WO2006077763A1 - 非水電解液及びそれを用いたリチウム二次電池 - Google Patents

非水電解液及びそれを用いたリチウム二次電池 Download PDF

Info

Publication number
WO2006077763A1
WO2006077763A1 PCT/JP2006/300278 JP2006300278W WO2006077763A1 WO 2006077763 A1 WO2006077763 A1 WO 2006077763A1 JP 2006300278 W JP2006300278 W JP 2006300278W WO 2006077763 A1 WO2006077763 A1 WO 2006077763A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
methyl
lithium secondary
propyl
Prior art date
Application number
PCT/JP2006/300278
Other languages
English (en)
French (fr)
Inventor
Koji Abe
Takaaki Kuwata
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to US11/814,372 priority Critical patent/US7754380B2/en
Priority to KR1020077016598A priority patent/KR101229193B1/ko
Priority to KR1020127020388A priority patent/KR101229133B1/ko
Priority to JP2006553864A priority patent/JP4479728B2/ja
Publication of WO2006077763A1 publication Critical patent/WO2006077763A1/ja
Priority to US12/791,085 priority patent/US8440349B2/en
Priority to US13/618,644 priority patent/US8530080B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte capable of forming a lithium secondary battery excellent in battery characteristics such as electric capacity, cycle characteristics, and storage characteristics, and a lithium secondary battery using the same.
  • a lithium secondary battery is mainly composed of a positive electrode made of a lithium composite oxide, a negative electrode made of a carbon material or lithium metal, and a non-aqueous electrolyte.
  • a non-aqueous electrolyte carbonates such as ethylene carbonate (EC) and propylene carbonate (PC) are used.
  • Lithium secondary batteries using LiCoO, LiMn O, LiNiO, etc. as the positive electrode LiCoO, LiMn O, LiNiO, etc.
  • the decomposed product inhibits a desirable electrochemical reaction of the battery, resulting in deterioration of battery performance. This is thought to be due to the electrochemical oxidation of the solvent at the interface between the positive electrode material and the non-aqueous electrolyte.
  • a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite
  • the solvent in the non-aqueous electrolyte is reduced and decomposed on the surface of the negative electrode during charging.
  • EC which is widely used as a battery, some reductive decomposition occurs during repeated charging and discharging, resulting in a decrease in battery performance.
  • Patent Documents 1 to 9 For improving the battery characteristics of the lithium secondary battery, for example, Patent Documents 1 to 9 have been proposed.
  • Patent Document 1 discloses a non-aqueous solvent containing 0.1 to 20% by weight of a cyclic carbonate having a non-conjugated unsaturated bond, such as butyl ethylene carbonate (VEC), based on the total amount of the non-aqueous solvent, and an electrolyte catalyst.
  • VEC butyl ethylene carbonate
  • a non-aqueous electrolyte for a secondary battery is disclosed, and its cycle life is suggested as a feature.
  • batteries with VEC are not added. Compared to the case, there is a problem that the gas generation due to the decomposition of the electrolyte solution on the negative electrode is more frequent, leading to the deterioration of the battery performance.
  • Patent Document 2 discloses a lithium secondary battery in which a mixture of an ethylene carbonate derivative such as VEC or monofluoroethylene carbonate and triphenyl phosphate is added.
  • an ethylene carbonate derivative such as VEC or monofluoroethylene carbonate and triphenyl phosphate
  • the cycle characteristics in such an electrolyte system are not sufficient.
  • the end-of-charge voltage of the battery is higher than before (4.3 V or higher), sufficient initial capacity and cycle characteristics cannot be obtained.
  • Patent Documents 3 to 6 disclose nonaqueous electrolyte solutions for lithium secondary batteries in which an alkyne derivative is contained in the electrolyte solution.
  • Patent Document 7 discloses a lithium secondary battery in which a pentafluorinated benzene compound having an electron-donating group such as pentafluoroaranol is added. This coin battery has a capacity retention rate of 200 cycles of 80. It is about% and cycle performance is not enough!
  • Patent Document 8 describes that pentafluoro-anol can be used as an acid reduction reagent as a chemical overcharge protection means for non-aqueous electrolyte secondary batteries, but there is no description regarding cycle characteristics.
  • Patent Document 9 discloses a nonaqueous electrolytic solution for a lithium secondary battery in which a pentafluorophenyloxy compound is contained in the electrolytic solution.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-40526
  • Patent Document 2 US Patent Application Publication No. 2003Z157413
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-195545
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2001-313072
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2002-100399
  • Patent Document 6 Japanese Patent Laid-Open No. 2002-124297
  • Patent Document 7 US Patent Application Publication No. 2002Z110735 Specification
  • Patent Document 8 JP-A-7-302614
  • Patent Document 9 Japanese Patent Laid-Open No. 2003-272700
  • the present invention provides a non-aqueous electrolyte that is excellent in battery characteristics such as electric capacity, cycle characteristics, and storage characteristics and that can maintain battery performance for a long period of time, and a lithium secondary battery using the same. With the goal.
  • the present inventors have used a specific ethylene carbonate derivative, (A) a triple bond-containing compound, and Z or (B) a pentafluorophenol-oxy compound in a specific amount in a non-aqueous electrolyte.
  • the present inventors have found that battery performance such as cycle characteristics can be maintained over a long period of time when gas generation is small.
  • the present invention provides the following (1) and (2).
  • the non-aqueous electrolyte solution contains an ethylene carbonate derivative represented by the following general formula (I): 0.1 to 0.1% by weight of LO, (A) a triple bond-containing compound and Z or (B) a pentafluorophenyloxy compound represented by the following general formula (X): 0.01-: a lithium secondary containing L0% by weight Non-aqueous electrolyte for batteries.
  • Ri to R 3 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 2 to 12 carbon atoms, an alkyl group having 2 to 12 carbon atoms, or a carbon number. Shows 6 to 18 aryl groups, except ethylene carbonate.
  • R represents an alkylcarbo yl group having 2 to 12 carbon atoms, an alcohol having 2 to 12 carbon atoms, It represents a xycarbonyl group, an aryloxycarbol group having 7 to 18 carbon atoms, or an alkanesulfonyl group having 1 to 12 carbon atoms. However, at least one hydrogen atom of R1 is substituted with a halogen atom or an aryl group having 6 to 18 carbon atoms! )
  • a lithium secondary battery comprising a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a non-aqueous solvent
  • the general formula (I) 0.1 to 10% by weight of an ethylene carbonate derivative represented by the formula: (A) a triple bond-containing compound and Z or (B) a pentafluorophenyl-oxy compound represented by the general formula (X)
  • a lithium secondary battery comprising ⁇ 10% by weight.
  • the non-aqueous electrolyte of the present invention does not cause gas generation and liquid depletion in the non-aqueous electrolyte, it improves battery characteristics such as electric capacity, cycle characteristics, and storage characteristics of lithium secondary batteries, and is long-term. Battery performance can be maintained over a wide range.
  • the lithium secondary battery using the non-aqueous electrolyte of the present invention is excellent in battery characteristics such as electric capacity, cycle characteristics, and storage characteristics, and can exhibit excellent battery performance over a long period of time.
  • the nonaqueous electrolytic solution for a lithium secondary battery of the present invention is a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent, and is represented by the general formula (I) in the nonaqueous electrolytic solution.
  • Ethylene carbonate derivative hereinafter simply referred to as “ethylene carbonate derivative” 0.1 to 10% by weight
  • A a triple bond-containing compound
  • B pentafluorophenol represented by the following general formula (X) -Luoxy compound (hereinafter simply referred to as “pentafluorophenol-oxy compound”) 0.01-: L0 wt%
  • the ethylene carbonate derivative used in the present invention is represented by the following general formula (I).
  • Ri to R 3 each independently represents a hydrogen atom, a halogen atom, a C 2-12 alkyl group, a C 2-12 alkyl group or a carbon number 6 Shows ⁇ 18 aryl groups. However, ethylene carbonate is excluded.
  • the halogen atom is a force including fluorine, chlorine, bromine and iodine.
  • a fluorine atom or a chlorine atom is preferred, and a fluorine atom is particularly preferred.
  • alkyl group having 2 to 12 carbon atoms include an ethur group having 2 to 5 carbon atoms, a 2-propyl group, a 3 butur group, and a 1-methyl-2-propyl group.
  • aryl group having 6 to 18 carbon atoms include a phenol group, a tolyl group, a xylyl group, and a naphthyl group.
  • ethylene carbonate derivative examples include fluoroethylene carbonate (FE C), butyl ethylene carbonate (VEC), 4, 5 dibule 1, 3, dixolan 1 2 -on, 4-methinole 1 5 vinylol 1,3 Dioxolane 1 2-on, 4 Ethanol 1-5—Vinyl 1,3 Dioxolane 1 2-On, 4 Propyl 1 5 Vinyl 1,3 Dioxolan 1 2 On, 4-Butchinore 5 Vininore 1, 3 Dioxolan 2 On, 4 Pencil 5 Bull 1, 3 Dioxolan 1 2-on, 4 -Hexyl 5 Bull 1, 3 Dioxolan 2 on, 4 Hueninolay 5 Vininole 1, 3 Dixolan 2—on, 4, 4 4, 5 Diphnoroleo 1, 3-dioxolan 2-one.
  • FE C fluoroethylene carbonate
  • VEC butyl ethylene carbonate
  • 4 dibule 1, 3, dixolan 1 2 -on
  • an isomer when present in a compound, it means an isomer alone or a mixture thereof. The same applies to the following.
  • FEC, VEC, 4, 5 Dibule 1, 3 Dioxolane 1 2-on, 4 , 5 Difluoro 1, 1, 3 Dioxolane 1 2-on force Preferred is one or more selected.
  • FEC and soot or VEC are preferably contained in order to improve charge / discharge characteristics and gas generation suppression.
  • the content of the ethylene carbonate derivative contained in the non-aqueous electrolyte is excessively low, sufficient battery performance expected to be obtained cannot be obtained, and if excessively high, the battery performance may be deteriorated.
  • the content thereof is 0.1 to 10% by weight, preferably 0.5 to 5% by weight, more preferably 1 to 3% by weight, based on the weight of the non-aqueous electrolyte.
  • one or more alkyne derivatives represented by the following general formulas (II) to (VII) are preferably used.
  • R 4 to R 1Q each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, preferably an alkyl group having 1 to 5 carbon atoms, or 3 to 6 carbon atoms.
  • a cycloalkyl group or a C 6-12 aryl group, R 5 and R 6 , R 7 and R 8 may be bonded to each other to form a C 3-6 cycloalkyl group;
  • Y 1 and Y 2 are COOR 10 and one COR 1 .
  • SO R 1 Indicate
  • X represents an integer of 1 or 2.
  • R U to R 13 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, preferably an alkyl group having 1 to 5 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, It indicates Ariru group or Ararukiru group of carbon number 7-12 having 6 to 12 carbon atoms, R 12 and R 13 may be bonded to form a cycloalkyl group 3-6 carbon atoms with each other.
  • W represents a sulfoxide group, a sulfone group, or an oxalyl group
  • Y 3 represents an alkyl group having 1 to 12 carbon atoms, an alkyl group, an alkyl group, a cycloalkyl group having 3 to 6 carbon atoms, or 6 carbon atoms. ⁇ 12 aryl group or C 7-12 aralkyl group.
  • X is the same as above.
  • R 4 is the same as defined above, and R 14 is an alkyl group having 1 to 12 carbon atoms, preferably 1 to 5 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or a carbon atom. Indicates an aryl group of 6-12. p represents an integer of 1 or 2.
  • alkyne derivatives represented by the general formula (III) 2 butyne 1,4-diol dimethylol carbonate, 2 butyne 1,4 diolelegenole carbonate, 3 hexyne 2,5 diol dimethyl Dicarbonate, 2,5 Dimethyl-3 hexine 2,5 Diororesin methinoresin carbonate, 2 Butine 1,4 Diorolegi acetate, 2-butyne 1,4-diol diformate, 3 Hexin-2 , 5 diol diformate, 2,5 dimethyl-3 hexine 2,5 diol diformate, 2 butyne 1,4-diol diol methanesulfonate, 3 hexine 2,5 diol dimethane sulfonate, and 2,5 dimethyl 3 Hexin-2,5 diol dimethanesulfonate One or more selected for its power is preferred.
  • 2,4 hexadiyne 1,6 diol dimethyl dicarbonate 2,4 monohexadiine 1,6 diol diacetate
  • 2,4 hexadiine 1,6 diol dimethanesulfonate is preferred.
  • alkyne derivatives represented by the general formula (V) one or more selected from dipropargyl carbonate, di (1-methyl-2-propyl) carbonate, and di (2-butyur) carbonate are preferable.
  • di (2-probyl) sulfite di (1-methyl-2-probule) sulfite, di (2-buturyl) sulfite, methyl 2-propylsulfite, methyl 1-methyl-2-propyl -Rusulfite and ethyl 2-propyl sulfite power
  • di (2-probule) sulfite methyl 2-propyl sulfite, and ethyl 2-propy- It is preferable to contain at least one selected from rusulfite.
  • di (2-propiel) sulfate di (1-methyl-2-probule) sulfate, methyl 2-propyl sulfate, and ethyl 2-propyl sulfate are preferred.
  • di (2-propiel) oxalate di (1-methyl-2-probule) ogizarate, methinole 2-propynino leogizarate, ethinole 2-propino oleoginate, methyl 1-methyl-2-propynyl
  • 1-methyl-2-propynyl oxalate is preferred, particularly one selected from di (2-propynyl) oxalate, methyl 2-propyl oxalate, and ethyl 2-propyl oxalate It is preferable to contain more than.
  • phenylacetylene, 1-phenyl-1-propyne, 1-phenyl-1-butyne, diphenylacetylene, 4-ethynyltoluene, 1-ethynyl-4-fluorine-benzene, and 1,4- Jetulene benzene power One or more selected are preferred, in particular it is preferred to contain phenol acetylene and / or 1 phenol 1 propyne ⁇
  • the most preferred compounds are those represented by the general formula ( II) 2-propylmethyl carbonate, methanesulfonic acid 2-probule, general formula (III) 2 butyne 1,4 dioleoresmethinole carbonate, 2 butyne 1,4 diol diformate , 2 Butyne 1,4-diol dimethanesulfonate, and di (2-probule) sulfite represented by the general formula (VI), methyl 2-propylsulfite
  • the content of the one or more alkyne derivatives represented by the general formulas (II) to (VII) contained in the non-aqueous electrolyte is excessively small, and a sufficient film is not formed. Therefore, the expected battery characteristics cannot be obtained, and if it is too large, the conductivity of the electrolyte may change and the battery performance may deteriorate.
  • the content thereof is from 0.01 to 10% by weight relative to the weight of the nonaqueous electrolytic solution is preferably from 0.05 to 5 weight 0/0, more preferably 0.1 to 3 wt%.
  • the mixing ratio (weight ratio) of the ethylene carbonate derivative to the alkyne derivative is 96: 4 to 25:75, preferably 90:10 to 40:60, and more preferably 80:20 to 50:50.
  • the pentafluoro-loxy compound used in the present invention is represented by the following general formula (X).
  • R 1 represents an alkyl carbonyl group having 2 to 12 carbon atoms, preferably 2 to 5 carbon atoms, an alkoxycarbonyl group having 2 to 12 carbon atoms, preferably 2 to 5 carbon atoms, An arylcarbonyl group having 7 to 18 carbon atoms or an alkylsulfonyl group having 1 to 12, preferably 2 to 5 carbon atoms is shown. However, at least one hydrogen atom of R 15 is substituted with a halogen atom or an aryl group having 6 to 18 carbon atoms!
  • alkyl carbo yl group having 2 to 12 carbon atoms examples include methyl carbo yl group, eth yl carbo ol group, propyl carbo ol group, butyl carbo ol group, pentyl carbo ol group, hexyl carbonyl group, Straight chain substituents such as heptylcarbonyl group, octylcarbonyl group, nonylcarbonyl group, decylcarbonyl group, dodecylcarbonyl group, isopropyl carb group, tert-butyl carbo yl group, 2-ethyl hexyl carbo yl group, etc. And a branched alkyl carbonyl group.
  • alkyl carbo yl group substituted with a thio group include a vinyl carbo group and a 1-methyl benzyl group.
  • pentafluorophenyl compounds include pentafluoroacetate acetate, pentafluoropropionate, pentafluorophenol butanoate, and pentafluorophenol trifluoroacetate.
  • pentafluorophenol acetate, pentafluorophenol trifluoroacetate, etc. are particularly preferred!
  • Examples of the C2-C12 alkoxycarbon group include a methoxycarbon group, an ethoxycarbon group, a propoxycarbon group, a butoxycarbon group, a pentyloxycarbonyl group, and a hexyloxycarbon group.
  • Straight chain substituents such as heptyloxy carbo yl group, octyl oxy carboxy group, noroxy carbo yl group, decyloxy carbo ol group, dodecyl oxy carbo ol group, isopropoxy carbo ol group, Examples thereof include branched alkoxy groups such as tert butoxycarbonyl group and 2-ethylhexyloxycarbonyl group.
  • Specific examples in which at least one of the hydrogen atoms of the alkoxycarbo group is substituted with a halogen atom or an aryl group having 6 to 18 carbon atoms include a 1-cycloethoxy group and 2-cycloethoxy group.
  • pentafluorophenyl compounds include methylpentafluoropolyphenolate, ethenorepentafluororenophenolate carbonate, tertbutinorepentafluorophenol carbonate, 9 fluorenyl.
  • examples thereof include methyl pentafluorophenol carbonate and 2,2,2-trifluoroethyl pentafluorophenol carbonate.
  • methyl pentafluorophenyl carbonate, ethyl Preferred are pentafluoroolefin-carbonate, tert-butinorepentafluorophenol-norecarbonate, 2,2,2-trifluoroethylpentafluorophenol carbonate, especially methyl pentafluorocarbonate.
  • Lophe carbonate is preferred! /.
  • Examples of the arylcarbonyl group having 7 to 18 carbon atoms include a phenylcarbol group, an o-, m- or p-tolyloxycarboxyl group.
  • pentafluorophenol-oxy compound having these substituents include phenol-pentapentoleoloforophenol-nore carbonate, dipentaphenolorelophenol-norecarbonate, and the like.
  • alkanesulfonyl group having 1 to 12 carbon atoms examples include a methanesulfol group, an ethanesulfonyl group, a propanesulfol group, a butanesulfol group, a pentanesulfol group, a hexanesulfol group, Straight chain substituents such as heptanesulfol group, octanesulfol group, nonanesulfol group, decanesulfol group, dodecanesulfol group, etc., branched alkanesulfol groups such as 2-propanesulfol group Etc.
  • Specific examples in which at least one hydrogen atom of the alkanesulfonyl group is substituted with a halogen atom include a trifluoromethanesulfonyl group and a 2,2,2-trifluoroethanesulfonyl group.
  • pentafluorophenyl compounds include pentafluorophenyl methanesulfonate, pentafluorophenol sulfonate, pentafluoropropane sulfonate, pentafluorophenyltrifluoromethanesulfonate, pentafluoro Examples of such products include olo forfeitu 2, 2, 2-trifluoroethane sulfonate.
  • pentafluorophenol methane sulfonate pentafluoroethane sulfonate
  • pentafluorophenyl trifluoromethane sulfonate pentafluoroferreol 2, 2, 2-trifluoroethane sulfonate
  • pentafluorophenyl methanesulfonate or pentafluorophenyl trifluoromethanesulfonate is preferred.
  • the content of the pentafluoro-hydroxy compound contained in the non-aqueous electrolyte is too small! / ⁇ and a sufficient film is not formed. If the electric conductivity of the electrolyte is changed, the battery performance may be deteriorated. Its content is The content is 0.01 to 10% by weight, preferably 0.05 to 5% by weight, more preferably 0.1 to 3% by weight, based on the weight of the non-aqueous electrolyte.
