WO2015182690A1 - 非水電解液およびそれを用いた蓄電デバイス - Google Patents

非水電解液およびそれを用いた蓄電デバイス Download PDF

Info

Publication number
WO2015182690A1
WO2015182690A1 PCT/JP2015/065356 JP2015065356W WO2015182690A1 WO 2015182690 A1 WO2015182690 A1 WO 2015182690A1 JP 2015065356 W JP2015065356 W JP 2015065356W WO 2015182690 A1 WO2015182690 A1 WO 2015182690A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbonate
lithium
methyl
aqueous electrolyte
Prior art date
Application number
PCT/JP2015/065356
Other languages
English (en)
French (fr)
Inventor
安部 浩司
圭 島本
敷田 庄司
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to US15/315,273 priority Critical patent/US10164293B2/en
Priority to KR1020167034603A priority patent/KR20170012308A/ko
Priority to CN201580029303.9A priority patent/CN106471662A/zh
Priority to EP15800557.9A priority patent/EP3151326A4/en
Priority to JP2016523550A priority patent/JP6485753B2/ja
Publication of WO2015182690A1 publication Critical patent/WO2015182690A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte used for an electricity storage device, and more particularly to a non-aqueous electrolyte that can improve electrochemical characteristics when the electricity storage device is used at a high voltage, and an electricity storage device using the same.
  • power storage devices particularly lithium secondary batteries
  • electronic devices such as mobile phones and laptop computers, or for electric vehicles and power storage.
  • laminate type batteries and square type batteries that use a laminate film such as an aluminum laminate film as an exterior member are often used. Since these batteries are thin, they are likely to be deformed due to a slight expansion of the exterior member, and the deformation may affect the electronic device. Therefore, these batteries are required to suppress deformation.
  • a lithium secondary battery is mainly composed of a positive electrode and a negative electrode containing a material capable of occluding and releasing lithium, and a non-aqueous electrolyte composed of a lithium salt and a non-aqueous solvent.
  • a non-aqueous solvent carbonates such as ethylene carbonate (EC) and propylene carbonate (PC) are used.
  • lithium metal a metal compound capable of inserting and extracting lithium (metal simple substance, oxide, alloy with lithium, etc.) and a carbon material are known.
  • non-aqueous electrolyte secondary batteries using, for example, coke and graphite (artificial graphite, natural graphite) among carbon materials are widely used. Since negative electrodes made of these carbon materials store and release lithium and electrons at an extremely low potential equivalent to that of lithium metal, there is a possibility that many solvents undergo reductive decomposition.
  • materials capable of occluding and releasing lithium such as LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , and LiFePO 4 used as positive electrode materials, store and release lithium and electrons at a precious voltage of 3.5 V or more on the basis of lithium. Therefore, many solvents have the possibility of undergoing oxidative decomposition, particularly when the battery is used at high temperature and high voltage. Therefore, regardless of the type of positive electrode material, the solvent in the electrolyte solution partially oxidizes and decomposes on the positive electrode, increasing the resistance due to the deposition of decomposition products, or generating gas due to the decomposition of the solvent and There is concern that it may swell.
  • Patent Document 1 proposes a non-aqueous electrolyte containing a formate such as phenyl formate or biphenyl formate, which improves battery cycle characteristics, electric capacity, and storage characteristics. Is described.
  • Patent Document 2 proposes a nonaqueous electrolytic solution containing propyl fluoroformate, and describes that the high load characteristics, low temperature characteristics, and cycle characteristics of the battery are improved. Has been. Despite the existence of conventional non-aqueous electrolytes including these, non-aqueous electrolytes that can still realize high-performance power storage devices are desired.
  • the present inventors have now found that by adding a specific fluoroformate compound, a nonaqueous electrolytic solution that improves the performance of an electricity storage device, particularly the cycle characteristics when used at high temperature and high voltage, can be realized. .
  • the present invention is based on such knowledge.
  • an object of the present invention is to provide a nonaqueous electrolytic solution capable of improving cycle characteristics when the electricity storage device is used at a high temperature and a high voltage, and an electricity storage device using the same.
  • the nonaqueous electrolytic solution according to the present invention comprises at least a nonaqueous solvent, an electrolyte salt dissolved in the nonaqueous solvent, and at least one compound represented by the following general formula (I). It is a non-aqueous electrolyte.
  • n is an integer of 1 or 2, and when n is 1, L is a linear or branched chain having 2 to 10 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom.
  • the power storage device is a power storage device comprising at least a positive electrode, a negative electrode, and a non-aqueous electrolyte obtained by dissolving an electrolyte salt in a non-aqueous solvent, wherein the non-aqueous electrolyte is the above-described present invention. It is the nonaqueous electrolyte solution by.
  • the performance of the electricity storage device can be improved, and in particular, the non-aqueous electrolyte that can improve the cycle characteristics when used at high temperature and high voltage, and the electricity storage device such as a lithium battery using the same. Is provided.
  • the nonaqueous electrolytic solution according to the present invention contains the compound represented by the general formula (I).
  • the compound contained in the nonaqueous electrolytic solution of the present invention is represented by the following general formula (I). (Wherein n is an integer of 1 or 2, When n is 1, L is a linear or branched unsaturated hydrocarbon group having 2 to 10 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, and at least one hydrogen atom is a halogen atom.
  • L represents a saturated or unsaturated divalent hydrocarbon group having 2 to 12 carbon atoms which may contain an ether bond, or an arylene group having 6 to 20 carbon atoms.
  • an electricity storage device using a non-aqueous electrolyte comprising a compound represented by the general formula (I), particularly a lithium secondary battery electrochemical characteristics are improved, particularly when used at high temperature and high voltage. Cycle characteristics can be significantly improved.
  • the reason why such an effect can be obtained by the present invention is not clear, but is considered as follows. However, the following theory is only an assumption and is not intended to limit the present invention.
  • power storage devices such as lithium secondary batteries, it is known that electrolyte components are exposed to an oxidizing or reducing environment on the electrode surface during storage and discharge, and some of them decompose to form a film on the electrode surface. Yes.
  • This film is sometimes referred to as SEI (Solid Electrolyte Interface) film, which may lead to a decrease in battery performance, but it functions as a means to suppress a decrease in battery performance by suppressing subsequent decomposition of the electrolyte components. There is. However, the knowledge of the formation of this film and its function is still not sufficient. In addition, even if a film that suppresses the deterioration of battery performance is formed once, in many cases, this film will (partially) collapse or change its structure under high temperature and high voltage, and lose its preferred function. Was observed. As a result, the cycle characteristics when used at high temperature and high voltage are degraded.
  • SEI Solid Electrolyte Interface
  • the compound represented by the general formula (I) forms a stable film on the surface of the electrode, particularly the negative electrode (particularly the graphite electrode), and this film is also at a high temperature (for example, 65 ° C.). It is stable. As a result, even when used at a high temperature and a high voltage, the cycle characteristics can be maintained without deteriorating, and the cycle characteristics can be remarkably improved as compared with other electrolytic solutions.
  • the term “coating” broadly means a coating formed on the electrode surface as a result of storage and discharge, including the SEI film.
  • the term “coating” is used in this specification. Means a film formed on the electrode surface.
  • L is a straight chain of 3 to 8 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom Or a branched unsaturated hydrocarbon group, a cycloalkyl group having 4 to 8 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, or at least one hydrogen atom substituted with a halogen atom.
  • a preferable aryl group having 6 to 14 carbon atoms is preferable, a linear or branched unsaturated hydrocarbon group having 3 to 6 carbon atoms, a cycloalkyl group having 5 to 7 carbon atoms, and at least one hydrogen atom being a halogen atom.
  • An optionally substituted aryl group having 6 to 10 carbon atoms is more preferable.
  • L is a saturated or unsaturated hydrocarbon group having 2 to 8 carbon atoms which may contain an ether bond, or An arylene group having 6 to 12 carbon atoms is preferable, an unsaturated hydrocarbon group having 2 to 6 carbon atoms, or an arylene group having 6 to 8 carbon atoms is more preferable.
  • linear or branched unsaturated hydrocarbon group having 2 to 10 carbon atoms in the general formula (I) include Linear or branched C2-10 (preferably C3-8, more preferably C3-6) alkenyl groups and linear or branched C2-10 (preferably C3-8, more preferably C3-6) ) Alkynyl group.
  • One or more hydrogen atoms on the alkenyl group or alkynyl group may be substituted with a halogen atom, and preferred examples of the halogen atom include fluorine, chlorine, bromine and iodine, and more preferred is fluorine or chlorine. is there.
  • the halogen atom as the substituent of the cycloalkyl group is preferably fluorine, chlorine, bromine or iodine, more preferably fluorine or chlorine.
  • aryl group having 6 to 20 carbon atoms include preferably a phenyl group, a tolyl group, a xylyl group, a biphenylyl group, a naphthyl group, an anthryl group, and a phenanthryl group.
  • One or more hydrogen atoms on the aromatic ring of the aryl group and the substituent substituted on the aromatic ring may be substituted with a halogen atom, and the halogen atom as the substituent may be fluorine, chlorine, bromine, iodine Are preferable, and fluorine or chlorine is more preferable.
  • the aryl group is a phenyl group, or one or more linear or branched alkyl groups (preferably a linear or branched C 1-6 alkyl group).
  • a phenyl group substituted with is preferable.
  • One or more hydrogen atoms on the benzene ring of the phenyl group and one or more hydrogen atoms on the alkyl group substituted on the benzene ring may be substituted with a halogen atom.
  • Preferred examples of the halogen atom include fluorine, chlorine, bromine and iodine, and more preferably fluorine or chlorine.
  • saturated or unsaturated divalent hydrocarbon group having 2 to 12 carbon atoms include a linear or branched C2-12 (preferably C2-8) alkylene group.
  • These groups may contain one or two ether bonds, that is, any —CH 2 — in these groups may be replaced by —O—.
  • saturated or unsaturated divalent hydrocarbon group having 2 to 12 carbon atoms include a C2-12 cycloalkylene group, preferably a C3-10 cycloalkylene group. It is.
  • the arylene group having 6 to 20 carbon atoms is preferably a phenylene group, a tolylene group (methylphenylene group), a dimethylphenylene group, a xylylene group (dimethylphenylene group), a biphenylylene group, a naphthylene group, Examples include an anthrylene group and a phenanthrylene group.
  • the arylene group is a phenylene group or a naphthylene group, or one or more linear or branched alkyl groups (preferably linear or branched C1-6 alkyl). Group, more preferably a phenylene group or a naphthylene group substituted with a C1-4 alkyl group).
  • L examples include 2-propenyl group, 2-butenyl group, 3-butenyl group, 4-pentenyl group, 5-hexenyl group, and 6-heptenyl group.
  • a linear alkenyl group such as a 7-octenyl group, a propen-2-yl group, a 1-methyl-2-propenyl group, a 2-methyl-1-propenyl group, or a 3-methyl-2-butenyl group
  • a straight-chain alkynyl group such as a branched alkenyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group, 4-pentynyl group, 5-hexynyl group, 6-heptynyl group, or 7-octynyl group; -Methyl-2-propynyl group or branched alkynyl group such as 1,1-dimethyl-2-propynyl
  • a cycloalkyl group such as a alkenyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, or a cyclooctyl group, a halogenated cyclohexane such as a 4-fluorocyclohexyl group, or a 4-chlorocyclohexyl group.
  • compounds having a structure of A1 to A4, A9 to A32, B1 to B5, B9 to B12, B14, B15, B17 to B19, B22, or B24 to B29 are preferable.
  • A1 to A4, A9 to A19, B2 to B4, B9 to B12, B17 to B19, B22, or B25 to B28 are more preferable, phenyl fluoroformate (Structural Formula A1), fluoroformate 3-t -Butylphenyl (Structural Formula A9), 4-t-butylphenyl fluoroformate (Structural Formula A10), 4-chlorophenyl fluoroformate (Structural Formula A13), 4-fluorophenyl fluoroformate (Structural Formula A16), 2-fluoroformate 2- Trifluoromethylphenyl (Structural Formula A17), 4-trifluoromethylphenyl fluoroformate (Structural Formula A 9), 3-butenyl fluoroformate (Structural Formula B2), 4-pentenyl fluoroformate (Structural Formula B4), 2-propynyl fluoroformate
  • n 2
  • L ethylene group, propane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group
  • Linear alkylene groups such as heptane-1,7-diyl group or octane-1,8-diyl group, branched alkylene groups such as propane-1,2-diyl group, 2-butene-1, 4-diyl group, 2-pentene-1,5-diyl group, 3-hexene-1,6-diyl group, 3-hexene-2,5-diyl group, or 2,5-dimethyl-3-hexene-2 , 5-diyl groups, alkenylene groups, 2-butyne-1,4-diyl groups, 2-pentyne-1,5-diyl groups, 3-hexyne-1,6-diyl group
  • a divalent linking group having an ether bond cyclopentane-1,2-diyl group, cyclopentane-1,3-diyl group, cyclohexane-1,2-diyl group, cyclohexane-1,3-diyl group, or Cycloalkylene groups such as cyclohexane-1,4-diyl group, or benzene-1,3-diyl group, benzene-1,4-diyl group, naphthalene-1,3-diyl group, or naphthalene-1,4-diyl And arylene groups such as ethylene group, propane-1,3-diyl group, butane-1,4-diyl group, pentane-1, -Diyl group, hexane-1,6-diyl group, propane-1,2-diyl group, 2-butene-1,4-diyl group, 2-pentene-1,
  • compounds having a structure of C1 to C5, C7 to C12, C14 to C17, C19, C21, C23, C25, C26, D1 to D3, D5, or D6 are preferred.
  • C1-C5, C7-C9, C14, C17, C19, C25, C26, D1, or D2 is more preferred, and propane-1,3-diyl bis (fluoroformate) (Structural Formula C2) Butane-1,4-diyl bis (fluoroformate) (structural formula C3), 2-butene-1,4-diyl bis (fluoroformate) (structural formula C9), 2-butyne-1,4-diyl bis (Fluoroformate) (structural formula C14), oxybis (ethane-2,1-ethanediyl) bis (fluoroformate) (structural formula C1 ), Cyclohexane-1,4-diyl bis (fluorophenyl formate) (Formula C26), or 1,4-diyl bis (fluorophenyl formate) (formula D2) is more preferred.
  • the content of the compound represented by the general formula (I) may be appropriately determined in consideration of the effect of addition, but 0.001 to 10 mass in the non-aqueous electrolyte. % Range is preferred. If the content is 10% by mass or less, a film is excessively formed on the electrode, the cycle characteristics when the battery is used at high temperature and high voltage can be maintained well, and if it is 0.001% by mass or more. The film is sufficiently formed, and the effect of improving the cycle characteristics when the battery is used at high temperature and high voltage is enhanced.
  • the lower limit of the content of the compound represented by the general formula (I) is preferably 0.05% by mass or more, more preferably 0.3% by mass or more in the non-aqueous electrolyte.
  • the upper limit is preferably 8% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less.
  • Nonaqueous solvent As the nonaqueous solvent used in the nonaqueous electrolytic solution of the present invention, one or more selected from cyclic carbonates, chain esters, lactones, ethers, and amides are preferably exemplified, and two or more mixed solvents are more preferable. It is. According to a preferred embodiment of the present invention, since the electrochemical properties can be synergistically improved at high temperatures, a solvent containing a chain ester is preferred, a chain carbonate is more preferred, a cyclic carbonate and a chain carbonate. Most preferably, both are included.
  • chain ester is used as a concept including a chain carbonate and a chain carboxylic acid ester.
  • Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one (FEC), trans or Cis-4,5-difluoro-1,3-dioxolan-2-one (hereinafter collectively referred to as “DFEC”), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and 4-ethynyl-1 , 3-dioxolan-2-one (EEC) is preferably selected from the group consisting of ethylene carbonate, propylene carbonate, 4-fluoro-1,3-dioxolan-2-one, vinylene carbonate, and 4 -Ethynyl-1,3-dioxolan-2-one (EEC) It is preferred one or more selected Luo, two or more is more preferable.
  • DFEC 4-fluoro-1,3-dioxolan-2-one
  • At least one kind of an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond or a cyclic carbonate having a fluorine atom is used as a non-aqueous solvent. It is preferable that the electrochemical characteristics of the carbonic acid compound are further improved, and it is more preferable to include both a cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond and a cyclic carbonate having a fluorine atom.
  • cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or carbon-carbon triple bond
  • VC, VEC, or EEC is more preferable
  • cyclic carbonate having a fluorine atom FEC or DFEC is more preferable.
  • the content of the cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond may be appropriately determined, but is preferably 0.07% by volume or more based on the total volume of the nonaqueous solvent. More preferably, it is 0.2 volume% or more, More preferably, it is 0.7 volume% or more, Moreover, as the upper limit, Preferably it is 7 volume% or less, More preferably, it is 4 volume% or less, More preferably, it is 2. 5% by volume or less. By setting it as the said amount, since stability of the film under high temperature can be increased further, without impairing Li ion permeability, it is preferable.
  • the content of the cyclic carbonate having a fluorine atom is preferably 0.07% by volume or more, more preferably 4% by volume or more, still more preferably 7% by volume or more, based on the total volume of the nonaqueous solvent.
  • the upper limit is preferably 35% by volume or less, more preferably 25% by volume or less, and further 15% by volume or less, because the stability of the coating at high temperatures can be further increased without impairing Li ion permeability. preferable.
  • the carbon to the content of the cyclic carbonate having a fluorine atom may be appropriately determined, but is preferably 0.2% by volume or more, more preferably 3% by volume or more, and still more preferably
  • the upper limit thereof is preferably 40% by volume or less, more preferably 30% by volume or less, and further 15% by volume or less. The above amount is particularly preferable because the stability of the coating at a high temperature can be further increased without impairing the Li ion permeability.
  • the non-aqueous solvent contains both ethylene carbonate and a cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond
  • it is formed on the electrode.
  • the content of ethylene carbonate and a cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or carbon-carbon triple bond may be appropriately determined, but is preferably 3% by volume or more based on the total volume of the nonaqueous solvent. More preferably, it is 5% by volume or more, more preferably 7% by volume or more, and the upper limit thereof is preferably 45% by volume or less, more preferably 35% by volume or less, still more preferably 25% by volume or less. .
  • solvents may be used alone or in combination of two or more.
  • the electrochemical properties at high temperatures are further improved, and it is particularly preferable to use a combination of three or more types.
  • Preferred combinations of these cyclic carbonates include EC and PC, EC and VC, PC and VC, VC and FEC, EC and FEC, PC and FEC, FEC and DFEC, EC and DFEC, PC and DFEC, VC and DFEC , VEC and DFEC, VC and EEC, EC and EEC, EC and PC and VC, EC and PC and FEC, EC and VC and FEC, EC and VC and VEC, EC and VC and EEC, EC and EEC and FEC, PC And VC and FEC, EC and VC and DFEC, PC and VC and DFEC, EC and PC and VC and FEC, or EC and PC, VC and DFEC are preferable.
  • a combination including the PC is more preferable in order to improve battery characteristics at a high voltage.
  • one or more asymmetric chain carbonates selected from methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, and ethyl propyl carbonate, dimethyl
  • One or more symmetrical linear carbonates selected from carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, and dibutyl carbonate, methyl pivalate (MPiv), ethyl pivalate (EPiv), propyl pivalate (PPiv), methyl propionate (MP), ethyl propionate (EP), methyl acetate (MA), and one or more chain carboxylic acid esters selected from ethyl acetate (EA), methyl 2,2,2-trifluoroethyl) carbonate (MTFEC), ethyl (2,2,2-trifluoroethyl) carbonate, fluoromethyl (methyl) carbonate
  • chain esters dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, methyl propionate (MP), methyl acetate (MA)
  • DMC dimethyl carbonate
  • MEC methyl ethyl carbonate
  • MPC methyl propyl carbonate
  • MIPC methyl isopropyl carbonate
  • MP methyl butyl carbonate
  • MA methyl acetate
  • a chain ester having a methyl group selected from ethyl acetate (EA) is preferable, and a chain carbonate having a methyl group is particularly preferable.
  • a nonaqueous solvent containing at least one selected from a symmetric fluorinated chain carbonate and an asymmetric fluorinated chain carbonate from the viewpoint of improving electrochemical properties under high voltage.
  • Use is preferred.
  • An asymmetric fluorinated chain carbonate having a methyl group selected from (MTEFPC) is more preferred.
  • chain carbonate When chain carbonate is used, it is preferable to use two or more. Further, those containing both symmetric chain carbonates and asymmetric chain carbonates are more preferred, and those containing more symmetric chain carbonates than asymmetric chain carbonates are more preferred.
  • the content of the chain ester is not particularly limited, but it is preferably used in the range of 60 to 90% by volume with respect to the total volume of the nonaqueous solvent. If the content is 60% by volume or more, the viscosity of the non-aqueous electrolyte does not become too high, and if it is 90% by volume or less, the electrical conductivity of the non-aqueous electrolyte is lowered and the electrochemical properties at high temperature Since there is little possibility of a fall, it is preferable that it is the said range.
  • the proportion of the volume occupied by the symmetric chain carbonate in the chain carbonate is preferably 51% by volume or more, and more preferably 55% by volume or more.
  • the upper limit is more preferably 95% by volume or less, and further preferably 85% by volume or less.
  • the symmetric chain carbonate contains dimethyl carbonate.
  • the asymmetric chain carbonate preferably has a methyl group, and methyl ethyl carbonate is particularly preferable. The above case is preferable because the electrochemical characteristics at a higher temperature are further improved.
  • the ratio of the cyclic carbonate to the chain ester is such that the cyclic carbonate: chain ester (volume ratio) is 10:90 to 45:55 from the viewpoint of improving electrochemical properties at high temperature. Is preferred, 15:85 to 40:60 is more preferred, and 20:80 to 35:65 is particularly preferred.
  • nonaqueous solvents include cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and 1,4-dioxane, chains such as 1,2-dimethoxyethane, 1,2-diethoxyethane and 1,2-dibutoxyethane.
  • Preferred examples include one or more selected from amides such as amide ether, dimethylformamide, sulfones such as sulfolane, and lactones such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -angelicalactone, and more preferably two or more. is there.
  • Non-aqueous solvents are usually used as a mixture in order to achieve appropriate physical properties.
  • the combination includes, for example, a combination of a cyclic carbonate and a chain carbonate, a combination of a cyclic carbonate and a chain carboxylic acid ester, a combination of a cyclic carbonate, a chain carbonate and a lactone, and a combination of a cyclic carbonate, a chain carbonate and an ether.
  • a combination or a combination of a cyclic carbonate, a chain carbonate, and a chain carboxylic acid ester is preferable.
  • another additive is further added to the non-aqueous electrolyte for the purpose of further improving the stability of the coating film at a high temperature.
  • additives include the following compounds (A) to (I).
  • nitriles selected from acetonitrile, propionitrile, succinonitrile, glutaronitrile, adiponitrile, pimeonitrile, suberonitrile, and sebacononitrile.
  • (C) selected from methyl isocyanate, ethyl isocyanate, butyl isocyanate, phenyl isocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, 1,4-phenylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate
  • One or more isocyanate compounds selected from methyl isocyanate, ethyl isocyanate, butyl isocyanate, phenyl isocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, 1,4-phenylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate
  • One or more S ( ⁇ O) group-containing compounds selected from vinyl sulfone compounds such as sulfonic acid ester, divinyl sulfone, 1,2-bis (vinylsulfonyl) ethane, or bis (2-vinylsulfonylethyl) ether .
  • Cyclic phosphazene compounds such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, or ethoxyheptafluorocyclotetraphosphazene.
  • nitrites (A) one or more selected from succinonitrile, glutaronitrile, adiponitrile, and pimelonitrile are more preferable.
  • aromatic compounds (B) one or two selected from biphenyl, terphenyl (o-, m-, p-isomer), fluorobenzene, cyclohexylbenzene, tert-butylbenzene, and tert-amylbenzene
  • biphenyl, o-terphenyl, fluorobenzene, cyclohexylbenzene, and tert-amylbenzene are particularly preferable.
  • isocyanate compounds (C) one or more selected from hexamethylene diisocyanate, octamethylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate are more preferable.
  • the content of the compounds (A) to (C) is preferably 0.01 to 7% by mass in the non-aqueous electrolyte. When the content is in this range, the film is sufficiently formed without becoming too thick, and the stability of the film at a higher temperature is further increased.
  • the content is more preferably 0.05% by mass or more, more preferably 0.1% by mass or more in the non-aqueous electrolyte, and the upper limit thereof is more preferably 5% by mass or less, and further preferably 3% by mass or less. .
  • Examples of the (D) triple bond-containing compound include 2-propynyl methyl carbonate, 2-propynyl methacrylate, 2-propynyl methanesulfonate, 2-propynyl vinylsulfonate, 2-propynyl 2- (methanesulfonyloxy) propionate, One or more selected from di (2-propynyl) oxalate, methyl 2-propynyl oxalate, ethyl 2-propynyl oxalate, and 2-butyne-1,4-diyl dimethanesulfonate are preferable, and 2-propynyl methanesulfonate , Vinyl sulfonic acid 2-propynyl, 2- (methanesulfonyloxy) propionic acid 2-propynyl, di (2-propynyl) oxalate, and 2-butyne-1,4-diyl dimethanesulf
  • a cyclic or chain S ( ⁇ O) group-containing compound selected from the (E) sultone, cyclic sulfite, sulfonic acid ester, and vinyl sulfone (however, a triple bond-containing compound is not included).
  • Examples of the cyclic S ( ⁇ O) group-containing compound include 1,3-propane sultone, 1,3-butane sultone, 1,4-butane sultone, 2,4-butane sultone, 1,3-propene sultone, 2,2- Dioxide-1,2-oxathiolan-4-yl acetate, 5,5-dimethyl-1,2-oxathiolan-4-one 2,2-dioxide, methylene methane disulfonate, ethylene sulfite, and 4- (methylsulfonylmethyl) ) -1,3,2-Dioxathiolane
  • 2-oxide One or more selected from 2-oxide are preferred.
  • chain-containing S ( ⁇ O) group-containing compound examples include butane-2,3-diyl dimethanesulfonate, butane-1,4-diyl dimethanesulfonate, dimethyl methane disulfonate, pentafluorophenyl methanesulfonate, and divinyl.
  • One or more selected from sulfone and bis (2-vinylsulfonylethyl) ether are preferred.
  • 1,3-propane sultone, 1,4-butane sultone, 2,4-butane sultone, 2,2-dioxide-1,2-oxathiolane-4- One selected from yl acetate and 5,5-dimethyl-1,2-oxathiolane-4-one 2,2-dioxide, butane-2,3-diyl dimethanesulfonate, pentafluorophenyl methanesulfonate, and divinylsulfone Two or more are more preferable.
  • the (F) cyclic acetal compound is preferably 1,3-dioxolane or 1,3-dioxane, more preferably 1,3-dioxane.
  • Examples of the (G) phosphorus-containing compound include tris phosphate (2,2,2-trifluoroethyl), tris phosphate (1,1,1,3,3,3-hexafluoropropan-2-yl), Methyl 2- (dimethylphosphoryl) acetate, ethyl 2- (dimethylphosphoryl) acetate, methyl 2- (diethylphosphoryl) acetate, ethyl 2- (diethylphosphoryl) acetate, 2-propynyl 2- (dimethylphosphoryl) acetate, 2-propynyl 2- (diethylphosphoryl) acetate, methyl 2- (dimethoxyphosphoryl) acetate, ethyl 2- (dimethoxyphosphoryl) acetate, methyl 2- (diethoxyphosphoryl) acetate, ethyl 2- (diethoxyphosphoryl) acetate, 2-propynyl 2 -(Di Toxiphosphoryl) acetate or 2-propynyl 2- (die
  • the (H) cyclic acid anhydride is preferably succinic anhydride, maleic anhydride, or 3-allyl succinic anhydride, more preferably succinic anhydride or 3-allyl succinic anhydride.
  • the (I) cyclic phosphazene compound is preferably a cyclic phosphazene compound such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, or phenoxypentafluorocyclotriphosphazene, and is preferably methoxypentafluorocyclotriphosphazene or ethoxypentafluoro. More preferred is cyclotriphosphazene.
  • the content of the compounds (D) to (I) is preferably 0.001 to 5% by mass in the non-aqueous electrolyte. In this range, the coating film is sufficiently formed without becoming too thick, and the stability of the coating film at a higher temperature is further increased.
  • the content is more preferably 0.01% by mass or more, more preferably 0.1% by mass or more in the non-aqueous electrolyte, and the upper limit thereof is more preferably 3% by mass or less, and further preferably 2% by mass or less. .
  • a lithium salt having an oxalic acid skeleton in order to further improve the stability of the coating film at a high temperature, a lithium salt having an oxalic acid skeleton, a lithium salt having a phosphoric acid skeleton, and It is preferable to include one or more lithium salts selected from lithium salts having an S ( ⁇ O) group.
  • lithium salts include lithium bis (oxalato) borate (LiBOB), lithium difluoro (oxalato) borate (LiDFOB), lithium tetrafluoro (oxalato) phosphate (LiTFOP), and lithium difluorobis (oxalato) phosphate (LiDFOP).
  • Lithium salt having at least one oxalic acid skeleton selected from Lithium salt having phosphoric acid skeleton such as LiPO 2 F 2 and Li 2 PO 3 F, lithium trifluoro ((methanesulfonyl) oxy) borate (LiTFMSB), lithium Pentafluoro ((methanesulfonyl) oxy) phosphate (LiPFMSP), lithium methyl sulfate (LMS), lithium ethyl sulfate (LES), lithium 2,2,2-tri Le Oro ethylsulfate (LFES), and lithium salt preferably include having one or more S ( O) group selected from FSO 3 Li, LiBOB, LiDFOB, LiTFOP, LiDFOP, LiPO 2 F 2, LiTFMSB, LMS More preferably, it contains a lithium salt selected from LES, LFES, and FSO 3 Li.
  • LiTFMSB lithium trifluoro ((methanesulfonyl) oxy)
  • the total content of one or more lithium salts selected from LiBOB, LiDFOB, LiTFOP, LiDFOP, LiPO 2 F 2 , Li 2 PO 3 F, LiTFMSB, LiPFMSP, LMS, LES, LFES, and FSO 3 Li is non-aqueous electrolysis.
  • the amount is preferably 0.001 to 10% by mass in the liquid. If the content is 10% by mass or less, a film is excessively formed on the electrode and is less likely to deteriorate the storage characteristics. If the content is 0.001% by mass or more, formation of the film is sufficient, The effect of improving the characteristics when used at a high voltage is increased.
  • the content is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, further preferably 0.3% by mass or more, and the upper limit is preferably 5% by mass or less in the non-aqueous electrolyte. 3 mass% or less is more preferable, and 2 mass% or less is further more preferable.
  • a preferable example of the electrolyte salt used in the present invention is a lithium salt.
  • lithium salts include inorganic lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 , LiN (SO 2 F) 2 (abbreviated as FSI), LiN (SO 2 CF 3 ) 2 (abbreviated as TFSI), LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C 3 F 7 ) 3 , LiPF 5 (iso-C 3 F 7 ) and other lithium salts containing a chain-like fluorinated alkyl group, and (CF 2 ) 2 (SO 2 ) 2 NLi And a lithium salt having a cyclic fluorinated alkylene chain
  • LiPF 6 LiBF 4 , LiN (SO 2 CF 3 ) 2 [TFSI], LiN (SO 2 C 2 F 5 ) 2 , and LiN (SO 2 F) 2 [FSI]. More than seeds are preferred, and LiPF 6 is most preferred.
  • the concentration of the lithium salt is usually preferably 0.3 M or more, more preferably 0.7 M or more, and further preferably 1.1 M or more with respect to the non-aqueous solvent.
  • the upper limit is preferably 2.5M or less, more preferably 2.0M or less, and further preferably 1.6M or less.
  • a suitable combination of these lithium salts includes LiPF 6 , and at least one selected from LiBF 4 , LiN (SO 2 CF 3 ) 2 [TFSI], and LiN (SO 2 F) 2 [FSI].
  • LiPF 6 LiPF 6
  • LiN (SO 2 CF 3 ) 2 [TFSI] LiN (SO 2 F) 2 [FSI].
  • the proportion of the lithium salt other than LiPF 6 in the non-aqueous solvent is 0.001M or more when the battery is used at a high temperature It is preferable that the effect of improving the electrochemical characteristics of the battery is 0.8M or less because there is little concern that the effect of improving the electrochemical characteristics when the battery is used at a high temperature is reduced.
  • the upper limit is preferably 0.6M or less, more preferably 0.4M or less, and particularly preferably 0.2M or less.
  • the nonaqueous electrolytic solution of the present invention can be obtained, for example, by mixing the nonaqueous solvent and adding the electrolyte salt and the fluoroformate compound represented by the general formula (I) thereto. .
  • the electricity storage device of the present invention can be obtained, for example, by including a positive electrode, a negative electrode, and the non-aqueous electrolyte.
  • the nonaqueous electrolytic solution of the present invention can be used in the following first to fourth electric storage devices, and as the nonaqueous electrolyte, not only a liquid but also a gelled one can be used. Furthermore, the nonaqueous electrolytic solution of the present invention can be used for a solid polymer electrolyte. In particular, it is preferably used for the first electricity storage device (that is, for a lithium battery) or the fourth electricity storage device (that is, for a lithium ion capacitor) that uses a lithium salt as an electrolyte salt, and is used for a lithium battery. More preferably, it is more preferably used for a lithium secondary battery.
