JP2016201177A - 電池用非水電解液、及びリチウム二次電池 - Google Patents

電池用非水電解液、及びリチウム二次電池 Download PDF

Info

Publication number
JP2016201177A
JP2016201177A JP2015078408A JP2015078408A JP2016201177A JP 2016201177 A JP2016201177 A JP 2016201177A JP 2015078408 A JP2015078408 A JP 2015078408A JP 2015078408 A JP2015078408 A JP 2015078408A JP 2016201177 A JP2016201177 A JP 2016201177A
Authority
JP
Japan
Prior art keywords
carbonate
group
battery
lithium
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015078408A
Other languages
English (en)
Other versions
JP6607689B2 (ja
Inventor
将敬 宮里
Masatoshi Miyasato
将敬 宮里
林 剛史
Takashi Hayashi
剛史 林
敏弘 田中
Toshihiro Tanaka
敏弘 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2015078408A priority Critical patent/JP6607689B2/ja
Publication of JP2016201177A publication Critical patent/JP2016201177A/ja
Application granted granted Critical
Publication of JP6607689B2 publication Critical patent/JP6607689B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】電池用非水電解液であって、初期の電池抵抗を低減できるフルオロリン酸エステル化合物を含む電池用非水電解液及びリチウム二次電池を提供する。【解決手段】下記一般式(1)で表されるフルオロリン酸エステル化合物を含有する電池用非水電解液。ただし、一般式(1)において、nは1または2の整数を表す。Rはそれぞれ独立に水素原子または炭素数1〜12の脂肪族炭化水素基を表し、Rで表される基の少なくとも1つは、炭素—炭素不飽和結合を有し、該不飽和結合は三重結合または末端二重結合を表す。該脂肪族炭化水素基において、水素原子の少なくとも1つがフッ素原子で置換されてもよい。【選択図】なし

