KR20240064422A - 리튬 이차전지 - Google Patents

리튬 이차전지 Download PDF

Info

Publication number
KR20240064422A
KR20240064422A KR1020220146436A KR20220146436A KR20240064422A KR 20240064422 A KR20240064422 A KR 20240064422A KR 1020220146436 A KR1020220146436 A KR 1020220146436A KR 20220146436 A KR20220146436 A KR 20220146436A KR 20240064422 A KR20240064422 A KR 20240064422A
Authority
KR
South Korea
Prior art keywords
formula
secondary battery
lithium secondary
active material
carbonate
Prior art date
Application number
KR1020220146436A
Other languages
English (en)
Inventor
고윤석
이철행
안경호
한준혁
오영호
정유경
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to KR1020220146436A priority Critical patent/KR20240064422A/ko
Priority to PCT/KR2023/017531 priority patent/WO2024096678A1/ko
Publication of KR20240064422A publication Critical patent/KR20240064422A/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 음극, 양극, 분리막 및 비수 전해질을 포함하고, 상기 음극은 실리콘계 활물질을 포함하고, 상기 비수 전해질은 리튬 염, 유기 용매 및 첨가제를 포함하고, 상기 첨가제는 특정 화학식으로 표시되는 화합물을 포함하는 리튬 이차전지를 제공한다.