  • the lithium battery as the first power storage device is a generic name for a lithium primary battery and a lithium secondary battery.
  • the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
  • the lithium battery of the present invention comprises the nonaqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a nonaqueous solvent.
  • Components other than the non-aqueous electrolyte, such as a positive electrode and a negative electrode, can be used without particular limitation.
  • the positive electrode active material for a lithium secondary battery a composite metal oxide with lithium containing one or more selected from cobalt, manganese, and nickel is used. These positive electrode active materials can be used individually by 1 type or in combination of 2 or more types.
  • lithium composite metal oxides examples include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ x ⁇ 1), LiCo 1/3 Ni 1/3.
  • LiCoO 2 and LiMn 2 O 4, LiCoO 2 and LiNiO 2 may be used in combination as LiMn 2 O 4 and LiNiO 2.
  • a part of the lithium composite metal oxide may be substituted with another element.
  • a part of cobalt, manganese, nickel is replaced with at least one element of Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, Bi, Mo, or La
  • a part of O can be substituted with S or F, or a compound containing these other elements can be coated.
  • lithium composite metal oxides such as LiCoO 2 , LiMn 2 O 4 , and LiNiO 2 that can be used at a charged potential of the positive electrode in a fully charged state of 4.3 V or more on the basis of Li are preferable, and LiCo 1-x M x O 2 (where M is one or more elements selected from Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, and Cu, 0.001 ⁇ x ⁇ 0.
  • a lithium composite metal oxide that operates at a high charging voltage is used, the electrochemical characteristics when used in a wide temperature range are liable to deteriorate due to a reaction with the electrolyte during charging, but the lithium secondary battery according to the present invention Then, the deterioration of these electrochemical characteristics can be suppressed.
  • the resistance of the battery tends to increase with the elution of Mn ions from the positive electrode, so that the electrochemical characteristics when used in a wide temperature range tend to be lowered.
  • the lithium secondary battery according to the invention is preferable because it can suppress a decrease in these electrochemical characteristics.
  • lithium-containing olivine-type phosphate can also be used as the positive electrode active material.
  • a lithium-containing olivine-type phosphate containing one or more selected from iron, cobalt, nickel, and manganese is preferable. Specific examples thereof include one or more selected from LiFePO 4 , LiCoPO 4 , LiNiPO 4 , and LiMnPO 4 .
  • Some of these lithium-containing olivine-type phosphates may be substituted with other elements, and some of iron, cobalt, nickel, and manganese are replaced with Co, Mn, Ni, Mg, Al, B, Ti, V, and Nb.
  • LiFePO 4 or LiMnPO 4 is preferable.
  • mold phosphate can also be mixed with the said positive electrode active material, for example, and can be used.
  • the pH of the supernatant obtained when 10 g of the positive electrode active material is dispersed in 100 ml of distilled water is 10.0 to 12.5, the effect of improving the electrochemical characteristics in a wider temperature range can be easily obtained.
  • the case of 10.5 to 12.0 is more preferable.
  • impurities such as LiOH in the positive electrode active material tend to increase, an effect of improving electrochemical characteristics in a wider temperature range is easily obtained, which is preferable.
  • the case where the atomic concentration of Ni in the substance is 5 to 25 atomic% is more preferable, and the case where it is 8 to 21 atomic% is particularly preferable.
  • the positive electrode conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change.
  • graphite such as natural graphite (flaky graphite, etc.), graphite such as artificial graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, and one or more carbon blacks selected from thermal black, etc. Can be mentioned. Further, graphite and carbon black may be appropriately mixed and used.
  • the addition amount of the conductive agent to the positive electrode mixture is preferably 1 to 10% by mass, and particularly preferably 2 to 5% by mass.
  • the positive electrode is composed of a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene.
  • a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene.
  • a binder such as copolymer (NBR), carboxymethyl cellulose (CMC), or ethylene propylene diene terpolymer, add high boiling point solvent such as 1-methyl-2-pyrrolidone and knead to mix the positive electrode.
  • this positive electrode mixture is applied to a current collector aluminum foil, a stainless steel lath plate, etc., dried and pressure-molded, and then subjected to vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. It can produce by heat-processing with.
  • the density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, for further increasing the capacity of the battery, it is preferably 2 g / cm 3 or more, more preferably, 3 g / cm 3 It is above, More preferably, it is 3.6 g / cm 3 or more.
  • the upper limit is preferably 4 g / cm 3 or less.
  • Examples of the negative electrode active material for a lithium secondary battery include lithium metal, lithium alloy, and a carbon material capable of occluding and releasing lithium (easily graphitized carbon and a (002) plane spacing of 0.37 nm or more).
  • a lithium compound can be used individually by 1 type or in combination of 2 or more types.
  • a highly crystalline carbon material such as artificial graphite or natural graphite in terms of the ability to occlude and release lithium ions, and the spacing (d 002 ) between lattice planes ( 002 ).
  • a carbon material having a graphite-type crystal structure having a thickness of 0.340 nm (nanometer) or less, particularly 0.335 to 0.337 nm.
  • artificial graphite particles having a massive structure in which a plurality of flat graphite fine particles are assembled or bonded non-parallel to each other, and mechanical actions such as compressive force, frictional force, shearing force, etc. are repeatedly applied, and scaly natural graphite is spherical. It is preferable to use particles that have been treated.
  • the (004) plane peak intensity I (004) ratio I (110) / I (004) is preferably 0.01 or more because the electrochemical characteristics in a wider temperature range are further improved. More preferably, it is more preferably 0.1 or more.
  • the upper limit of the peak intensity ratio I (110) / I (004) is preferably 0.5 or less. 3 or less is more preferable.
  • the highly crystalline carbon material (core material) is coated with a carbon material having lower crystallinity than the core material because electrochemical characteristics in a wide temperature range are further improved.
  • the crystallinity of the carbon material of the coating can be confirmed by TEM.
  • metal compounds capable of inserting and extracting lithium as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, and Zn.
  • Preferred examples include compounds containing at least one metal element such as Ag, Mg, Sr, or Ba.
  • These metal compounds may be used in any form such as simple substance, alloy, oxide, nitride, sulfide, boride, or alloy with lithium. Any one is preferable because the capacity can be increased.
  • those containing at least one element selected from Si, Ge, and Sn are preferable, and those containing at least one element selected from Si and Sn are more preferable because the capacity of the battery can be increased.
  • the negative electrode is kneaded using the same conductive agent, binder, and high-boiling solvent as in the production of the positive electrode, and then the negative electrode mixture is applied to the copper foil of the current collector. After being dried and pressure-molded, it can be produced by heating at a temperature of about 50 ° C. to 250 ° C. for about 2 hours under vacuum.
  • the density of the portion excluding the current collector of the negative electrode is usually 1.1 g / cm 3 or more, and is preferably 1.5 g / cm 3 or more, more preferably 1.7 g in order to further increase the battery capacity. / Cm 3 or more.
  • the upper limit is preferably 2 g / cm 3 or less.
  • Examples of the negative electrode active material for a lithium primary battery include lithium metal and lithium alloy.
  • the battery separator is not particularly limited, and a monolayer or laminated microporous film, woven fabric, nonwoven fabric, or the like of polypropylene, polyethylene, ethylene-propylene copolymer, or the like can be used.
  • polypropylene polyethylene, ethylene-propylene copolymer, or the like
  • lamination of polyolefin polyethylene and polypropylene are preferably laminated, and a three-layer structure of polypropylene / polyethylene / polypropylene is more preferred.
  • the thickness of the separator is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 4 ⁇ m or more, and the upper limit thereof is 30 ⁇ m or less, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the thickness of the heat-resistant layer is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 1.5 ⁇ m or more, and the upper limit thereof is 7 ⁇ m or less, preferably 6 ⁇ m or less, more preferably 5 ⁇ m or less. .
  • oxides or hydroxides containing an element selected from Al, Si, Ti, and Zr are preferably mentioned.
  • the inorganic particles include silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ), oxides such as BaTiO 3 , and boehmite (Al 2 O 3. 3H 2 O), etc.
  • one or more selected from the hydroxides are suitably exemplified in, two or more is more preferable.
  • at least one selected from silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), BaTiO 3 , and boehmite (Al 2 O 3 .3H 2 O) is preferable.
  • Silica (SiO 2 ) , Alumina (Al 2 O 3 ), BaTiO 3 , or boehmite (Al 2 O 3 .3H 2 O) is more preferable, and alumina (Al 2 O 3 ), BaTiO 3 , or boehmite (Al 2 O 3 .3H 2 O) Is particularly preferred.
  • the organic particles contained in the heat-resistant layer include one or more selected from polymer particles such as polyamide, aramid, and polyimide, and two or more are more preferable.
  • polymer particles such as polyamide, aramid, and polyimide
  • polyamide or aramid is more preferable.
  • binder included in the heat-resistant layer examples include ethylene-acrylic acid copolymers such as ethylene-vinyl acetate copolymer (EVA) and ethylene-ethyl acrylate copolymer, polytetrafluoroethylene (PTFE), and polyvinylidene fluoride.
  • EVA ethylene-vinyl acetate copolymer
  • PTFE polytetrafluoroethylene
  • PVDF fluorinated rubber
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • HEC hydroxyethyl cellulose
  • PVA polyvinyl alcohol
  • PVB polyvinyl butyral
  • PVP polyvinyl pyrrolidone
  • N-vinyl One or more types selected from the group consisting of acetamide, cross-linked acrylic resin, polyurethane, and epoxy resin are preferably mentioned, and two or more types are more preferable.
  • ethylene-acrylic acid copolymers such as ethylene-ethyl acrylate copolymer, polyvinylpyrrolidone (PVP), poly N-vinylacetamide, polyvinylidene fluoride (PVDF), styrene and butadiene copolymer (SBR), and One or more selected from the group consisting of carboxymethylcellulose (CMC) is preferred.
  • PVP polyvinylpyrrolidone
  • PVDF poly N-vinylacetamide
  • PVDF polyvinylidene fluoride
  • SBR styrene and butadiene copolymer
  • CMC carboxymethylcellulose
  • the structure of the lithium battery is not particularly limited, and a coin-type battery, a cylindrical battery, a square battery, a laminated battery, or the like can be applied.
  • the lithium secondary battery according to the present invention is excellent in electrochemical characteristics in a wide temperature range even when the end-of-charge voltage is 4.2 V or more, particularly 4.3 V or more, and also has good characteristics even at 4.4 V or more. is there.
  • the end-of-discharge voltage is usually 2.8 V or more, and further 2.5 V or more, but the lithium secondary battery in the present invention can be 2.0 V or more.
  • the current value is not particularly limited, but is usually used in the range of 0.1 to 30C.
  • the lithium battery in the present invention can be charged / discharged at ⁇ 40 to 100 ° C., preferably ⁇ 10 to 80 ° C.
  • a method of providing a safety valve on the battery lid or cutting a member such as a battery can or a gasket can be employed.
  • the battery lid can be provided with a current interruption mechanism that senses the internal pressure of the battery and interrupts the current.
  • the 2nd electrical storage device of this invention is an electrical storage device which stores the energy using the electric double layer capacity
  • An example of the present invention is an electric double layer capacitor.
  • the most typical electrode active material used for this electricity storage device is activated carbon. Double layer capacity increases roughly in proportion to surface area.
  • the 3rd electrical storage device of this invention is an electrical storage device which stores the energy using the dope / dedope reaction of an electrode including the non-aqueous electrolyte of this invention.
  • the electrode active material used in this power storage device include metal oxides such as ruthenium oxide, iridium oxide, tungsten oxide, molybdenum oxide, and copper oxide, and ⁇ -conjugated polymers such as polyacene and polythiophene derivatives. Capacitors using these electrode active materials can store energy associated with electrode doping / dedoping reactions.
  • the 4th electrical storage device of this invention is an electrical storage device which stores the energy using the intercalation of the lithium ion to carbon materials, such as a graphite which is a negative electrode, containing the nonaqueous electrolyte solution of this invention. It is called a lithium ion capacitor (LIC).
  • the positive electrode include those using an electric double layer between an activated carbon electrode and an electrolytic solution, and those using a ⁇ -conjugated polymer electrode doping / dedoping reaction.
  • the electrolytic solution contains at least a lithium salt such as LiPF 6 .
  • Examples 1 to 18 and Comparative Examples 1 to 3 [Production of lithium ion secondary battery] LiNi 1/3 Mn 1/3 Co 1/3 O 2 ; 94% by mass, acetylene black (conductive agent); 3% by mass were mixed in advance, and polyvinylidene fluoride (binder); A positive electrode mixture paste was prepared by adding to the solution dissolved in -2-pyrrolidone and mixing. This positive electrode mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, and cut into a predetermined size to produce a belt-like positive electrode sheet. The density of the portion excluding the current collector of the positive electrode was 3.6 g / cm 3 .
  • silicon silica
  • d 002 0.335 nm, negative electrode active material
  • acetylene black conductive agent
  • Adhesive 5% by mass was added to and mixed with a solution in which 1-methyl-2-pyrrolidone was dissolved to prepare a negative electrode mixture paste.
  • This negative electrode mixture paste was applied to one side of a copper foil (current collector), dried and pressurized, and cut into a predetermined size to produce a negative electrode sheet.
  • the density of the portion excluding the current collector of the negative electrode was 1.5 g / cm 3 .
  • the ratio of the peak intensity I (110) of the (110) plane of the graphite crystal to the peak intensity I (004) of the (004) plane [I (110) / I (004)] was 0.1. Then, a positive electrode sheet, a separator made of a microporous polyethylene film, and a negative electrode sheet were laminated in this order, and a non-aqueous electrolyte solution having the composition described in Tables 1 and 2 was added to prepare a laminate type battery.
  • Example 19 and Comparative Example 4 A positive electrode sheet was produced in the same manner except that LiNi 1/2 Mn 3/2 O 4 (positive electrode active material) was used instead of the positive electrode active material used in Example 1 and Comparative Example 1.
  • This positive electrode mixture paste was applied to one side of an aluminum foil (current collector), dried, pressurized and cut into a predetermined size to produce a positive electrode sheet, and the end-of-charge voltage during battery evaluation
  • a laminate type battery was prepared in the same manner as in Example 1 and Comparative Example 1, except that the discharge end voltage was 2.7 V and the composition of the non-aqueous electrolyte was changed to a predetermined one. The battery was evaluated. The results were as shown in Table 3.
  • Example 20 and Comparative Example 5 A negative electrode sheet was prepared in the same manner except that lithium titanate Li 4 Ti 5 O 12 (negative electrode active material) was used instead of the negative electrode active material used in Example 1.
  • a negative electrode mixture paste was prepared by adding to the dissolved solution and mixing.
  • This negative electrode mixture paste was applied onto a copper foil (current collector), dried, pressurized and cut into a predetermined size to produce a negative electrode sheet, and the end-of-charge voltage during battery evaluation was 2
  • a laminated battery was produced in the same manner as in Example 1 except that the discharge end voltage was set to 0.8 V, the discharge end voltage was set to 1.2 V, and the composition of the nonaqueous electrolytic solution was changed to a predetermined value. The results were as shown in Table 4.
  • non-aqueous electrolyte of the present invention also has an effect of improving discharge characteristics when a lithium primary battery is used at a high voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 蓄電デバイスを高温、高電圧で使用した場合のサイクル特性を向上させることができる非水電解液及びそれを用いた蓄電デバイスが開示されている。本発明による非水電解液は、非水溶媒と、それに溶解されている電解質塩に加え、特定の化合物を含有することを特徴とする。

