printed continuously, but there was no image degradation such as leak, ghost, capri, etc., and it was stable.
  • the coating solution for charge generation layer and charge transport layer prepared in the same way as in Comparative Example 8 is dipped on a 2 cm diameter, 25.1 cm long aluminum tube that has been anodized and sealed.
  • the electrophotographic photosensitive drum having a charge generation layer of 0.3 ⁇ ⁇ and a charge transport layer of 15 ⁇ m was prepared by coating and drying sequentially by the method. Four of these drums were installed in Fuji Xerox's tandem color laser printer, C1616, and an image test was performed in an H / H environment. As a result, good images without image defects and noise were obtained. Next, when 1000 sheets were printed continuously, image degradation due to capri was observed.
  • a subbing was produced on an aluminum tube having a diameter of 2 cm and a length of 25.1 cm using the method described in “Example 13” of JP-A-2005-99791, and then produced in the same manner as in Example 4 of the present invention.
  • the resulting charge generation layer and charge transport layer coating solutions were sequentially applied by dip coating and dried to prepare an electrophotographic photosensitive drum having a charge generation layer of 0.3 ⁇ ⁇ and a charge transport layer of 15 m. .
  • Four of these drums were mounted on Fuji Xerox's tandem color laser printer, C16 16, and an image test was performed in an HZH environment. As a result, there were no image defects or noise, and a good image was obtained.
  • 1000 sheets were printed continuously, but no image deterioration such as leakage, ghost, or capri was observed, and the image was stable.
  • the electrophotographic photosensitive drum obtained in Example 25 is mounted on a commercially available fax machine (UF-890 manufactured by Panasonic Communications Inc.), and the temperature is 25 ° and the relative humidity is 50% (hereinafter referred to as NZN environment). Character images, solid black images, and solid white images.
  • Example 28 The evaluation methods of Example 28 and Comparative Example 14 are described below.
  • the electrophotographic photosensitive drum was mounted on a commercially available fax machine (UF-890, manufactured by Panasonic Communications Inc.), and 10,000 images were formed in the NZN environment.
  • the formed image used a 3% printing pattern.
  • Image density was obtained by measuring a solid black image using a Macbeth densitometer (RD-920D, manufactured by Macbeth). The densitometer was calibrated with black standard 1.8 and white standard 0.05.
  • the coating solution for the charge generation layer and the charge transport layer prepared in the same manner as in Example 4 was sequentially applied by an dip coating method and dried on an aluminum tube having a diameter of 3 cm that had been anodized and sealed.
  • An electrophotographic photosensitive drum having a charge generation layer of 0.3 111 and a charge transport layer of 18 / zm was prepared. This drum was attached to a Seiko Epson laser printer (LP-1 800) to form text images and photographic images in an HZH environment. Although 3000 sheets were printed, good images were obtained.
  • NMP N-methylpyrrolidone
  • Fig. 2 shows a powder X-ray diffraction spectrum by CuKa characteristic X-ray of the obtained oxytitanium phthalocyanine composition.
  • the maximum diffraction peak was observed at a Bragg angle (2 ⁇ ⁇ 0.2 °) of 27.3 °.
  • the mass spectrum of the obtained oxytitanium phthalocyanine composition is shown in Fig. 3.
  • mZz: 576 is the peak of unsubstituted oxytitanium phthalocyanine
  • m / z: 610 is the chlorinated oxytitanium
  • a peak of talocyanine was observed, and the ratio of the peak intensity of chlorinated oxytitanium phthalocyanine to the peak intensity of unsubstituted oxytitanium phthalocyanine was measured to be 0.028.
  • Z4 represents one type of structure selected from the group consisting of the following four types of structural strength.
  • Example 32 An electrophotographic photoreceptor E1 was prepared in the same manner as in Example 1 except that CG6 was used instead of CG1 used in Example 1, and the electrical characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 3. [0218] Example 32
  • Example 3 In place of the binder resin (Bl) used in Example 1, the following binder resin (XI) (viscosity average molecular weight 50,000) was used, and the electrophotographic photoreceptor E 2 was prepared in the same manner as in Example 1. The same electrical characteristics were evaluated as in Example 1. The results are shown in Table 3.
  • XI viscosity average molecular weight 50,000
  • binder resin (B1) used in Example 1 instead of the binder resin (B1) used in Example 1, it was carried out except that 50 parts of the following binder resin (X2) (viscosity average molecular weight 20,000) and 50 parts of binder resin (B2) were used.
  • An electrophotographic photoreceptor E3 was prepared in the same manner as in Example 1, and the electrical characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • An electrophotographic photoreceptor E4 was prepared in the same manner as in Example 1 except that the following charge transport material (7) was used instead of the charge transport material (1) used in Example 1, and Example 1 and Similarly, the electrical characteristics were evaluated. The results are shown in Table 3.
  • Rutile-type titanium oxide with an average primary particle size of 40 nm (Ishihara Sangyo Co., Ltd., “TT055N”) and 3% by weight of methyldimethoxysilane (Toshiba Silicone Co., Ltd., ⁇ SL8117 ”) 1 kg of raw material slurry made by mixing 50 parts of surface-treated titanium oxide obtained by mixing with a Henschel mixer and 120 parts of methanol, was added to Zirconia beads having a diameter of about 100 ⁇ m (manufactured by Nitzkato Corporation, YTZ) was used as a dispersion medium, and a Ultraapex mill (UAM-015 type) manufactured by Kotobuki Co., Ltd. with a mill volume of approximately 0.15 L was used. Time dispersion treatment was performed to prepare a titanium oxide dispersion.
  • ultrasonic dispersion with an output 12 OOW ultrasonic transmitter was performed for 1 hour. Further, it was filtered through a PTFE membrane filter (advantech, Mytex LC) with a pore size of m, and the surface-treated oxytitanium Z copolymer polyamide had a mass ratio of 3Z1 and was composed of methanol Z1-pronool V-toluene.
  • An undercoat layer forming dispersion A having a mixed solvent mass ratio of 7/1/2 and a solid content concentration of 18.0% by mass was obtained.
  • This undercoat layer-forming dispersion A was dip-coated on an anodized aluminum cylinder (outer diameter 30 mm, length 351 mm, thickness 1. Omm), and the film thickness after drying was 1 An undercoat layer was provided so as to be 5 / zm.
  • Example 35 a photoconductive drum BH1 was produced in the same manner as in Example 35 except that the charge transport material (C) was used instead of the charge transport material (1) used in Example 35.
  • Each obtained electrophotographic photosensitive member was mounted on a photosensitive member property evaluation apparatus (manufactured by Mitsubishi Chemical Co., Ltd.), and electrical characteristics were evaluated by a cycle of charging, exposure, potential measurement, and static elimination.
  • Each electrophotographic photosensitive member was rotated at a constant rotational speed of 30 rpm.
  • the photoconductor was charged so that the initial surface potential was -700V, and the light from the halogen lamp was converted to 427nm monochromatic light with an interference filter for exposure.
  • the exposure amount (hereinafter sometimes referred to as sensitivity) at which the surface potential is -350 V and the surface potential (hereinafter referred to as VL) when exposed at a light amount of 1.11 jZcm 2 were obtained.
  • the exposure power the time until the potential measurement was 389 ms. 75 lux white light was used as the static elimination light, and the exposure width was 5 mm.
  • the residual potential (hereinafter referred to as Vr) after irradiation with static elimination light was measured.
  • Sensitivity is the amount of exposure necessary for the surface potential to reach the initial potential of 1Z2, and the smaller the value, the higher the sensitivity.
  • VL and Vr are potentials after exposure. Smaller values are better for electrical characteristics. The results are shown in Table 4 below.
  • the electrophotographic photosensitive member of the present invention is excellent in electrical characteristics and image characteristics, and has high durability with small changes in characteristics due to environmental fluctuations.
  • the electrophotographic photoreceptor is widely used in all fields where it is used. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2005-349209 filed on December 2, 2005 are cited here as disclosure of the specification of the present invention. Incorporate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)

Abstract

 電荷輸送物質が低含有量であっても、電気特性や画像特性に優れ、環境の変動による特性の変化が小さく、劣化の少ない高耐久性を有する電子写真感光体、および該感光体を有する画像形成装置を提供する。  導電性支持体上に、電荷輸送層および電荷発生層を有する電子写真感光体において、該電荷輸送層が、下記一般式(1)で表される電荷輸送物質と、バインダー樹脂とを含有し、且つ該電荷輸送物質のバインダー樹脂に対する質量比率(電荷輸送物質/バインダー樹脂)が、5/100以上45/100以下であることを特徴とする。 (一般式(1)において、Ar1は置換基を有してもよいアリーレン基;Ar2、Ar3、Ar4、及びAr5は置換基を有してもよいアリール基を表し、nは3~6の整数を表す)

