KR102460957B1 - 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
KR102460957B1
KR102460957B1 KR1020170098304A KR20170098304A KR102460957B1 KR 102460957 B1 KR102460957 B1 KR 102460957B1 KR 1020170098304 A KR1020170098304 A KR 1020170098304A KR 20170098304 A KR20170098304 A KR 20170098304A KR 102460957 B1 KR102460957 B1 KR 102460957B1
Authority
KR
South Korea
Prior art keywords
secondary battery
lithium secondary
electrolyte
group
carbonate
Prior art date
Application number
KR1020170098304A
Other languages
English (en)
Other versions
KR20190014622A (ko
Inventor
최현봉
김애란
박혜진
신우철
임진혁
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020170098304A priority Critical patent/KR102460957B1/ko
Priority to PCT/KR2018/006656 priority patent/WO2019027137A1/ko
Priority to US16/636,114 priority patent/US20200251778A1/en
Publication of KR20190014622A publication Critical patent/KR20190014622A/ko
Application granted granted Critical
Publication of KR102460957B1 publication Critical patent/KR102460957B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/141Esters of phosphorous acids
    • C07F9/146Esters of phosphorous acids containing P-halide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

리튬염; 유기용매; 하기 화학식 1로 표시되는 화합물을 포함하는 첨가제를 포함하는 리튬 이차전지용 전해액이 제공된다.
<화학식 1>
Figure 112017074871896-pat00009

