WO2017078107A1 - 二次電池用非水電解液、及び二次電池 - Google Patents

二次電池用非水電解液、及び二次電池 Download PDF

Info

Publication number
WO2017078107A1
WO2017078107A1 PCT/JP2016/082695 JP2016082695W WO2017078107A1 WO 2017078107 A1 WO2017078107 A1 WO 2017078107A1 JP 2016082695 W JP2016082695 W JP 2016082695W WO 2017078107 A1 WO2017078107 A1 WO 2017078107A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
group
general formula
carbon atoms
mass
Prior art date
Application number
PCT/JP2016/082695
Other languages
English (en)
French (fr)
Inventor
将敬 宮里
林 剛史
藤山 聡子
顕 岸本
中川 裕江
Original Assignee
三井化学株式会社
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社, 株式会社Gsユアサ filed Critical 三井化学株式会社
Priority to JP2017548834A priority Critical patent/JP6510671B2/ja
Priority to EP16862167.0A priority patent/EP3373378B1/en
Priority to CN201680062330.0A priority patent/CN108352571B/zh
Priority to US15/771,181 priority patent/US10476108B2/en
Publication of WO2017078107A1 publication Critical patent/WO2017078107A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte for a secondary battery and a secondary battery.
  • Secondary batteries using non-aqueous electrolytes are widely used as power sources for consumer electronic devices because of their high voltage, high energy density, and high reliability such as storage characteristics. Furthermore, secondary batteries using non-aqueous electrolytes are beginning to be used for power storage, and batteries for vehicles such as electric vehicles (EV), hybrid vehicles (HEV), and plug-in hybrid vehicles (PHEV). . As a typical example of the secondary battery using the non-aqueous electrolyte, there are a lithium battery and a lithium ion secondary battery.
  • the non-aqueous electrolyte used for these secondary batteries is a solution in which an electrolyte is mixed with a non-aqueous solvent, and the electrolyte contained in the non-aqueous electrolyte transfers ions between the positive electrode and the negative electrode.
  • the non-aqueous electrolyte is required to have the following characteristics in order to improve the battery performance of the secondary battery.
  • the nonaqueous electrolytic solution needs to be chemically and electrochemically stable with respect to the positive electrode and the negative electrode in order to enhance the storage characteristics and cycle characteristics of the secondary battery.
  • the non-aqueous electrolyte is preferably a solution having a high ion movement speed in order to enhance the charge / discharge characteristics of the secondary battery.
  • the non-aqueous electrolyte has a low viscosity and mass transfer due to diffusion is likely to occur. It must be liquid.
  • non-aqueous solvents for non-aqueous electrolytes include high dielectric constant carbonate solvents such as propylene carbonate and ethylene carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate and the like. It is known to use low viscosity carbonate solvents.
  • a boron compound is added to a non-aqueous electrolyte to improve battery performance such as storage characteristics, cycle characteristics, and charge / discharge characteristics of secondary batteries (for example, Patent Documents 1 to 10).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 09-120825 Patent Document 2: Japanese Patent Application Laid-Open No. 10-223258 Patent Document 3: Japanese Patent Application Laid-Open No. 11-05133 Patent Document 4: Japanese Patent Application Laid-Open No. 11-121033 Patent Document 2: Japanese Patent Laid-Open No. 2002-025609 Patent Document 6: Japanese Patent Laid-Open No. 2002-216844 Patent Document 7: Japanese Patent Laid-Open No. 2003-132946 Patent Document 8: Japanese Patent Laid-Open No. 2003-168476 Patent Document 9: Japanese Patent Laid-Open No. 2008-198542 Patent Reference 10: Japanese Unexamined Patent Application Publication No. 2009-245829
  • Patent Documents 1 to 10 it is known to add a boron compound to the non-aqueous electrolyte in order to improve the battery performance of the secondary battery, but further improvement of the battery performance is required. It has been.
  • secondary batteries used as batteries for automobiles such as EV, HEV, PHEV, etc.
  • the electric motor is driven by discharging the electric power accumulated therein, and at the start and acceleration of the automobile, Instantaneous discharge with a large current is required. That is, excellent output characteristics are required.
  • the DC resistance of the secondary battery is increased, the output characteristics are deteriorated, which causes a problem that the running performance of these automobiles is degraded. That is, in order to obtain stable driving performance of automobiles, secondary batteries having a low DC resistance increase due to deterioration over time are required for these automobile batteries.
  • An object of the present invention is to provide a non-aqueous electrolyte for a secondary battery from which a secondary battery having excellent output characteristics can be obtained, and a secondary battery having excellent output characteristics.
  • a non-aqueous electrolyte for a secondary battery containing a boron compound represented by the following general formula (1) is represented by the following general formula (1).
  • R represents an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a group represented by general formula (2).
  • R 1 to R 3 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or an aryl having 6 to 12 carbon atoms. Represents a group.
  • * represents a bonding site with an oxygen atom in general formula (1).
  • ⁇ 4> In any one of ⁇ 1> to ⁇ 3>, further comprising at least one compound selected from the group consisting of a carbonate compound having a carbon-carbon unsaturated bond or a fluorine atom, and a cyclic sulfonate ester
  • a carbonate compound having a carbon-carbon unsaturated bond or a fluorine atom and a cyclic sulfonate ester
  • ⁇ 5> further containing a carbonate compound having a carbon-carbon unsaturated bond or a fluorine atom, Any one of ⁇ 1> to ⁇ 3>, wherein the content of the carbonate compound having a carbon-carbon unsaturated bond or a fluorine atom is 1% by mass to 15% by mass with respect to the total amount of the non-aqueous electrolyte for secondary battery The non-aqueous electrolyte for secondary batteries of Claim 1.
  • ⁇ 6> Further containing a cyclic sulfonate ester, Any one of ⁇ 1> to ⁇ 3> and ⁇ 5>, wherein the content of the cyclic sulfonic acid ester is 0.1% by mass to 10% by mass with respect to the total amount of the nonaqueous electrolytic solution for a secondary battery.
  • a secondary battery comprising a positive electrode, a negative electrode, and the nonaqueous electrolytic solution according to any one of ⁇ 1> to ⁇ 6>.
  • a non-aqueous electrolyte for a secondary battery from which a secondary battery excellent in output characteristics can be obtained, and a secondary battery excellent in output characteristics.
  • Non-aqueous electrolyte for secondary battery contains a boron compound represented by the following general formula (1).
  • R represents an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a group represented by general formula (2).
  • R 1 to R 3 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or an aryl having 6 to 12 carbon atoms. Represents a group.
  • * represents a bonding site with an oxygen atom in general formula (1).
  • the non-aqueous electrolyte of the present invention contains a boron compound represented by the general formula (1)
  • output characteristics specifically, initial DC resistance
  • a secondary battery excellent in suppression of increase in DC resistance due to deterioration over time Although the detailed mechanism of action for obtaining such an effect is unknown, the boron compound represented by the general formula (1) is decomposed by the initial charge, and the oxalato structure portion “.O— (C ⁇ O) 2 — O. "is generated, and this acts on the surface of the electrode (active material), and it is considered that an ion conduction path with high ion conductivity is formed.
  • boron compounds a boron compound having a structure represented by the general formula (1) (particularly, having a substituent represented by the general formula (2) from the viewpoint of easily generating an oxalato structure part by decomposition. Boron compounds) are considered advantageous.
  • the boron compound represented by the general formula (1) is a molecule in which an oxalato group and a group represented by R—O— are bonded to a boron atom as a substituent, and an asymmetric molecule centering on the boron atom. Since the structure makes it possible to cause an imbalance in the charge distribution in the molecule, it is considered that the boron compound is easily decomposed by the initial charge, and the above action is effectively achieved.
  • R represents an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a group represented by the general formula (2).
  • the alkyl group having 1 to 12 carbon atoms represented by R is more preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms, and further an alkyl group having 1 to 6 carbon atoms.
  • An alkyl group having 1 to 4 carbon atoms is more preferable.
  • Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, and a neopentyl group.
  • the alkyl group having 1 to 12 carbon atoms represented by R may be unsubstituted or substituted with a halogen atom (for example, a fluorine atom or a chlorine atom).
  • the alkenyl group having 2 to 12 carbon atoms represented by R is more preferably an alkenyl group having 2 to 10 carbon atoms, further preferably an alkenyl group having 2 to 8 carbon atoms, and further an alkenyl group having 2 to 6 carbon atoms.
  • An alkenyl group having 2 to 4 carbon atoms is more preferable.
  • Examples of the alkenyl group include ethenyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group and the like.
  • the alkenyl group having 2 to 12 carbon atoms represented by R may be unsubstituted or substituted with a halogen atom (for example, a fluorine atom or a chlorine atom).
  • R is preferably a group represented by the general formula (2).
  • R 1 to R 3 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a carbon atom having 6 to 12 carbon atoms. Represents an aryl group.
  • Examples of the halogen atom represented by R 1 to R 3 include a fluorine atom, a chlorine atom, and a bromine atom, and a fluorine atom is preferable.
  • the alkyl group having 1 to 12 carbon atoms represented by R 1 to R 3 is more preferably an alkyl group having 1 to 10 carbon atoms, still more preferably an alkyl group having 1 to 8 carbon atoms, and an alkyl group having 1 to 6 carbon atoms.
  • An alkyl group is more preferred, an alkyl group having 1 to 4 carbon atoms is more preferred, and an alkyl group having 1 to 3 carbon atoms is more preferred.
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, and a neopentyl group.
  • the alkyl group having 1 to 12 carbon atoms represented by R 1 to R 3 may be unsubstituted or substituted with a halogen atom (for example, a fluorine atom or a chlorine atom).
  • the alkenyl group having 2 to 12 carbon atoms represented by R 1 to R 3 is more preferably an alkenyl group having 2 to 10 carbon atoms, still more preferably an alkenyl group having 2 to 8 carbon atoms, and 2 to 6 carbon atoms.
  • An alkenyl group is more preferable, and an alkenyl group having 2 to 4 carbon atoms is more preferable.
  • Examples of the alkenyl group include ethenyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group and the like.
  • the alkenyl group having 2 to 12 carbon atoms represented by R 1 to R 3 may be unsubstituted or may be substituted with a halogen atom (for example, a fluorine atom or a chlorine atom).
  • the aryl group having 6 to 12 carbon atoms represented by R 1 to R 3 is more preferably an aryl group having 6 to 10 carbon atoms.
  • the aryl group include a phenyl group, a group in which one hydrogen atom is removed from an alkylbenzene (for example, a benzyl group, a tolyl group, a xylyl group, a methicyl group, etc.), a naphthyl group, and a hydrogen atom from a substituted alkyl group of naphthalene. And the like, and the like.
  • the aryl group having 6 to 12 carbon atoms represented by R 1 to R 3 may be unsubstituted or may be substituted with a halogen atom (for example, a fluorine atom or a chlorine atom).
  • R 1 ⁇ R 3 is an alkyl group, preferably an alkenyl group, or an aryl group, at least two R 1 ⁇ R 3 is an alkyl group, an alkenyl group Or an aryl group is more preferable.