Description

明 細 書
電子写真感光体、および画像形成装置
技術分野
[0001] 本発明は、導電性支持体上に、電荷輸送層および電荷発生層を有する、電子写 真感光体に関する。さらには、電気特性、安定性、耐久性等の良好な電子写真感光 体、および画像形成装置に関するものである。
背景技術
[0002] 電子写真技術は、即時性、高品質の画像が得られること等から、近年では複写機 の分野にとどまらず、各種プリンター、印刷機の分野でも広く使われ応用されてきて いる。
[0003] 電子写真技術の中核となる感光体にっ 、ては、その光導電材料として従来力 の セレン、ヒ素一セレン合金、硫ィ匕カドミウム、酸ィ匕亜鉛といった無機系の光導電体から 、最近では、無公害で成膜が容易、製造が容易である等の利点を有する有機系の光 導電材料を使用した感光体の使用が主流となって!/、る。
[0004] 有機感光体の層構成としては、電荷発生物質をバインダー榭脂中に分散させた!/ヽ わゆる単層型感光体、電荷発生層および電荷移動層を積層した積層型感光体が知 られている。積層型感光体は、効率の高い電荷発生物質、および電荷移動物質を別 々の層に分けて、最適なものを組み合わせることにより高感度かつ安定な感光体が 得られること、材料選択範囲が広く特性の調整が容易なことから多く使用されている。 単層型感光体は、電気特性面では積層型感光体にやや劣り、材料選択性も狭いこと から、限定的に使用されている。
[0005] また、電子写真感光体は、電子写真プロセスすなわち帯電、露光、現像、転写、タリ 一ユング、除電等のサイクルで繰り返し使用されるため、その間様々なストレスを受け 劣化する。これらの劣化のうち、化学的劣化としては、例えば帯電器として普通用い られるコロナ帯電器力 発生する強酸ィ匕性のオゾンや NOxが感光層にダメージを与 えることがあげられる。このこと〖こより、繰り返し使用する場合に、帯電性の低下、残留 電位の上昇等の電気的安定性の悪化、およびそれに伴う画像不良が起きることがあ る。これらは、感光層中に多く含まれる電荷輸送物質の化学的劣化に由来するところ が大きい。
[0006] さらには、近年の電子写真プロセスの高速ィ匕に伴い、高感度化、高速応答化が必 須となっている。このうち、高感度化のためには、電荷発生物質の最適化だけでなく
、それとのマッチングの良好な電荷輸送物質の開発が必要である。また、高速応答 化のためには、高移動度かつ露光時に十分な低残留電位を示す電荷輸送物質の 開発が必要である。バインダー榭脂に対する電荷輸送物質の含有量を増やせば、 高感度化、高速応答化が可能となることが多い。しかし、電荷輸送物質の含有量が バインダー樹脂に対して多い感光層は、感光層の機械的耐久性が劣ることが多ぐ 繰り返し画像を形成する、いわゆる耐刷性が悪ィ匕することになり、問題がある。従って 、感光層中に電荷輸送物質の含有量が少ない電子写真感光体であっても、高感度 ィ匕、高速応答化が可能であるような、電荷輸送物質が望まれている。
[0007] 電荷輸送物質の含有量が少ない感光層を有する感光体では、リークの問題は改良 されているが、環境 (温度、湿度等)変動により大きく電子写真感光体の特性が変動 し、画像欠陥が生じることが指摘されていた (例えば、特許文献 1参照)。また、従来 知られた電荷輸送物質では、オゾンや NOx等に代表される酸化性ガスに対する暴 露により劣化することが知られており、繰返し使用時、特に、電子写真感光体を使用 する環境を変化させた場合にお!、て、耐久性が悪!、ことがあった。
特許文献 1 :特開 2001— 056595号公報
発明の開示
発明が解決しょうとする課題
[0008] すなわち、複写機、プリンター、普通紙ファックス等に用いられる感光体において、 前記の問題点の改良が広く望まれている。本発明は、それらの課題を鑑みてなされ たものである。
すなわち、本発明は、電荷輸送物質が低含有量であっても、電気特性や画像特性 に優れ、し力も、環境の変動による特性の変化が小さぐ劣化の少ない高耐久性を有 する電子写真感光体、および該感光体を有する画像形成装置を提供することにある 課題を解決するための手段
[0009] 本発明者らは、前記の要求を満たす電荷輸送物質につ!、て鋭意検討した結果、特 定の構造を有する電荷輸送物質を、特定量使用することにより、電子写真感光体の 電気特性、特性の安定性、および耐久性を改良可能であることを見出し、本発明に 至った。
[0010] すなわち、本発明は以下の要旨を有する。
(1)導電性支持体上に、電荷輸送層および電荷発生層を有する電子写真感光体 において、該電荷輸送層が、下記一般式(1)で表される電荷輸送物質と、バインダ ー榭脂とを含有し、且つ該電荷輸送物質のバインダー榭脂に対する質量比率 (電荷 輸送物質 Zバインダー榭脂)力 5Z100以上 45Z100以下であることを特徴とする 電子写真感光体。
[0011] [化 1]
Figure imgf000004_0001
(一般式(1)において、 Ar1は置換基を有してもよいァリーレン基; Ar2、 Ar3、 Ar4、及 び Ar5は置換基を有してもよ!、ァリール基を表し、 nは 3〜6の整数を表す)
[0012] (2)導電性支持体上に、電荷輸送層および電荷発生層を有する電子写真感光体 において、該電荷輸送層が、下記一般式(1)で表される電荷輸送物質を含有し、且 つ複数の電荷輸送物質とバインダー榭脂を含有するものであって、該複数の電荷輸 送物質の総質量の、バインダー榭脂に対する質量比率 (電荷輸送物質 Zバインダー 榭脂)が、 25Z100以上 55Z100以下であることを特徴とする電子写真感光体。
[0013] [化 2]
Figure imgf000004_0002
(一般式(1)において、 Ar1は置換基を有してもよいァリーレン基; Ar2、 Ar3
Figure imgf000005_0001
及 び Ar5は置換基を有してもよ!、ァリール基を表し、 nは 3〜6の整数を表す)
[0014] (3)導電性支持体上に、電荷輸送層および電荷発生層を有する電子写真感光体 において、該電荷輸送層が、下記一般式(1)で表される電荷輸送物質を含有し、該 電荷発生層が、ォキシチタニウムフタロシアニンを含有し、且つ該ォキシチタニウムフ タロシアニンがフタロシアニン結晶前駆体をィ匕学的処理後、有機溶媒に接触して得 られるものであって、 CuK o;特性 X線 (波長 1. 541A)に対するブラッグ角(2 Θ ±0 . 2° )が 9. 5° 、 24. 1° および 27. 2° に主たる回折ピークを有するォキシチタ- ゥムフタロシアニンであることを特徴とする電子写真感光体。
[0015] [化 3]
Figure imgf000005_0002
(一般式(1)において、 Ar1は置換基を有してもよいァリーレン基; Ar2、 Ar3、 Ar4、及 び Ar5は置換基を有してもよ!、ァリール基を表し、 nは 3〜6の整数を表す)
[0016] (4)導電性支持体上に、電荷輸送層および電荷発生層を有する電子写真感光体 において、該電荷輸送層が、下記一般式(1)で表される電荷輸送物質と、ポリアリレ ート榭脂とを含有することを特徴とする電子写真感光体。
[0017] [化 4]
Figure imgf000005_0003
(一般式(1)において、 Ar1は置換基を有してもよいァリーレン基; Ar2、 Ar3、 Ar4、及 び Ar5は置換基を有してもよ!、ァリール基を表し、 nは 3〜6の整数を表す)
(5)導電性支持体上に、電荷輸送層および電荷発生層を有する電子写真感光体 において、該電荷輸送層が、下記一般式(1)で表される電荷輸送物質と、粘度平均 分子量 10000以上 70000以下のバインダー榭脂とを含有することを特徴とする電子 写真感光体。
[化 5]
Figure imgf000006_0001
(一般式(1)において、 Ar1は置換基を有してもよいァリーレン基; Ar2、 Ar3、 Ar4、及 び Ar5は置換基を有してもよ!、ァリール基を表し、 nは 3〜6の整数を表す)
[0019] (6)前記電荷発生層が、 CuK a特性 X線に対する X線回折スペクトルのブラッグ角
(2 Θ ±0. 2° )が、 9. 5° 、 24. 1° 、 27. 3° にピークを有する結晶型のォキシチタ -ゥムフタロシアニンを含有する上記(1)または(2)に記載の電子写真感光体。
[0020] (7)導電性支持体上に、下記一般式 (1)で表される電荷輸送物質を含有する電荷 輸送層、および電荷発生層を有する電子写真感光体を搭載し、該電子写真感光体 を波長 380〜500nmの単色光により露光して画像を形成することを特徴とする画像 形成装置。
[0021] [化 6]
Figure imgf000006_0002
(一般式(1)において、 Ar1は置換基を有してもよいァリーレン基; Ar2、 Ar3、 Ar4、及 び Ar5は置換基を有してもよ!、ァリール基を表し、 nは 3〜6の整数を表す)
[0022] (8)導電性支持体上に、下記一般式 (1)で表される電荷輸送物質を含有する電荷 輸送層を最外層として有する電子写真感光体を搭載し、該電子写真感光体を該電 子写真感光体に接触配置する帯電器により帯電して画像を形成することを特徴とす る画像形成装置。
[0023] [化 7]
Figure imgf000007_0001
(一般式(1)において、 Ar1は置換基を有してもよいァリーレン基; Ar2、 Ar3、 Ar4、及 び Ar5は置換基を有してもよ!、ァリール基を表し、 nは 3〜6の整数を表す)
[0024] (9)上記(1)な ヽし (6)の何れかに記載の電子写真感光体を搭載した画像形成装 置。
(10)上記(1)な!、し (6)の何れかに記載の電子写真感光体を搭載し、該電子写真 感光体を波長 380〜500nmの単色光により露光して画像を形成する画像形成装置 なお、本発明において重量と質量は同義である。
発明の効果
[0025] 本発明における特定の電荷輸送物質を用いることにより、電荷輸送層中のバインダ ー榭脂と電荷輸送物質との相溶性に優れるため感光層の形成が容易になる。これに より、電子写真感光体として、電気特性に優れ、特性の安定性および耐久性が良好 で、使用環境の変動、特に、高温、高湿度下での繰り返し特性、および、耐刷性の優 れた電子写真感光体を提供することができる。また、当該感光体を用いることにより、 高画質で、トナー消費量の少ない、プリンター、ファクシミリ、複写機等の電子写真装 置を提供することができる。
図面の簡単な説明
[0026] [図 1]本発明の画像形成装置の一例を示す図である。
[図 2]製造例 10で得られたォキシチタニウムフタロシアニン組成物「CG6」の CuK a 特性 X線による粉末 X線回折スペクトルである。
[図 3]製造例 10で得られたォキシチタニウムフタロシアニン組成物「CG6」のマススぺ タトルである。
符号の説明
[0027] 1.感光体 2.帯電装置(帯電ローラ)
3.露光装置
4.現像装置
5.転写装置
6.クリーニング手段
7.定着手段
41.現像槽
42.アジテータ
43.供給ローラ
44.現像ローラ
45.規制部材
71.上部定着部材
72.下部定着部材
73.加熱装置
T トナー
P 記録媒体
発明を実施するための最良の形態
[0028] 以下、本発明の実施の形態につき詳細に説明するが、以下に記載する構成要件 の説明は本発明の実施形態の代表例であって、本発明の趣旨を逸脱しない範囲に お!、て適宜変形して実施することができる。
[0029] 本発明に係る電子写真感光体の有する電荷輸送層は、下記一般式(1)で表される 電荷輸送物質を含有する。
[0030] [化 8]
Figure imgf000008_0001
一般式(1)において、 Ar1は置換基を有してもよいァリーレン基; Ar2、 Ar3、 及 び Ar5は置換基を有してもよ!、ァリール基を表し、 nは 3〜6の整数を表す。
[0031] Ar1で表されるァリーレン基としては、芳香族性を有する基であれば如何なる基であ つてもよく、例えば、最多数の非集積二重結合を含む、いわゆる芳香族環を有する基 があげられる。通常、 Ar1は、芳香族環を 1〜10有する基であるが、芳香族環は 3以 下であることが好ましい。 Ar1は、芳香族炭化水素基であっても芳香族複素環基でも 構わない。芳香族炭化水素基としては、フエ二レン、ナフチレン、アントリレン等の芳 香族環からなる基であっても、インデニレンのようなインデンの二価基、フルオレンの 二価基、テトラリンの二価基等の芳香族環と他の炭化水素環との縮合環力もなる基で も構わない。また、芳香族複素環基としては、フランの二価基、チォフェンの二価基、 ピロールの二価基等の単環式芳香族複素環基であっても、キノリンの二価基、クロメ ンの二価基、力ルバゾールの二価基等の複合芳香族複素環基でも構わな 、。
[0032] より具体的には、 p—フエ-レン、 m—フエ-レン、 1, 3—ナフチレン、 1, 4—ナフチ レン等があげられるが、分子サイズをなるベくコンパクトにし、分子内立体反発を少な くする観点から、 p—フエ-レンまたは m—フエ-レンが好ましい。電気特性向上の為 には、 p—フエ-レンが好ましぐ溶解性に問題がある場合は、 m—フエ-レンが好ま しい。
[0033] Ar1が有してもょ 、置換基としては、メチル基、ェチル基、プロピル基等のアルキル 基;ァリル基等のアルケニル基;メトキシ基、エトキシ基、プロポキシ基等のアルコキシ 基;フ ニル基等のァリール基等があげられる。これらの置換基は、電子供与性効果 により電荷移動度を増大させる効果はあるものの、あまり置換基サイズが大きくなると 、分子内の共役面の歪み、分子間立体反発によってかえって電荷移動度を減少させ るため、好ましくは炭素原子数 10以下、特には炭素原子数 3以下のものが好ましぐ 中でもメチル基またはメトキシ基が好ま 、。
[0034] 1つの Ar1が有する置換基の数も、多すぎると同様な理由で電荷移動度を下げるの で、好ましくは 3個以下、さらに好ましくは 2個以下である。また、 3〜6個存在する Ar1 力 全体として有する置換基の総数も、多すぎると同様な理由で電荷移動度を下げ るので、好ましくは 8個以下、さらに好ましくは 6個以下である。特に溶解性、電気特 性に問題がない場合は、無置換が好ましい。また、これら置換基は、連結基により、ま たは直接結合して、分子内で環を形成してもよい。
[0035] また、一般式(1)で表される電荷輸送物質は、同じ分子内に 3〜6個の Ar1を有する 力 それぞれの Ar1は互いに構造が異なって 、てもよ 、。
一般式(1)中、 nは 3〜6の整数を表す力 nが 5または 6の場合、同じ分子内の Ar1 のうち少なくとも 1つが m—フエ-レン基を含有すること、または、 Ar1が隣同士で環を 形成して縮合多環を形成することが好ましい。 nは、製造の容易さという点で、 3また は 4が好ましい。 nが 3の場合には、 Ar1全て力 ¾—フエ-レン基であること力 特に好 ましい。
[0036] 一般式(1)中、 Ar2、 Ar3
Figure imgf000010_0001
及び Ar5は、ァリール基を表すが、芳香族性を有す る基であれば如何なる基であってもよぐ例えば、最多数の非集積二重結合を含む、 いわゆる芳香族環を有する基があげられる。通常、 Ar2、 Ar3
Figure imgf000010_0002
及び Ar5は、芳香 族環を 1〜10有する基であるが、芳香族環は 3以下であることが好ましい。
Ar2、 Ar3
Figure imgf000010_0003
及び Ar5は、芳香族炭化水素基であっても芳香族複素環基でも構 わない。芳香族炭化水素基としては、フエ-ル、ナフチル、アントリル等の芳香族環か らなる基であっても、インデュルのようなインデンの一価基、フルォレニルのようなフル オレンの一価基、テトラリンの一価基等の芳香族環と他の炭化水素環との縮合環力 なる基でも構わない。また、芳香族複素環基としては、フランの一価基、チォフェンの 一価基、ピロールの一価基等の単環式芳香族複素環基であっても、キノリンの一価 基、クロメンの一価基、力ルバゾールの一価基等の複合芳香族複素環基でも構わな い。
[0037] Ar2、 Ar3
Figure imgf000010_0004
及び Ar5の具体例としては、フエ-ル基、ナフチル基、ァセナフチ ル基、インデュル基、フルォレ -ル基、ピレ-ル基、チェ-ル基等があげられる。この うち、分子内共役拡張、分子の永久双極子モーメント低減の観点からフエ-ル基、ナ フチル基またはチェニル基が好まし!/、。
[0038] Ar2、 Ar3
Figure imgf000010_0005
及び Ar5が有してもょ 、置換基としては、メチル基、ェチル基、プロ ピル基等のアルキル基;ァリル基等のアルケニル基;ベンジル基等のァラルキル基; フエニル基、トリル基等のァリール基;メトキシ基、エトキシ基、プロポキシ基等のアル コキシ基等があげられる。これらの置換基は、分子内電荷バランスを改善することによ り電荷移動度を増大させる効果はあるものの、あまり置換基サイズが大きくなると、分 子内の共役面の歪み、分子間立体反発によって、カゝえって電荷移動度を減少させる ため、好ましくは炭素原子数 3以下、特には炭素原子数 2以下のものが好ましぐ中 でもメチル基またはメトキシ基が好まし ヽ。
[0039] 置換基の数も、多すぎると同様な理由で電荷移動度を下げるので、好ましくは 3個 以下、さらに好ましくは 2個以下である。特に溶解性、電気特性に問題がない場合は 、無置換が好ましい。また、これら置換基は、連結基、または直接結合して、分子内 で、環を形成してもよい。また、 Ar2、 Ar3
Figure imgf000011_0001
及び Ar5のうち、少なくとも 1つ以上は 、一個以上の置換基を有することが好ましい。また、これら置換基は、連結基により、 または直接結合して、分子内で環を形成してもよい。
[0040] 一般式(1)に示す電荷輸送材料の一般的な製造法としては特に限定はないが、好 ましくは、二級ァミンとハロゲン化ァリールイ匕合物をウルマン反応等の公知の反応を 禾 IJ用すること〖こよって得ることができる。
以下に本発明で使用される一般式(1)の具体例を示す。
[0041] [化 9]
Figure imgf000012_0001
[0042] [化 10]
Figure imgf000013_0001
[0043] [化 11]
Figure imgf000014_0001
Ϊ0 / 900Zdf/ェ:) d 686f 90婦 Z: OAV
Figure imgf000015_0001
[0045] [化 13]
Figure imgf000016_0001
本発明に係る電子写真感光体の電荷輸送層は、バインダー榭脂を含有するが、バ インダー榭脂としては、例えば、ブタジエン、スチレン、酢酸ビニル、塩化ビニル、ァク リル酸エステル、メタクリル酸エステル、ビュルアルコール、ェチルビ-ルエーテル等 のビュル化合物の重合体又は共重合体、ポリビュルプチラール、ポリビュルホルマー ル、部分変性ポリビュルァセタール、ポリカーボネート、ポリエステル、ポリアリレート、 ポリアミド、ポリウレタン、セルロースエーテル、フエノキシ榭脂、ケィ素榭脂、エポキシ 榭脂、ポリ N ビニルカルバゾール榭脂等があげられる。このうちポリカーボネート 、ポリアリレートが特に好ましい。なお、これらは適当な硬化剤等を用いて熱、光等に より架橋させて用いることもできる。これらのバインダー榭脂は 2種類以上をブレンドし て用いることもできる。ノインダー榭脂に関しては後で詳述する。
[0047] バインダー榭脂と一般式(1)で表される電荷輸送物質の割合は、バインダー榭脂 1 00質量部に対し 5質量部以上であり、さらに残留電位低減の観点から 10質量部以 上が好ましぐさらに繰り返し使用した際の安定性や電荷移動度の観点から、 20質量 部以上がより好ましい。また一方で、感光層の熱安定性の観点から、 45質量部以下 であり、さらに電荷輸送材料とバインダー榭脂の相溶性の観点から、好ましくは 40質 量部以下、さらに耐刷性の観点から、 35質量部以下がより好ましぐ耐傷性の観点か らは、 30質量部以下が最も好ましい。
[0048] 電荷輸送層には、一般式(1)で表される電荷輸送物質が複数種含有されていても 構わない。その場合には、上記「一般式(1)で表される電荷輸送物質の割合」とは、 電荷輸送層中の、全ての一般式(1)で表される電荷輸送物質の総質量の割合を 、う ものとする。
[0049] また、一般式(1)で表される電荷輸送物質以外の他の電荷輸送物質との併用は、 良好な画像形成の目的において好ましい。電荷輸送層中に、複数の電荷輸送物質 が含まれる場合、電荷輸送層に含まれる総電荷輸送物質の質量は、バインダー榭脂 100質量部に対し 25質量部以上、さらに残留電位低減の観点から 30質量部以上が 好ましぐさらに繰り返し使用した際の安定性、電荷移動度の観点から、 40質量部以 上がより好ましい。また、一方で感光層の熱安定性の観点から、通常は 55質量部以 下、さらに電荷輸送材料とバインダー榭脂の相溶性の観点カゝら好ましくは 50質量部 以下、さらに耐刷性の観点力 35質量部以下がより好ましぐ耐傷性の観点力 は、 45質量部以下が最も好ま 、。
ここで、上記「複数の電荷輸送物質」とは、一般式(1)で表される電荷輸送物質同 士が複数であっても、一般式(1)で表される電荷輸送物質以外の「他の電荷輸送物 質」との併用で「複数」でも構わな 、。
[0050] ここで、一般式(1)で表される電荷輸送物質と併用されうる「他の電荷輸送物質」と しては、電荷輸送能を有するものであれば、どのような物質でも構わない。好ましい例 としては、以下があげられる。