Description

리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지{ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY INCLUDING THE SAME}
리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
리튬전지는 비디오 카메라, 휴대폰, 노트북 컴퓨터 등 휴대용 전자기기의 구동 전원으로 사용된다. 재충전이 가능한 리튬이차전지는 기존의 납 축전지, 니켈-카드뮴 전지, 니켈수소 전지, 니켈아연 전지 등과 비교하여 단위 중량당 에너지 밀도가 3배 이상 높고 고속 충전이 가능하다.
리튬전지는 높은 구동 전압에서 작동되므로 리튬과 반응성이 높은 수계 전해액이 사용될 수 없다. 리튬전지에는 일반적으로 유기전해액이 사용된다. 유기전해액은 리튬염이 유기용매에 용해되어 제조된다. 유기용매는 고전압에서 안정적이며, 이온전도도와 유전율이 높고 점도가 낮은 것이 바람직하다.
리튬전지에 리튬염을 포함하는 유기전해액이 사용되면 음극/양극과 전해액 사이의 부반응에 의해 리튬전지의 수명 특성 및 고온 안정성이 저하될 수 있다.
따라서, 향상된 수명 특성 및 고온 안정성을 가지는 리튬전지를 제공할 수 있는 유기전해액이 요구된다.
한 측면은 새로운 리튬 이차전지용 첨가제를 제공하는 것이다.
다른 한 측면은 상기 첨가제를 포함하는 리튬 이차전지용 전해액을 제공하는 것이다.
또 다른 한 측면은 상기 리튬 이차전지용 전해액을 포함하는 리튬 이차전지를 제공하는 것이다.
한 측면에 따라,
하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지 전해액용 첨가제가 제공된다:
<화학식 1>
Figure 112017074871896-pat00001
상기 화학식 1에서,
A는 치환 또는 비치환된 지방족 탄화수소 또는 (-C2H4-O-C2H4-)n 이고;
n은 1 내지 10의 정수 중에서 선택되고;
R은 -CN, -N=C=O, -N=C=S, -OSO2CH3 , -OSO2C2H5 , -OSO2F, 또는 -OSO2CF3이다.
다른 한 측면에 따라,
리튬염;
비수계 유기 용매;
상기 첨가제를 포함하는, 리튬 이차전지용 전해액이 제공된다.
또 다른 한 측면에 따라,
양극;
음극;
상기 리튬 이차 전지용 전해액을 포함하는, 리튬 이차 전지가 제공된다.
한 측면에 따르면 새로운 구조의 포스파인계 화합물을 포함한 첨가제를 포함하는 리튬 이차전지용 전해액을 사용함에 의하여 리튬 이차전지의 수명 특성 및 고온 안정성이 향상될 수 있다.
도 1은 실시예 1에 따라 제조된 음극 하프 셀에 대한 CV 특성 평가 결과를 나타낸 그래프이다.
도 2는 비교예 1에 따라 제조된 음극 하프 셀에 대한 CV 특성 평가 결과를 나타낸 그래프이다.
도 3은 Cu 용출에 대한 제조예 1 내지 3, 5 및 6에 따라 제조된 전해액의 전기화학적 안정성 평가 결과를 나타낸 그래프이다.
도 4는 실시예 2, 3 및 비교예 2 및 3에 따라 제조된 리튬 이차전지의 저온(0℃)에서의 수명 특성 평가 결과를 나타낸 그래프이다.
도 5는 예시적인 구현예에 따른 리튬전지의 모식도이다.
<도면의 주요 부분에 대한 부호의 설명>
1: 리튬전지 2: 음극
3: 양극 4: 세퍼레이터
5: 전지케이스 6: 캡 어셈블리
이하에서 예시적인 구현예들에 따른 리튬전지 전해액용 첨가제, 이를 포함하는 유기 전해액 및 상기 전해액을 채용한 리튬 전지에 관하여 더욱 상세히 설명한다.
본 명세서에서, "탄화수소"이라는 용어는 탄소 및 수소로 이루어진 유기 화합물을 의미한다. 예를 들어, 탄화수소는 단일결합, 이중결합, 삼중결합, 또는 이들의 조합을 포함할 수 있다.
본 명세서에서 "Ca-Cb"에서 "a" 및 "b"는 구체적인 작용기에서 탄소 원자의 개수를 의미한다. 즉, 상기 작용기는 "a" 내지 "b"의 탄소원자를 포함할 수 있다. 따라서, 예를 들어, "C1-C4 알킬기"는 1 내지 4의 탄소를 가지는 알킬기, 즉, CH3-, CH3CH2-, CH3CH2CH2-, (CH3)2CH-, CH3CH2CH2CH2-, CH3CH2CH(CH3)- 및 (CH3)3C-를 의미한다.
소정의 라디칼 명명법은 문맥에 따라 모노-라디칼 또는 디-라디칼을 포함할 수 있다. 예를 들어, 하나의 치환기가 나머지 분자에서 2개의 연결지점을 요구하는 경우에, 상기 치환기는 디-라디칼인 것으로 이해되어야 한다. 예를 들어, 2개의 연결지점을 요구하는 알킬기로 인정되는 치환기는 -CH2-, -CH2CH2-, -CH2CH(CH3)CH2-, 등과 같은 디-라디칼을 포함한다. 다른 라디칼 명명법은 상기 라디칼이 "알킬렌" 또는 "알케닐렌"과 같이 디라디칼임을 명확하게 나타낸다.
본 명세서에서, "알킬기" 또는 "알킬렌기"이라는 용어는 분지된 또는 분지되지 않은 지방족 탄화수소기를 의미한다. 일구현예에서, 알킬기는 치환 또는 비치환될 수 있다. 알킬기는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, tert-부틸기, 펜틸기, 헥실기, 시클로프로필기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기 등을 포함하나, 이들로 한정되지 않으며, 이들 각각은 다른 구현예에서 선택적으로 치환될 수 있다. 다른 구현에에서, 알킬기는 1 내지 6의 탄소원자를 포함할 수 있다. 예를 들어, 탄소수 1 내지 6의 알킬기는, 메틸기. 에틸기, 프로필기, 이소프로필기, 부틸기. 이소부틸기, sec-부틸기, 펜틸기, 3-펜틸기, 헥실기 등을 포함하나, 이들로 한정되지 않는다.
본 명세서에서, "알케닐기" 또는 "알케닐렌기"은 하나 이상의 탄소-탄소 이중결합을 포함하는 탄소수 2 내지 20의 탄화수소기로서, 에테닐기, 1-프로페닐기, 2-프로페닐기, 2-메틸-1-프로페닐기, 1-부테닐기, 2-부테닐기, 시클로프로페닐기, 시클로펜테닐, 시클로헥세닐, 시클로펜테닐 등을 포함하나, 이들로 한정되지 않는다. 다른 구현예에서, 알케닐기는 치환되거나 치환되지 않을 수 있다. 다른 구현예에서, 알케닐기의 탄소수가 2 내지 40일 수 있다.
본 명세서에서, "알키닐기" 또는 "알키닐렌기"이라는 용어는 하나 이상의 탄소-탄소 삼중결합을 포함하는 탄소수 2 내지 20의 탄화수소기로서, 에티닐기, 1-프로피닐기, 1-부티닐기, 2-부티닐기 등을 포함하나, 이들로 한정되지 않는다. 다른 구현예에서, 알키닐기는 치환되거나 치환되지 않을 수 있다. 다른 구현예에서, 알키닐기의 탄소수가 2 내지 40일 수 있다.