Description

非水電解液およびそれを用いた蓄電デバイス
 本発明は、蓄電デバイスに用いられる非水電解液に関し、さらに詳しくは蓄電デバイスを高電圧で使用した際に電気化学特性を向上できる非水電解液及びそれを用いた蓄電デバイスに関する。
 近年、蓄電デバイス、特にリチウム二次電池は携帯電話やノート型パソコン等電子機器の電源、あるいは電気自動車や電力貯蔵用の電源として広く使用されている。中でもタブレット端末や薄型ノートパソコン等の薄型電子機器では、外装部材にアルミラミネートフィルム等のラミネートフィルムを使用するラミネート型電池や角型電池が用いられることが多い。これらの電池は、薄型であるため少しの外装部材の膨張等により変形しやすく、その変形が電子機器に影響を与えるおそれがある。そのため、これら電池には変形を抑制することが求められる。
 リチウム二次電池は、主にリチウムを吸蔵放出可能な材料を含む正極及び負極、リチウム塩と非水溶媒からなる非水電解液から構成される。そして、非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等のカーボネート類が使用されている。
 また、リチウム二次電池の負極としては、リチウム金属、リチウムを吸蔵及び放出可能な金属化合物(金属単体、酸化物、リチウムとの合金等)、及び炭素材料が知られている。特に、炭素材料のうち、例えばコークス、黒鉛(人造黒鉛、天然黒鉛)を用いた非水系電解液二次電池が広く実用化されている。これら炭素材料からなる負極はリチウム金属と同等の極めて卑な電位でリチウムと電子を貯蔵・放出するために、多くの溶媒が還元分解を受ける可能性を有している。従って、負極材料の種類に拠らず、負極上で電解液中の溶媒が一部還元分解してしまい、分解物の沈着、ガス発生、電極の膨れにより、リチウムイオンの移動が妨げられ、電池特性の低下のおそれ、特に電池を高温、高電圧で使用した場合のサイクル特性等の電池特性を低下させるおそれがある。さらに、リチウム金属やその合金、スズ又はケイ素等の金属単体や酸化物を負極材料として用いたリチウム二次電池は、初期の容量は高いものの、サイクル中に微粉化が進むため、炭素材料の負極に比べて、非水溶媒の還元分解が加速的に起こり、電池容量やサイクル特性のような電池性能が大きく低下することや電極の膨れにより電池が変形することが知られている。
 一方、正極材料として用いられるLiCoO、LiMn、LiNiO、LiFePOといったリチウムを吸蔵及び放出可能な材料は、リチウム基準で3.5V以上の貴な電圧でリチウムと電子を貯蔵及び放出するために、特に電池を高温、高電圧で使用した場合において、多くの溶媒が酸化分解を受ける可能性を有している。従って、正極材料の種類に拠らず、正極上で電解液中の溶媒が一部酸化分解してしまい、分解物の沈着により抵抗を増大させたり、溶媒の分解によりガスが発生して電池を膨れさせたりする懸念がある。
 他方で、リチウム二次電池が搭載されている電子機器では、電力消費量が増大し、高容量化の一途をたどっている。それにともない、電子機器からの発熱も電池の温度上昇を促す要因となり、電池の充電設定電圧の高電圧化等も加わって、ますます電解液にとっては分解が起こり易くなる環境にある。電解液の分解によるガス発生により、電池が膨れたり、電流遮断等の安全機構が作動して電池が使用出来なくなることは避けなければならない。
 また、電子機器の多機能化もますます進み、電力消費量が増大する流れにある。そのため、リチウム二次電池の高容量化も求められ、そのために、電極の密度を高めたり、電池内の無駄な空間容積を減らす等により、電池内の非水電解液の占める体積は小さくなっている。従って、少しの非水電解液の分解で、電池を高温、高電圧で使用した場合での電池性能が低下しやすい状況にある。
 従来、種々の非水電解液が提案されている。例えば、WO2005/091422号公報(特許文献1)には、ギ酸フェニルや、ギ酸ビフェニル等のギ酸エステルを含有する非水電解液が提案されており、電池のサイクル特性、電気容量、保存特性を向上させることが記載されている。また、特開平7-192762号公報(特許文献2)には、フルオロギ酸プロピルを含有する非水電解液が提案されており、電池の高負荷特性、低温特性、サイクル特性を向上させることが記載されている。これらを含む従来の非水電解液の存在にもかかわらず、依然として高い性能の蓄電デバイスを実現できる非水電解液が希求されている。
WO2005/091422号公報 特開平7-192762号公報
 本発明者らは、今般、特定のフルオロギ酸エステル化合物を添加することにより、蓄電デバイスの性能、とりわけ高温、高電圧で使用した場合のサイクル特性を向上させる非水電解液が実現できることを見出した。本発明はかかる知見に基づくものである。
 従って、本発明は、蓄電デバイスを高温、高電圧で使用した場合のサイクル特性を向上させることができる非水電解液及びそれを用いた蓄電デバイスを提供することを目的とする。
 そして、本発明による非水電解液は、非水溶媒と、それに溶解された電解質塩と、下記一般式(I)で表される化合物の少なくとも1種とを少なくとも含有してなることを特徴とする非水電解液である。
Figure JPOXMLDOC01-appb-C000002
(式中、nは1又は2の整数であり、nが1の場合、Lは少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数2~10の直鎖もしくは分枝鎖の不飽和炭化水素基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数3~10のシクロアルキル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数6~20のアリール基を示し、nが2の場合、Lはエーテル結合を含んでいてもよい炭素数2~12の飽和もしくは不飽和の2価の炭化水素基、又は炭素数6~20のアリーレン基を示す。)
 また、本発明による蓄電デバイスは、正極、負極、及び非水溶媒に電解質塩が溶解されてなる非水電解液を少なくとも備えてなる蓄電デバイスであって、非水電解液が、前記の本発明による非水電解液であることを特徴とするものである。
 本発明によれば、蓄電デバイスの性能を向上させることができ、とりわけ高温、高電圧で使用した場合のサイクル特性を向上させることができる非水電解液及びそれを用いたリチウム電池等の蓄電デバイスが提供される。
〔非水電解液〕
 本発明による非水電解液は、前記一般式(I)で表される化合物を含有することを特徴とする。
 本発明の非水電解液に含まれる化合物は、下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000003
(式中、nは1又は2の整数であり、
 nが1の場合、Lは、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数2~10の直鎖もしくは分枝鎖の不飽和炭化水素基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数3~10のシクロアルキル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数6~20のアリール基を示し、
 nが2の場合、Lは、エーテル結合を含んでいてもよい炭素数2~12の飽和もしくは不飽和の2価の炭化水素基、又は炭素数6~20のアリーレン基を示す。)
 一般式(I)で表される化合物を含んでなる非水電解質を用いた蓄電デバイス、とりわけリチウム二次電池にあっては、電気化学特性が改善され、特に高温、高電圧で使用した場合のサイクル特性を顕著に向上させることができる。本発明よってこのような効果が得られる理由は定かではないが、以下のように考えられる。但し、以下の理論はあくまで仮定であって、これに本発明が限定されることを意図するものではない。リチウム二次電池のような蓄電デバイスでは、蓄放電の際に電極表面で電解液成分が酸化又は還元環境にさらされ、その一部は分解して電極表面において被膜を形成することが知られている。この被膜は場合によりSEI(Solid Electrolyte Interface)膜と呼ばれ、電池性能の低下につながることもあるが、電解液成分のその後の分解を抑制するなどにより電池性能の低下を抑えるものとして機能することがある。しかしながら、この被膜の生成及びその機能の知見は未だ十分ではない。また、電池性能の低下を抑制する被膜が一旦形成されても、多くの場合、高温、高電圧下では、この被膜は(部分的に)崩壊又は構造変化し、好ましい機能を喪失してしまうことが観察された。その結果、高温、高電圧で使用した場合のサイクル特性は低下してしまう。本発明にあっては、一般式(I)で表される化合物が、電極、とりわけ負極(特に、黒鉛電極)表面に安定した被膜を形成し、この被膜は高温(例えば、65℃)においても安定である。その結果、高温、高電圧で使用した場合であってもサイクル特性を低下させることなく維持でき、他の電解液と比較して、サイクル特性を顕著に向上させることができるものと考えられる。
 なお、本発明において「被膜」の用語は、SEI膜を含め、蓄放電の結果、電極表面に形成される被膜を広く意味するものとし、また、本明細書において単に「被膜」と述べた場合には、この電極表面に形成される被膜を意味するものとする。
 本発明の一つの態様によれば、前記一般式(I)において、nが1の場合、Lは、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数3~8の直鎖もしくは分枝鎖の不飽和炭化水素基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数4~8のシクロアルキル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数6~14のアリール基が好ましく、炭素数3~6の直鎖もしくは分枝鎖の不飽和炭化水素基、炭素数5~7のシクロアルキル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数6~10のアリール基がさらに好ましい。
 本発明の別の態様によれば、前記一般式(I)において、nが2の場合、Lはエーテル結合を含んでいてもよい炭素数2~8の飽和もしくは不飽和の炭化水素基、又は炭素数6~12のアリーレン基が好ましく、炭素数2~6の不飽和の炭化水素基、又は炭素数6~8のアリーレン基がさらに好ましい。
 前記一般式(I)において、炭素数2~10の直鎖もしくは分枝鎖の不飽和炭化水素基の具体例としては、
 直鎖又は分枝鎖のC2-10(好ましくはC3-8、より好ましくはC3-6)アルケニル基及び
 直鎖又は分枝鎖のC2-10(好ましくはC3-8、より好ましくはC3-6)アルキニル基が挙げられる。
 これらアルケニル基またはアルキニル基上の一またはそれ以上の水素原子はハロゲン原子により置換されていてもよく、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が好ましく挙げられ、より好ましくはフッ素又は塩素である。
 前記一般式(I)において、シクロアルキル基の置換基としてのハロゲン原子は、フッ素、塩素、臭素、ヨウ素が好ましく挙げられ、より好ましくはフッ素又は塩素である。
 前記一般式(I)において、炭素数6~20のアリール基の具体例としては、好ましくはフェニル基、トリル基、キシリル基、ビフェニリル基、ナフチル基、アントリル基、フェナントリル基が挙げられる。このアリール基の芳香環及び芳香環に置換する置換基上の一又はそれ以上の水素原子はハロゲン原子により置換されていてもよく、この置換基としてのハロゲン原子は、フッ素、塩素、臭素、ヨウ素が好ましく挙げられ、より好ましくはフッ素又は塩素である。
 また本発明の別の態様によれば、このアリール基は、フェニル基、あるいは一又はそれ以上の直鎖又は分枝鎖のアルキル基(好ましくは直鎖又は分枝鎖のC1-6アルキル基)で置換されたフェニル基であることが好ましい。また、このフェニル基のベンゼン環上の一又はそれ以上の水素原子、及びこのベンゼン環に置換するアルキル基上の一又はそれ以上の水素原子は、ハロゲン原子によって置換されていてもよく、置換基としてのハロゲン原子は、フッ素、塩素、臭素、ヨウ素が好ましく挙げられ、より好ましくはフッ素又は塩素である。
 前記一般式(I)において、炭素数2~12の飽和もしくは不飽和の2価の炭化水素基の具体例としては、直鎖又は分枝鎖のC2-12(好ましくはC2-8)アルキレン基、直鎖又は分枝鎖のC2-12(好ましくはC2-8)アルケニレン基、及び直鎖又は分枝鎖のC2-12(好ましくはC2-8)アルキニレン基が挙げられる。これら基はエーテル結合を、好ましくは1又は2個、含んでいてもよく、つまりこれら基中の任意の-CH-が-O-で置き換えられていてもよいものである。
 前記一般式(I)において、炭素数2~12の飽和もしくは不飽和の2価の炭化水素基の具体例として、また、C2-12シクロアルキレン基が挙げられ、好ましくはC3-10シクロアルキレン基である。
 前記一般式(I)において、炭素数6~20のアリーレン基としては、好ましくはフェニレン基、トリレン基(メチルフェニレン基)、ジメチルフェニレン基、キシリレン基(ジメチルフェニレン基)、ビフェニリレン基、ナフチレン基、アントリレン基、フェナントリレン基が挙げられる。本発明の別の態様によれば、このアリーレン基は、フェニレン基又はナフチレン基、あるいは一又はそれ以上の直鎖又は分枝鎖のアルキル基(好ましくは直鎖又は分枝鎖のC1-6アルキル基、より好ましくはC1-4アルキル基)で置換されたフェニレン基又はナフチレン基であることが好ましい。
 前記一般式(I)におけるnが1の場合、Lの具体例としては、2-プロペニル基、2-ブテニル基、3-ブテニル基、4-ペンテニル基、5-へキセニル基、6-ヘプテニル基、もしくは7-オクテニル基等の直鎖のアルケニル基、プロペン-2-イル基、1-メチル-2-プロペニル基2-メチル-1-プロペニルル基、もしくは3-メチル-2-ブテニル基等の分枝のアルケニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ペンチニル基、5-へキシニル基、6-ヘプチニル基、もしくは7-オクチニル基等の直鎖のアルキニル基、1-メチル-2-プロピニル基、もしくは1,1-ジメチル-2-プロピニル基等の分枝のアルキニル基、3,3-ジフルオロ-2-プロペニル基、4,4-ジフルオロ-3-ブテニル基、5,5-ジフルオロ-4-ペンテニル基、3,3-ジクロロ-2-プロペニル基、4,4-ジクロロ-3-ブテニル基、5,もしくは5,5-ジクロロ-4-ペンテニル基等のハロゲン化アルケニル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、もしくはシクロオクチル基等のシクロアルキル基、4-フルオロシクロヘキシル基、もしくは4-クロロシクロヘキシル基等のハロゲン化シクロアルキル基、又はフェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,3-ジメチルフェニル基、2,5-ジメチルフェニル基、3,5-ジメチルフェニル基、2,4,6-トリメチルフェニル基、3-tert-ブチルフェニル基、4-tert-ブチルフェニル基、2-クロロフェニル基、3-クロロフェニル基、4-クロロフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、4-フルオロ-2-トリフルオロメチルフェニル基、4-フルオロ-3-トリフルオロメチルフェニル基、2,4-ジフルオロフェニル基、2,6-ジフルオロフェニル基、3,4-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,4-ジクロロフェニル基、2,6-ジクロロフェニル基、3,4-ジクロロフェニル基、3,5-ジクロロフェニル基、2,4,6-トリフルオロフェニル基、2,3,5,6-テトラフルオロフェニル基、もしくはパーフルオロフェニル基等のアリール基が好適に挙げられ、これらの中でも、2-プロペニル基、2-ブテニル基、3-ブテニル基、4-ペンテニル基、5-へキセニル基、1-メチル-2-プロペニル基、3-メチル-2-ブテニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ペンチニル基、5-へキセニル基、1-メチル-2-プロピニル基、3,3-ジフルオロ-2-プロペニル基、4,4-ジフルオロ-3-ブテニル基、3,3-ジクロロ-2-プロペニル基、4,4-ジクロロ-3-ブテニル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、フェニル基、2-メチルフェニル基、4-メチルフェニル基、4-tert-ブチルフェニル基、2-クロロフェニル基、4-クロロフェニル基、2-フルオロフェニル基、4-フルオロフェニル基、2-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、又はパーフルオロフェニル基が好ましく、2-ブテニル基、3-ブテニル基、4-ペンテニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、フェニル基、4-tert-ブチルフェニル基、2-クロロフェニル基、4-クロロフェニル基、2-フルオロフェニル基、4-フルオロフェニル基、又は2-トリフルオロメチルフェニル基がさらに好ましい。