Description

本発明は、電池用非水電解液、並びに、携帯電子機器の電源、車載、及び電力貯蔵などに利用される充放電可能なリチウム二次電池に関する。
近年、リチウム二次電池は、携帯電話やノート型パソコンなどの電子機器、或いは電気自動車や電力貯蔵用の電源として広く使用されている。特に最近では、ハイブリッド自動車や電気自動車に搭載可能な、高容量で高出力かつエネルギー密度の高い電池の要望が急拡大している。
リチウム二次電池は、主に、リチウムを吸蔵放出可能な材料を含む正極および負極、並びに、リチウム塩と非水溶媒とを含む電池用非水電解液から構成される。
正極に用いられる正極活物質としては、例えば、LiCoO、LiMnO、LiNiO、LiFePOのようなリチウム金属酸化物が用いられる。
また、非水電解液としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどカーボネート類の混合溶媒(非水溶媒)に、LiPF、LiBF、LiN(SOCF、LiN(SOCFCFのようなLi電解質を混合した溶液が用いられている。
一方、負極に用いられる負極用活物質としては、金属リチウム、リチウムを吸蔵及び放出可能な金属化合物(金属単体、酸化物、リチウムとの合金など)や炭素材料が知られており、特にリチウムを吸蔵、放出が可能なコークス、人造黒鉛、天然黒鉛を採用したリチウム二次電池が実用化されている。
電池性能を改善する試みとして、種々の添加剤を電池用非水電解液に含有させることが提案されている。
例えば、電池の不燃性を向上させることができるリチウム二次電池用電解液として、リン酸エステル化合物を含むリチウム二次電池用電解液が知られている(例えば、特許文献1参照)。また、サイクル特性および高温保存特性を向上させることができるリチウム二次電池を与え得る非水系電解液として、ハロゲン原子を含むリン酸エステル誘導体を含む非水系電解液が知られている(例えば、特許文献4参照)。
さらに、炭素―炭素不飽和結合を有するリン酸エステル化合物を含む添加剤を含有するリチウム二次電池用電解液として、カルボン酸化合物を含有する負極を有する二次電池に用いた場合、小さな内部抵抗や高い電気容量を長期使用において維持できること(特に、長期使用時の内部抵抗が低減すること)が知られている(例えば、特許文献5)。
特開2006−179458号公報 特開平08−22839号公報 特開平04−184870号公報 特開2002−141110号公報 特開2011−77029号公報
しかしながら、一般的なリン酸エステル類を添加して得られる非水電解液を用いた場合、負極上でリン酸エステル類の還元分解反応が起こりやすく、充放電効率、保存特性、およびサイクル特性などの電池特性が大きく劣化してしまう問題が知られている。また、炭素―炭素不飽和結合を有するリン酸エステル化合物(該化合物において、リン原子はハロゲン原子と結合していない)については、反応性が高いために電極表面厚い被膜が形成され、これにより電池抵抗が大きくなる場合がある。
本発明は上記事情に鑑みなされたものであり、初期の電池抵抗を低減させることができる特定の不飽和結合を有するフルオロリン酸エステル化合物を含む電池用非水電解液及びリチウム二次電池を提供することである。
本発明者は鋭意検討した結果、特定の不飽和結合を有するフルオロリン酸エステル化合物を含有する電池用非水電解液を用いることにより、初期の電池抵抗を抑制することができることを見出し、本発明を完成させた。
即ち、前記課題を解決するための手段は以下のとおりである。
<1> 下記一般式(1)で表されるフルオロリン酸エステル化合物を含有する電池用非水電解液。
〔一般式(1)において、nは1または2の整数を表す。Rはそれぞれ独立に水素原子または炭素数1〜12の脂肪族炭化水素基を表し、Rで表される基の少なくとも1つは炭素―炭素不飽和結合を有し、該不飽和結合は三重結合または末端二重結合を表す。該脂肪族炭化水素基において、水素原子の少なくとも1つがフッ素原子で置換されてもよい。〕
<2> 前記一般式(1)において、Rで表される基の少なくとも1つがビニル基、プロパギル基、2−プロペニル基のいずれかである<1>に記載の電池用非水電解液。
<3> 前記一般式(1)で表される化合物の含有量が、前期非水電解液の全量に対して0.001質量%〜10質量%の範囲である<1>または<2>に記載の電池用非水電解液。
<4> 正極と、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、<1>〜<3>に記載のいずれか1項に記載の電池用非水電解液と、を含むリチウム二次電池。
<5> <4>に記載のリチウム二次電池を充放電させて得られるリチウム二次電池。
本発明によれば、初期の電池抵抗を抑制することができる電池用非水電解液及びリチウム二次電池を提供することができる。
本発明のリチウム二次電池の一例を示すコイン型電池の模式的断面図である。
以下、本発明の実施態様について説明する。本明細書において、「〜」を用いて表される数値範囲は「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
〔電池用非水電解液〕
本実施態様の電池用非水電解液(以下、単に「非水電解液」ともいう)は、前記一般式(1)で表されるフルオロリン酸エステル化合物を含有する。
従来、電池用非水電解液に対し、添加剤として、リン酸エステル化合物を添加することにより、電池性能を改善する技術が提案されている。
一般に、リン酸エステル化合物は負極表面での還元反応により分解し、その分解物が電極表面に被膜を作ることが知られている。この被膜の性質によっては、初期の電池抵抗を高める場合がある。また、炭素―炭素不飽和結合を有するリン酸エステル化合物(該化合物において、リン原子はハロゲン原子と結合していない)については、その反応性の高さから、溶媒もしくはその分解物などと反応し、負極表面に厚い被膜を形成し、初期の電気抵抗を高める場合がある。このように電池の初期抵抗が高くなると、出力特性が低下するため電池性能が低下するという問題を生じる。そのため、初期抵抗が出来るだけ低い電池が求められている。
本発明者らは、鋭意検討した結果、非水電解液の添加剤として、特定の不飽和結合を有するフルオロリン酸エステル化合物を用いることにより、該化合物を含まない電池用非水電解液に比べて、初期の電池抵抗を低減できることを見出し、本発明を完成させた。
即ち、本発明の非水電解液によれば、初期の電池抵抗を抑制させることができる。
本発明の電池用非水電解液を用いることで上記効果が得られる理由は、以下のように推測される。
即ち、本発明の特定の不飽和結合を有するフルオロリン酸エステル化合物を含有する電池用非水電解液を用いた電池(例えばリチウム二次電池)では、初期充電時において、一般式(1)で表される該化合物(以下、添加剤ともいう)は速やかに電極表面に作用し、伝導性の高い良質な被膜を形成し初期抵抗を低減させることができると考えられる。該化合物が、炭素―炭素不飽和結合であって、重合可能な基である三重結合や末端二重結合を有することにより、かつその重合性基の反応性の高さから、電極表面に均一な被膜を迅速に形成すると考えられる。さらに該化合物がフッ素原子を有することにより、熱伝導性に優れる良質で安定な被膜を作ることができると考えられる。
以上の理由により、本発明の一般式(1)で表されるフルオロリン酸エステル化合物含有する電池用非水電解液では、該化合物を添加しない非水電解液と比較して、初期の電池抵抗の上昇を抑制することができると考えられる。
以下、本発明の電池用非水電解液について具体的に説明する。
<フルオロリン酸エステル化合物>
本発明における非水電解液は、添加剤として、下記一般式(1)で表される特定の不飽和結合を有するフルオロリン酸エステル化合物を含有する。
一般式(1)において、nは1または2の整数を表す。Rはそれぞれ独立に水素原子または炭素数1〜12の脂肪族炭化水素基を表し、Rで表される基の少なくとも1つは炭素―炭素不飽和結合を有し、該不飽和結合は三重結合または末端二重結合を表す。該脂肪族炭化水素基において、水素原子の少なくとも1つがフッ素原子で置換されてもよい。
一般紙(1)中、nは1または2の整数であり、RO基またはF基を1つ有しても2つ
有してもよい。
一般式(1)中、Rはそれぞれ独立に水素原子または炭素数1〜12の脂肪族炭化水素基を表す。Rで表される基の少なくとも1つは炭素―炭素不飽和結合を有し、該不飽和結合は三重結合または末端二重結合を表すことから、nが1の場合、Rは特定の炭素―炭素不飽和結合を有する炭素数1〜12の脂肪族炭化水素基である。一方、nが2の場合、Rのうち、少なくとも1つのRが特定の炭素―炭素不飽和結合を有する炭素数1〜12の脂肪族炭化水素基であればよく、2つのRがいずれも特定の炭素―炭素不飽和結合を有する炭素数1〜12の脂肪族炭化水素基であってもよい。
一般式(1)において「炭素数1〜12の脂肪族炭化水素基」として、例えば、炭素数1〜12のアルキル基、炭素数2〜12のアルケニル基、炭素数2〜12のアルキニル基などが挙げられる。該炭化水素基の水素原子は、ハロゲン原子、または炭素数1〜10のアルコキシ基で置換されてもよい。
また、上記「炭素数1〜12のアルキル基」としては、炭素数1以上12以下である、直鎖、または分岐鎖のアルキル基であり、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、2−メチルブチル基、1−メチルペンチル基、ネオペンチル基、1−エチルプロピル基、ヘキシル基、3,3−ジメチルブチル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基などが具体例として挙げられる。これらの中でも、炭素数1〜10のアルキル基が好ましく、炭素数1〜6のアルキル基がより好ましく、炭素数1〜3のアルキル基がさらに好ましい。