본 명세서에서, 치환기는 치환되지 않은 모작용기(parent group)로부터 유도되며, 여기서 하나 이상의 수소 원자가 다른 원자나 작용기로 치환된다. 다르게 표시되지 않으면, 작용기가 "치환된" 것으로 여겨지면, 이것은 상기 작용기가 C1-C20 알킬, C2-C20 알케닐, C2-C20 알키닐, C1-C20 알콕시, 할로겐, 시아노, 하이드록시 및 니트로로 이루어진 군에서 독립적으로 선택된 하나 이상의 치환기로 치환됨을 의미한다. 하나의 작용기가 "선택적으로 치환된"이라고 기재되면, 상기 작용기는 상술한 치환기로 치환될 수 있다.
일 구현예에 따른 리튬 이차전지 전해액용 첨가제는 하기 화학식 1로 표시되는 화합물을 포함한다:
<화학식 1>
Figure 112017074871896-pat00002
상기 화학식 1에서,
A는 치환 또는 비치환된 지방족 탄화수소 또는 (-C2H4-O-C2H4-)n 이고;
n은 1 내지 10의 정수 중에서 선택되고;
R은 -CN, -N=C=O, -N=C=S, -OSO2CH3 , -OSO2C2H5 , -OSO2F, 또는 -OSO2CF3이다.
상기 화학식 1의 화합물을 포함하는 첨가제가 리튬 이차전지 전해액에 첨가되어 리튬 이차전지의 수명 특성 및 고온 안정성을 향상시킬 수 있다.
일 구현예에 따르면, 상기 화학식 1에서, A는 C1-C20 지방족 탄화수소, 또는 (-C2H4-O-C2H4-)n 이고; n은 1 내지 5의 정수 중에서 선택될 수 있다.
예를 들어, 상기 화학식 1에서, 상기 A는 C1-C20 알킬렌, C2-C20 알케닐렌, 또는 C2-C20 알키닐렌일 수 있다.
예를 들어, 상기 화학식 1에서, 상기 A는 메틸렌기, 에틸렌기, 프로필렌기, 부틸렌기, 또는 에테닐렌기일 수 있다. 예를 들어, 상기 화학식 1에서, 상기 A는 메틸렌기일 수 있다.
일 구현예에 따르면, 상기 화학식 1에서 R은 -CN일 수 있다.
일 구현예에 따르면, 상기 화학식 1의 화합물은 하기 화학식 1-1로 표시될 수 있다:
<화학식 1-1>
Figure 112017074871896-pat00003
상기 화학식 1-1에서, R은 전술한 바와 같다.
상기 화학식 1로 표시되는 화합물은 하기 화합물 1일 수 있다.
[화합물 1]
Figure 112017074871896-pat00004
상기 화합물이 전해액에 첨가되어 리튬 이차전지의 성능을 향상시키는 이유에 대하여 이하에서 보다 구체적으로 설명하나 이는 본 발명의 이해를 돕기 위한 것으로서 본 발명의 범위가 이하 설명의 범위로 한정되는 것은 아니다.
상기 화학식 1로 표시되는 화합물은 화학식 1로 표시되는 화합물은 말단에 우수한 전기, 화학적 반응성을 갖는 디플루오로포스페이트(-PF2)기를 포함함으로 인해, 에틸렌카보네이트(EC) 등과 같은 유기 용매의 분해를 억제하여 가스 발생을 저감시키고, 그 결과 저항 증가율을 낮출 수 있었다.
또한, 전해액에 포함되는 리튬염으로서 LiPF6가 일반적으로 사용되지만, 열안정성이 부족하고 수분으로도 가수분해되기 쉽다는 문제점을 가지고 있다. 하지만, 상기 화학식 1로 표시되는 화합물을 포함하는 첨가제를 전해액에 첨가하는 경우, 상기 화학식 1의 작용기인 포스포로플루오리다이트(phosphorofluoridite)(-OPF2)기가 수분(H2O) 분자를 배위함으로써 수분에 의한 LiPF6의 가수분해반응을 억제할 수 있다. 그 결과, 리튬 이차 전지 내부에서의 가스 발생이 억제되어 사이클 수명 특성이 향상된다. 또한, 가스 발생 억제로 인한 전지의 스웰링 현상이 방지될 수 있다.
뿐만 아니라, 상기 화학식 1의 말단에 위치한 디플루오로포스페이트기는 금속 기재로부터 용출된 금속 이온, 예를 들어 구리 이온(Cu2+)과 착물화 반응을 통해, 기재 표면에 안정한 박막을 형성할 수 있다. 이러한 박막의 형성으로 인해, 기재로부터 추가적인 금속의 용출이 억제되고, 그 결과 전지의 방치 중 전지의 과방전(overdischarge)이 억제되어, 전지 특성이 향상될 수 있다.
리튬 이차 전지의 초기 충전시 음극의 표며에서는 전해액의 분해반응이 일어나게 되는데, 이는 전해액의 환원 전위가 상대적으로 리튬의 전위에 비해 높기 때문이다. 이러한 전해액 분해반응은 전극 표면에 SEI(solid electrolyte interphase)를 형성시켜 음극과 전해액의 반응에 요구되는 전자의 이동을 억제시켜 줌으로서 추가적인 전해액의 분해를 방지할 수 있다. 이에 따라 전지의 성능은 음극 표면에 형성된 피막의 특성에 따라 크게 좌우되며, 이를 고려하여 충전 반응시 전해액보다 먼저 분해될 수 있는 전해액 첨가제의 도입을 통해, 보다 견고하고 우수한 전기적 특성을 갖는 SEI층의 형성이 요구된다.
일 구현예에 따른 상기 화학식 1로 표시되는 리튬 이차전지 전해액용 첨가제는 충전 반응시 우수한 전기 화학적 반응성을 갖는 디플루오로포스페이트기를 일 말단에 포함함으로써, 전해액보다 우선적으로 분해되어 음극 표면에 견고하면서도 우수한 전기적 특성을 갖는 SEI 피막을 형성할 수 있다.
또한, 상기 화학식 1로 표시되는 리튬 이차전지 전해액용 첨가제는 시아노기(-CN)를 타 말단에 포함함으로써, 시아노 이온의 농도가 높은 SEI 피막이 형성되어 화학적으로 안정한 높은 극성의 막이 형성될 수 있다. 이에 따라, 전해액과 음극의 계면에서의 저항을 낮추어 리튬 이온전도도가 향상되고, 이로 인해 저온 방전 전압 상승 효과를 갖는다.
또한, 디플로오로포스페이트(-PF2)기는 우수한 전기, 화학적 반응성을 가지므로 양극활물질 표면에 노출되어 있는 전이 금속 산화물과 도너-억셉터 결합(donor-acceptor bond)을 형성할 수 있고, 이에 따라 복합체 형태의 보호층이 형성될 수 있다.
또한, 리튬 이차 전지의 초기 충전시 전이 금속 산화물에 부착된 디플로오로포스페이트(-PF2)는 다수의 플로오로포스페이트로 산화될 수 있으므로 결과적으로 양극에 보다 안정하고, 이온 전도성이 우수한 비활성 층을 형성한다. 따라서, 이는 전해액의 다른 성분이 산화 분해되는 것을 방지할 수 있고, 결과적으로 리튬 이차 전지의 사이클 수명 성능을 향상시킴과 동시에 스웰링 현상이 발생하는 것을 방지할 수 있다.
일 구현예에 따른 리튬 이차전지용 전해액은 리튬염; 비수계 유기 용매; 및 상기 첨가제를 포함할 수 있다.