  • preferred embodiments of the alkyl group, alkenyl group and aryl group are as described above, and among the alkyl group, alkenyl group and aryl group, the alkyl group is preferred.
  • boron compound represented by the general formula (1) include, for example, the following exemplified compounds (1) to (26).
  • the boron compound represented by the general formula (1) can be synthesized, for example, by the method described in Chemische Berichte, Volume 68, Issue 6, Pages 1949-55, 1965.
  • the content of the boron compound represented by the general formula (1) is preferably 0.01% by mass to 10% by mass with respect to the total amount of the non-aqueous electrolyte, 0.05% by mass to 5% by mass is more preferable, 0.1% by mass to 5% by mass is further preferable, 0.5% by mass to 5% by mass is further preferable, and 0.5% by mass to 3% by mass is further preferable.
  • 0.5% by mass to 2% by mass is more preferable, and 0.5% by mass to 1% by mass is more preferable.
  • the boron compound represented by the general formula (1) may be used alone or in combination of two or more.
  • Nonaqueous solvent As the nonaqueous solvent used in the nonaqueous electrolytic solution of the present invention, a cyclic or chain aprotic solvent is preferable.
  • the cyclic aprotic solvent include cyclic carbonates such as ethylene carbonate; cyclic esters such as ⁇ -butyrolactone; cyclic sulfones such as sulfolane; cyclic ethers such as dioxolane.
  • Examples of the chain aprotic solvent include chain carbonates such as dimethyl carbonate; chain carboxylic acid esters such as methyl propionate; chain ethers such as dimethoxyethane. These solvents may be used alone or in a combination of two or more.
  • the non-aqueous solvent is a mixture of a cyclic aprotic solvent and a chain aprotic solvent. Furthermore, from the viewpoint of the electrochemical stability of the non-aqueous electrolyte, it is preferable to use a cyclic carbonate as the cyclic aprotic solvent and a chain carbonate as the chain aprotic solvent.
  • cyclic carbonates include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, trans-2,3-butylene carbonate, cis-2,3-butylene carbonate, 1,2-pentylene carbonate, trans -2,3-pentylene carbonate, cis-2,3-pentylene carbonate, and the like.
  • ethylene carbonate and propylene carbonate are preferred because of their high dielectric constant.
  • graphite is used for the negative electrode active material, ethylene carbonate is preferred.
  • chain carbonates include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, dipropyl carbonate, methyl butyl carbonate, dibutyl carbonate, ethyl propyl carbonate, methyl trifluoroethyl carbonate, and the like. Is mentioned. Of these, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate are preferred because of their low viscosity.
  • the mixing ratio of cyclic carbonate: chain carbonate is preferably 5:95 to 70:30, more preferably 10:90 to 60:40. It is. If the mixing ratio is within this range, the increase in the viscosity of the non-aqueous electrolyte can be suppressed and the degree of dissociation of the electrolyte can be increased. it can.
  • electrolyte used in the nonaqueous electrolytic solution of the present invention
  • electrolyte all known compounds can be used as the electrolyte, and for example, a lithium salt may be used.
  • R 11 to R 17 are perfluoroalkyl groups having 1 to 8 carbon atoms.
  • R 11 to R 13 may be the same as or different from each other.
  • R 14 and R 15 may be the same as or different from each other.
  • R 16 and R 17 may be the same as or different from each other.
  • the lithium salt concentration of the nonaqueous electrolytic solution of the present invention is preferably from 0.1 mol / L to 3 mol / L, more preferably from 0.5 mol / L to 2 mol / L.
  • a lithium salt may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • the non-aqueous electrolyte of the present invention may contain a known additive that is added to the non-aqueous electrolyte.
  • the additive is preferably at least one compound selected from the group consisting of a carbonate compound having a carbon-carbon unsaturated bond or a fluorine atom, and a cyclic sulfonate ester.
  • An additive may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • Examples of the carbonate compound having a carbon-carbon unsaturated bond or a fluorine atom include carbonate compounds having a carbon-carbon unsaturated bond such as vinylene carbonate, dimethyl vinylene carbonate, divinyl carbonate; fluoroethylene carbonate, difluoroethylene carbonate, trifluoro And carbonate compounds having a fluorine atom such as methyl ethylene carbonate. Of these, vinylene carbonate and fluoroethylene carbonate are preferred.
  • the content of the carbonate compound having a carbon-carbon unsaturated bond or a fluorine atom (total content in the case of two or more types) is preferably 1% by mass to 15% by mass with respect to the total amount of the non-aqueous electrolyte. More preferred is 10% by mass to 10% by mass.
  • Examples of the cyclic sulfonic acid ester include 1,3-propane sultone, 1,4-butane sultone, 1,3-prop-1-ene sultone (also known as 1,3-propene sultone), 1-methyl-1,3-propylene.
  • Examples include 1-ene sultone, 2-methyl-1,3-prop-1-ene sultone, and 3-methyl-1,3-prop-1-ene sultone. Among them, 1,3-prop-1-ene sultone is preferable.
  • the content of cyclic sulfonic acid ester (total content in the case of two or more) is preferably 0.1% by mass to 10% by mass, and preferably 0.5% by mass to 5% by mass with respect to the total amount of the nonaqueous electrolyte % Is more preferable, and 1% by mass to 5% by mass is still more preferable.
  • additives include sulfur compounds such as ethylene sulfite, propylene sulfite, ethylene sulfate, propylene sulfate, butene sulfate, hexene sulfate, vinylene sulfate, 3-sulfolene, divinyl sulfone, dimethyl sulfate, and diethyl sulfate; vinyl boronic acid Vinyl boronic acid compounds such as dimethyl, diethyl vinyl boronate, dipropyl vinyl boronate, dibutyl vinyl boronate; amides such as dimethylformamide; chain carbamates such as methyl-N, N-dimethylcarbamate; cyclic amides such as N-methylpyrrolidone Cyclic ureas such as N, N-dimethylimidazolidinone; boric acid esters such as trimethyl borate, triethyl borate, tributyl borate, triocty
  • the secondary battery of this invention is equipped with a positive electrode, a negative electrode, and the non-aqueous electrolyte of this invention.
  • An example of the secondary battery of the present invention is a secondary battery in which a structure in which a negative electrode and a positive electrode face each other via a separator is enclosed in an exterior material together with the non-aqueous electrolyte of the present invention.
  • the secondary battery of the present invention is preferably a lithium ion secondary battery that obtains an electromotive force by doping and dedoping with lithium ions.
  • the component of the secondary battery of this invention is demonstrated.
  • the positive electrode preferably has a structure in which an active material layer containing a positive electrode active material and a binder is formed on a current collector.
  • the active material layer may further include a conductive additive.
  • the positive electrode active material a compound known as the positive electrode active material can be used.
  • a composite oxide represented by a composition formula Li x MO 2 or Li y M 2 O 4 which is a compound capable of inserting and extracting lithium (M is a kind selected from transition metals or Polyanions represented by plural types, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 2); Li w Me x (XO y ) z (Me is at least one transition metal, X is, for example, P, Si, B, V) Compound; metal chalcogenide or metal oxide of tunnel structure and layer structure; and the like.
  • LiCoO 2 LiCo 1/2 Ni 1/2 O 2 , Li x Ni y Mn z Co (1-yz) O 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , Li x Ni y Mn (2-y) O 4 , LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , TiS 2 and the like.
  • the elements or polyanions in these compounds may be partially substituted with other elements or anion species.
  • examples of the positive electrode active material include conductive polymers such as polyaniline, disulfide, polypyrrole, polyparastyrene, polyacetylene, and polyacene, and pseudographite-structured carbonaceous materials.
  • a positive electrode active material may be used individually by 1 type, and may mix and use 2 or more types.
  • binder examples include polyvinylidene fluoride resin, styrene butadiene rubber, carboxymethyl cellulose, and the like.
  • conductive assistant examples include carbonaceous materials such as acetylene black, ketjen black, and graphite powder.
  • current collector examples include aluminum foil, titanium foil, and stainless steel foil.
  • the negative electrode preferably has a structure in which an active material layer containing a negative electrode active material and a binder is formed on a current collector.
  • the active material layer may further include a conductive additive.
  • a compound known as a negative electrode active material can be used.
  • a compound capable of inserting and extracting lithium is preferable. Specifically, lithium alone; an alloy of lithium such as Al, Si, Pb, Sn, Zn, Cd and the like; LiFe 2 O 3 , Li 4 Lithium-containing transition metal oxides such as Ti 5 O 12 ; Metal oxides such as WO 2 , MoO 2 , SiO, CuO, SnO; Carbonaceous materials such as graphite and carbon; Lithium nitride such as Li 3 N; Lithium-containing transitions Metal nitrides; and the like.
  • a negative electrode active material may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • binder examples include polyvinylidene fluoride resin, styrene butadiene rubber, carboxymethyl cellulose, and the like.
  • conductive assistant examples include carbonaceous materials such as acetylene black, ketjen black, and graphite powder.
  • current collector examples include copper foil, nickel foil, and stainless steel foil.
  • the separator it is preferable to use a woven fabric, a non-woven fabric, a synthetic resin microporous membrane, or the like, and among them, a synthetic resin microporous membrane is more preferable.
  • the microporous membrane of synthetic resin is preferably a polyolefin microporous membrane such as a microporous membrane of polyethylene or polypropylene, or a microporous membrane combining these, from the viewpoint of thickness, membrane strength, membrane resistance, and the like.
  • a porous solid electrolyte for example, a porous polymer solid electrolyte membrane
  • the nonaqueous electrolytic solution of the present invention may be used in combination.
  • the porous solid electrolyte serves as a separator. Fulfill.
  • a porous solid electrolyte and a synthetic resin microporous membrane may be used in combination.
  • the shape of the secondary battery of the present invention is not particularly limited, and can be applied to various shapes such as a square shape, a long cylindrical shape, a coin shape, a button shape, and a sheet shape.
  • FIG. 1 is an external perspective view showing a rectangular secondary battery which is an embodiment of the secondary battery of the present invention. In the figure, the inside of the container is seen through.
  • FIG. 2 is a schematic view showing an embodiment of a power storage device including a plurality of secondary batteries of the present invention.
  • an electrode group 2 is housed in a battery container 3.
  • the electrode group 2 is formed by winding a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material via a separator.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4 ′
  • the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5 ′.
  • the electrode group 2 is impregnated with the nonaqueous electrolytic solution of the present invention.
  • the present invention can also be realized as a power storage device including a plurality of the secondary batteries.
  • the power storage device 30 illustrated in FIG. 2 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of secondary batteries 1.
  • the power storage device 30 can be mounted on EV, HEV, PHEV or the like as a battery for these automobiles.