また、上記「炭素数2〜12のアルケニル基」とは、炭素数2以上12以下である、直鎖、または分岐鎖のアルケニル基であり、ビニル基、2−プロペニル基、2−ブテニル基、3−ブテニル基、2−ペンテニル基、3−ペンテニル基、4−ペンテニル基、5−ヘキセニル基、などが具体例として挙げられる。これらの中でも、炭素数2〜10のアルケニル基が好ましく、炭素数2〜6のアルケニル基がより好ましく、炭素数2〜3のアルケニル基がさらに好ましい。
また、上記「炭素数2〜12のアルキニル基」とは、炭素数2以上12以下である、直鎖、または分岐鎖のアルキニル基であり、エチニル基、プロパルギル基(2−プロピニル基)、2−ブチニル基、3−ブチニル基、2−ペンチニル基、3−ペンチニル基、4−ペンチニル基、5−ヘキシニル基、などが具体例として挙げられる。これらの中でも、炭素数2〜10のアルキニル基が好ましく、炭素数2〜6のアルキニル基がより好ましく、炭素数2〜3のアルキニル基がさらに好ましい。
一般式(1)中、少なくとも1つのRで表される基が炭素―炭素不飽和結合を有し、該不飽和結合が三重結合または末端二重結合である。
少なくとも1つのRで表される基が炭素―炭素不飽和結合を有し、該不飽和結合が三重結合または末端二重結合であることで、リチウム二次電池を充電又は作動させた場合において、初期の電池抵抗をより抑制することができる。
上記「三重結合」とは、炭素―炭素三重結合を表し、脂肪族炭化水素Rにおける三重結合の位置はいずれであってもよい。上記「二重結合」とは、炭素―炭素二重結合を表し、上記「末端二重結合」とは、Rにおける二重結合の位置が末端であることを表す。反応性の観点から、二重結合については、末端に位置することが適するためである。
また、「Rで表される基が炭素―炭素不飽和結合を有し、該不飽和結合が三重結合または末端二重結合である」に該当するRとしては、ビニル基、2−プロペニル基、1−メチル−2−プロペニル基、3−ブテニル基、2−メチル−3−ブテニル基、4−ペンテニル基、5−ヘキセニル基、エチニル基、プロパルギル基(2−プロピニル基)、2−ブチニル基、3−ブチニル基、2−ペンチニル基、3−ペンチニル基、4−ペンチニル基、5−ヘキシニル基などが挙げられる。この中でも、直鎖構造であるビニル基、2−プロペニル基、3−ブテニル基、4−ペンテニル基、5−ヘキセニル基、エチニル基、プロパルギル基(2−プロピニル基)、3−ブチニル基、4−ペンチニル基、5−ヘキシニル基などが好ましく、ビニル基、2−プロペニル基、プロパギル基であることがより好ましく、ビニル基、プロパギル基であることがさらに好ましい。
上記一般式(1)で表される化合物として、例えば、ビニルフルオロホスフェート、2−プロペニルフルオロホスフェート、(3−ブテニル)フルオロホスフェート、エチニルフルオロホスフェート、プロパルギルフルオロホスフェート、3−ブチニルフルオロホスフェート、メチル(ビニル)フルオロホスフェート、メチル(2−プロペニル)フルオロホスフェート、(3−ブテニル)メチルフルオロホスフェート、(エチニル)メチルフルオロホスフェート、メチル(プロパルギル)フルオロホスフェート、(3−ブチニル)メチルフルオロホスフェート、ジビニルフルオロホスフェート、ビス(2−プロペニル)フルオロホスフェート、ビス(3−ブテニル)フルオロホスフェート、ビス(エチニル)フルオロホスフェート、ビス(プロパルギル)フルオロホスフェート、ビス(3−ブチニル)フルオロホスフェート、(エチニル)ビニルフルオロホスフェート、(プロパルギル)ビニルフルオロホスフェート、(3−ブチニル)ビニルフルオロホスフェート、プロパルギル(2−プロペニル)フルオロホスフェート、(3−ブテニル)プロパルギルフルオロホスフェート、(エチニル)プロパルギルフルオロホスフェート、(3−ブチニル)プロパルギルフルオロホスフェート、ビニルジフルオロホスフェート、2−プロペニルジフルオロホスフェート、(3−ブテニル)ジフルオロホスフェート、エチニルジフルオロホスフェート、プロパルギルジフルオロホスフェート、3−ブチニルジフルオロホスフェート、等が挙げられる。中でも、ジビニルフルオロホスフェート、ビス(2−プロペニル)フルオロホスフェート、ビス(プロパルギル)フルオロホスフェート、ビニルジフルオロホスフェート、2−プロペニルジフルオロホスフェート、プロパルギルジフルオロホスフェートが好ましく、さらにこれらの中でも、ジビニルフルオロホスフェート、ビス(プロパルギル)フルオロホスフェート、ビニルジフルオロホスフェート、プロパルギルジフルオロホスフェートが好ましい。
本発明における非水電解液としては、一般式(1)で表される化合物を1種のみ含有していてもよいし、2種以上含有していてもよい。
本発明の非水電解液中における一般式(1)で表される化合物の含有量(2種以上である場合には総含有量)には特に制限はないが、本発明の効果がより効果的に奏される観点から、非水電解液の全量に対し、0.001質量%以上であることが好ましく、0.001質量%〜10質量%であることがより好ましく、0.01質量%〜8質量%であることが更に好ましく、0.05質量%〜5質量%であることが更に好ましく、0.1質量%〜2質量%であることが特に好ましい。
なお、本発明の一般式(1)で表される化合物は、非水電解液として実際に二次電池作製に供すると、その電池を解体して再び非水電解液を取り出しても、その中の含有量が著しく低下している場合がある。そのため、電池から抜き出した非水電解液から、少なくとも本発明の一般式(1)で表される化合物が検出できる場合には、非水電解液に本発明の一般式(1)で表される化合物が含まれるとみなすことができる。後述の他の添加剤についても同様である。
本明細書中において、「添加剤の含有量」との用語及び「添加剤の添加量」との用語は、いずれも、非水電解液の全量に対する添加剤の含有量を意味する。
(添加剤)
本発明における非水電解液は、更に、炭素−炭素不飽和結合を有するカーボネート化合物、フッ素原子で置換されたカーボネート化合物、フルオロリン酸化合物、オキサラト化合物、及びスルトン化合物からなる群から選ばれる少なくとも1種である添加剤を含有することが好ましい。本発明における非水電解液が添加剤を含有することにより、上述した本発明の効果がより効果的に奏される。この理由は、添加剤が、電極表面に被膜を形成もしくは、本発明の一般式(1)で表される化合物によって形成された被膜を強化することにより、電極表面での溶媒の分解がより効果的に抑制されるためと考えられる。
(炭素−炭素不飽和結合を有するカーボネート化合物)
炭素−炭素不飽和結合を有するカーボネート化合物としては、メチルビニルカーボネート、エチルビニルカーボネート、ジビニルカーボネート、メチルプロピニルカーボネート、エチルプロピニルカーボネート、ジプロピニルカーボネート、メチルフェニルカーボネート、エチルフェニルカーボネート、ジフェニルカーボネートなどの鎖状カーボネート類;ビニレンカーボネート、メチルビニレンカーボネート、4,4−ジメチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルエチレンカーボネート、4,4−ジビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、エチニルエチレンカーボネート、4,4−ジエチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、プロピニルエチレンカーボネート、4,4−ジプロピニルエチレンカーボネート、4,5−ジプロピニルエチレンカーボネートなどの環状カーボネート類;などが挙げられる。これらのうち、好ましくは、メチルフェニルカーボネート、エチルフェニルカーボネート、ジフェニルカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、4,4−ジビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネートであり、より好ましくは、ビニレンカーボネート、ビニルエチレンカーボネートである。
(フッ素原子を有するカーボネート化合物)
フッ素原子を有するカーボネート化合物としては、メチルトリフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート、ビス(トリフルオロメチル)カーボネート、メチル(2,2,2−トリフルオロエチル)カーボネート、エチル(2,2,2−トリフルオロエチル)カーボネート、ビス(2,2,2−トリフルオロエチル)カーボネートなどの鎖状カーボネート類;4−フルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−トリフルオロメチルエチレンカーボネートなどの環状カーボネート類;などが挙げられる。これらのうち、好ましくは、4−フルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネートである。
(フルオロリン酸化合物)