  • the mixing ratio (weight ratio) of the pentafluorophenyl compound: ethylene carbonate derivative is 2:98 to 95: 5, preferably 20:80 to 75:25, more preferably 30:70 to 50: 50.
  • Non-aqueous solvents used in the present invention include cyclic carbonates, chain carbonates, esters, sulfur acid ester compounds, ethers, amides, phosphate esters, sulfones, ratatones, nitriles. Etc.
  • cyclic carbonates examples include EC, PC, butylene carbonate and the like, and it is most preferable to include EC having a high dielectric constant.
  • Chain carbonates include asymmetric chain carbonates such as methyl ethyl carbonate (MEC), methyl propyl carbonate, methyl butyl carbonate, and ethyl propyl carbonate, and symmetrical chains such as dimethyl carbonate (DMC) and jetyl carbonate (DEC).
  • MEC methyl ethyl carbonate
  • DMC dimethyl carbonate
  • DEC jetyl carbonate
  • asymmetric chain carbonate has a low melting point and is effective in the low-temperature characteristics of the battery.
  • MEC is most preferable.
  • esters include methyl propionate, methyl bivalinate, butyl bivalinate, pino ⁇ hexyl phosphate, octyl bivalate, etc.
  • sulfur ester ester compound examples include 1,3 propane sultone, 1,4 butanediol dimethanesulfonate, glycol sulfite, propylene sulfite, glycolenosulfate, propylene sulfate and the like.
  • Ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4 di-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, and amides include dimethylformamide.
  • phosphoric acid esters trimethyl phosphate, trioctyl phosphate, etc., as sulfones, divinyl sulfone, etc., as ratatones, as y-butyrate rataton, etc., as nitriles as acetonitrile, And adipo-tolyl.
  • cyclic carbonates, chain carbonates, esters Sulfuric acid ester compounds are preferred, and these may be used alone or in any combination of two or more. Among these, it is more preferable to include cyclic carbonates and Z or chain carbonates.
  • cyclic carbonates such as EC and PC and chain carbonates such as MEC and DEC is particularly preferred.
  • the volume ratio of cyclic carbonates: chain carbonates is 10:90 to 40:60, preferably 20:80 to 40:60, more preferably 25:75 to 45:55.
  • a sulfur acid ester compound and Z or divinyl sulfone in combination with cyclic carbonates and chain carbonates.
  • the combined use of at least one sulfur acid ester compound selected from 1,3 propane sultone, glycol sulfite, and 1,4 butanediol dimethanesulfonate and divinylsulfone is most preferable in terms of charge / discharge characteristics.
  • electrolyte salt used in the present invention examples include LiPF.
  • LiPF iso-C F
  • LiPF iso- C F
  • LiPF LiBF, LiN (SO 2 CF 3) are preferred LiPF is most preferred.
  • a salt can be used individually by 1 type or in combination of 2 or more types.
  • the preferred combination is LiPF and LiBF
  • Electrolyte salt can be mixed in any proportion, but used in combination with LiPF
  • the ratio (molar ratio) of the other electrolyte salt to the total electrolyte salt is preferably 0.01 to 45%, more preferably 0.03 to 20%, still more preferably 0.05 to 10%, most preferably Preferably it is 0.05 to 5%.
  • the total electrolyte salt is usually 0.1 to 3M, preferably 0.5 to 2.5M, more preferably 0.7 to 2.0M, most preferably 0.8 to the nonaqueous solvent. 1. Used by dissolving at a concentration of 4M.
  • Preferred combinations of the non-aqueous solvent and the electrolyte salt include (i) EC and Z or PC and (Ii) LiPF and / or Li as an electrolyte salt in a mixed solvent with MEC and / or DEC
  • the capacity ratio of [Ji and or! ⁇ : (Ii) MEC and Z or DEC] is preferably 15:85 to 45:55, more preferably 20:80 to 40:60, especially Preferably, a mixed solvent of 25:75 to 35:65 is combined with LiPF as an electrolyte salt.
  • the mixed solvent as an electrolyte salt, a combination of LiPF and LiBF,
  • the electrolytic solution of the present invention includes, for example, a nonaqueous solvent such as EC, PC, MEC, etc., and dissolves the electrolyte salt therein, and includes an ethylene carbonate derivative and (A) the above general formulas ( ⁇ ) to (VII). It can be obtained by dissolving a triple bond-containing compound such as one or more alkyne derivatives represented by the formula (1) and (5) a pentafluoro-oxy compound.
  • a nonaqueous solvent such as EC, PC, MEC, etc.
  • the non-aqueous solvent, ethylene carbonate derivative, ( ⁇ ) triple bond-containing compound and ⁇ or ( ⁇ ) pentafluorophenol-oxygen compound, and other additives are within the range that does not significantly reduce the productivity. Therefore, it is preferable to use a material that has been purified in advance and has as few impurities as possible.
  • Air and carbon dioxide-containing gas preferably contain no moisture and have a dew point of ⁇ 40 ° C. or lower, particularly preferably ⁇ 50 ° C. or lower.
  • the safety of the battery during overcharge can be ensured by further containing an aromatic compound.
  • Examples of powerful aromatic compounds include the following (a) to (c).
  • (a) and (b) are preferred cyclohexylbenzene, fluorocyclohexylbenzene compounds (1 fluoro-4-cyclohexylbenzene, etc.), tertbutylbenzene, tert-amylbenzene power Is most preferred.
  • Examples of the combination when two or more aromatic compounds are used include the following (d) to (f).
  • a combination containing a fluorine-containing compound is particularly preferred in (M).
  • Fluorine-free aromatic compound The mixing ratio (weight ratio) of the fluorine-containing aromatic compound is preferably 50:50 to 10:90, preferably 50:50 to 20:80, and 50:50 to 25: 75 power ⁇ The most preferred! / ⁇ .
  • the total content of the aromatic compound is preferably 0.1 to 5% by weight based on the weight of the non-aqueous electrolyte.
  • the lithium secondary battery of the present invention also has a non-aqueous electrolyte power in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a non-aqueous solvent.
  • the constituent members such as the positive electrode and the negative electrode other than the non-aqueous electrolyte are not particularly limited, and various known constituent members can be used.
  • a composite metal oxide with lithium containing cobalt, manganese, or nickel is used as the positive electrode active material.
  • These positive electrode active materials can be used singly or in combination of two or more.
  • Such composite metal oxides include LiCoO, LiMn O, LiNiO, and LiCo.
  • LiCoO and LiMn O LiCoO and LiNiO, LiMn O and LiNiO can be used together.
  • the positive electrode in the fully charged state like LiCoO, LiMn O, LiNiO
  • Lithium composite metal oxides that can be used at a charging potential of 4.3 V or higher on the basis of Li are preferable, such as LiCo Ni Mn O and LiNi Mn O.
  • a compound acid is more preferable.
  • a part of the lithium composite oxide may be substituted with other elements.
  • a part of Co in LiCoO is Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, etc.
  • lithium-containing olivine-type phosphate can also be used.
  • Specific examples include LiFePO, LiCoPO, LiNiPO, LiMnPO, LiFe M PO (M
  • LiFePO or LiCoPO is the positive electrode for high voltage.
  • Preferred as an active material Preferred as an active material.
  • Lithium-containing olivine-type phosphate can also be used by mixing with other positive electrode active materials.
  • the conductive agent for the positive electrode is not particularly limited as long as it is an electron conductive material that does not cause a chemical change.
  • Examples thereof include graphite such as natural graphite (such as flake graphite) and artificial graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black.
  • graphite and carbon black may be appropriately mixed and used.
  • the amount of the conductive agent added to the positive electrode mixture is preferably 1 to 10% by weight, particularly 2 to 5% by weight.
  • the positive electrode has a positive electrode active material composed of a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene, polyvinylidene fluoride, a copolymer of styrene and butadiene, and acrylo-tolyl and butadiene.
  • a positive electrode active material composed of a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene, polyvinylidene fluoride, a copolymer of styrene and butadiene, and acrylo-tolyl and butadiene.
  • a binder such as a copolymer, carboxymethyl cellulose, ethylene propylene diene terpolymer, etc.
  • Examples of the negative electrode include lithium metals and lithium alloys, and carbon materials capable of inserting and extracting lithium (pyrolytic carbons, coatas, graphites (artificial graphite, natural graphite, etc.), Organic polymer compound combustion body, carbon fiber], tin, tin compound, key, key compound, etc. can be used singly or in combination of two or more.
  • the battery capacity can be increased by replacing part or all of the carbon material with tin, a tin compound, a key, or a key compound.
  • the spacing (d) of the lattice plane (002) preferred by carbon materials is 0.340 nm.
  • a carbon material having a graphite type crystal structure of 0.335 to 0.340 nm is more preferable.
  • the negative electrode can be produced by the same method using the same binder and high-boiling solvent as those for the positive electrode.
  • the lithium secondary battery there are no particular limitations on the structure of the lithium secondary battery, and a coin-type battery, a cylindrical battery, a square battery, a laminated battery, or the like having a single-layer or multi-layer separator can be applied.
  • a single-layer or laminated porous film of polyolefin such as polypropylene or polyethylene, a woven fabric, a non-woven fabric, or the like can be used.
  • Air permeability is 50 ⁇ : LOOO sec ZlOOcc is preferred, 100 ⁇ 800 less / lOOcc force is more preferred, 300 ⁇ 500 less / lOOcc force is most preferred! / ⁇ .
  • the porosity is preferably 30 to 60%, more preferably 35 to 55%, and most preferably 40 to 50% from the viewpoint of improving battery capacity characteristics.
  • the thickness of the battery separator is 5 to 50 111 cells, preferably 10 to 40 111 cells, and preferably 15 to 25 m or less, because the mechanical strength and the thinner one can increase the energy density. Is most preferred.
  • the density of the positive electrode mixture layer formed on an aluminum foil or the like is preferably 3.2 to 4. Og / cm 3 , more preferably 3.3 to 3.9 g Zcm 3 , and most preferably 3. 4 to 3.8 gZcm 3 .
  • the density of the negative electrode mixture layer formed on the copper foil is preferably 1.3 to 2.
  • Og / cm 3 more preferably 1.4 to 1.9 g / cm 3 , and most preferably 1.5. ⁇ 1.8 g / cm 3 . If the density of the negative electrode mixture layer exceeds 2. Og / cm 3 , production may be difficult in practice.
  • the thickness of the electrode layer is usually 30 to 120 111, preferably 50: LOO / zm, and the thickness of the negative electrode layer (per collector side) Is usually 1 to 100 111, preferably 3 to 70 ⁇ .
  • the lithium secondary battery of the present invention has excellent cycle characteristics over a long period of time even when the end-of-charge voltage is 4.2 V or higher, particularly 4.3 V or higher. The cycle characteristics are good even at 4V.
  • the end-of-discharge voltage can be 2.5V or higher, and 2.8V or higher.
  • the current value is not particularly limited, but it is usually used in a constant current discharge of 0.1 to 3C.
  • the lithium secondary battery in the present invention can be charged and discharged at ⁇ 40 to 100 ° C., preferably 0 to 80 ° C.
  • a safety valve is provided in the sealing plate. It is also possible to adopt a method of providing a cut or notching a member such as a battery can or a gasket.
  • a plurality of lithium secondary batteries according to the present invention are assembled in series and Z or in parallel as required and stored in a battery pack.
  • the battery pack has a safety circuit (a function that monitors the voltage, temperature, current, etc. of each battery and Z or the entire battery pack and cuts off the current. It is preferable to provide at least one kind such as a circuit having the above.
  • LiCo Ni Mn O positive electrode active material
  • acetylene black conductive agent
  • the battery has a pressure relief port and An internal current interrupt device (PTC element) was provided.
  • the electrode density of the positive electrode is 3.
  • the electrode density of the negative electrode was 1.6 gZcm 3 .
  • the thickness of the positive electrode layer (per collector surface) was 70 ⁇ m, and the thickness of the negative electrode layer (per collector surface) was 60 ⁇ m.
  • Example 10 the same procedure as in Example 1 was performed except that a predetermined amount of the alkyne derivative shown in Table 1 was used instead of 2-propylmethyl carbonate. The results are shown in Table 1.
  • Example 10 the same procedure as in Example 1 was performed except that a predetermined amount of the alkyne derivative shown in Table 1 was used instead of 2-propylmethyl carbonate. The results are shown in Table 1.
  • Example 1 After preparing the same non-aqueous electrolyte as in Example 1, 2% by weight of vinyl ethylene carbonate (VEC) was added to the non-aqueous electrolyte, and di (2-probule) sulfite was added to the non-aqueous electrolyte. The same procedure as in Example 1 was conducted except that 0.5 wt% was added. The results are shown in Table 1.
  • VEC vinyl ethylene carbonate
  • Example 1 The same procedure as in Example 1 was conducted, except that 0.5% by weight of the alkyne derivative shown in Table 1 was added to the nonaqueous electrolytic solution. The results are shown in Table 1.
  • Example 1 After the same non-aqueous electrolyte as in Example 1 was prepared, the same procedure as in Example 1 was performed except that FEC and alkyne derivatives were not used. The results are shown in Table 1.
  • Example 1 The same procedure as in Example 1 was performed except that the conditions shown in Table 1 were applied to the nonaqueous electrolytic solution. The results are shown in Table 1.
  • Example 2 After preparing the same non-aqueous electrolyte as in Example 1, with respect to the non-aqueous electrolyte, add a predetermined amount of FEC as shown in Table 2, and add 2 butyne 1,4-diol diformate as the alkyne derivative. The procedure was the same as in Example 1 except that a fixed amount was added. The results are shown in Table 2.
  • Example 1 The same non-aqueous solvent as in Example 1 was prepared, and LiPF and LiBF were used as electrolyte salts.
  • LiPF and LiN (SO 2 CF) as electrolyte salts have concentrations of 0.9M and 0.1M, respectively.
  • a non-aqueous electrolyte was prepared by dissolving in the same manner as in Example 1 except that 2-butyne-1,4-diol diformate was used as an alkyne derivative in an amount of 1% by weight based on the non-aqueous electrolyte. As well as. The results are shown in Table 3.
  • Example 1 except that di (2-propynyl) oxalate was used as an alkyne derivative in an amount of 0.2% by weight based on the non-aqueous electrolyte, and the ethylene carbonate derivative and aromatic compound shown in Table 4 were quantitatively added. As well as. The results are shown in Table 4.
  • TAB means tert-amylbenzene
  • CHB means cyclohexylbenzene
  • BP means biphenyl
  • FCHB means 1-fluoro-4-cyclohexylbenzene
  • TBB means tert-butylbenzene.
  • Example 2 After preparing the same non-aqueous electrolyte as in Example 1, a 18650 size cylindrical battery was fabricated in the same manner as in Example 1 except that a predetermined amount of ethylene carbonate derivative and alkyne derivative shown in Table 5 were used.
  • Comparative Examples 6-8 The same operation as in Example 27 was performed using the same nonaqueous electrolytic solution as in Comparative Examples 1 to 3. The results are shown in Table 5.
  • Example 30 LiCo ,, ai ,,, 3 0 2
  • Example 8 LiCo ,, 3N, 3 MrH,, 3 0 2 None
  • FEC Full O b ethylene carbonate
  • the battery was charged to 4.2 V at a constant current of 2.2 A (1 C) at room temperature (20 ° C), and then charged at a constant voltage of 3 V for a final voltage of 4.2 V.
  • the battery was discharged to a final voltage of 3.0 V under a constant current of 2.2 A (1 C), and this charge / discharge was repeated.
  • the initial charge / discharge capacity is determined by adding an ethylene carbonate derivative and a pentafluorophenyl compound.
  • the battery characteristics after 300 cycles were 79.1% when the initial discharge capacity was taken as 100%. The results are shown in Table 6.
  • Example 32 The same procedure as in Example 32 was carried out except that the positive electrode and the pentafluorophenyl compound shown in Table 6 were used in Example 32. The results are shown in Table 6.
  • Example 32 The same nonaqueous electrolytic solution as in Example 32 was prepared, and then the same operation as in Example 32 was performed except that FEC and pentafluorophenyloxy compound were not used. The results are shown in Table 6.
  • Example 32 The same procedure as in Example 32 was performed except that the conditions shown in Table 6 were used for the nonaqueous electrolytic solution. The results are shown in Table 6.
  • FEC is shown in Table 7 for the non-aqueous electrolyte.
  • the same procedure as in Example 32 was performed, except that a predetermined amount was added and a predetermined amount of pentafluorophenyl methanesulfonate was added. The results are shown in Table 7.
  • Example 32 The same non-aqueous solvent as in Example 32 was prepared, and LiPF and LiBF were used as electrolyte salts.
  • LiPF and LiN (SO 2 CF) as electrolyte salts have concentrations of 0.9M and 0.1M, respectively.
  • Example 32 The same procedure as in Example 32 was conducted, except that 0.5% by weight of pentafluorophenol methanesulfonate was used with respect to the non-aqueous electrolyte, and a predetermined amount of the ethylene carbonate derivative and aromatic compound shown in Table 9 were added. It was. The results are shown in Table 9.
  • TAB means tert-amylbenzene
  • CHB means cyclohexylbenzene
  • BP means biphenyl
  • TBB means tert-butylbenzene
  • FCHB means 1-fluoro-4-cyclohexylbenzene.
  • Example 2 After preparing the same non-aqueous electrolyte as in Example 1, 18650 size was used in the same manner as in Example 1 except that a predetermined amount of the ethylene carbonate derivative and pentafluorophenyloxy compound shown in Table 10 were used. A cylindrical battery was prepared.
  • Example 51 The same operation as in Example 51 was performed using the same nonaqueous electrolytic solution as in Comparative Examples 9 to 11. The results are shown in Table 10.
  • Example 53 LiCo ,, ' 3 Ni, sMn ,,, 3 0 2
  • Example 16 LiCo ,, ' 3 i, 3 Mn ,,, 3 0 2 None
  • the nonaqueous electrolytic solution of the present invention By using the nonaqueous electrolytic solution of the present invention, a lithium secondary battery that is excellent in battery characteristics such as electric capacity, cycle characteristics, storage characteristics, etc. and that can exhibit excellent battery performance over a long period of time can be obtained. Also, the obtained lithium secondary battery is a cylindrical battery, a square battery It can be suitably used as a battery, a coin-type battery, a stacked battery, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Description