 前記一般式(I)において、nが1の場合具体的な化合物としては、以下が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 本発明の好ましい態様によれば、上記化合物中、A1~A4、A9~A32、B1~B5、B9~B12、B14、B15、B17~B19、B22、又はB24~B29の構造を有する化合物が好ましく、A1~A4、A9~A19、B2~B4、B9~B12、B17~B19、B22、又はB25~B28の構造を有する化合物がより好ましく、フルオロギ酸フェニル(構造式A1)、フルオロギ酸3-t-ブチルフェニル(構造式A9)、フルオロギ酸4-t-ブチルフェニル(構造式A10)、フルオロギ酸4-クロロフェニル(構造式A13)、フルオロギ酸4-フルオロフェニル(構造式A16)、フルオロギ酸2-トリフルオロメチルフェニル(構造式A17)、フルオロギ酸4-トリフルオロメチルフェニル(構造式A19)、フルオロギ酸3-ブテニル(構造式B2)、フルオロギ酸4-ペンテニル(構造式B4)、フルオロギ酸2-プロピニル(構造式B17)、フルオロギ酸シクロペンチル(構造式B26)、又はフルオロギ酸シクロヘキシル(構造式B27)がさらに好ましい。
 nが2の場合、Lの具体例として、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、もしくはオクタン-1,8-ジイル基等の直鎖のアルキレン基、プロパン-1,2-ジイル基等の分枝鎖のアルキレン基、2-ブテン-1,4-ジイル基、2-ペンテン-1,5-ジイル基、3-ヘキセン-1,6-ジイル基、3-ヘキセン-2,5-ジイル基、もしくは2,5-ジメチル-3-ヘキセン-2,5-ジイル基等のアルケニレン基、2-ブチン-1,4-ジイル基、2-ペンチン-1,5-ジイル基、3-ヘキシン-1,6-ジイル基、3-ヘキシン-2,5-ジイル基、もしくは2,5-ジメチル-3-ヘキシン-2,5-ジイル基等のアルキニレン基、-CHCHOCHCH-、-CHCHOCHCHOCHCH-、-CH(CH)CHOCHCH(CH)-等のエーテル結合を有する2価の連結基、シクロペンタン-1,2-ジイル基、シクロペンタン-1,3-ジイル基、シクロヘキサン-1,2-ジイル基、シクロヘキサン-1,3-ジイル基、もしくはシクロヘキサン-1,4-ジイル基等のシクロアルキレン基、又はベンゼン-1,3-ジイル基、ベンゼン-1,4-ジイル基、ナフタレン-1,3-ジイル基、もしくはナフタレン-1,4-ジイル基等のアリーレン基が好適に挙げられ、これらの中でも、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、プロパン-1,2-ジイル基、2-ブテン-1,4-ジイル基、2-ペンテン-1,5-ジイル基、3-ヘキセン-1,6-ジイル基、3-ヘキセン-2,5-ジイル基、2-ブチン-1,4-ジイル基、2-ペンチン-1,5-ジイル基、3-ヘキシン-1,6-ジイル基、3-ヘキシン-2,5-ジイル基、-CHCHOCHCH-、-CH(CH)CHOCHCH(CH)-、シクロペンタン-1,3-ジイル基、シクロヘキサン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基、ベンゼン-1,3-ジイル基、又はベンゼン-1,4-ジイル基が好ましく、2-ブテン-1,4-ジイル基、2-ブチン-1,4-ジイル基、又はベンゼン-1,4-ジイル基がさらに好ましい。
 前記一般式(I)において、nが2の場合の具体的化合物としては以下が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 本発明の好ましい態様によれば、上記化合物中、C1~C5、C7~C12、C14~C17、C19、C21、C23、C25、C26、D1~D3、D5、又はD6の構造を有する化合物が好ましく、C1~C5、C7~C9、C14、C17、C19、C25、C26、D1、又はD2の構造を有する化合物がより好ましく、プロパン-1,3-ジイル ビス(フルオロフォルメート)(構造式C2)ブタン-1,4-ジイル ビス(フルオロフォルメート)(構造式C3)、2-ブテン-1,4-ジイル ビス(フルオロフォルメート)(構造式C9)、2-ブチン-1,4-ジイル ビス(フルオロフォルメート)(構造式C14)、オキシビス(エタン-2,1-エタンジイル) ビス(フルオロフォルメート)(構造式C19)、シクロヘキサン-1,4-ジイル ビス(フルオロフォルメート)(構造式C26)、又はベンゼン-1,4-ジイル ビス(フルオロフォルメート)(構造式D2)がさらに好ましい。
 本発明の非水電解液において、一般式(I)で表される化合物の含有量は、添加の効果を勘案して適宜決定されてよいが、非水電解液中に0.001~10質量%の範囲が好ましい。含有量が10質量%以下であれば、電極上に過度に被膜が形成され、電池を高温、高電圧で使用した場合のサイクル特性を良好に維持でき、また0.001質量%以上であれば被膜の形成が十分であり、電池を高温、高電圧で使用した場合のサイクル特性の改善効果が高まる。本発明の好ましい態様によれば、一般式(I)で表される化合物の含有量の下限は、非水電解液中に0.05質量%以上が好ましく、0.3質量%以上がより好ましい。また、その上限は、8質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が特に好ましい。
〔非水溶媒〕
 本発明の非水電解液に使用される非水溶媒としては、環状カーボネート、鎖状エステル、ラクトン、エーテル、及びアミドから選ばれる一種以上が好適に挙げられ、二種以上の混合溶媒がさらに好適である。本発明の好ましい態様によれば、高温下で電気化学特性を相乗的に向上できることから、鎖状エステルが含まれる溶媒が好ましく、鎖状カーボネートが含まれることがさらに好ましく、環状カーボネートと鎖状カーボネートの両方が含まれることがもっとも好ましい。
 なお、本明細書において「鎖状エステル」の用語は、鎖状カーボネート及び鎖状カルボン酸エステルを含む概念として用いる。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランスもしくはシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)から選ばれる一種又は二種以上が好適に挙げられ、エチレンカーボネート、プロピレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネート、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)から選ばれる一種以上が好適であり、二種以上がより好適である。
 また、本発明の一つの態様によれば、炭素-炭素二重結合もしくは炭素-炭素三重結合等の不飽和結合又はフッ素原子を有する環状カーボネートの少なくとも一種を非水溶媒として用いることにより、高温下での電気化学特性が一段と向上するので好ましく、炭素-炭素二重結合もしくは炭素-炭素三重結合等の不飽和結合を含む環状カーボネートとフッ素原子を有する環状カーボネートを両方含むことがより好ましい。炭素-炭素二重結合もしくは炭素-炭素三重結合等の不飽和結合を有する環状カーボネートとしては、VC、VEC、又はEECがさらに好ましく、フッ素原子を有する環状カーボネートとしては、FEC又はDFECがさらに好ましい。
 炭素-炭素二重結合もしくは炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの含有量は適宜決定されてよいが、非水溶媒の総体積に対して、好ましくは0.07体積%以上、より好ましくは0.2体積%以上、さらに好ましくは0.7体積%以上であり、また、その上限としては、好ましくは7体積%以下、より好ましくは4体積%以下、さらに好ましくは2.5体積%以下である。上記量とすることで、Liイオン透過性を損なうことなく、一段と高温下の被膜の安定性を増すことができるので好ましい。
 フッ素原子を有する環状カーボネートの含有量は、非水溶媒の総体積に対して好ましくは0.07体積%以上、より好ましくは4体積%以上、さらに好ましくは7体積%以上であり、また、その上限としては、好ましくは35体積%以下、より好ましくは25体積%以下、さらに15体積%以下であると、Liイオン透過性を損なうことなく一段と高温下の被膜の安定性を増すことができるので好ましい。
 非水溶媒が炭素-炭素二重結合もしくは炭素-炭素三重結合等の不飽和結合を有する環状カーボネートとフッ素原子を有する環状カーボネートの両方を含む場合、フッ素原子を有する環状カーボネートの含有量に対する炭素-炭素二重結合もしくは炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの含有量は適宜決定されてよいが、好ましくは0.2体積%以上、より好ましくは3体積%以上、さらに好ましくは7体積%以上であり、その上限としては、好ましくは40体積%以下、より好ましくは30体積%以下、さらに15体積%以下である。上記量とすることで、Liイオン透過性を損なうことなく、一段と高温下の被膜の安定性を増すことができるので特に好ましい。
 また、本発明の別の態様によれば、非水溶媒がエチレンカーボネートと炭素-炭素二重結合もしくは炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの両方を含む場合、電極上に形成される被膜の高温下での安定性が増すので好ましい。エチレンカーボネート及び炭素-炭素二重結合もしくは炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの含有量は適宜決定されてよいが、非水溶媒の総体積に対し、好ましくは3体積%以上、より好ましくは5体積%以上、さらに好ましくは7体積%以上であり、また、その上限としては、好ましくは45体積%以下、より好ましくは35体積%以下、さらに好ましくは25体積%以下である。
 これらの溶媒は一種類で使用してもよく、また二種類以上を組み合わせて使用してもおい。二種類以上を組わせた場合、高温下での電気化学特性がさらに向上するので好ましく、三種類以上を組み合わせて使用することが特に好ましい。これらの環状カーボネートの好適な組合せとしては、ECとPC、ECとVC、PCとVC、VCとFEC、ECとFEC、PCとFEC、FECとDFEC、ECとDFEC、PCとDFEC、VCとDFEC、VECとDFEC、VCとEEC、ECとEEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとVEC、ECとVCとEEC、ECとEECとFEC、PCとVCとFEC、ECとVCとDFEC、PCとVCとDFEC、ECとPCとVCとFEC、又はECとPCとVCとDFEC等が好ましい。前記の組合せのうち、ECとVC、ECとFEC、PCとFEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとEEC、ECとEECとFEC、PCとVCとFEC、又はECとPCとVCとFEC等の組合せがより好ましく、PCとFEC、ECとPCとVC、ECとPCとFEC、PCとVCとFEC、又はECとPCとVCとFEC等のPCを含む組み合わせが、高電圧での電池特性を向上させるためさらに好ましい。
 鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、及びエチルプロピルカーボネートから選ばれる一種又は二種以上の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、及びジブチルカーボネートから選ばれる1種又は2種以上の対称鎖状カーボネート、ピバリン酸メチル(MPiv)、ピバリン酸エチル(EPiv)、ピバリン酸プロピル(PPiv)、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)、酢酸メチル(MA)、及び酢酸エチル(EA)から選ばれる一種又は二種以上の鎖状カルボン酸エステル、メチル(2,2,2-トリフルオロエチル)カーボネート(MTFEC)、エチル(2,2,2-トリフルオロエチル)カーボネート、フルオロメチル(メチル)カーボネート(FMMC)、メチル(2,2,3,3-テトラフルオロプロピル)カーボネート(MTEFPC)、エチル(2,2,3,3-テトラフルオロプロピル)カーボネート、2-フルオロエチル(メチル)カーボネート(2-FEMC)、及びジフルオロメチル(フルオロメチル)カーボネートから選ばれる一種又は二種以上の非対称フッ素化鎖状カーボネート、ビス(2-フルオロエチル)カーボネート、ビス(2,2,3,3-テトラフルオロプロピル)カーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート、及びビス(フルオロメチル)カーボネートから選ばれる一種又は二種以上の対称フッ素化鎖状カーボネートが好適に挙げられる。
 前記鎖状エステルの中でも、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、プロピオン酸メチル(MP)、酢酸メチル(MA)及び酢酸エチル(EA)から選ばれるメチル基を有する鎖状エステルが好ましく、特にメチル基を有する鎖状カーボネートが好ましい。
 また、本発明の別の態様によれば、高電圧下での電気化学特性を向上させる観点から、対称フッ素化鎖状カーボネート及び非対称フッ素化鎖状カーボネートから選ばれる少なくとも一種を含む非水溶媒の使用が好ましい。とりわけ、メチル(2,2,2-トリフルオロエチル)カーボネート(MTFEC)、2-フルオロエチル(メチル)カーボネート(2-FEMC)、及びメチル(2,2,3,3-テトラフルオロプロピル)カーボネート(MTEFPC)から選ばれるメチル基を有する非対称フッ素化鎖状カーボネートがより好ましい。
 鎖状カーボネートを用いる場合には、二種以上を用いることが好ましい。さらに対称鎖状カーボネートと非対称鎖状カーボネートの両方が含まれるものがより好ましく、対称鎖状カーボネートの含有量が非対称鎖状カーボネートより多く含まれるものがさらに好ましい。
 鎖状エステルの含有量は、特に制限されないが、非水溶媒の総体積に対して、60~90体積%の範囲で用いるのが好ましい。該含有量が60体積%以上であれば非水電解液の粘度が高くなりすぎず、90体積%以下であれば非水電解液の電気伝導度が低下して高温下での電気化学特性が低下するおそれが少ないので上記範囲であることが好ましい。
 本発明の一つの態様によれば、鎖状カーボネート中に対称鎖状カーボネートが占める体積の割合は、51体積%以上が好ましく、55体積%以上がより好ましい。その上限としては、95体積%以下がより好ましく、85体積%以下であるとさらに好ましい。対称鎖状カーボネートにジメチルカーボネートが含まれると特に好ましい。また、非対称鎖状カーボネートはメチル基を有するとより好ましく、メチルエチルカーボネートが特に好ましい。上記の場合に一段と高温下での電気化学特性が向上するので好ましい。
 本発明の一つの態様によれば、環状カーボネートと鎖状エステルの割合は、高温下での電気化学特性向上の観点から、環状カーボネート:鎖状エステル(体積比)が10:90~45:55が好ましく、15:85~40:60がより好ましく、20:80~35:65が特に好ましい。
 その他の非水溶媒としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等の環状エーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等の鎖状エーテル、ジメチルホルムアミド等のアミド、スルホラン等のスルホン、及びγ-ブチロラクトン、γ-バレロラクトン、α-アンゲリカラクトン等のラクトンから選ばれる1種以上が好適に挙げられ、二種以上がより好適である。
 非水溶媒は通常、適切な物性を達成するために、混合して使用される。その組合せは、例えば、環状カーボネートと鎖状カーボネートとの組合せ、環状カーボネートと鎖状カルボン酸エステルとの組合せ、環状カーボネートと鎖状カーボネートとラクトンとの組合せ、環状カーボネートと鎖状カーボネートとエーテルとの組合せ、又は環状カーボネートと鎖状カーボネートと鎖状カルボン酸エステルとの組み合わせ等が好適に挙げられる。
 本発明の好ましい態様によれば、一段と高温下の被膜の安定性を向上させる目的で、非水電解液中にさらにその他の添加剤を加える。その他の添加剤の具体例としては、以下の(A)~(I)の化合物が挙げられる。
 (A)アセトニトリル、プロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、及びセバコニトリルから選ばれる一種又は二種以上のニトリル。
 (B)シクロヘキシルベンゼン、フルオロシクロヘキシルベンゼン化合物(1-フルオロ-2-シクロヘキシルベンゼン、1-フルオロ-3-シクロヘキシルベンゼン、1-フルオロ-4-シクロヘキシルベンゼン)、tert-ブチルベンゼン、tert-アミルベンゼン、1-フルオロ-4-tert-ブチルベンゼン等の分枝アルキル基を有する芳香族化合物や、ビフェニル、ターフェニル(o-、m-、p-体)、ジフェニルエーテル、フルオロベンゼン、ジフルオロベンゼン(o-、m-、p-体)、アニソール、2,4-ジフルオロアニソール、ターフェニルの部分水素化物(1,2-ジシクロヘキシルベンゼン、2-フェニルビシクロヘキシル、1,2-ジフェニルシクロヘキサン、o-シクロヘキシルビフェニル)等の芳香族化合物。
 (C)メチルイソシアネート、エチルイソシアネート、ブチルイソシアネート、フェニルイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、1,4-フェニレンジイソシアネート、2-イソシアナトエチル アクリレート、及び2-イソシアナトエチル メタクリレートから選ばれる一種又は二種以上のイソシアネート化合物。