[化 14]
Figure imgf000018_0001
上記に例示した「他の電荷輸送物質」の全ての構造式中、 Rはそれぞれ独立して水 素原子または置換基を示す。置換基としては、アルキル基、アルコキシ基、フエニル 基等が好まし 、。特に好ましくはメチル基である。
[0054] <導電性支持体 >
導電性支持体としては、例えばアルミニウム、アルミニウム合金、ステンレス鋼、銅、 ニッケル等の金属材料や、金属、カーボン、酸化錫等の導電性粉体を添加して導電 性を付与した榭脂材料や、アルミニウム、ニッケル、 ITO (酸化インジウム酸化錫合金 )等の導電性材料をその表面に蒸着または塗布した榭脂、ガラス、紙等が主として使 用される。形態としては、ドラム状、シート状、ベルト状等のものが用いられる。金属材 料の導電性支持体の上に、導電性 ·表面性等の制御のためや欠陥被覆のため、適 当な抵抗値を持つ導電性材料を塗布したものでもよい。
[0055] 導電性支持体としてアルミニウム合金等の金属材料を用いた場合、陽極酸化処理 を施してカゝら用いてもよい。陽極酸化処理を施した場合、公知の方法により封孔処理 を施すのが望ましい。支持体表面は、平滑であってもよいし、特別な切削方法を用い たり、研磨処理を施したりすることにより、粗面化されていてもよい。また、支持体を構 成する材料に適当な粒径の粒子を混合することによって、粗面化されたものでもよ ヽ 。また、安価化のためには、切削処理を施さず、引き抜き管をそのまま使用することも 可能である。
導電性支持体と感光層との間には、接着性'ブロッキング性等の改善のため、下引 き層を設けてもよい。下引き層としては、榭脂、榭脂に金属酸ィ匕物等の粒子を分散し たもの等が用いられる。
[0056] 下引き層に用いる金属酸ィ匕物粒子の例としては、酸化チタン、酸ィ匕アルミニウム、 酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の 1種の金属元素を含む金属酸 化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数 の金属元素を含む金属酸ィ匕物粒子があげられる。一種類の粒子のみを用いてもょ ヽ し複数の種類の粒子を混合して用いてもよい。これらの金属酸ィ匕物粒子の中で、酸 化チタンおよび酸ィ匕アルミニウムが好ましぐ特に酸ィ匕チタンが好ましい。酸化チタン 粒子は、その表面に、酸化錫、酸ィ匕アルミニウム、酸ィ匕アンチモン、酸ィ匕ジルコニウム 、酸化珪素等の無機物、またはステアリン酸、ポリオール、シリコーン等の有機物によ る処理が施されていてもよい。酸ィ匕チタン粒子の結晶型としては、ルチル、アナター ゼ、ブルッカイト、アモルファスのいずれも用いることができる。複数の結晶状態のも のが含まれていてもよい。
[0057] また、金属酸ィ匕物粒子の粒径としては、種々のものが利用できる力 中でも特性お よび液の安定性の面から、 SEM写真により観察される任意の 10回の粒子の最大径 の平均値を平均一次粒径とした場合、その平均一次粒径は、 10nm以上 lOOnm以 下が好ましぐ特に好ましくは、 lOnm以上 50nm以下である。
[0058] 下引き層は、金属酸ィ匕物粒子をバインダー榭脂に分散した形で形成するのが望ま しい。下引き層に用いられるバインダー榭脂としては、フエノキシ、エポキシ、ポリビニ ルピロリドン、ポリビュルアルコール、カゼイン、ポリアクリル酸、セルロース類、ゼラチ ン、デンプン、ポリウレタン、ポリイミド、ポリアミド等が単独あるいは硬化剤とともに硬 化した形で使用できる。中でも、アルコール可溶性の共重合ポリアミド、変性ポリアミド 等は良好な分散性、塗布性を有するため好ましい。
下引き層に用 、られるノインダー榭脂に対する無機粒子の配合比は任意に選べる 力 バインダー榭脂全体に対して、 10質量%から 500質量%の範囲で使用すること 力 分散液の安定性、塗布性の面で好ましい。
下引き層の膜厚は、任意に選ぶことができるが、感光体特性および塗布性から、 0 . 1 μ mから 20 μ mの範囲が好ましい。また下引き層には、公知の酸化防止剤等が 含有されていてもよい。
[0059] <感光層>
本発明に係る電子写真感光体が有する感光層の構成は、電荷輸送物質を含有す る電荷輸送層を有する、公知の電子写真感光体に適用可能な如何なる構成も採用 することが可能である。中でも、電荷発生物質を含有する電荷発生層と、電荷輸送物 質を含有する電荷輸送層とを積層してなる複数の層からなる感光層を有する、いわ ゆる積層型感光体等があげられる。より好ましくは、導電性支持体上に電荷発生層と 電荷輸送層をこの順に積層した順積層型感光体が好まし 、。
[0060] <電荷発生物質 >
電荷発生物質としては、例えば、セレンおよびその合金、硫ィ匕カドミウム、その他の 無機系光導電材料;フタロシアニン顔料、ァゾ顔料、ジチオケトビロロピロール顔料、 スクアレン (スクァリリウム)顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環 キノン顔料、アントアントロン顔料、ベンズイミダゾール顔料等の有機顔料等の各種光 導電材料が使用でき、特に有機顔料、さらには、フタロシアニン顔料、ァゾ顔料が好 ましい。
[0061] これらの光導電材料の微粒子を、例えば、ポリエステル榭脂、ポリビニルアセテート 、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリエステル、ポリカーボネート、 ポリビュルァセトァセタール、ポリビュルプロピオナール、ポリビュルブチラール、フエ ノキシ榭脂、エポキシ榭脂、ウレタン榭脂、セルロースエステル、セルロースエーテル 等の各種バインダー榭脂で結着した形で使用される。
積層型感光体の場合の光導電材料の使用比率は、バインダー榭脂 100質量部に 対して、 30質量部から 500質量部の範囲である。また、その膜厚は、通常 0. l ^ m から 1 μ mの範囲であり、好ましくは 0. 15 μ mから 0. 6 μ mの範囲である。
[0062] [フタロシアニン化合物]
電荷発生物質としてフタロシア-ンィ匕合物を用いる場合、具体的には、無金属フタ ロシアニン;銅、インジウム、ガリウム、錫、チタン、亜鉛、バナジウム、シリコン、ゲルマ ユウム等の金属、またはその金属酸ィ匕物のフタロシアニン類;ノヽロゲンィ匕物、水酸ィ匕 物、アルコキシド等の配位したフタロシアニン類の各種結晶型が使用される。特に、 感度の高 、結晶型である X型、 て型等の無金属フタロシアニン; A型 (別称 |8型)、 B 型 (別称 α型)、 D型 (別称 Υ型)等のォキシチタニウムフタロシアニン (別称:ォキシチ タ -ゥムフタロシアニン);バナジルフタロシアニン;クロ口インジウムフタロシアニン; Π 型等のクロ口ガリウムフタロシアニン; V型等のヒドロキシガリウムフタロシアニン; G型、 I型等の ォキソ ガリウムフタロシア-ンニ量体; Π型等の; ζ ォキソ アルミ-ゥ ムフタロシア-ンニ量体が好適である。
[0063] これらのフタロシアニン化合物のうち、 Α型( j8型)、 Β型( α型)、および、 CuK a特 性 X線のブラッグ角(2 Θ ± 0. 2° )が、 27. 3°に明瞭なピークを示すことを特徴とする D型(Y型)のォキシチタニウムフタロシアニン、 Π型クロ口ガリウムフタロシアニン、 V型 ヒドロキシガリウムフタロシアニン、 G型 ォキソ ガリウムフタロシア-ンニ量体等 が特に好ましい。中でも、 CuK o;特性 X線に対する X線回折スペクトルのブラッグ角( 2 Θ ±0. 2° )が、 9. 5° 、 24. 1° 、 27. 3° にピークを有する D型のォキシチタ-ゥ ムフタロシアニンが、種々の電荷移動物質との組合せ上の相性に優れている点でより 好ましい。
[0064] 更に、本発明においては D型ォキシチタニウムフタロシアニンが好ましぐ特に硫酸 による酸ペースト処理をへて、作製されたものが好ま 、。
D型ォキシチタニウムフタロシアニン中に含有されるクロ口ォキシチタニウムフタロシ ァニンは少ないものが好ましい。すなわち、特開 2001— 115054号公報に記載の手 法(マススペクトル法)において、クロ口ォキシチタニウムフタロシア-ンカ ォキシチタ -ゥムフタロシアニンに対する強度比で、 0. 005以下にあるもの力 好ましい。また、 非ハロゲンィ匕合物を使用して、合成された原料を使用することが好ましい。
[0065] フタロシアニン化合物は、単一の化合物のもののみを用いてもよ!、し、 V、くつかのフ タロシア-ンィ匕合物の混合あるいは混晶状態のものでも構わない。ここで、いくつか のフタロシア-ンィ匕合物の混合あるいは混晶状態のものとは、それぞれのフタロシア ニンィ匕合物を単独で製造した後に混合して用いてもよいし、合成、顔料化、結晶化 等のフタロシア-ンィ匕合物の製造'処理工程中において、混合状態を生じせしめたも のでもよい。このような処理としては、酸ペースト処理'磨砕処理'溶剤処理等が知ら れている。混晶状態を生じさせるためには、特開平 10— 48859号公報に記載の方 法のように、 2種類の結晶を混合後に機械的に摩砕、不定形化した後に、溶剤処理 によって特定の結晶状態に変換する方法があげられる。
[0066] [化学的処理後、有機溶媒に接触して得られるォキシチタニウムフタロシアニン] 本発明に係る電子写真感光体の電荷発生層は、特定のォキシチタニウムフタロシ ァニンを含有することが好ましい。当該ォキシチタニウムフタロシアニンは、フタロシア ニン前駆体を、化学的処理後に有機溶媒に接触して得られる。以下、かかるォキシ チタニウムフタロシアニンを「特定ォキシチタニウムフタロシアニン」という。
[0067] 本発明にお!/、て化学的処理とは、アモルファスォキシチタニウムフタロシアニン、低 結晶性ォキシチタニウムフタロシアニンを調製する段階で用いられる処理である。化 学的処理とは、単に物理的な力(例えば、機械的磨砕等)を用いてアモルファスォキ シチタニウムフタロシアニン、または低結晶性ォキシチタニウムフタロシアニンを得る 方法ではなぐ溶解、反応等の化学的現象を用いてアモルファス、もしくは低結晶性 ォキシチタニウムフタロシアニンを得る処理方法のことである。
[0068] 化学的処理の具体的な例としては、フタロシアニン前駆体を強酸中に溶解して行う アシッドペースティング法 (本明細書においては、「アシッドペースティング法」を、単 に「アシッドペースト法」という場合がある。)、強酸中で分散状態を経るアシッドスラリ 一法、ジクロロチタ-ルフタロシアニンにフエノール、アルコールを付加させた後に脱 離させてォキシチタニウムフタロシアニンを得る方法等の化学的処理方法があげられ る。中でも、より安定的なアモルファス、低結晶性ォキシチタニウムフタロシア-ンを得 るには、アシッドペースト法またはアシッドスラリー法が好ましぐアシッドペースト法が より好まし 、。
[0069] アシッドペースト法、アシッドスラリー法とは、顔料を強酸に溶解もしくは、懸濁、分 散させた溶液を調製し、その調製した溶液を、強酸と均一に混じり、顔料がほとんど 溶解しない媒体中(例えば、ォキシチタニウムフタロシアニンの場合は、水、メタノー ル、エタノール、プロパノール、エチレングリコール等のアルコール類;エチレングリコ 一ノレモノメチエーテル、エチレングリコールジェチノレエ一テル、テトラヒドロフラン等の エーテル類等)に放出し、再顔料化させることにより顔料を改質する方法である。
[0070] アシッドスラリー法、アシッドペースト法には濃硫酸、有機スルホン酸、有機ホスホン 酸、トリハロゲン化酢酸等の強酸が使用される。これら強酸は、強酸単独、もしくは強 酸同士の混合、または強酸と有機溶媒の組み合わせ等で用いることが可能である。 強酸の種類はフタロシアニン前駆体の溶解性を考慮すると、トリハロゲンィ匕酢酸、濃 硫酸が好ましぐ生産コストを考慮すると、濃硫酸がより好ましい。
濃硫酸の濃度は、フタロシアニン前駆体の溶解性を考慮すると、 90質量%以上の 濃硫酸が好ましぐさらに濃硫酸の含有量が低いと生産効率が低下することから、より 好ましくは 95質量%以上の濃硫酸である。
[0071] 強酸にフタロシアニン前駆体を溶解させる温度は、公知文献に掲載されている温度 条件で溶解させることが可能であるが、温度が高すぎると前駆体のフタロシアニン環 が開環し、分解してしまうことから、 5°C以下が好ましぐ得られる電子写真感光体に 及ぼす影響を考慮すると o°c以下がより好ましい。
強酸は任意の量で用いることが可能である力 少なすぎるとフタロシアニン前駆体 の溶解性が悪くなることから、強酸の使用量は、フタロシアニン前駆体 1質量部に対 して 5質量部以上、溶液中の固形分濃度が高すぎると撹拌効率が低下することから 1 5質量部以上が好ましぐより好ましくは 20質量部以上である。また、強酸の使用量が 多すぎると、廃棄酸量が増えることから、 100質量部以下が好ましぐまた生産効率を 考慮すると 50質量部以下がより好ま 、。
[0072] 得られたフタロシアニン前駆体の酸溶液を放出する媒体の種類としては、例えば、 水;メタノール、エタノール、 1 プロパノール、 2—プロパノール等の 1価アルコール; エチレングリコール、グリセリン等の多価アルコール;テトラヒドロフラン、ジォキサン、 ジォキソラン、テトラヒドロピラン等の環状エーテル;エチレングリコールモノメチルェ 一テル、エチレングリコールジェチルエーテル等の鎖状エーテル等があげられ、公 知の方法と同様に、放出媒体は単一種で用いても、 2種類以上を混合して使用して もよい。用いる媒体種により再顔料化された際の粒子形状、結晶状態等が変化し、こ の履歴が後に得られる最終結晶の電子写真感光体特性に影響を与えることから、水 、または、メタノール、エタノール、 1 プロパノール、 2—プロパノール等の低級アル コール類が好ましぐ生産性、コストの面力も水がより好ましい。
[0073] フタロシアニン前駆体の濃硫酸溶液を放出媒体に放出し、再顔料化されたォキシ チタニウムフタロシアニンは、ウエットケーキとして濾別される。し力し、このウエットケ ーキは放出媒体中に存在する濃硫酸の硫酸イオン等の不純物を多く含むことから、 再顔料化された後に、洗浄媒体で洗浄を行う。洗浄を行う媒体は、例えば、水酸ィ匕 ナトリウム水溶液、水酸ィヒカリウム水溶液、炭酸水素ナトリウム水溶液、炭酸ナトリウム 水溶液、炭酸カリウム水溶液、酢酸ナトリウム水溶液、アンモニア水溶液等のアルカリ 性水溶液;希塩酸、希硝酸、希酢酸等の酸性水溶液;イオン交換水等の水等があげ られる。中でも、顔料中に残存したイオン性物質は電子写真感光体特性に悪影響を 与える場合が多いことから、イオン交換水等のイオン性の物質を取り除いた水が好ま しい。
[0074] 通常、アシッドペースト法やアシッドスラリー法により得られるォキシチタニウムフタ口 シァニンは明確な回折ピークを有さないアモルファス力、ピークは有するが、その強 度が非常に弱ぐ半値幅の非常に大きいピークを有する低結晶性のものである。
[0075] 通常、アシッドペースト法やアシッドスラリー法により得られたアモルファスォキシチ タニゥムフタロシアニン、または低結晶性ォキシチタニウムフタロシアニンを有機溶媒 に接触させることにより、本発明の電子写真感光体に用いることができる CuKひ特性 X線 (波長 1. 541 A)に対するブラッグ角(2 Θ ±0. 2° )が 9. 5° 、 24. 1° および 2 7. 2° に主たる回折ピークを有するォキシチタニウムフタロシアニン、または、 9. 5° 、 9. 7° 、 24. 2° および 27. 2° に主たる回折ピークを有する「特定ォキシチタ-ゥ ムフタロシアニン」を得ることができる。
[0076] 特定ォキシチタニウムフタロシアニンは、化学的処理後、有機溶媒に接触すること により得られるが、化学的処理後のアモルファスォキシチタニウムフタロシアニン、お よび低結晶性ォキシチタニウムフタロシアニンを纏めて「低結晶性フタロシアニン類」 という。
[0077] 本発明にお 、て「低結晶性フタロシアニン類」とは、粉末 X線回折 (X— ray diffra ction :以下「XRD」と省略する場合がある。)スペクトルにおいて、 CuK a特性 X線( 波長 1. 541 A)に対するブラッグ角(2 0 ±0. 2° )が 0〜40° の範囲内に、半値幅 が 0. 30° 以下のピークを有さないフタロシアニン類をいう。この半値幅が小さ過ぎる と、固体中でフタロシアニン分子がある程度一定の規則性や長期的秩序を有してい る状態になっており、有機溶媒に接触することにより、特定ォキシチタニウムフタロシ ァニンを得る際に、結晶型の制御性が低下する場合がある。このため、本発明にお いて用いる低結晶性フタロシアニン類は、その半値幅力 通常 0. 35° 以下、さらに は 0. 40° 以下、特に 0. 45° 以下のピークを有さないものであることが好ましい。
[0078] なお、本明細書にぉ 、て、フタロシアニン類の粉末 X線回折スペクトルの測定、 Cu Κ α特性 X線 (波長 1. 541 Α)に対するブラッグ角(2 0 ±0. 2° )の決定、およびピ ーク半値幅の算出は、以下の条件で行なうものとする。
粉末 X線回折スペクトルの測定装置としては、 CuK a (CuK a 1 + CuK a 2)線を X 線源とした集中光学系の粉末 X線回折計 (例えば PANalytical社製、 PW1700)を 使用する。 粉末 X線回折スペクトルの測定条件は、走査範囲 (2 Θ )3. 0-40. 0° 、スキャンス テツプ幅 0. 05° 、走査速度 3. 0° Zmin、発散スリット 1° 、散乱スリット 1° 、受光 スリット 0. 2mmとする。
[0079] ピーク半値幅は、プロファイルフィッティング法により算出することができる。プロファ ィルフィッティングは、例えば MDI社製粉末 X線回折パターン解析ソフト JADE5. 0 +を用いて行なうことができる。
その算出条件は、以下の通りである。
まず、ノ ックグランドは、全測定範囲(2 Θ = 3. 0〜40. 0° )力も理想的な位置に 固定する。フィッティング関数としては、 CuK a 2の寄与を考慮した Peason—VII関 数を用いる。フィッティング関数の変数としては、回折角 (2 Θ )、ピーク高さ、およびピ ーク半値幅( j8 0)の 3つを精密化する。 CuK a 2の影響を除去し、 CuK α 1由来の回 折角(2 Θ )、ピーク高さ、およびピーク半値幅( β ο)を計算する。そして、非対称は 0 に、形定数は 1. 5に固定する。
[0080] 上記のプロファイルフィッティング法により算出したピーク半値幅( j8 0)を、同じ測定 条件、同じプロファイルフィッティング条件により算出した標準 Si (NIST Si 640b) の 111ピーク(2 0 = 28. 442° )のピーク半値幅(j8 )により、下式に従って補正す
Si
ることにより、試料由来のピーク半値幅( j8 )が求められる。
[数 1] β ~^β9 —お Si
[0081] なお、アモルファスォキシチタニウムフタロシアニンと、低結晶性ォキシチタニウムフ タロシアニンとの境界は明確ではないが、本発明においては何れを原料としても、特 定ォキシチタニウムフタロシアニンを得ることが可能である。
[0082] 特定ォキシチタニウムフタロシアニンの結晶は、 CuK α特性 X線 (波長 1. 54lA) に対するブラッグ角(2 0 ±0. 2° )が 9. 5° 、 24. 1° および 27. 2° 、または、 9. 5 。 、 9. 7° 、 24. 2° および 27. 2° に主たる回折ピークを有する。中でも、 27. 2° 付近にピークを有する低結晶性フタロシアニン類は、上記特定ォキシチタニウムフタ ロシアニンとある程度類似した規則性を有しており、上記特定結晶型への結晶型制 御性に優れる。この場合における低結晶性フタロシアニン類は、その半値幅が通常 0 . 30° 以下のピークを有さないものであり、好ましくは 0. 35° 以下のピークを有さな いものであり、より好ましくは、その半値幅が 0. 40° 以下のピークを有さないもので あり、さらに好ましくは、その半値幅が 0. 45° 以下のピークを有さないものである。
[0083] 一方、 27. 2° 付近にピークを有さない低結晶性フタロシアニン類を、特定ォキシ チタニウムフタロシアニンの原料として用いる場合には、上記特定結晶型を有する特 定ォキシチタニウムフタロシアニンへの結晶型制御性が低 、ことから、より結晶性が 低いことが望ましい。この場合における低結晶性フタロシアニンは、その半値幅が通 常 0. 30° 以下のピークを有さないものであり、好ましくはその半値幅が 0. 50° 以下 のピークを有さないものであり、より好ましくはその半値幅が 0. 70° 以下のピークを 有さないものであり、さらに好ましくはその半値幅が 0. 90° 以下のピークを有さない ものである。
[0084] 通常、低結晶性フタロシアニン類と有機溶媒との接触は水の存在下で行われる。水 は、アシッドペースト法、アシッドスラリー法により得られた含水ケーキ中に含まれる水 を用いても、含水ケーキ中に含まれる水以外にさらに後から水を添加して用いてもよ い。また、アシッドペースト法、アシッドスラリー法後に得られた含水ケーキをー且乾 燥させ、結晶変換時に新たに水を追加して用いてもよい。しかし、乾燥させてしまうと 顔料と水との親和性が低下することから、乾燥させずにアシッドペースト法、アシッド スラリー法により得られた含水ケーキ中に含まれる水を用いる力、または含水ケーキ 中に含まれる水にさらに後から水を添加することが好ま 、。