明 細 書
非水電解液及びそれを用いたリチウム二次電池
技術分野
[0001] 本発明は、電気容量、サイクル特性、保存特性等の電池特性に優れたリチウム二 次電池を形成することができる非水電解液、及びそれを用いたリチウム二次電池に 関する。
背景技術
[0002] 近年、リチウム二次電池は小型電子機器等の駆動用電源として広く使用されている 。リチウム二次電池は、主にリチウム複合酸化物からなる正極、炭素材料やリチウム 金属からなる負極、及び非水電解液から構成されている。その非水電解液としては、 エチレンカーボネート (EC)、プロピレンカーボネート (PC)等のカーボネート類が使 用されている。
正極として、例えば LiCoO、 LiMn O、 LiNiO等を用いたリチウム二次電池は、
2 2 4 2
非水電解液中の溶媒が充電時に局部的に一部酸化分解することにより、該分解物 が電池の望ましい電気化学的反応が阻害され、電池性能の低下を生じる。これは正 極材料と非水電解液との界面における溶媒の電気化学的酸化に起因するものと考 えられる。
また、負極として、例えば天然黒鉛や人造黒鉛等の高結晶化した炭素材料を用い たリチウム二次電池は、非水電解液中の溶媒が充電時に負極表面で還元分解し、 非水電解液溶媒として汎用されている ECでも充放電を繰り返す間に一部還元分解 が起こり、電池性能の低下が起こる。
[0003] このリチウム二次電池の電池特性を向上させるものとして、例えば特許文献 1〜9が 提案されている。
特許文献 1には、ビュルエチレンカーボネート (VEC)等のような非共役不飽和結 合を有する環状炭酸エステルを非水溶媒全体に対して 0. 1〜20重量%含む非水溶 媒と、電解質カゝらなる二次電池用非水電解液が開示されており、その特徴としてサイ クル寿命の向上が示唆されている。しかしながら、 VECを添カ卩した電池は、無添加の 場合に比べて負極上での電解液の分解によるガス発生が多ぐ電池性能の低下に 繋がるという問題がある。
特許文献 2には、 VECやモノフルォロエチレンカーボネート等のエチレンカーボネ ート誘導体とトリフエ-ルホスフェートの混合物を添加するリチウム二次電池が開示さ れている。し力しながら、このような電解液系でのサイクル特性は充分ではない。さら に、電池の充電終止電圧が従来よりも高くなつた場合 (4. 3V以上)には、十分な初 期容量、サイクル特性等が得られない。
また、特許文献 3〜6には、電解液中にアルキン誘導体を含有させたリチウム二次 電池用非水電解液が開示されている。
[0004] 特許文献 7には、ペンタフルォロア-ノール等の電子供与基を有するペンタフルォ 口ベンゼン化合物を添カ卩したリチウム二次電池が開示されている力 このコイン電池 は 200サイクルの容量維持率が 80%程度であり、サイクル性能の十分でな!、。 特許文献 8には、非水電解液二次電池の化学的過充電保護手段として、ペンタフ ルォロア-ノールが酸ィ匕還元試薬として使用可能と記載されて ヽるが、サイクル特性 に関する記載はない。また、特許文献 9には、電解液中にペンタフルオロフェニルォ キシィ匕合物を含有させたリチウム二次電池用非水電解液が開示されている。
これらの非水電解液はある程度サイクル特性等が改善されて ヽるが、更なる性能向 上が求められている。
[0005] 特許文献 1 :特開 2000— 40526号公報
特許文献 2 :米国特許出願公開第 2003Z157413号明細書
特許文献 3 :特開 2000— 195545号公報
特許文献 4:特開 2001—313072号公報
特許文献 5 :特開 2002— 100399号公報
特許文献 6:特開 2002— 124297号公報
特許文献 7:米国特許出願公開第 2002Z110735号明細書
特許文献 8:特開平 7— 302614号公報
特許文献 9:特開 2003 - 272700号公報
発明の開示 [0006] 本発明は、電気容量、サイクル特性、保存特性等の電池特性に優れ、かつ長期に わたり電池性能を維持しうる非水電解液、及びそれを用いたリチウム二次電池を提供 することを目的とする。
本発明者らは、非水電解液中に特定のエチレンカーボネート誘導体と、(A)三重 結合含有化合物及び Z又は(B)ペンタフルオロフヱ-ルォキシィ匕合物とを特定量で 併用することにより、ガス発生が少なぐ長期にわたりサイクル特性等の電池性能を維 持しうることを見出し、本発明を完成した。
すなわち、本発明は下記(1)及び (2)を提供するものである。
(1)非水溶媒に電解質塩が溶解されている非水電解液において、該非水電解液中 に、下記一般式 (I)で表されるエチレンカーボネート誘導体 0. 1〜: LO重量%と、 (A) 三重結合含有化合物及び Z又は (B)下記一般式 (X)で表されるペンタフルオロフェ -ルォキシィ匕合物 0. 01〜: L0重量%を含有することを特徴とするリチウム二次電池 用非水電解液。
[0007] [化 1]
Figure imgf000005_0001
[0008] (式 (I)中、 Ri〜R3は、それぞれ独立して水素原子、ハロゲン原子、炭素数 2〜 12の ァルケ-ル基、炭素数 2〜12のアルキ-ル基又は炭素数 6〜18のァリール基を示す 。ただしエチレンカーボネートは除く。 )
[0009] [化 2]
Figure imgf000005_0002
[0010] (式 (X)中、 R は、炭素数 2〜 12のアルキルカルボ-ル基、炭素数 2〜 12のアルコ キシカルボ-ル基、炭素数 7〜18のァリールォキシカルボ-ル基又は炭素数 1〜12 のアルカンスルホ二ル基を示す。ただし、 R1が有する水素原子の少なくとも 1つがハ ロゲン原子又は炭素数 6〜 18のァリール基で置換されて!、てもよ!/、。 )
[0011] (2)正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液カゝらなるリチ ゥム二次電池において、非水電解液中に、前記一般式 (I)で表されるエチレンカー ボネート誘導体 0. 1〜10重量%と、(A)三重結合含有化合物及び Z又は (B)前記 一般式 (X)で表されるペンタフルオロフヱ-ルォキシ化合物 0. 01〜10重量%を含 有することを特徴とするリチウム二次電池。
本発明の非水電解液は、非水電解液中でのガス発生、液枯れ現象がないため、リ チウムニ次電池の電気容量、サイクル特性、保存特性等の電池特性を向上させ、か つ長期にわたり電池性能を維持しうる。
本発明の非水電解液を用いたリチウム二次電池は、電気容量、サイクル特性、保 存特性等の電池特性に優れ、かつ長期にわたり優れた電池性能を発揮することがで きる。
発明を実施するための最良の形態
[0012] 本発明のリチウム二次電池用非水電解液は、非水溶媒に電解質塩が溶解されて いる非水電解液において、該非水電解液中に、前記一般式 (I)で表されるエチレン カーボネート誘導体(以下、単に「エチレンカーボネート誘導体」という) 0. 1〜10重 量%と、 (A)三重結合含有化合物及び Z又は (B)下記一般式 (X)で表されるペンタ フルオロフェ-ルォキシ化合物(以下、単に「ペンタフルォロフエ-ルォキシ化合物」 という) 0. 01〜: L0重量%を含有することが特徴である。
エチレンカーボネート誘導体と (A)三重結合含有化合物及び Z又は (B)ペンタフ ルォロフエ-ルォキシィ匕合物とを併用することにより、強固な被膜が負極上に形成さ れ、溶媒の分解を抑制するため、ガス発生が抑えられ、電気容量、サイクル特性、保 存特性等の電池特性が向上すると考えられる。
[0013] 本発明で用いるエチレンカーボネート誘導体は、下記一般式 (I)で表される。
[0014] [化 3]
Figure imgf000007_0001
[0015] 式 (I)中、 Ri〜R3は、それぞれ独立して水素原子、ハロゲン原子、炭素数 2〜 12の ァルケ-ル基、炭素数 2〜12のアルキ-ル基又は炭素数 6〜18のァリール基を示す 。ただしエチレンカーボネートは除く。
[0016] ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる力 フッ素又は塩素 原子が好ましぐ特にフッ素原子が好ましい。
炭素数 2〜 12のアルケニル基としては、ビニル基、ァリル基、クロチル基等が挙げら れるが、炭素数 2〜5のァルケ-ル基が好ましぐ特にビニル基が好ましい。
炭素数 2〜 12のアルキ-ル基としては、好ましくは炭素数 2〜5のェチュル基、 2— プロピ-ル基、 3 ブチュル基、 1ーメチルー 2 プロピ-ル基等が挙げられる。 炭素数 6〜18のァリール基としては、フエ-ル基、トリル基、キシリル基、ナフチル基 等が挙げられる。
[0017] エチレンカーボネート誘導体の具体例としては、フルォロエチレンカーボネート(FE C)、ビュルエチレンカーボネート(VEC)、 4, 5 ジビュル一 1, 3 ジォキソラン一 2 —オン、 4—メチノレ一 5 ビニノレ一 1, 3 ジォキソラン一 2—オン、 4 ェチノレ一 5— ビニル 1, 3 ジォキソラン一 2—オン、 4 プロピル一 5 ビニル 1, 3 ジォキ ソラン一 2 オン、 4ーブチノレー 5 ビニノレー 1, 3 ジォキソラン 2 オン、 4 ペン チル 5 ビュル 1, 3 ジォキソラン一 2 -オン、 4 -へキシル 5 ビュル 1 , 3 ジォキソラン 2 オン、 4 フエニノレー 5 ビニノレー 1, 3 ジォキソラン 2—ォ ン、 4, 4ージフノレオロー 1, 3 ジォキソランー2 オン、 4, 5 ジフノレオロー 1, 3— ジォキソラン 2—オン等が挙げられる。
なお、本明細書においては、化合物に異性体が存在する場合は、異性体単独及 びそれらの混合物を意味する。以下においても同様である。
これらの中では、 FEC、 VEC、 4, 5 ジビュル一 1, 3 ジォキソラン一 2—オン、 4 , 5 ジフルォロ一 1, 3 ジォキソラン一 2—オン力 選ばれる 1種以上が好ましぐ 特に FEC及び Ζ又は VECを含有することが、充放電特性及びガス発生抑制を向上 させる上で好ましい。
[0018] 非水電解液中に含有されるエチレンカーボネート誘導体の含有量は、過度に少な いと期待した十分な電池性能が得られず、過度に多いと電池性能が低下することが ある。その含有量は非水電解液の重量に対して 0. 1〜10重量%、好ましくは 0. 5〜 5重量%、さらに好ましくは 1〜3重量%である。
[0019] 本発明で用いる三重結合含有ィ匕合物としては、下記一般式 (II)〜 (VII)で表される 1種以上のアルキン誘導体が好ましく使用される。
[0020] [化 4]
Figure imgf000008_0001
[0021] 式 (II)〜(V)中、 R4〜R1Qは、それぞれ独立して水素原子、炭素数 1〜12、好ましく は炭素数 1〜5のアルキル基、炭素数 3〜6のシクロアルキル基又は炭素数 6〜12の ァリール基を示し、 R5と R6、 R7と R8は、互いに結合して炭素数 3〜6のシクロアルキル 基を形成していてもよい。 Y1及び Y2は、 COOR10、 一COR1。又は SO R1。を示し、
2
同一でも異なってもよい。 Xは 1又は 2の整数を示す。
[0022] [化 5]
Figure imgf000009_0001
o II o II 0 II 0 II
W:—— S― , — S II— , ― c-c—
o
[0023] 式 (VI)中、 RU〜R13は、それぞれ独立して水素原子、炭素数 1〜12、好ましくは炭 素数 1〜5のアルキル基、炭素数 3〜6のシクロアルキル基、炭素数 6〜12のァリール 基又は炭素数 7〜 12のァラルキル基を示し、 R12と R13は、互いに結合して炭素数 3〜 6のシクロアルキル基を形成していてもよい。 Wは、スルホキシド基、スルホン基又は オギザリル基を示し、 Y3は、炭素数 1〜12のアルキル基、ァルケ-ル基、アルキ-ル 基、炭素数 3〜6のシクロアルキル基、炭素数 6〜12のァリール基又は炭素数 7〜12 のァラルキル基を示す。 Xは前記と同じである。
[0024] [化 6]
Figure imgf000009_0002
[0025] 式 (VII)中、 R4は前記と同じであり、 R14は、炭素数 1〜12、好ましくは炭素数 1〜5 のアルキル基、炭素数 3〜6のシクロアルキル基又は炭素数 6〜 12のァリール基を示 す。 pは 1又は 2の整数を示す。
[0026] 一般式 (II)で表されるアルキン誘導体の具体例としては、 Y1 :— COOR1Qで x= l 場合、 2—プロピ-ルメチルカーボネート 4〜 =11、1^°=メチル基〕、 1—メチル — 2—プロピ-ルメチルカーボネート〔R4=R6=H、 R5=R1Q=メチル基〕、 2—プロピ -ルェチルカーボネート〔R4〜R6=H、 R1Q=ェチル基〕、 2—プロピ-ルプロピル力 ーボネート 4〜 R6=H、 R1Q=プロピル基〕、 2—プロピ-ルブチルカーボネー HR4 〜R6=H、 RW =ブチル基〕、 2—プロピ-ルフェ-ルカーボネート 4〜!^6 = 11、 R10 =フエ-ル基〕、 2—プロピ-ルシクルへキシルカーボネート〔R4〜R6 = H、 R10=シク 口へキシル基〕、 2—ブチュルメチルカーボネート〔R4=RW=メチル基、 R5=R6 = H〕 、 2—ペンチ-ルメチルカーボネート〔R4 =ェチル基、 R5=R6 = H、 R1Q=メチル基〕、 1—メチル— 2—ブチュルメチルカーボネート〔R4=R5=メチル基、 R6 = H、 R1Q=メチ ル基〕、 1, 1—ジメチルー 2—プロピ-ルメチルカーボネート 4=11、1^=1^=1^° =メチル基〕、 1, 1—ジェチルー 2—プロピ-ルメチルカーボネート〔R4 = H、R5=R6 =ェチル基、 R1Q=メチル基〕、 1ーェチルー 1ーメチルー 2—プロピ-ルメチルカーボ ネート〔R4 = H、 R5 =ェチル基、 R6=R1Q=メチル基〕、 1—イソブチル—1—メチル— 2—プロピ-ルメチルカーボネート〔R4 = H、 R5=イソブチル基、 R6=R10=メチル基〕 、 1, 1—ジメチル—2—ブチ-ルメチルカーボネート 4〜 =1^°=メチル基〕、 1 - ェチュルシクロへキシルメチルカーボネート〔R4 = H、 R5と R6が結合 =ペンタメチレン 基、 R1Q=メチル基〕、 1 フエ-ルー 1ーメチルー 2—プロピ-ルメチルカーボネート〔 R4=H、R5 =フエ-ル基、 1^6=1^°=メチル基〕、 1, 1—ジフエ-ルー 2—プロピ-ル メチルカーボネート〔R4 = H、R5=R6 =フエ-ル基、 R10=メチル基〕、 1, 1—ジメチル — 2—プロピ-ルェチルカーボネー HR4=H、 R5=R6=メチル基、 RW =ェチル基〕 等が挙げられる。
^ =ーじ01^°で = 1の場合、ギ酸 2—プロビュル 4〜 R6=R1Q=H〕、酢酸 2—プ 口ビュル 4〜 R6=H、 RW=メチル基〕、ギ酸 1—メチル— 2—プロピ-ル〔R4 = H、 R5 =メチル基、 1^6=1^° = 、酢酸 1—メチル— 2—プロピ-ル〔R4=R6 = H、 R5=R10 =メチル基〕、プロピオン酸 2—プロビュル 4〜 R6=H、 R1Q =ェチル基〕、酪酸 2— プロビュル 4〜 R6=H、 R1Q =プロピル基〕、安息香酸 2—プロピエル 4〜 R6 = H、 R10 =フエ-ル基〕、シクロへキシルカルボン酸 2—プロピ-ル〔R4〜R6 = H、 R10 =シク 口へキシル基〕、ギ酸 2—プチ-ル 4=メチル基、 R5=R6=R1Q = H〕、ギ酸 3—プチ -ル 4〜 R6=R1Q=H〕、ギ酸 2—ペンチ-ル 4=ェチル基、 R5=R6=R1Q = H〕、 ギ酸 1—メチル— 2—プチ-ル 4= =1^°=メチル基、 R6 = H〕、ギ酸 1, 1—ジメ チル— 2—プロピ-ル 4=!^°=11、 = =メチル基〕、ギ酸 1, 1—ジェチル— 2 —プロピ-ル〔R4=R10 = H、 R5=R6 =ェチル基〕、ギ酸 1—ェチル 1—メチル 2 —プロピ-ル〔Κ4=Ι^° = Η、 R5 =ェチル基、 R6=メチル基〕、ギ酸 1—イソブチル— 1 —メチル— 2—プロピ-ル〔R4=RW = H、 R5=イソブチル基、 R6=メチル基〕、ギ酸 1 , 1—ジメチルー 2—プチ-ル 4〜1^6=メチル基、 R10=H〕、ギ酸 1—ェチュルシク 口へキシル〔R4=R1Q=H、 R5と R6が結合 =ペンタメチレン基〕、ギ酸 1 フエ-ルー 1 —メチルー 2—プロピ-ル〔Κ4=Ι^° = Η、 R5 =フエ-ル基、 R6=メチル基〕、ギ酸 1, 1 —ジフエ-ルー 2—プロピ-ル 4=!^° = 11、 R5=R6 =フエ-ル基〕、酢酸 2—ブチ -ル〔R3=R1Q=メチル基、 1^4= =11〕、酢酸2—ぺンチ-ル 4=ェチル基、 R5 = R6=H、 R1Q=メチル基〕、酢酸 1—メチル— 2—プチ- 〔R4=R5=R1Q=メチル基、 R6=H〕、酢酸 1, 1—ジメチル— 2—プロピ-ル 4 = 11、 =1^=1^°=メチル基〕、 酢酸 1, 1—ジェチル— 2—プロピ-ル〔R4=H、 R5=R6=ェチル基、 Rw=メチル基〕 、酢酸 1—ェチル— 1—メチル— 2—プロピ-ル〔R4 = H、 R5 =ェチル基、 R6=R10 = メチル基〕、酢酸 1—イソブチル— 1—メチル— 2—プロピ-ル〔R4 = H、 R5=イソブチ ル基、 R6=RW=メチル基〕、酢酸 1, 1—ジメチル— 2—ブチュル 4〜 R6=メチル基 、 R1Q=メチル基〕、酢酸 1ーェチュルシクロへキシル〔R4=H、 R5と R6が結合 =ペンタ メチレン基、 R1Q=メチル基〕、酢酸 1—フエ-ルー 1—メチル— 2—プロピ-ル〔R4 = H 、 R5 =フエ-ル基、 R6=R1Q=メチル基〕、酢酸 1, 1ージフヱ-ルー 2—プロピ-ル〔R4 =H、 R5=R6=フエ-ル基、 R1Q=メチル基〕、プロピオン酸 1, 1 ジメチルー 2—プ 口ピ-ル〔R4=H、 R5=R6=メチル基、 RW =ェチル基〕等が挙げられる。
=— SO R10で x= lの場合、メタンスルホン酸 2—プロピ-ル〔R4〜R6 = H、 R10 =
2
メチル基〕、メタンスルホン酸 1—メチル— 2—プロピ-ル〔R4=R6 = H、 R5=R10=メ チル基〕、エタンスルホン酸 2—プロピ-ル〔R4〜R6 = H、 R1Q=ェチル基〕、プロパン スルホン酸 2—プロピ-ル〔R4〜R6 = H、 R1Q=プロピル基〕、 P トルエンスルホン酸 2 —プロピ-ル〔R4〜R6=H、 RW = p トリル基〕、シクロへキシルスルホン酸 2—プロピ -ル 4〜 R6 = H、 R10=シクロへキシル基〕、メタンスルホン酸 2—プチ-ル 4= ° =メチル基、 R5=R6=H〕、メタンスルホン酸 2—ペンチ-ル 4 =ェチル基、 R5=R6 =H、 °=メチル基〕、メタンスルホン酸1—メチル—2—ブチ-ル 4= =1^°=メ チル基、 R6 = H〕、メタンスルホン酸 1, 1—ジメチルー 2—プロピ-ル〔R4 = H、 R5=R 6=R10=メチル基〕、メタンスルホン酸 1, 1—ジェチルー 2—プロピ-ル〔R4 = H、 R5 =R6=ェチル基、 R1Q=メチル基〕、メタンスルホン酸 1ーェチルー 1ーメチルー 2—プ ロビニル 4=11、 R5 =ェチル基、 R6=RW=メチル基〕、メタンスルホン酸 1—イソブ チル— 1—メチル— 2—プロピ-ル〔R4 = H、 R5=イソブチル基、 1^=1^°=メチル基〕 、メタンスルホン酸 1, 1—ジメチル— 2—ブチュル 4〜 =1^°=メチル基〕、メタン スルホン酸 1—ェチュルシクロへキシル〔R4=H、 R5と R6が結合 =ペンタメチレン基、 R10=メチル基〕、メタンスルホン酸 1 フエ-ル 1—メチル 2—プロピ-ル〔R4 = H 、 R5 =フエ-ル基、 =1^°=メチル基〕、メタンスルホン酸 1, 1ージフエ-ルー 2—プ 口ピ-ル〔R4=H、 R5=R6=フエ-ル基、 R10=メチル基〕、エタンスルホン酸 1, 1—ジ メチル— 2—プロピ-ル〔R4=H、 R5=R6=メチル基、 RW =ェチル基〕等が挙げられ る。
[0029] 一般式(II)で表される x = 2のアルキン誘導体としては、 3 ブチニルメチルカーボ ネート〔R4〜R6 = H、 Y'=—COOCH〕、酢酸 3—ブチュル〔R4〜R6=H、 Y1 = -C
3
OCH〕、メタンスルホン酸 3—ブチュル〔R4〜R6=H、 Y1 = - SO CH〕等が挙げら
3 2 3 れる。