フルオロリン酸化合物としては、ジフルオロリン酸リチウム、モノフルオロリン酸リチウム、ジフルオロリン酸、モノフルオロリン酸、ジフルオロリン酸メチル、ジフルオロリン酸エチル、フルオロリン酸ジメチル、フルオロリン酸ジエチルなどが挙げられる。これらのうち、好ましくはジフルオロリン酸リチウム、モノフルオロリン酸リチウムである。
(オキサラト化合物)
オキサラト化合物としては、ジフルオロビス(オキサラト)リン酸リチウム、テトラフルオロ(オキサラト)リン酸リチウム、トリス(オキサラト)リン酸リチウム、ジフルオロ(オキサラト)ホウ酸リチウム、ビスオキサラトホウ酸リチウムなどが挙げられる。これらのうち、好ましくはジフルオロビス(オキサラト)リン酸リチウム、テトラフルオロ(オキサラト)リン酸リチウム、ビスオキサラトホウ酸リチウムである。
(スルトン化合物)
スルトン化合物としては、1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−プロペンスルトン、1−メチル−1,3−プロペンスルトン、2−メチル−1,3−プロペンスルトン、3−メチル−1,3−プロペンスルトン等のスルトン類が挙げられる。これらのうち、好ましくは、1,3−プロパンスルトン、1,3−プロペンスルトンである。
上述した添加剤は、ビニレンカーボネート、ビニルエチレンカーボネート、4−フルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム、ジフルオロビス(オキサラト)リン酸リチウム、テトラフルオロ(オキサラト)リン酸リチウム、トリス(オキサラト)リン酸リチウム、ジフルオロ(オキサラト)ホウ酸リチウム、ビスオキサラトホウ酸リチウム、1,3−プロパンスルトン、及び1,3−プロペンスルトンからなる群から選ばれる少なくとも1種であることが特に好ましい。
本発明における非水電解液が添加剤を含有する場合、含有される添加剤は、1種のみであっても、2種以上であってもよい。
本発明における非水電解液が添加剤を含有する場合、その含有量(2種以上である場合には総含有量)には特に制限はないが、本発明の効果がより効果的に奏される観点から、非水電解液の全量に対し、0.001質量%〜10質量%であることが好ましく、0.05質量%〜5質量%の範囲であることがより好ましく、0.1質量%〜4質量%の範囲であることが更に好ましく、0.1質量%〜2質量%の範囲であることが更に好ましく、0.1質量%〜1質量%の範囲であることが特に好ましい。
また、本発明における非水電解液は、上記以外のその他の添加剤を含有していてもよい。
その他の添加剤としては、例えば、上述のジフルオロリン酸リチウム以外のジフルオロリン酸塩、モノフルオロリン酸リチウム以外のモノフルオロリン酸塩、及びフルオロスルホン酸塩が挙げられる。
また、その他の添加剤は、例えば、国際公開第2012/053644号、特許第4033074号公報、特許第4819409号公報、特開2012−226878号公報、特許第5353923号公報、特許第4424895号公報などに記載の添加剤の中から、適宜選択して用いることができる。
<非水溶媒>
本発明における非水溶媒としては、種々公知のものを適宜選択することができるが、環状の非プロトン性溶媒及び/又は鎖状の非プロトン性溶媒を用いることが好ましい。
電池の安全性の向上のために、溶媒の引火点の向上を志向する場合は、非水溶媒として環状の非プロトン性溶媒を使用することが好ましい。
(環状の非プロトン性溶媒)
環状の非プロトン性溶媒としては、環状カーボネート、環状カルボン酸エステル、環状スルホン、環状エーテルを用いることができる。
環状の非プロトン性溶媒は単独で使用してもよいし、複数種混合して使用してもよい。
環状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%〜100質量%、さらに好ましくは20質量%〜90質量%、特に好ましくは30質量%〜80質量%である。このような比率にすることによって、電池の充放電特性に関わる電解液の伝導度を高めることができる。
環状カーボネートの例として具体的には、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、2,3−ブチレンカーボネート、1,2−ペンチレンカーボネート、2,3−ペンチレンカーボネートなどが挙げられる。これらのうち、誘電率が高いエチレンカーボネートとプロピレンカーボネートが好適に使用される。負極活物質に黒鉛を使用した電池の場合は、エチレンカーボネートがより好ましい。また、これら環状カーボネートは2種類以上を混合して使用してもよい。
環状カルボン酸エステルとして、具体的にはγ−ブチロラクトン、δ−バレロラクトン、あるいはメチルγ−ブチロラクトン、エチルγ−ブチロラクトン、エチルδ−バレロラクトンなどのアルキル置換体などを例示することができる。
環状カルボン酸エステルは、蒸気圧が低く、粘度が低く、かつ誘電率が高く、電解液の引火点と電解質の解離度を下げることなく電解液の粘度を下げることができる。このため、電解液の引火性を高くすることなく電池の放電特性に関わる指標である電解液の伝導度を高めることができるという特徴を有するので、溶媒の引火点の向上を指向する場合は、上記環状の非プロトン性溶媒として環状カルボン酸エステルを使用することが好ましい。環状カルボン酸エステルの中でも、γ−ブチロラクトンが最も好ましい。
また、環状カルボン酸エステルは、他の環状の非プロトン性溶媒と混合して使用することが好ましい。例えば、環状カルボン酸エステルと、環状カーボネート及び/又は鎖状カーボネートとの混合物が挙げられる。
環状スルホンの例としては、スルホラン、2−メチルスルホラン、3―メチルスルホラン、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、メチルエチルスルホン、メチルプロピルスルホンなどが挙げられる。
環状エーテルの例としてジオキソランを挙げることができる。
(鎖状の非プロトン性溶媒)
本発明の鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル、鎖状エーテル、鎖状リン酸エステルなどを用いることができる。
鎖状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%〜100質量%、さらに好ましくは20質量%〜90質量%、特に好ましくは30質量%〜80質量%である。
鎖状カーボネートとして具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、エチルブチルカーボネート、ジブチルカーボネート、メチルペンチルカーボネート、エチルペンチルカーボネート、ジペンチルカーボネート、メチルヘプチルカーボネート、エチルヘプチルカーボネート、ジヘプチルカーボネート、メチルヘキシルカーボネート、エチルヘキシルカーボネート、ジヘキシルカーボネート、メチルオクチルカーボネート、エチルオクチルカーボネート、ジオクチルカーボネート、メチルトリフルオロエチルカーボネートなどが挙げられる。これら鎖状カーボネートは2種類以上を混合して使用してもよい。
鎖状カルボン酸エステルとして具体的には、ピバリン酸メチルなどが挙げられる。鎖状エーテルとして具体的には、ジメトキシエタンなどが挙げられる。鎖状リン酸エステルとして具体的には、リン酸トリメチルなどが挙げられる。
(溶媒の組み合わせ)
本発明における非水電解液で使用する非水溶媒は、1種類でも複数種類を混合して用いてもよい。また、環状の非プロトン性溶媒のみを1種類又は複数種類用いても、鎖状の非プロトン性溶媒のみを1種類又は複数種類用いても、又は環状の非プロトン性溶媒及び鎖状のプロトン性溶媒を混合して用いてもよい。電池の負荷特性、低温特性の向上を特に意図した場合は、非水溶媒として環状の非プロトン性溶媒と鎖状の非プロトン性溶媒を組み合わせて使用することが好ましい。
さらに、電解液の電気化学的安定性から、環状の非プロトン性溶媒には環状カーボネートを、鎖状の非プロトン性溶媒には鎖状カーボネートを適用することが最も好ましい。また、環状カルボン酸エステルと環状カーボネート及び/又は鎖状カーボネートの組み合わせによっても電池の充放電特性に関わる電解液の伝導度を高めることができる。
環状カーボネートと鎖状カーボネートの組み合わせとして、具体的には、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネート、プロピレンカーボネートとジメチルカーボネート、プロピレンカーボネートとメチルエチルカーボネート、プロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートなどが挙げられる。
環状カーボネートと鎖状カーボネートの混合割合は、質量比で表して、環状カーボネート:鎖状カーボネートが、5:95〜80:20、さらに好ましくは10:90〜70:30、特に好ましくは15:85〜55:45である。このような比率にすることによって、電解液の粘度上昇を抑制し、電解質の解離度を高めることができるため、電池の充放電特性に関わる電解液の伝導度を高めることができる。また、電解質の溶解度をさらに高めることができる。よって、常温又は低温での電気伝導性に優れた電解液とすることができるため、常温から低温での電池の負荷特性を改善することができる。