 (D)2-プロピニル メチル カーボネート、酢酸 2-プロピニル、ギ酸 2-プロピニル、メタクリル酸 2-プロピニル、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、ジ(2-プロピニル)オギザレート、メチル 2-プロピニルオギザレート、エチル 2-プロピニルオギザレート、グルタル酸 ジ(2-プロピニル)、2-ブチン-1,4-ジイル ジメタンスルホネート、2-ブチン-1,4-ジイル ジホルメート、及び2,4-ヘキサジイン-1,6-ジイル ジメタンスルホネートから選ばれる一種又は二種以上の三重結合含有化合物。
 (E)1,3-プロパンスルトン、1,3-ブタンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、又は5,5-ジメチル-1,2-オキサチオラン-4-オン 2,2-ジオキシド等のスルトン、エチレンサルファイト、ヘキサヒドロベンゾ[1,3,2]ジオキサチオラン-2-オキシド(1,2-シクロヘキサンジオールサイクリックサルファイトともいう)、又は5-ビニル-ヘキサヒドロ-1,3,2-ベンゾジオキサチオール-2-オキシド等の環状サルファイト、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、又はメチレンメタンジスルホネート等のスルホン酸エステル、ジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、又はビス(2-ビニルスルホニルエチル)エーテル等のビニルスルホン化合物から選ばれる一種又は二種以上のS(=O)基含有化合物。
 (F)1,3-ジオキソラン、1,3-ジオキサン、1,3,5-トリオキサン等の環状アセタール化合物。
 (G)リン酸トリメチル、リン酸トリブチル、及びリン酸トリオクチル、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸ビス(2,2,2-トリフルオロエチル)メチル、リン酸ビス(2,2,2-トリフルオロエチル)エチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2-ジフルオロエチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2,3,3-テトラフルオロプロピル、リン酸ビス(2,2-ジフルオロエチル)2,2,2-トリフルオロエチル、リン酸ビス(2,2,3,3-テトラフルオロプロピル)2,2,2-トリフルオロエチル及びリン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、メチレンビスホスホン酸メチル、メチレンビスホスホン酸エチル、エチレンビスホスホン酸メチル、エチレンビスホスホン酸エチル、ブチレンビスホスホン酸メチル、ブチレンビスホスホン酸エチル、メチル 2-(ジメチルホスホリル)アセテート、エチル 2-(ジメチルホスホリル)アセテート、メチル 2-(ジエチルホスホリル)アセテート、エチル 2-(ジエチルホスホリル)アセテート、2-プロピニル 2-(ジメチルホスホリル)アセテート、2-プロピニル 2-(ジエチルホスホリル)アセテート、メチル 2-(ジメトキシホスホリル)アセテート、エチル 2-(ジメトキシホスホリル)アセテート、メチル 2-(ジエトキシホスホリル)アセテート、エチル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)アセテート、2-プロピニル 2-(ジエトキシホスホリル)アセテート、及びピロリン酸メチル、ピロリン酸エチルから選ばれる一種又は二種以上のリン含有化合物。
 (H)無水酢酸、無水プロピオン酸等の鎖状のカルボン酸無水物、無水コハク酸、無水マレイン酸、3-アリル無水コハク酸、無水グルタル酸、無水イタコン酸、又は3-スルホ-プロピオン酸無水物等の環状酸無水物。
 (I)メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、又はエトキシヘプタフルオロシクロテトラホスファゼン等の環状ホスファゼン化合物。
 上記の中でも、(A)ニトリル、(B)芳香族化合物、及び(C)イソシアネート化合物から選ばれる少なくとも一種以上を含むと一段と広い温度範囲での電気化学特性が向上するので好ましい。
 前記(A)ニトリルの中では、スクシノニトリル、グルタロニトリル、アジポニトリル、及びピメロニトリルから選ばれる一種又は二種以上がより好ましい。
 前記(B)芳香族化合物の中では、ビフェニル、ターフェニル(o-、m-、p-体)、フルオロベンゼン、シクロヘキシルベンゼン、tert-ブチルベンゼン、及びtert-アミルベンゼンから選ばれる一種又は二種以上がより好ましく、ビフェニル、o-ターフェニル、フルオロベンゼン、シクロヘキシルベンゼン、及びtert-アミルベンゼンから選ばれる一種又は二種以上が特に好ましい。
 前記(C)イソシアネート化合物の中では、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、2-イソシアナトエチル アクリレート、及び2-イソシアナトエチル メタクリレートから選ばれる一種又は二種以上がより好ましい。
 前記(A)~(C)の化合物の含有量は、非水電解液中に0.01~7質量%が好ましい。含有量がこの範囲にあることで、被膜が厚くなり過ぎずに十分に形成され、一段と高温下の被膜の安定性が高まる。該含有量は、非水電解液中に0.05質量%以上がより好ましく、0.1質量%以上がさらに好ましく、その上限は、5質量%以下がより好ましく、3質量%以下がさらに好ましい。
 また、前記(D)三重結合含有化合物、(E)スルトン、環状サルファイト、スルホン酸エステル、ビニルスルホンから選ばれる環状又は鎖状のS(=O)基含有化合物、(F)環状アセタール化合物、(G)リン含有化合物、(H)環状酸無水物、及び(I)環状ホスファゼン化合物を含むと一段と高温下の被膜の安定性が向上するので好ましい。
 前記(D)三重結合含有化合物としては、2-プロピニル メチル カーボネート、メタクリル酸 2-プロピニル、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸 2-プロピニル、ジ(2-プロピニル)オギザレート、メチル 2-プロピニル オギザレート、エチル 2-プロピニル オギザレート、及び2-ブチン-1,4-ジイル ジメタンスルホネートから選ばれる一種又は二種以上が好ましく、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸 2-プロピニル、ジ(2-プロピニル)オギザレート、及び2-ブチン-1,4-ジイル ジメタンスルホネートから選ばれる一種又は二種以上がさらに好ましい。
 前記(E)スルトン、環状サルファイト、スルホン酸エステル、及びビニルスルホンから選ばれる環状又は鎖状のS(=O)基含有化合物(但し、三重結合含有化合物は含まない)を用いることが好ましい。
 前記環状のS(=O)基含有化合物としては、1,3-プロパンスルトン、1,3-ブタンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、5,5-ジメチル-1,2-オキサチオラン-4-オン 2,2-ジオキシド、メチレン メタンジスルホネート、エチレンサルファイト、及び4-(メチルスルホニルメチル)-1,3,2-ジオキサチオラン 2-オキシドから選ばれる一種又は二種以上が好適に挙げられる。
 また、鎖状のS(=O)基含有化合物としては、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、ジメチル メタンジスルホネート、ペンタフルオロフェニル メタンスルホネート、ジビニルスルホン、及びビス(2-ビニルスルホニルエチル)エーテルから選ばれる一種又は二種以上が好適に挙げられる。
 前記環状又は鎖状のS(=O)基含有化合物の中でも、1,3-プロパンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、及び5,5-ジメチル-1,2-オキサチオラン-4-オン 2,2-ジオキシド、ブタン-2,3-ジイル ジメタンスルホネート、ペンタフルオロフェニル メタンスルホネート、及びジビニルスルホンから選ばれる一種又は二種以上がさらに好ましい。
 前記(F)環状アセタール化合物としては、1,3-ジオキソラン、又は1,3-ジオキサンが好ましく、1,3-ジオキサンがさらに好ましい。
 前記(G)リン含有化合物としては、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、メチル 2-(ジメチルホスホリル)アセテート、エチル 2-(ジメチルホスホリル)アセテート、メチル 2-(ジエチルホスホリル)アセテート、エチル 2-(ジエチルホスホリル)アセテート、2-プロピニル 2-(ジメチルホスホリル)アセテート、2-プロピニル 2-(ジエチルホスホリル)アセテート、メチル 2-(ジメトキシホスホリル)アセテート、エチル 2-(ジメトキシホスホリル)アセテート、メチル 2-(ジエトキシホスホリル)アセテート、エチル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)アセテート、又は2-プロピニル 2-(ジエトキシホスホリル)アセテートが好ましく、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、エチル 2-(ジエチルホスホリル)アセテート、2-プロピニル 2-(ジメチルホスホリル)アセテート、2-プロピニル 2-(ジエチルホスホリル)アセテート、エチル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)アセテート、又は2-プロピニル 2-(ジエトキシホスホリル)アセテートがさらに好ましい。
 前記(H)環状酸無水物としては、無水コハク酸、無水マレイン酸、又は3-アリル無水コハク酸が好ましく、無水コハク酸又は3-アリル無水コハク酸がさらに好ましい。
 前記(I)環状ホスファゼン化合物としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、又はフェノキシペンタフルオロシクロトリホスファゼン等の環状ホスファゼン化合物が好ましく、メトキシペンタフルオロシクロトリホスファゼン、又はエトキシペンタフルオロシクロトリホスファゼンがさらに好ましい。
 前記(D)~(I)の化合物の含有量は、非水電解液中に0.001~5質量%が好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、一段と高温下の被膜の安定性が高まる。該含有量は、非水電解液中に0.01質量%以上がより好ましく、0.1質量%以上がさらに好ましく、その上限は、3質量%以下がより好ましく、2質量%以下がさらに好ましい。
 また、本発明の別の態様によれば、一段と高温下の被膜の安定性を向上させる目的で、非水電解液中にさらに、シュウ酸骨格を有するリチウム塩、リン酸骨格を有するリチウム塩及びS(=O)基を有するリチウム塩の中から選ばれる一種以上のリチウム塩を含むことが好ましい。
 リチウム塩の具体例としては、リチウム ビス(オキサラト)ボレート(LiBOB)、リチウム ジフルオロ(オキサラト)ボレート(LiDFOB)、リチウム テトラフルオロ(オキサラト)ホスフェート(LiTFOP)、及びリチウム ジフルオロビス(オキサラト)ホスフェート(LiDFOP)から選ばれる少なくとも一種のシュウ酸骨格を有するリチウム塩、LiPOやLiPOF等のリン酸骨格を有するリチウム塩、リチウム トリフルオロ((メタンスルホニル)オキシ)ボレート(LiTFMSB)、リチウム ペンタフルオロ((メタンスルホニル)オキシ)ホスフェート(LiPFMSP)、リチウム メチルサルフェート(LMS)、リチウムエチルサルフェート(LES)、リチウム 2,2,2-トリフルオロエチルサルフェート(LFES)、及びFSOLiから選ばれる一種以上のS(=O)基を有するリチウム塩が好適に挙げられ、LiBOB、LiDFOB、LiTFOP、LiDFOP、LiPO、LiTFMSB、LMS、LES、LFES、及びFSOLiから選ばれるリチウム塩を含むことがより好ましい。
 LiBOB、LiDFOB、LiTFOP、LiDFOP、LiPO、LiPOF、LiTFMSB、LiPFMSP、LMS、LES、LFES及びFSOLiからから選ばれる一種以上のリチウム塩の総含有量は、非水電解液中に0.001~10質量%が好ましい。該含有量が10質量%以下であれば、電極上に過度に被膜が形成され保存特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、高温、高電圧で使用した場合の特性の改善効果が高まる。該含有量は、非水電解液中に0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.3質量%以上がさらに好ましく、その上限は、5質量%以下が好ましく、3質量%以下がより好ましく、2質量%以下がさらに好ましい。
〔電解質塩〕
 本発明に使用される電解質塩としては、リチウム塩が好適に挙げられる。リチウム塩としては、LiPF、LiBF、LiClO等の無機リチウム塩、LiN(SOF)〔略してFSIと称する〕、LiN(SOCF〔略してTFSIと称する〕、LiN(SO、LiCFSO、LiC(SOCF、LiPF(CF、LiPF(C、LiPF(CF、LiPF(iso-C7、LiPF(iso-C7)等の鎖状のフッ化アルキル基を含有するリチウム塩や、(CF(SONLi、(CF(SONLi等の環状のフッ化アルキレン鎖を有するリチウム塩等が好適に挙げられ、これらの中から選ばれる少なくとも一種のリチウム塩が好適に挙げられ、これらの一種又は二種以上を混合して使用することができる。
 これらの中でも、LiPF、LiBF、LiN(SOCF〔TFSI〕、LiN(SO、及びLiN(SOF)〔FSI〕から選ばれる一種又は二種以上が好ましく、LiPFを用いることがもっとも好ましい。リチウム塩の濃度は、前記の非水溶媒に対して、通常0.3M以上が好ましく、0.7M以上がより好ましく、1.1M以上がさらに好ましい。またその上限は、2.5M以下が好ましく、2.0M以下がより好ましく、1.6M以下がさらに好ましい。
 また、これらのリチウム塩の好適な組み合わせとしては、LiPFを含み、さらにLiBF、LiN(SOCF〔TFSI〕、及びLiN(SOF)〔FSI〕から選ばれる少なくとも1種のリチウム塩が非水電解液中に含まれている場合が好ましく、LiPF以外のリチウム塩が非水溶媒中に占める割合は、0.001M以上であると、電池を高温で使用した場合の電気化学特性の向上効果が発揮されやすく、0.8M以下であると電池を高温で使用した場合の電気化学特性の向上効果が低下する懸念が少ないので好ましい。好ましくは0.01M以上、特に好ましくは0.03M以上、最も好ましくは0.04M以上である。その上限は、好ましくは0.6M以下、さらに好ましくは0.4M以下、特に好ましくは0.2M以下である。
〔非水電解液の製造〕
 本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩及び前記一般式(I)で表されるフルオロギ酸エステル化合物を添加することにより得ることができる。
 この際、用いる非水溶媒及び非水電解液に加える化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
〔蓄電デバイス〕
 本発明の蓄電デバイスは、例えば、正極、負極、及び前記非水電解液を備えることにより得ることができる。
 本発明の非水電解液は、下記の第1~第4の蓄電デバイスに使用することができ、非水電解質として、液体状のものだけでなくゲル化されているものも使用し得る。さらに本発明の非水電解液は固体高分子電解質用としても使用できる。中でも電解質塩にリチウム塩を使用する第1の蓄電デバイス用(即ち、リチウム電池用)又は第4の蓄電デバイス用(即ち、リチウムイオンキャパシタ用)として用いることが好ましく、リチウム電池用として用いることがより好ましく、リチウム二次電池用として用いることがさらに好ましい。
〔第1の蓄電デバイス:リチウム電池〕
 本明細書において、第1の蓄電デバイスであるリチウム電池とは、リチウム一次電池及びリチウム二次電池の総称である。また、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。本発明のリチウム電池は、正極、負極及び非水溶媒に電解質塩が溶解されている前記非水電解液からなる。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
 例えば、リチウム二次電池用正極活物質としては、コバルト、マンガン、及びニッケルから選ばれる一種又は二種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、一種単独で又は二種以上を組み合わせて用いることができる。
 このようなリチウム複合金属酸化物としては、例えば、LiCoO、LiMn、LiNiO、LiCo1-xNi(0.01<x<1)、LiCo1/3Ni1/3Mn1/3、LiNi1/2Mn3/2、及びLiCo0.98Mg0.02から選ばれる一種又は二種以上が挙げられる。また、LiCoOとLiMn、LiCoOとLiNiO、LiMnとLiNiOのように併用してもよい。
 また、過充電時の安全性やサイクル特性を向上させ、4.3V以上の充電電位での使用を可能にするために、リチウム複合金属酸化物の一部は他元素で置換してもよい。例えば、コバルト、マンガン、ニッケルの一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cu、Bi、Mo、又はLaの少なくとも一種以上の元素で置換したり、Oの一部をSやFで置換したり、又はこれらの他元素を含有する化合物を被覆することもできる。