これらの中では、 2—プロピ-ルメチルカーボネート、 2—プロピ-ルェチルカーボ ネート、 2—プロピ-ルプロピルカーボネート、ギ酸 2—プロピニル、ギ酸 2—ブチュル 、酢酸 2—プロビュル、メタンスルホン酸 2—プロビュル、及びメタンスルホン酸 1—メ チル— 2—プロピ-ルカ 選ばれる 1種以上が好ましぐ特に、 2—プロピニルメチル カーボネート、ギ酸 2—プロピニル及びメタンスルホン酸 2—プロピニルから選ばれる 1種以上を含有することが好ま 、。
[0030] 一般式 (III)で表されるアルキン誘導体の具体例としては、 Yi=Y2= COOR1Qで x= lの場合、 2 ブチン 1, 4ージオールジメチルジカーボネート〔R5〜R8 = H、 R 10=メチル基〕、 2 ブチン—1, 4ージオールジェチルジカーボネート〔1^5〜1^=11、 RW=ェチル基〕、 3 へキシン 2, 5 ジオールジメチルジカーボネー HR5=R7 = RW=メチル基、 R6=R8=H〕、 3—へキシン—2, 5—ジオールジェチルジカーボネ 一 HR5=R7=メチル基、 = =11、1^°=ェチル基〕、 2, 5 ジメチルー 3 へキ シン—2, 5 ジオールジメチルジカーボネート〔 〜 =1^°=メチル基〕、 2, 5— ジメチルー 3 へキシン 2, 5 ジオールジェチルジカーボネート〔R5〜R8=メチ ル基、 R1Q=ェチル基〕等が挙げられる。
Υ1 =Υ2=— COR1Qで x= lの場合、 2 ブチン— 1, 4 ジオールジホルメート〔R5 〜R8=R10 = H〕、 2 ブチン— 1, 4 ジオールジアセテート〔R5〜R8 = H、 R10=メ チル基〕、 2 ブチン 1, 4ージオールジプロピォネート 5〜!^8 = 11、 R1Q =ェチル 基〕、 3 へキシン— 2, 5—ジォールジホルメート 5=1^7=メチル基、 = =1^° =H〕、 3 へキシン— 2, 5—ジォールジァセテート 5=1^7=1^°=メチル基、1^= R8=H〕、 3 へキシン— 2, 5 ジオールジプロピオネート〔R5=R7=メチル基、 R6 =R8=H、R1Q=ェチル基〕、 2, 5 ジメチルー 3 へキシン— 2, 5 ジオールジホ ルメー HR5〜R8=メチル基、 RW=H〕、 2, 5 ジメチルー 3 へキシン— 2, 5 ジォ ールジアセテート〔R5〜R8=R1Q=メチル基〕、 2, 5 ジメチルー 3 へキシン— 2, 5 —ジオールジプロピオネート〔R5〜R8=メチル基、 R1Q=ェチル基〕等が挙げられる。 Y1 =Y2= -SO R1Qで x= lの場合、 2 ブチン一 1, 4 ジオールジメタンスルホネ
2
ート〔!^5〜1^ = 11、1^°=メチル基〕、 2 ブチン 1, 4 ジォールジェタンスルホネ —HR5〜R8=H、 R1Q=ェチル基〕、 3—へキシン—2, 5—ジオールジメタンスルホ ネート 5=1^7=1^°=メチル基、 R6=R8 = H〕、 3 へキシン— 2, 5 ジオールジェ タンスルホネー HR5=R7=メチル基、 = =11、1^° =ェチル基〕、 2, 5 ジメチ ルー 3 へキシン— 2, 5 ジオールジメタンスルホネート 5〜 =1^°=メチル基〕 、 2, 5 ジメチルー 3 へキシン— 2, 5—ジォールジェタンスルホネート 5〜1^8= メチル基、 R1Q =ェチル基〕等が挙げられる。
[0031] 一般式(III)で表されるアルキン誘導体の中でも、 2 ブチン 1, 4ージオールジメ チノレカーボネート、 2 ブチン 1, 4 ジォーノレジェチノレカーボネート、 3 へキシ ン 2, 5 ジオールジメチルジカーボネート、 2, 5 ジメチルー 3 へキシン 2, 5 ジォーノレジメチノレジカーボネート、 2 ブチン 1, 4 ジォーノレジアセテート、 2 ーブチン 1, 4ージオールジホルメート、 3 へキシン—2, 5 ジオールジホルメ ート、 2, 5 ジメチルー 3 へキシン 2, 5 ジオールジホルメート、 2 ブチン 1 , 4ージオールジメタンスルホネート、 3 へキシン 2, 5 ジオールジメタンスルホ ネート、及び 2, 5 ジメチルー 3 へキシン—2, 5 ジオールジメタンスルホネート 力も選ばれる 1種以上が好ましい。
特に、 2 ブチン 1, 4ージオールジメチルカーボネート、 2 ブチン 1, 4ージ オールジホルメート及び 2 ブチン 1, 4ージオールジメタンスルホネートから選ば れる 1種以上を含有することが好ましい。
[0032] 一般式 (IV)で表されるアルキン誘導体の具体例としては、 Υ'=Υ2= COOR1Qで x= lの場合、 2, 4 へキサジイン 1, 6 ジオールジメチルジカーボネー HR5〜 R8=H、 R1Q=メチル基〕、 2, 4 へキサジイン一 1, 6 ジオールジェチルジカーボ ネート 5〜 =11、1^°=ェチル基〕、2, 7 ジメチルー 3, 5—ォクタジイン— 2, 7 ージオールジメチルジカーボネー HR5〜R8=R1Q=メチル基〕、 2, 7 ジメチルー 3 , 5—ォクタジイン— 2, 7 ジォールジェチルジカーボネート〔R5〜R8=メチル基、 R 1Q=ェチル基〕等が挙げられる。
Υ1 =Υ2=— COR1Qで x= lの場合、 2, 4 へキサジイン— 1, 6 ジオール ジァセ テート 5〜!^8=11、1^°=メチル基〕、 2, 4 へキサジイン— 1, 6 ジオールジプロ ピオネート 5〜 R8=H、R10=ェチル基〕、 2, 7 ジメチルー 3, 5—ォクタジイン— 2 , 7 ジオールジアセテート〔R5〜R8=メチル基、 Rw=メチル基〕、 2, 7 ジメチル - 3, 5—ォクタジイン— 2, 7—ジォールジプロピォネート 5〜 =メチル基、1^° =ェチル基〕等が挙げられる。
Y1=Y2=— SO R1Qで x= lの場合、 2, 4 へキサジイン一 1, 6 ジオールジメタ
2
ンスルホネート 5〜!^8=11、1^°=メチル基〕、2, 4 へキサジイン— 1, 6 ジォー ルジェタンスルホネート 5〜1^8=11、1^°=ェチル基〕、2, 7 ジメチルー 3, 5—ォ クタジイン— 2, 7 ジオールジメタンスルホネート 5〜 =1^°=メチル基〕、 2, 7 —ジメチル— 3, 5—ォクタジイン— 2, 7—ジォールジェタンスルホネート〔1^5〜1^ = メチル基、 R1Q =ェチル基〕等が挙げられる。
これらの中では、 2, 4 へキサジイン 1, 6 ジオールジメチルジカーボネート、 2, 4一へキサジイン 1, 6 ジオールジアセテート、及び 2, 4 へキサジイン 1, 6 ジオールジメタンスルホネートから選ばれる 1種以上が好ましい。
一般式 (V)で表されるアルキン誘導体の具体例としては、 x= 1の場合、例えば、ジ プロパルギルカーボネート〔Κ5〜Ι^°=Η〕、ジ(1—メチル— 2—プロビュル)カーボネ 一 HR5=R7=メチル基、 R6=R8〜R1Q = H〕、ジ(2—プチ-ル)カーボネート〔R5〜R8 =H、 =!^°=メチル基〕、ジ(2—ぺンチ-ル)カーボネート 5〜 =11、 R9=R10 =ェチル基〕、ジ(1—メチル— 2—プチ-ル)カーボネート 5= = =1^°=メチ ル基、 R7=R8=H〕、 2—プロピ-ル 2—ブチニルカーボネート 5〜1^9=11、 Rw=メ チル基〕、ジ( 1 , 1 ジメチル 2—プロビュル)カーボネート〔R5〜R8 =メチル基、 R9 =R1Q = H〕、ジ(1, 1—ジェチルー 2—プロビュル)カーボネー HR5〜R8 =ェチル基 、 R9 = R1Q = H〕、ジ( 1 ェチル 1 メチル 2—プロビュル)カーボネート [R5 = R7 =ェチル基、 R6=R8=メチル基、 R9=R1Q=H〕、ジ(1—イソブチル— 1—メチル— 2 —プロビュル)カーボネート〔R5=R7=イソブチル基、 R6=R8=メチル基、 =1^°= H〕、ジ( 1 , 1—ジメチル - 2-ブチュル)カーボネート〔R5〜R1Q =メチル基〕、ジ( 1— ェチュルシクロへキシル)カーボネート〔R5と R6が結合 =ペンタメチレン基、 R7と R8が 結合 =ペンタメチレン基、 R9=R1Q=H〕が挙げられる。
また、 x = 2の場合、例えば、ジ(3—ブチニル)カーボネート〔^〜1^1()=11〕が挙げら れる。
一般式 (V)で表されるアルキン誘導体の中でも、ジプロパルギルカーボネート、ジ( 1ーメチルー 2—プロビュル)カーボネート、及びジ(2—ブチュル)カーボネートから 選ばれる 1種以上が好ましい。
一般式 (VI)で表されるアルキン誘導体にぉ 、て、 Wがスルホキシド基で x= 1の場 合の具体例としては、ジ(2—プロビュル)サルファイト 11〜 R13=H、 = 2—プロピ -ル基〕、ジ(1—メチル— 2—プロビュル)サルファイト〔RU = H、 R12=メチル基、 R13 =H、 = 1—メチル—2—プロピ-ル基〕、ジ(2—ブチュル)サルファイト〔RU=メチ ル基、 R12=R13 = H、 Y3 = 2—ブチュル基〕、ジ(2—ペンチ-ル)サルファイト〔RU = ェチル基、 R12=R13=H、 Y3= 2—ペンチ-ル基〕、ジ(1—メチル—2—ブチュル)サ ルファイト〔RU=R12=メチル基、 R13=H、 Y3= l—メチル— 2—ブチュル基〕、ジ(1, 1—ジメチル— 2—プロビュル)サルファイト〔RU = H、 R12=R13=メチル基、 Y3= l, 1 -ジメチル - 2-プロピ-ル基〕、ジ( 1 , 1—ジェチル - 2-プロビュル)サルファイト〔 R11 = H、 R12 = R13 =ェチル基、 Υ3 = 1 , 1—ジェチル - 2-プロピ-ル基〕、ジ( 1— ェチル— 1—メチル— 2—プロビュル)サルファイト〔RU = H、 R12 =ェチル基、 R13=メ チル基、 Y3 = 1—ェチル 1 メチル 2—プロピ-ル基〕、ジ( 1 イソブチル 1 メチル— 2—プロビュル)サルファイト〔RU = H、 R12=イソブチル基、 R13=メチル基、 Y3= l—イソブチル— 1—メチル—プロピ-ル基〕、ジ(1, 1—ジメチルー 2—プチ- ル)サルファイト〔RU=R12=R13=メチル基、 = 1, 1—ジメチル— 2—ブチュル基〕 、ジ(1—ェチュルシクロへキシル)サルファイト〔RU = H、 R12と R13が結合 =ペンタメ チレン基、 = 1—ェチュルシクロへキシル基〕、ジ(1—メチル—1—フエ-ルー 2— プロピエル)サルファイト〔RU = H、 R12 =フエ-ル基、 R13=メチル基、 Y3= l メチル - 1—フエ-ル - 2 -プロピ-ル基〕、ジ( 1 , 1—ジフエ-ル - 2 -プロピエル)サルフ アイト〔RU =H、 R12=R13 =フエ-ル基、 Y3= l, 1—ジフエ-ルー 2—プロピ-ル基〕、 メチル 2—プロピ-ルサルファィト〔1^11〜1^13=11、 Υ3=メチル基〕、メチル 1 メチル — 2—プロピ-ルサルファイト〔RU = H、 R12=メチル基、 R13 = H、 Y3=メチル基〕、ェ チル 2—プロピ-ルサルファィト〔1^11〜1^13 = 11、 Υ3 =ェチル基〕、フエ-ル 2—プロ ピ-ルサルファイト〔RU〜R13 = H、 Y3 =フエ-ル基〕、シクロへキシル 2—プロピ-ル サルファイト 11〜 R13 = H、 Y3 =シクロへキシル基〕等が挙げられる。
[0035] また、 Wがスルホキシド基で χ= 2の場合、ジ(3 ブチュル)サルファイト 11〜 R13
=Η、 = 3—プチ-ル基〕等が挙げられる。
これらの中では、ジ(2—プロビュル)サルファイト、ジ(1ーメチルー 2—プロビュル) サルファイト、ジ(2—ブチュル)サルファイト、メチル 2—プロピ-ルサルファイト、メチ ル 1ーメチルー 2—プロピ-ルサルファイト、及びェチル 2—プロピ-ルサルファイト 力 選ばれる 1種以上が好ましぐ特に、ジ(2—プロビュル)サルファイト、メチル 2— プロピ-ルサルファイト、及びェチル 2—プロピ-ルサルファイトから選ばれる 1種以 上を含有することが好まし 、。
[0036] 一般式 (VI)において、 Wがスルホン基で χ= 1の場合の具体例としては、ジ(2 プ ロビニル)サルフェート 11〜 R13=H、 Y3= 2—プロピ-ル基〕、ジ(1—メチル—2— プロビュル)サルフェート〔RU =R13 = H、 R12=メチル基、 Y3= l—メチル— 2—プロピ -ル基〕、ジ(2—ブチュル)サルフェート〔RU=メチル基、 R12=R13 = H、 Y3 = 2—ブ チュル基〕、ジ(2—ペンチ-ル)サルフェート〔RU =ェチル基、 R12=R13 = H、 Y3 = 2 ペンチ-ル基〕、ジ( 1 メチル 2—ブチュル)サルフェート [R11 = R12 =メチル基 、 R13 = H、 Y6= l—メチルー 2—ブチュル基〕、ジ(1, 1 ジメチルー 2—プロビュル) サルフェート〔RU = H、 R12=R13=メチル基、 = 1, 1—ジメチルー 2—プロピ-ル 基〕、ジ(1, 1—ジェチル— 2—プロビュル)サルフェート〔RU = H、 R12=R13 =ェチル 基、 = 1, 1—ジェチル— 2—プロピ-ル基〕、ジ(1—ェチル—1—メチル—2—プ 口ピエル)サルフェート〔RU = H、 R12 =ェチル基、 R13=メチル基、 Y3= l ェチル— 1 メチル 2—プロピ-ル基〕、ジ( 1 イソブチル 1 メチル 2—プロビュル)サ ルフェート〔RU = H、 R12=イソブチル基、 R13=メチル基、 Y3= l—イソブチル— 1—メ チル— 2—プロピ-ル基〕、ジ(1, 1—ジメチル— 2—ブチュル)サルフェート 11〜!^1 3=メチル基、 Y3= l, 1—ジメチルー 2—ブチュル基〕、ジ(1—ェチュルシクロへキシ ル)サルフェート〔RU = H、 R12と R13が結合 =ペンタメチレン基、 Y3= l ェチュルシ クロへキシル基〕、ジ( 1 メチル 1—フエ-ル - 2-プロピエル)サルフェート〔RU = H、 R12 =フエ-ル基、 R13=メチル基、 Y3= l—メチル— 1—フエ-ルー 2—プロピ- ル基〕、ジ(1, 1—ジフエ-ル— 2—プロビュル)サルフェート〔RU = H、 R12=R13 =フ ェ-ル基、 Y3 = 1 , 1—ジフエ-ル— 2—プロピ-ル基〕、メチル 2 -プロピ-ルサル フェート〔RU〜R13 = H、 Y3=メチル基〕、メチル 1—メチル—2—プロピ-ルサルフエ ート〔RU=R13 = H、 R12=メチル基、 =メチル基〕、ェチル 2—プロピ-ルサルフエ ート〔RU〜R13 = H、 Y3 =ェチル基〕、フエ-ル 2—プロピ-ルサルフェート〔RU〜R13 =H、 =フエ-ル基〕、シクロへキシル 2—プロピ-ルサルフェート〔RU〜R13 = H、 γ3 =シクロへキシル基〕等が挙げられる。
また、 Wがスルホン基で χ = 2の場合、ジ(3 ブチュル)サルフェート 11〜 R13 = H 、 = 3—プチ-ル基〕等が挙げられる。
これらの中では、ジ(2—プロピエル)サルフェート、ジ(1ーメチルー 2—プロビュル) サルフェート、メチル 2—プロピ-ルサルフェート、及びェチル 2—プロピ-ルサルフ エートから選ばれる 1種以上が好ま 、。
一般式 (VI)において、 Wがオギザリル基で x= lの場合の具体例としては、ジ(2— プロビュル)オギザレート 11〜 R13=H、 Y3= 2—プロピ-ル基〕、ジ(1—メチル—2 —プロビュル)オギザレート〔RU=R13 = H、 R12=メチル基、 = 1—メチル— 2—プ 口ピ-ル基〕、ジ(2—ブチュル)オギザレート〔RU=メチル基、 R12=R13 = H、 = 2 —ブチュル基〕、ジ(2—ペンチ-ル)オギザレート〔RU =ェチル基、 R12=R13 = H、 Y 3 = 2—ペンチ-ル基〕、ジ( 1—メチル— 2—ブチュル)オギザレート〔RU = R12 =メチ ル基、 R13 = H、 Y3= l—メチル— 2—ブチュル基〕、ジ(1, 1—ジメチルー 2—プロピ -ル)オギザレート〔RU =H、 R12=R13=メチル基、 Y3= l, 1—ジメチル— 2—プロピ -ル基〕、ジ(1, 1—ジェチル— 2—プロビュル)オギザレート〔RU = H、 R12=R13 =ェ チル基、 Y3= l, 1—ジェチルー 2—プロピ-ル基〕、ジ(1ーェチルー 1ーメチルー 2 —プロビュル)オギザレート〔RU = H、 R12 =ェチル基、 R13=メチル基、 Y3= l ェチ ルー 1 メチル 2—プロピ-ル基〕、ジ( 1 イソブチル 1 メチル 2—プロピ- ル)オギザレー HRU = H、 R12=イソブチル基、 R13=メチル基、 Y^ l—イソブチル 1ーメチルー 2—プロピ-ル基〕、ジ(1, 1 ジメチルー 2—ブチュル)オギザレート 11〜 R13=メチル基、 = 1, 1—ジメチル— 2—ブチュル基〕、ジ(1—ェチュルシク 口へキシル)オギザレート〔RU=H、 R12と R13が結合 =ペンタメチレン基、 Y6= l ェ チュルシクロへキシル基〕、ジ(1ーメチルー 1 フエ-ルー 2—プロビュル)オギザレ 一ト〔RU = H、 R12 =フエ-ル基、 R13=メチル基、 = 1—メチル— 1—フエ-ル— 2 —プロピ-ル基〕、ジ(1, 1—ジフエ-ル— 2—プロビュル)オギザレート〔RU = H、R12 =R13 =フエ-ル基、 Y3= l, 1—ジフエ-ル— 2—プロピ-ル基〕、メチル 2—プロピ -ルオギザレート 11〜 R13=H、 Y3=メチル基〕、メチル 1—メチル—2—プロピ-ル オギザレート〔RU = H、 R12=メチル基、 R13 = H、 =メチル基〕、ェチル 2—プロピ -ルオギザレート 11〜 R13R13=H、 Y3=ェチル基〕、ェチル 1—メチル—2—プロピ -ルオギザレート〔RU=R13=H、 R12=メチル基、 Y3=ェチル基〕、フエ-ル 2—プロ ピ-ルオギザレート〔RU〜R13=H、 Y3 =フエ-ル基〕、シクロへキシル 2—プロピ-ル オギザレート 11〜 R13 = H、 Y3 =シクロへキシル基〕等が挙げられる。
また、 Wがオギザリル基で χ = 2の場合の具体例としては、ジ(3 ブチニル)オギザ レー HRU〜R13 = H、 =3—ブチュル基〕等が挙げられる。
これらの中では、ジ(2—プロピエル)オギザレート、ジ(1ーメチルー 2—プロビュル) オギザレート、メチノレ 2—プロピニノレオギザレート、ェチノレ 2—プロピニノレオギザレー ト、メチル 1ーメチルー 2—プロピニルォェチル、 1ーメチルー 2—プロピニルオギザレ ートから選ばれる 1種以上が好ましぐ特に、ジ(2—プロピニル)オギザレート、メチル 2—プロピ-ルオギザレート、及びェチル 2—プロピ-ルオギザレートから選ばれる 1 種以上を含有することが好ま 、。
一般式 (VII)で表されるアルキン誘導体の具体例としては、 p= lの場合、 2 ペン チン〔R4=メチル基、 R"=ェチル基〕、 1—へキシン〔R4=ブチル基、 R"=H〕、 2- へキシン〔R4 =プロピル基、 R"=メチル基〕、 3 へキシン〔R4=R"=ェチル基〕、 1 —ヘプチン〔R4=ペンチル基、 R14=H〕、 1—ォクチン〔R4=へキシル基、 R14=H〕、 2 ォクチン〔R4=メチル基、 R14 =ペンチル基〕、 4 ォクチン〔R4=R"=プロピル基 〕、 1—デシン〔R4=ォクチル基、 R14=H〕、 1—ドデシン〔R4=デシル基、 R"=H〕、 フエ-ルアセチレン〔R4 =フエ-ル基、 R" = H〕、 1—フエ-ルー 1—プロピン〔R4=フ ェ-ル基、 R14=メチル基〕、 1—フエ-ルー 1—ブチン〔R4=フエ-ル基、 R14 =ェチル 基〕、 1—フエ-ルー 1—ペンチン〔R4 =フエ-ル基、 R"=プロピル基〕、 1—フエ-ル — 1—へキシン〔R4 =フエ-ル基、 R"=ブチル基〕、ジフエ-ルアセチレン〔R4=R" =フエ-ル基〕、 4—ェチュルトルエン〔R'=p—トリル基、 R"=H〕、 4— tert—ブチ ルフエ-ルアセチレン〔R4 = 4 tert ブチルフエ-ル基、 R14 = H〕、 1—ェチュル— 4 フルォロベンゼン〔R4=p フルオロフェ-ル基、 R"=H〕、 1,4 ジェチュルべ ンゼン〔R4 = p ェチュルフエ-ル基、 R14 = H〕、ジシクロへキシルアセチレン〔R4=R "=シクロへキシル基〕等が挙げられる。
また、 p = 2の場合、例えば、 1,4 ジフエ-ルブタジイン〔R4=R14=フエ-ル基〕等 が挙げられる。