Description

리튬 이차전지{LITHIUM SECONDARY BATTERY}
본 발명은 리튬 이차전지에 관한 것으로, 보다 구체적으로는 양/음극에 견고한 SEI 막을 형성할 수 있는 첨가제를 포함하는 비수 전해질을 포함함으로써, 초기 저항 증가를 억제하고, 출력 특성 및 수명 성능을 개선할 수 있는 리튬 이차전지에 관한 것이다.
정보사회의 발달로 인한 개인 IT 디바이스와 전산망이 발달되고 이에 수반하여 전반적인 사회의 전기 에너지에 대한 의존도가 높아지면서, 전기 에너지를 효율적으로 저장하고 활용하기 위한 기술 개발이 요구되고 있다.
이차전지는 개발된 기술 중 여러 용도에 가장 적합한 기술로서, 이러한 이차전지 중에서도 개인 IT 디바이스 등에 적용될 수 있을 정도로 소형화가 가능할 뿐만 아니라, 에너지 밀도가 가장 높은 리튬 이차전지에 대한 관심이 대두되고 있다.
일반적으로 리튬 이차전지는 양극, 음극 및 다공성 분리막으로 이루어진 전극 조립체에 비수 전해질이 주입 또는 함침되어 제조된다.
이러한 리튬 이차전지의 양극 활물질로는 리튬 함유 코발트 산화물, 층상 결정 구조의 LiMnO2, 스피넬 결정 구조의 LiMn2O4, 리튬 함유 니켈 산화물(LiNiO2) 리튬 니켈-코발트-망간 전이금속 산화물 등의 사용이 고려되고 있다.
한편, 음극 활물질로는 흑연 등의 탄소계 활물질이 사용되어 왔으나, 최근 탄소계 활물질에 비해 높은 용량을 갖는다는 측면에서 실리콘계 활물질의 사용이 고려되고 있다.
상기 실리콘계 활물질은 높은 용량을 갖는다는 점에서 장점이 있지만, 충방전 과정에서 부피 팽창/수축이 매우 크다는 문제가 있다. 이러한 큰 부피 팽창/수축 정도는 음극의 도전성을 크게 저하시켜 수명 성능을 저하시키는 원인이 된다. 또한, 초기 활성화 시 음극 표면에는 고체 전해질 계면막(Solid Electrolyte Interface layer, 이하 SEI 막)이 형성되는데, 실리콘계 활물질은 부피 팽창 정도가 커 SEI 막 깨짐, 새로운 음극 표면의 계속적인 발생이 문제되며, 이에 따라 SEI 막 형성 반응이 계속적으로 발생하는 등으로 전해질 부반응 가속화의 문제가 있고, SEI 막의 두께가 두꺼워져 저항이 증가하는 문제가 있다.
한국 공개특허공보 제2017-0012308호
본 발명의 일 과제는 상기와 같은 문제점을 해결하기 위한 것으로, 실리콘계 활물질을 음극 활물질로서 포함하는 리튬 이차전지에 있어서, 음극에 견고하고 저항이 낮은 SEI 막을 형성하여, 출력 특성 및 수명 특성이 동시에 향상된 리튬 이차전지를 제공하는 것이다.
본 발명은 음극, 양극, 분리막 및 비수 전해질을 포함하고, 상기 음극은 실리콘계 활물질을 포함하고, 상기 비수 전해질은 리튬 염, 유기 용매 및 첨가제를 포함하고, 상기 첨가제는 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지를 제공한다.
[화학식 1]
상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 10의 알킬렌기이고. R3는 하나 이상의 불소가 치환된 탄소수 1 내지 20의 알킬기이다.
본 발명은 음극에 실리콘계 활물질이 포함되고, 비수 전해질에 첨가제로서 상기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지에 관한 것이다. 상기 화학식 1로 표시되는 화합물은 구조 내에 프로파질기(-C≡C-)와 하나 이상의 불소 원소가 치환된 플루오로카본 작용기를 포함하기 때문에, 유기 용매 보다 먼저 환원되고, 음극 표면에 플루오로카본 성분을 포함하는 낮은 저항의 SEI 막을 형성할 수 있다. 상기 화학식 1로 표시되는 화합물에 의해 음극에 형성된 SEI 막은 견고하며 낮은 저항을 가지므로, 실리콘계 활물질의 부피 팽창에 의한 SEI 막 깨짐을 방지하고, 낮은 저항을 가짐으로써 리튬 이차전지의 수명 특성 및 출력 특성(구체적으로, 상온 출력 특성 및 저온 출력 특성)이 동시에 향상될 수 있다.
먼저, 본 발명을 기술하기 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
한편, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서, "%"는 명시적인 다른 표시가 없는 한 중량%를 의미한다.
본 발명을 설명하기에 앞서, 명세서 내에서 "탄소수 a 내지 b"의 기재에 있어서, "a" 및 "b"는 구체적인 작용기에 포함되는 탄소 원자의 개수를 의미한다. 즉, 상기 작용기는 "a" 내지 "b" 개의 탄소원자를 포함할 수 있다.
또한, 본 명세서에서, "치환"이란 별도의 정의가 없는 한, 탄소에 결합된 적어도 하나 이상의 수소가 수소 이외의 원소로 치환된 것을 의미하며, 예를 들면, 탄소수 1 내지 5의 알킬기 또는 불소 원소로 치환된 것을 의미한다.
본 명세서에서 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
리튬 이차전지
본 발명은 음극, 양극, 분리막 및 비수 전해질을 포함하고, 상기 음극은 실리콘계 활물질을 포함하고, 상기 비수 전해질은 리튬 염, 유기 용매 및 첨가제를 포함하고, 상기 첨가제는 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지를 제공한다.
[화학식 1]
상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 10의 알킬렌기이고. R3는 하나 이상의 불소가 치환된 탄소수 1 내지 20의 알킬기이다.
본 발명은 음극에 실리콘계 활물질이 포함되고, 비수 전해질에 첨가제로서 상기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지에 관한 것이다. 상기 화학식 1로 표시되는 화합물은 구조 내에 프로파질기(-C≡C-)와 하나 이상의 불소 원소가 치환된 플루오로카본 작용기를 포함하기 때문에, 유기 용매 보다 먼저 환원되고, 음극 표면에 플루오로카본 성분을 포함하는 낮은 저항의 SEI 막을 형성할 수 있다. 상기 화학식 1로 표시되는 화합물에 의해 음극에 형성된 SEI 막은 견고하며 낮은 저항을 가지므로, 실리콘계 활물질의 부피 팽창에 의한 SEI 막 깨짐을 방지하고, 낮은 저항을 가짐으로써 리튬 이차전지의 수명 특성 및 출력 특성(구체적으로, 상온 출력 특성 및 저온 출력 특성)이 동시에 향상될 수 있다.
상기 리튬 이차전지는 음극; 양극; 분리막; 및 비수 전해질;을 포함한다. 구체적으로, 상기 리튬 이차전지는 음극; 상기 음극에 대향하는 양극; 상기 음극 및 상기 양극 사이에 개재되는 분리막; 및 비수 전해질;을 포함한다. 상기 리튬 이차전지는 상기 음극; 상기 음극에 대향하는 양극; 및 상기 음극 및 상기 양극 사이에 개재되는 분리막;을 포함하는 전극 조립체를 전지 케이스에 수납한 후, 비수 전해질을 주입하여 제조될 수 있다.
(1) 음극
상기 음극은 실리콘계 활물질을 포함한다. 상기 실리콘계 활물질은 탄소계 활물질에 비해 높은 용량을 발휘하지만, 충방전에 따른 부피 팽창/수축 정도가 크다는 문제가 있다. 그러나, 상기 실리콘계 활물질과 후술하는 비수 전해질을 함께 사용할 경우, 음극에 견고하고 낮은 저항을 갖는 SEI 막 형성이 가능하므로, 전해질 부반응이 방지되고 높은 수명 성능 및 출력 특성을 갖는 리튬 이차전지의 구현이 가능하다.
상기 실리콘계 활물질은 하기 화학식 A로 표시되는 화합물을 포함할 수 있다.
[화학식 A]
SiOx(0 ≤ x < 2)
상기 화학식 A에서, SiO2의 경우 리튬 이온과 반응하지 않아 리튬을 저장할 수 없으므로, x는 상기 범위 내인 것이 바람직하다.
상기 실리콘계 활물질은 Si(실리콘, Silicon)일 수 있다. Si는 실리콘 산화물(예를 들어 SiOx(0<x<2))에 비해 용량이 약 2.5~3배 높다는 측면에서 유리하지만, Si의 충방전에 따른 부피 팽창/수축 정도가 실리콘 산화물의 경우보다 매우 크므로 상용화가 쉽지 않다. 그러나, 본 발명의 리튬 이차전지는 후술하는 비수 전해질이 적용됨에 따라 높은 수명 성능 및 출력 특성을 가질 수 있다.