[0085] 結晶変換に用いることができる溶媒としては、水と相溶性のある溶媒、水と非相溶の 溶媒のいずれも可能である。水と相溶性のある溶媒の好適な例としては、テトラヒドロ フラン、 1, 4 ジォキサン、および 1, 3 ジォキソラン等の環状エーテルがあげられ る。また、水と非相溶の溶媒の好適な例としては、トルエン、ナフタレン、メチルナフタ レン等の芳香族炭化水素系溶媒;モノクロ口ベンゼン、ジクロロベンゼン、クロロトルェ ン、ジクロロトノレェン、ジクロロフノレォロベンゼン、 1, 2—ジクロロェタン等のノヽロゲン 化炭化水素系溶媒;ニトロベンゼン、 1, 2—メチレンジォキシベンゼン、ァセトフエノン 等の置換芳香族系溶媒があげられる。中でも環状エーテル;モノクロ口ベンゼン、 1, 2—ジクロ口ベンゼン、ジクロロフルォロベンゼン、ジクロロトルエン等のハロゲン化炭 化水素系溶媒;芳香族炭化水素系溶媒等が得られた結晶の電子写真特性が良好で あり好ましい。中でも、テトラヒドロフラン、モノクロ口ベンゼン、 1, 2—ジクロロベンゼン 、 2, 4ージクロ口トルエン、ジクロロフルォロベンゼン、トルエン、ナフタレン等力 得ら れた結晶の分散時の安定性と!/、う点でより好ま 、。
[0086] 結晶変換後得られた結晶は、乾燥工程を行うことになるが、乾燥方法は、例えば、 送風乾燥、加熱乾燥、真空乾燥、凍結乾燥等の公知の方法で乾燥することが可能 である。
前記製造法により得られた特定ォキシチタニウムフタロシアニンの結晶は、 CuK a 特性 X線 (波長 1. 541 A)に対するブラッグ角(2 0 ±0. 2° )が 9. 5° 、 24. 1° お よび 27. 2° 、または、 9. 5° 、 9. 7° 、 24. 2° および 27. 2° に主たる回折ピーク を有する結晶である。他の回折ピークとして 26. 2° 付近にピークを有する結晶は分 散時の結晶安定性に劣ることから、 26. 2° 付近にはピークを有さない結晶であるこ と力 子まし ヽ。中でも、 7. 3° 、 9. 5° 、 11. 6° 、 14. 2° 、 18. 0° 、 24. 1° およ び 27. 2° 、または、 7. 3° 、 9. 5° 、 9. 7° 、 11. 6° 、 14. 2° 、 18. 0° 、 24. 2 ° および 27. 2° に主たる回折ピークを有する結晶が電子写真感光体として用いた 場合の暗減衰、残留電位の観点力もより好ましい。
なお、ブラック角は、 2 0 ±0. 2° で示される通り、 ±0. 2° の誤差を有する。この ため、例えば、「ブラッグ角(2 0 ±0. 2° )が 9. 5° 」という場合は、 9. 3〜9. 7° の 範囲を意味している。この誤差範囲は、他の角度においても同様である。
[0087] [ァゾ化合物]
電荷発生物質としてァゾ化合物を使用する場合には、各種公知のビスァゾ顔料、ト リスァゾ顔料が好適に用いられる。本発明で好適な、ァゾィ匕合物としては、ォキサジ ァゾール環構造を持つ化合物も好ま 、。好適なァゾ化合物の具体例を下に記す。
[0088] [化 16]
Figure imgf000029_0001
<バインダー榭脂 >
感光層形成に際しては、膜強度確保のために、バインダー榭脂が使用される。この 場合、感光層は前記の電荷発生物質等とともにバインダー榭脂を溶剤に溶解ある ヽ は分散して得られる塗布液を、導電性支持体上 (下引き層を有する場合は下引き層 上)に塗布、乾燥して得ることができる。 特に好ましく使用されるバインダー榭脂としては、ポリカーボネート榭脂、ポリエステ ル榭脂等があげられる。これらは一般的に、ジオール成分の部分構造を有する。これ らの構造を形成するジオール成分としては、ビスフエノール残基、ビフエノール残基 等があげられる。
その具体例としては、ビス一(4—ヒドロキシ一 3, 5—ジメチルフエ-ル)メタン、ビス - (4—ヒドロキシフエ-ル)メタン、ビス一(4—ヒドロキシ一 3—メチルフエ-ル)メタン ゝ 1, 1—ビス一(4 ヒドロキシフエ-ル)ェタン、 1, 1—ビス一(4 ヒドロキシフエ-ノレ )プロパン、 2, 2 ビス一(4 ヒドロキシフエ-ル)プロパン、 2, 2 ビス一(4 ヒドロ キシ一 3—メチルフエ-ル)プロパン、 2, 2 ビス一(4 ヒドロキシフエ-ル)ブタン、 2 , 2 ビス一(4 ヒドロキシフエ-ル)ペンタン、 2, 2 ビス一(4 ヒドロキシフエ-ル) —3—メチルブタン、 2, 2 ビス一(4 ヒドロキシフエ-ル)へキサン、 2, 2 ビス一( 4 ヒドロキシフエ-ル)一 4—メチルペンタン、 1, 1—ビス一(4 ヒドロキシフエ-ル) シクロペンタン、 1, 1—ビス一(4 ヒドロキシフエ-ル)シクロへキサン、ビス一(3 フ ェ-ル 4 ヒドロキシフエ-ル)メタン、 1, 1—ビス一(3 フエ-ル一 4 ヒドロキシフ ェ -ル)ェタン、 1, 1—ビス一(3 フエ-ノレ一 4 ヒドロキシフエ-ル)プロパン、 2, 2 —ビス一(3 フエ-ノレ一 4 ヒドロキシフエ-ル)プロパン、 1, 1—ビス一(4 ヒドロキ シ一 3—メチルフエ-ル)ェタン、 2, 2 ビス一(4 ヒドロキシ一 3—メチルフエ-ル) プロパン、 2, 2 ビス一(4 ヒドロキシ一 3 ェチルフエ-ル)プロパン、 2, 2 ビス — (4 ヒドロキシ一 3—イソプロピルフエ-ル)プロパン、 2, 2 ビス一(4 ヒドロキシ —3— sec ブチルフエ-ル)プロパン、 1, 1—ビス—(4 ヒドロキシ— 3, 5 ジメチ ルフエ-ル)ェタン、 2, 2 ビス一(4 ヒドロキシ一 3, 5 ジメチルフエ-ル)プロパン ゝ 1, 1—ビス(4 ヒドロキシ一 3, 5 ジメチルフエ-ル)シクロへキサン、 1, 1—ビス — (4 ヒドロキシ一 3, 6 ジメチルフエ-ル)ェタン、ビス一(4 ヒドロキシ一 2, 3, 5 —トリメチルフエニル)メタン、 1, 1—ビス一(4 ヒドロキシ一 2, 3, 5 トリメチルフエ -ル)ェタン、 2, 2 ビス一(4 ヒドロキシ一 2, 3, 5 トリメチルフエ-ル)プロパン、 ビス一(4 ヒドロキシ一 2, 3, 5 トリメチルフエ-ル)フエ-ルメタン、 1, 1—ビス一( 4 ヒドロキシ一 2, 3, 5 トリメチルフエ-ル)フエ-ルェタン、 1, 1—ビス一(4 ヒド 口キシ一 2, 3, 5 トリメチルフエ-ル)シクロへキサン、ビス一(4 ヒドロキシフエ-ル )フエ-ルメタン、 1, 1—ビス一(4 ヒドロキシフエ-ル)一 1—フエ-ルェタン、 1, 1 —ビス一(4 ヒドロキシフエ-ル)一 1—フエ-ルプロパン、ビス一(4 ヒドロキシフエ -ル)ジフエ-ルメタン、ビス一(4 ヒドロキシフエ-ル)ジベンジルメタン、 4, 4'—[1 , 4 フエ-レンビス(1—メチルェチリデン) ]ビス一 [フエノール]、 4, 4,一 [1, 4 フエ 二レンビスメチレン]ビス一 [フエノール]、 4, 4,一 [1, 4 フエ-レンビス(1—メチルェ チリデン) ]ビス一 [2, 6 ジメチルフエノール]、 4, 4,一 [1, 4 フエ-レンビスメチレン ]ビス一 [2, 6 ジメチルフエノール]、 4, 4,一 [1, 4 フエ二レンビスメチレン]ビス一 [2 , 3, 6 トリメチルフエノール]、 4, 4,一 [1, 4 フエ-レンビス(1—メチルェチリデン) ]ビス一 [2, 3, 6 トリメチルフエノール]、 4, 4,一 [1, 3 フエ-レンビス(1—メチルェ チリデン) ]ビス一 [2, 3, 6 トリメチルフエノール]、 4, 4'—ジヒドロキシジフエ-ルェ 一テル、 4, 4 ビス(4ーヒドロキシフエ-ル)吉草酸ステアリルエステル、 4, 4'ージヒ ドロキシジフエ-ルスルホン、 4, 4'—ジヒドロキシジフエ-ルスルフイド、 3, 3' , 5, 5, ーテトラメチルー 4, 4'ージヒドロキシジフエニルエーテル、 3, 3' , 5, 5'—テトラメチ ルー 4, 4'ージヒドロキシジフエニルスルホン、 3, 3' , 5, 5,ーテトラメチルー 4, 4' ジヒドロキシジフエ-ルスルフイド、フエノールフタルレイン、 4, 4'— [1, 4 フエ-レン ビス(1—メチノレビ-リデン) ]ビスフエノーノレ、 4, 4'— [1, 4 フエ-レンビス(1—メチ ルビ-リデン) ]ビス [2—メチルフエノール]、 (2 ヒドロキシフエ-ル)(4 ヒドロキシフ ェ -ル)メタン、 (2 ヒドロキシ一 5—メチルフエ-ル)(4 ヒドロキシ一 3—メチルフエ -ル)メタン、 1, 1— (2 ヒドロキシフエ-ル)(4 ヒドロキシフエ-ル)ェタン、 2, 2- (2 ヒドロキシフエ-ル)(4 ヒドロキシフエ-ル)プロパン、 1, 1— (2 ヒドロキシフ ェ -ル)(4—ヒドロキシフエ-ル)プロパン、等のビスフエノール成分; 4, 4,一ビフエノ ール、 2, 4'ービフエノール、 3, 3,一ジメチルー 4, 4'ージヒドロキシ一 1, 1 'ービフ ェニル、 3, 3,—ジメチル— 2, 4'—ジヒドロキシ— 1, 1 ' ビフエニル、 3, 3,—ジ—( t ブチル)ー4, 4'ージヒドロキシ 1, 1 'ービフエニル、 3, 3' , 5, 5,ーテトラメチル —4, 4,一ジヒドロキシ一 1, 1,一ビフエ-ル、 3, 3' , 5, 5,一テトラ一(t—ブチル)一 4, 4,一ジヒドロキシ一 1, 1,一ビフエニル、 2, 2' , 3, 3' , 5, 5,一へキサメチル一 4 , 4,ージヒドロキシ 1, 1,ービフエ-ル等のビフエノール成分等があげられる。
これらの中で好ましい化合物としては、ビス一(4ーヒドロキシ一 3, 5—ジメチルフエ -ル)メタン、ビス一(4—ヒドロキシフエ-ル)メタン、ビス一(4—ヒドロキシ一 3—メチ ルフエ-ル)メタン、 2, 2 ビス一(4 ヒドロキシ一 3—メチルフエ-ル)プロパン、 1 , 1 ビス一(4ーヒドロキシフエ-ル)ェタン、 2, 2 ビス一(4ーヒドロキシフエ-ル)プ 口パン、 2 ヒドロキシフエ-ル(4 ヒドロキシフエ-ル)メタン、 2, 2— (2 ヒドロキシ フエ-ル)(4ーヒドロキシフエ-ル)プロパン等のビスフエノール成分があげられる。
[0092] 具体的に、好適に用いることのできるポリカーボネート榭脂のジオール成分 (ビスフ ェノール、ビフエノール等)を以下に例示する。本例示は、本発明の趣旨を明確にす るために行うものであり、本発明の趣旨に反しない限りは例示される構造に限定され るものではない。
[0093] [化 17]
Figure imgf000032_0001
[0094] 特に、本発明の効果を最大限に発揮するためには、以下の構造を示すジオール成 分であることが好ましい。
[化 18]
Figure imgf000032_0002
[0095] また、酸成分としては、以下の構造を有するものを用いることが好ま 、。
[化 19] O
O O HO !l ノー、 O 0 /=、 ,=■ O
HO- IL - ^OH ί ;: -JLOH HO- ヽ O ) "r^ M
Figure imgf000033_0001
[0096] 特に好ましい酸成分は、以下の構造を有するものである。
[化 20]
HO 91一 w /—\ , O— ί「\-^ΟΗ
[0097] これらのジカルボン酸成分ゃジオール成分は、複数種組み合わせて用いることも可 能である。
[0098] バインダー榭脂の分子量は、低すぎると機械的強度が不足し、逆に分子量が高す ぎると感光層形成のための塗布液の粘度が高すぎて生産性が低下するといつた不 具合が生じる場合がある。そのため、ポリカーボネート榭脂、ポリエステル榭脂(ポリア リレート榭脂を含む)の場合、粘度平均分子量で 10, 000以上が好ましぐ特に好ま しく ίま 20, 000以上である。また、 70, 000以下力好ましく、特に好ましく ίま 50, 000 以下である。粘度平均分子量は、実施例に記載されている測定方法で測定し、それ によって定義される。
[0099] 本発明の電子写真感光体が有する感光層は、ポリアリレート榭脂を含有しているこ とも好ましい。特に、電荷輸送層がポリアリレート榭脂を含有していることが好ましい。 該ポリアリレート榭脂は結着榭脂として機能する。
ポリアリレート樹脂はポリエステルの一種であり、芳香族性を有する環を持つ 2価ァ ルコールと、芳香族性を有する環を持つ 2価カルボン酸との縮合により形成されるも のである。
本発明の電子写真感光体において、一般式(1)で表される電荷輸送物質と組み合 わせて機械特性向上等のためには、ポリアリレート榭脂を使用することが好ましい。 以下、本発明に用いられるポリアリレート榭脂について詳述する。
[0100] 芳香族性を有する環を持つ 2価アルコールとしては、通常ポリアリレート榭脂の製造 に用いられる如何なるものも使用可能である力 好ましくはビスフ ノール類および Ζ またはビフヱノール類が用いられる。これらのビスフエノール類やビフヱノール類はそ れらが有する芳香族環上に各々独立に置換基を有して 、てもよ 、。より具体的には、 アルキル基、ァリール基、ハロゲン基またはアルコキシ基を有していることも好ましい。 感光層用バインダー榭脂としての機械的特性と、感光層形成用塗布液を調製する 際の溶媒に対する溶解性を勘案すると、アルキル基としては炭素数 6以下のアルキ ル基が好ましぐより好ましくはメチル基、ェチル基、プロピル基があげられる。ァリー ル基としては芳香族環数が 3以下のァリール基が好ましぐより好ましくはフエ-ル基 、ナフチル基があげられる。ハロゲン基としてフッ素原子、塩素原子、臭素原子、ヨウ 素原子等が好ましい。アルコキシ基としては、アルコキシ基中のアルキル基部分の炭 素数が 1〜10のアルコキシ基が好ましぐ更に好ましくは炭素数が 1〜8のアルコキシ 基であり、特に好ましくは炭素数が 1〜2のアルコキシ基である。具体的には、メトキシ 基、エトキシ基、ブトキシ基等が特に好ましい。
ポリアリレート樹脂に用いられる 2価アルコールとしては、前記したポリカーボネート 榭脂ゃポリエステル榭脂に用いられるものがあげられる。特に、ポリアリレート榭脂に 好適に用いられる 2価アルコールとしては、具体的には、ビス(4ーヒドロキシフヱ-ル )メタン、 (2—ヒドロキシフエ-ル)(4—ヒドロキシフエ-ル)メタン、ビス(2—ヒドロキシ フエ-ル)メタン、ビス(4—ヒドロキシ一 3—メチルフエ-ル)メタン、ビス(4—ヒドロキシ —3—ェチルフエ-ル)メタン、ビス(4—ヒドロキシ一 3, 5—ジメチルフエ-ル)メタン; 1, 1—ビス(4—ヒドロキシフエ-ル)ェタン、 1— (2—ヒドロキシフエ-ル)一 1— (4— ヒドロキシフエ-ル)ェタン、 1, 1—ビス(2—ヒドロキシフエ-ル)ェタン、 1, 1—ビス(4 —ヒドロキシ一 3—メチルフエ-ル)ェタン、 1, 1—ビス(4—ヒドロキシ一 3—ェチルフ ェ -ル)ェタン、 1, 1—ビス(4—ヒドロキシ一 3, 5—ジメチルフエ-ル)ェタン、 1, 1— ビス(4—ヒドロキシ一 3—メチルフエ-ル)ェタン、 1, 1—ビス(4—ヒドロキシ一 3, 5— ジメチルフエニル)ェタン; 3, 3' , 5, 5,ーテトラメチルー 4, 4'ージヒドロキシビフエ二 ル、 2, 2—ビス(4—ヒドロキシ一 3, 5—ジメチルフエ-ル)プロパン、 2, 2—ビス(4— ヒドロキシ一 3—メチルフエ-ル)プロパン、 2, 2—ビス(4—ヒドロキシフエ-ル)プロパ ン、 2, 2—ビス(4—ヒドロキシ一 3, 5—ジメチルフエ-ル)プロパン; 1, 1—ビス(4— ヒドロキシ一 3, 5—ジメチルフエ-ル)シクロへキサン、 1, 1—ビス(4—ヒドロキシ一 3 —メチルフエ-ル)シクロへキサン、 1, 1—ビス(4 ヒドロキシフエ-ル)シクロへキサ ン;ビス(4 -ヒドロキシフエ-ル)ケトン;ビス(4 -ヒドロキシフエ-ル)エーテル、ビス ( 4 ヒドロキシ一 3, 5 ジメチルフエ-ル)エーテル、 (2 ヒドロキシフエ-ル)(4 ヒ ドロキシフエニル)エーテル、ビス(2 ヒドロキシフエニル)エーテノレ、ビス(4 ヒドロキ シ 3—メチルフエ-ル)エーテル、ビス(4 -ヒドロキシ— 3—ェチルフエ-ル)エーテ ル等があげられる。これらの 2価アルコール成分は、複数組み合わせて用いることも 可能である。
[0102] これらの中でも特に、下記構造の 2価アルコールを繰り返し単位構造として有する ポリアリレート樹脂であることが好まし 、。
[0103] [化 21]
Figure imgf000035_0001
[0104] 芳香族性を有する環を持つ 2価カルボン酸としては、通常ポリアリレート榭脂の製造 に用いられる如何なるものも使用可能である。具体的には、フタル酸、イソフタル酸、 ナフタレン一 1, 4 ジカルボン酸、ナフタレン一 2, 6 ジカルボン酸、ビフエ-ル一 2 , 2,ージカルボン酸、ビフエ-ルー 4, 4,ージカルボン酸、ジフエ-ルエーテル 2, 2,ージカルボン酸、ジフエ-ルエーテル 2, 3,ージカルボン酸、ジフエ-ルエーテ ルー 2, 4,ージカルボン酸、ジフエ-ルエーテル—3, 3,ージカルボン酸、ジフエ-ル エーテル 3, 4'ージカルボン酸、ジフエ-ルエーテル—4, 4'ージカルボン酸があ げられる。好ましくは、イソフタル酸、テレフタル酸、ジフヱ-ルエーテル 2, 2'ージ カルボン酸、ジフエ-ルエーテル 2, 4'—ジカルボン酸、ジフエ-ルエーテル—4, 4'—ジカルボン酸があげられる。特に好ましくは、イソフタル酸、テレフタル酸、ジフエ -ルエーテル 4, 4'ージカルボン酸、ビフエ-ルー 4, 4'ージカルボン酸があげら れる。これらのジカルボン酸は、複数組み合わせて用いることも可能である。
[0105] ポリアリレート榭脂の製造方法としては、特に限定されず、例えば、界面重合法、溶 融重合法、溶液重合法等の公知の重合方法を用いることができる。
界面重合法による製造の場合は、例えば、二価フエノール成分をアルカリ水溶液に 溶解した溶液と、芳香族ジカルボン酸クロライド成分を溶解したハロゲンィ匕炭化水素 の溶液とを混合する。この際、触媒として、四級アンモ-ゥム塩もしくは四級ホスホ- ゥム塩を存在させることも可能である。重合温度は 0〜40°Cの範囲、重合時間は 2〜 20時間の範囲であるのが生産性の点で好ましい。重合終了後、水相と有機相を分 離し、有機相中に溶解しているポリマーを公知の方法で、洗浄、回収することにより、 目的とするポリアリレート榭脂が得られる。
[0106] 界面重合法で用いられるアルカリ成分としては、例えば、水酸化ナトリウム、水酸ィ匕 カリウム等のアルカリ金属の水酸ィ匕物等をあげることができる。アルカリの使用量とし ては、反応系中に含まれるフエノール性水酸基の 1. 01〜3倍当量の範囲が好ましい 溶媒として使用するハロゲンィ匕炭化水素としては、例えば、ジクロロメタン、クロロホ ノレム、 1, 2—ジクロ口エタン、トリクロロェタン、テトラクロロェタン、ジクロノレベンゼン等 をあげることができる。
触媒として用いられる四級アンモ-ゥム塩もしくは四級ホスホ-ゥム塩としては、例 えば、トリブチルァミンやトリオクチルァミン等の三級アルキルァミンの塩酸、臭素酸、 ヨウ素酸等の塩;ベンジルトリェチルアンモ -ゥムクロライド、ベンジルトリメチルアンモ -ゥムクロライド、ベンジルトリブチルアンモ -ゥムクロライド、テトラエチルアンモ-ゥ ムクロライド、テトラプチルアンモニゥムクロライド、テトラプチルアンモニゥムブロマイド 、トリオクチルメチルアンモ -ゥムクロライド、テトラブチルホスホ-ゥムブロマイド、トリ ェチルォクタデシルホスホ -ゥムブロマイド、 N—ラウリルピリジ-ゥムクロライド、ラウリ ルピコリュウムクロライド等があげられる。
[0107] また、界面重合法では、分子量調節剤を使用することができる。分子量調節剤とし ては、例えば、フエノーノレ; o, m, p—クレゾ一ノレ、 o, m, p—ェチノレフエノーノレ、 o, m , ρ—プロピルフエノール、 ο, m, p— (tert—ブチル)フエノール、ペンチルフエノール 、へキシルフェノール、ォクチルフエノール、ノ-ルフエノール、 2, 6—ジメチルフエノ ール誘導体、 2—メチルフエノール誘導体等のアルキルフエノール類; o, m, p—フエ ユルフェノール等の一官能性のフエノール等があげられる。また、酢酸クロリド、酪酸 クロリド、ォクチル酸クロリド、塩化べンゾィル、ベンゼンスルフォ-ルクロリド、ベンゼ ンスルフィエルクロリド、スルフィエルクロリド、ベンゼンホスホ-ルクロリドまたはそれら の置換体等の一官能性酸ハロゲンィ匕物等もあげられる。
これら分子量調節剤の中でも、分子量調節能が高ぐかつ溶液安定性の点で好ま しいのは、 o, m, p - (tert—ブチル)フエノール、 2, 6—ジメチルフエノール誘導体、 2—メチルフエノール誘導体である。特に好ましくは、 P - (tert—ブチル)フエノール、 2, 3, 6—テトラメチルフエノール、 2, 3, 5—テトラメチルフエノールである。
[0108] 該ポリアリレート榭脂の粘度平均分子量は、特に限定されないが、通常、 10, 000 以上、好ましくは 15, 000以上、更に好ましくは 20, 000以上であり、通常、 300, 00 0以下、好まし <は 200, 000以下、より好まし <は 100, 000以下、特に好まし <は 70 , 000以下である。粘度平均分子量が過度に小さいと、感光層の機械的強度が低下 し実用的ではない。また、粘度平均分子量が過度に大きいと、感光層を適当な膜厚 に塗布形成する事が困難である。粘度平均分子量は、実施例に記載されている測定 方法で測定し、それによつて定義される。