これらの中では、フエ-ルアセチレン、 1—フエ-ル一 1—プロピン、 1—フエニル一 1ーブチン、ジフエニルアセチレン、 4ーェチニルトルエン、 1 ェチニルー 4 フルォ 口ベンゼン、及び 1,4ージェチュルベンゼン力 選ばれる 1種以上が好ましぐ特に、 フエ-ルアセチレン及び/又は 1 フエ-ル 1 プロピンを含有することが好まし ヽ 前記アルキン誘導体の中でも、最も好ましい化合物は、一般式 (II)で表される 2— プロピ-ルメチルカーボネート、メタンスルホン酸 2—プロビュル、一般式(III)で表さ れる 2 ブチン 1, 4 ジォーノレジメチノレカーボネート、 2 ブチン 1, 4 ジォー ルジホルメート、 2 ブチン 1, 4ージオールジメタンスルホネート、並びに一般式( VI)で表されるジ(2—プロビュル)サルファイト、メチル 2—プロピ-ルサルファイト、 ェチル 2—プロピ-ルサルファイト、ジ(2—プロビュル)オギザレート、メチル 2—プ ロビニルォギザレート、及びェチル 2—プロピニルオギザレートから選ばれる少なくと も 1種以上の化合物である。これらの化合物を、エチレンカーボネート誘導体と併用 することにより、充放電特性の向上やガス発生の抑制等の電池特性向上に最も効果 を発揮する。
[0040] 非水電解液中に含有される一般式 (II)〜 (VII)で表される 1種以上のアルキン誘導 体の含有量は、過度に少な 、と十分な被膜が形成されな 、ため期待した電池特性 が得られず、過度に多いと電解液の電導度等が変わり電池性能が低下することがあ る。その含有量は非水電解液の重量に対して 0. 01〜10重量%、好ましくは 0. 05 〜5重量0 /0、さらに好ましくは 0. 1〜3重量%である。
エチレンカーボネート誘導体:前記アルキン誘導体の混合比(重量比)は、 96 :4〜 25 : 75、好ましくは、 90 : 10〜40 : 60であり、より好ましくは 80 : 20〜50: 50である。
[0041] 本発明で用いるペンタフルォロフ -ルォキシィ匕合物は、下記一般式 (X)で表され る。
[0042] [化 7]
Figure imgf000020_0001
[0043] 式 (X)中、 R は、炭素数 2〜12、好ましくは炭素数 2〜5のアルキルカルボ-ル基 、炭素数 2〜12、好ましくは炭素数 2〜5のアルコキシカルボニル基、炭素数 7〜18 のァリールォキシカルボ-ル基又は炭素数 1〜12、好ましくは炭素数 2〜5のアル力 ンスルホニル基を示す。ただし、 R15が有する水素原子の少なくとも 1つがハロゲン原 子又は炭素数 6〜18のァリール基で置換されて!、てもよ!/、。
[0044] 炭素数 2〜 12のアルキルカルボ-ル基としては、メチルカルボ-ル基、ェチルカル ボ-ル基、プロピルカルボ-ル基、ブチルカルボ-ル基、ペンチルカルボ-ル基、へ キシルカルボニル基、ヘプチルカルボニル基、ォクチルカルボニル基、ノニルカルボ -ル基、デシルカルボニル基、ドデシルカルボニル基等の直鎖置換基、イソプロピル カルボ-ル基、 tert—ブチルカルボ-ル基、 2—ェチルへキシルカルボ-ル基等の 分枝アルキルカルボ-ル基等が挙げられる。
アルキルカルボニル基が有する水素原子の少なくとも 1つがハロゲン原子又は炭素 数 6〜18のァリール基で置換された具体例としては、トリフルォロメチルカルボ-ル基 、 1, 2—ジクロ口ェチルカルボ-ル基、ペンタフルォロェチルカルボ-ル基、ヘプタ フルォロプロピルカルボ-ル基、ベンジルカルボ-ル基等が挙げられる。また、メチレ ン基 (CH =)ゃァリル基 (CH =CH— CH—)のような不飽和結合を有するアルキ
2 2 2
ル基が置換したアルキルカルボ-ル基が挙げられる。その具体例としてビニルカルボ -ル基、 1ーメチルビ-ルカルポ-ル基等が挙げられる。
力かるペンタフルオロフェ-ルォキシ化合物の具体例としては、酢酸ペンタフルォ 口フエ-ル、プロピオン酸ペンタフルォロフエ-ル、ブタン酸ペンタフルォロフエ-ル、 トリフルォロ酢酸ペンタフルォロフエ-ル、ペンタフルォロプロピオン酸ペンタフルォロ フエ-ル、アクリル酸ペンタフルォロフエ-ル、メタクリル酸ペンタフルオロフェ-ル等 が挙げられる。これらの中では、特に、酢酸ペンタフルォロフエ-ル、トリフルォロ酢酸 ペンタフルオロフェ-ル等が好まし!/、。
炭素数 2〜 12のアルコキシカルボ-ル基としては、メトキシカルボ-ル基、エトキシ カルボ-ル基、プロポキシカルボ-ル基、ブトキシカルボ-ル基、ペンチルォキシカ ルボニル基、へキシルォキシカルボ-ル基、ヘプチルォキシカルボ-ル基、ォクチル ォキシカルボ-ル基、ノ-ルォキシカルボ-ル基、デシルォキシカルボ-ル基、ドデ シルォキシカルボ-ル基等の直鎖置換基、イソプロポキシカルボ-ル基、 tert ブト キシカルボ-ル基、 2—ェチルへキシルォキシカルボ-ル基等の分枝アルコキシ力 ルポニル基等が挙げられる。
アルコキシカルボ-ル基が有する水素原子の少なくとも 1つがハロゲン原子又は炭 素数 6〜18のァリール基で置換された具体例としては、 1 クロ口エトキシカルボ-ル 基、 2—クロ口エトキシカルボ-ル基、 2, 2, 2—トリフルォロエトキシカルボ-ル基、 2 , 2, 2—トリクロ口エトキシカルボ-ル基、ベンジルォキシカルボ-ル基等が挙げられ る。
かかるペンタフルオロフェ-ルォキシ化合物の具体例としては、メチルペンタフルォ 口フエ二ノレカーボネート、ェチノレペンタフノレオロフェニノレカーボネート、 tert ブチノレ ペンタフルォロフエ-ルカーボネート、 9 フルォレニルメチルペンタフルォロフエ- ルカーボネート、 2, 2, 2—トリフルォロェチルペンタフルォロフエ-ルカーボネート等 が挙げられる。これらの中では、メチルペンタフルォロフエ-ルカーボネート、ェチル ペンタフノレォロフエ-ノレカーボネート、 tert—ブチノレペンタフノレォロフエ-ノレカーボネ ート、 2, 2, 2—トリフルォロェチルペンタフルォロフエ-ルカーボネートが好ましく、 特に、メチルペンタフルォロフエ-ルカーボネート等が好まし!/、。
[0046] 炭素数 7〜18のァリールォキシカルボ-ル基としては、フエ-ルォキシカルボ-ル 、 o—, m—又は p—トリルォキシカルボ-ル基等が挙げられる。
これらの置換基を有するペンタフルオロフヱ-ルォキシ化合物の具体例としては、 フエ-ノレペンタフノレオロフェ-ノレカーボネート、ジペンタフノレオロフェ-ノレカーボネー ト等が挙げられる。
[0047] 炭素数 1〜12のアルカンスルホ-ル基としては、メタンスルホ-ル基、エタンスルホ ニル基、プロパンスルホ-ル基、ブタンスルホ-ル基、ペンタンスルホ-ル基、へキサ ンスルホ-ル基、ヘプタンスルホ-ル基、オクタンスルホ-ル基、ノナンスルホ -ル基 、デカンスルホ-ル基、ドデカンスルホ -ル基等の直鎖置換基、 2—プロパンスルホ -ル基等の分枝アルカンスルホ -ル基等が挙げられる。
アルカンスルホ-ル基が有する水素原子の少なくとも 1つがハロゲン原子で置換さ れた具体例としては、トリフルォロメタンスルホ-ル基、 2, 2, 2—トリフルォロエタンス ルホニル基等が挙げられる。
かかるペンタフルオロフェ-ルォキシ化合物の具体例としては、ペンタフルオロフェ -ルメタンスルホネート、ペンタフルォロフエ-ルェタンスルホネート、ペンタフルォロ フエ-ルプロパンスルホネート、ペンタフルオロフェ-ルトリフルォロメタンスルホネート 、ペンタフルォロフエ-ルー 2, 2, 2—トリフルォロェタンスルホネート等が挙げられる 。これらの中では、ペンタフルオロフェ-ルメタンスルホネート、ペンタフルォロフエ- ルェタンスルホネート、ペンタフルオロフェ-ルトリフルォロメタンスルホネート、ペンタ フルオロフェ-ルー 2, 2, 2—トリフルォロェタンスルホネートが好ましぐ特に、ペンタ フルオロフェニルメタンスルホネート又はペンタフルオロフェニルトリフルォロメタンス ルホネートが好ましい。
[0048] 非水電解液中に含有されるペンタフルオロフ -ルォキシ化合物の含有量は、過 度に少な!/ヽと十分な被膜が形成されな ヽため期待した電池特性が得られず、過度に 多 、と電解液の電導度等が変わり電池性能が低下することがある。その含有量は、 非水電解液の重量に対して 0. 01〜10重量%、好ましくは 0. 05〜5重量%、さらに 好ましくは 0. 1〜3重量%である。
ペンタフルオロフェ-ルォキシ化合物:エチレンカーボネート誘導体の混合比(重 量比)は、 2 : 98〜95 : 5、好ましくは、 20 : 80〜75 : 25であり、より好ましくは 30 : 70 〜50 : 50である。
[0049] 〔非水溶媒〕
本発明で使用される非水溶媒としては、環状カーボネート類、鎖状カーボネート類 、エステル類、硫黄酸エステル化合物、エーテル類、アミド類、リン酸エステル類、ス ルホン類、ラタトン類、二トリル類等が挙げられる。
環状カーボネート類としては、 EC、 PC、ブチレンカーボネート等が挙げられ、特に 、高誘電率を有する ECを含むことが最も好ましい。
鎖状カーボネート類としては、メチルェチルカーボネート(MEC)、メチルプロピル カーボネート、メチルブチルカーボネート、ェチルプロピルカーボネート等の非対称 鎖状カーボネート、ジメチルカーボネート(DMC)、ジェチルカーボネート(DEC)等 の対称鎖状カーボネートが挙げられる。特に、非対称鎖状カーボネートは融点が低く 、電池の低温特性に効果があり好ましぐ中でも MECが最も好ましい。
[0050] エステル類としては、プロピオン酸メチル、ビバリン酸メチル、ビバリン酸ブチル、ピ ノ《リン酸へキシル、ビバリン酸ォクチル等が挙げられ、硫黄酸エステルィヒ合物として は、 1, 3 プロパンスルトン、 1, 4 ブタンジオールジメタンスルホネート、グリコール サルファイト、プロピレンサルファイト、グリコーノレサルフェート、プロピレンサルフェート 等が挙げられる。
また、エーテル類としては、テトラヒドロフラン、 2—メチルテトラヒドロフラン、 1, 4 ジ才キサン、 1, 2—ジメトキシェタン、 1, 2—ジエトキシェタン、 1, 2—ジブトキシエタ ン等、アミド類としては、ジメチルホルムアミド等、リン酸エステル類としては、リン酸トリ メチル、リン酸トリオクチル等、スルホン類としては、ジビニルスルホン等、ラタトン類と しては、 y—ブチ口ラタトン等、二トリル類としては、ァセトニトリル、アジポ-トリル等が 挙げられる。
[0051] 上記の非水溶媒の中では、環状カーボネート類、鎖状カーボネート類、エステル類 、硫黄酸エステル化合物が好ましぐこれらを 1種単独で又は 2種以上を任意に組み 合わせて用いることができる。中でも、環状カーボネート類及び Z又は鎖状カーボネ 一ト類を含むことがより好まし 、。
より具体的には、 EC、 PC等の環状カーボネート類と、 MEC、 DEC等の鎖状カー ボネート類との組み合わせが特に好まし 、。
環状カーボネート類:鎖状カーボネート類の容量比は、 10 : 90〜40 : 60、好ましく は 20: 80〜40: 60、より好ましくは 25: 75〜45: 55とするの力 ^よ!ヽ。
[0052] また、環状カーボネート類及び鎖状カーボネート類に、硫黄酸エステル化合物及び Z又はジビニルスルホンを併用することが好ましい。特に 1, 3 プロパンスルトン、グ リコールサルファイト、 1, 4 ブタンジオールジメタンスルホネートから選ばれる少なく とも 1種の硫黄酸エステル化合物とジビニルスルホンとの併用が充放電特性の面で 最も好ましい。
[0053] 〔電解質塩〕
本発明で使用される電解質塩としては、例えば、 LiPF
6、 LiBF
4、 LiCIO
4、 LiN (SO
CF )、 LiN (SO C F )、 LiC (SO CF )、 LiPF (CF )、 LiPF (C F )、 LiPF (
2 3 2 2 2 5 2 2 3 3 4 3 2 3 2 5 3 3
CF )、 LiPF (iso-C F )、 LiPF (iso— C F )等が挙げられる。これらの中では、
3 3 3 3 7 3 5 3 7
LiPF、 LiBF、 LiN (SO CF )が好ましぐ LiPFが最も好ましい。これらの電解質
6 4 2 3 2 6
塩は、 1種単独で又は 2種以上を組み合わせて使用することができる。
好ましい組み合わせとしては、 LiPFと LiBF
6 4、 LiPFと LiN (SO CF )
6 2 3 2、 LiBFと Li
4
N (SO CF )等が挙げられる力 LiPFと LiBFとの組み合わせが特に好ましい。
2 3 2 6 4
電解質塩は任意の割合で混合することができるが、 LiPFと組み合わせて使用する
6
場合の他の電解質塩が全電解質塩に占める割合 (モル比)は、好ましくは 0. 01〜4 5%、より好ましくは 0. 03〜20%、さらに好ましくは 0. 05〜10%、最も好ましくは 0. 05〜5%である。
また、全電解質塩は、前記非水溶媒中に、通常 0. 1〜3M、好ましくは 0. 5〜2. 5 M、さらに好ましくは 0. 7〜2. 0M、最も好ましくは 0. 8〜1. 4Mの濃度で溶解され て使用される。
[0054] 前記非水溶媒と電解質塩の好ましい組み合わせとしては、(i) EC及び Z又は PCと 、(ii) MEC及び/又は DECとの混合溶媒に、電解質塩として、 LiPF及び/又は Li
6
BFを含有する電解液電解液が挙げられる。
4
より具体的には、〔 じ及び 又は!^: (ii) MEC及び Z又は DEC〕の容量比が 、好ましくは 15 : 85〜45 : 55、ょり好ましくは20 : 80〜40 : 60、特に好ましくは 25 : 75 〜35: 65である混合溶媒と、電解質塩として LiPFを組み合わせることが好ましい。
6
また、前記混合溶媒に対して、電解質塩として、 LiPF及び LiBFの組み合わせや、
6 4
LiPF及び LiN (SO CF ) の組み合わせを採用することも好ましい。
6 2 3 2
[0055] 〔非水電解液の製造〕
本発明の電解液は、例えば、 EC、 PC、 MEC等の非水溶媒を混合し、これに電解 質塩を溶解し、エチレンカーボネート誘導体と、(A)前記一般式 (Π)〜 (VII)で表され る 1種以上のアルキン誘導体のような三重結合含有ィ匕合物及び Ζ又は(Β)ペンタフ ルォロフエ-ルォキシィ匕合物を溶解することにより得ることができる。
この際、用いる非水溶媒、エチレンカーボネート誘導体、(Α)三重結合含有化合物 及び Ζ又は(Β)ペンタフルォロフエ-ルォキシィ匕合物、その他の添加剤は、生産性 を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いるこ とが好ましい。
[0056] また、本発明の非水電解液に、例えば、空気や二酸ィ匕炭素を含ませることにより、 電解液の分解によるガス発生の抑制や、サイクル特性や保存特性等の電池性能を 向上させることができる。
本発明にお ヽて、非水電解液中に二酸ィ匕炭素又は空気を含有 (溶解)させる方法 としては、(1)予め非水電解液を電池内に注液する前に空気又は二酸化炭素含有 ガスと接触させて含有させる方法、(2)注液後、電池封口前又は後に空気又は二酸 化炭素含有ガスを電池内に含有させる方法等を採用することができる。空気や二酸 化炭素含有ガスは、水分を含まないものが好ましぐ露点—40°C以下、特に— 50°C 以下であるものがより好ましい。
[0057] 本発明の電解液においては、さらに芳香族化合物を含有させることにより、過充電 時の電池の安全性を確保することができる。
力かる芳香族化合物としては、例えば、次の(a)〜(c)が挙げられる。 (a)シクロへキシルベンゼン、フルォロシクロへキシルベンゼン化合物(1 フルォロ —2 シクロへキシルベンゼン、 1—フルオロー 3 シクロへキシルベンゼン、 1—フル オロー 4—シクロへキシルベンゼン)、ビフエ-ル。
(b) tert—ブチノレベンゼン、 1ーフノレオロー 4 tert—ブチノレベンゼン、 tert アミノレ ベンゼン、 4 tert ブチルビフエ-ル、 4 tert アミルビフエ-ル。
(c)ターフェ-ル(o—、 m—、 p 体)、ジフエ-ルエーテル、 2—フルォロジフエ-ル エーテノレ、 4ージフエニノレエーテノレ、フノレオ口ベンゼン、ジフノレオ口ベンゼン(o—、 m 一、 P 体)、 2 フルォロビフエ-ル、 4 フルォロビフエ-ル、 2, 4 ジフルォロア -ソール、ターフェ-ルの部分水素化物(1, 2—ジシクロへキシルベンゼン、 2—フエ 二ルビシクロへキシル、 1, 2—ジフエ-ルシクロへキサン、 o シクロへキシルビフエ- ル)。
これらの中では、(a)及び(b)が好ましぐシクロへキシルベンゼン、フルォロシクロ へキシルベンゼン化合物(1 フルオロー 4ーシクロへキシルベンゼン等)、 tert ブ チルベンゼン、 tert—ァミルベンゼン力 選ばれる 1種以上が最も好ましい。
前記芳香族化合物を 2種以上用いる場合の組み合わせとしては、例えば、次の(d) 〜(f)が挙げられる。
(d)ビフエ-ルと tert—ブチルベンゼン、ビフエ-ルと tert—ァミルベンゼン、シクロへ キシルベンゼンと tert—ァミルベンゼン、シクロへキシルベンゼンと 1 フルオロー 4 tert ブチノレベンゼン、 tert アミノレベンゼンと 1 フノレオ口 4 tert ブチノレ ベンゼンの組み合わせ。
(e)ビフエ-ルとシクロへキシルベンゼン、シクロへキシルベンゼンと tert ブチルベ ンゼンの組み合わせ。
(f)ビフエ-ルとフルォロベンゼン、シクロへキシルベンゼンとフルォロベンゼン、 2, 4 ジフルォロア二ノールとシクロへキシルベンゼン、シクロへキシルベンゼンとフルォ ロシクロへキシルベンゼン化合物、フルォロシクロへキシルベンゼン化合物とフルォ 口ベンゼン、 2, 4 ジフルォロア-ノールとフルォロシクロへキシルベンゼン化合物 の組み合わせ。
これらの中では、(d)及び (e)の組み合わせが好ましぐ(d)の組み合わせがより好 ましぐ(d)の中ではフッ素含有ィ匕合物を含む組み合わせが特に好ましい。フッ素非 含有芳香族化合物:フッ素含有芳香族化合物の混合比 (重量比)は、 50: 50〜 10: 90力好ましく、 50 : 50〜20 : 80カ^ょり好ましく、 50 : 50〜25: 75力 ^最ち好まし!/ヽ。 前記芳香族化合物の全含有量は、非水電解液の重量に対して 0. 1〜5重量%が 好ましい。
[0059] 〔リチウム二次電池〕
本発明のリチウム二次電池は、正極、負極及び非水溶媒に電解質塩が溶解されて いる非水電解液力もなる。非水電解液以外の正極、負極等の構成部材は特に制限 されず、公知の種々の構成部材を使用できる。
例えば、正極活物質としては、コバルト、マンガン、ニッケルを含有するリチウムとの 複合金属酸化物が使用される。これらの正極活物質は、 1種単独で又は 2種以上を 組み合わせて用いることができる。
このような複合金属酸化物としては、例えば、 LiCoO、 LiMn O、 LiNiO、 LiCo
2 2 4 2 1 -
Ni O (0. 01 <χ< 1)、 LiCo Ni Mn O、 LiNi Mn O等が挙げられる。ま x x 2 1/3 1/3 1/3 2 1/2 3/2 4
た、 LiCoOと LiMn O、 LiCoOと LiNiO、 LiMn Oと LiNiOのように併用してもよ
2 2 4 2 2 2 4 2 い。これらの中では、 LiCoO、 LiMn O、 LiNiOのような満充電状態における正極
2 2 4 2
の充電電位が Li基準で 4. 3V以上で使用可能なリチウム複合金属酸ィ匕物が好ましく 、 LiCo Ni Mn O、 LiNi Mn Oのような 4. 4V以上で使用可能なリチウム複
1/3 1/3 1/3 2 1/2 3/2 4
合酸ィ匕物がより好ましい。また、リチウム複合酸ィ匕物の一部は他元素で置換してもよく
、例えば、 LiCoOの Coの一部を Sn、 Mg、 Fe、 Ti、 Al、 Zr、 Cr、 V、 Ga、 Zn、 Cu等
2
で置換してもよ ヽ。
[0060] また、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。その 具体例としては、 LiFePO、 LiCoPO、 LiNiPO、 LiMnPO、 LiFe M PO (Mは
4 4 4 4 1-x x 4
Co、 Ni、 Mn、 Cu、 Zn、及び Cdから選ばれる少なくとも 1種であり、 xは、 0≤x≤0. 5 である。)等が挙げられる。これらの中では、 LiFePO又は LiCoPOが高電圧用正極
4 4
活物質として好ましい。