상기 실리콘계 활물질의 평균 입경(D50)은 충방전 시의 활물질의 구조적 안정을 기하고, 전기 전도성을 유지하기 위한 전도성 네트워크를 보다 원활하게 형성할 수 있거나, 활물질 및 집전체를 결착시키기 위한 바인더와의 접근성을 보다 용이하도록 하는 측면에서 0.5㎛ 내지 20㎛, 바람직하게는 1㎛ 내지 8㎛일 수 있다.
상기 음극은 음극 집전체; 및 상기 음극 집전체의 적어도 일면에 배치된 음극 활물질층;을 포함할 수 있다. 이때, 상기 실리콘계 활물질은 상기 음극 활물질층에 포함될 수 있다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않는다. 구체적으로 상기 음극 집전체는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있다.
상기 음극 집전체는 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 상기 음극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 상기 음극 집전체의 적어도 일면에 배치된다. 구체적으로, 상기 음극 활물질층은 상기 음극 집전체의 일면 또는 양면에 배치될 수 있다.
상기 실리콘계 활물질은 부피 팽창/수축이 전지에 미치는 영향을 최소화하면서, 실리콘계 활물질이 갖는 높은 용량을 이차전지에 충분히 구현하기 위한 측면에서 상기 음극 활물질층 내에 60중량% 내지 99중량%, 바람직하게는 70중량% 내지 85중량%로 포함될 수 있다.
상기 음극 활물질층은 상기 실리콘계 활물질과 함께 도전재 및/또는 바인더를 더 포함할 수 있다.
상기 바인더는 상기 음극 활물질층과 후술할 음극 집전체와의 접착력을 향상시키거나, 실리콘계 활물질 간의 결착력을 향상시키기 위해 사용될 수 있다.
구체적으로, 상기 바인더는 전극 접착력을 더욱 향상시키고 실리콘계 활물질의 부피 팽창/수축에 충분한 저항력을 부여할 수 있다는 측면에서, 스티렌부타디엔 고무(SBR: styrene butadiene rubber), 니트릴부타디엔 고무(NBR: nitrile butadiene rubber), 아크릴로니트릴부타디엔 고무(acrylonitrile butadiene rubber), 아크릴 고무(acrylic rubber), 부틸 고무(butyl rubber), 플루오르 고무(fluoro rubber), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐알코올(PVA: polyvinyl alcohol), 폴리아크릴산(PAA: polyacrylic acid), 폴리에틸렌 글리콜(PEG: polyethylene glycol), 폴리아크릴로니트릴(PAN: polyacrylonitrile) 및 폴리아크릴 아미드(PAM: polyacryl amide)로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있고, 바람직하게는 니트릴부타디엔 고무를 포함할 수 있다.
상기 바인더는 상기 음극 활물질층 내에 1중량% 내지 30중량%, 바람직하게는 7중량% 내지 15중량%로 포함될 수 있으며, 상기 범위에 있을 때 실리콘계 활물질을 보다 잘 결착시켜 활물질의 부피 팽창 문제를 최소화할 수 있음과 동시에 음극 활물질층 형성을 위한 슬러리 제조 시에 바인더의 분산이 용이하도록 하고 코팅성 및 슬러리의 상 안정성을 향상시킬 수 있다.
상기 도전재는 이차전지에 도전성을 보조 및 향상시키기 위해 사용될 수 있고, 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다. 구체적으로 상기 도전재는 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 및 폴리페닐렌 유도체로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있으며, 바람직하게는 높은 도전성을 구현하기 위한 측면에서 카본블랙을 포함할 수 있다.
상기 도전재는 상기 음극 활물질층 내에 1중량% 내지 20중량%, 바람직하게는 8중량% 내지 15중량%로 포함될 수 있으며, 상기 범위일 때 바인더로 인한 저항 증가를 완화시키면서도 우수한 도전성 네트워크를 형성할 수 있다는 측면에서 바람직하다.
상기 음극 활물질층의 두께는 5㎛ 내지 500㎛, 바람직하게는 5㎛ 내지 100㎛일 수 있다.
상기 음극 활물질층의 로딩량은 3mAh/cm2 내지 15mAh/cm2, 바람직하게는 8mAh/cm2 내지 13mAh/cm2일 수 있다.
상기 음극은 상기 음극 집전체 상에 음극 활물질 및 선택적으로 바인더, 도전재 및 음극 슬러리 형성용 용매를 포함하는 음극 슬러리를 코팅한 다음, 건조 및 압연하여 제조될 수 있다.
상기 음극 슬러리 형성용 용매는 예를 들어 음극 활물질, 바인더 및/또는 도전재의 분산을 용이하게 하는 측면에서, 증류수, 에탄올, 메탄올 및 이소프로필 알코올로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 증류수를 포함할 수 있다.
상기 음극 슬러리 형성용 용매는 음극 슬러리의 점도, 코팅성, 분산성 등을 고려하여, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 15중량% 내지 45 중량%가 되도록 상기 음극 슬러리에 포함될 수 있다.
(2) 양극
상기 양극은 양극 활물질을 포함한다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 니켈, 코발트, 망간 및 알루미늄으로 이루어진 적어도 1종의 전이금속과 리튬을 포함하는 리튬 전이금속 복합 산화물, 바람직하게는 니켈, 코발트 및 망간을 포함하는 전이금속과 리튬을 포함하는 리튬 전이금속 복합 산화물을 포함할 수 있다.
예를 들어, 상기 리튬 전이금속 복합 산화물로는 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물 (예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. 이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 전이금속 복합 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈-망간-코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있으며, 리튬 전이금속 복합 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 전이금속 복합 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
보다 구체적으로, 상기 양극 활물질은 리튬 전이금속 복합 산화물로서, 상기 리튬 전이금속 복합 산화물에 포함된 전이금속의 전체 몰수를 기준으로 니켈을 60몰% 이상 포함하는 것일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 전이금속 복합 산화물로서, 상기 전이금속은 니켈; 및 망간, 코발트 및 알루미늄 중에서 선택된 적어도 1종을 포함하고, 상기 니켈을 상기 전이금속의 전체 몰수를 기준으로 60몰% 이상, 구체적으로 60몰% 내지 90몰%로 포함하는 것일 수 있다. 이러한 니켈을 고함량으로 사용하는 리튬 전이금속 복합 산화물을 전술한 비수 전해액을 함께 사용할 때, 구조 붕괴에 의해 발생되는 가스 상에 부산물을 감소시켜 줄 수 있다는 측면에서 바람직하다.
또한, 상기 양극 활물질은 하기 화학식 B로 표시되는 리튬 복합 전이금속 산화물을 포함할 수 있다.
[화학식 B]
Li1+x(NiaCobMncMd)O2