[0109] 本発明の電子写真感光体が有する電荷輸送層がポリアリレート榭脂を含有してい る場合には、バインダー榭脂と一般式(1)で表される電荷輸送物質との質量割合は どのような比でも構わな 、が、バインダー榭脂一般の箇所で前記した範囲が好ま ヽ 。特に、バインダー榭脂がポリアリレート榭脂を含有する場合には、電荷輸送層に含 まれる、一般式(1)で表される電荷輸送物質の総質量の、ポリアリレート榭脂を含む 全バインダー樹脂の含有質量に対する比、すなわち電荷輸送層中における一般式(
1)で表される電荷輸送物質の質量部 (一般式 (1)で表される電荷輸送物質が複数 種含有されている場合にはその総質量部)は、全バインダー榭脂の含有量を 100質 量部としたときに、電子写真感光体の残留電位を下げる観点力もすれば、 20質量部 以上であることが好ましぐ繰り返し使用した際の安定性と電荷移動度の観点からす れば、 25質量部以上であることがより好ましい。また、一方で感光層の熱安定性の観 点からは 90質量部以下であって、感光層中での一般式(1)の化合物の安定性の観 点から、好ましくは 80質量部以下、更に画像形成の際の耐久性の観点から、より好ま しくは 65質量部以下で、更に好ましくは 60質量部以下で、耐傷性の観点からは、 40 質量部以下が特に好まし 、。
ここで、「全バインダー榭脂の含有質量」とは、ポリアリレート榭脂以外のバインダー 榭脂も含む場合は、それらも含めた全てのバインダー榭脂の含有質量を 、う。
[0110] また、電荷輸送層中に、一般式(1)で表される電荷輸送物質以外の「他の電荷輸 送物質」も含有されていて、それも含めて複数の電荷輸送物質が含有されている場 合、電荷輸送層に含まれる総電荷輸送物質の含有量については、ポリアリレート榭 脂を含む全バインダー榭脂の含有量 100質量部に対し 25質量部以上、さらに残留 電位低減の観点力 30質量部以上が好ましぐさらに繰り返し使用した際の安定性、 電荷移動度の観点から、 40質量部以上がより好ましい。また、一方で感光層の熱安 定性の観点から、通常は 55質量部以下、さらに電荷輸送材料とバインダー榭脂の相 溶性の観点力も好ましくは 50質量部以下、さらに耐刷性の観点から 35質量部以下 力 り好ましぐ耐傷性の観点からは、 45質量部以下が最も好ましい。ここで、上記「 総電荷輸送物質」とは、一般式(1)で表される電荷輸送物質と「他の電荷輸送物質」 の両方を示す。
[0111] <酸化防止剤 >
本発明の電子写真感光体には、酸ィ匕防止剤が含まれていていることが好ましい。 酸化防止剤は、電子写真感光体に含まれる部材の酸化を防止するために含有され る安定剤の一種である。通常、電子写真感光体に含まれる部材の酸化は、表面から 起るため、酸ィ匕防止剤は電子写真感光体の最表面層に含まれることが好ましい。
[0112] 酸ィ匕防止剤は、ラジカル補足剤としての機能があり、具体的には、フエノール誘導 体、アミンィ匕合物、ホスホン酸エステル、硫黄化合物、ビタミン、ビタミン誘導体等があ げられる。この中でも、フエノール誘導体、アミンィ匕合物、ビタミン等が好ましい。嵩高 V、置換基をヒドロキシ基近辺に有するヒンダードフエノール、トリアルキルアミン誘導体 等が特に好ましい。更には、ヒドロキシ基の o—位に、 t—ブチル基を有するァリール 化合物誘導体が好ましぐヒドロキシ基の o—位に、 t ブチル基を 2つ有するァリー ル化合物誘導体が更に好ま Uヽ。
[0113] また、該酸ィ匕防止剤のゲルパーミエーシヨンクロマトグラフィにより測定される平均分 子量は、大きすぎると酸ィ匕防止能に問題が生じる場合があり、 1500以下が好ましぐ
1000以下が特に好ましい。下限は、 100以上が好ましぐ 150以上がより好ましぐ 2
00以上が特に好ましい。
[0114] 以下、本発明に使用できる酸化防止剤を示す。本発明に使用できる酸ィ匕防止剤と しては、プラスチック、ゴム、石油、油脂類に使用されている酸ィ匕防止剤;紫外線吸収 剤;光安定剤等の公知の材料すベてを用いることができる。とりわけ次に示す化合物 群より選ばれる材料が好ましく使用できる。
[0115] (1)特開昭 57— 122444号公報に記載のフエノール類、特開昭 60— 188956号公 報に記載のフエノール誘導体、特開昭 63— 18356号公報に記載のビンダードフエノ 一ノレ類。
(2)特開昭 57— 122444号公報に記載のパラフエ-レンジアミン類、特開昭 60— 18 8956号公報に記載のパラフエ-レンジァミン誘導体、特開昭 63— 18356号公報に 記載のパラフエ-レンジアミン類。
(3)特開昭 57— 122444号公報に記載のハイドロキノン類、特開昭 60— 188956号 公報に記載のハイドロキノン誘導体、特開昭 63— 18356号公報に記載のノ、イドロキ ノン類。
(4)特開昭 57— 188956号公報に記載のィォゥ化合物、特開昭 63— 18356号公 報に記載の有機ィォゥ化合物類。
(5)特開昭 57— 122444号公報に記載の有機リンィ匕合物、特開昭 63— 18356号 公報に記載の有機リンィ匕合物類。
(6)特開昭 57— 122444号公報に記載のヒドロキシァ-ソール類。
(7)特開昭 63— 18355号公報に記載の特定の骨格構造を有するピぺリジン誘導体 およびォキソピペラジン誘導体。
(8)特開昭 60— 188956号公報に記載のカロチン類、アミン類、トコフエロール類、 N i (II)錯体、スルフイド類。
[0116] 具体的には、以下に示すヒンダードフエノール類 (ヒンダードフエノールとは、嵩高い 置換基をヒドロキシ基近辺に有するフエノール類をいう。)、すなわち、ォクタデシルー 3, 5—ジー tーブチルー 4ーヒドロキシヒドロシンナメート、ジブチルヒドロキシトルエン 、 2, 2,ーメチレンビス(6— t—ブチルー 4 メチルフエノール)、 4, 4,ーブチリデンビ ス(6— t ブチル 3—メチルフエノール)、 4, 4 チォビス(6— t ブチル 3—メ チルフエノール)、 2, 2,ーブチリデンビス(6— t ブチルー 4 メチルフエノール)、 a—トコフエノール、 13—トコフエノール、 2, 2, 4 トリメチル 6 ヒドロキシ一 7— t —ブチルクロマン、ペンタエリスチルテトラキス [3— (3, 5—ジ一 t—ブチル 4—ヒド ロキシフエ-ル)プロピオネート]、 2, 2,ーチオジェチレンビス [3— (3, 5 ジー t— ブチルー 4ーヒドロキシフエ-ル)プロピオネート]、 1 , 6 へキサンジオールビス [3— (3, 5—ジ—tーブチルー 4ーヒドロキシフエ-ル)プロピオネート]、ブチルヒドロキシ ァ-ソール、ジブチルヒドロキシァ二ノールが好ましい。これらの化合物は、ゴム、プラ スチック、油脂類等の酸化防止剤として知られており、市販品として手に入るものもあ る。
[0117] 上記、ヒンダードフエノール類の中でも、ォクタデシルー 3 , 5 ジ tーブチルー 4 —ヒドロキンヒドロンンナ · 1 ~~ト (octadecyl— 3,5— di— tert— butyl— 4— hydroxyhydrocinnamat e)が特に好ましい。これは、商品名 Irganoxl076として市販されているので、それを 用いることも特に好ましい。
[0118] 本発明の電子写真感光体において、最表面層に酸ィ匕防止剤が含まれる場合の当 該酸化防止剤の量は、特に制限されないが、バインダー榭脂 100質量部当り 0. 1質 量部以上、 20質量部以下が好ましい。この範囲外の場合、良好な電気特性が得ら れない。特に好ましくは 1質量部以上である。また、多すぎると、電気特性だけでなく 、耐刷性にも問題を起こすので、好ましくは 15質量部以下であり、さらに好ましくは 1 0質量部以下である。
なお、感光層には、成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性等を向 上させるために、周知の可塑剤、紫外線吸収剤、電子吸引性化合物、レべリング剤 等の添加物を含有させてもょ 、。
[0119] <その他の層 >
感光層の上に、感光層の損耗を防止したり、帯電器等から発生する放電生成物等 による感光層の劣化を防止 '軽減する目的でオーバーコート層を設けてもよい。また オーバーコート層は、感光体表面の摩擦抵抗や摩耗を軽減する目的で、フッ素系榭 脂、シリコーン榭脂等を含んでいてもよい。また、これらの榭脂からなる粒子や無機化 合物の粒子を含んで 、てもよ 、。
[0120] <層形成方法 >
これらの感光体を構成する各層は、含有させる物質を溶剤に溶解または分散させ て得られた塗布液を、支持体上に浸漬塗布、スプレー塗布、ノズル塗布、バーコート 、ロールコート、ブレード塗布等の公知の方法により順次塗布して形成される。
[0121] 塗布液の作製に用いられる溶媒あるいは分散媒としては、例えば、メタノール、エタ ノール、プロパノール、 2—メトキシエタノール等のアルコール類;テトラヒドロフラン、 1 , 4 ジォキサン、ジメトキシェタン等のエーテル類;ギ酸メチル、酢酸ェチル等のェ ステル類;アセトン、メチルェチルケトン、シクロへキサノン、 4ーメトキシー4 メチル —2—ペンタノン等のケトン類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類; ジクロロメタン、クロロホノレム、 1, 2—ジクロ口エタン、 1, 1, 2—トリクロ口ェタン、 1, 1, 1 トリクロロェタン、テトラクロロェタン、 1, 2—ジクロ口プロパン、トリクロロエチレン等 の塩素化炭化水素類; n—ブチルァミン、イソプロパノールァミン、ジェチルァミン、トリ エタノールァミン、エチレンジァミン、トリエチレンジァミン等の含窒素化合物類;ァセト 二トリル、 N—メチルピロリドン、 N, N—ジメチルホルムアミド、ジメチルスルホキシド等 の非プロトン性極性溶剤類等があげられ、これらは単独、または 2種以上を併用して 用いられる。
[0122] なお、塗布液あるいは分散液の作製において、積層型感光層の電荷発生層の場 合には、固形分濃度は、好ましくは 15質量%以下、さらに好ましくは 1〜10質量%に する。また、粘度は、好ましくは 0. 1〜: LOcpsとする。
[0123] <画像形成装置 >
次に、本発明の電子写真感光体を用いた画像形成装置 (本発明の画像形成装置) の実施の形態について、装置の要部構成を示す図 1を用いて説明する。但し、実施 の形態は以下の説明に限定されるものではなぐ本発明の要旨を逸脱しない限り任 意に変形して実施することができる。
[0124] 図 1に示すように、画像形成装置は、電子写真感光体 1、帯電装置 2、露光装置 3 および現像装置 4を備えて構成され、さらに、必要に応じて転写装置 5、クリーニング 装置 6および定着装置 7が設けられる。
[0125] 電子写真感光体 1は、上述した本発明の電子写真感光体であれば特に制限はな いが、図 1ではその一例として、円筒状の導電性支持体の表面に上述した感光層を 形成したドラム状の感光体を示して 、る。この電子写真感光体 1の外周面に沿って、 帯電装置 2、露光装置 3、現像装置 4、転写装置 5およびクリーニング装置 6がそれぞ れ配置されている。
[0126] 帯電装置 2は、電子写真感光体 1を帯電させるもので、電子写真感光体 1の表面を 所定電位に均一帯電させる。帯電装置としては、コロトロンゃスコロトロン等のコロナ 帯電装置、電圧印加された直接帯電部材を感光体表面に接触させて帯電させる直 接帯電装置 (接触型帯電装置)、帯電ブラシ等の接触型帯電装置等が用いられる。 直接帯電手段の例としては、帯電ローラ、帯電ブラシ等の接触帯電器等があげられ る。なお、図 1では、帯電装置 2の一例としてローラ型の帯電装置 (帯電ローラ)を示し ている。
直接帯電手段として、気中放電を伴う帯電、あるいは気中放電を伴わない注入帯 電いずれも可能である。また、帯電時に印可する電圧としては、直流電圧だけの場合 、および直流に交流を重畳させて用いることもできる。
[0127] このうち、電圧印加された直接帯電部材を電子写真感光体表面に接触させて帯電 させる直接帯電装置 (接触型帯電装置)が好ましい。すなわち、電子写真感光体を 該電子写真感光体に接触配置する帯電器により帯電して画像を形成することが、電 子写真感光体に与える各種の劣化の原因となる負荷を低減するという点で好ましい
[0128] 露光装置 3は、電子写真感光体 1に露光を行なって電子写真感光体 1の感光面に 静電潜像を形成することができるものであれば、その種類に特に制限はない。具体 例としては、ハロゲンランプ、蛍光灯、半導体レーザーや He— Neレーザー等のレー ザ一、 LED等があげられる。また、感光体内部露光方式によって露光を行なうように してちよい。
露光を行なう際の光は任意である力 例えば波長が 780nmの単色光、波長 600η m〜700nmのやや短波長寄りの単色光、波長 380nm〜500nmの単色光等で露 光を行なうことが好ましい。中でも、波長 380ηπ!〜 500nmの単色光により露光をして 画像を形成することが、画像欠陥の少な ヽ高解像度の画像を形成することができると いう点で特に好ましい。
[0129] 現像装置 4は、その種類に特に制限はなぐカスケード現像、一成分絶縁トナー現 像、一成分導電トナー現像、二成分磁気ブラシ現像等の乾式現像方式や、湿式現 像方式等の任意の装置を用いることができる。図 1では、現像装置 4は、現像槽 41、 アジテータ 42、供給ローラ 43、現像ローラ 44、および、規制部材 45からなり、現像槽 41の内部にトナー Tを貯留している構成となっている。また、必要に応じ、トナー Tを 補給する補給装置 (図示せず)を現像装置 4に付帯させてもよ 、。この補給装置は、 ボトル、カートリッジ等の容器からトナー Tを補給することが可能であるように構成され る。
[0130] 供給ローラ 43は、導電性スポンジ等から形成される。
現像ローラ 44は、鉄,ステンレス鋼,アルミニウム,ニッケル等の金属ロール、または こうした金属ロールにシリコン榭脂,ウレタン榭脂,フッ素榭脂等を被覆した榭脂ロー ル等カもなる。この現像ローラ 44の表面には、必要に応じて、平滑加工や粗面加工 を加えてもよい。
[0131] 現像ローラ 44は、電子写真感光体 1と供給ローラ 43との間に配置され、電子写真 感光体 1および供給ローラ 43に各々当接している。供給ローラ 43および現像ローラ 44は、回転駆動機構(図示せず)によって回転される。供給ローラ 43は、貯留されて いるトナー Tを担持して、現像ローラ 44に供給する。現像ローラ 44は、供給ローラ 43 によって供給されるトナー Tを担持して、電子写真感光体 1の表面に接触させる。
[0132] 規制部材 45は、シリコン榭脂ゃウレタン榭脂等の榭脂ブレード、ステンレス鋼、アル ミニゥム、銅、真鍮、リン青銅等の金属ブレード、またはこうした金属ブレードに榭脂を 被覆したブレード等により形成されている。この規制部材 45は、現像ローラ 44に当接 し、ばね等によって現像ローラ 44側に所定の力で押圧(一般的なブレード線圧は 5 〜500gZcm)される。必要に応じて、この規制部材 45に、トナー Tとの摩擦帯電に よりトナー Tに帯電を付与する機能を具備させてもよい。
[0133] アジテータ 42は、回転駆動機構によってそれぞれ回転されており、トナー Tを攪拌 するとともに、トナー Tを供給ローラ 43側に搬送する。アジテータ 42は、羽根形状、大 きさ等を違えて複数設けてもょ ヽ。
[0134] 転写装置 5は、その種類に特に制限はなぐコロナ転写、ローラ転写、ベルト転写等 の静電転写法、圧力転写法、粘着転写法等、任意の方式を用いた装置を使用する ことができる。ここでは、転写装置 5が電子写真感光体 1に対向して配置された転写 チャージヤー、転写ローラ、転写ベルト等から構成されるものとする。この転写装置 5 は、トナー Τの帯電電位とは逆極性で所定電圧値 (転写電圧)を印加し、電子写真感 光体 1に形成されたトナー像を記録紙 (用紙,媒体) Ρに転写するものである。
[0135] クリーニング装置 6について特に制限はなぐブラシクリーナー、磁気ブラシクリーナ 一、静電ブラシクリーナー、磁気ローラクリーナー、ブレードクリーナー等、任意のタリ 一ユング装置を用いることができる。クリーニング装置 6は、感光体 1に付着している 残留トナーをクリーニング部材で搔き落とし、残留トナーを回収するものである。但し、 感光体表面に残留するトナーが少ないか、殆ど無い場合には、クリーニング装置 6は 無くても構わない。
[0136] 定着装置 7は、上部定着部材 (定着ローラ) 71および下部定着部材 (定着ローラ) 7 2から構成され、定着部材 71または 72の内部には加熱装置 73が備えられている。な お、図 1では、上部定着部材 71の内部に加熱装置 73が備えられた例を示す。上部 および下部の各定着部材 71, 72は、ステンレス,アルミニウム等の金属素管にシリコ ンゴムを被覆した定着ロール、さらにフッ素榭脂で被覆した定着ロール、定着シート 等が公知の熱定着部材を使用することができる。さらに、各定着部材 71, 72は、離 型性を向上させる為にシリコーンオイル等の離型剤を供給する構成としてもよぐパネ 等により互いに強制的に圧力をカ卩える構成としてもよい。
[0137] 記録紙 Ρ上に転写されたトナーは、所定温度に加熱された上部定着部材 71と下部 定着部材 72との間を通過する際、トナーが溶融状態まで熱加熱され、通過後冷却さ れて記録紙 Ρ上にトナーが定着される。
なお、定着装置についてもその種類に特に限定はなぐここで用いたものをはじめ 、熱ローラ定着、フラッシュ定着、オーブン定着、圧力定着等、任意の方式による定 着装置を設けることができる。 [0138] 以上のように構成された電子写真装置では、次のようにして画像の記録が行なわれ る。即ち、まず電子写真感光体 1の表面 (感光面)が、帯電装置 2によって所定の電 位 (例えば— 600V)に帯電される。この際、直流電圧により帯電させても良ぐ直流 電圧に交流電圧を重畳させて帯電させてもよ!ヽ。
[0139] 続いて、帯電された電子写真感光体 1の感光面を、記録すべき画像に応じて露光 装置 3により露光し、感光面に静電潜像を形成する。そして、その電子写真感光体 1 の感光面に形成された静電潜像の現像を、現像装置 4で行なう。
[0140] 現像装置 4は、供給ローラ 43により供給されるトナー Tを、規制部材 (現像ブレード) 45により薄層化するとともに、所定の極性 (ここでは電子写真感光体 1の帯電電位と 同極性であり、負極性)に摩擦帯電させ、現像ローラ 44に担持しながら搬送して、電 子写真感光体 1の表面に接触させる。
[0141] 現像ローラ 44に担持された帯電トナー Tが電子写真感光体 1の表面に接触すると、 静電潜像に対応するトナー像が電子写真感光体 1の感光面に形成される。そしてこ のトナー像は、転写装置 5によって記録紙 Pに転写される。この後、転写されずに電 子写真感光体 1の感光面に残留しているトナーが、クリーニング装置 6で除去される。 トナー像の記録紙 P上への転写後、定着装置 7を通過させてトナー像を記録紙 P上 へ熱定着することで、最終的な画像が得られる。
[0142] なお、画像形成装置は、上述した構成に加え、例えば除電工程を行なうことができ る構成としてもよい。除電工程は、電子写真感光体に露光を行なうことで電子写真感 光体の除電を行なう工程であり、除電装置としては、蛍光灯、 LED等が使用される。 また除電工程で用いる光は、強度としては露光光の 3倍以上の露光エネルギーを有 する光である場合が多い。
[0143] また、画像形成装置はさらに変形して構成してもよぐ例えば、前露光工程、補助帯 電工程等の工程を行なうことができる構成としたり、オフセット印刷を行なう構成とした り、さらには複数種のトナーを用いたフルカラータンデム方式の構成としてもよい。
[0144] なお、電子写真感光体 1を、帯電装置 2、露光装置 3、現像装置 4、転写装置 5、タリ 一ユング装置 6、および定着装置 7のうち 1つまたは 2つ以上と組み合わせて、一体 型のカートリッジ (以下適宜「電子写真感光体カートリッジ」という。)として構成し、この 電子写真感光体カートリッジを複写機やレーザービームプリンタ等の電子写真装置 本体に着脱可能な構成にしてもよい。この場合、例えば電子写真感光体 1やその他 の部材が劣化した場合に、この電子写真感光体カートリッジを画像形成装置本体か ら取り外し、別の新 ヽ電子写真感光体カートリッジを画像形成装置本体に装着する ことにより、画像形成装置の保守'管理が容易となる。
実施例
[0145] 以下本発明の実施例、比較例によりさらに詳細に説明するが、これらに限定して解 釈されるものではない。なお、本実施例で用いる「部」は特に断りがない限り「質量部」 を示し、「%」は特に断りがない限り「質量%」を示す。
[0146] <電荷輸送物質の製造 >
製造例 1 (電荷輸送物質 ( 1 )の製造法)
p—ジトリルァミン 40g、 4, 4, 一ジョードー p—ターフェニル 48gをニトロベンゼン 30 OmL中、 200°Cにて加熱攪拌し、これに銅粉 46g、炭酸カリウム lOOgを添加し、窒 素フロー下、 200°Cで 5時間反応した。その後、 50°Cまで冷却し、テトラヒドロフラン 2 OOmLを添加し、固形物を濾過した。濾液をメタノール 2000mL中に注ぎ、沈殿物を ろ過し、シリカゲルカラムクロマトグラフィーにより精製し、電荷輸送物質(l) 39gを得 た。質量分析 (mZz): M+ = 620 (理論値: 620)および元素分析(C H N ) : C, 8