リチウム含有オリビン型リン酸塩は、他の正極活物質と混合して用いることもできる。
[0061] 正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。 例えば、天然黒鉛 (鱗片状黒鉛等)、人造黒鉛等のグラフアイト類、アセチレンブラッ ク、ケッチェンブラック、チェンネルブラック、ファーネスブラック、ランプブラック、サー マルブラック等のカーボンブラック類等が挙げられる。また、グラフアイト類とカーボン ブラック類を適宜混合して用いてもよい。導電剤の正極合剤への添加量は、 1〜10 重量%が好ましぐ特に 2〜 5重量%が好ましい。
[0062] 正極は、正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリ テトラフルォロエチレン、ポリフッ化ビ-リデン、スチレンとブタジエンの共重合体、ァク リロ-トリルとブタジエンの共重合体、カルボキシメチルセルロース、エチレンプロピレ ンジエンターポリマー等の結着剤と混練して正極合剤とした後、この正極材料^^電 体としてのアルミニウム箔ゃステンレス製のラス板に圧延して、 50°C〜250°C程度の 温度で 2時間程度真空下で加熱処理することにより作製することができる。
[0063] 負極 (負極活物質)としては、リチウム金属やリチウム合金、及びリチウムを吸蔵 ·放 出可能な炭素材料〔熱分解炭素類、コータス類、グラフアイト類 (人造黒鉛、天然黒鉛 等)、有機高分子化合物燃焼体、炭素繊維〕、スズ、スズ化合物、ケィ素、ケィ素化合 物等を 1種単独で又は 2種以上を組み合わせて用いることができる。炭素材料の一 部又は全部をスズ、スズィ匕合物、ケィ素、ケィ素化合物で置換することにより、電池容 量を上げることができる。
これらの中では、炭素材料が好ましぐ格子面(002)の面間隔(d )が 0. 340nm
002
以下、特に 0. 335〜0. 340nmである黒鉛型結晶構造を有する炭素材料がより好ま しい。
負極の製造は、上記の正極の製造方法と同様な結着剤、高沸点溶剤を用いて、同 様な方法により行うことができる。
[0064] リチウム二次電池の構造には特に限定はなぐ単層又は複層のセパレータを有す るコイン型電池、円筒型電池、角型電池、ラミネート式電池等を適用できる。
電池用セパレータとしては、ポリプロピレン、ポリエチレン等のポリオレフインの単層 又は積層の多孔質フィルム、織布、不織布等を使用できる。
電池用セパレータは、製造条件によっても異なるが、透気度が低すぎると機械的強 度が低下し、透気度が高すぎるとリチウムイオン伝導性が低下し、電池用セパレータ としての機能が十分でなくなる。そのため、透気度は 50〜: LOOO秒 ZlOOccが好まし く、 100〜800禾少/ lOOcc力より好ましく、 300〜500禾少/ lOOcc力最ち好まし!/ヽ。そ の空孔率は、電池容量特性向上の観点から 30〜60%が好ましぐ 35〜55%がより 好ましぐ 40〜50%が最も好ましい。
さらに、電池用セパレータの厚みは、機械的強度の面及び薄い方がエネルギー密 度を高くできること力ら、 5〜50 111カ 子ましく、 10〜40 111カょり好ましく、 15〜25 m以下が最も好ましい。
[0065] 本発明にお 、ては、エチレンカーボネート誘導体と、 (A)三重結合含有化合物及 び Z又は(B)ペンタフルォロフエ-ルォキシィ匕合物との添加効果を高めるために、電 極材料層の密度を調整することが好ましい。特に、アルミニウム箔等の上に形成され る正極合剤層の密度は、好ましくは 3. 2〜4. Og/cm3、より好ましくは 3. 3〜3. 9g Zcm3、最も好ましくは 3. 4〜3. 8gZcm3である。正極合剤密度が 4. OgZcm3を超 えて大きくなると、実質上、作製が困難となる場合がある。一方、銅箔上に形成される 負極合剤層の密度は、好ましくは 1. 3〜2. Og/cm3,より好ましくは 1. 4〜1. 9g/ cm3,最も好ましくは 1. 5〜1. 8g/cm3である。負極合剤層の密度が 2. Og/cm3を 超えて大きくなると、実質上、作製が困難となる場合がある。
[0066] また、電極層の厚さは、薄すぎると電極材料層での活物質量が低下するために電 池容量が小さくなり、厚すぎるとサイクル特性やレート特性が低下する。そのため、正 極の電極層の厚さ(集電体片面当たり)は、通常30〜120 111、好ましくは 50〜: LOO /z mであり、負極の電極層の厚さ(集電体片面当たり)は、通常1〜100 111、好まし くは 3〜70 πιである。
[0067] 本発明におけるリチウム二次電池は、充電終止電圧が 4. 2V以上、特に 4. 3V以 上の場合にも長期間にわたり優れたサイクル特性を有しており、さら〖こ、 4. 4Vにお いてもサイクル特性は良好である。放電終止電圧は、 2. 5V以上、さらに 2. 8V以上 とすることができる。電流値については特に限定されないが、通常 0. 1〜3Cの定電 流放電で使用される。また、本発明におけるリチウム二次電池は、—40〜100°C、好 ましくは 0〜80°Cで充放電することができる。
[0068] 本発明にお 、ては、リチウム二次電池の内圧上昇の対策として、封口版に安全弁 を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することが できる。
本発明におけるリチウム二次電池は、必要に応じて複数本を直列及び Z又は並列 に組んで電池パックに収納される。電池パックには、 PTC素子、温度ヒューズ、バイメ タル等の過電流防止素子のほか、安全回路 (各電池及び Z又は組電池全体の電圧 、温度、電流等をモニターし、電流を遮断する機能を有する回路)等の少なくとも 1種 以上を設けることが好ましい。
実施例
[0069] 本発明について円筒型電池の実施例及び比較例を説明するが、本発明は、以下 の実施例に限定されるものではなぐ特に溶媒の組み合わせ等に限定されるもので はない。
[0070] 実施例 1
〔非水電解液の調製〕
EC: MEC: DEC (容量比) = 3 :4 : 3の非水溶媒を調製し、これに電解質塩として L iPFを 1Mの濃度になるように溶解して非水電解液を調製した後、非水電解液に対
6
してフルォロエチレンカーボネート(FEC)を 2重量0 /0加え、さらにアルキン誘導体とし て 2—プロピ-ルメチルカーボネートを非水電解液に対して 1重量%となるようにカロえ た。
[0071] 〔リチウム二次電池の作製及び電池特性の測定〕
LiCo Ni Mn O (正極活物質) 94重量0 /0、アセチレンブラック(導電剤) 3重量
1/3 1/3 1/3 2
%、ポリフッ化ビ-リデン (結着剤) 3重量0 /0を混合し、これに 1—メチル—2 ピロリド ン溶剤を加えて混合したものをアルミニウム箔上に塗布し、乾燥、加圧成型、加熱処 理して正極を調製した。また、人造黒鉛 (負極活物質) 95重量%、ポリフッ化ビ -リデ ン (結着剤) 5重量0 /0を混合し、これに 1—メチル—2 ピロリドン溶剤を加え、混合し たものを銅箔上に塗布し、乾燥、加圧成型、加熱処理して負極を調製した。
ポリエチレン微多孔性フィルムのセパレータ(厚さ 20 μ m)を用い、上記の非水電解 液を注入後、電池封口前に露点 60°Cの空気を電池内に含有させて 18650サイズ の円筒型電池(直径 18mm、高さ 65mm)を作製した。電池には、圧力開放口及び 内部電流遮断装置 (PTC素子)を設けた。正極の電極密度は 3.
Figure imgf000031_0001
負極の 電極密度は 1. 6gZcm3であった。また、正極の電極層の厚さ(集電体片面当たり)は 70 μ m、負極の電極層の厚さ(集電体片面当たり)は 60 μ mであった。
この 18650電池を用いて、常温(20°C)下、 2. 2A (1C)の定電流で 4. 2Vまで充 電した後、終止電圧 4. 2Vとして定電圧下で合計 3時間充電した。次に 2. 2A(1C) の定電流下、終止電圧 3. 0Vまで放電し、この充放電を繰り返した。初期充放電容 量は、エチレンカーボネート誘導体及び三重結合含有ィ匕合物を添加しな 、場合 (比 較例 1)と同等であり、 200サイクル後の電池特性を測定したところ、初期放電容量を 100%としたときの放電容量維持率は 82. 8%であった。結果を表 1に示す。
[0072] 実施例 2〜9
実施例 1において、 2—プロピ-ルメチルカーボネートに代えて、表 1に示すアルキ ン誘導体を所定量使用した以外は、実施例 1と同様に行った。結果を表 1に示す。 実施例 10
実施例 1と同じ非水電解液を調製した後、非水電解液に対してビニルエチレンカー ボネート (VEC)を 2重量%加え、さらにジ(2—プロビュル)サルファイトを非水電解液 に対して 0. 5重量%となるように加えた以外は、実施例 1と同様に行った。結果を表 1 に示す。
実施例 11〜12
正極(正極活物質)として、 LiCo Ni Mn Oに代えて表 1に示す正極を使用し
1/3 1/3 1/3 2
、表 1に示すアルキン誘導体を非水電解液に対して 0. 5重量%添加した以外は、実 施例 1と同様に行った。結果を表 1に示す。
[0073] 比較例 1
実施例 1と同じ非水電解液を調製した後、 FEC、アルキン誘導体を使用しなかった 以外は、実施例 1と同様に行った。結果を表 1に示す。
比較例 2〜5
非水電解液に対して表 1に示す条件とした以外は、実施例 1と同様に行った。結果 を表 1に示す。
[0074] [表 1] 表 1
Figure imgf000032_0001
[0075] [添加剤比率の検討]
実施例 13〜16
実施例 1と同じ非水電解液を調製した後、非水電解液に対して、 FECを表 2に示す 所定量カ卩え、さらにアルキン誘導体として 2 ブチン 1, 4ージオールジホルメート を所定量添加した以外は、実施例 1と同様に行った。結果を表 2に示す。
[0076] [表 2] 表 2
Figure imgf000033_0001
[0077] [電解質塩比率の検討]
実施例 17〜20
実施例 1と同じ非水溶媒を調製し、これに電解質塩として LiPF及び LiBFを、表 3
6 4 に示す所定の濃度になるように溶解して非水電解液を調製した後、非水電解液に対 して FECを 2重量%加え、さらに表 3に示すアルキン誘導体を所定量添加した以外 は、実施例 1と同様に行った。結果を表 3に示す。
実施例 21
電解質塩として LiPF及び LiN (SO CF )をそれぞれ、 0. 9M、 0. 1Mの濃度にな
6 2 3 2
るように溶解して非水電解液を調製した後、アルキン誘導体として、 2—ブチン— 1, 4 ジオールジホルメートを非水電解液に対して 1重量%使用した以外は、実施例 1 7と同様に行った。結果を表 3に示す。
[0078] [表 3]
表 3
Figure imgf000033_0002
[0079] [芳香族化合物の併用例] 実施例 22〜26
アルキン誘導体として、ジ(2—プロピニル)オギザレートを非水電解液に対して、 0 . 2重量%使用し、表 4に示すエチレンカーボネート誘導体及び芳香族化合物を所 定量添加した以外は、実施例 1と同様に行った。結果を表 4に示す。
なお、表 4中、 TABは tert—ァミルベンゼン、 CHBはシクロへキシルベンゼン、 BP はビフエニル、 FCHBは 1—フルオロー 4—シクロへキシルベンゼン、 TBBは tert— ブチルベンゼンを意味する。
[表 4]
表 4
Figure imgf000034_0001
[ガス発生量の評価]
実施例 27〜31
実施例 1と同じ非水電解液を調製した後、表 5に示すエチレンカーボネート誘導体 及びアルキン誘導体を所定量使用した以外は、実施例 1と同様にして 18650サイズ の円筒型電池を作製した。
この 18650電池を用いて、 60°Cで、 2. 2A(1C)の定電流で 4. 2Vまで充電した後 、終止電圧 4. 2Vとして定電圧下で合計 3時間充電した。次〖こ 2. 2A(1C)の定電流 下、終止電圧 3. 0Vまで放電し、この充放電を繰り返し、 100サイクル後の電池内の ガス発生量をアルキメデス法により測定した。結果を表 5に示す。
比較例 6〜8 比較例 1〜3と同じ非水電解液を用いて、実施例 27と同様に行った。結果を表 5に 示す。
[0082] [表 5]
表 5
EC
アルキン誘導体 ガス発生量 正極 誘導体 電解液組成 (容量比)
(wt%) (ml)
(wt%)
FEC ジ(2—プロビニル) 1M LiPF6
27 LiCo,, 3N '3O2
(2) オギザレート (0.3) EC/MEC/DEC=3/4/3 0.61
FEC 2—プロピニルメチル 1M LiPF6
実 28 LiCo„ 3 i,, '3Μη,, ,302
(2) カーボネート (1) EC/MEC/DEC=3/4/3 0.58
FEC メタンスルホン酸 1M LiPF6
施 29 LiCo,, 3N '3Mnh ,302
(2) 2—プロピニル (1) EC/MEC/DEC=3/4/3 0.62
VEC メチル 2—プロピニル 1M LiPF6
例 30 LiCo,, a i,, ,302
(2) サ Jレフアイ卜 (1) EC/MEC/DEC=3/4/3 0.60
FEC(1)+ 2—ブチン一 1, 4—ジ 1M LiPF6
31 LiCo,, '3Mnh ,302
VEC(1 ) オールジホルメート (1) EC/MEC/DEC=3/4/3 0.56
1M LiPF6
比 6 LiCo,, a i,, ,3Μ( , ,302 なし なし 0.71
EC/MEC/DEC=3/4/3
FEC 1M LiPFg
單父 7 LiCo,, 3 i,, '3Μη,, ,302 なし
(2) EC/MEC/DEC=3/4/3 1.03
VEC 1M LiPF6
例 8 LiCo,, 3N ,3MrH, ,302 なし
(2) 1.12
EC/MEC/DEC=3/4/3
[0083] 実施例 32
〔非水電解液の調製〕
EC: MEC: DEC (容量比) =3:4: 3の非水溶媒を調製し、これに電解質塩として L iPFを 1Mの濃度になるように溶解して非水電解液を調製した後、非水電解液に対
6
してフルォロエチレンカーボネート(FEC)を 2重量0 /0加え、さらにペンタフルオロフェ -ルメタンスルホネートを非水電解液に対して 1重量%となるように加えた。
[0084] 〔リチウム二次電池の作製及び電池特性の測定〕
実施例 1と同様にして 18650サイズの円筒型リチウム二次電池(直径 18mm、高さ 65mm)を作製した。
この 18650電池を用いて、常温(20°C)下、 2.2A(1C)の定電流で 4.2Vまで充 電した後、終止電圧 4.2Vとして定電圧下で合計 3時間充電した。次に 2.2A(1C) の定電流下、終止電圧 3.0Vまで放電し、この充放電を繰り返した。初期充放電容 量は、エチレンカーボネート誘導体及びペンタフルオロフェ-ルォキシ化合物を添カロ しない場合 (比較例 9)とほぼ同等であり、 300サイクル後の電池特性は、初期放電容 量を 100%としたときの放電容量維持率は 79. 1%であった。結果を表 6に示す。
[0085] 実施例 33〜36
実施例 32において、表 6に示す正極及びペンタフルオロフェ-ルォキシ化合物を 使用した以外は、実施例 32と同様に行った。結果を表 6に示す。
比較例 9
実施例 32と同じ非水電解液を調製した後、 FEC、ペンタフルオロフェニルォキシィ匕 合物を使用しな力つた以外は、実施例 32と同様に行った。結果を表 6に示す。
比較例 10〜13
非水電解液に対して表 6に示す条件とした以外は、実施例 32と同様に行った。結 果を表 6に示す。
[0086] [表 6]
Figure imgf000036_0001
[添加剤比率の検討]
実施例 37〜40
実施例 32と同じ非水電解液を調製した後、非水電解液に対して、 FECを表 7に示 す所定量加え、さらにペンタフルオロフェニルメタンスルホネートを所定量添カ卩した以 外は、実施例 32と同様に行った。結果を表 7に示す。
[0088] [表 7]
表 7
Figure imgf000037_0001
[0089] [電解質塩比率の検討]
実施例 41〜44
実施例 32と同じ非水溶媒を調製し、これに電解質塩として LiPF及び LiBFを、表
6 4
8に示す所定の濃度になるように溶解して非水電解液を調製した後、非水電解液に 対して FECを 2重量%加え、さらにペンタフルオロフェ-ルメタンスルホネートを非水 電解液に対して 1重量%使用した以外は、実施例 32と同様に行った。結果を表 8に 示す。
実施例 45
電解質塩として LiPF及び LiN (SO CF )をそれぞれ、 0. 9M、 0. 1Mの濃度にな
6 2 3 2
るように溶解して非水電解液を調製した後、非水電解液に対して FECを 2重量%加 え、さらにペンタフルオロフェ-ルメタンスルホネートを非水電解液に対して 1重量% 使用した以外は、実施例 41と同様に行った。結果を表 8に示す。
[0090] [表 8] 表 8
Figure imgf000038_0001
[0091] [芳香族化合物との併用]
実施例 46〜 50
ペンタフルオロフェ-ルメタンスルホネートを非水電解液に対して 0. 5重量%使用 し、表 9に示すエチレンカーボネート誘導体及び芳香族化合物を所定量添加した以 外は、実施例 32と同様に行った。結果を表 9に示す。
なお、表 9中、 TABは tert—ァミルベンゼン、 CHBはシクロへキシルベンゼン、 BP はビフエニル、 TBBは tert—ブチルベンゼン、 FCHBは、 1—フルオロー 4—シクロ へキシルベンゼンを意味する。
[0092] [表 9] 表 9
Figure imgf000038_0002
[0093] [ガス発生量の評価] 実施例 51〜54
実施例 1と同じ非水電解液を調製した後、表 10に示すエチレンカーボネート誘導 体及びペンタフルオロフェニルォキシィ匕合物を所定量使用した以外は、実施例 1と同 様にして 18650サイズの円筒型電池を作製した。
この 18650電池を用いて、 60°Cで、 2. 2A(1C)の定電流で 4. 2Vまで充電した後 、終止電圧 4. 2Vとして定電圧下で合計 3時間充電した。次〖こ 2. 2A(1C)の定電流 下、終止電圧 3. 0Vまで放電し、この充放電を繰り返し、 300サイクル後の電池内の ガス発生量をアルキメデス法により測定した。結果を表 10に示す。
比較例 14〜16
比較例 9〜11と同じ非水電解液を用いて、実施例 51と同様に行った。結果を表 10 に示す。
[表 10] 表 1 0
EC
ペンタフルオロフェニル ガス発生量 正極 液組成 (容量比)
ォキシ化合物(wt%) 誘導体 電解
(ml)
(wt%)
ペンタフルオロフェニル FEC 1 M LiPF6
実 51 LiCo,, '3Ni, ,302
メタンスルホネート (1 ) (2) 0.57
EC/MEC/DEC=3/4/3
フルォロ FEC 1 M LiPF6
施 52 LiCo,, '3 i, s n,, ,302 酢酸ペンタ
フエニル (1 ) (2) 0.65
EC/MEC/DEC=3/4/3
メチルペンタフルォロ FEC 1 M LiPF6
例 53 LiCo,, '3Ni, sMn,, ,302
フエニルカーボネート (1 ) (2) 0.64
EC/MEC/DEC=3/4/3
ペンタフルオロフェニル VEC 1 M LiPF6
54 LiCo,, '3Ni, sMn,, ,302
メタンスルホネート (1 ) (2) 0.63
EC/MEC/DEC=3/4/3
1 M LiPF6
比 14 LiC0l, '3 i, ,302 なし なし 0.71
EC/MEC/DEC=3/4/3
FEC 1 M LiPF6
較 15 LiCo,, '3Ni, sMn,, ,302 なし
(2) EC/MEC/DEC=3/4/3 1.03
VEC 1 M LiPF6
例 16 LiCo,, '3 i, 3Mn,, ,302 なし
(2) 1.12 EC/MEC/DEC=3/4/3 産業上の利用可能性
本発明の非水電解液を用いることにより、電気容量、サイクル特性、保存特性等の 電池特性に優れ、かつ長期にわたり優れた電池性能を発揮することができるリチウム 二次電池を得ることができる。また得られたリチウム二次電池は、円筒型電池、角型 電池、コイン型電池及び積層型電池等として好適に使用できる。