상기 화학식 B에서, M은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B 및 Mo 중 선택된 1종 이상이고, 1+x, a, b, c 및 d는 각각 독립적인 원소들의 원자분율로서, 0≤x≤0.2, 0.50≤a<1, 0<b≤0.25, 0<c≤0.25, 0≤d≤0.1, a+b+c+d=1이다.
바람직하게는, 상기 a, b, c 및 d는 각각 0.70≤a≤0.95, 0.025≤b≤0.20, 0.025≤c≤0.20, 0≤d≤0.05일 수 있다.
또한, 상기 a, b, c 및 d는 각각 0.80≤a≤0.95, 0.025≤b≤0.15, 0.025≤c≤0.15, 0≤d≤0.05일 수 있다.
또한, 상기 a, b, c 및 d는 각각 0.85≤a≤0.90, 0.05≤b≤0.10, 0.05≤c≤0.10, 0≤d≤0.03일 수 있다.
상기 양극은 양극 집전체; 및 상기 양극 집전체의 적어도 일면에 배치된 양극 활물질층;을 포함할 수 있다. 이때, 상기 양극 활물질층은 전술한 양극 활물질을 포함할 수 있다.
상기 양극 집전체의 두께는 통상적으로 3 내지 500㎛의 두께를 가질 수 있다.
상기 양극 집전체는 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 상기 양극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 상기 양극 집전체의 적어도 일면에 배치된다. 구체적으로, 상기 양극 활물질층은 상기 양극 집전체의 일면 또는 양면에 배치될 수 있다.
상기 양극 활물질은 양극 활물질의 충분한 용량 발휘 등을 고려하여 양극 활물질층에 80중량% 내지 99중량%로 포함될 수 있다.
상기 양극 활물질층은 전술한 양극 활물질과 함께 바인더 및/또는 도전재를 더 포함할 수 있다.
상기 바인더는 활물질과 도전재 등의 결착과 집전체에 대한 결착에 조력하는 성분이며, 구체적으로 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무 및 불소 고무로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 폴리비닐리덴플루오라이드를 포함할 수 있다.
상기 바인더는 양극 활물질 등 성분 간 결착력을 충분히 확보하는 측면에서 상기 양극 활물질층에 1중량% 내지 20중량%, 바람직하게는 1.2중량% 내지 10중량%로 포함될 수 있다.
상기 도전재는 이차전지에 도전성을 보조 및 향상시키기 위해 사용될 수 있고, 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다. 구체적으로 상기 양극 도전재는 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 및 폴리페닐렌 유도체로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있으며, 바람직하게는 도전성 향상 측면에서 탄소 나노 튜브를 포함할 수 있다.
상기 도전재는 전기 전도성을 충분히 확보하는 측면에서 상기 양극 활물질층 내에 1중량% 내지 20중량%, 바람직하게는 1.2중량% 내지 10중량%로 포함될 수 있다.
상기 양극 활물질층의 두께는 5㎛ 내지 500㎛, 바람직하게는 100㎛ 내지 200㎛일 수 있다.
상기 양극 활물질층의 로딩량은 2mAh/cm2 내지 6mAh/cm2, 바람직하게는 4mAh/cm2 내지 5mAh/cm2일 수 있다.
상기 양극은 상기 양극 집전체 상에 양극 활물질 및 선택적으로 바인더, 도전재 및 양극 슬러리 형성용 용매를 포함하는 양극 슬러리를 코팅한 다음, 건조 및 압연하여 제조될 수 있다.
상기 양극 슬러리 형성용 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기 용매를 포함할 수 있다. 상기 양극 슬러리의 고형분 함량은 40중량% 내지 90중량%, 구체적으로 50중량% 내지 80중량%일 수 있다.
(3) 분리막
상기 분리막은 상기 양극 및 상기 음극 사이에 개재될 수 있다.
상기 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독공중합체, 프로필렌 단독공중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다. 또한, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
(4) 비수 전해질
1) 리튬염
먼저, 리튬염에 대하여 설명하면 다음과 같다.
본 발명의 일 실시예에 따른 리튬 이차전지용 비수 전해액에 있어서, 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, B10Cl10 -, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CH3SO3 -, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있다. 구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiAlO4, LiAlCl4, LiPF6, LiSbF6, LiAsF6, LiB10Cl10, LiBOB (LiB(C2O4)2), LiCF3SO3, LiTFSI (LiN(SO2CF3)2), LiFSI (LiN(SO2F)2), LiCH3SO3, LiCF3CO2, LiCH3CO2 및 LiBETI (LiN(SO2CF2CF3)2)로 이루어진 군으로부터 선택된 적어도 어느 하나 이상을 들 수 있다. 상기 리튬염은 구체적으로 LiBF4, LiClO4, LiPF6, LiBOB (LiB(C2O4)2), LiCF3SO3, LiTFSI (LiN(SO2CF3)2), LiFSI (LiN(SO2F)2) 및 LiBETI (LiN(SO2CF2CF3)2)로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있고, 보다 구체적으로 LiPF6를 포함할 수 있다.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 전해액 내에 0.8 M 내지 3.0 M의 농도, 구체적으로 1.0M 내지 3.0M 농도로 포함될 수 있다.
상기 리튬염의 농도가 상기 범위를 만족할 경우, 최적의 함침성을 구현할 수 있도록 비수 전해액의 점도를 제어할 수 있고, 리튬 이온의 이동성을 향상시켜 리튬 이차전지의 용량 특성 및 사이클 특성 개선 효과를 얻을 수 있다.
2) 유기 용매
상기 유기 용매로는 리튬 이차전지에 통상적으로 사용되는 비수계 용매로서, 이차전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있는 것이라면 특별히 제한되지 않는다.
구체적으로, 상기 유기 용매는 환형 카보네이트계 유기 용매 및 선형 카보네이트계 유기 용매를 포함할 수 있다.
상기 환형 카보네이트계 유기 용매는 고점도의 유기 용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시킬 수 있는 유기 용매로서, 구체적으로 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트 및 비닐렌 카보네이트로 이루어진 군으로부터 선택되는 적어도 1종의 유기 용매를 포함할 수 있으며, 보다 구체적으로 에틸렌 카보네이트를 포함할 수 있다.
또한, 상기 선형 카보네이트계 유기 용매는 저점도 및 저유전율을 가지는 유기 용매로서, 구체적으로 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 적어도 1종을 포함할 수 있다. 상기 선형 카보네이트계 유기 용매는 구체적으로 디메틸 카보네이트 및 에틸메틸 카보네이트를 포함할 수 있고, 보다 구체적으로 디메틸 카보네이트 및 에틸메틸 카보네이트를 60:40 내지 90:10의 부피비로 포함할 수 있다.
상기 유기 용매는 환형 카보네이트계 유기 용매와 선형 카보네이트계 유기 용매의 혼합물일 수 있다. 이때, 상기 환형 카보네이트계 유기 용매와 선형 카보네이트계 유기 용매는 10:90 내지 40:60의 부피비, 구체적으로 15:85 내지 35:65의 부피비로 혼합될 수 있다.