環状カルボン酸エステルと環状カーボネート及び/又は鎖状カーボネートの組み合わせの例として、具体的には、γ−ブチロラクトンとエチレンカーボネート、γ−ブチロラクトンとエチレンカーボネートとジメチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとメチルエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとジエチルカーボネート、γ−ブチロラクトンとプロピレンカーボネート、γ−ブチロラクトンとプロピレンカーボネートとジメチルカーボネート、γ−ブチロラクトンとプロピレンカーボネートとメチルエチルカーボネート、γ−ブチロラクトンとプロピレンカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとスルホラン、γ−ブチロラクトンとエチレンカーボネートとスルホラン、γ−ブチロラクトンとプロピレンカーボネートとスルホラン、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとスルホラン、γ−ブチロラクトンとスルホランとジメチルカーボネートなどが挙げられる。
(その他の溶媒)
本発明に係る非水電解液は、非水溶媒として、上記以外の他の溶媒を含んでいてもよい。他の溶媒としては、具体的には、ジメチルホルムアミドなどのアミド、メチル−N,N−ジメチルカーバメートなどの鎖状カーバメート、N−メチルピロリドンなどの環状アミド、N,N−ジメチルイミダゾリジノンなどの環状ウレア、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリブチル、ほう酸トリオクチル、ほう酸トリメチルシリル等のホウ素化合物、及び下記の一般式で表されるポリエチレングリコール誘導体などを挙げることができる。
HO(CHCHO)
HO[CHCH(CH)O]
CHO(CHCHO)
CHO[CHCH(CH)O]
CHO(CHCHO)CH
CHO[CHCH(CH)O]CH
19PhO(CHCHO)[CH(CH)O]CH
(Phはフェニル基)
CHO[CHCH(CH)O]CO[OCH(CH)CHOCH
上記式中、a〜fは、5〜250の整数、g〜jは2〜249の整数、5≦g+h≦250、5≦i+j≦250である。
<電解質>
本発明における非水電解液は、種々公知の電解質を含有することができる。電解質としては、通常、非水電解液用電解質として使用されているものであれば、いずれをも使用することができる。
本発明における電解質の具体例としては、(CNPF、(CNBF、(CNClO、(CNAsF、(CSiF、(CNOSO(2k+1)(k=1〜8の整数)、(CNPF[C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)などのテトラアルキルアンモニウム塩、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1〜8の整数)、LiPF[C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)などのリチウム塩が挙げられる。また、次の一般式で表されるリチウム塩も使用することができる。
LiC(SO27)(SO28)(SO29)、LiN(SOOR30)(SOOR31)、LiN(SO32)(SO33)(ここでR27〜R33は互いに同一でも異なっていてもよく、炭素数1〜8のパーフルオロアルキル基である)。これらの電解質は単独で使用してもよく、また2種類以上を混合してもよい。
これらのうち、特にリチウム塩が望ましく、さらには、LiPF、LiBF、LiOSO(2k+1)(k=1〜8の整数)、LiClO、LiAsF、LiNSO[C(2k+1)(k=1〜8の整数)、LiPF[C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)が好ましい。
本発明に係る電解質は、通常は、非水電解液中に0.1mol/L〜3mol/L、好ましくは0.5mol/L〜2mol/Lの濃度で含まれることが好ましい。
本発明における非水電解液において、非水溶媒として、γ−ブチロラクトンなどの環状カルボン酸エステルを併用する場合には、特にLiPFを含有することが望ましい。LiPFは、解離度が高いため、電解液の伝導度を高めることができ、さらに負極上での電解液の還元分解反応を抑制する作用がある。LiPFは単独で使用してもよいし、LiPFとそれ以外の電解質を使用してもよい。それ以外の電解質としては、通常、非水電解液用電解質として使用されるものであれば、いずれも使用することができるが、前述のリチウム塩の具体例のうちLiPF以外のリチウム塩が好ましい。
具体例としては、LiPFとLiBF、LiPFとLiN[SO(2k+1)(k=1〜8の整数)、LiPFとLiBFとLiN[SO(2k+1)](k=1〜8の整数)などが例示される。
リチウム塩中に占めるLiPFの比率は、1質量%〜100質量%、好ましくは10質量%〜100質量%、さらに好ましくは50質量%〜100質量%が望ましい。このような電解質は、0.1mol/L〜3mol/L、好ましくは0.5mol/L〜2mol/Lの濃度で非水電解液中に含まれることが好ましい。
また、本発明における非水電解液は、過充電防止剤を含有することもできる。
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル(o−、m−、p−体)、ターフェニル(o−、m−、p−体)の部分水素化体(例えば、1,2−ジシクロヘキシルベンゼン、2−フェニルビシクロヘキシル、1,2−ジフェニルシクロヘキサン、o−シクロヘキシルビフェニル)、シクロヘキシルベンゼン、t−ブチルベンゼン、1,3−ジ−t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;フルオロトルエン(o−、m−、p−体)、ジフルオロトルエン、トリフルオロトルエン、テトラフルオロトルエン、ペンタフルオロトルエン、フルオロベンゼン、ジフルオロベンゼン(o−、m−、p−体)、1−フルオロ−4−t−ブチルベンゼン、2−フルオロビフェニル、フルオロシクロヘキシルベンゼン(例えば、1−フルオロ−2−シクロヘキシルベンゼン、1−フルオロ−3−シクロヘキシルベンゼン、1−フルオロ−4−シクロヘキシルベンゼン)等の芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。
中でも、上記で例示した芳香族化合物が好ましい。
また、過充電防止剤は、1種を単独で用いても、2種以上を併用してもよい。
2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
本発明における非水電解液が過充電防止剤を含有する場合、過充電防止剤の含有量には特に制限はないが、例えば0.1質量%以上、好ましくは0.2質量%以上、更に好ましくは0.3質量%以上、特に好ましくは0.5質量%以上である。
また、上記過充電防止剤の含有量は、例えば10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは2質量%以下である。
本発明における非水電解液は、本発明の目的を妨げない範囲で、上述した化合物以外の他の化合物を添加剤として少なくとも1種含有していてもよい。
他の化合物として具体的には、硫酸ジメチル、硫酸ジエチル、硫酸エチレン、硫酸プロピレン、硫酸ブテン、硫酸ペンテン、硫酸ビニレン等の硫酸エステル類;並びにスルホラン、3−スルホレン、ジビニルスルホン等のイオウ系化合物、を挙げることができる。
これらの化合物は単独で用いてもよく、2種類以上を併用してもよい。
これらのうち、硫酸エチレン、硫酸プロピレン、硫酸ブテン、硫酸ペンテンが好ましい。
〔リチウム二次電池〕
本発明のリチウム二次電池は、負極と、正極と、上記本発明の非水電解液を含んで構成されている。
通常、負極と正極との間にセパレータが設けられている。
(負極)
上記負極を構成する負極活物質は、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属もしくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれた少なくとも1種(単独で用いてもよいし、これらの2種以上を含む混合物を用いてもよい)を用いることができる。
リチウム(又はリチウムイオン)との合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。また、チタン酸リチウムでもよい。
これらの中でもリチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(人造黒鉛、天然黒鉛)、非晶質炭素材料、等が挙げられる。上記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状いずれの形態であってもよい。
上記非晶質炭素材料として具体的には、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソペーズビッチカーボンファイバー(MCF)などが例示される。
上記黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有するものなども用いることができる。また、黒鉛材料としては、金、白金、銀、銅、スズなどの金属で被覆したもの、非晶質炭素で被覆したもの、非晶質炭素と黒鉛を混合したものも使用することができる。
これらの炭素材料は、1種類で使用してもよく、2種類以上混合して使用してもよい。