  • the secondary battery of the present invention may be a secondary battery obtained by charging and discharging, including the negative electrode, the positive electrode, and the non-aqueous electrolyte of the present invention. That is, the secondary battery of the present invention is prepared by first producing a secondary battery before charging / discharging comprising the negative electrode, the positive electrode, and the non-aqueous electrolyte of the present invention, and then the secondary battery before charging / discharging.
  • the battery may be a secondary battery (charged / discharged secondary battery) produced by charging and discharging at least once.
  • Example 1-1 [Preparation of non-aqueous electrolyte] LiPF 6 was dissolved at 1.0 mol / L in a mixed solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 30:70.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the exemplified compound (25) ((3-methyl-2,4-pentanedionato) oxalatoborate) was added thereto to obtain a nonaqueous electrolytic solution.
  • concentration of exemplary compound (25) was 0.5 mass%.
  • a secondary battery of the type shown in FIG. 1 was produced using the non-aqueous electrolyte produced above and the following positive electrode, negative electrode, and separator.
  • a positive electrode paste containing 4% by mass of polyvinylidene fluoride (PVDF) and using N-methyl-2-pyrrolidone as a dispersion solvent was obtained.
  • the positive electrode paste was uniformly applied to an aluminum current collector having a thickness of 15 ⁇ m and dried, followed by compression molding with a roll press to obtain a positive electrode.
  • -Negative electrode- A negative electrode paste containing 97% by mass of graphite as a negative electrode active material, 1% by mass of carboxymethyl cellulose and 2% by mass of styrene butadiene rubber as a binder, and using distilled water as a dispersion solvent was obtained. This negative electrode paste was uniformly applied to a 10 ⁇ m thick copper current collector, dried, and then compression molded with a roll press to obtain a negative electrode.
  • Example 1-1 A nonaqueous electrolytic solution and a secondary battery were produced in the same manner as in Example 1-1 except that the exemplified compound (25) was not added.
  • Example 1-2 A nonaqueous electrolytic solution and a secondary battery were produced in the same manner as in Example 1-1 except that the exemplified compound (25) was changed to trimethoxyborane (TMB).
  • TMB trimethoxyborane
  • Example 2-1 and Comparative Examples 2-1 and 2-2 were each similar to Example 1-1 and Comparative Examples 1-1 and 1-2, and non-aqueous electrolytes and secondary batteries were produced.
  • Example 3-1 [Preparation of non-aqueous electrolyte] LiPF 6 was dissolved at 1.2 mol / L in ethyl methyl carbonate (EMC). Fluoroethylene carbonate (FEC), 1,3-prop-1-ene sultone (PRS) and exemplary compound (25) were added thereto to obtain a nonaqueous electrolytic solution.
  • FEC Fluoroethylene carbonate
  • PRS 1,3-prop-1-ene sultone
  • exemplary compound (25) was 0.5% by mass.
  • a secondary battery was produced in the same manner as Example 1-1 using the non-aqueous electrolyte produced above.
  • Example 3-1 A nonaqueous electrolytic solution and a secondary battery were produced in the same manner as in Example 3-1, except that the exemplified compound (25) was not added.
  • a secondary battery was produced in the same manner as Example 1-1 using the non-aqueous electrolyte produced above.
  • Examples 4-2 to 4-3> A nonaqueous electrolytic solution and a secondary battery were produced in the same manner as in Example 4-1, except that the exemplified compound (25) was changed to the exemplified compounds shown in Table 4.
  • Example 4-1 A nonaqueous electrolytic solution and a secondary battery were produced in the same manner as in Example 4-1, except that the exemplified compound (25) was not added.
  • Example 5-1 A nonaqueous electrolytic solution and a secondary battery were produced in the same manner as Example 4-1.
  • Examples 5-2 to 5-3> A nonaqueous electrolytic solution and a secondary battery were produced in the same manner as in Example 5-1, except that the concentration of the exemplified compound (25) was changed as shown in Table 5.
  • the relationship between the current at each discharge current and the voltage 10 seconds after the start of discharge was plotted, and the direct current resistance was determined from the slope of the straight line obtained from the three-point plot.
  • the relative value of the secondary battery of an Example and another comparative example was computed by making the measured value of the secondary battery of the comparative example provided with the nonaqueous electrolyte solution which does not contain a boron compound into 100. The lower the relative value, the smaller the DC resistance and the better the initial output characteristics.
  • the discharge capacity at the second cycle in the initial charge / discharge process was defined as “initial discharge capacity (mAh)”. Furthermore, after discharging at the second cycle after storage at 45 ° C., the DC resistance after storage was determined in the same manner as the initial DC resistance. And the relative value of the secondary battery of an Example and another comparative example was computed by making the measured value of the secondary battery of the comparative example provided with the nonaqueous electrolyte solution which does not contain a boron compound into 100. The higher the ratio of the remaining capacity maintenance ratio and the recovery capacity maintenance ratio, the better the storage characteristics. The DC resistance after storage indicates that the lower the relative value, the better the output characteristics.
  • Example 1-1 and Example 2-1 had lower initial DC resistance at ⁇ 20 ° C. than Comparative Example 1-1 and Comparative Example 2-1, respectively. Therefore, the addition of the boron compound represented by the general formula (1) under both the general voltage charging condition (charging voltage 4.20V) and the high voltage charging condition (charging voltage 4.35V). Thus, it can be seen that the DC resistance of the secondary battery is reduced, that is, the output characteristics of the secondary battery are improved. In addition, Example 1-1 and Example 2-1 had lower DC resistance after storage at 45 ° C. than Comparative Example 1-1 and Comparative Example 2-1, respectively.
  • Example 1-1 and Example 2-1 are superior to Comparative Example 1-1 and Comparative Example 2-1, respectively, in both the remaining capacity retention ratio and the recovery capacity retention ratio after storage at 45 ° C. It was. Therefore, the addition of the boron compound represented by the general formula (1) under both the general voltage charging condition (charging voltage 4.20V) and the high voltage charging condition (charging voltage 4.35V). It can be seen that the storage characteristics of the secondary battery are improved.
  • the boron compound represented by the general formula (1) has an exceptional effect that cannot be obtained with TMB, which is a conventionally known boron compound as an additive for a non-aqueous electrolyte, with respect to output characteristics and storage characteristics of a secondary battery. I can say that.
  • Example 1-1 was superior to Comparative Example 1-1, and Example 2-1 was superior to Comparative Example 2-1. From this, it can be seen that the discharge characteristics of the secondary battery are also improved by the addition of the boron compound represented by the general formula (1). Moreover, Example 1-1 was superior to Comparative Example 1-2, and Example 2-1 was superior to Comparative Example 2-2. From this, the boron compound represented by the general formula (1) has an effect superior to that of TMB which is a conventionally known boron compound as an additive of the non-aqueous electrolyte with respect to the discharge characteristics of the secondary battery. I understand.
  • Example 3-1 was equivalent or superior in all evaluation items compared to Comparative Example 3-1. Therefore, even when the boron compound represented by the general formula (1) is used in combination with other additives (FEC and PRS), the battery performance of the secondary battery is not adversely affected. It can be seen that the overall battery performance of the secondary battery is improved by the addition of the boron compound represented by 1).
  • Examples 4-1 to 4-3 had lower initial DC resistance at ⁇ 20 ° C. than Comparative Example 4-1. From this, it can be seen that the addition of various boron compounds represented by the general formula (1) reduces the DC resistance of the secondary battery, that is, improves the output characteristics of the secondary battery. In addition, Examples 4-1 to 4-3 had lower DC resistance after storage at 45 ° C. than Comparative Example 4-1. From this, it can be seen that the addition of various boron compounds represented by the general formula (1) suppresses an increase in DC resistance due to deterioration over time of the secondary battery, that is, improves the output characteristics of the secondary battery. .
  • Examples 4-1 and 4-2 are superior in all evaluation items as compared with Comparative Example 4-1, and in particular, Example 4-1 using the exemplified compound (25) Among the boron compounds represented by the general formula (1), the exemplified compound (25) and the exemplified compound (22) are preferable, and the exemplified compound (25) is more preferable. preferable.
  • Examples 5-1 to 5-3 had lower initial DC resistance at ⁇ 20 ° C. than Comparative Example 5-1. From this, it can be seen that by using the boron compound represented by the general formula (1) at various concentrations, the DC resistance of the secondary battery is reduced, that is, the output characteristics of the secondary battery are improved. In addition, Examples 5-1 to 5-3 had lower DC resistance after storage at 45 ° C. than Comparative Example 5-1. Therefore, by using the boron compound represented by the general formula (1) at various concentrations, an increase in DC resistance due to deterioration of the secondary battery over time is suppressed, that is, the output characteristics of the secondary battery are improved. I understand that Note that when the storage characteristics of Examples 5-1 to 5-3 are compared, the addition amount of the boron compound represented by the general formula (1) is preferably 2% by mass or less, and 1% by mass or less. More preferably.
  • Cycle characteristic test A cycle characteristic test of 200 cycles and 900 cycles was performed on each of the secondary batteries of Example 3-1 and Comparative example 3-1. Each cycle characteristic test was performed at 45 ° C. All voltage control in each cycle characteristic test was performed on the voltage between the positive and negative terminals. In each cycle characteristic test, charging was performed at a constant current and constant voltage at a current of 1.0 CmA and a voltage of 4.35 V for 3 hours, and discharging was performed at a constant current of a current of 1.0 CmA and a final voltage of 2.75 V. In all cycles, a 10 minute rest period was set after charging and discharging.
  • the thickness of the secondary battery (hereinafter also referred to as “battery thickness”) is measured with calipers, and the AC resistance (internal resistance) of the secondary battery is measured with an AC (1 kHz) impedance meter. It was measured.
  • Table 6 shows the battery thickness (relative value) of Example 3-1 when the battery thickness of Comparative Example 3-1 is 100, and the AC resistance of the secondary battery of Comparative Example 3-1 is 100.
  • the alternating current resistance (relative value) of the secondary battery of Example 3-1 is shown.
  • the capacity retention rate of the secondary battery was calculated. The results are shown in Table 6.
  • the capacity retention rate of the secondary battery was the discharge capacity (mAh) (relative value) of each cycle when the initial discharge capacity (mAh) described in the section of “storage characteristics” was set to 100.
  • Example 3-1 has a higher capacity retention rate after 200 cycles and 900 cycles than Comparative Example 3-1, AC resistance and battery thickness after 200 cycles and 900 cycles. was small. From this, it can be seen that the cycle characteristics of the secondary battery are also improved by the addition of the boron compound represented by the general formula (1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