한편, 상기 유기 용매는 필요에 따라 비수 전해질에 통상적으로 사용되는 유기 용매를 제한 없이 추가하여 사용할 수 있다. 예를 들면, 에스터계 유기 용매, 에테르계 유기 용매, 글라임계 용매 및 니트릴계 유기 용매 중 적어도 하나 이상의 유기 용매를 추가로 포함할 수도 있다.
상기 에스터계 유기 용매로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트 및 부틸 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군으로부터 선택되는 적어도 1종을 포함할 수 있다.
상기 에테르계 용매로는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르, 에틸프로필 에테르, 1,3-디옥소란(DOL) 및 2,2-비스(트리플루오로메틸)-1,3-디옥소란(TFDOL)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 글라임계 용매는 선형 카보네이트계 유기 용매에 비해 높은 유전율 및 낮은 표면 장력을 가지며, 메탈과의 반응성이 적은 용매로서, 디메톡시에탄 (글라임, DME), 디에톡시에탄, 디글라임 (digylme), 트리-글라임(Triglyme), 및 테트라-글라임 (TEGDME)으로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있으나 이에 한정되는 것은 아니다.
상기 니트릴계 용매는 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 1종 이상인 것일 수 있으나 이에 한정되는 것은 아니다.
한편, 상기 비수 전해질 중 리튬 염과 첨가제를 제외한 잔부는 별도의 언급이 없는 한 모두 유기 용매일 수 있다.
(3) 첨가제
본 발명의 비수 전해질은 첨가제를 포함한다.
상기 첨가제는 하기 화학식 1로 표시되는 화합물을 포함한다.
[화학식 1]
상기 화학식 1에서,
R1 및 R2는 각각 독립적으로 탄소수 1 내지 10의 알킬렌기이고.
R3는 하나 이상의 불소가 치환된 탄소수 1 내지 20의 알킬기이다.
구체적으로, 상기 화학식 1로 표시되는 화합물은 구조 내에 프로파질 작용기를 포함함에 따라, 실리콘계 활물질을 포함하는 음극 표면에서 용이하게 환원 분해되어 저항이 낮고, 부동태 능력이 높은 SEI 막을 형성할 수 있다. 따라서, 상기 화학식 1로 표시되는 화합물을 전해액 첨가제로 포함하는 비수 전해질을 사용할 경우, SEI 막의 불안정성(instability)에 의하여 발생하는 전해액의 추가적인 환원 분해 반응에 의한 음극의 자가 방전 반응을 방지할 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 구조 말단에 하나 이상의 불소 원소가 치환된 플루오로카본 작용기를 포함함으로써, 양극 표면에 내산화성이 확보된 피막을 형성하여, 양극으로부터 전이금속이 용출되는 것을 억제하고, 용출된 전이금속이 음극에 전착 및 석출되는 것을 억제하여, 내부 단락을 방지할 수 있다.
이와 같이, 상기 화학식 1로 표시되는 화합물은 난연성 및 불연성이 우수한 불소 원소가 하나 이상 치환된 플루오로카본 작용기와 프로파질기를 포함하고 있어, 저저항의 견고한 SEI 피막을 음극에 형성하여, 전해액의 추가 환원 분해 반응을 억제할 뿐만 아니라, 음극의 자가 방전 반응을 방지할 수 있으므로, 수명 성능이 향상되며, 초기 저항 증가를 억제하고, 상온 및 저온 출력 특성이 향상된 리튬 이차전지를 제공할 수 있다.
한편, 상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 5의 알킬렌기이고, R3는 하나 이상의 불소가 치환된 탄소수 3 내지 20의 알킬기일 수 있다.
또한, 상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 3의 알킬렌기이고, R3는 하나 이상의 불소가 치환된 탄소수 3 내지 15의 알킬기일 수 있다.
구체적으로, 상기 화학식 1에서, R3는 하나 이상의 불소가 치환된 탄소수 4 내지 8의 알킬기일 수 있다.
바람직하게, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1a로 표시되는 화합물일 수 있다.
[화학식 1a]
한편, 상기 화학식 1로 표시되는 화합물은 상기 비수 전해질에 0.01 중량% 내지 10.0 중량%로 포함될 수 있다.
상기 화학식 1로 표시되는 화합물의 함량이 상기 범위로 포함되면, 첨가제에 의한 부반응, 용량 저하 및 저항 증가 등의 단점을 최대한 억제하면서, 음극 표면에 저저항 SEI 피막을 형성하여, 피막에서의 리튬 이동 효과를 향상시킬 수 있고, 전해액의 추가 환원 분해 반응을 억제하여, 음극의 자가 방전 반응을 방지할 수 있다.
구체적으로, 상기 화학식 1로 표시되는 화합물의 함량이 0.01 중량% 이상이면 전지 구동 시간 동안 안정한 피막을 형성하여, 음극 표면에 저저항 SEI 피막을 형성하여 전지 출력 성능을 향상시킬 수 있다. 또한, 상기 화학식 1로 표시되는 화합물의 함량이 10.0 중량% 이하인 경우 최적의 함침성을 구현할 수 있도록 비수 전해액의 점도를 제어할 수 있고, 첨가제 분해로 의한 전지 저항 증가를 효과적으로 억제할 수 있으며, 전지 내 이온 전도도를 더욱 높여 출력 특성 저하를 방지할 수 있다
구체적으로, 상기 화학식 1로 표시되는 화합물은 비수전해액 중에 0.05 중량% 내지 6.0 중량%, 구체적으로 0.1중량% 내지 5.0중량%, 보다 구체적으로 0.5중량% 내지 2중량%로 포함될 수 있다.
한편, 상기 첨가제는 고출력의 환경에서 비수 전해액이 분해되어 음극 붕괴가 유발되는 것을 방지하거나, 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온에서의 전지 팽창 억제 효과 등을 더욱 향상시키기 위하여, 필요에 따라 상기 화학식 1로 표시되는 화합물 이외에 다른 부가적인 추가 첨가제를 포함할 수 있다.
이러한 추가 첨가제의 예로는 환형 카보네이트계 화합물, 할로겐 치환된 카보네이트계 화합물, 설톤계 화합물, 설페이트계 화합물, 포스페이트계 또는 포스파이트계 화합물, 보레이트계 화합물, 니트릴계 화합물, 벤젠계 화합물, 아민계 화합물, 실란계 화합물 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다.
상기 환형 카보네이트계 화합물은, 예를 들면, 비닐렌카보네이트(VC) 또는 비닐에틸렌 카보네이트 등일 수 있다.
상기 할로겐 치환된 카보네이트계 화합물은, 예를 들면, 플루오로에틸렌 카보네이트(FEC) 등일 수 있다.
상기 설톤계 화합물은, 예를 들면, 1,3-프로판 설톤(PS), 1,4-부탄 설톤, 에텐설톤, 1,3-프로펜 설톤(PRS), 1,4-부텐 설톤 및 1-메틸-1,3-프로펜 설톤으로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물일 수 있다.
상기 설페이트계 화합물은, 예를 들면, 에틸렌 설페이트(Ethylene Sulfate; Esa), 트리메틸렌설페이트 (Trimethylene sulfate; TMS), 또는 메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS) 등일 수 있다.
상기 포스페이트계 또는 포스파이트계 화합물은, 예를 들면, 리튬 디플루오로(비스옥살라토)포스페이트, 리튬 디플루오로포스페이트, 트리스(트리메틸실릴) 포스페이트, 트리스(트리메틸실릴) 포스파이트, 트리스(2,2,2-트리플루오로에틸) 포스페이트 및 트리스(트리플루오로에틸) 포스파이트로 이루어진 군으로부터 선택된 1종 이상의 화합물일 수 있다.
상기 보레이트계 화합물은 테트라페닐보레이트, 리튬 디플루오로(옥살라토)보레이트 (LiODFB) 또는 리튬 비스옥살레이토보레이트 (LiB(C2O4)2, LiBOB)등을 들 수 있다.