上記炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましい。また、炭素材料としては、真密度が1.70g/cm以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料も好ましい。以上のような炭素材料を使用すると、電池のエネルギー密度をより高くすることができる。
(正極)
上記正極を構成する正極活物質としては、MoS、TiS、MnO、Vなどの遷移金属酸化物又は遷移金属硫化物、LiCoO、LiMnO、LiMn、LiNiO、LiNiXCo(1−X)〔0<X<1〕、α−NaFeO型結晶構造を有するLi1+αMe1−α(Meは、Mn、Ni及びCoを含む遷移金属元素、1.0≦(1+α)/(1−α)≦1.6)、LiNiCoMn〔x+y+z=1、0<x<1、0<y<1、0<z<1〕(例えば、LiNi0.33Co0.33Mn0.33、LiNi0.5Co0.2Mn0.3等)、LiFePO、LiMnPOなどのリチウムと遷移金属とからなる複合酸化物、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール、ポリアニリン複合体などの導電性高分子材料等が挙げられる。これらの中でも、特にリチウムと遷移金属とからなる複合酸化物が好ましい。負極がリチウム金属又はリチウム合金である場合は、正極として炭素材料を用いることもできる。また、正極として、リチウムと遷移金属との複合酸化物と、炭素材料と、の混合物を用いることもできる。
上記の正極活物質は、1種類で使用してもよく、2種類以上を混合して使用してもよい。正極活物質は導電性が不充分である場合には、導電性助剤とともに使用して正極を構成することができる。導電性助剤としては、カーボンブラック、アモルファスウィスカー、グラファイトなどの炭素材料を例示することができる。
(セパレータ)
上記セパレータは、正極と負極とを電気的に絶縁し且つリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。
上記多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。
特に、多孔性ポリオレフィンが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、又は多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
上記高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
本発明の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
(電池の構成)
本発明の実施形態に係るリチウム二次電池は、上記の負極活物質、正極活物質及びセパレータを含む。
本発明のリチウム二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、フィルム型その他任意の形状に形成することができる。しかし、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
本発明のリチウム二次電池(非水電解液二次電池)の例として、図1に示すコイン型電池が挙げられる。
図1に示すコイン型電池では、円盤状負極2、非水電解液を注入したセパレータ5、円盤状正極1、必要に応じて、ステンレス、又はアルミニウムなどのスペーサー板7、8が、この順序に積層された状態で、正極缶3(以下、「電池缶」ともいう)と封口板4(以下、「電池缶蓋」ともいう)との間に収納される。正極缶3と封口板4とはガスケット6を介してかしめ密封する。
この一例では、セパレータ5に注入される非水電解液として、本発明の非水電解液を用いることができる。
なお、本発明のリチウム二次電池は、負極と、正極と、上記本発明の非水電解液と、を含むリチウム二次電池(充放電前のリチウム二次電池)を、充放電させて得られたリチウム二次電池であってもよい。
即ち、本発明のリチウム二次電池は、まず、負極と、正極と、上記本発明の非水電解液と、を含む充放電前のリチウム二次電池を作製し、次いで、この充放電前のリチウム二次電池を1回以上充放電させることによって作製されたリチウム二次電池(充放電されたリチウム二次電池)であってもよい。
本発明のリチウム二次電池の用途は特に限定されず、種々公知の用途に用いることができる。例えば、ノート型パソコン、モバイルパソコン、携帯電話、ヘッドホンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、電子手帳、電卓、ラジオ、バックアップ電源用途、モーター、自動車、電気自動車、バイク、電動バイク、自転車、電動自転車、照明器具、ゲーム機、時計、電動工具、カメラ等、小型携帯機器、大型機器を問わず広く利用可能なものである。
以下に実施例によって本発明をより具体的に説明するが、本発明はこれら実施例によって制限されるものではない。
なお、以下の実施例において、「wt%」は質量%を表す。
また、以下の実施例において、「添加量」は、最終的に得られる非水電解液中における含有量(即ち、最終的に得られる非水電解液全量に対する量)を表す。
〔実施例1〕
以下の手順にて、リチウム二次電池を作製した。
<負極の作製>
人造黒鉛20質量部、天然黒鉛系黒鉛80質量部、カルボキシメチルセルロース1質量部及びSBRラテックス2質量部を水溶媒で混錬してペースト状の負極合剤スラリーを調製した。
次に、この負極合剤スラリーを厚さ18μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層からなるシート状の負極を得た。このときの負極活物質層の塗布密度は10mg/cmであり、充填密度は1.5g/mlであった。
<正極の作製>
LiCoOを90質量部、アセチレンブラック5質量部及びポリフッ化ビニリデン5質量部を、N−メチルピロリジノンを溶媒として混錬してペースト状の正極合剤スラリーを調製した。
次に、この正極合剤スラリーを厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質とからなるシート状の正極を得た。このときの正極活物質層の塗布密度は30mg/cmであり、充填密度は2.5g/mlであった。
<非水電解液の調製>
非水溶媒としてエチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ30:35:35(質量比)の割合で混合し、混合溶媒を得た。
得られた混合溶媒中に、電解質であるLiPFを、最終的に得られる非水電解液中における電解質濃度が1モル/リットルとなるように溶解させた。
上記で得られた溶液に対して、添加剤として一般式(1)で表される化合物であるビニルジフルオロスルフェート(添加量0.5wt%)を添加し、非水電解液を得た。
<コイン型電池の作製>
上述の負極を直径14mmで、上述の正極を直径13mmで、それぞれ円盤状に打ち抜いて、コイン状の電極(負極及び正極)を得た。また、厚さ20μmの微多孔性ポリエチレンフィルムを直径17mmの円盤状に打ち抜きセパレータを得た。
得られたコイン状の負極、セパレータ及びコイン状の正極を、この順序でステンレス製の電池缶(2032サイズ)内に積層し、上記非水電解液20μlを注入してセパレータと正極と負極に含漬させた。
さらに、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をしめることにより電池を密封し、直径20mm、高さ3.2mmの図1で示す構成を有するコイン型のリチウム二次電池(以下、試験用電池と称する)を作製した。
得られたコイン型電池(試験用電池)について、各測定を実施した。
[評価方法]
<電池の初期特性:初期電池抵抗測定>
上記コイン型電池を定電圧4.2Vで充電し、次いで、該充電後のコイン型電池を恒温槽内で−20℃に冷却し、−20℃において0.2mA定電流で放電し、放電開始から10秒間における電位低下を測定することにより、コイン型電池の直流抵抗[Ω]を測定し、得られた値を初期抵抗値[Ω](−20℃)とした。
後述の比較例1のコイン型電池についても同様にして、初期抵抗値[Ω](−20℃)を測定した。
これらの結果から、下記式により、比較例1での初期抵抗値[Ω](−20℃)を100%としたときの実施例1での初期抵抗値(相対値;%)として、「初期電池抵抗[%]」を求めた。
得られた結果を表1に示す。
初期電池抵抗[%]
=(実施例1での初期抵抗値[Ω](−20℃)/比較例1での初期抵抗値[Ω](−20℃))×100[%]
〔比較例1〕
実施例1において、一般式(1)で表される化合物を添加しなかった(すなわち添加剤なし)こと以外は実施例1と同様にして非水電解液を調製した。電池の作製、評価についても実施例1と同様に実施した。得られた結果を表1に示す。
〔実施例2〜4〕
実施例1において、添加剤として、ビニルジフルオロホスフェートの代わりに、一般式(1)で表される表1に記載の化合物に変更したこと以外は実施例1と同様にして非水電解液を調製した。電池の作製及び評価についても実施例1と同様に実施した。得られた結果を表1に示す。
表1に示すように、本発明の一般式(1)で表される化合物を添加剤として用いた実施例1〜4では、添加剤を用いない比較例1と比較して、初期放電容量が改善されていた。即ち、実施例1〜4では、初期の電池抵抗が低減されることを確認した。
1 正極
2 負極
3 正極缶
4 封口板
5 セパレータ
6 ガスケット
7,8 スペーサー板