一般式(1)で表されるホウ素化合物を含有する、二次電池用非水電解液。一般式(1)中、Rは、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、又は一般式(2)で表される基を表す。一般式(2)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、又は炭素数6~12のアリール基を表す。一般式(2)中、*は、一般式(1)中の酸素原子との結合部位を表す。

Description

二次電池用非水電解液、及び二次電池
 本発明は、二次電池用非水電解液、及び二次電池に関する。
 非水電解液を用いた二次電池は、電圧が高く、高エネルギー密度を有し、また保存特性等の信頼性も高いので、民生用電子機器の電源として広く用いられている。さらに、非水電解液を用いた二次電池は、電力貯蔵用や、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用の電池としても用いられ始めている。非水電解液を用いた二次電池の代表例としては、リチウム電池及びリチウムイオン二次電池が挙げられる。
 これらの二次電池に用いられる非水電解液は、非水溶媒に電解質を混合した溶液であり、非水電解液に含まれる電解質が、正極と負極との間のイオンの受け渡しを行う。非水電解液には、二次電池の電池性能を高めるために下記のような特性が要求される。
 まず、非水電解液は、二次電池の保存特性やサイクル特性を高めるために、正極及び負極に対して、化学的及び電気化学的に安定である必要がある。
 また、非水電解液は、二次電池の充放電特性を高めるために、イオンの移動速度が速い液であることが好ましく、具体的には、粘度が低いこと、拡散による物質移動が起こりやすい液であること、が要求される。
 非水電解液に要求される上記特性を満足するために、非水電解液の非水溶媒として、プロピレンカーボネート、エチレンカーボネート等の高誘電率カーボネート溶媒、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート等の低粘度カーボネート溶媒を用いることが知られている。また、非水電解液にホウ素化合物を添加して、二次電池の保存特性や、サイクル特性、充放電特性等の電池性能を高めることが知られている(例えば、特許文献1~10)。
 特許文献1:特開平09-120825号公報
 特許文献2:特開平10-223258号公報
 特許文献3:特開平11-054133号公報
 特許文献4:特開平11-121033号公報
 特許文献5:特開2002-025609号公報
 特許文献6:特開2002-216844号公報
 特許文献7:特開2003-132946号公報
 特許文献8:特開2003-168476号公報
 特許文献9:特開2008-198542号公報
 特許文献10:特開2009-245829号公報
 特許文献1~10に開示されているとおり、二次電池の電池性能を向上させるために、非水電解液にホウ素化合物を添加することは知られているが、電池性能の更なる向上が求められている。特に、EV、HEV、PHEV等の自動車用の電池として使用されている二次電池では、これに蓄積された電力を放電することによって電動機を駆動しており、自動車の始動時や加速時において、瞬間的に大電流での放電が必要となる。即ち、優れた出力特性が求められている。しかし、当該二次電池の直流抵抗が高くなると、出力特性が低下するため、これらの自動車の走行性能が低下するという問題が生じる。即ち、安定した自動車の走行性能を得るため、これらの自動車用の電池には、初期の直流抵抗が低いだけでなく、経時劣化による直流抵抗上昇が小さい二次電池が求められている。
 本発明は、上記状況のもとになされた。
 本発明は、出力特性に優れる二次電池が得られる二次電池用非水電解液、及び、出力特性に優れる二次電池を提供することを課題とする。
 本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。
 前記課題を解決するための手段は以下のとおりである。
<1> 下記一般式(1)で表されるホウ素化合物を含有する二次電池用非水電解液。
Figure JPOXMLDOC01-appb-C000002
 一般式(1)中、Rは、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、又は一般式(2)で表される基を表す。一般式(2)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、又は炭素数6~12のアリール基を表す。一般式(2)中、*は、一般式(1)中の酸素原子との結合部位を表す。
<2> 前記一般式(1)中、Rが、前記一般式(2)で表される基である<1>に記載の二次電池用非水電解液。
<3> 前記一般式(1)で表されるホウ素化合物の含有量が、二次電池用非水電解液の総量に対して0.01質量%~10質量%である<1>又は<2>に記載の二次電池用非水電解液。
<4> 炭素-炭素不飽和結合又はフッ素原子を有するカーボネート化合物、及び環状スルホン酸エステルからなる群から選ばれる少なくとも1種の化合物をさらに含有する<1>~<3>のいずれか1項に記載の二次電池用非水電解液。
<5> 炭素-炭素不飽和結合又はフッ素原子を有するカーボネート化合物をさらに含有し、
 前記炭素-炭素不飽和結合又はフッ素原子を有するカーボネート化合物の含有量が、二次電池用非水電解液の総量に対して1質量%~15質量%である<1>~<3>のいずれか1項に記載の二次電池用非水電解液。
<6> 環状スルホン酸エステルをさらに含有し、
 前記環状スルホン酸エステルの含有量が、二次電池用非水電解液の総量に対して0.1質量%~10質量%である<1>~<3>及び<5>のいずれか1項に記載の二次電池用非水電解液。
<7> 正極と、負極と、<1>~<6>のいずれか1項に記載の非水電解液と、を備える二次電池。
<8> 正極と、負極と、<1>~<6>のいずれか1項に記載の非水電解液と、を備え、充放電させて得られた二次電池。
 本発明によれば、出力特性に優れる二次電池が得られる二次電池用非水電解液、及び、出力特性に優れる二次電池が提供される。
本発明の二次電池の一実施形態を示す外観斜視図である。 本発明の二次電池を複数個集合して構成した蓄電装置の一実施形態を示す概略図である。
 以下に、本発明の実施の形態について説明する。これらの説明及び実施例は本発明を例示するものであり、本発明の範囲を制限するものではない。
<二次電池用非水電解液>
 本発明の二次電池用非水電解液(以下、単に「非水電解液」ともいう。)は、下記一般式(1)で表されるホウ素化合物を含む。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)中、Rは、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、又は一般式(2)で表される基を表す。一般式(2)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、又は炭素数6~12のアリール基を表す。一般式(2)中、*は、一般式(1)中の酸素原子との結合部位を表す。
 本発明の非水電解液は、前記一般式(1)で表されるホウ素化合物を含有していることにより、二次電池を作製した場合に、出力特性(具体的には、初期の直流抵抗の低減、経時劣化による直流抵抗上昇の抑制)に優れる二次電池が得られる。このような効果が得られる詳細な作用機構は不明であるが、前記一般式(1)で表されるホウ素化合物が初期充電により分解してオキサラト構造部「・O-(C=O)-O・」を生じ、これが電極(活物質)の表面に作用して、イオン伝導率の高いイオン伝導経路が形成されることが考えられる。ホウ素化合物の中でも、分解してオキサラト構造部が生じやすい観点で、前記一般式(1)で表される構造を有するホウ素化合物(中でも特に、前記一般式(2)で表される置換基を有するホウ素化合物)が有利と考えられる。また、前記一般式(1)で表されるホウ素化合物は、ホウ素原子に置換基としてオキサラト基とR-O-で表される基とが結合しており、ホウ素原子を中心とすると非対称な分子構造となっていることから、分子内での電荷分布に不均衡を生じさせることができるため、ホウ素化合物の中でも、初期充電により分解しやすく、上記作用が効果的に奏されると考えられる。
 以下、本発明の非水電解液の成分、組成等について詳細に説明する。
[一般式(1)で表されるホウ素化合物]
 前記一般式(1)中、Rは、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、又は前記一般式(2)で表される基を表す。
 Rで表される炭素数1~12のアルキル基としては、炭素数1~10のアルキル基がより好ましく、炭素数1~8のアルキル基が更に好ましく、炭素数1~6のアルキル基が更に好ましく、炭素数1~4のアルキル基が更に好ましい。
 上記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、n-ヘプチル基、イソヘプチル基、sec-ヘプチル基、tert-ヘプチル基、n-オクチル基、イソオクチル基、sec-オクチル基、tert-オクチル基等が挙げられる。
 Rで表される炭素数1~12のアルキル基は、非置換でもよく、ハロゲン原子(例えば、フッ素原子、塩素原子)等で置換されていてもよい。
 Rで表される炭素数2~12のアルケニル基としては、炭素数2~10のアルケニル基がより好ましく、炭素数2~8のアルケニル基が更に好ましく、炭素数2~6のアルケニル基が更に好ましく、炭素数2~4のアルケニル基が更に好ましい。
 上記アルケニル基としては、例えば、エテニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基等が挙げられる。
 Rで表される炭素数2~12のアルケニル基は、非置換でもよく、ハロゲン原子(例えば、フッ素原子、塩素原子)等で置換されていてもよい。
 Rとしては、前記一般式(2)で表される基が好ましい。前記一般式(2)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、又は炭素数6~12のアリール基を表す。
 R~Rで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子が挙げられ、フッ素原子が好ましい。