상기 니트릴계 화합물은, 예를 들면, 숙시노니트릴, 아디포니트릴, 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 사이클로펜탄 카보니트릴, 사이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물일 수 있다.
상기 벤젠계 화합물은, 예를 들면, 플루오로벤젠 등일 수 있고, 상기 아민계 화합물은 트리에탄올아민 또는 에틸렌디아민 등일 수 있으며, 상기 실란계 화합물은 테트라비닐실란 등일 수 있다.
상기 리튬염계 화합물은 상기 비수 전해액에 포함되는 리튬 염과 상이한 화합물로서, 리튬 디플루오로포스페이트 (LiPO2F2) 또는 LiBF4 등을 들 수 있다.
이러한 추가 첨가제 중, 비닐에틸렌 카보네이트, 1,3-프로판설톤, 플루오로에틸렌 카보네이트, 숙시노 니트릴 및 리튬 디플루오로(옥살라토)보레이트로 이루어진 군에서 선택된 적어도 1종을 포함하는 경우에 이차전지의 초기 활성화 공정시 음극 표면에 보다 견고한 SEI 피막을 형성할 수 있다.
상기 추가 첨가제는 2 종 이상의 화합물을 혼용하여 사용할 수 있으며, 상기 화학식 1로 표시되는 화합물과 추가 첨가제의 전체 함량은 비수 전해질 전체 중량을 기준으로 50 중량% 이하, 구체적으로 0.05 내지 20 중량%, 구체적으로 0.05 내지 10 중량%로 포함될 수 있다. 상기 첨가제들의 전체 함량이 상기 범위를 만족하는 경우, 경우 전지의 저온 출력 특성을 개선할 수 있고, 고온 저장 특성 및 고온 수명 특성을 더욱 효과적으로 개선할 수 있으며, 반응 후 잔류하는 첨가제들에 의한 전지의 부반응 발생을 방지할 수 있다.
상기와 같은 본 발명에 따른 리튬 이차전지는 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하게 사용될 수 있다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이하, 실시예를 통해 본 발명을 구체적으로 설명한다.
이때, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
이하, 구체적인 실시예를 통해 본 발명을 구체적으로 설명한다.
실시예
실시예 1
(비수 전해질 제조)
에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC) 및 디메틸 카보네이트(DMC)를 30:10:60의 부피비로 혼합한 유기 용매를 준비하였다.
상기 유기 용매에 리튬 염으로서 LiPF6을 1.0M의 몰 농도가 되도록 용해하였다.
또한, 상기 리튬 염이 용해된 유기 용매에 상기 화학식 1a로 표시되는 화합물과 추가 첨가제를 첨가하여 비수 전해질을 제조하였다.
상기 화학식 1a로 표시되는 화합물은 상기 비수 전해액에 0.1중량%로 포함되었다.
상기 추가 첨가제로는 비닐 에틸렌 카보네이트(VEC), 1,3-프로판설톤(PS), 플루오로에틸렌 카보네이트(FEC), 숙시노니트릴(SN) 및 LiODFB를 사용하였으며, 상기 비수 전해질에 비닐 에틸렌 카보네이트(VEC) 0.5중량%, 1,3-프로판설톤(PS) 1.0중량%, 플루오로에틸렌 카보네이트(FEC) 5.0중량%, 숙시노니트릴(SN) 1.0중량% 및 LiODFB 0.5중량% 첨가되었다.
(이차전지 제조)
양극 활물질(LiNi0.85Co0.05Mn0.07Al0.03O2) : 도전재(탄소나노튜브): 바인더 (폴리비닐리덴플루오라이드)를 97:1:2의 중량비로 용제인 N-메틸-2-피롤리돈(NMP) 에 첨가하여 양극 합제 슬러리(고형분 78 중량%)를 제조하였다. 상기 양극 합제 슬러리를 두께가 12 ㎛인 양극 집전체(Al 박막) 일면에 4.5mAh/cm2의 로딩량으로 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질로서 Si, 바인더로서 니트릴부타디엔 고무(NBR) 및 도전재로서 카본블랙을 80:10:10의 중량비로 용매인 물에 첨가하여 음극 슬러리(고형분 함량: 48 중량%)를 제조하였다. 상기 음극 슬러리를 15㎛ 두께의 음극 집전체인 구리(Cu) 박막에 10.7mAh/cm2의 로딩량으로 도포 및 건조한 후, 롤 프레스를 실시하여 음극을 제조하였다.
상기 양극, 무기물 입자(Al2O3)가 도포된 폴리올레핀계 다공성 세퍼레이터 및 음극을 순차적으로 적층하여 전극조립체를 제조하였다.
전지 케이스 내에 상기 조립된 전극조립체를 수납한 다음, 제조된 비수 전해액을 주액하여 리튬 이차전지를 제조하였다.
실시예 2
상기 화학식 1a로 표시되는 화합물을 비수 전해질 중량 기준 1.0중량%의 함량으로 첨가하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.
실시예 3
상기 화학식 1a로 표시되는 화합물을 비수 전해질 중량 기준 5.0중량%의 함량으로 첨가하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.
비교예 1
화학식 1a로 표시되는 화합물을 첨가하지 않고 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.
비교예 2
화학식 1a로 표시되는 화합물 대신 하기 화학식 2로 표시되는 화합물을 비수 전해질 중량 기준 0.1중량%의 함량으로 첨가하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.
[화학식 2]
비교예 3
화학식 1a로 표시되는 화합물 대신 상기 화학식 2로 표시되는 화합물을 비수 전해질 중량 기준 1.0중량%의 함량으로 첨가하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.
비교예 4
화학식 1a로 표시되는 화합물 대신 하기 화학식 3으로 표시되는 화합물을 비수 전해질 중량 기준 0.1중량%의 함량으로 첨가하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.
[화학식 3]
실험예
실험예 1: 초기 용량 및 사이클 용량 유지율 평가
상기에서 제조된 실시예 1~3, 비교예 1~4의 리튬 이차전지를 전기화학 충방전기를 사용하여 25℃에서 CC/CV, 0.33C 조건으로 4.25V, 0.05C까지 충전한 다음, CC, 0.33C 조건으로 2.5V까지 방전하는 것을 1 사이클로 하여 200 사이클 충방전을 실시하고, 용량 유지율을 측정하였다.
용량 유지율은 아래 식으로 계산되었으며, 그 결과를 하기 표 1에 나타내었다.
용량 유지율(%) = {(200 사이클 후의 방전 용량/1 사이클 후의 방전 용량)} × 100
1 사이클 후의 방전 용량(초기 용량) 및 200 사이클 후의 용량 유지율을 하기 표 1에 나타내었다.
실험예 2: 초기 저항 평가
상기에서 제조된 실시예 1~3, 비교예 1~4의 리튬 이차전지를 전기화학 충방전기를 사용하여 25℃에서 CC/CV, 0.33C 조건으로 4.25V, 0.05C까지 충전한 다음, CC, 0.33C 조건으로 2.5V까지 방전하는 것을 1 사이클로 하여 충방전을 실시하였다.
1 사이클의 충방전 후, 전기화학 충방전기를 사용하여 1 사이클 후의 방전 용량을 측정하고, SOC 50%로 SOC를 조정한 다음, 2.5C의 펄스(pulse)를 10 초간 인가하여, 펄스 인가 전 전압과, 인가 후 전압의 차를 통하여 초기 저항을 산출하였다. 그 결과를 하기 표 1에 나타내었다.
실험예 1 실험예 2
초기 용량(mAh) 용량 유지율(%, @200cycle) 초기 저항(mΩ)
실시예 1 1,078 94.5 39.9
실시예 2 1,081 94.7 39.5
실시예 3 1,063 93.3 42.6
비교예 1 1,056 91.1 43.1
비교예 2 1,025 90.8 45.9
비교예 3 1,011 89.4 47.8
비교예 4 1.033 90.9 45.5
상기 표 1을 참조하면, 본 발명에 따른 실시예 1 내지 3의 리튬 이차전지의 경우, 비교예 1 내지 4에 비해 우수한 초기 용량, 용량 유지율, 저항 특성을 가지는 것을 확인할 수 있다.