46 40 2
9. 10 ;H, 6. 67 ;N, 4. 40 (理論値: C, 88. 99 ;H, 6. 49 ;N, 4. 51)により構造 を確認した。
[0147] [化 22]
Figure imgf000046_0001
電荷輸送物質 (1 )
製造例 2 (電荷輸送物質 (2)の製造法)
m、 p,ージメチルジフエニルァミン 40g、 4, 4, 一ジョードー p—ターフェニル 48gを ニトロベンゼン 300mL中、 200°Cに加熱攪拌し、これに銅粉 46g、炭酸カリウム 100 gを添加し、窒素フロー下、 200°Cで 5時間反応した。その後、 50°Cまで冷却し、テト ラヒドロフラン 200mLを添カ卩し、固形物を濾過した。濾液をメタノール 2000mL中に 注ぎ、沈殿物をろ過し、シリカゲルカラムクロマトグラフィーにより精製し、電荷輸送物 質 (2)40gを得た。質量分析 (mZz): M+ = 620 (理論値 :620)および元素分析 (C
4
H N ): C, 89.00;H, 6.57;N, 4.50(理論値: C, 88.99;H, 6.49;N, 4.5
6 40 2
1)により構造を確認した。
[0149] [化 23]
Figure imgf000047_0001
電荷輸送物質 (2)
[0150] 製造例 3 (電荷輸送物質 (3)の製造法)
製造例 1で使用した P—ジトリルァミンの代わりに、 P—メトキシジフエ-ルァミンを使 用し、電荷輸送物質 (3) 42gを得た。質量分析 (mZz): M+ = 624(理論値 :624) および元素分析(C H N O ) :C, 84.50;H, 5.95;N, 4.50(理論値: C, 84.
44 36 2 2
59 ;H, 5.81 ;N, 4.48;)により構造を確認した。
[0151] [化 24]
Figure imgf000047_0002
電荷輸送物質 (3)
[0152] 製造例 4 (電荷輸送物質 (4)の製造法)
製造例 1で使用した P—ジトリルァミンの代わりに、 P—メチルジフエ-ルァミンを使用 し、電荷輸送物質 (4) 45gを得た。質量分析 (mZz): M+ = 592 (理論値 :592)およ び元素分析(C H N ): C, 89.20;H, 6.20;N, 4.70(理論値: C, 89.15;H
44 36 2
, 6.12;Ν, 4.73)により構造を確認した。
[0153] [化 25]
Figure imgf000048_0001
電荷輸送物質 (4 )
[0154] 製造例 5 (電荷輸送物質 (5)の製造法)
4 ブロモ 4,一ビス(p -ジトリルァミノ)ビフエ-ル 20gと銅粉 5gを四つ口フラスコ に導入し、 230°Cで、 30時間攪拌した。得られた混合物カゝらシリカゲルカラムクロマト グラフィ一により精製し、電荷輸送物質 (5) 2gを得た。質量分析 (mZz): M+ = 696 (理論値: 696)および元素分析(C H N ): C, 89. 70 ;H, 6. 46 ;N, 4. 01 (理
52 44 2
論値: C, 89. 62 ;H, 6. 36 ;N, 4. 02)により構造を確認した。
[0155] [化 26]
Figure imgf000048_0002
[0156] 製造例 6 (電荷輸送物質 (6)の製造法)
下記フルオレン誘導体 20gと、
[化 27]
Figure imgf000048_0003
(フルオレン誘導体) 下記ホウ素化合物と、
[化 28]
Figure imgf000049_0001
(ホウ素化合物)
水酸化カリウムと、テトラキス(トリフエ-ルホスフィン)パラジウムとを、ァセトニトリル 中で、 48時間攪拌した。得られた混合物力もシリカゲルカラムクロマトグラフィーにより 精製し、電荷輸送物質 (6) 6gを得た。質量分析 (m,z): M+ = 1133 (理論値 : 113 3)および元素分析(C H N ): C, 88. 70 ;H, 8. 66 ;N, 2. 58 (理論値: C, 88.
84 96 2
99 ;H, 8. 54 ;N, 2. 47)により構造を確認した。
[化 29]
Figure imgf000049_0002
電荷輸送物質 (6 ) 製造例 7 (CGIの製造)
特開平 10— 007925号公報に記載の「粗 TiOPcの製造例」、「実施例 1」の順に従 つて、 j8型ォキシチタニウムフタロシアニンを調製した。得られたォキシチタニウムフ タロシアニン 18部を、—10°C以下に冷却した 95%濃硫酸 720部中に添加した。この とき硫酸溶液の内温が— 5°Cを超えないようにゆっくりと添加した。添加終了後、濃硫 酸溶液を— 5°C以下で 2時間撹拌した。撹拌後、濃硫酸溶液をガラスフィルターで濾 過し、不溶分を濾別後、濃硫酸溶液を氷水 10800部中に放出することにより、ォキシ チタニウムフタロシアニンを析出させ、放出後 1時間撹拌した。撹拌後、溶液を濾別し 、得られたウエットケーキを再度水 900部中で 1時間洗浄し、濾過を行った。この洗浄 操作を濾液のイオン伝導度が 0. 5mSZmになるまで繰り返すことにより、低結晶性 ォキシチタニウムフタロシアニンのウエットケーキを 185部得た(ォキシチタニウムフタ ロシアニン含有率 9. 5%)。 [0159] 得られた低結晶性ォキシチタニウムフタロシアニンのウエットケーキ 93部を水 190 部中に添加し、室温で 30分撹拌した。その後、 o—ジクロロベンゼン 39部を添加し、 さらに室温で 1時間撹拌した。撹拌後、水を分離し、 MeOH134部を添加し、室温で 1時間撹拌洗浄した。洗浄後、濾別し、再度 MeOH134部を用いて 1時間撹拌洗浄 した。その後、濾別し、真空乾燥機で加熱乾燥することにより、 CuK a特性 X線 (波長 1. 541 A)に対するブラッグ角(2 0 ±0. 2° )が 9. 5° 、24. 1° および 27. 2° に 主たる回折ピークを有するォキシチタニウムフタロシアニン (以下、「CG1」ということ がある。)を 7. 8部得た。得られたォキシチタニウムフタロシアニンに含まれるクロロォ キシチタニウムフタロシアニンの含有量を、特開 2001—115054号公報に記載の手 法 (マススペクトル法)を用いて調べたところ、ォキシチタニウムフタロシアニンに対し、 強度比が 0. 003以下であることを確認した。
[0160] 製造例 8 (CG2の製造)
製造例 7で得られた低結晶性ォキシチタニウムフタロシアニンのウエットケーキ 50部 をテトラヒドロフラン (以下、 THFと略記することがある) 500部中に分散し、室温で 1 時間攪拌する以外は、製造例 7と同様に、 CuK a特性 X線 (波長 1. 541 A)に対す るブラッグ角(2 0 ±0. 2° )が 9. 5° 、24. 1° および 27. 2° に主たる回折ピーク を有するォキシチタニウムフタロシアニン(以下、「CG2」ということがある。)を 3部得た 。得られたォキシチタニウムフタロシアニンに含まれるクロ口ォキシチタニウムフタロシ ァニンの含有量を、特開 2001— 115054に記載の手法 (マススペクトル法)を用いて 調べたところ、ォキシチタニウムフタロシアニンに対し、強度比が 0. 003以下であるこ とを確認した。
[0161] 製造例 9 (CG3の製造)
特開平 2001— 115054の「実施例 1」に記載の手法で作製された /3型ォキシチタ -ゥムフタロシアニンを使用する以外は、製造例 7と同様にして CuK o;特性 X線 (波 長 1. 541 A)に対するブラッグ角(2 0 ±0. 2° )が 9. 5° 、 24. 1° および 27. 2° に主たる回折ピークを有するォキシチタニウムフタロシアニン(以下、「CG3」というこ とがある。)を 3部得た。得られたォキシチタニウムフタロシアニンに含まれるクロロォキ シチタニウムフタロシアニンの含有量を、特開 2001— 115054号に記載の手法(マ ススペクトル法)を用いて調べたところ、ォキシチタニウムフタロシアニンに対し、強度 比が 0. 05であることを確認した。
[0162] <バインダー榭脂の粘度平均分子量の測定 >
ノインダー榭脂の粘度平均分子量の測定について説明する。すなわち、バインダ ー榭脂をジクロロメタンに溶解し、濃度 Cが 6. OOgZLの溶液を調製する。溶媒 (ジク ロロメタン)の流下時間 t力^ 36. 16秒のウベローデ型毛細管粘度計を用いて、 20.
0
o°cに設定した恒温水槽中で試料溶液の流下時間 t (秒)を測定する。以下の式に従 つて粘度平均分子量を算出する。
a = 0. 438 X 7? + 1 η = (t/t ) - 1
sp sp 0
b = 100 X 7? /C C = 6. 00 (g/L)
sp
η =b/ a
粘度平均分子量 = 3207 X η L2°5
[0163] <電子写真感光体 Α1〜Α16、 Ρ1〜Ρ8の作製 >
実施例 1
ォキシチタニウムフタロシアニン(CG 1) 10部を、 4—メトキシ一 4—メチル 2 ぺ ンタノン 150部に加え、サンドグラインドミルにて 1時間粉砕分散処理を行った。 また、ポリビニルプチラール (電気化学工業社製、商品名デンカブチラール # 600 0C)の 5% 1 , 2 ジメトキシェタン溶液 100部およびフエノキシ榭脂(ユニオンカーバ イド社製、商品名 ΡΚΗΗ)の 5% 1 , 2 ジメトキシェタン溶液 100部を混合してバイン ダー溶液を作製した。
[0164] 先に作製した CG1の分散液 160部に、上記バインダー溶液 100部、適量の 1 , 2— ジメトキシェタンを加え、最終的に固形分濃度 4. 0%の分散液を調製した。
得られた分散液を表面にアルミ蒸着した厚さ 75 μ mのポリエチレンテレフタレートフ イルム上に乾燥後の膜厚が 0. 3 mになるように塗布して電荷発生層を設けた。
[0165] 次にこのフィルム上に、電荷輸送物質(1) 40部、下記繰り返し構造のバインダー榭 脂(Bl) (m : n= 51 : 49,粘度平均分子量 30, 000) 100部、
[化 30] A
A : H3
Figure imgf000052_0001
バインダー樹脂 (B 1 )
[0166] 酸化防止剤(チバガイギ一社製、商品名 IRGANOX1076) 8部、およびレべリング 剤としてシリコーンオイル 0. 03部を、テトラヒドロフラン/トルエン混合溶媒 (混合比 8 Z2) 640部に溶解させた液を塗布し、 125°Cで 20分間乾燥し、乾燥後の膜厚が 20 μ mとなるように電荷輸送層を設け、電子写真感光体 A1を得た。
[0167] 実施例 2
電荷輸送物質(1)に代えて、電荷輸送物質 (2)を使用した以外は、実施例 1と同様 にして電子写真感光体 A2を得た。 CON
[0168] 実施例 3
電荷輸送物質(1)に代えて、電荷輸送物質 (3)を使用した以外は、実施例 1と同様 にして電子写真感光体 A3を得た。
[0169] 実施例 4
電荷輸送物質(1)に代えて、電荷輸送物質 (4)を使用した以外は、実施例 1と同様 にして電子写真感光体 A4を得た。
[0170] 実施例 5
電荷輸送物質(1) 40部に代えて、電荷輸送物質(5) 10部、および、電荷輸送物質 (4) 30部、を使用した以外は、実施例 1と同様にして電子写真感光体 A5を得た。
[0171] 実施例 6
電荷輸送物質 (5)に代えて、電荷輸送物質 (6)を使用した以外は、実施例 5と同様 にして電子写真感光体 A6を得た。
[0172] 実施例 7
電荷輸送物質(1)に代えて、電荷輸送物質 (4)を 30部使用し、下記化合物 (A)を 20部使用した以外は、実施例 1と同様にして電子写真感光体 A7を得た。
[化 31]
Figure imgf000053_0001
化合物 (A )
[0173] 実施例 8
電荷輸送物質(1) 40部に代えて、電荷輸送物質(1)を 20部使用し、電荷輸送物 質 (4)を 10部利用した以外は、実施例 1と同様にして電子写真感光体 A8を得た。
[0174] 実施例 9
電荷輸送物質(1) 40部に代えて、電荷輸送物質(1)を 10部使用し、下記化合物( B)を 30部使用する以外は実施例 1と同様にして電子写真感光体 A9を得た。
[化 32]
Figure imgf000053_0002
化合物 (B )
[0175] 実施例 10
実施例 4で使用したバインダー榭脂 (B1)の代わりに、下記バインダー榭脂 (B2) ( 粘度平均分子量 40, 000)を使用する以外は、実施例 4と同様にして電子写真感光 体 A 10を得た。
[化 33]
Figure imgf000054_0001
バインダー樹脂 (B 2) 実施例 11
実施例 4で使用したバインダー榭脂 (B1)の代わりに、下記バインダー榭脂 (B3) ( 粘度平均分子量 40, 000;m:n=9:l)を使用する以外は、実施例 4と同様にして電 子写真感光体 Allを得た。
[化 34]
Figure imgf000054_0002
バインター樹脂 (B 3)
[0177] 実施例 12
実施例 7で使用したィ匕合物 (A)の代わりに、下記化合物(C)を使用し、かつ、バイ ンダー榭脂 (B1)の代わりに、バインダー榭脂 (B3)を使用する以外は、実施例 7と同 様にして電子写真感光体 A12を得た。
[化 35]
Figure imgf000054_0003
化合物 (C)
[0178] 実施例 13
実施例 1で使用した、 CG1の代わりに、 CG2を使用する以外は、実施例 1と同様に して電子写真感光体 A13を得た。 [0179] 実施例 14
実施例 10で使用した、 CG1の代わりに、 CG2を使用する以外は、実施例 10と同様 にして電子写真感光体 A14を得た。
[0180] 実施例 14X
実施例 10で使用した、 CG1の代わりに、 CG3を使用し、電荷輸送物質 (4)の代わ りに、電荷輸送物質(1)を使用する以外は、実施例 10と同様にして電子写真感光体 A14Xを得た。
[0181] 実施例 15
実施例 11で使用した、 CG1の代わりに、 CG2を使用する以外は、実施例 11と同様 にして電子写真感光体 A15を得た。
[0182] 実施例 16
実施例 7で使用したィ匕合物 (A)の代わりに、下記化合物(D)を使用する以外は、実 施例 7と同様にして電子写真感光体 A16を得た。
[化 36]
Figure imgf000055_0001
化合物 (D )
[0183] 実施例 17
実施例 1で使用した、 CG1の代わりに、特開平 8— 123052号公報の「製造例」に 記載の手法で得られたォキシチタニウムフタロシアニン(以下、「CG4」 t 、うことがあ る。)を使用する以外は、実施例 1と同様にして電子写真感光体 A17を得た。
[0184] 比較例 1
電荷輸送物質(1) 40部に代えて、電荷輸送物質(1) 60部を使用した以外は、実 施例 1と同様にして、電子写真感光体を得ようとしたが、塗布液力も固体の析出が認 められた。 [0185] 比較例 2
電荷輸送物質(2) 40部に代えて、電荷輸送物質(2) 60部を使用した以外は、実 施例 2と同様にして、電子写真感光体 P2を得た。 1週間放置後、膜の白化が認めら れた。
[0186] 比較例 3
電荷輸送物質(3) 40部に代えて、電荷輸送物質(3) 60部を使用した以外は、実 施例 3と同様にして、電子写真感光体 P3を得た。 1週間放置後、膜の白化が認めら れた。
[0187] 比較例 4
電荷輸送物質 (4) 40部に代えて、電荷輸送物質 (4) 60部を使用した以外は、実 施例 3と同様にして、電子写真感光体 P4を得た。 1週間放置後、結晶の析出が認め られた。また、塗布液のゲル化も認められた。
[0188] 比較例 5
電荷輸送物質(5) 10部に代えて、電荷輸送物質(5) 50部を使用した以外は、実 施例 5と同様にして、電子写真感光体を得ようとしたが、塗布液から固体が析出して しまつ 7こ。
[0189] 比較例 6
電荷輸送物質 (5)に代えて、電荷輸送物質 (6)を使用した以外は、比較例 5と同様 にして、電子写真感光体を得ようとした力 塗布液がゲルィ匕してしまった。
[0190] 比較例 7
電荷輸送物質(1)を 10部使用する代わりに、 2部使用した以外は、実施例 9と同様 にして電子写真感光体 P7を得た。
[0191] 比較例 8
電荷輸送物質(1)に代えて、上記化合物 (B)を使用した以外は、実施例 1と同様に して電子写真感光体 P8を得た。
[0192] 比較例 9
電荷輸送物質(1)に代えて、下記化合物 (E)を使用した以外は、実施例 1と同様に して電子写真感光体 P9を得た。 [化 37]
Figure imgf000057_0001
化合物 (E )
[0193] 比較例 10
電荷輸送物質(1)に代えて、下記化合物 (F)を使用した以外は、実施例 1と同様に して電子写真感光体 P10を得た。塗布面の一部で白化が認められた。
[化 38]
Figure imgf000057_0002
化合物 (F )
[0194] 比較例 11
電荷輸送物質(1)に代えて、化合物 (D)を使用した以外は、実施例 1と同様にして 電子写真感光体 P11を得た。塗布面の一部で白化が認められた。
[0195] 比較例 12
実施例 1で使用した電荷輸送物質(1)に代えて、上記化合物 (F)を使用し、 CG1 の代わりに、特開平 2001— 115054号公報の「実施例 1」に記載の手法で作製され たォキシチタニウムフタロシアニン(以下、「CG5」ということがある。)を使用する以外 は、実施例 1と同様にして電子写真感光体 P12を得た。
[0196] <電子写真感光体の電気特性の評価 >
電子写真学会測定標準に従って作製された電子写真特性評価装置 (続電子写真 技術の基礎と応用、電子写真学会編、コロナ社、 404— 405頁記載)を使用し、上記 電子写真感光体を作製した 1週間後に、アルミニウム製ドラムに貼り付けて円筒状に した。次いで、アルミニウム製ドラムと電子写真感光体のアルミニウム基体との導通を 取った上で、ドラムを一定回転数で回転させ、帯電、露光、電位測定、除電のサイク ルによる電気特性評価試験を行った。その際、初期表面電位を— 700Vとし、露光は 780nm、除電は 660nmの単色光を用いた。 780nmの光を 1. 0 /zjZcm2照射した 時点の表面電位 (VL)、および感度を表す指標として、表面電位を 350Vにするの に必要な露光量(半減露光量)を測定した。 VL測定に際しては、露光から電位測定 に要する時間を 100msとした。測定環境は、温度 25°C、相対湿度 50%下で行った 。感度(半減露光量)および VLの値の絶対値が小さ 、ほど電気特性が良好であるこ とを示す。結果を表 1に示す。
[0197] [表 1]
Figure imgf000058_0001
[0198] 表 1の結果より、本発明の電子写真感光体は、高感度かつ低 VLで、良好な電気特 性を示すことが分かる。また、種々のバインダー榭脂に対する相溶性にも優れること がわカゝる。
[0199] <画像形成試験、および電子写真感光体の安定性、耐久性試験 > 実施例 25
表面を陽極酸化し、封孔処理を施した直径 3cm、長さ 25. 4cmのアルミニウムチュ ーブ上に、実施例 1と同様に作製した電荷発生層および電荷輸送層用塗布液を浸 漬塗布法により順次塗布、乾燥して、膜厚が電荷発生層 0. 3 ^ πι,電荷輸送層 25 μ mの電子写真感光体ドラムを作製した。このドラムを、ヒューレットパッカード社製レ 一ザ一プリンタ、レーザージェット 4 (LJ4)に搭載し、気温 35%、湿度 85%下(HZH 環境ということがある。)で画像試験を行ったところ、画像欠陥やノイズの無い、良好な 画像が得られた。次いで、 1万枚連続プリントを行った力 ゴースト、カプリ等の画像 劣化は見られず、また、リークによる画像欠陥も発生していな力つた。
[0200] 実施例 26
表面を陽極酸化し、封孔処理を施した直径 2cm、長さ 25. 1cmのアルミニウムチュ ーブ上に、実施例 4と同様に作製した電荷発生層および電荷輸送層用塗布液を浸 漬塗布法により順次塗布、乾燥して、膜厚が電荷発生層 0. 3 ^ πι,電荷輸送層 15 μ mの電子写真感光体ドラムを作製した。このドラムを、富士ゼロックス社製タンデム 式カラーレーザープリンタ、 C1616に 4本搭載し、 H/H環境で、画像試験を行った ところ、画像欠陥やノイズの無い、良好な画像が得られた。次いで、 1000枚連続プリ ントを行ったが、リーク、ゴースト、カプリ等の画像劣化は見られず、安定していた。
[0201] 比較例 13
表面を陽極酸化し、封孔処理を施した直径 2cm、長さ 25. 1cmのアルミニウムチュ ーブ上に、比較例 8と同様に作製した電荷発生層および電荷輸送層用塗布液を浸 漬塗布法により順次塗布、乾燥して、膜厚が電荷発生層 0. 3 ^ πι,電荷輸送層 15 μ mの電子写真感光体ドラムを作製した。このドラムを、富士ゼロックス社製タンデム 式カラーレーザープリンタ、 C1616に 4本搭載し、 H/H環境で、画像試験を行った ところ、画像欠陥やノイズの無い、良好な画像が得られた。次いで、 1000枚連続プリ ントを行ったところ、カプリによる画像劣化が見られた。