 R~Rで表される炭素数1~12のアルキル基としては、炭素数1~10のアルキル基がより好ましく、炭素数1~8のアルキル基が更に好ましく、炭素数1~6のアルキル基が更に好ましく、炭素数1~4のアルキル基が更に好ましく、炭素数1~3のアルキル基が更に好ましい。
 上記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、n-ヘプチル基、イソヘプチル基、sec-ヘプチル基、tert-ヘプチル基、n-オクチル基、イソオクチル基、sec-オクチル基、tert-オクチル基等が挙げられる。
 R~Rで表される炭素数1~12のアルキル基は、非置換でもよく、ハロゲン原子(例えば、フッ素原子、塩素原子)等で置換されていてもよい。
 R~Rで表される炭素数2~12のアルケニル基としては、炭素数2~10のアルケニル基がより好ましく、炭素数2~8のアルケニル基が更に好ましく、炭素数2~6のアルケニル基が更に好ましく、炭素数2~4のアルケニル基が更に好ましい。
 上記アルケニル基としては、例えば、エテニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基等が挙げられる。
 R~Rで表される炭素数2~12のアルケニル基は、非置換でもよく、ハロゲン原子(例えば、フッ素原子、塩素原子)等で置換されていてもよい。
 R~Rで表される炭素数6~12のアリール基としては、炭素数6~10のアリール基がより好ましい。
 上記アリール基としては、例えば、フェニル基、アルキルベンゼンから水素原子が1個外れた基(例えば、ベンジル基、トリル基、キシリル基、メチシル基等)、ナフチル基、ナフタレンのアルキル基置換体から水素原子が1個外れた基等が挙げられる。
 R~Rで表される炭素数6~12のアリール基は、非置換でもよく、ハロゲン原子(例えば、フッ素原子、塩素原子)等で置換されていてもよい。
 前記一般式(2)中、R~Rの少なくとも1個は、アルキル基、アルケニル基、又はアリール基であることが好ましく、R~Rの少なくとも2個は、アルキル基、アルケニル基、又はアリール基であることがより好ましい。この場合の、アルキル基、アルケニル基、及びアリール基の好ましい態様は前述のとおりであり、アルキル基、アルケニル基、及びアリール基の中でもアルキル基が好ましい。
 前記一般式(1)で表されるホウ素化合物の具体例としては、例えば、下記の例示化合物(1)~(26)が挙げられる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 前記一般式(1)で表されるホウ素化合物は、例えば、Chemische Berichte, Volume 68, Issue 6, Pages 1949-55, 1965に記載の方法で合成し得る。
 前記一般式(1)で表されるホウ素化合物の含有量(2種以上の場合は総含有量)は、非水電解液の総量に対して、0.01質量%~10質量%が好ましく、0.05質量%~5質量%がより好ましく、0.1質量%~5質量%が更に好ましく、0.5質量%~5質量%が更に好ましく、0.5質量%~3質量%が更に好ましく、0.5質量%~2質量%が更に好ましく、0.5質量%~1質量%が更に好ましい。
 前記一般式(1)で表されるホウ素化合物は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
[非水溶媒]
 本発明の非水電解液に用いられる非水溶媒としては、環状又は鎖状の非プロトン性溶媒が好ましい。環状の非プロトン性溶媒としては、例えば、エチレンカーボネート等の環状カーボネート;γ-ブチロラクトン等の環状エステル;スルホラン等の環状スルホン;ジオキソラン等の環状エーテル;が挙げられる。鎖状の非プロトン性溶媒としては、例えば、ジメチルカーボネート等の鎖状カーボネート;プロピオン酸メチル等の鎖状カルボン酸エステル;ジメトキシエタン等の鎖状エーテル;が挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 二次電池の負荷特性及び低温特性の向上を意図する場合には、非水溶媒を環状の非プロトン性溶媒と鎖状の非プロトン性溶媒との混合物にすることが好ましい。さらに、非水電解液の電気化学的安定性の観点で、環状の非プロトン性溶媒として環状カーボネートを、鎖状の非プロトン性溶媒として鎖状カーボネートを、用いることが好ましい。
 環状カーボネートの例として具体的には、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、トランス-2,3-ブチレンカーボネート、シス-2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、トランス-2,3-ペンチレンカーボネート、シス-2,3-ペンチレンカーボネート等が挙げられる。中でも、誘電率が高い点で、エチレンカーボネート、プロピレンカーボネートが好ましい。負極活物質に黒鉛を使用する場合は、エチレンカーボネートが好ましい。
 鎖状カーボネートの例として具体的には、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート、メチルトリフルオロエチルカーボネート等が挙げられる。中でも、粘度が低い点で、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートが好ましい。
 環状カーボネートと鎖状カーボネートとを混合する場合の混合割合は、環状カーボネート:鎖状カーボネート(体積比)が、好ましくは5:95~70:30であり、より好ましくは10:90~60:40である。混合割合がこの範囲であると、非水電解液の粘度上昇を抑制し、電解質の解離度を高めることができるので、電池の充放電特性に寄与する非水電解液の伝導度を高めることができる。
[電解質]
 本発明の非水電解液に用いられる電解質としては、電解質として公知の化合物すべてを用いることができ、例えばリチウム塩を用いてよい。
 リチウム塩の具体例としては、LiPF、LiBF、LiClO、LiAsFLiSiF、LiOSO(2k+1)(k=1~8の整数)、LiN(SOF)、LiN(SO(2k+1))(k=1~8の整数)、LiPF(C(2k+1))(6-n)(n=1~5の整数、k=1~8の整数)、LiBF(2k+1)(n=1~3の整数、k=1~8の整数)、LiB(C)2 (リチウムビスオキサリルボレート)、LiBF(C)(リチウムジフルオロオキサリルボレート)、LiPF(C)(リチウムトリフルオロオキサリルフォスフェート);下記一般式で示されるリチウム塩;が挙げられる。
  LiC(SO11)(SO12)(SO13)
  LiN(SOOR14)(SOOR15)
  LiN(SO16)(SOOR17)
 式中、R11~R17は、炭素数1~8のパーフルオロアルキル基である。R11~R13は、互いに同一であっても異なっていてもよい。R14とR15は、互いに同一であっても異なっていてもよい。R16とR17は、互いに同一であっても異なっていてもよい。
 リチウム塩としては、LiPF、LiBF、LiN(SO(2k+1))(k=1~8の整数)が好ましい。
 本発明の非水電解液のリチウム塩濃度は、0.1mol/L~3mol/Lが好ましく、0.5mol/L~2mol/Lがより好ましい。
 リチウム塩は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
[添加剤]
 本発明の非水電解液は、非水電解液に添加される公知の添加剤を含有していてもよい。添加剤としては、炭素-炭素不飽和結合又はフッ素原子を有するカーボネート化合物、及び環状スルホン酸エステルからなる群から選ばれる少なくとも1種の化合物が好ましい。添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 炭素-炭素不飽和結合又はフッ素原子を有するカーボネート化合物としては、例えば、ビニレンカーボネート、ジメチルビニレンカーボネート、ジビニルカーボネート等の炭素-炭素不飽和結合を有するカーボネート化合物;フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロメチルエチレンカーボネート等のフッ素原子を有するカーボネート化合物;が挙げられる。中でも、ビニレンカーボネート、フルオロエチレンカーボネートが好ましい。
 炭素-炭素不飽和結合又はフッ素原子を有するカーボネート化合物の含有量(2種以上の場合は総含有量)は、非水電解液の総量に対して、1質量%~15質量%が好ましく、5質量%~10質量%がより好ましい。
 環状スルホン酸エステルとしては、例えば、1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-プロパ-1-エンスルトン(別名1,3-プロペンスルトン)、1-メチル-1,3-プロパ-1-エンスルトン、2-メチル-1,3-プロパ-1-エンスルトン、3-メチル-1,3-プロパ-1-エンスルトンが挙げられ、中でも1,3-プロパ-1-エンスルトンが好ましい。
 環状スルホン酸エステルの含有量(2種以上の場合は総含有量)は、非水電解液の総量に対して、0.1質量%~10質量%が好ましく、0.5質量%~5質量%がより好ましく、1質量%~5質量%が更に好ましい。
 その他の添加剤としては、例えば、亜硫酸エチレン、亜硫酸プロピレン、硫酸エチレン、硫酸プロピレン、硫酸ブテン、硫酸ヘキセン、硫酸ビニレン、3-スルホレン、ジビニルスルホン、硫酸ジメチル、硫酸ジエチル等のイオウ系化合物;ビニルボロン酸ジメチル、ビニルボロン酸ジエチル、ビニルボロン酸ジプロピル、ビニルボロン酸ジブチル等のビニルボロン酸化合物;ジメチルホルムアミド等のアミド類;メチル-N,N-ジメチルカーバメート等の鎖状カーバメート類;N-メチルピロリドン等の環状アミド類;N,N-ジメチルイミダゾリジノン等の環状ウレア類;ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリブチル、ホウ酸トリオクチル、ホウ酸トリ(トリメチルシリル)等のホウ酸エステル類;リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、リン酸トリオクチル、リン酸トリ(トリメチルシリル)、リン酸トリフェニル等のリン酸エステル類;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ポリエチレングリコールジメチルエーテル等のエチレングリコール誘導体;ビフェニル、フルオロビフェニル、o-ターフェニル、トルエン、エチルベンゼン、フルオロベンゼン、シクロヘキシルベンゼン、2-フルオロアニソール、4-フルオロアニソール等の芳香族炭化水素;無水マレイン酸、ノルボルネンジカルボン酸無水物等の炭素-炭素不飽和結合を有するカルボン酸無水物;が挙げられる。