Claims (12)

  1. 음극, 양극, 분리막 및 비수 전해질을 포함하고,
    상기 음극은 실리콘계 활물질을 포함하고,
    상기 비수 전해질은 리튬 염, 유기 용매 및 첨가제를 포함하고,
    상기 첨가제는 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지:
    [화학식 1]

    상기 화학식 1에서,
    R1 및 R2는 각각 독립적으로 탄소수 1 내지 10의 알킬렌기이고.
    R3는 하나 이상의 불소가 치환된 탄소수 1 내지 20의 알킬기이다.
  2. 청구항 1에 있어서,
    상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 5의 알킬렌기이고, R3는 하나 이상의 불소가 치환된 탄소수 3 내지 20의 알킬기인 리튬 이차전지.
  3. 청구항 1에 있어서,
    상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 3의 알킬렌기이고, R3는 하나 이상의 불소가 치환된 탄소수 3 내지 15의 알킬기인 리튬 이차전지.
  4. 청구항 1에 있어서,
    상기 화학식 1에서, R3는 하나 이상의 불소가 치환된 탄소수 4 내지 8의 알킬기인 리튬 이차전지.
  5. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 1a로 표시되는 화합물인 리튬 이차전지:
    [화학식 1a]
    .
  6. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 상기 비수 전해질에 0.01 중량% 내지 10.0 중량%로 포함되는 리튬 이차전지.
  7. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 리튬 이차전지용 비수 전해액 전체 중량을 기준으로 0.05 중량% 내지 6.0 중량%로 포함되는 리튬 이차전지.
  8. 청구항 1에 있어서,
    상기 첨가제는 할로겐으로 치환 또는 비치환된 카보네이트계 화합물, 설톤계 화합물, 설페이트계 화합물, 포스페이트계 또는 포스파이트계 화합물, 보레이트계 화합물, 니트릴계 화합물, 아민계 화합물, 실란계 화합물 및 리튬 염계 화합물로 이루어진 군으로부터 선택된 적어도 1종의 추가 첨가제를 포함하는 리튬 이차전지.
  9. 청구항 1에 있어서,
    상기 유기 용매는 환형 카보네이트계 유기 용매 및 선형 카보네이트계 유기 용매를 포함하는 리튬 이차전지.
  10. 청구항 9에 있어서,
    상기 환형 카보네이트계 유기 용매는 에틸렌 카보네이트를 포함하고,
    상기 선형 카보네이트계 유기 용매는 에틸메틸 카보네이트 및 디메틸 카보네이트를 포함하는 리튬 이차전지.
  11. 청구항 1에 있어서,
    상기 실리콘계 활물질은 하기 화학식 A로 표시되는 화합물을 포함하는 리튬 이차전지:
    [화학식 A]
    SiOx(0 ≤ x < 2).
  12. 청구항 1에 있어서,
    상기 실리콘계 활물질은 Si인 리튬 이차전지.
KR1020220146436A 2022-11-04 2022-11-04 리튬 이차전지 KR20240064422A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220146436A KR20240064422A (ko) 2022-11-04 2022-11-04 리튬 이차전지
PCT/KR2023/017531 WO2024096678A1 (ko) 2022-11-04 2023-11-03 리튬 이차전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220146436A KR20240064422A (ko) 2022-11-04 2022-11-04 리튬 이차전지