[0202] 実施例 27
直径 2cm、長さ 25. 1cmのアルミニウムチューブ上に、特開 2005— 99791の「実 施例 13」に記載の手法を用いて下引きを作製した後、本発明の実施例 4と同様に作 製した電荷発生層および電荷輸送層用塗布液を浸漬塗布法により順次塗布、乾燥 して、膜厚が電荷発生層 0. 3 ^ πι,電荷輸送層 15 mの電子写真感光体ドラムを 作製した。このドラムを、富士ゼロックス社製タンデム式カラーレーザープリンタ、 C16 16に 4本搭載し、 HZH環境で、画像試験を行ったところ、画像欠陥やノイズの無い 、良好な画像が得られた。次いで、 1000枚連続プリントを行ったが、リーク、ゴースト 、カプリ等の画像劣化は見られず、安定していた。
[0203] 実施例 28
実施例 25で得られた電子写真感光体ドラムを市販のファックス機 (パナソニックコミ ュ-ケーシヨンズ社製 UF-890)に装着して、気温 25° 、相対湿度 50% (以下、 N ZN環境ということがある。)の環境下において文字画像、黒ベタ、白ベタの画像を形 成した。
比較例 14
比較例 13で得られた電子写真感光体ドラムを市販のファックス機 (パナソニックコミ ュ-ケーシヨンズ社製 UF-890)に装着して、気温 25° 、相対湿度 50% (以下、 N ZN環境ということがある)の環境下において文字画像、黒ベタ、白ベタの画像を形 成した。
実施例 28、および比較例 14の評価方法を下に記す。
[0204] <トナー消費量、転写率の測定 >
電子写真感光体ドラムを市販のファックス機 (パナソニックコミュニケーションズ社製 、 UF— 890)に装着して、 NZN環境で、 10000枚の画像形成を行った。形成した 画像は 3%印字パターンを使用した。
[0205] 画像形成開始前にトナーボックスと廃トナーボックスの質量を計量し、 1000枚、 30 00枚、 5000枚、 7000枚、 10000枚の画像形成毎に、それぞれの質量を計量し、ト ナーボックスの質量の変化値力 画像 1枚辺りの「トナー消費量」を求めた。同様に、 1000枚、 3000枚、 5000枚、 7000枚、 10000枚の画像形成毎に廃卜ナーボックス およびトナーボックスの質量を計量し、下記式から「転写率」を算出した。これらの結 果を表 2に示す。
[数 2] r u, \ , Λ トナ ボックス重量減少量一麂トナ ポ ^タス重最增 fi赚
トナーポ^クス意 ¾狨少 ft
[0206] <画像濃度の測定、文字画像の評価 >
また、 1000枚、 3000枚、 5000枚、 7000枚、 10000枚の画像形成毎に、文字画 像、黒ベタ、白ベタの画像を形成した。「画像濃度」は、黒ベタの画像を、マクベス濃 度計 (マクベス社製、 RD— 920D)を使用して測定した。濃度計の校正は、黒標準 1 . 8、白標準 0. 05にて行った。
[0207] 「文字画像」の評価は、文字の中抜けや文字太り文字細りを、文字画像を目視する ことにより行い、以下の基準で判定した。これらの結果を表 2に示す。
[文字画像評価基準]
◎:非常に良い
〇:良い
[0208] [表 2]
Figure imgf000061_0001
[0209] 実施例 29
表面を陽極酸化し、封孔処理を施した直径 3cmのアルミニウムチューブ上に、実施 例 4と同様に作製した電荷発生層および電荷輸送層用塗布液を浸漬塗布法により 順次塗布、乾燥して、膜厚が電荷発生層 0. 3 111、電荷輸送層 18 /z mの電子写真 感光体ドラムを作製した。このドラムをセイコーエプソン社製レーザープリンタ (LP— 1 800)に装着して、 HZH環境で、文字画像、写真画像を形成した。 3000枚耐刷し たが、良好な画像が得られた。
[0210] 比較例 15
電荷輸送物質 (4)を使用する代わりに、化合物(C)を使用する以外は、実施例 29 と同様に、電子写真感光体ドラムを作製し、同様に、画像特性を調べたところ、 3000 枚耐刷以降に、カプリが認められた。 [0211] 製造例 10 (CG6の製造)
窒素雰囲気下、フタロニトリル 66. 6gをジフエ-ルメタン 353mL中に懸濁し、 40°C で四塩化チタン 15. Ogとジフエ-ルメタン 25mLの混合液を添加した。約 1時間かけ て 205〜210°Cまで昇温後、四塩化チタン 10. Ogとジフエ-ルメタン 16mLの混合液 を滴下し、 205〜210°Cで 5時間反応させた。生成物を 130〜140°Cで熱濾過後、 N —メチルピロリドン (以下、「NMP」と略記する。)、 n—ブタノールで順次洗浄した。次 いで、 n—ブタノール 600mL中にて 2時間加熱還流を 2回くり返し、 NMP、水、メタノ 一ル懸洗をおこない、乾燥して B型ォキシチタニウムフタロシアニン 47. Ogを得た。
[0212] この B型ォキシチタニウムフタロシアニン 20. Ogを、ガラスビーズ( φ 1. Omm〜 φ 1 . 4mm) 120mLと共にペイントシェーカーにて 25時間振とうし、メタノールでォキシ チタニウムフタロシアニンを洗い出し、濾過して無定形のォキシチタニウムフタロシア ニンを得た。得られた無定形のォキシチタニウムフタロシア-ンを水 210mLに懸濁さ せた後、トルエン 40mLを添カ卩して 60°Cにて 1時間撹拌した。水をデカンテーシヨン にて廃棄後、メタノール懸洗を行い、濾過、乾燥する結晶変換操作により、 目的のォ キシチタニウムフタロシアニン組成物(以下、「CG6」ということ力 Sある。) 19. Ogを得た
[0213] 得られたォキシチタニウムフタロシアニン組成物の、 CuK a特性 X線による粉末 X 線回折スペクトルを図 2に示す。この X線回折スペクトルでは、ブラッグ角(2 Θ ± 0. 2 ° )が 27. 3° に最大回折ピークが観察された。得られたォキシチタニウムフタロシア ニン組成物のマススペクトルを図 3に示すが、マススペクトルでは mZz: 576に無置 換ォキシチタニウムフタロシアニンのピーク、 m/z : 610に塩素化ォキシチタニウムフ タロシアニンのピークが観察され、無置換ォキシチタニウムフタロシアニンのピーク強 度に対する塩素化ォキシチタニウムフタロシアニンのピーク強度比を測定したところ 0 . 028であった。
[0214] 製造例 11 (CG7の製造)
3—ヒドロキシナフタル酸無水物 10部および 3, 4—ジァミノトルエン 5. 7部を、氷酢 酸 23部と-トロベンゼン 115部との混合溶媒中に溶解攪拌し、酢酸沸点下にて、 2時 間反応させた。反応後室温に冷却し、析出した結晶を濾別し、メタノール 20部にて洗 浄した後、乾燥した。
[0215] 得られた固体 3部を N—メチルピロリドン 300部中に溶解し、次いで、 2— (m—アミ ノフエ-ル)一 5— (p—ァミノフエ-ル)一 1, 3, 4—ォキサジァゾ一ルのテトラゾ-ゥム ホウフッ化水素酸塩の N—メチルピロリドン溶液を滴下し、 30分間撹拌した。次いで、 同温度下で、酢酸ナトリウム飽和水溶液 7部をゆっくりと滴下し、カップリング反応させ た。滴下終了後、 2時間同温度下で、撹拌を続けた。攪拌終了後、固体を濾取し、水 、 N—メチルピロリドン、メタノールにより洗浄後、乾燥し、下記 8種の化合物の組成物 (以下、「CG7」ということがある。)を得た。
[0216] [化 39]
Figure imgf000063_0001
上記式中、 Z4は、下記 4種の構造力 なる群より選ばれた 1種の構造を示す。
[化 40]
Figure imgf000063_0002
[0217] 実施例 31
実施例 1で使用した CG1の代わりに、 CG6を使用する以外は、実施例 1と同様に 電子写真感光体 E1を作製し、実施例 1と同様に電気特性の評価を行った。結果を 表 3に示す。 [0218] 実施例 32
実施例 1で使用したバインダー榭脂 (Bl)の代わりに、下記バインダー榭脂 (XI) ( 粘度平均分子量 50, 000)を使用する以外は、実施例 1と同様に電子写真感光体 E 2を作製し、実施例 1と同様に電気特性の評価を行った。結果を表 3に示す。
[化 42]
Figure imgf000064_0001
バインダー樹脂 (X I )
[0219] 実施例 33
実施例 1で使用したバインダー榭脂 (B1)の代わりに、下記バインダー榭脂 (X2) ( 粘度平均分子量 20, 000) 50部、バインダー榭脂(B2)を 50部使用する以外は、実 施例 1と同様に電子写真感光体 E3を作製し、実施例 1と同様に電気特性の評価を 行った。結果を表 3に示す。
[化 43]
Figure imgf000064_0002
バインダー樹脂 (X 2 )
[0220] 実施例 34
実施例 1で使用した電荷輸送物質(1)の代わりに、下記の電荷輸送物質(7)を使 用する以外は、実施例 1と同様に電子写真感光体 E4を作製し、実施例 1と同様に電 気特性の評価を行った。結果を表 3に示す。
[化 44]
Figure imgf000065_0001
電荷輸送物質 (7 )
[0221] [表 3]
Figure imgf000065_0002
[0222] 実施例 35
平均一次粒径 40nmのルチル型酸ィ匕チタン (石原産業株式会社製、「TT055N」) と、該酸ィ匕チタンに対して 3質量%のメチルジメトキシシラン (東芝シリコーン社製、 ΓΤ SL8117」)とをヘンシェルミキサーにて混合して得られた表面処理酸ィ匕チタン 50部 と、メタノール 120部とを混合してなる原料スラリー lkgを、直径約 100 μ mのジルコ 二ァビーズ (ニツカトー社製、 YTZ)を分散メディアとして、ミル容積約 0. 15Lの寿ェ 業社製、ウルトラァペックスミル (UAM— 015型)を用い、ロータ周速 10mZ秒、液流 量 lOkgZ時間の液循環状態で 1時間分散処理し、酸化チタン分散液を作製した。
[0223] 前記酸化チタン分散液と、メタノール Z1—プロパノール Zトルエンの混合溶媒と、 ε一力プロラタタム [下記式 (Α)で表わされる化合物] Ζビス (4 ァミノ 3—メチル シクロへキシル)メタン [下記式 (Β)で表わされる化合物] Ζへキサメチレンジァミン [ 下記式 (C)で表わされる化合物] Ζデカメチレンジカルボン酸 [下記式 (D)で表わさ れる化合物] Ζォクタデカメチレンジカルボン酸 [下記式 (Ε)で表わされる化合物]の 組成モル比率が、 60%Ζ15%Ζ5%Ζ15%Ζ5%力もなる共重合ポリアミドのペレ ットとを加熱しながら撹拌、混合してポリアミドペレットを溶解させた。その後、出力 12 OOWの超音波発信器による超音波分散処理を 1時間行った。さらに孔径 mの PT FE製メンブレンフィルター(アドバンテック社製、マイテックス LC)により濾過し、表 面処理酸ィヒチタン Z共重合ポリアミドを質量比が 3Z1であり、メタノール Z1—プロ ノ V—ル/トルエンの混合溶媒の質量比が 7/1/2であって、含有する固形分の濃 度が 18. 0質量%の下引き層形成用分散液 Aを得た。
[化 45]
Figure imgf000066_0001
[0224] この下引き層形成用分散液 Aを、陽極酸ィ匕されていないアルミニウムシリンダー(外 径 30mm、長さ 351mm、厚さ 1. Omm)に浸漬塗布し、乾燥後の膜厚が 1. 5 /z mと なるように下引き層を設けた。
[0225] 次に、 CG7に、 1 , 2 ジメトキシェタン 30部加え、サンドグラインドミルで 8時間粉 砕し、微粒化分散処理を行った。続いて、ポリビニルブチラール (電気化学工業社製 、商品名「デンカブチラール」 # 6000C) 0. 75部、フエノキシ榭脂(ユニオンカーバイ ドネ土製、 PKHH) 0. 75部を 1 , 2 ジメトキシェタン 28. 5部に溶解したバインダー榭 脂溶液と混合し、さら〖こ 1 , 2 ジメトキシェタンと 4—メトキシ一 4—メチル 2 ペンタ ノンの任意割合の混合液 13. 5部を混合して、固形分濃度 4. 0質量%の電荷発生 層塗布液を調製した。
この電荷発生層塗布液を使用して、前記下引き層の上に、乾燥後の膜厚が 0. 3 μ m (0. 3g/m2)となるように電荷発生層を作製した。
[0226] 次に、電荷輸送物質(1) 40部、と、下記構造を有する酸化防止剤 3部、およびレべ リング剤としてシリコーンオイル (信越ィ匕学工業社製、商品名「KF96」)0. 05部、バイ ンダー榭脂(Bl) 100部を、テトラヒドロフラン 480部およびトルエン 120部に溶解させ て電荷輸送層塗布液を調製し、上述の電荷発生層上に、乾燥後の膜厚が 18 /z mと なるように浸漬塗布し、積層型感光層を有する電子写真感光体ドラム BE1を得た。
[0227] [化 46]
Figure imgf000067_0001
[0228] 比較例 21
実施例 35にお 、て使用した電荷輸送物質(1)の代わりに、電荷輸送物質 (C)を使 用する以外は、実施例 35と同様にして、感光体ドラム BH1を作製した
[0229] く実施例 35と比較例 21の評価方法〉
得られた各電子写真感光体を、感光体特性評価装置 (三菱化学社製)に装着し、 帯電、露光、電位測定、除電のサイクルによる電気特性の評価を行った。
[0230] 各電子写真感光体を回転数 30rpmの一定回転速度で回転させた。温度 25°C、湿 度 50%の環境下、感光体の初期表面電位が— 700Vとなるように帯電させ、露光に はハロゲンランプの光を干渉フィルターで 427nmの単色光としたものを用いて、表面 電位が— 350Vとなる露光量 (以下、感度ということがある)と、光量 1. 11 jZcm2で 露光した時の表面電位 (以下、 VLという)を求めた。露光力も電位測定までの時間は 389m秒とした。除電光には 75ルックスの白色光を用いて、露光幅は 5mmとした。除 電光照射後の残留電位 (以下、 Vrという)を測定した。
[0231] 感度は、表面電位が初期の電位の 1Z2になるのに必要な露光量であり、数値の小 さい方がより感度が高いものとなる。また、 VLおよび Vrは露光後の電位であり、より 値の小さ 1、方が電気特性として優れる。結果を下記表 4に示す。
[0232] [表 4] 感光体 電荷輸送物質 '、'イン - 電荷発 感度 V L V r
N o .
N o . (質量部) 樹脂 生物質 ( J/cm£) (-V) (-V) 実施例 35 B E 1 1 ( 4 0 ) B 1 C G 7 0 . 4 2 5 8 1 6 比較例 2 1 B H 1 C ( 4 0 ) B 1 C G 7 測定不能 測定不能 測定不能
[0233] 比較例 21では、電気特性が非常に悪ぐ測定不能であった。
[0234] <実施例 35と比較例 21の画像評価 >
A3印刷対応である MICROLINE Pro 9800PS— E (沖データ社製)の露光部 を改造し、日進電子社製、小型スポット照射型青色 LED (B3MP 8: 470nm)が感 光体に照射できるようにした。
この改造装置に、感光体ドラム E2を装着し、線を描力せたところ、良好な画像が得 られた。また、上記小型スポット照射型青色 LEDに、ストロボ照明電源 LPS— 203K Sを接続し、点を書かせたところ、半径 8mmの点画像を得ることが出できた。
産業上の利用可能性
[0235] 本発明の電子写真感光体は、電気特性や画像特性に優れ、環境の変動による特 性の変化が小さぐ高耐久性を有するため、複写機、プリンター、普通紙ファックス、 印刷機等、電子写真感光体が使用されるあらゆる分野に広く利用されるものである。 なお、 2005年 12月 2日に出願された日本特許出願 2005— 349209号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲 導電性支持体上に、電荷輸送層および電荷発生層を有する電子写真感光体にお いて、該電荷輸送層が、下記一般式(1)で表される電荷輸送物質と、バインダー榭 脂とを含有し、且つ該電荷輸送物質のバインダー榭脂に対する質量比率 (電荷輸送 物質 Zバインダー榭脂)力 5Z100以上 45Z100以下であることを特徴とする電子 写真感光体。 [化 1]
(一般式(1)において、 Ar1は置換基を有してもよいァリーレン基; Ar2、 Ar3
Figure imgf000069_0002
及 び Ar5は置換基を有してもよ!、ァリール基を表し、 nは 3〜6の整数を表す)
導電性支持体上に、電荷輸送層および電荷発生層を有する電子写真感光体にお いて、該電荷輸送層が、下記一般式(1)で表される電荷輸送物質を含有し、且つ複 数の電荷輸送物質とバインダー榭脂を含有するものであって、該複数の電荷輸送物 質の総質量の、バインダー榭脂に対する質量比率 (電荷輸送物質 Zバインダー榭脂 ) 1S 25Z100以上 55Z100以下であることを特徴とする電子写真感光体。
[化 2]
Figure imgf000069_0003
(一般式(1)において、 Ar1は置換基を有してもよいァリーレン基; Ar2、 Ar3、 Ar4、及 び Ar5は置換基を有してもよ!、ァリール基を表し、 nは 3〜6の整数を表す)
導電性支持体上に、電荷輸送層および電荷発生層を有する電子写真感光体にお いて、該電荷輸送層が、下記一般式(1)で表される電荷輸送物質を含有し、該電荷 発生層が、ォキシチタニウムフタロシアニンを含有し、且つ該ォキシチタニウムフタ口 シァニンがフタロシアニン結晶前駆体をィ匕学的処理後、有機溶媒に接触して得られ るものであって、 CuK o;特性 X線 (波長 1. 541 A)に対するブラッグ角(2 0 ±0. 2° )が 9. 5° 、24. 1° および 27. 2° に主たる回折ピークを有するォキシチタニウムフ タロシアニンであることを特徴とする電子写真感光体。
[化 3]
Figure imgf000070_0001
(一般式(1)において、 Ar1は置換基を有してもよいァリーレン基; Ar2、 Ar3、 Ar4、及 び Ar5は置換基を有してもよ!、ァリール基を表し、 nは 3〜6の整数を表す)
[4] 導電性支持体上に、電荷輸送層および電荷発生層を有する電子写真感光体にお いて、該電荷輸送層が、下記一般式(1)で表される電荷輸送物質と、ポリアリレート 榭脂とを含有することを特徴とする電子写真感光体。
[化 4]
Figure imgf000070_0002
(一般式(1)において、 Ar1は置換基を有してもよいァリーレン基; Ar2、 Ar3、 Ar4、及 び Ar5は置換基を有してもよ!、ァリール基を表し、 nは 3〜6の整数を表す)
[5] 導電性支持体上に、電荷輸送層および電荷発生層を有する電子写真感光体にお いて、該電荷輸送層が、下記一般式 (1)で表される電荷輸送物質と、粘度平均分子 量 10000以上 70000以下のバインダー榭脂とを含有することを特徴とする電子写真 感光体。
[化 5]
Figure imgf000071_0001
(一般式(1)において、 Ar1は置換基を有してもよいァリーレン基; Ar2、 Ar3、 Ar4、及 び Ar5は置換基を有してもよ!、ァリール基を表し、 nは 3〜6の整数を表す)
[6] 前記電荷発生層が、 CuK o;特性 X線に対する X線回折スペクトルのブラッグ角(2
Θ ±0. 2° )が、 9. 5° 、 24. 1° 、 27. 3° にピークを有する結晶型のォキシチタ- ゥムフタロシアニンを含有する請求項 1または 2に記載の電子写真感光体。
[7] 導電性支持体上に、下記一般式 (1)で表される電荷輸送物質を含有する電荷輸 送層、および電荷発生層を有する電子写真感光体を搭載し、該電子写真感光体を 波長 380〜500nmの単色光により露光して画像を形成することを特徴とする画像形
[化 6]
Figure imgf000071_0002
(一般式(1)において、 Ar1は置換基を有してもよいァリーレン基; Ar2、 Ar3
Figure imgf000071_0003
及 び Ar5は置換基を有してもよ!、ァリール基を表し、 nは 3〜6の整数を表す)
[8] 導電性支持体上に、下記一般式 (1)で表される電荷輸送物質を含有する電荷輸 送層を最外層として有する電子写真感光体を搭載し、該電子写真感光体を該電子 写真感光体に接触配置する帯電器により帯電して画像を形成することを特徴とする 画像形成装置。
[化 7]
Figure imgf000072_0001
(一般式(1)において、 Ar1は置換基を有してもよいァリーレン基; Ar2、 Ar3、 Ar4、及 び Ar5は置換基を有してもよ!、ァリール基を表し、 nは 3〜6の整数を表す)
請求項 1ないし 6の何れかに記載の電子写真感光体を搭載した画像形成装置。 請求項 1な!ヽし 6の何れかに記載の電子写真感光体を搭載し、該電子写真感光体 を波長 380〜500nmの単色光により露光して画像を形成する画像形成装置。
PCT/JP2006/324101 2005-12-02 2006-12-01 電子写真感光体、および画像形成装置 WO2007063989A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/095,647 US8404412B2 (en) 2005-12-02 2006-12-01 Electrophotographic photoreceptor, and image forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005349209 2005-12-02
JP2005-349209 2005-12-02