<二次電池>
 本発明の二次電池は、正極と、負極と、本発明の非水電解液と、を備える。本発明の二次電池の一例は、負極と正極とがセパレータを介して対向した構造体が、本発明の非水電解液と共に外装材内に封入された二次電池である。本発明の二次電池は、リチウムイオンのドープ・脱ドープにより起電力を得る、リチウムイオン二次電池であることが好ましい。以下、本発明の二次電池の構成要素について説明する。
[正極]
 正極は、正極活物質及び結着剤を含む活物質層が集電体上に成形された構造が好ましい。活物質層は、導電助剤をさらに含んでもよい。
 正極活物質としては、正極活物質として公知の化合物を用いることができる。具体的に正極活物質としては、リチウムを吸蔵・放出可能な化合物である、組成式LiMO又はLiで表される複合酸化物(Mは遷移金属から選ばれる一種又は複数種、0≦x≦1、0≦y≦2);LiMe(XO)(Meは少なくとも一種の遷移金属、Xは例えばP、Si、B、V)で表されるポリアニオン化合物;トンネル構造及び層状構造の金属カルコゲン化物又は金属酸化物;などが挙げられる。その具体例としては、LiCoO、LiCo1/2Ni1/2、LiNiMnCo(1-y-z)、LiMn、LiMn、LiNiMn(2-y)、LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO)、LiMnSiO、LiCoPOF、MnO、FeO、V、V13、TiO、TiS等が挙げられる。これらの化合物中の元素又はポリアニオンは、他の元素又はアニオン種で一部が置換されていてもよい。ほかに正極活物質としては、ポリアニリン、ジスルフィド、ポリピロール、ポリパラスチレン、ポリアセチレン、ポリアセン等の導電性ポリマー、擬グラファイト構造炭素質材料等が挙げられる。正極活物質は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 結着剤としては、ポリフッ化ビニリデン樹脂、スチレンブタジエンゴム、カルボキシメチルセルロース等が挙げられる。導電助剤としては、アセチレンブラック、ケッチェンブラック、黒鉛粉末等の炭素質材料が挙げられる。集電体としては、アルミ箔、チタン箔、ステンレス箔等が挙げられる。
[負極]
 負極は、負極活物質及び結着剤を含む活物質層が集電体上に成形された構造が好ましい。活物質層は、導電助剤をさらに含んでもよい。
 負極活物質としては、負極活物質として公知の化合物を用いることができる。負極活物質としては、リチウムを吸蔵・放出可能な化合物が好ましく、具体的には、リチウム単体;Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金;LiFe、LiTi12等のリチウム含有遷移金属酸化物;WO、MoO、SiO、CuO、SnO等の金属酸化物;グラファイト、カーボン等の炭素質材料;LiN等の窒化リチウム;リチウム含有遷移金属窒化物;などが挙げられる。負極活物質は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 結着剤としては、ポリフッ化ビニリデン樹脂、スチレンブタジエンゴム、カルボキシメチルセルロース等が挙げられる。導電助剤としては、アセチレンブラック、ケッチェンブラック、黒鉛粉末等の炭素質材料が挙げられる。集電体としては、銅箔、ニッケル箔、ステンレス箔等が挙げられる。
[セパレータ]
 セパレータとしては、織布、不織布、合成樹脂の微多孔膜等を用いることが好ましく、中でも合成樹脂の微多孔膜がより好適である。合成樹脂の微多孔膜としては、ポリエチレン若しくはポリプロピレンの微多孔膜、又はこれらを複合した微多孔膜等のポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗等の観点で好ましい。
 ほかに、有孔性の固体電解質(例えば有孔性高分子固体電解質膜)と、本発明の非水電解液とを併用してもよく、この場合、有孔性の固体電解質がセパレータの役目を果たす。有孔性の固体電解質と合成樹脂の微多孔膜とを併用してもよい。
 本発明の二次電池の形状は特に限定されるものではなく、角形、長円筒形、コイン形、ボタン形、シート形等の様々な形状に適用することが可能である。
 以下、図1及び図2を用いて、本発明の実施態様の一例を説明する。図1は、本発明の二次電池の一実施形態である矩形状の二次電池を示す外観斜視図である。なお、同図は、容器内部を透視した図としている。また、図2は、本発明の二次電池を複数個備える蓄電装置の一実施形態を示す概略図である。
 図1に示す二次電池1は、電極群2が電池容器3に収納されている。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。電極群2には、本発明の非水電解液が含浸されている。
 また、本発明は、上記の二次電池を複数個備える蓄電装置としても実現することができる。図2に示す蓄電装置30は、複数個の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数個の二次電池1を備えている。蓄電装置30は、EV、HEV、PHEV等に、これらの自動車用の電池として搭載することができる。
 なお、本発明の二次電池は、負極と、正極と、本発明の非水電解液と、を備え、充放電させて得られた二次電池であってもよい。
 即ち、本発明の二次電池は、まず、負極と、正極と、本発明の非水電解液と、を備える充放電前の二次電池を作製し、次いで、この充放電前の二次電池を1回以上充放電させることによって作製された二次電池(充放電された二次電池)であってもよい。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。以下の実施例に示す材料、使用量、割合、処理手順等は、本発明の趣旨を逸脱しない限り、適宜変更することができる。
<実施例1-1>
[非水電解液の作製]
 エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比30:70で混合した混合溶媒に、LiPFを1.0mol/L溶解させた。そこに、例示化合物(25)((3-メチル-2,4-ペンタンジオナト)オキサラトボレート)を添加し、非水電解液を得た。例示化合物(25)の濃度は0.5質量%とした。
[二次電池の作製]
 上記で作製した非水電解液と、下記の正極、負極、及びセパレータとを用いて、図1に示すタイプの二次電池を作製した。
-正極-
 正極活物質としてのLiCo1/3Ni1/3Mn1/3で表されるリチウム遷移金属複合酸化物93質量%と、導電助剤としてのアセチレンブラック3質量%と、結着剤としてのポリフッ化ビニリデン(PVDF)4質量%とを含有し、N-メチル-2-ピロリドンを分散溶媒とする正極ペーストを得た。この正極ペーストを厚さ15μmのアルミニウム集電体に均一に塗布して乾燥させた後、ロールプレスで圧縮成形することにより正極を得た。
-負極-
 負極活物質としての黒鉛97質量%と、結着剤としてのカルボキシメチルセルロース1質量%及びスチレンブタジエンゴム2質量%とを含有し、蒸留水を分散溶媒とする負極ペーストを得た。この負極ペーストを厚さ10μmの銅集電体に均一に塗布し乾燥させた後、ロールプレスで圧縮成形することにより負極を得た。
-セパレータ-
 セパレータとしては、厚さ25μmのポリエチレン製微多孔膜を用いた。
<比較例1-1>
 例示化合物(25)を添加しない以外は実施例1-1と同様にして、非水電解液及び二次電池を作製した。
<比較例1-2>
 例示化合物(25)をトリメトキシボラン(TMB)に変更した以外は実施例1-1と同様にして、非水電解液及び二次電池を作製した。
<実施例2-1、比較例2-1~2-2>
 実施例2-1、比較例2-1~2-2はそれぞれ、実施例1-1、比較例1-1~1-2と同様にして、非水電解液及び二次電池を作製した。
<実施例3-1>
[非水電解液の作製]
 エチルメチルカーボネート(EMC)に、LiPFを1.2mol/L溶解させた。そこに、フルオロエチレンカーボネート(FEC)、1,3-プロパ-1-エンスルトン(PRS)及び例示化合物(25)を添加し、非水電解液を得た。FEC濃度は7.5質量%、PRS濃度は2質量%、例示化合物(25)の濃度は0.5質量%とした。
[二次電池の作製]
 上記で作製した非水電解液を用いて、実施例1-1と同様にして二次電池を作製した。
<比較例3-1>
 例示化合物(25)を添加しない以外は実施例3-1と同様にして、非水電解液及び二次電池を作製した。
<実施例4-1>
[非水電解液の作製]
 エチルメチルカーボネート(EMC)に、LiPFを1.2mol/L溶解させた。そこに、フルオロエチレンカーボネート(FEC)及び例示化合物(25)を添加し、非水電解液を得た。FEC濃度は7.5質量%、例示化合物(25)の濃度は0.5質量%とした。
[二次電池の作製]
 上記で作製した非水電解液を用いて、実施例1-1と同様にして二次電池を作製した。
<実施例4-2~4-3>
 例示化合物(25)を表4に記載のとおりの例示化合物に変更した以外は実施例4-1と同様にして、非水電解液及び二次電池を作製した。
<比較例4-1>
 例示化合物(25)を添加しない以外は実施例4-1と同様にして、非水電解液及び二次電池を作製した。
<実施例5-1>
 実施例4-1と同様にして、非水電解液及び二次電池を作製した。
<実施例5-2~5-3>
 例示化合物(25)の濃度を表5に記載のとおりに変更した以外は実施例5-1と同様にして、非水電解液及び二次電池を作製した。
<比較例5-1>
 比較例4-1と同様にして、非水電解液及び二次電池を作製した。
<性能評価>
 各実施例及び比較例の二次電池に対し、以下の試験を行って性能を評価した。表1~表5にその結果を示す。
[初期直流抵抗]