예를 들어, 상기 첨가제의 함량은 상기 리튬 이차전지용 전해액의 총 중량을 기준으로 0.1 중량% 내지 10 중량% 범위일 수 있으나, 이에 한정되는 것은 아니며, 전지 특성을 저해하지 않는 범위의 함량이 적절히 선택될 수 있다. 예를 들어, 상기 첨가제의 함량은 상기 리튬 이차전지용 전해액의 총 중량을 기준으로 0.1 중량% 내지 5 중량% 범위 일 수 있다.
일 구현예에 따르면, 상기 리튬 이차전지용 전해액은 지방족 니트릴 화합물을 더 포함할 수 있다. 예를 들어, 상기 지방족 니트릴 화합물은 아세토니트릴(AN) 또는 숙시노니트릴(SN)을 포함할 수 있으나, 이에 한정되는 것은 아니며, 탄화수소의 말단에 니트릴기가 포함된다면 모두 사용될 수 있다.
예를 들어, 상기 지방족 니트릴 화합물의 함량은 상기 리튬 이차전지용 전해액의 총 중량을 기준으로 0.1 중량% 내지 10 중량% 범위일 수 있으나, 이에 한정되는 것은 아니며, 금속 용출 억제 효과를 저해하지 않는 범위의 함량이 적절히 선택될 수 있다.
일 구현예에 따르면, 상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(2≤x≤20, 2≤y≤20), LiCl, LiI, 리튬비스(옥살레이토)보레이트(LiBOB), 및 LiPO2F2로 이루어진 군에서 선택된 1종 이상을 포함할 수 있으나, 이에 제한되는 것은 아니며, 당해 기술분야에서 리튬염으로 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기 전해액에서 상기 리튬염의 농도는 0.01 내지 2.0 M 일 수 있으나, 반드시 이러한 범위로 한정되는 것은 아니며 필요에 따라 적절한 농도가 사용될 수 있다. 상기 농도 범위 내에서 더욱 향상된 전지 특성이 얻어질 수 있다.
일 구현예에 따르면, 상기 유기용매는 에틸메틸카보네이트(EMC), 메틸프로필카보네이트, 에틸프로필카보네이트, 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 디프로필카보네이트, 프로필렌카보네이트(PC), 에틸렌카보네이트(EC), 플루오로에틸렌카보네이트(FEC), 비닐렌 카보네이트(VC), 비닐에틸렌 카보네이트(VEC), 부틸렌카보네이트, 에틸프로피오네이트, 에틸부티레이트, 디메틸술폭사이드, 디메틸포름아미드, 디메틸아세트아미드, 감마-발레로락톤, 감마-부티로락톤 및 테트라하이드로퓨란으로 구성된 군에서 선택된 1종 이상을 포함할 수 있으나, 이에 한정되는 것은 아니며, 당해 기술분야에서 유기 용매로 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기 전해액은 액체 또는 겔 상태일 수 있다. 상기 전해액은 상술한 유기용매에 리튬염 및 상술한 첨가제를 첨가하여 제조될 수 있다.
다른 구현예에 따른 리튬 이차전지는 양극; 음극 및 상기에 따른 전해액을 포함한다. 상기 리튬 이차전지는 그 형태가 특별히 제한되지는 않으며, 리튬이온전지, 리튬이온폴리머전지, 리튬설퍼전지 등과 같은 리튬이차전지는 물론, 리튬일차 전지도 포함한다.
예를 들어, 상기 리튬 이차전지에서 음극은 흑연을 포함할 수 있다. 그리고, 상기 리튬 이차전지는 4.8V 이상의 고전압을 가질 수 있다.
예를 들어, 상기 리튬전지는 다음과 같은 방법에 의하여 제조될 수 있다.
먼저 양극이 준비된다.
예를 들어, 양극활물질, 도전재, 바인더 및 용매가 혼합된 양극활물질 조성물이 준비된다. 상기 양극활물질 조성물이 금속 집전체 위에 직접 코팅되어 양극판이 제조된다. 다르게는, 상기 양극활물질 조성물이 별도의 지지체 상에 캐스팅된 다음, 상기 지지체로부터 박리된 필름이 금속 집전체상에 라미네이션되어 양극판이 제조될 수 있다. 상기 양극은 상기에서 열거한 형태에 한정되는 것은 아니고 상기 형태 이외의 형태일 수 있다.
상기 양극활물질은 리튬함유 금속산화물로서, 당업계에서 통상적으로 사용되는 것이면 제한 없이 모두 사용될 수 있다. 예를 들어, 코발트, 망간, 니켈, 및 이들의 조합에서 선택되는 금속과 리튬과의 복합 산화물 중 1종 이상의 것을 사용할 수 있으며, 그 구체적인 예로는, LiaA1-bB1 bD1 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 및 0 ≤ b ≤ 0.5이다); LiaE1-bB1 bO2-cD1 c(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiE2-bB1 bO4-cD1 c(상기 식에서, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiaNi1-b-cCobB1 cD1 α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1-b-cCobB1 cO2-αF1 α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cCobB1 cO2-αF1 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cMnbB1 cDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1-b-cMnbB1 cO2-αF1 α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cMnbB1 cO2-αF1 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNibEcGdO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1이다.); LiaNibCocMndGeO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5, 0.001 ≤ e ≤ 0.1이다.); LiaNiGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaCoGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMnGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMn2GbO4(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); QO2; QS2; LiQS2; V2O5; LiV2O5; LiIO2; LiNiVO4; Li(3-f)J2(PO4)3(0 ≤ f ≤ 2); Li(3-f)Fe2(PO4)3(0 ≤ f ≤ 2); LiFePO4의 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다:
상기 화학식에 있어서, A는 Ni, Co, Mn, 또는 이들의 조합이고; B1는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D1는 O, F, S, P, 또는 이들의 조합이고; E는 Co, Mn, 또는 이들의 조합이고; F1는 F, S, P, 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 또는 이들의 조합이고; Q는 Ti, Mo, Mn, 또는 이들의 조합이고; I는 Cr, V, Fe, Sc, Y, 또는 이들의 조합이며; J는 V, Cr, Mn, Co, Ni, Cu, 또는 이들의 조합일 수 있다.
예를 들어, LiCoO2, LiMnxO2x(x=1, 2), LiNi1-xMnxO2x(0<x<1), LiNi1-x-yCoxMnyO2 (0≤x≤0.5, 0≤y≤0.5), LiFePO4 등이다.
물론 상기 화합물 표면에 코팅층을 갖는 것도 사용할 수 있고, 또는 상기 화합물과 코팅층을 갖는 화합물을 혼합하여 사용할 수도 있다. 이 코팅층은 코팅 원소의 옥사이드, 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트, 또는 코팅 원소의 하이드록시카보네이트의 코팅 원소 화합물을 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 상기 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등)으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
상기 도전재로는 카본블랙, 흑연미립자 등이 사용될 수 있으나, 이들로 한정되지 않으며, 당해 기술분야에서 도전재로 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기 바인더로는 비닐리덴 플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌 및 그 혼합물 또는 스티렌 부타디엔 고무계 폴리머 등이 사용될 수 있으나, 이들로 한정되지 않으며 당해 기술분야에서 바인더로 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기 용매로는 N-메틸피롤리돈, 아세톤 또는 물 등이 사용될 수 있으나, 이들로 한정되지 않으며 당해 기술분야에서 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기, 양극 활물질, 도전재, 바인더 및 용매의 함량은 리튬 전지에서 통상적으로 사용되는 수준이다. 리튬전지의 용도 및 구성에 따라 상기 도전재, 바인더 및 용매 중 하나 이상이 생략될 수 있다.
다음으로 음극이 준비된다.
예를 들어, 음극활물질, 도전재, 바인더 및 용매를 혼합하여 음극활물질 조성물이 준비된다. 상기 음극활물질 조성물이 금속 집전체 상에 직접 코팅 및 건조되어 음극판이 제조된다. 다르게는, 상기 음극활물질 조성물이 별도의 지지체상에 캐스팅된 다음, 상기 지지체로부터 박리된 필름이 금속 집전체상에 라미네이션되어 음극판이 제조될 수 있다.
상기 음극활물질은 당해 기술분야에서 리튬전지의 음극활물질로 사용될 수 있는 것이라면 모두 가능하다. 예를 들어, 리튬 금속, 리튬과 합금 가능한 금속, 전이금속 산화물, 비전이금속산화물 및 탄소계 재료로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다.
예를 들어, 상기 리튬과 합금가능한 금속은 Si, Sn, Al, Ge, Pb, Bi, Sb Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Si는 아님), Sn-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Sn은 아님) 등일 수 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 또는 이들의 조합일 수 있다.
예를 들어, 상기 전이금속 산화물은 리튬 티탄 산화물, 바나듐 산화물, 리튬 바나듐 산화물 등일 수 있다.
예를 들어, 상기 비전이금속 산화물은 SnO2, SiOx(0<x<2) 등일 수 있다.
상기 탄소계 재료로는 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 결정질 탄소는 무정형, 판상, 린편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연일 수 있으며, 상기 비정질 탄소는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치(mesophase pitch) 탄화물, 소성된 코크스 등일 수 있다.
음극활물질 조성물에서 도전재 및 바인더는 상기 양극활물질 조성물의 경우와 동일한 것을 사용할 수 있다.
상기 음극활물질, 도전재, 바인더 및 용매의 함량은 리튬 전지에서 통상적으로 사용하는 수준이다. 리튬전지의 용도 및 구성에 따라 상기 도전재, 바인더 및 용매 중 하나 이상이 생략될 수 있다.
다음으로, 상기 양극과 음극 사이에 삽입될 세퍼레이터가 준비된다.
상기 세퍼레이터는 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용가능하다. 전해액의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 사용될 수 있다. 예를 들어, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE) 또는 이들의 조합물 중에서 선택된 것으로서, 부직포 또는 직포 형태이어도 무방하다. 예를 들어, 리튬이온전지에는 폴리에틸렌, 폴리프로필렌 등과 같은 권취 가능한 세퍼레이터가 사용되며, 리튬이온폴리머전지에는 유기전해액 함침 능력이 우수한 세퍼레이터가 사용될 수 있다. 예를 들어, 상기 세퍼레이터는 하기 방법에 따라 제조될 수 있다.
고분자 수지, 충진제 및 용매를 혼합하여 세퍼레이터 조성물이 준비된다. 상기 세퍼레이터 조성물이 전극 상부에 직접 코팅 및 건조되어 세퍼레이터가 형성될 수 있다. 또는, 상기 세퍼레이터 조성물이 지지체상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리시킨 세퍼레이터 필름이 전극 상부에 라미네이션되어 세퍼레이터가 형성될 수 있다.