Claims

請求の範囲 非水溶媒に電解質塩が溶解されて ヽる非水電解液にお!ヽて、該非水電解液中に、下記一般式 (I)で表されるエチレンカーボネート誘導体 0. 1〜: L0重量%と、(A)三 重結合含有化合物及び Z又は(B)下記一般式 (X)で表されるペンタフルォロフエ- ルォキシ化合物 0. 01〜: L0重量%を含有することを特徴とするリチウム二次電池用 非水電解液。
[化 1]
Figure imgf000041_0001
(式 (I)中、 Ri〜R3は、それぞれ独立して水素原子、ハロゲン原子、炭素数 2〜12の ァルケ-ル基、炭素数 2〜12のアルキ-ル基又は炭素数 6〜18のァリール基を示す 。ただしエチレンカーボネートは除く。 )
[化 2]
Figure imgf000041_0002
(式 (X)中、 R15は、炭素数 2〜 12のアルキルカルボニル基、炭素数 2〜 12のアルコ キシカルボ-ル基、炭素数 7〜18のァリールォキシカルボ-ル基又は炭素数 1〜12 のアルカンスルホ二ル基を示す。ただし、 R15が有する水素原子の少なくとも 1つがハ ロゲン原子又は炭素数 6〜 18のァリール基で置換されて!、てもよ!/、。 )
[2] 三重結合含有化合物が、下記一般式 (II)〜 (VII)で表される 1種以上のアルキン誘 導体である請求項 1に記載のリチウム二次電池用非水電解液。
[化 3]
Figure imgf000042_0001
(式 (II)〜(V)中、 R4〜R1Qは、それぞれ独立して水素原子、炭素数 1〜 12のアルキ ル基、炭素数 3〜6のシクロアルキル基又は炭素数 6〜12のァリール基を示し、 と R6、 R7と R8は、互いに結合して炭素数 3〜6のシクロアルキル基を形成していてもよい 。 Y1及び Y2は、— COOR10、—COR1。又は SO R1。を示し、同一でも異なってもよい。
2
Xは 1又は 2の整数を示す。 )
[化 4]
Figure imgf000042_0002
(式 (VI)中、 RU〜R "は、それぞれ独立して水素原子、炭素数 1〜12のアルキル基、 炭素数 3〜6のシクロアルキル基、炭素数 6〜 12のァリール基又は炭素数 7〜 12の ァラルキル基を示し R12と R13は、互いに結合して炭素数 3〜6のシクロアルキル基を 形成していてもよい。 Wは、スルホキシド基、スルホン基又はオギザリル基を示し、 Y3 は、炭素数 1〜12のアルキル基、ァルケ-ル基、アルキ-ル基、炭素数 3〜6のシク 口アルキル基、炭素数 6〜 12のァリール基又は炭素数 7〜 12のァラルキル基を示す 。 Xは前記と同じである。)
[化 5]
Figure imgf000043_0001
(式 (VII)中、 R4は前記と同じであり、 R14は、炭素数 1〜 12のアルキル基、炭素数 3〜 6のシクロアルキル基又は炭素数 6〜 12のァリ一ル基を示す。 pは 1又は 2の整数を 示す。)
[3] エチレンカーボネート誘導体がフルォロエチレンカーボネート及び Z又はビュルェ チレンカーボネートである請求項 1又は 2に記載のリチウム二次電池用非水電解液。
[4] さらに、芳香族化合物を非水電解液の重量に対して 0. 1〜5重量%含有する請求 項 1〜3のいずれかに記載のリチウム二次電池用非水電解液。
[5] 正極、負極及び非水溶媒に電解質塩が溶解されて!ヽる非水電解液からなるリチウ ムニ次電池において、非水電解液中に、前記一般式 (I)で表されるエチレンカーボ ネート誘導体 0. 1〜10重量%と、(A)三重結合含有化合物及び Z又は (B)前記一 般式 (X)で表されるペンタフルオロフェ-ルォキシ化合物 0. 01〜10重量%を含有 することを特徴とするリチウム二次電池。
[6] 正極がリチウム複合酸ィ匕物を含む材料であり、負極がグラフアイトを含む材料である 請求項 5に記載のリチウム二次電池。
PCT/JP2006/300278 2005-01-20 2006-01-12 非水電解液及びそれを用いたリチウム二次電池 WO2006077763A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/814,372 US7754380B2 (en) 2005-01-20 2006-01-12 Nonaqueous electrolyte solution and lithium secondary battery using same
KR1020077016598A KR101229193B1 (ko) 2005-01-20 2006-01-12 비수 전해액 및 그것을 이용한 리튬 2차 전지
KR1020127020388A KR101229133B1 (ko) 2005-01-20 2006-01-12 비수 전해액 및 그것을 이용한 리튬 2차 전지
JP2006553864A JP4479728B2 (ja) 2005-01-20 2006-01-12 非水電解液及びそれを用いたリチウム二次電池
US12/791,085 US8440349B2 (en) 2005-01-20 2010-06-01 Nonaqueous electrolyte solution and lithium secondary battery using same
US13/618,644 US8530080B2 (en) 2005-01-20 2012-09-14 Nonaqueous electrolyte solution and lithium secondary battery using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-012729 2005-01-20
JP2005-012728 2005-01-20
JP2005012729 2005-01-20
JP2005012728 2005-01-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/814,372 A-371-Of-International US7754380B2 (en) 2005-01-20 2006-01-12 Nonaqueous electrolyte solution and lithium secondary battery using same
US12/791,085 Division US8440349B2 (en) 2005-01-20 2010-06-01 Nonaqueous electrolyte solution and lithium secondary battery using same

Publications (1)

Publication Number Publication Date
WO2006077763A1 true WO2006077763A1 (ja) 2006-07-27

Family

ID=36692153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300278 WO2006077763A1 (ja) 2005-01-20 2006-01-12 非水電解液及びそれを用いたリチウム二次電池

Country Status (4)