 これらの中では、LiCoO、LiMn、LiNiOのような満充電状態における正極の充電電位がLi基準で4.3V以上で使用可能なリチウム複合金属酸化物が好ましく、LiCo1-x(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、及びCuから選ばれる一種又は二種以上の元素、0.001≦x≦0.05)、LiCo1/3Ni1/3Mn1/3、LiNi1/2Mn3/2、LiMnOとLiMO(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体のような4.4V以上で使用可能なリチウム複合金属酸化物がより好ましい。高充電電圧で動作するリチウム複合金属酸化物を使用すると、充電時における電解液との反応により特に広い温度範囲で使用した場合における電気化学特性が低下しやすいが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができる。特にMnを含む正極の場合に正極からのMnイオンの溶出に伴い電池の抵抗が増加しやすい傾向にあるため、広い温度範囲で使用した場合における電気化学特性が低下しやすい傾向にあるが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができるので好ましい。
 さらに、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。特に鉄、コバルト、ニッケル、及びマンガンから選ばれる1種又は2種以上を含むリチウム含有オリビン型リン酸塩が好ましい。その具体例としては、LiFePO、LiCoPO、LiNiPO、及びLiMnPOから選ばれる一種又は二種以上が挙げられる。これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W、及びZr等から選ばれる1種又は2種以上の元素で置換したり、又はこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePO又はLiMnPOが好ましい。また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
 リチウム一次電池用正極としては、CuO、CuO、AgO、AgCrO、CuS、CuSO、TiO、TiS、SiO、SnO、V、V12、VO、Nb、Bi、BiPb,Sb、CrO、Cr、MoO、WO、SeO、MnO、Mn、Fe、FeO、Fe、Ni、NiO、CoO、又はCoO等の、一種又は二種以上の金属元素の酸化物又はカルコゲン化合物、SO、SOCl等の硫黄化合物、一般式(CFnで表されるフッ化炭素(フッ化黒鉛)等が挙げられる。これらの中でも、MnO、V、フッ化黒鉛等が好ましい。
 上記の正極活物質10gを蒸留水100mlに分散させた時の上澄み液のpHとしては10.0~12.5である場合、一段と広い温度範囲での電気化学特性の改善効果が得られやすいので好ましく、さらに10.5~12.0である場合が好ましい。
 また、正極中に元素としてNiが含まれる場合、正極活物質中のLiOH等の不純物が増える傾向があるため、一段と広い温度範囲での電気化学特性の改善効果が得られやすいので好ましく、正極活物質中のNiの原子濃度が5~25atomic%である場合がさらに好ましく、8~21atomic%である場合が特に好ましい。
 正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、及びサーマルブラックから選ばれる1種又は2種以上のカーボンブラック等が挙げられる。また、グラファイトとカーボンブラックを適宜混合して用いてもよい。導電剤の正極合剤への添加量は、1~10質量%が好ましく、特に2~5質量%が好ましい。
 正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、又はエチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1-メチル-2-ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 正極の集電体を除く部分の密度は、通常は1.5g/cm以上であり、電池の容量をさらに高めるため、好ましくは2g/cm以上であり、より好ましくは、3g/cm以上であり、さらに好ましくは、3.6g/cm以上である。なお、その上限としては、4g/cm以下が好ましい。
 リチウム二次電池用負極活物質としては、リチウム金属やリチウム合金、及びリチウムを吸蔵及び放出することが可能な炭素材料〔易黒鉛化炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化炭素や、(002)面の面間隔が0.34nm以下の黒鉛等〕、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、又はLiTi12等のチタン酸リチウム化合物を一種単独で又は二種以上を組み合わせて用いることができる。
 前記負極活物質の中では、リチウムイオンの吸蔵及び放出能力において、人造黒鉛や天然黒鉛等の高結晶性の炭素材料を使用することがより好ましく、格子面(002)の面間隔(d002)が0.340nm(ナノメータ)以下、特に0.335~0.337nmである黒鉛型結晶構造を有する炭素材料を使用することがさらに好ましい。特に複数の扁平状の黒鉛質微粒子が互いに非平行に集合又は結合した塊状構造を有する人造黒鉛粒子や、圧縮力、摩擦力、剪断力等の機械的作用を繰り返し与え、鱗片状天然黒鉛を球形化処理した粒子、を用いることが好ましい。
 負極の集電体を除く部分の密度を1.5g/cm以上の密度に加圧成形したときの負極シートのX線回折測定から得られる黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比I(110)/I(004)が0.01以上となると一段と広い温度範囲での電気化学特性が向上するので好ましく、0.05以上となることがより好ましく、0.1以上となることがさらに好ましい。また、過度に処理し過ぎて結晶性が低下し電池の放電容量が低下する場合があるので、ピーク強度の比I(110)/I(004)の上限は0.5以下が好ましく、0.3以下がより好ましい。
 また、高結晶性の炭素材料(コア材)はコア材よりも低結晶性の炭素材料によって被膜されていると、広い温度範囲での電気化学特性が一段と良好となるので好ましい。被覆の炭素材料の結晶性は、TEMにより確認することができる。
 高結晶性の炭素材料を使用すると、充電時において非水電解液と反応し、界面抵抗の増加によって低温もしくは高温における電気化学特性を低下させる傾向があるが、本発明に係るリチウム二次電池では広い温度範囲での電気化学特性が良好となる。
 負極活物質としてのリチウムを吸蔵及び放出可能な金属化合物としては、Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr、又はBa等の金属元素を少なくとも一種含有する化合物が好適に挙げられる。これらの金属化合物は単体、合金、酸化物、窒化物、硫化物、硼化物、又はリチウムとの合金等、何れの形態で用いてもよいが、単体、合金、酸化物、リチウムとの合金の何れかが高容量化できるので好ましい。中でも、Si、Ge、及びSnから選ばれる少なくとも一種の元素を含有するものが好ましく、Si及びSnから選ばれる少なくとも一種の元素を含むものが電池を高容量化できるのでより好ましい。
 負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で、2時間程度真空下で加熱処理することにより作製することができる。
 負極の集電体を除く部分の密度は、通常は1.1g/cm以上であり、電池の容量をさらに高めるため、好ましくは1.5g/cm以上であり、より好ましくは1.7g/cm以上である。なお、その上限としては、2g/cm以下が好ましい。
 リチウム一次電池用の負極活物質としては、リチウム金属又はリチウム合金が挙げられる。
 本発明において電池用セパレータとしては、特に制限はないが、ポリプロピレン、ポリエチレン、エチレン-プロピレン共重合体等のポリオレフィンの単層もしくは積層の微多孔性フィルム、織布、又は不織布等を使用できる。ポリオレフィンの積層としては、ポリエチレンとポリプロピレンを積層することが好ましく、中でもポリプロピレン/ポリエチレン/ポリプロピレンの3層構造がより好ましい。
 前記セパレータの厚みは、好ましくは2μm以上、より好ましくは3μm以上、更に好ましくは4μm以上であり、また、その上限としては30μm以下、好ましくは20μm以下、より好ましくは15μm以下である。
 前記セパレータの片面または両面に、無機粒子及び/又は有機粒子と結着剤からなる耐熱層を備えると好ましい。耐熱層の厚みは、好ましくは0.5μm以上、より好ましくは1μm以上、更に好ましくは1.5μm以上であり、また、その上限としては7μm以下、好ましくは6μm以下、より好ましくは5μm以下である。
 前記耐熱層に含まれる無機粒子としては、Al、Si、Ti、及びZrから選ばれる元素を含む酸化物又は水酸化物が好適に挙げられる。
 前記無機粒子の具体例としては、シリカ(SiO)、アルミナ(Al)、チタニア(TiO)、ジルコニア(ZrO)もしくはBaTiO等の酸化物、及びベーマイト(Al・3HO)等の水酸化物から選ばれる1種以上が好適に挙げられ、2種以上がより好適である。中でも、シリカ(SiO)、アルミナ(Al)、ジルコニア(ZrO)、BaTiO、及びベーマイト(Al・3HO)から選ばれる一種以上が好ましく、シリカ(SiO)、アルミナ(Al)、BaTiO、又はベーマイト(Al・3HO)がより好ましく、アルミナ(Al)、BaTiO、又はベーマイト(Al・3HO)が特に好ましい。
 前記耐熱層に含まれる有機粒子としては、ポリアミド、アラミド、ポリイミド等の高分子粒子から選ばれる1種以上が好適に挙げられ、2種以上がより好適である。中でも、ポリアミド、アラミド、及びポリイミドからなる群より選ばれる一種以上が好ましく、ポリアミド又はアラミドがより好ましい。
 前記耐熱層が有する結着剤としては、エチレン-酢酸ビニル共重合体(EVA)、エチレン-エチルアクリレート共重合体などのエチレン-アクリル酸共重合体、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素系ゴム、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリN-ビニルアセトアミド、架橋アクリル樹脂、ポリウレタン、及びエポキシ樹脂からなる群より選ばれる1種以上が好適に挙げられ、2種以上がより好適である。中でも、エチレン-エチルアクリレート共重合体などのエチレン-アクリル酸共重合体、ポリビニルピロリドン(PVP)、ポリN-ビニルアセトアミド、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、及びカルボキシメチルセルロース(CMC)からなる群より選ばれる一種以上が好ましい。
 リチウム電池の構造には特に限定はなく、コイン型電池、円筒型電池、角型電池、又はラミネート電池等を適用できる。
 本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にも広い温度範囲での電気化学特性に優れ、さらに、4.4V以上においても特性は良好である。放電終止電圧は、通常2.8V以上、さらには2.5V以上とすることが出来るが、本願発明におけるリチウム二次電池は、2.0V以上とすることが出来る。電流値については特に限定されないが、通常0.1~30Cの範囲で使用される。また、本発明におけるリチウム電池は、-40~100℃、好ましくは-10~80℃で充放電することができる。
 本発明においては、リチウム電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。
〔第2の蓄電デバイス(電気二重層キャパシタ)〕
 本発明の第2の蓄電デバイスは、本願発明の非水電解液を含み、電解液と電極界面の電気二重層容量を利用してエネルギーを貯蔵する蓄電デバイスである。本発明の一例は、電気二重層キャパシタである。この蓄電デバイスに用いられる最も典型的な電極活物質は、活性炭である。二重層容量は概ね表面積に比例して増加する。
〔第3の蓄電デバイス〕
 本発明の第3の蓄電デバイスは、本願発明の非水電解液を含み、電極のドープ/脱ドープ反応を利用してエネルギーを貯蔵する蓄電デバイスである。この蓄電デバイスに用いられる電極活物質として、酸化ルテニウム、酸化イリジウム、酸化タングステン、酸化モリブデン、酸化銅等の金属酸化物や、ポリアセン、ポリチオフェン誘導体等のπ共役高分子が挙げられる。これらの電極活物質を用いたキャパシタは、電極のドープ/脱ドープ反応に伴うエネルギー貯蔵が可能である。
〔第4の蓄電デバイス(リチウムイオンキャパシタ)〕
 本発明の第4の蓄電デバイスは、本願発明の非水電解液を含み、負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する蓄電デバイスである。リチウムイオンキャパシタ(LIC)と呼ばれる。正極は、例えば活性炭電極と電解液との間の電気二重層を利用したものや、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。電解液には少なくともLiPF等のリチウム塩が含まれる。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
実施例1~18、及び比較例1~3
〔リチウムイオン二次電池の作製〕
 LiNi1/3Mn1/3Co1/3;94質量%、アセチレンブラック(導電剤);3質量%を混合し、予めポリフッ化ビニリデン(結着剤);3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、帯状の正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cmであった。また、ケイ素(単体);10質量%、人造黒鉛(d002=0.335nm、負極活物質);80質量%、アセチレンブラック(導電剤);5質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cmであった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表1及び表2に記載の組成の非水電解液を加えて、ラミネート型電池を作製した。
〔高温サイクル特性の評価〕
 上記の方法で作製した電池を用いて65℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.3Vまで3時間充電し、次に1Cの定電流下、放電電圧3.0Vまで放電することを1サイクルとし、これを100サイクルに達するまで繰り返した。そして、以下の式によりサイクル後の容量維持率を求めた。
容量維持率(%)=(100サイクル目の放電容量/1サイクル目の放電容量)×100
 電池の作製条件及び電池特性は表1及び表2に示されるとおりであった。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
実施例19及び比較例4
 実施例1及び比較例1で用いた正極活物質に変えて、LiNi1/2Mn3/2(正極活物質)を用いた以外は同様にして正極シートを作製した。非晶質炭素で被覆されたLiNi1/2Mn3/2;94質量%、アセチレンブラック(導電剤);3質量%を混合し、予めポリフッ化ビニリデン(結着剤);3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、正極シートを作製したこと、電池評価の際の充電終止電圧を4.9V、放電終止電圧を2.7Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例1及び比較例1と同様にラミネート型電池を作製し、電池評価を行った。結果は表3に示されるとおりであった。
Figure JPOXMLDOC01-appb-T000012
実施例20及び比較例5
 実施例1で用いた負極活物質に変えて、チタン酸リチウムLiTi12(負極活物質)を用いた以外は同様にして負極シートを作製した。チタン酸リチウムLiTi12;80質量%、アセチレンブラック(導電剤);15質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに裁断し、負極シートを作製したこと、電池評価の際の充電終止電圧を2.8V、放電終止電圧を1.2Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例1と同様にラミネート電池を作製し、電池評価を行った。結果は表4に示されるとおりであった。
Figure JPOXMLDOC01-appb-T000013
 上記実施例1~18のリチウム二次電池は何れも、本願発明の非水電解液において、一般式(I)で表される化合物を添加しない場合の比較例1、特許文献1記載の化合物を添加した場合の比較例2、特許文献2記載の化合物を添加した場合の比較例3のリチウム二次電池に比べ、高温でのサイクル特性を向上させている。また、実施例19と比較例4の対比から、正極にニッケルマンガン酸リチウム塩(LiNi1/2Mn3/2)を用いた場合や、実施例20と比較例4の対比から、負極にチタン酸リチウムを用いた場合にも同様な効果がみられる。従って、本発明の効果は、特定の正極や負極に依存した効果でないことは明らかである。
 以上より、本願発明の蓄電デバイスを、高温、高電圧で使用した場合の効果は、非水電解液中に、一般式(I)で表される化合物を含有する場合に特有の効果であることが判明した。
 さらに、本発明の非水電解液は、リチウム一次電池を高電圧で使用した場合の放電特性を改善する効果も有する。