상기 세퍼레이터 제조에 사용되는 고분자 수지는 특별히 한정되지 않으며, 전극판의 결합재에 사용되는 물질들이 모두 사용될 수 있다. 예를 들어, 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 또는 이들의 혼합물 등이 사용될 수 있다.
다음으로, 상술한 전해액이 준비된다.
도 3에서 보여지는 바와 같이 상기 리튬전지(1)는 양극(3), 음극(2) 및 세퍼레이터(4)를 포함한다. 상술한 양극(3), 음극(2) 및 세퍼레이터(4)가 와인딩되거나 접혀서 전지케이스(5)에 수용된다. 이어서, 상기 전지케이스(5)에 유기전해액이 주입되고 캡(cap) 어셈블리(6)로 밀봉되어 리튬전지(1)가 완성된다. 상기 전지케이스는 원통형, 각형, 박막형 등일 수 있다. 예를 들어, 상기 리튬전지는 대형박막형전지일 수 있다. 상기 리튬전지는 리튬이온전지일 수 있다.
상기 양극 및 음극 사이에 세퍼레이터가 배치되어 전지구조체가 형성될 수 있다. 상기 전지구조체가 바이셀 구조로 적층된 다음, 유기 전해액에 함침되고, 얻어진 결과물이 파우치에 수용되어 밀봉되면 리튬이온폴리머전지가 완성된다.
또한, 상기 전지구조체는 복수개 적층되어 전지팩을 형성하고, 이러한 전지팩이 고용량 및 고출력이 요구되는 모든 기기에 사용될 수 있다. 예를 들어, 노트북, 스마트폰, 전기차량 등에 사용될 수 있다.
또한, 상기 리튬전지는 수명특성 및 고율특성이 우수하므로 전기차량(electric vehicle, EV)에 사용될 수 있다. 예를 들어, 플러그인하이브리드차량(plug-in hybrid electric vehicle, PHEV) 등의 하이브리드차량에 사용될 수 있다. 또한, 많은 양의 전력 저장이 요구되는 분야에 사용될 수 있다. 예를 들어, 전기 자전거, 전동 공구 등에 사용될 수 있다.
이하의 실시예 및 비교예를 통하여 본 발명이 더욱 상세하게 설명된다. 단, 실시예는 본 발명을 예시하기 위한 것으로서 이들만으로 본 발명의 범위가 한정되는 것이 아니다.
(전해액의 제조)
제조예 1
에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC), 디메틸카보네이트(DMC)의 부피비가 2:2:6인 제1 혼합 용액에 1.5 M의 LiPF6를 첨가하여 제2 혼합 용액을 제조하였다.
상기 제2 혼합 용액을 기준으로, 하기 화합물 1을 0.5 중량% 첨가하여 리튬 이차전지용 전해액을 제조하였다.
[화합물 1]
Figure 112017074871896-pat00005
제조예 2
상기 화합물 1을 1 중량% 첨가하는 것을 제외하고는 제조예 1과 동일한 방법으로 리튬 이차전지용 전해액을 제조하였다.
제조예 3
상기 화합물 1을 첨가하지 않는 것을 제외하고는 제조예 1과 동일한 방법으로 리튬 이차전지용 전해액을 제조하였다.
제조예 4
상기 화합물 1 대신에 하기 화합물 2을 1 중량% 첨가하는 것을 제외하고는, 제조예 1과 동일한 방법으로 리튬 이차전지용 전해액을 제조하였다.
[화합물 2]
Figure 112017074871896-pat00006
제조예 5
상기 제조예 1에서 제조된 전해액에 숙시노니트릴 1 중량%를 더 첨가하여 리튬 이차전지용 전해액을 제조하였다.
제조예 6
상기 제조예 2에서 제조된 전해액에 숙시노니트릴 1 중량%를 더 첨가하여 리튬 이차전지용 전해액을 제조하였다.
제조예 7
에틸렌 카보네이트(EC), 플루오로에틸렌 카보네이트(FEC), 디메틸카보네이트(DMC)의 부피비가 2:2:6인 제1 혼합 용액에 1.5 M의 LiPF6를 첨가하여 제2 혼합 용액을 제조하였다.
상기 제2 혼합 용액을 기준으로, LiBF4 0.2중량%, LiBOB 1중량%, LiPO2F2 1.5중량%, 숙시노니트릴 1중량%, 상기 화합물 1 0.5 중량%를 첨가하여 리튬 이차전지용 전해액을 제조하였다.
제조예 8
상기 화합물 1을 1 중량% 첨가하는 것을 제외하고는 제조예 7과 동일한 방법으로 리튬 이차전지용 전해액을 제조하였다.
제조예 9
상기 화합물 1을 첨가하지 않는 것을 제외하고는 제조예 7과 동일한 방법으로 리튬 이차전지용 전해액을 제조하였다.
제조예 10
상기 화합물 1 대신에 상기 화합물 2을 1 중량% 첨가하는 것을 제외하고는, 제조예 1과 동일한 방법으로 리튬 이차전지용 전해액을 제조하였다.
(음극 하프셀의 제조)
실시예 1
그래파이트를 포함하는 음극, 상대 전극으로서 리튬 호일을 사용하고, 음극 및 상대 전극 사이에 세퍼레이터를 배치하고 액체 전해액을 주입하여 음극 하프셀을 제조하였다.
상기 세퍼레이터로서 다공성 폴리에틸렌막을 사용하였다.
상기 전해액은 제조예 1에서 제조된 전해액을 사용하였다.
비교예 1
제조예 1에서 제조된 전해액 대신에 제조예 3에서 제조된 전해액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 음극 하프셀을 제작하였다.
평가예 1: 음극 하프셀에 대한 CV 특성 평가
실시예 1 및 비교예 1에 따라 제조된 음극 하프셀을 이용하여 순환 전류(cyclic voltammetry) 특성을 평가하였다. 실시예 1에 대한 결과는 도 1, 비교예 1에 대한 결과는 도 2에 나타내었다. 도 1 및 2에서, 1, 2, 3, 4, 5 사이클 횟수를 나타낸다.
도 1 및 2를 참조하면, 도 1에서 1 사이클에서 0.5V 근처에서 전류 값이 증가한 것을 확인할 수 있었고, 그 밖에는 사이클의 경과에 따라 전류 값이 크게 변화하지 않는 것을 확인할 수 있었다. 따라서, 화합물 1이 전해액 내에서 산화되었으며, 음극활질을 거의 분해하지 않음으로써, 음극과의 호환성이 뛰어나다는 것을 알 수 있습니다.
평가예 2: Cu 용출 억제 LSV 테스트
구리 전극, 상대전극으로 리튬 전극을 이용하고, 전해액으로서 제조예 1 내지 3, 5 및 6에서 제조된 전해액을 각각 이용하여, 실온에서 LSV 테스트를 진행하였다. 실험 결과는 도 3에 나타내었다.
도 3에서, 전류가 급격히 상승하는 3 내지 3.5V 사이에서 Cu의 용출이 개시됨을 알 수 있었다. 또한, 화합물 1을 포함하는 전해액을 이용하는 경우가, 그렇지 않은 경우에 비해 Cu의 용출에도 불구하고 전류의 급격한 상승이 억제되었으며, 숙시노니트릴을 더 포함하는 경우에 Cu의 용출이 보다 더 효과적으로 억제되었음을 알 수 있다.
(리튬 이차전지의 제조)
실시예 2
(음극 제조)