Claims (5)

  1. 下記一般式(1)で表されるフルオロリン酸エステル化合物を含有する電池用非水電解液。
    〔一般式(1)において、nは1または2の整数を表す。Rはそれぞれ独立に水素原子または炭素数1〜12の脂肪族炭化水素基を表し、Rで表される基の少なくとも1つは炭素―炭素不飽和結合を有し、該不飽和結合は三重結合または末端二重結合を表す。該脂肪族炭化水素基において、水素原子の少なくとも1つがフッ素原子で置換されてもよい。〕
  2. 前記一般式(1)において、Rで表される基の少なくとも1つがビニル基、プロパギル基、2−プロペニル基のいずれかである請求項1に記載の電池用非水電解液。
  3. 前記一般式(1)で表される化合物の含有量が、前期非水電解液の全量に対して0.001質量%〜10質量%の範囲である請求項1または請求項2に記載の電池用非水電解液。
  4. 正極と、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、請求項1〜請求項3に記載のいずれか1項に記載の電池用非水電解液と、を含むリチウム二次電池。
  5. 請求項4に記載のリチウム二次電池を充放電させて得られるリチウム二次電池。
JP2015078408A 2015-04-07 2015-04-07 電池用非水電解液、及びリチウム二次電池 Active JP6607689B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015078408A JP6607689B2 (ja) 2015-04-07 2015-04-07 電池用非水電解液、及びリチウム二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015078408A JP6607689B2 (ja) 2015-04-07 2015-04-07 電池用非水電解液、及びリチウム二次電池