Publications (1)

Publication Number Publication Date
KR20240064422A true KR20240064422A (ko) 2024-05-13

Family

ID=90931029

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220146436A KR20240064422A (ko) 2022-11-04 2022-11-04 리튬 이차전지

Country Status (2)

Country Link
KR (1) KR20240064422A (ko)
WO (1) WO2024096678A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170012308A (ko) 2014-05-30 2017-02-02 우베 고산 가부시키가이샤 비수 전해액 및 그것을 사용한 축전 디바이스

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980063A1 (en) * 2014-07-29 2016-02-03 Solvay SA Fluorinated carbonates comprising two oxygen bearing functional groups
KR101937898B1 (ko) * 2015-10-29 2019-01-14 주식회사 엘지화학 비수 전해액 첨가제, 이를 포함하는 비수전해액 및 이를 구비한 리튬 이차전지
CN105428717A (zh) * 2015-12-18 2016-03-23 深圳新宙邦科技股份有限公司 一种锂离子电池用电解液及锂离子电池
KR102000100B1 (ko) * 2016-03-23 2019-07-16 주식회사 엘지화학 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
KR20210029533A (ko) * 2019-09-06 2021-03-16 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR102522492B1 (ko) * 2021-10-12 2023-04-18 주식회사 엘지에너지솔루션 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170012308A (ko) 2014-05-30 2017-02-02 우베 고산 가부시키가이샤 비수 전해액 및 그것을 사용한 축전 디바이스

Also Published As

Publication number Publication date
WO2024096678A1 (ko) 2024-05-10

Similar Documents

Publication Publication Date Title
US11476459B2 (en) Lithium secondary battery having improved high-temperature storage characteristics
KR20200054097A (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
KR102522492B1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
CN114641883A (zh) 锂二次电池用非水性电解液和包含它的锂二次电池
JP7134555B2 (ja) 非水電解液添加剤、これを含むリチウム二次電池用非水電解液及びリチウム二次電池
KR102501252B1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
JP7408223B2 (ja) 二次電池用電解液添加剤、それを含むリチウム二次電池用非水電解液およびリチウム二次電池
US20240170722A1 (en) Non-Aqueous Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
KR20210155370A (ko) 리튬 이차전지용 비수 전해액 첨가제 및 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
KR20210146520A (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
KR102664715B1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
KR102555746B1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
JP7408226B2 (ja) リチウム二次電池用非水電解液及びこれを含むリチウム二次電池
KR102633532B1 (ko) 비수전해액 및 이를 포함하는 리튬 이차전지
KR20240064422A (ko) 리튬 이차전지
US20230067792A1 (en) Lithium Secondary Battery
KR20240064421A (ko) 리튬 이차전지
KR20240082242A (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
KR20240064569A (ko) 리튬 이차전지
KR20240022934A (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
KR20240025491A (ko) 리튬 이차전지
CN116941088A (zh) 锂二次电池用非水电解液及包含其的锂二次电池
US20230105288A1 (en) Non-Aqueous Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Comprising Same
KR20240022933A (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
US20230088739A1 (en) Non-Aqueous Electrolyte, and Lithium Secondary Battery Comprising the Same