Country Link
US (3) US7754380B2 (ja)
JP (4) JP4479728B2 (ja)
KR (2) KR101229193B1 (ja)
WO (1) WO2006077763A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309965A (ja) * 2005-04-26 2006-11-09 Sony Corp 電解液および電池
JP2007200688A (ja) * 2006-01-26 2007-08-09 Sanyo Electric Co Ltd 非水電解質二次電池、非水電解質及びその充電方法
JP2008098097A (ja) * 2006-10-16 2008-04-24 Sony Corp 二次電池
JP2008140683A (ja) * 2006-12-04 2008-06-19 Sony Corp 電池
JP2008204885A (ja) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd 非水電解質電池
WO2009057515A1 (ja) * 2007-11-01 2009-05-07 Ube Industries, Ltd. スルホン酸フェニル化合物、それを用いた非水電解液及びリチウム電池
JP2009211941A (ja) * 2008-03-04 2009-09-17 Sony Corp 非水電解液二次電池
JP2009231283A (ja) * 2008-02-29 2009-10-08 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
WO2010007889A1 (ja) * 2008-07-15 2010-01-21 宇部興産株式会社 リチウム電池用非水電解液、それを用いたリチウム電池、及びそれに用いられるホルミルオキシ基含有化合物
JP2010027610A (ja) * 2008-06-18 2010-02-04 Mitsubishi Chemicals Corp 非水系電解液および非水系電解液電池
EP2158635A1 (en) * 2007-06-11 2010-03-03 LG Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
EP2249426A1 (en) * 2008-02-29 2010-11-10 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery
JP2010257805A (ja) * 2009-04-27 2010-11-11 Mitsui Chemicals Inc 二次電池用非水電解液及び非水電解質二次電池
JP2011192402A (ja) * 2010-03-11 2011-09-29 Sanyo Electric Co Ltd 非水電解質二次電池
WO2011142412A1 (ja) 2010-05-12 2011-11-17 三菱化学株式会社 非水系電解液二次電池
WO2011142410A1 (ja) 2010-05-12 2011-11-17 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
JP2012043632A (ja) * 2010-08-19 2012-03-01 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP2012049106A (ja) * 2010-05-12 2012-03-08 Mitsubishi Chemicals Corp 非水系電解液二次電池
JP2012094501A (ja) * 2010-09-28 2012-05-17 Mitsubishi Chemicals Corp 非水系電解液二次電池
US8377598B2 (en) 2006-09-22 2013-02-19 Sony Corporation Battery having an electrolytic solution containing difluoroethylene carbonate
US8795904B2 (en) 2010-05-13 2014-08-05 The United States Of America As Represented By The Secretary Of The Army Nonaqueous electrolyte solvents and additives
JP2014232706A (ja) * 2013-05-30 2014-12-11 トヨタ自動車株式会社 非水電解液二次電池および該電池の製造方法
JP2015026616A (ja) * 2009-09-15 2015-02-05 宇部興産株式会社 非水電解液及びそれを用いた電気化学素子
JP2015049967A (ja) * 2013-08-30 2015-03-16 株式会社カネカ 非水電解質二次電池およびその組電池
CN101673854B (zh) * 2008-09-08 2015-03-25 Nec能源元器件株式会社 锂离子二次电池
US9553333B2 (en) 2010-09-16 2017-01-24 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery
US10438753B2 (en) 2010-07-06 2019-10-08 The United States Of America As Represented By The Secretary Of The Army Electrolytes in support of 5V Li ion chemistry

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4479728B2 (ja) 2005-01-20 2010-06-09 宇部興産株式会社 非水電解液及びそれを用いたリチウム二次電池
KR20140083054A (ko) * 2006-06-02 2014-07-03 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 비수계 전해액 전지
JP5369391B2 (ja) * 2006-06-02 2013-12-18 三菱化学株式会社 非水系電解液、非水系電解液電池及び非水系電解液二次電池
JP2009048981A (ja) * 2007-08-23 2009-03-05 Sony Corp 非水電解液二次電池
KR20090050951A (ko) * 2007-11-16 2009-05-20 산요덴키가부시키가이샤 비수전해질 이차전지
KR101135491B1 (ko) 2009-02-13 2012-04-13 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
JP2011192536A (ja) * 2010-03-15 2011-09-29 Sanyo Electric Co Ltd 非水電解質二次電池
JP5948756B2 (ja) * 2010-08-05 2016-07-06 三菱化学株式会社 非水系電解液及び非水系電解液電池
US8451046B2 (en) * 2010-09-15 2013-05-28 Fujitsu Semiconductor Limited System and method for switch leakage cancellation
JP5760809B2 (ja) * 2010-10-21 2015-08-12 三菱化学株式会社 非水系電解液及び非水系電解液電池
JP2012162516A (ja) * 2010-11-19 2012-08-30 Mitsubishi Chemicals Corp 4−アルキニル−1,3−ジオキソラン−2−オン誘導体の製造法
US20140079990A1 (en) * 2011-05-31 2014-03-20 Sanyo Electric Co., Ltd. Nonaqueous electrolyte battery
CA2851830A1 (en) * 2011-10-17 2013-04-25 Ube Industries, Ltd. Non-aqueous electrolyte solution and electricity-storage device using same
JP5928057B2 (ja) * 2012-01-26 2016-06-01 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池
KR20140148427A (ko) * 2012-03-23 2014-12-31 우베 고산 가부시키가이샤 비수 전해액 및 그것을 이용한 축전 디바이스
JP5573875B2 (ja) * 2012-03-27 2014-08-20 Tdk株式会社 非水電解質溶液およびリチウムイオン二次電池
KR20140081472A (ko) * 2012-12-21 2014-07-01 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
EP2768064A1 (en) * 2013-02-15 2014-08-20 Basf Se Use of substituted alkynyl sulfonates, carbonates and oxalates as additives in electrolytes of secondary lithium-ion batteries
JP2016001593A (ja) * 2014-05-21 2016-01-07 株式会社リコー 非水系電解液蓄電素子
US10164293B2 (en) * 2014-05-30 2018-12-25 Ube Industries, Ltd. Nonaqueous electrolyte and electricity storing device in which same is used
JP6292448B2 (ja) * 2014-07-14 2018-03-14 トヨタ自動車株式会社 非水系二次電池の製造方法
JP6510671B2 (ja) * 2015-11-05 2019-05-08 三井化学株式会社 二次電池用非水電解液、及び二次電池
FR3069959B1 (fr) * 2017-08-07 2019-08-23 Arkema France Melange de sels de lithium et ses utilisations comme electrolyte de batterie
CN107658498B (zh) * 2017-10-24 2020-10-20 广州天赐高新材料股份有限公司 锂二次电池电解液及其锂二次电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256995A (ja) * 2000-03-13 2001-09-21 Denso Corp 非水電解液及び非水電解液二次電池
JP2001313072A (ja) * 2000-04-28 2001-11-09 Ube Ind Ltd リチウム二次電池用電解液およびそれを用いたリチウム二次電池
JP2002100399A (ja) * 2000-09-20 2002-04-05 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2002110234A (ja) * 2000-10-02 2002-04-12 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2002124297A (ja) * 2000-10-13 2002-04-26 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2003059529A (ja) * 2001-08-13 2003-02-28 Ube Ind Ltd 非水電解液及びそれを用いたリチウム二次電池
JP2003272701A (ja) * 2002-03-14 2003-09-26 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2003272700A (ja) * 2002-03-13 2003-09-26 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2003297423A (ja) * 2002-04-02 2003-10-17 Mitsubishi Chemicals Corp 非水系電解液二次電池及びそれに用いる非水系電解液
JP2005190754A (ja) * 2003-12-25 2005-07-14 Sanyo Electric Co Ltd 非水電解液二次電池

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4045644B2 (ja) * 1998-05-18 2008-02-13 宇部興産株式会社 リチウム二次電池用電解液およびそれを用いたリチウム二次電池
JP2000188128A (ja) * 1998-12-24 2000-07-04 Mitsubishi Chemicals Corp 非水電解液二次電池
EP1357628A4 (en) * 2001-01-04 2008-03-12 Mitsubishi Chem Corp WATER-FREE ELECTROLYTIC LIQUIDS AND LITHIUM SECONDARY BATTERIES THEREWITH
DE10131687A1 (de) * 2001-06-29 2003-01-16 Eppendorf Ag Vorrichtung zur Durchführung von Nukleinsäure-Amplifikationsreaktionen bei gleichzeitiger Verfolgung der Bildung von Amplifikationsprodukten
JP4281895B2 (ja) * 2001-12-28 2009-06-17 三井化学株式会社 非水電解液およびそれを用いたリチウム二次電池
US7598003B1 (en) * 2004-02-04 2009-10-06 Quallion Llc Battery having enhanced energy density
JP4386666B2 (ja) * 2003-04-17 2009-12-16 日立マクセル株式会社 リチウム二次電池
JP4834284B2 (ja) * 2003-04-28 2011-12-14 株式会社東芝 非水電解質二次電池
JP2005005117A (ja) * 2003-06-11 2005-01-06 Sony Corp 電池
US20050170254A1 (en) * 2004-02-04 2005-08-04 West Robert C. Electrochemical device having electrolyte including disiloxane
US20060035154A1 (en) * 2003-09-10 2006-02-16 West Robert C Electrochemical device having an electrolyte that includes a tetrasiloxane
US7261975B2 (en) * 2003-09-17 2007-08-28 Ube Industries, Ltd. Non-aqueous electrolytic solution and lithium secondary battery using the same
JP4843936B2 (ja) * 2004-01-20 2011-12-21 ソニー株式会社 二次電池およびその充放電方法
EP1729365B1 (en) * 2004-03-22 2010-12-22 Ube Industries, Ltd. Non-aqueous electrolyte solution and lithium secondary battery using the same
GB2414352A (en) * 2004-05-18 2005-11-23 Roke Manor Research An adaptively-corrected RF pulse amplifier for a beam-steered radar antenna array
EP1758198B1 (en) * 2004-05-28 2009-07-08 Ube Industries, Ltd. Non-aqueous electrolyte solution and lithium secondary battery using same
JP5134770B2 (ja) * 2004-11-26 2013-01-30 株式会社ブリヂストン 2次電池用非水電解液及びそれを備えた非水電解液2次電池
JP5018089B2 (ja) * 2004-12-27 2012-09-05 宇部興産株式会社 非水電解液及びそれを用いたリチウム二次電池
JP4479728B2 (ja) * 2005-01-20 2010-06-09 宇部興産株式会社 非水電解液及びそれを用いたリチウム二次電池
US7794876B2 (en) * 2006-11-08 2010-09-14 Ube Industries, Ltd. Pentafluorophenyloxy compound, and nonaqueous electrolyte solution and lithium secondary battery using same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256995A (ja) * 2000-03-13 2001-09-21 Denso Corp 非水電解液及び非水電解液二次電池
JP2001313072A (ja) * 2000-04-28 2001-11-09 Ube Ind Ltd リチウム二次電池用電解液およびそれを用いたリチウム二次電池
JP2002100399A (ja) * 2000-09-20 2002-04-05 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2002110234A (ja) * 2000-10-02 2002-04-12 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2002124297A (ja) * 2000-10-13 2002-04-26 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2003059529A (ja) * 2001-08-13 2003-02-28 Ube Ind Ltd 非水電解液及びそれを用いたリチウム二次電池
JP2003272700A (ja) * 2002-03-13 2003-09-26 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2003272701A (ja) * 2002-03-14 2003-09-26 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2003297423A (ja) * 2002-04-02 2003-10-17 Mitsubishi Chemicals Corp 非水系電解液二次電池及びそれに用いる非水系電解液
JP2005190754A (ja) * 2003-12-25 2005-07-14 Sanyo Electric Co Ltd 非水電解液二次電池

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309965A (ja) * 2005-04-26 2006-11-09 Sony Corp 電解液および電池
JP2007200688A (ja) * 2006-01-26 2007-08-09 Sanyo Electric Co Ltd 非水電解質二次電池、非水電解質及びその充電方法
US8026000B2 (en) * 2006-01-26 2011-09-27 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery, nonaqueous electrolyte, and charging method therefor
US8377598B2 (en) 2006-09-22 2013-02-19 Sony Corporation Battery having an electrolytic solution containing difluoroethylene carbonate
JP2008098097A (ja) * 2006-10-16 2008-04-24 Sony Corp 二次電池
JP2008140683A (ja) * 2006-12-04 2008-06-19 Sony Corp 電池
JP2008204885A (ja) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd 非水電解質電池
JP2014112549A (ja) * 2007-06-11 2014-06-19 Lg Chem Ltd 非水電解液及びこれを含む二次電池
US9515351B2 (en) 2007-06-11 2016-12-06 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
EP2158635A1 (en) * 2007-06-11 2010-03-03 LG Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
JP2010529633A (ja) * 2007-06-11 2010-08-26 エルジー・ケム・リミテッド 非水電解液及びこれを含む二次電池
EP2645463A1 (en) * 2007-06-11 2013-10-02 LG Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
US9673484B2 (en) 2007-06-11 2017-06-06 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
EP2158635A4 (en) * 2007-06-11 2012-08-08 Lg Chemical Ltd WATER-FREE ELECTROLYTE AND SECONDARY BATTERY THEREWITH
JP5375616B2 (ja) * 2007-11-01 2013-12-25 宇部興産株式会社 スルホン酸フェニル化合物、それを用いた非水電解液及びリチウム電池
US8512897B2 (en) 2007-11-01 2013-08-20 Ube Industries, Ltd. Phenyl sulfonate compound, nonaqueous electrolyte solution using the same, and lithium battery
WO2009057515A1 (ja) * 2007-11-01 2009-05-07 Ube Industries, Ltd. スルホン酸フェニル化合物、それを用いた非水電解液及びリチウム電池
EP2249426A4 (en) * 2008-02-29 2012-03-14 Mitsubishi Chem Corp NONAQUEOUS ELECTROLYTE SOLUTION AND NONAQUEOUS ELECTROLYTE BATTERY
JP2009231283A (ja) * 2008-02-29 2009-10-08 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
US9083058B2 (en) 2008-02-29 2015-07-14 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
US8916298B2 (en) 2008-02-29 2014-12-23 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
US8889302B2 (en) 2008-02-29 2014-11-18 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
EP2249426A1 (en) * 2008-02-29 2010-11-10 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery
JP2009211941A (ja) * 2008-03-04 2009-09-17 Sony Corp 非水電解液二次電池
JP2010027610A (ja) * 2008-06-18 2010-02-04 Mitsubishi Chemicals Corp 非水系電解液および非水系電解液電池
WO2010007889A1 (ja) * 2008-07-15 2010-01-21 宇部興産株式会社 リチウム電池用非水電解液、それを用いたリチウム電池、及びそれに用いられるホルミルオキシ基含有化合物
US8383274B2 (en) 2008-07-15 2013-02-26 Ube Industries, Ltd. Nonaqueous electrolyte solution for lithium battery, lithium battery using same, and formyloxy group-containing compound used therein
JP5561163B2 (ja) * 2008-07-15 2014-07-30 宇部興産株式会社 リチウム電池用非水電解液、それを用いたリチウム電池、及びそれに用いられるホルミルオキシ基含有化合物
CN101673854B (zh) * 2008-09-08 2015-03-25 Nec能源元器件株式会社 锂离子二次电池
JP2010257805A (ja) * 2009-04-27 2010-11-11 Mitsui Chemicals Inc 二次電池用非水電解液及び非水電解質二次電池
JP2015026616A (ja) * 2009-09-15 2015-02-05 宇部興産株式会社 非水電解液及びそれを用いた電気化学素子
JP2011192402A (ja) * 2010-03-11 2011-09-29 Sanyo Electric Co Ltd 非水電解質二次電池
JP2012049106A (ja) * 2010-05-12 2012-03-08 Mitsubishi Chemicals Corp 非水系電解液二次電池
WO2011142412A1 (ja) 2010-05-12 2011-11-17 三菱化学株式会社 非水系電解液二次電池
WO2011142410A1 (ja) 2010-05-12 2011-11-17 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
US8795904B2 (en) 2010-05-13 2014-08-05 The United States Of America As Represented By The Secretary Of The Army Nonaqueous electrolyte solvents and additives
US10438753B2 (en) 2010-07-06 2019-10-08 The United States Of America As Represented By The Secretary Of The Army Electrolytes in support of 5V Li ion chemistry
JP2012043632A (ja) * 2010-08-19 2012-03-01 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
US9553333B2 (en) 2010-09-16 2017-01-24 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery
JP2012094501A (ja) * 2010-09-28 2012-05-17 Mitsubishi Chemicals Corp 非水系電解液二次電池
JP2014232706A (ja) * 2013-05-30 2014-12-11 トヨタ自動車株式会社 非水電解液二次電池および該電池の製造方法
JP2015049967A (ja) * 2013-08-30 2015-03-16 株式会社カネカ 非水電解質二次電池およびその組電池

Also Published As

Publication number Publication date
JP4479728B2 (ja) 2010-06-09
JP2010118356A (ja) 2010-05-27
US20100239919A1 (en) 2010-09-23
KR20070097072A (ko) 2007-10-02
US8440349B2 (en) 2013-05-14
JP5754484B2 (ja) 2015-07-29
US20130052541A1 (en) 2013-02-28
JP2012079711A (ja) 2012-04-19
KR101229193B1 (ko) 2013-02-01
JP2013239468A (ja) 2013-11-28
KR101229133B1 (ko) 2013-02-01
US8530080B2 (en) 2013-09-10
JPWO2006077763A1 (ja) 2008-06-19
JP4985794B2 (ja) 2012-07-25
US20090053598A1 (en) 2009-02-26
KR20120109607A (ko) 2012-10-08
US7754380B2 (en) 2010-07-13

Similar Documents

Publication Publication Date Title
WO2006077763A1 (ja) 非水電解液及びそれを用いたリチウム二次電池
KR101881445B1 (ko) 비수전해액 이차전지
JP4582458B2 (ja) リチウム二次電池用非水電解液およびそれを用いたリチウム二次電池
EP2278652B1 (en) Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery using the same
JP4779651B2 (ja) 非水電解液およびリチウム二次電池
EP2270917A1 (en) Secondary cell nonaqueous electrolyte and secondary cell
JP5392261B2 (ja) 非水電解液及びそれを用いたリチウム電池
JP2010118356A5 (ja)
JP5561163B2 (ja) リチウム電池用非水電解液、それを用いたリチウム電池、及びそれに用いられるホルミルオキシ基含有化合物
WO2009122908A1 (ja) リチウム電池用非水電解液及びそれを用いたリチウム電池
JP4543394B2 (ja) 非水電解液およびそれを用いたリチウム二次電池
KR20070024663A (ko) 비수 전해질 용액 및 리튬 2 차 전지
JP2008077950A (ja) 非水電解液及びそれを用いたリチウム二次電池
EP2693557B1 (en) Electrochemical device and nonaqueous electrolyte solution for electrochemical device
JP6760843B2 (ja) 非水電解液及び非水電解液二次電池
JP2002110234A (ja) 非水電解液およびそれを用いたリチウム二次電池
JP4337359B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP4283593B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP2008041412A (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
KR20140073654A (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
JP6143410B2 (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2010282760A (ja) 非水系電解液、非水系電解液二次電池、およびビニレンカーボネート
JP4692901B2 (ja) リチウム二次電池用非水電解液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006553864

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3175/CHENP/2007

Country of ref document: IN

Ref document number: 1020077016598

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680002854.7

Country of ref document: CN

Ref document number: 11814372

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711601

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711601

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020127020388

Country of ref document: KR