 まず、2サイクルの初期充放電工程を実施した。工程は25℃にて行った。電圧制御は、全て、正負極端子間電圧に対して行った。1サイクル目、充電は、電流0.2CmA、電圧4.20Vまたは4.35V、8時間の定電流定電圧充電とし、放電は、電流0.2CmA、終止電圧2.75Vの定電流放電とした。2サイクル目、充電は、電流1.0CmA、電圧4.20Vまたは4.35V、3時間の定電流定電圧充電とし、放電は、電流1.0CmA、終止電圧2.75Vの定電流放電とした。全てのサイクルにおいて、充電後及び放電後に、10分間の休止時間を設定した。2サイクル目の放電後に、電池のSOC(State of Charge)を50%にした後、-20℃にて電流0.2CmA、0.5CmA、1.0CmAの順で、30秒間ずつ放電した。各放電電流における電流と放電開始後10秒目の電圧との関係をプロットし、3点のプロットから得られた直線の傾きから直流抵抗を求めた。そして、ホウ素化合物を含有しない非水電解液を備えた比較例の二次電池の測定値を100として、実施例及びその他の比較例の二次電池の相対値を算出した。この相対値が低い方が、直流抵抗が小さく、初期の出力特性に優れていることを示す。
[高率放電特性]
 試験は25℃にて行った。電圧制御は、全て、正負極端子間電圧に対して行った。充電は、電流1.0CmA、電圧4.20Vまたは4.35V、3時間の定電流定電圧充電とし、放電は、電流5.0CmA、終止電圧2.75Vの定電流放電とした。充電後に10分間の休止時間を設定した。そして、1CmA放電容量に対する5CmA放電容量の割合(%)を算出した。この割合が高い方が、高率放電特性に優れていることを示す。
[低温放電特性]
 電圧制御は、全て、正負極端子間電圧に対して行った。充電は、25℃にて、電流1.0CmA、電圧4.20Vまたは4.35V、3時間の定電流定電圧充電とし、放電は、-20℃にて、電流1.0CmA、終止電圧2.75Vの定電流放電とした。充電後に、-20℃にて5時間の休止時間を設定した。そして、25℃下の放電容量に対する-20℃下の放電容量の割合(%)を算出した。この割合が高い方が、低温放電特性に優れていることを示す。
[保存特性]
 電圧制御は、全て、正負極端子間電圧に対して行った。まず、25℃にて、電流1.0CmA、電圧4.20Vまたは4.35V、3時間の定電流定電圧充電を行った。次に、電池を開回路状態とし、45℃の恒温槽中に15日間保存した。次に、25℃にて、電流1.0CmA、終止電圧2.75Vの定電流放電を行い、放電容量を測定した。再び、25℃にて、電流1.0CmA、電圧4.20Vまたは4.35V、3時間の定電流定電圧充電を行った後、25℃にて、電流1.0CmA、終止電圧2.75Vの定電流放電を行い、放電容量を測定した。それぞれの電池について、初期放電容量(mAh)に対する45℃下保存後1サイクル目の放電容量(mAh)の割合を「残存容量維持率(%)」、45℃下保存後2サイクル目の放電容量(mAh)の割合を「回復容量維持率(%)」として算出した。なお、本試験では、初期充放電工程における2サイクル目の放電容量を「初期放電容量(mAh)」とした。
 さらに、45℃下保存後2サイクル目の放電後に、初期直流抵抗と同様の方法にて、保存後直流抵抗を求めた。そして、ホウ素化合物を含有しない非水電解液を備えた比較例の二次電池の測定値を100として、実施例及びその他の比較例の二次電池の相対値を算出した。
 残存容量維持率および回復容量維持率は、割合が高い方が保存特性に優れていることを示す。保存後直流抵抗は、相対値が低い方が出力特性に優れていることを示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表1~表2に示すとおり、実施例1-1及び実施例2-1はそれぞれ比較例1-1及び比較例2-1に比べて、-20℃下の初期直流抵抗が低かった。このことから、一般的な電圧の充電条件(充電電圧4.20V)においても、高電圧の充電条件(充電電圧4.35V)においても、前記一般式(1)で表されるホウ素化合物の添加によって二次電池の直流抵抗が小さくなること、即ち二次電池の出力特性が向上することが分かる。
 また、実施例1-1及び実施例2-1はそれぞれ比較例1-1及び比較例2-1に比べて、45℃下保存後の直流抵抗が低かった。このことから、一般的な電圧の充電条件(充電電圧4.20V)においても、高電圧の充電条件(充電電圧4.35V)においても、前記一般式(1)で表されるホウ素化合物の添加によって二次電池の経時劣化による直流抵抗上昇が抑制されること、即ち二次電池の出力特性が向上することが分かる。
 さらに、実施例1-1及び実施例2-1はそれぞれ比較例1-1及び比較例2-1に比べて、45℃下保存後の残存容量維持率、回復容量維持率のいずれについても優れていた。このことから、一般的な電圧の充電条件(充電電圧4.20V)においても、高電圧の充電条件(充電電圧4.35V)においても、前記一般式(1)で表されるホウ素化合物の添加によって二次電池の保存特性が向上することが分かる。
 一方、ホウ素化合物としてTMBを用いた場合(比較例1-2、比較例2-2)は、ホウ素化合物を含有しない場合(比較例1-1、比較例2-1)に比べて、45℃下保存後の残存容量維持率、回復容量維持率、直流抵抗のいずれも劣っていた。したがって、ホウ素化合物であれば、非水電解液に添加した場合、常に二次電池の出力特性や保存特性を向上させるとは言えない。前記一般式(1)で表されるホウ素化合物は、二次電池の出力特性や保存特性に関し、非水電解液の添加剤として従来公知のホウ素化合物であるTMBでは得られない格別の効果を奏すると言える。
 さらに高率放電特性と低温放電特性についてみると、実施例1-1は比較例1-1より優れており、実施例2-1は比較例2-1より優れていた。このことから、前記一般式(1)で表されるホウ素化合物の添加によって二次電池の放電特性も向上することが分かる。しかも、実施例1-1は比較例1-2より優れており、実施例2-1は比較例2-2より優れていた。このことから、前記一般式(1)で表されるホウ素化合物は、二次電池の放電特性に関し、非水電解液の添加剤として従来公知のホウ素化合物であるTMBよりも優れた効果を奏することが分かる。
Figure JPOXMLDOC01-appb-T000010
 表3に示すとおり、実施例3-1は比較例3-1に比べて、すべての評価項目において同値か又は優れていた。このことから、前記一般式(1)で表されるホウ素化合物を他の添加剤(FEC及びPRS)と併せて用いても、二次電池の電池性能に悪影響を及ぼさないこと、前記一般式(1)で表されるホウ素化合物の添加によって二次電池の電池性能全般が向上することが分かる。
Figure JPOXMLDOC01-appb-T000011
 表4に示すとおり、実施例4-1~4-3は比較例4-1に比べて、-20℃下の初期直流抵抗が低かった。このことから、各種の前記一般式(1)で表されるホウ素化合物の添加によって二次電池の直流抵抗が小さくなること、即ち二次電池の出力特性が向上することが分かる。
 また、実施例4-1~4-3は比較例4-1に比べて、45℃下保存後の直流抵抗が低かった。このことから、各種の前記一般式(1)で表されるホウ素化合物の添加によって二次電池の経時劣化による直流抵抗上昇が抑制されること、即ち二次電池の出力特性が向上することが分かる。
 さらに、実施例4-1~4-2は比較例4-1に比べて、すべての評価項目において優れており、なかでも、例示化合物(25)を用いた実施例4-1は、いずれの評価項目においても最も優れており、このことから、前記一般式(1)で表されるホウ素化合物のなかでも、例示化合物(25)や例示化合物(22)が好ましく、例示化合物(25)がより好ましい。
Figure JPOXMLDOC01-appb-T000012
 表5に示すとおり、実施例5-1~5-3は比較例5-1に比べて、-20℃下の初期直流抵抗が低かった。このことから、前記一般式(1)で表されるホウ素化合物を様々な濃度で用いることによって、二次電池の直流抵抗が小さくなること、即ち二次電池の出力特性が向上することが分かる。
 また、実施例5-1~5-3は比較例5-1に比べて、45℃下保存後の直流抵抗が低かった。このことから、前記一般式(1)で表されるホウ素化合物を様々な濃度で用いることによって、二次電池の経時劣化による直流抵抗上昇が抑制されること、即ち二次電池の出力特性が向上することが分かる。
 なお、実施例5-1~5-3の保存特性を比較すると、前記一般式(1)で表されるホウ素化合物の添加量は、2質量%以下とすることが好ましく、1質量%以下とすることがより好ましい。
[サイクル特性試験]
 実施例3-1及び比較例3-1の二次電池の各々に対し、200サイクル及び900サイクルのサイクル特性試験を行った。
 各サイクル特性試験は、45℃にて行った。各サイクル特性試験における電圧制御は、全て、正負極端子間電圧に対して行った。各サイクル特性試験において、充電は、電流1.0CmA、電圧4.35V、3時間の定電流定電圧充電とし、放電は、電流1.0CmA、終止電圧2.75Vの定電流放電とした。全てのサイクルにおいて、充電後及び放電後に、10分の休止時間を設定した。
 各サイクル特性試験を実施した後、二次電池の厚さ(以下、「電池厚み」ともいう)をノギスによって測定し、二次電池の交流抵抗(内部抵抗)を、交流(1kHz)インピーダンスメーターによって測定した。
 表6に、比較例3-1の電池厚みを100とした場合の実施例3-1の電池厚み(相対値)を示し、比較例3-1の二次電池の交流抵抗を100とした場合の実施例3-1の二次電池の交流抵抗(相対値)を示す。
 また、各サイクル特性試験を実施した後、二次電池の容量維持率を算出した。結果を表6に示す。ここで、二次電池の容量維持率は、「保存特性」の項で説明した初期放電容量(mAh)を100とした場合の各サイクル目の放電容量(mAh)(相対値)とした。
Figure JPOXMLDOC01-appb-T000013
 表6に示すように、実施例3-1は、比較例3-1に比べて、200サイクル後及び900サイクル後の容量維持率が高く、200サイクル後及び900サイクル後の交流抵抗及び電池厚みが小さかった。このことから、前記一般式(1)で表されるホウ素化合物の添加によって二次電池のサイクル特性も向上することが分かる。
 日本国特許出願2015-217704の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (8)