Publications (2)

Publication Number Publication Date
JP2016201177A true JP2016201177A (ja) 2016-12-01
JP6607689B2 JP6607689B2 (ja) 2019-11-20

Family

ID=57423022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015078408A Active JP6607689B2 (ja) 2015-04-07 2015-04-07 電池用非水電解液、及びリチウム二次電池

Country Status (1)

Country Link
JP (1) JP6607689B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001700A (ja) * 2017-06-12 2019-01-10 上海如鯤新材料有限公司 ジフルオロリン酸エステルを用いたジフルオロリン酸リチウムの製造方法
KR20190014622A (ko) * 2017-08-03 2019-02-13 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
JP2019153443A (ja) * 2018-03-02 2019-09-12 三井化学株式会社 電池用非水電解液及びリチウム二次電池
JP2019172574A (ja) * 2018-03-26 2019-10-10 三井化学株式会社 リチウム塩錯化合物の製造方法
CN111276741A (zh) * 2018-12-05 2020-06-12 Sk新技术株式会社 用于锂二次电池的电解液和包括其的锂二次电池
KR20200070802A (ko) 2018-12-10 2020-06-18 에스케이이노베이션 주식회사 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
WO2021187624A1 (ja) 2020-03-19 2021-09-23 三菱ケミカル株式会社 非水系電解液及びそれを用いたエネルギーデバイス
CN114899484A (zh) * 2022-04-02 2022-08-12 远景动力技术(江苏)有限公司 一种非水电解液及其锂离子电池
CN115315840A (zh) * 2020-03-31 2022-11-08 三井化学株式会社 电池用非水电解液、锂二次电池前体、锂二次电池的制造方法、锂二次电池、磷腈化合物、及电池用添加剂
JP2022547057A (ja) * 2019-09-04 2022-11-10 東友ファインケム株式会社 リチウム二次電池用電解質およびこれを含むリチウム二次電池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052938A (ja) * 2006-08-22 2008-03-06 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液電池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052938A (ja) * 2006-08-22 2008-03-06 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液電池

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001700A (ja) * 2017-06-12 2019-01-10 上海如鯤新材料有限公司 ジフルオロリン酸エステルを用いたジフルオロリン酸リチウムの製造方法
KR20190014622A (ko) * 2017-08-03 2019-02-13 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR102460957B1 (ko) 2017-08-03 2022-10-31 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
JP7275455B2 (ja) 2018-03-02 2023-05-18 三井化学株式会社 電池用非水電解液及びリチウム二次電池
JP2019153443A (ja) * 2018-03-02 2019-09-12 三井化学株式会社 電池用非水電解液及びリチウム二次電池
JP2019172574A (ja) * 2018-03-26 2019-10-10 三井化学株式会社 リチウム塩錯化合物の製造方法
CN111276741A (zh) * 2018-12-05 2020-06-12 Sk新技术株式会社 用于锂二次电池的电解液和包括其的锂二次电池
CN111276741B (zh) * 2018-12-05 2024-03-29 Sk新能源株式会社 用于锂二次电池的电解液和包括其的锂二次电池
KR20200070802A (ko) 2018-12-10 2020-06-18 에스케이이노베이션 주식회사 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
JP7362905B2 (ja) 2019-09-04 2023-10-17 東友ファインケム株式会社 リチウム二次電池用電解質およびこれを含むリチウム二次電池
JP2022547057A (ja) * 2019-09-04 2022-11-10 東友ファインケム株式会社 リチウム二次電池用電解質およびこれを含むリチウム二次電池
WO2021187624A1 (ja) 2020-03-19 2021-09-23 三菱ケミカル株式会社 非水系電解液及びそれを用いたエネルギーデバイス
CN115315840A (zh) * 2020-03-31 2022-11-08 三井化学株式会社 电池用非水电解液、锂二次电池前体、锂二次电池的制造方法、锂二次电池、磷腈化合物、及电池用添加剂
CN114899484B (zh) * 2022-04-02 2023-10-27 远景动力技术(江苏)有限公司 一种非水电解液及其锂离子电池
CN114899484A (zh) * 2022-04-02 2022-08-12 远景动力技术(江苏)有限公司 一种非水电解液及其锂离子电池

Also Published As

Publication number Publication date
JP6607689B2 (ja) 2019-11-20

Similar Documents

Publication Publication Date Title
JP6017697B2 (ja) 電池用非水電解液、及びリチウム二次電池
JP6607689B2 (ja) 電池用非水電解液、及びリチウム二次電池
JP4450550B2 (ja) 非水電解液およびそれを用いた二次電池
JP6285332B2 (ja) 電池用非水電解液、及びリチウム二次電池
JP5956680B2 (ja) 電池用非水電解液、新規化合物、高分子電解質、及びリチウム二次電池
JP6338913B2 (ja) 電池用非水電解液、及びリチウム二次電池
JP6607695B2 (ja) 電池用非水電解液、及びリチウム二次電池
JP2018156761A (ja) 電池用非水電解液及びリチウム二次電池
KR20200035094A (ko) 전지용 비수 전해액 및 리튬 이차 전지
JP2017045724A (ja) 電池用非水電解液及びリチウム二次電池
JP2015162289A (ja) 電池用非水電解液、及びリチウム二次電池
JP2023063507A (ja) 電池用非水電解液及びリチウム二次電池
JP2017027930A (ja) 電池用非水電解液及びリチウム二次電池
KR101865444B1 (ko) 비수계 전해액 및 비수계 전해액 전지
KR20200035095A (ko) 리튬 이차 전지 및 비수 전해액
JP6457205B2 (ja) リチウム二次電池
JP2019175578A (ja) 電池用非水電解液及びリチウム二次電池
JP2019175577A (ja) 電池用非水電解液及びリチウム二次電池
JP2022126851A (ja) 電池用非水電解液及びリチウム二次電池
JP2019153443A (ja) 電池用非水電解液及びリチウム二次電池
JP6957179B2 (ja) 電池用非水電解液及びリチウム二次電池
JP6879799B2 (ja) 電池用非水電解液及びリチウム二次電池
JP7160461B2 (ja) リチウム二次電池の製造方法
JP2017045722A (ja) 電池用非水電解液及びリチウム二次電池
JP6749088B2 (ja) リチウム二次電池用非水電解液、及びリチウム二次電池

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R150 Certificate of patent or registration of utility model

Ref document number: 6607689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250