인조 흑연(BSG-L, Tianjin BTR New Energy Technology Co., Ltd.) 98중량%, 스티렌-부타디엔 고무(SBR)바인더(ZEON) 1.0중량% 및 카르복시메틸셀룰로오스(CMC, NIPPON A&L) 1.0중량%를 혼합한 후 증류수에 투입하고 기계식 교반기를 사용하여 60분간 교반하여 음극활물질 슬러리를 제조하였다. 상기 슬러리를 닥터 블레이드를 사용하여 10㎛ 두께의 구리 집전체 위에 약 60㎛ 두께로 도포하고 100℃의 열풍건조기에서 0.5시간 동안 건조한 후 진공, 120℃의 조건에서 4시간 동안 다시 한번 건조하고, 압연(roll press)하여 음극판을 제조하였다.
(양극 제조)
LiNi0.33Co0.33Mn0.33O2 97.45중량%, 도전재로서 인조흑연(SFG6, Timcal) 분말 0.5중량%, 카본블랙(Ketjenblack, ECP) 0.7중량%, 개질 아크릴로니트릴 고무(BM-720H, Zeon Corporation) 0.25중량%, 폴리비닐리덴플루오라이드(PVdF, S6020, Solvay) 0.9중량%, 폴리비닐리덴플루오라이드(PVdF, S5130, Solvay) 0.2중량%를 혼합하여 N-메틸-2-피롤리돈 용매에 투입한 후 기계식 교반기를 사용하여 30분간 교반하여 양극활물질 슬러리를 제조하였다. 상기 슬러리를 닥터 블레이드를 사용하여 20㎛ 두께의 알루미늄 집전체 위에 약 60㎛ 두께로 도포하고 100℃의 열풍건조기에서 0.5시간 동안 건조한 후 진공, 120℃의 조건에서 4시간 동안 다시 한번 건조하고, 압연(roll press)하여 양극판을 제조하였다.
세퍼레이터로서 양극측에 세라믹이 코팅된 두께 14㎛ 폴리에틸렌 세퍼레이터 및 전해액으로서 상기 제조예 7에서 제조된 전해액을 사용하여 리튬 이차전지를 제조하였다.
실시예 3
제조예 7에서 제조된 전해액 대신에 제조예 8에서 제조된 전해액을 사용한다는 것을 제외하고는 실시예 2와 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2
제조예 7에서 제조된 전해액 대신에 제조예 9에서 제조된 전해액을 사용한다는 것을 제외하고는 실시예 2와 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 3
제조예 7에서 제조된 전해액 대신에 제조예 10에서 제조된 전해액을 사용한다는 것을 제외하고는 실시예 2와 동일한 방법으로 리튬 이차전지를 제조하였다.
평가예 3: 고온 저장 가스 발생 억제 테스트
실시예 2 및 3, 비교예 2 및 3에서 제조된 리튬 이차전지를 고온(90℃)에 방치한 후, CID가 단락되는데 걸리는 시간을 측정하였다. 결과는 하기 표 1에 나타내었다.
CID 오픈 시간 (시간)
실시예 2 35.9
실시예 3 47.1
비교예 2 23.1
비교예 3 25.3
평가예 4: 저온(0℃) 수명 평가
상기 실시예 2 및 3, 비교예 2 및 3에서 제조된 상기 리튬 이차전지를 0℃에서 0.1C rate의 전류로 전압이 4.2V(vs. Li)에 이를 때까지 정전류 충전하고, 이후 10분간 방치하고, 이어서 정전압 모드에서 4.2V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.5V(vs. Li)에 이를 때까지 0.1C rate의 정전류로 방전하였다(화성단계, 1st 사이클).
상기 화성단계의 1st 사이클을 거친 리튬전지를 0℃에서 0.1C rate의 전류로 전압이 4.2V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.2V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.5V(vs. Li)에 이를 때까지 0.1C rate의 정전류로 방전하였다(화성단계, 2nd 사이클).
상기 화성단계의 2nd 사이클을 거친 리튬전지를 0℃에서 0.5C rate의 전류로 전압이 4.2V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.2V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.5V(vs. Li)에 이를 때까지 0.1C rate의 정전류로 방전하였다(화성단계, 3rd 사이클).
상기 화성단계를 거친 리튬전지를 0℃에서 1.0C rate의 전류로 전압이 4.2V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.2V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.5V(vs. Li)에 이를 때까지 1.0C rate의 정전류로 방전하는 사이클을 80th 사이클까지 반복하였다.
상기 모든 충방전 사이클에서 하나의 충전/방전 사이클 후 30분간의 징지 시간을 두었다.
상기 충방전 실험 결과의 일부를 하기 표 2 및 도 4에 나타내었다.
80사이클에서의 용량 유지율(%)
실시예 2 83.2
실시예 3 80.0
비교예 2 78.7
비교예 3 78.2
상기 표 2에서 보는 바와 같이, 실시예 2 및 3의 리튬 이차전지는 동일한 조건에서 화합물 1을 포함하지 않는 비교예 2 및 3에 비해, 용량 유지율이 높았음을 알 수 있었다.
평가예 5: 고온저장(60℃, 28일) 저항 테스트
실시예 2 및 3, 및 비교예 2 및 3에서 제작된 리튬 이차전지를 고온(60℃)에서 보관하는 첫째날(0일)에 저항을 측정하고, 28일간 보관한 후 저항을 측정하여, 저항증가율(%)을 계산하였다. 결과는 하기 표 3에서 보여진다.
고온 저항증가율 (%)
실시예 2 120.6
실시예 3 118.6
비교예 2 129.5
비교예 3 125.4
상기 표 3에서 보는 바와 같이, 실시예 2 및 3의 리튬 이차전지는 고온에서 장기간 보관한 경우에도, 화합물 1을 포함하지 않는 비교예 2 및 3에 비해 고온 저항 증가율이 현저히 낮음을 알 수 있다. 이는 화합물 1의 -OPF2 작용기가 LiPF6의 부반응을 효과적으로 억제하기 때문이라고 생각된다.
평가예 6: 저온저장(-20℃, 2h 저장 후) 목전압 테스트
실시예 2 및 3, 및 비교예 2 및 3에서 제작된 리튬 이차전지를 저온(-20℃)에서 2시간 보관한 후, 목전압을 측정하였다. 결과는 하기 표 4에서 보여진다.
목전압 (V)
실시예 2 2.270
실시예 3 2.290
비교예 2 2.249
비교예 3 2.250
상기 표 4에서 보는 바와 같이, 실시예 2 및 3의 리튬 이차전지는 고온에서 장기간 보관한 경우에도, 화합물 1을 포함하지 않는 비교예 2 및 3에 비해 목전압이 상승된 것을 알 수 있다. 이는 화합물 1의 -CN기가 음극 표면에 극성 SEI 막을 형성하고, 이에 따라 음극 계면에서의 저항이 감소하였기 때문이라고 생각된다.