  1.  下記一般式(1)で表されるホウ素化合物を含有する二次電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000001

     一般式(1)中、Rは、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、又は一般式(2)で表される基を表す。一般式(2)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、又は炭素数6~12のアリール基を表す。一般式(2)中、*は、一般式(1)中の酸素原子との結合部位を表す。
  2.  前記一般式(1)中、Rが、前記一般式(2)で表される基である請求項1に記載の二次電池用非水電解液。
  3.  前記一般式(1)で表されるホウ素化合物の含有量が、二次電池用非水電解液の総量に対して0.01質量%~10質量%である請求項1又は請求項2に記載の二次電池用非水電解液。
  4.  炭素-炭素不飽和結合又はフッ素原子を有するカーボネート化合物、及び環状スルホン酸エステルからなる群から選ばれる少なくとも1種の化合物をさらに含有する請求項1~請求項3のいずれか1項に記載の二次電池用非水電解液。
  5.  炭素-炭素不飽和結合又はフッ素原子を有するカーボネート化合物をさらに含有し、
     前記炭素-炭素不飽和結合又はフッ素原子を有するカーボネート化合物の含有量が、二次電池用非水電解液の総量に対して1質量%~15質量%である請求項1~請求項3のいずれか1項に記載の二次電池用非水電解液。
  6.  環状スルホン酸エステルをさらに含有し、
     前記環状スルホン酸エステルの含有量が、二次電池用非水電解液の総量に対して0.1質量%~10質量%である請求項1~請求項3及び請求項5のいずれか1項に記載の二次電池用非水電解液。
  7.  正極と、負極と、請求項1~請求項6のいずれか1項に記載の二次電池用非水電解液と、を備える二次電池。
  8.  正極と、負極と、請求項1~請求項6のいずれか1項に記載の二次電池用非水電解液と、を備え、充放電させて得られた二次電池。
PCT/JP2016/082695 2015-11-05 2016-11-02 二次電池用非水電解液、及び二次電池 WO2017078107A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017548834A JP6510671B2 (ja) 2015-11-05 2016-11-02 二次電池用非水電解液、及び二次電池
EP16862167.0A EP3373378B1 (en) 2015-11-05 2016-11-02 Nonaqueous electrolyte solution for secondary batteries, and secondary battery
CN201680062330.0A CN108352571B (zh) 2015-11-05 2016-11-02 二次电池用非水电解液和二次电池
US15/771,181 US10476108B2 (en) 2015-11-05 2016-11-02 Non-aqueous electrolyte solution for secondary battery, and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-217704 2015-11-05
JP2015217704 2015-11-05

Publications (1)

Publication Number Publication Date
WO2017078107A1 true WO2017078107A1 (ja) 2017-05-11

Family

ID=58662098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082695 WO2017078107A1 (ja) 2015-11-05 2016-11-02 二次電池用非水電解液、及び二次電池

Country Status (5)

Country Link
US (1) US10476108B2 (ja)
EP (1) EP3373378B1 (ja)
JP (1) JP6510671B2 (ja)
CN (1) CN108352571B (ja)
WO (1) WO2017078107A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170237A (ja) * 2017-03-30 2018-11-01 三井化学株式会社 電池用非水電解液及びリチウム二次電池
WO2020022142A1 (ja) * 2018-07-26 2020-01-30 三井化学株式会社 ホウ酸リチウム化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、並びに、リチウム二次電池及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147288A (ja) * 2004-11-18 2006-06-08 Toyota Central Res & Dev Lab Inc 非水電解液リチウムイオン二次電池
WO2011024420A1 (ja) * 2009-08-25 2011-03-03 国立大学法人名古屋大学 含ホウ素化合物、電解質材料、及びリチウムイオン電池
EP2827430A1 (en) * 2013-07-19 2015-01-21 Basf Se Use of lithium alkoxyborates and lithium alkoxyaluminates as conducting salts in electrolytes of lithium ion batteries

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439002B2 (ja) 1995-10-25 2003-08-25 三洋電機株式会社 非水系電解液電池
CA2196493C (en) 1997-01-31 2002-07-16 Huanyu Mao Additives for improving cycle life of non-aqueous rechargeable lithium batteries
JP3439084B2 (ja) 1997-08-05 2003-08-25 三洋電機株式会社 非水系電解液電池
JP4352469B2 (ja) 1997-10-13 2009-10-28 宇部興産株式会社 非水電解液二次電池
JP4082853B2 (ja) 2000-07-13 2008-04-30 三洋電機株式会社 リチウム二次電池
JP2002216844A (ja) 2001-01-19 2002-08-02 Hitachi Ltd リチウム二次電池
JP4092631B2 (ja) 2001-09-20 2008-05-28 トヨタ自動車株式会社 非水電解質二次電池
JP4187959B2 (ja) 2001-10-24 2008-11-26 三井化学株式会社 非水電解液およびそれを用いた二次電池
CN100559648C (zh) * 2005-01-20 2009-11-11 宇部兴产株式会社 非水电解液和使用其的锂二次电池
WO2006077763A1 (ja) * 2005-01-20 2006-07-27 Ube Industries, Ltd. 非水電解液及びそれを用いたリチウム二次電池
JP2008198542A (ja) 2007-02-15 2008-08-28 Sony Corp 非水電解液およびこれを用いた非水電解液二次電池
JP4445583B2 (ja) * 2008-03-28 2010-04-07 パナソニック株式会社 蓄電デバイス用電極活物質および蓄電デバイスならびに電子機器および輸送機器
JP5112148B2 (ja) 2008-03-31 2013-01-09 三洋電機株式会社 二次電池用非水電解質及び該二次電池用非水電解質を含む非水電解質二次電池
KR101297172B1 (ko) * 2011-06-30 2013-08-21 삼성에스디아이 주식회사 리튬이차전지용 전해액 첨가제, 이를 포함하는 비수성 전해액 및 리튬이차전지
CN102304143B (zh) * 2011-07-13 2014-04-16 北京大学 一种制备双乙二酸硼酸锂的方法
JP5823261B2 (ja) * 2011-11-10 2015-11-25 株式会社Adeka 非水電解液及び該電解液を用いた非水電解液二次電池
JP6121525B2 (ja) * 2012-06-01 2017-04-26 ナンヤン テクノロジカル ユニヴァーシティー ガラスセラミック電解質系
EP3038200B1 (en) * 2013-08-21 2019-01-16 Sekisui Chemical Co., Ltd. Electrolyte and lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147288A (ja) * 2004-11-18 2006-06-08 Toyota Central Res & Dev Lab Inc 非水電解液リチウムイオン二次電池
WO2011024420A1 (ja) * 2009-08-25 2011-03-03 国立大学法人名古屋大学 含ホウ素化合物、電解質材料、及びリチウムイオン電池
EP2827430A1 (en) * 2013-07-19 2015-01-21 Basf Se Use of lithium alkoxyborates and lithium alkoxyaluminates as conducting salts in electrolytes of lithium ion batteries

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE CAplus [o] US : American Chemical Society; retrieved from STN Database accession no. 1965:438976 *
HEIMANN ET AL.: "Boron complexes of beta-diketones and carboxylic acids. Boric acid-catalyzed pyrone formation from fatty acids", CHEMISCHE BERICHTE, vol. 68, no. 6, 1965, pages 1949 - 1955, XP009510602 *
RAPTA ET AL.: "ANION RADICALS AS INTERMEDIATES IN THE CATHODIC REDUCTION OF beta-DIKETOBORONATES (CYCLIC VOLTAMMETRY, EPR AND UV-VIS", ELECTROCHIMICA ACTA, vol. 39, no. 15, 1994, pages 2251 - 2259, XP 026532553 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170237A (ja) * 2017-03-30 2018-11-01 三井化学株式会社 電池用非水電解液及びリチウム二次電池
WO2020022142A1 (ja) * 2018-07-26 2020-01-30 三井化学株式会社 ホウ酸リチウム化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、並びに、リチウム二次電池及びその製造方法
CN112543759A (zh) * 2018-07-26 2021-03-23 三井化学株式会社 硼酸锂化合物、锂二次电池用添加剂、锂二次电池用非水电解液、锂二次电池前体、以及、锂二次电池及其制造方法
JPWO2020022142A1 (ja) * 2018-07-26 2021-08-02 三井化学株式会社 ホウ酸リチウム化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、並びに、リチウム二次電池及びその製造方法
JP7110350B2 (ja) 2018-07-26 2022-08-01 三井化学株式会社 ホウ酸リチウム化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、並びに、リチウム二次電池及びその製造方法

Also Published As

Publication number Publication date
US20180233777A1 (en) 2018-08-16
CN108352571B (zh) 2021-03-02
EP3373378B1 (en) 2020-04-29
JP6510671B2 (ja) 2019-05-08
EP3373378A4 (en) 2019-06-19
CN108352571A (zh) 2018-07-31
US10476108B2 (en) 2019-11-12
EP3373378A1 (en) 2018-09-12
JPWO2017078107A1 (ja) 2018-12-06

Similar Documents

Publication Publication Date Title
JP5429631B2 (ja) 非水電解質電池
JP6221365B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP6255722B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP5956680B2 (ja) 電池用非水電解液、新規化合物、高分子電解質、及びリチウム二次電池
JP6235313B2 (ja) 非水電解液及び当該非水電解液を用いたリチウムイオン二次電池
KR20190004232A (ko) 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 비수전해액
KR20190057342A (ko) 포스포네이트계 리튬 착물
JP2016201177A (ja) 電池用非水電解液、及びリチウム二次電池
JP7103713B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2019175577A (ja) 電池用非水電解液及びリチウム二次電池
JP2022126851A (ja) 電池用非水電解液及びリチウム二次電池
KR20130069752A (ko) 비수 전해질 조성물 및 비수 전해질 이차 전지
JP6510671B2 (ja) 二次電池用非水電解液、及び二次電池
JP7168158B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2020117497A (ja) リン酸ホウ素リチウム化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池の製造方法、及びリチウム二次電池
JP7455498B2 (ja) 非水電解質、非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP6879799B2 (ja) 電池用非水電解液及びリチウム二次電池
JP5477346B2 (ja) 非水電解質二次電池および非水電解質二次電池の製造方法
JP2018170238A (ja) 電池用非水電解液及びリチウム二次電池
JP7120507B2 (ja) ホウ酸リチウム組成物、リチウム二次電池用添加剤、ホウ酸リチウム組成物の製造方法、リチウム二次電池用非水電解液、リチウム二次電池
JP2013145731A (ja) リチウム二次電池
JP2019179614A (ja) 電池用非水電解液及びリチウム二次電池
JP7346799B2 (ja) リン酸ホウ素リチウム化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池の製造方法、及びリチウム二次電池
JP7413636B2 (ja) リン酸エステル化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池の製造方法、及びリチウム二次電池
EP4329036A1 (en) Non-aqueous electrolytic solution and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548834

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15771181

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016862167

Country of ref document: EP