Publications (1)

Publication Number Publication Date
WO2007063989A1 true WO2007063989A1 (ja) 2007-06-07

Family

ID=38092321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324101 WO2007063989A1 (ja) 2005-12-02 2006-12-01 電子写真感光体、および画像形成装置

Country Status (4)

Country Link
US (1) US8404412B2 (ja)
JP (1) JP2011248375A (ja)
CN (1) CN101317134A (ja)
WO (1) WO2007063989A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169023A (ja) * 2008-01-15 2009-07-30 Mitsubishi Chemicals Corp 電子写真感光体および画像形成装置
CN101840167A (zh) * 2009-03-17 2010-09-22 京瓷美达株式会社 电子照相感光体和图像形成装置
WO2012121176A1 (ja) * 2011-03-04 2012-09-13 三菱化学株式会社 電荷輸送物質、電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
JP2012198520A (ja) * 2011-03-04 2012-10-18 Mitsubishi Chemicals Corp 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP2020118707A (ja) * 2019-01-18 2020-08-06 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2020118706A (ja) * 2019-01-18 2020-08-06 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080318146A1 (en) * 2007-06-21 2008-12-25 Xerox Corporation Imaging member having high charge mobility
US8993203B2 (en) * 2012-02-10 2015-03-31 Mitsubishi Chemical Corporation Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image forming apparatus
WO2014148579A1 (ja) * 2013-03-22 2014-09-25 三菱化学株式会社 電子写真感光体及び画像形成装置
JP6071004B2 (ja) * 2013-03-29 2017-02-01 富士フイルム株式会社 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
JP6476893B2 (ja) * 2014-01-21 2019-03-06 三菱ケミカル株式会社 電子写真感光体、電子写真感光体カートリッジ、画像形成装置、及び電子写真感光体の製造方法
JP7183678B2 (ja) * 2018-10-10 2022-12-06 京セラドキュメントソリューションズ株式会社 化合物混合物、電子写真感光体、及び化合物混合物の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305764A (ja) * 2000-04-21 2001-11-02 Fuji Xerox Co Ltd 電子写真用感光体及びこれを用いた電子写真装置
JP2002049166A (ja) * 2000-06-30 2002-02-15 Xerox Corp 電子写真画像形成部材
JP2003270877A (ja) * 2002-03-19 2003-09-25 Canon Inc 電子写真装置
JP2004199051A (ja) * 2002-12-06 2004-07-15 Mitsubishi Chemicals Corp 電子写真感光体
WO2006054805A1 (ja) * 2004-11-22 2006-05-26 Hodogaya Chemical Co., Ltd. 電子写真用感光体

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3251881A (en) * 1963-05-16 1966-05-17 American Cyanamid Co N, n, n', n'-tetrakis(p-nitro- or amino-substituted-phenyl)-p-arylenediamines
US4273846A (en) * 1979-11-23 1981-06-16 Xerox Corporation Imaging member having a charge transport layer of a terphenyl diamine and a polycarbonate resin
JPS61129648A (ja) 1984-11-29 1986-06-17 Canon Inc 積層型電子写真感光体
JPS62112163A (ja) * 1985-11-11 1987-05-23 Fuji Photo Film Co Ltd 電子写真感光体
JPS62147462A (ja) 1985-12-20 1987-07-01 Canon Inc 電子写真感光体
US4758488A (en) * 1987-08-24 1988-07-19 Xerox Corporation Stabilized polysilylenes and imaging members therewith
US4877702A (en) * 1987-10-30 1989-10-31 Mita Industrial Co., Ltd. Electrophotographic sensitive material
JPH01118144A (ja) 1987-10-30 1989-05-10 Mita Ind Co Ltd 電子写真用感光体
JPH01118146A (ja) 1987-10-30 1989-05-10 Mita Ind Co Ltd 電子写真用感光体
JP2539641B2 (ja) 1987-10-30 1996-10-02 三田工業株式会社 電子写真用感光体
JPH01118143A (ja) 1987-10-30 1989-05-10 Mita Ind Co Ltd 電子写真用感光体
JPH01118145A (ja) 1987-10-30 1989-05-10 Mita Ind Co Ltd 電子写真用感光体
EP0349034B1 (en) * 1988-06-28 1994-01-12 Agfa-Gevaert N.V. Electrophotographic recording material
US5059503A (en) * 1989-03-30 1991-10-22 Mita Industrial Co., Ltd. Electrophotosensitive material with combination of charge transfer materials
JP2572650B2 (ja) 1989-10-23 1997-01-16 高砂香料工業株式会社 電子写真感光体
JP2788129B2 (ja) * 1990-12-28 1998-08-20 三井化学株式会社 電荷輸送材料及びそれを用いた感光体
JPH05117211A (ja) * 1991-10-23 1993-05-14 Mita Ind Co Ltd ジアミノターフエニル誘導体およびそれを用いた電子写真感光体
JPH05117213A (ja) * 1991-10-23 1993-05-14 Mita Ind Co Ltd ジアミノターフエニル誘導体およびそれを用いた電子写真感光体
JPH05158248A (ja) 1991-12-10 1993-06-25 Ricoh Co Ltd 電子写真用感光体
US5230976A (en) 1991-12-27 1993-07-27 Xerox Corporation Polymeric arylamine silane compounds and imaging members incorporating same
US5538826A (en) * 1993-09-09 1996-07-23 Canon Kabushiki Kaisha Electrophotographic image forming method, apparatus and device unit
JP3451751B2 (ja) * 1994-10-19 2003-09-29 三菱化学株式会社 電子写真感光体の製造方法
JP3136059B2 (ja) 1994-11-09 2001-02-19 ユシロ化学工業株式会社 経糸用糊剤組成物及びその製造方法
JPH08152724A (ja) * 1994-11-30 1996-06-11 Hodogaya Chem Co Ltd 電子写真用感光体
JP3269300B2 (ja) 1994-12-22 2002-03-25 東洋インキ製造株式会社 正孔輸送材料およびその用途
US5567559A (en) * 1995-04-11 1996-10-22 Sinonar Corp. Electrophotographic photoreceptors containing titanyl phthalocyanine processed through ammoniated complex, and method for production thereof
JPH09316038A (ja) 1996-05-31 1997-12-09 Hodogaya Chem Co Ltd ジアミン化合物及び該化合物を用いる有機電界発光素子
JPH1017531A (ja) * 1996-07-05 1998-01-20 Fuji Photo Film Co Ltd 芳香族三級アミン化合物の製造方法及びその合成中間体
JPH1039527A (ja) * 1996-07-29 1998-02-13 Fuji Xerox Co Ltd 電子写真感光体
JP3503403B2 (ja) * 1997-03-17 2004-03-08 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
JP4217353B2 (ja) 1998-07-31 2009-01-28 キヤノン株式会社 電子写真装置
US6183922B1 (en) * 1998-07-31 2001-02-06 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4006862B2 (ja) * 1998-12-22 2007-11-14 コニカミノルタホールディングス株式会社 新規アミノ化合物とその製造方法、及び用途
JP4232259B2 (ja) * 1999-03-01 2009-03-04 コニカミノルタホールディングス株式会社 新規アミノ化合物とその製造方法、および用途
DE60030212T2 (de) * 1999-06-25 2007-07-19 Canon K.K. Elektrophotographisches lichtempfindliches Element, Verfahrenskartusche und elektrophotographisches Gerät welches dieses Element umfasst
JP3656473B2 (ja) 1999-08-18 2005-06-08 三菱化学株式会社 画像形成装置及び画像形成方法
JP2001115054A (ja) * 1999-10-14 2001-04-24 Mitsubishi Chemicals Corp チタニルフタロシアニン化合物及びそれを用いた電子写真感光体
JP4115056B2 (ja) 1999-12-13 2008-07-09 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
US6482560B2 (en) * 1999-12-20 2002-11-19 Mitsubishi Chemical Corporation Electrophotographic photoreceptor
JP3926093B2 (ja) 2000-10-18 2007-06-06 三菱化学株式会社 電子写真感光体
JP2003021921A (ja) 2001-07-06 2003-01-24 Canon Inc 電子写真感光体、電子写真装置及びプロセスカートリッジ
CN101393402A (zh) * 2002-12-06 2009-03-25 三菱化学株式会社 电照相光感受器
US7005222B2 (en) * 2002-12-16 2006-02-28 Xerox Corporation Imaging members
JP4209759B2 (ja) 2003-12-03 2009-01-14 株式会社リコー 画像形成装置
US7166397B2 (en) * 2003-12-23 2007-01-23 Xerox Corporation Imaging members
JP4283213B2 (ja) 2003-12-24 2009-06-24 株式会社リコー 画像形成装置及び画像形成方法
JP4407537B2 (ja) 2004-03-08 2010-02-03 三菱化学株式会社 電子写真感光体、それを用いた画像形成装置及び電子写真感光体カートリッジ、並びに、アリールアミン系化合物の製造方法
JP4517964B2 (ja) 2004-07-16 2010-08-04 三菱化学株式会社 電子写真感光体
JP2006072293A (ja) * 2004-08-06 2006-03-16 Fuji Xerox Co Ltd 電子写真感光体、画像形成装置及びプロセスカートリッジ
JP4735421B2 (ja) 2005-06-01 2011-07-27 三菱化学株式会社 電子写真感光体、プロセスカートリッジ、および画像形成装置
KR100708150B1 (ko) * 2005-06-27 2007-04-17 삼성전자주식회사 청자색계 광원용 전자사진 감광체 및 이를 구비한 전자사진화상형성장치
US8088540B2 (en) * 2006-01-23 2012-01-03 Hodogaya Chemical Co., Ltd. Photoreceptor for electrophotography
US8486594B2 (en) * 2006-01-25 2013-07-16 Hodogaya Chemical Co., Ltd. P-terphenyl compound mixture and electrophotographic photoreceptors made by using the same
US7514191B2 (en) * 2006-04-26 2009-04-07 Xerox Corporation Imaging member
US7553593B2 (en) * 2006-06-22 2009-06-30 Xerox Corporation Titanyl phthalocyanine photoconductors
US20080008951A1 (en) 2006-07-06 2008-01-10 Xerox Corporation Imaging members and method for sensitizing a charge generation layer of an imaging member
US7767371B2 (en) * 2006-08-10 2010-08-03 Xerox Corporation Imaging member having high charge mobility
JP5158248B2 (ja) 2011-12-06 2013-03-06 サンスター技研株式会社 ノイズ低減ブレーキディスク

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305764A (ja) * 2000-04-21 2001-11-02 Fuji Xerox Co Ltd 電子写真用感光体及びこれを用いた電子写真装置
JP2002049166A (ja) * 2000-06-30 2002-02-15 Xerox Corp 電子写真画像形成部材
JP2003270877A (ja) * 2002-03-19 2003-09-25 Canon Inc 電子写真装置
JP2004199051A (ja) * 2002-12-06 2004-07-15 Mitsubishi Chemicals Corp 電子写真感光体
WO2006054805A1 (ja) * 2004-11-22 2006-05-26 Hodogaya Chemical Co., Ltd. 電子写真用感光体

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169023A (ja) * 2008-01-15 2009-07-30 Mitsubishi Chemicals Corp 電子写真感光体および画像形成装置
CN101840167A (zh) * 2009-03-17 2010-09-22 京瓷美达株式会社 电子照相感光体和图像形成装置
WO2012121176A1 (ja) * 2011-03-04 2012-09-13 三菱化学株式会社 電荷輸送物質、電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
JP2012198520A (ja) * 2011-03-04 2012-10-18 Mitsubishi Chemicals Corp 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
US9709906B2 (en) 2011-03-04 2017-07-18 Mitsubishi Chemical Corporation Charge transport substance, electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image-forming apparatus
US10139741B2 (en) 2011-03-04 2018-11-27 Mitsubishi Chemical Corporation Charge transport substance, electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image-forming apparatus
JP2020118707A (ja) * 2019-01-18 2020-08-06 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2020118706A (ja) * 2019-01-18 2020-08-06 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP7286976B2 (ja) 2019-01-18 2023-06-06 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置

Also Published As

Publication number Publication date
US20100221040A1 (en) 2010-09-02
US8404412B2 (en) 2013-03-26
JP2011248375A (ja) 2011-12-08
CN101317134A (zh) 2008-12-03

Similar Documents

Publication Publication Date Title
WO2007063989A1 (ja) 電子写真感光体、および画像形成装置
JP2007179038A (ja) 電子写真感光体、および画像形成装置
JP5481829B2 (ja) 電子写真感光体、並びにそれを備えたカートリッジ及び画像形成装置
JP5365164B2 (ja) 電子写真感光体、ポリエステル樹脂、樹脂組成物、及びポリエステル樹脂の製造方法
WO2014021341A1 (ja) 電子写真感光体、電子写真感光体カートリッジ、画像形成装置、及びトリアリールアミン化合物
WO2004053597A1 (ja) 電子写真感光体
JP6380124B2 (ja) 電子写真感光体、画像形成装置、及びポリエステル樹脂
JP2004199051A (ja) 電子写真感光体
JP6337553B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP6160370B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、画像形成装置、及びトリアリールアミン化合物
JP4862661B2 (ja) 感光層形成用塗布液、電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP4534905B2 (ja) 電子写真感光体
JP6662416B2 (ja) ポリアリレート樹脂、及びそれを用いた電子写真感光体
JP6123338B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP5593818B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP5741180B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP5481826B2 (ja) 電子写真感光体製造用塗布液、電子写真感光体、画像形成装置、および、電子写真感光体カートリッジ
JP5663831B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、および、画像形成装置
JP6592943B2 (ja) 電子写真感光体、及び画像形成装置
JP6070261B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP5593817B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP4774202B2 (ja) 電子写真感光体並びにそれを用いた電子写真感光体カートリッジ及び画像形成装置
JP4862662B2 (ja) 電子写真感光体並びにそれを用いた画像形成装置及び電子写真カートリッジ
JP5040319B2 (ja) 正帯電型電子写真感光体、画像形成装置、画像形成方法及び電子写真感光体カートリッジ
JP2006330713A (ja) 電子写真感光体、感光体カートリッジ及び画像形成装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044653.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12095647

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833871

Country of ref document: EP

Kind code of ref document: A1