Claims (22)

  1.  非水溶媒と、それに溶解された電解質塩と、下記一般式(I)で表される化合物の少なくとも一種とを少なくとも含有してなる、非水電解液:
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     nは1又は2の整数であり、
     nが1の場合、Lは
     少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数2~10の直鎖もしくは分枝鎖の不飽和炭化水素基、
     少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数3~10のシクロアルキル基、又は
     少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数6~20のアリール基を示し、
     nが2の場合、Lは
     エーテル結合を含んでいてもよい炭素数2~12の飽和もしくは不飽和の2価の炭化水素基、又は
     炭素数6~20のアリーレン基を示す。)。
  2.  一般式(I)で表される化合物の含有量が0.001~10質量%である、請求項1に記載の非水電解液。
  3.  nが1であり、Lが直鎖又は分枝鎖のC2-10アルケニル基、直鎖又は分枝鎖のC2-10アルキニル基、又はC3-10シクロアルキル基であり、これら基はフッ素、塩素、臭素、及びヨウ素からなる群から選択される一又はそれ以上のハロゲン原子によって置換されていてもよい、請求項1に記載の非水電解液。
  4.  nが1であり、Lが一又はそれ以上の直鎖又は分枝鎖のアルキル基で置換されていてもよいフェニル基であり、このフェニル基のベンゼン環上の水素原子及びこのベンゼン環に置換するアルキル基上の水素原子が、フッ素、塩素、臭素、及びヨウ素からなる群から選択される一又はそれ以上のハロゲン原子によって置換されていてもよい、請求項1に記載の非水電解液。
  5.  nが2であり、Lが直鎖又は分枝鎖のC2-12アルキレン基、直鎖又は分枝鎖のC2-12アルケニレン基、及び直鎖又は分枝鎖のC2-12アルキニレン基であり、これら基はエーテル結合を含んでいてもよい、請求項1に記載の非水電解液。
  6.  nが2であり、Lが炭素数2~12のシクロアルキレン基である、請求項1に記載の非水電解液。
  7.  nが2であり、Lがフェニレン基、トリレン基(メチルフェニレン基)、ジメチルフェニレン基、キシリレン基(フェニレンビスメチレン基)、ビフェニリレン基、ナフチレン基、アントリレン基、又はフェナントリレン基である、請求項1に記載の非水電解液。
  8.  nが2であり、Lが一又はそれ以上の直鎖又は分枝鎖のアルキル基で置換されていてもよいフェニレン基又はナフチレン基である、請求項1に記載の非水電解液。
  9.  前記非水溶媒が、環状カーボネートおよび鎖状エステルからなる群から選択される一種又は二種以上を含んでなる、請求項1~8のいずれか一項に記載の非水電解液。
  10.  前記環状カーボネートが、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン、トランス又はシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネート、及びビニルエチレンカーボネートからなる群から選択される一種又は二種以上である、請求項9に記載の非水電解液。
  11.  前記鎖状エステルが、非対称鎖状カーボネート、対称鎖状カーボネート、及び鎖状カルボン酸エステルからなる群から選択される一種又は二種以上である、請求項9に記載の非水電解液。
  12.  前記非対称鎖状カーボネートが、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、及びエチルプロピルカーボネートからなる群から選択される一種又は二種以上であり、
     前記対称鎖状カーボネートが、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、及びジブチルカーボネートからなる群から選択される一種又は二種以上であり、
     前記鎖状カルボン酸エステルが、ピバリン酸メチル、ピバリン酸エチル、ピバリン酸プロピル等のピバリン酸エステル、プロピオン酸メチル、プロピオン酸エチル、酢酸メチル、及び酢酸エチルからなる群から選択される一種又は二種以上である、請求項11に記載の非水電解液。
  13.  前記鎖状エステルが、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、ジメチルカーボネート、プロピオン酸メチル、酢酸メチル、及び酢酸エチルからなる群から選択される一種又は二種以上のメチル基を有する鎖状エステルである、請求項9に記載の非水電解液。
  14.  前記電解質塩が、LiPF、LiPO、LiPOF、LiBF、LiN(SOCF、LiN(SO、LiN(SOF)、ジフルオロビス[オキサレート-O,O’]リン酸リチウム及びテトラフルオロ[オキサレート-O,O’]リン酸リチウムから選ばれる一種又は二種以上を含む、請求項1~13のいずれか一項に記載の非水電解液。
  15.  正極、負極、及び非水溶媒に電解質塩が溶解されている非水電解液を少なくとも備えてなる蓄電デバイスの非水電解液として用いられる、請求項1~14のいずれか一項に記載の非水電解液。
  16.  前記蓄電デバイスがリチウム二次電池である、請求項15に記載の非水電解液。
  17.  負極が、リチウム金属、リチウム合金、リチウムを吸蔵及び放出することが可能な炭素材料、スズ、スズ化合物、ケイ素、ケイ素化合物、及びチタン酸リチウム化合物から選ばれる1種又は2種以上を負極活物質として含んでなるものである、請求項15に記載の非水電解液。
  18.  前記負極が、炭素材料からなるものである、請求項15に記載の非水電解液。
  19.  前記正極が、コバルト、マンガン、及びニッケルから選ばれる一種以上を含有するリチウムとの複合金属酸化物、又は鉄、コバルト、ニッケル、及びマンガンから選ばれる一種以上を含むリチウム含有オリビン型リン酸塩を正極活物質として含んでなる、請求項15に記載の非水電解液。
  20.  正極、負極、及び非水溶媒に電解質塩が溶解されてなる非水電解液を少なくとも備えてなる蓄電デバイスであって、前記非水電解液が請求項1~14のいずれか一項に記載の非水電解液であることを特徴とする、蓄電デバイス。
  21.  請求項1~14のいずれか一項に記載の非水電解液の、蓄電デバイスの非水電解液としての使用。
  22.  請求項1~8のいずれか一項に定義される一般式(I)で表される化合物の、非水電解液への添加剤としての使用。
PCT/JP2015/065356 2014-05-30 2015-05-28 非水電解液およびそれを用いた蓄電デバイス WO2015182690A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/315,273 US10164293B2 (en) 2014-05-30 2015-05-28 Nonaqueous electrolyte and electricity storing device in which same is used
KR1020167034603A KR20170012308A (ko) 2014-05-30 2015-05-28 비수 전해액 및 그것을 사용한 축전 디바이스
CN201580029303.9A CN106471662A (zh) 2014-05-30 2015-05-28 非水电解液以及使用该非水电解液的蓄电装置
EP15800557.9A EP3151326A4 (en) 2014-05-30 2015-05-28 Nonaqueous electrolyte and electricity-storing device in which same is used
JP2016523550A JP6485753B2 (ja) 2014-05-30 2015-05-28 非水電解液およびそれを用いた蓄電デバイス

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014111816 2014-05-30
JP2014-111816 2014-05-30
JP2014237753 2014-11-25
JP2014-237753 2014-11-25

Publications (1)

Publication Number Publication Date
WO2015182690A1 true WO2015182690A1 (ja) 2015-12-03

Family

ID=54699013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065356 WO2015182690A1 (ja) 2014-05-30 2015-05-28 非水電解液およびそれを用いた蓄電デバイス

Country Status (6)

Country Link
US (1) US10164293B2 (ja)
EP (1) EP3151326A4 (ja)
JP (1) JP6485753B2 (ja)
KR (1) KR20170012308A (ja)
CN (1) CN106471662A (ja)
WO (1) WO2015182690A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047656A1 (ja) * 2016-09-08 2018-03-15 マクセルホールディングス株式会社 リチウムイオン二次電池およびその製造方法
JP2018073549A (ja) * 2016-10-26 2018-05-10 株式会社東芝 電極、電極体、二次電池、電池モジュール及び車両
WO2019031315A1 (ja) * 2017-08-07 2019-02-14 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
KR20210082388A (ko) 2019-12-25 2021-07-05 주식회사 엘지에너지솔루션 비수계 전해액 및 이를 포함하는 리튬 이차전지
US11876177B2 (en) 2017-08-24 2024-01-16 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN107658498B (zh) * 2017-10-24 2020-10-20 广州天赐高新材料股份有限公司 锂二次电池电解液及其锂二次电池
CN108539273B (zh) * 2018-04-17 2021-03-26 广州天赐高新材料股份有限公司 一种新型锂二次电池电解液和一种锂二次电池
CN111864270B (zh) * 2019-04-24 2022-06-24 微宏动力系统(湖州)有限公司 一种非水电解液及包含该电解液的锂离子二次电池
CN110994025A (zh) * 2019-12-10 2020-04-10 惠州市豪鹏科技有限公司 一种电解液添加剂、电解液和锂离子电池
CN112331485A (zh) * 2020-10-29 2021-02-05 上海奥威科技开发有限公司 一种锂离子电容器及其制备方法和用途
KR102522492B1 (ko) 2021-10-12 2023-04-18 주식회사 엘지에너지솔루션 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR20240064421A (ko) 2022-11-04 2024-05-13 주식회사 엘지에너지솔루션 리튬 이차전지
KR20240064422A (ko) 2022-11-04 2024-05-13 주식회사 엘지에너지솔루션 리튬 이차전지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192762A (ja) * 1993-12-24 1995-07-28 Sony Corp 非水電解液二次電池
WO2005091422A1 (ja) * 2004-03-22 2005-09-29 Ube Industries, Ltd. 非水電解液及びそれを用いたリチウム二次電池
JP2010086915A (ja) * 2008-10-02 2010-04-15 Daikin Ind Ltd 含フッ素蟻酸エステル溶媒を含む非水電解液

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4017091B2 (ja) * 1998-08-19 2007-12-05 昭和電工株式会社 重合性化合物、それを用いた高分子固体電解質及びその用途
JP2000188128A (ja) * 1998-12-24 2000-07-04 Mitsubishi Chemicals Corp 非水電解液二次電池
US6534220B2 (en) * 2000-12-29 2003-03-18 3M Innovative Properties Company High-boiling electrolyte solvent
KR100572283B1 (ko) * 2003-12-20 2006-04-19 제일모직주식회사 리튬 전지용 비수 전해액
CN1934743A (zh) * 2004-03-22 2007-03-21 宇部兴产株式会社 非水电解液及使用该非水电解液的锂二次电池
EP1772924B1 (en) * 2004-05-28 2013-04-10 Ube Industries, Ltd. Nonaqueous electrolytic solution and lithium secondary battery
JP4479728B2 (ja) * 2005-01-20 2010-06-09 宇部興産株式会社 非水電解液及びそれを用いたリチウム二次電池
US7794876B2 (en) * 2006-11-08 2010-09-14 Ube Industries, Ltd. Pentafluorophenyloxy compound, and nonaqueous electrolyte solution and lithium secondary battery using same
JP2012216387A (ja) * 2011-03-31 2012-11-08 Daikin Ind Ltd 電気化学デバイス及び電気化学デバイス用非水電解液
JP2011233535A (ja) * 2011-07-11 2011-11-17 Mitsubishi Chemicals Corp 非水電解液二次電池
KR20140063672A (ko) * 2011-08-12 2014-05-27 우베 고산 가부시키가이샤 비수전해액 및 그것을 사용한 전기화학소자
EP2602241A1 (en) * 2011-12-07 2013-06-12 Solvay Sa Process for the manufacture of 1, 1'-difluorosubstituted dialkyl carbonates, isomers thereof and electrolyte compositions containing them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192762A (ja) * 1993-12-24 1995-07-28 Sony Corp 非水電解液二次電池
WO2005091422A1 (ja) * 2004-03-22 2005-09-29 Ube Industries, Ltd. 非水電解液及びそれを用いたリチウム二次電池
JP2010086915A (ja) * 2008-10-02 2010-04-15 Daikin Ind Ltd 含フッ素蟻酸エステル溶媒を含む非水電解液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3151326A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047656A1 (ja) * 2016-09-08 2018-03-15 マクセルホールディングス株式会社 リチウムイオン二次電池およびその製造方法
JP2018073549A (ja) * 2016-10-26 2018-05-10 株式会社東芝 電極、電極体、二次電池、電池モジュール及び車両
WO2019031315A1 (ja) * 2017-08-07 2019-02-14 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JPWO2019031315A1 (ja) * 2017-08-07 2019-11-21 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
US11876177B2 (en) 2017-08-24 2024-01-16 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
KR20210082388A (ko) 2019-12-25 2021-07-05 주식회사 엘지에너지솔루션 비수계 전해액 및 이를 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
JP6485753B2 (ja) 2019-03-20
CN106471662A (zh) 2017-03-01
US20170194664A1 (en) 2017-07-06
KR20170012308A (ko) 2017-02-02
JPWO2015182690A1 (ja) 2017-04-20
US10164293B2 (en) 2018-12-25
EP3151326A1 (en) 2017-04-05
EP3151326A4 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6485753B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP6575521B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP6614146B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5610052B2 (ja) リチウム電池用非水電解液及びそれを用いたリチウム電池
JP6380392B2 (ja) 非水電解液、それを用いた蓄電デバイス、及びそれに用いられるビフェニル基含有カーボネート化合物
JP6115569B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6222106B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5561163B2 (ja) リチウム電池用非水電解液、それを用いたリチウム電池、及びそれに用いられるホルミルオキシ基含有化合物
WO2014030684A1 (ja) 非水電解液及びそれを用いた蓄電デバイス
WO2016104468A1 (ja) 非水電解液及びそれを用いた蓄電デバイス
WO2013058224A1 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6229453B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
WO2013024717A1 (ja) 非水電解液及びそれを用いた電気化学素子
JP2011171282A (ja) 非水電解液及びそれを用いた電気化学素子
JP2019207890A (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6229452B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP6015673B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5704277B1 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP6252200B2 (ja) 非水電解液およびそれを用いた蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523550

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15315273

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167034603

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015800557

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015800557

Country of ref document: EP