Claims (13)

  1. 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지 전해액용 첨가제:
    <화학식 1>
    Figure 112022045434569-pat00007

    상기 화학식 1에서,
    A는 C1-C20 지방족 탄화수소 또는 (-C2H4-O-C2H4-)n 이고;
    n은 1 내지 10의 정수 중에서 선택되고;
    R은 -CN이다.
  2. 제1항에 있어서,
    상기 화학식 1에서, n은 1 내지 5의 정수 중에서 선택되는, 첨가제.
  3. 제1항에 있어서,
    상기 화학식 1에서, 상기 A는 C1-C20 알킬렌, C2-C20 알케닐렌, 또는 C2-C20 알키닐렌인, 첨가제.
  4. 제1항에 있어서,
    상기 화학식 1에서, 상기 A는 메틸렌기, 에틸렌기, 프로필렌기, 부틸렌기, 또는 에테닐렌기인, 첨가제.
  5. 제1항에 있어서,
    상기 화합물이 하기 화학식 1-1로 표시되는, 첨가제:
    <화학식 1-1>
    Figure 112017074871896-pat00008

    상기 화학식 1-1에서, R에 대한 정의는 제1항에서 정의한 바와 같다.
  6. 리튬염;
    비수계 유기 용매; 및
    제1항 내지 제5항 중 어느 한 항에 따른 첨가제를 포함하는, 리튬 이차전지용 전해액.
  7. 제6항에 있어서,
    상기 첨가제의 함량은 상기 리튬 이차전지용 전해액의 총 중량을 기준으로 0.1 중량% 내지 10 중량% 범위인, 리튬 이차전지용 전해액.
  8. 제6항에 있어서,
    지방족 니트릴 화합물을 더 포함하는, 리튬 이차전지용 전해액.
  9. 제8항에 있어서,
    상기 지방족 니트릴 화합물의 함량은 상기 리튬 이차전지용 전해액의 총 중량을 기준으로 0.1 중량% 내지 10 중량% 범위인, 리튬 이차전지용 전해액.
  10. 제6항에 있어서,
    상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(2≤x≤20, 2≤y≤20), LiCl, LiI, 리튬비스(옥살레이토)보레이트(LiBOB), 및 LiPO2F2로 이루어진 군에서 선택된 1종 이상을 포함하는, 리튬 이차전지용 전해액.
  11. 제6항에 있어서,
    상기 비수계 유기용매가 에틸메틸카보네이트(EMC), 메틸프로필카보네이트, 에틸프로필카보네이트, 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 디프로필카보네이트, 프로필렌카보네이트(PC), 에틸렌카보네이트(EC), 플루오로에틸렌카보네이트(FEC), 비닐렌 카보네이트(VC), 비닐에틸렌 카보네이트(VEC), 부틸렌카보네이트, 에틸프로피오네이트, 에틸부티레이트, 디메틸술폭사이드, 디메틸포름아미드, 디메틸아세트아미드, 감마-발레로락톤, 감마-부티로락톤 및 테트라하이드로퓨란으로 구성된 군에서 선택된 1종 이상을 포함하는, 리튬 이차전지용 전해액.
  12. 양극;
    음극;
    제6항에 따른 리튬 이차 전지용 전해액을 포함하는, 리튬 이차 전지.
  13. 제12항에 있어서,
    상기 음극은 흑연을 포함하는, 리튬 이차 전지.
KR1020170098304A 2017-08-03 2017-08-03 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 KR102460957B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020170098304A KR102460957B1 (ko) 2017-08-03 2017-08-03 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
PCT/KR2018/006656 WO2019027137A1 (ko) 2017-08-03 2018-07-04 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
US16/636,114 US20200251778A1 (en) 2017-08-03 2018-07-04 Electrolyte for lithium secondary battery and lithium secondary battery comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170098304A KR102460957B1 (ko) 2017-08-03 2017-08-03 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지

Publications (2)

Publication Number Publication Date
KR20190014622A KR20190014622A (ko) 2019-02-13
KR102460957B1 true KR102460957B1 (ko) 2022-10-31

Family

ID=65233970

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170098304A KR102460957B1 (ko) 2017-08-03 2017-08-03 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지

Country Status (3)

Country Link
US (1) US20200251778A1 (ko)
KR (1) KR102460957B1 (ko)
WO (1) WO2019027137A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094263B1 (ko) * 2018-02-23 2020-03-30 에스케이이노베이션 주식회사 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
US11757135B2 (en) * 2018-02-23 2023-09-12 Sk On Co., Ltd. Electrolytic solution for lithium secondary battery, and lithium secondary battery comprising same
KR102460958B1 (ko) * 2019-07-16 2022-10-31 삼성에스디아이 주식회사 리튬 이차전지용 전해질 첨가제, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지
KR102611043B1 (ko) * 2019-08-28 2023-12-06 에스케이온 주식회사 리튬 이차 전지
CN111129590A (zh) * 2019-12-23 2020-05-08 东莞市杉杉电池材料有限公司 一种高电压锂离子电池非水电解液及高电压锂离子电池
KR20230036906A (ko) * 2021-09-08 2023-03-15 에스케이온 주식회사 리튬 이차 전지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200605A (ja) 2006-01-24 2007-08-09 Bridgestone Corp 非水電解液及びそれを備えた非水電解液電池
JP2008091778A (ja) 2006-10-04 2008-04-17 Bridgestone Corp 電気二重層キャパシタ用非水電解液及びそれを備えた非水電解液電気二重層キャパシタ
JP2016201177A (ja) 2015-04-07 2016-12-01 三井化学株式会社 電池用非水電解液、及びリチウム二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3054521B1 (en) * 2013-10-04 2021-06-16 Asahi Kasei Kabushiki Kaisha Electrolyte and lithium-ion secondary battery
EP3145019A4 (en) * 2014-05-14 2018-01-24 UBE Industries, Ltd. Non-aqueous electrolyte, power storage device using same, and lithium salt used for same
KR102068707B1 (ko) * 2015-10-27 2020-01-22 주식회사 엘지화학 비수성 전해질 및 이를 포함하는 리튬 이차전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200605A (ja) 2006-01-24 2007-08-09 Bridgestone Corp 非水電解液及びそれを備えた非水電解液電池
JP2008091778A (ja) 2006-10-04 2008-04-17 Bridgestone Corp 電気二重層キャパシタ用非水電解液及びそれを備えた非水電解液電気二重層キャパシタ
JP2016201177A (ja) 2015-04-07 2016-12-01 三井化学株式会社 電池用非水電解液、及びリチウム二次電池

Also Published As

Publication number Publication date
US20200251778A1 (en) 2020-08-06
WO2019027137A1 (ko) 2019-02-07
KR20190014622A (ko) 2019-02-13

Similar Documents

Publication Publication Date Title
KR102460957B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR102285152B1 (ko) 리튬 이차전지용 전해액 첨가제 및 이를 포함하는 리튬 이차전지
KR20160091077A (ko) 유기전해액 및 상기 전해액을 채용한 리튬전지
KR20150033445A (ko) 리튬전지 전해질용 첨가제, 이를 포함하는 유기전해액 및 상기 전해액을 채용한 리튬 전지
KR20170018739A (ko) 리튬 전지용 전해질 및 상기 전해질을 포함한 리튬 전지
KR102448303B1 (ko) 유기 전해액, 및 이를 포함하는 이차전지
US11830978B2 (en) Additive, electrolyte for lithium secondary battery and lithium secondary battery including the same
KR20170139341A (ko) 리튬전지
KR20140139906A (ko) 리튬전지 전해질용 첨가제, 이를 포함하는 유기전해액 및 상기 전해액을 채용한 리튬 전지
KR102436421B1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR102517654B1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
US20220158224A1 (en) Lithium secondary battery including electrolyte additive for lithium secondary battery
KR102295369B1 (ko) 리튬전지 전해액용 첨가제 조성물, 이를 포함하는 유기전해액 및 리튬 전지
KR20170120897A (ko) 유기전해액 및 이를 포함하는 리튬전지
KR102368303B1 (ko) 리튬 이차전지용 전해액 첨가제 및 이를 포함하는 리튬 이차전지
KR102479724B1 (ko) 알콕시포스핀계 첨가제를 포함하는 리튬 이차전지
KR20220105936A (ko) 리튬전지 전해질용 첨가제, 이를 포함하는 유기전해액 및 상기 전해액을 채용한 리튬 전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant