WO2006070747A1 - 導電性インク - Google Patents

導電性インク Download PDF

Info

Publication number
WO2006070747A1
WO2006070747A1 PCT/JP2005/023795 JP2005023795W WO2006070747A1 WO 2006070747 A1 WO2006070747 A1 WO 2006070747A1 JP 2005023795 W JP2005023795 W JP 2005023795W WO 2006070747 A1 WO2006070747 A1 WO 2006070747A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive ink
powder
nickel
ink according
metal
Prior art date
Application number
PCT/JP2005/023795
Other languages
English (en)
French (fr)
Inventor
Yoichi Kamikoriyama
Sumikazu Ogata
Kei Anai
Hiroki Sawamoto
Mikimasa Horiuchi
Takashi Mukuno
Katsuhiko Yoshimaru
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Priority to EP05819587A priority Critical patent/EP1847575A4/en
Priority to US11/722,897 priority patent/US8043535B2/en
Publication of WO2006070747A1 publication Critical patent/WO2006070747A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0239Coupling agent for particles

Definitions

  • the present invention relates to a conductive ink and a method for producing the same, and more specifically, for example, a conductive ink capable of forming a circuit on a substrate by drawing and solidifying a circuit shape or the like with an inkjet or the like. It is about.
  • Patent Document 1 and Patent Document 2 Conventionally, as methods for forming circuit patterns on various substrates, there have been a method using photolithography or etching and a screen printing method as disclosed in Patent Document 1 and Patent Document 2. As this conventional method, a copper foil of a copper clad laminate is etched and formed into a circuit pattern, or a conductive paste obtained by kneading metal powder with a solvent or a resin and pasting it is printed by screen printing. A method of forming a pattern directly on the surface of a substrate has become widespread.
  • the metal powder is processed into a paste (hereinafter simply referred to as “conductive paste”) or ink (hereinafter simply referred to as “conductive ink”), and a technique such as screen printing is diverted.
  • conductive paste a paste
  • ink hereinafter simply referred to as “conductive ink”
  • conductive ink a technique such as screen printing
  • Patent Document 5 discloses water, nickel fine powder in which an insoluble inorganic oxide is fixed on the surface of each fine nickel nickel powder, An aqueous nickel slurry containing polyacrylic acid, an ester thereof or a salt thereof and an organic group-substituted ammonium hydroxide, and a conductive base containing the aqueous nickel slurry and a binder are disclosed.
  • This aqueous nickel slurry is an aqueous nickel slurry in which high-concentration nickel fine powder is stably dispersed without re-aggregation.
  • the ink Since it does not have an appropriate surface tension, when trying to form a circuit by continuous printing, the ink is clogged up immediately and the ink does not land at the target printing position. It was substantially difficult to form a circuit by printing. In addition, since it does not contain a binder that provides adhesion strength to the substrate, even if printing can be performed on the substrate by devising the printing process, the adhesion strength to the substrate is substantially zero. Except for applications where metal powder is sintered by high-temperature firing, such as the production of internal electrodes for ceramic capacitors, it was difficult to form a substantial circuit.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 9-246688 Patent Document 2: JP-A-8-18190
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-324966
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-334618
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2002-317201
  • the film density of the conductor circuit formed using the conductive ink is low, and the conductor resistance is high. This shortens the board life.
  • the low density of the conductor means that there are many voids in the conductor, and the surface smoothness of the conductor, which is indispensable for realizing multilayer wiring, cannot be obtained. This is because voids existing on the conductor surface are recessed when viewed from the conductor surface.
  • the conductor film density is low, water or oxygen present in the atmosphere diffuses through the conductor, and the metal powder that immediately forms the conductor is oxidized or migration phenomenon occurs. As a result, diffusion of metal ions and grain growth occur, which may cause a short circuit.
  • the conductive ink used in the dispenser coating method or the inkjet method needs to prevent clogging of the nozzles from which the ink is ejected.
  • the particle size of the metal powder particles contained in the conductive ink is required. Is required to be made fine.
  • the properties of the dispersion medium constituting the conductive ink are also important. When these qualities overlap, it becomes a conductive ink of good quality for the first time. We believe that we can achieve good adhesion with the film and good film density of the formed conductor circuit.
  • the present invention improves the adhesion between a circuit and the like formed using conductive ink and the substrate, and the formed conductor circuit has a high film density and a low electrical resistance.
  • the object is to provide a conductive ink that can be obtained. And include in the conductive ink Conductive ink composition capable of forming a circuit by printing extremely fine wiring and electrodes on a substrate using an ink jet device and a dispenser device by using fine particles and excellent dispersibility as a metal powder. The purpose is to provide.
  • the conductive ink according to the present invention is a conductive ink in which a metal powder or a metal oxide powder is dispersed in a dispersion medium, and a conductive ink formed using the conductive ink in the dispersion medium.
  • a basic constitution characterized by containing a metal salt or metal oxide as a film density improver for improving the film density is adopted.
  • the main solvent constituting the dispersion medium is one or two selected from the group consisting of water, alcohols, glycols, and saturated hydrocarbons having a boiling point of 300 ° C or less at normal pressure. It is preferable to use a combination of the above.
  • the film density improver includes Ti, V, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ag, In, Sn, Ta, and W. It is preferable to use one containing at least one selected from the group of metal salts or metal oxides.
  • the dispersion medium constituting the conductive ink according to the present invention preferably contains a dispersion aid.
  • the dispersing aid is also (a) polyacrylic acid, ester or salt thereof, (b) organic group-substituted ammonium hydroxide and (c) hydroxyl group-containing amine compounds (a) to (c). It is preferable to use one or a mixture of two or more selected from the group.
  • the conductive ink according to the present invention is preferably adjusted to a surface tension of 15 mN / m to 50 mN / m using a surface tension adjusting agent for the dispersion medium.
  • the surface tension modifier is a combination of one or more selected from the group consisting of alcohol and glycol having a boiling point of 100 ° C to 300 ° C at normal pressure. Things are preferable.
  • the dispersion medium constituting the conductive ink according to the present invention is selected from the group consisting of a silane coupling agent, a titanium coupling agent, a zirconia coupling agent lj, and an aluminum coupling agent as an adhesion improver. It is preferable to include one or more selected.
  • the metal powder or metal oxide powder is selected from nickel powder, silver powder, gold powder, platinum powder, copper powder, palladium powder, and indium tin oxide. It is preferable to use one that is a mixed powder of one type or two or more types.
  • the nickel powder preferably has an average primary particle size of lOOnm or less.
  • the nickel powder has an average primary particle diameter of 10 nm to 70 nm as the nickel powder in the conductive ink according to the present invention.
  • the conductive ink according to the present invention described above is preferably used as having a viscosity of 60 cP or less at 25 ° C.
  • the conductive ink according to the present invention is suitable for forming accurate and fine wiring and electrodes by adopting a dispenser coating method and an ink jet printing method. And the conductive ink which concerns on this invention is excellent in the adhesiveness with respect to the circuit etc. which were formed with the glass substrate and the different element. Therefore, the conductive ink can form a wiring, an electrode, a protective electrode, and a protective film on the glass substrate, ITO transparent electrode surface, silver electrode surface, and copper electrode surface used for the TFT panel.
  • the conductive ink according to the present invention not only has the above-mentioned adhesion, but also increases the density of the formed conductor circuit, thereby reducing the electrical resistance and allowing the bonding of dissimilar metals to the surface of the conductor. It has a great feature in that the wiring can be formed so as to ensure smoothness.
  • the conductive ink according to the present invention is a conductive ink in which a metal powder or a metal oxide powder is dispersed in a dispersion medium, and a metal salt or metal as a film density improver in the dispersion medium.
  • a basic structure characterized by including an oxide group is adopted.
  • This film density improving agent improves the film density of a conductor formed using the conductive ink, This is to reduce the resistance.
  • Main solvent As the main solvent of the dispersion medium in the conductive ink according to the present invention, water, an organic solvent, and the like can be widely used. At least the following film density improver, adhesion improver, and the like can be used. If it is compatible and can be adjusted to the specified viscosity, there is no particular limitation. Therefore, if limited, it is a combination of one or more from the group consisting of water, alcohols and saturated hydrocarbons having a boiling point of 300 ° C or less at normal pressure.
  • the boiling point at normal pressure is 300 ° C. or lower
  • the electrode is formed at a high temperature in the reduction firing step. Since the solvent is gasified and this gas generates minute cracks and voids in the electrode, not only a dense electrode cannot be formed, but also the electrode film cannot be densified. If the adhesion strength cannot be exhibited, the force and the electric resistance of the electrode film will increase.
  • water When water is used as the main solvent, it has a level of purity such as ion-exchanged water or distilled water, and does not include water of purity such as tap water.
  • alcohols As the main solvent, 1 propanol, 1-butanol, 1 pentanonole, 1 monohexanol, cyclohexanol, 1 heptanonole, 1 otathanol, 1-nonanol, 1-decanol, Glycidol, benzyl alcohol, methyl cyclohexanol, 2-methyl 1-butanol, 3-methyl-2-butanol, 4-methinole 2-pentanol, isopropyl alcohol, 2-ethylbutanol, 2-ethylhexanol, 2-octanol, terpineol, dihydro One selected from terpineol, 2-methoxyethanol, 2-ethoxyethanol, 2-n-butoxyethanol, 2-phenoxy réellenol, canolebitanol, ethylcarbitol, n-butylcarbitol, diacetone alcoholIt is preferable to
  • 1-butanolol 1-octanol, terpineol, dihydroterpineol, 2-methoxyethanolol, More preferably, 2_ethoxyethanol, 2_n-butoxyethanol, and diacetone alcohol are used.
  • glycols as the main solvent, ethylene glycol, diethylene glycol Triethylene glycol, tetraethylenedaricol, propylene glycol, trimethylene glycol, dipropylene glycol, tripropylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, pentamethylene glycol It is preferable to use one or a combination of two or more selected from hexylene dallicol. Among them, it is preferable to use ethylene glycol, diethylene glycol, propylene glycol, 1,4-butylene glycol or dipropylene glycol, which have a viscosity at room temperature of lOOcP or less. This is because if the viscosity is too high, it is difficult to adjust the viscosity suitable for inkjet.
  • saturated hydrocarbons one or more selected from heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, and hexadecane are used in combination. It is preferable. Among these, it is more preferable to use decane, undecane, dodecane, tridecane, and tetradecane. This is because the boiling point at normal pressure is 300 ° C or less, and the vapor pressure is low and it is difficult to vaporize at room temperature.
  • the film density improver is Ti, V, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ag, In, Sn, It is preferable to use one containing at least one selected from the group of metal salts or metal oxides containing Ta and W.
  • titanium chloride titanium sulfate tetrakis (jetylamino) titanium, ammonium hexafluorotitanate, titanium hydroxide, titanium cresylate, titanium dioxide, etc.
  • V it is preferable to use acetylacetonate vanadium, vanadium acetylacetonate, or the like.
  • Ni nickel oxide, nickel hydroxide, nickel acetate, nickel nitrate, nickel citrate, nickel oleate, nickel 2-ethylhexanoate, nickel naphthenate and the like are preferably used.
  • Cu use copper citrate, copper oleate, copper acetate, copper nitrate, copper dalconate, copper naphthenate, copper ethylacetoacetate, copper acetyl cetate, copper oxide, cuprous oxide, copper hydroxide, etc. Is preferred.
  • Zn it is preferable to use zinc citrate, zinc acetylacetonate, zinc oxide or the like.
  • Y uses yttrium acetate, yttrium oxalate, etc. It is preferable that Zr is preferably zirconium nitrate, acetylacetonatozirconium, zirconium oxide or the like. Niobium oxide is preferably used as Nb.
  • ammonium thiomolybdate, molybdic acid, 12 molybdosilicate, ammonium molybdate and the like are preferably used.
  • Ag silver carbonate, silver acetate, silver nitrate, silver chlorate, silver perchlorate, silver oxide or the like is preferably used.
  • In it is preferable to use indium nitrate, indium chloride, indium hydroxide, indium 2-ethylhexanoate, indium tris (acetylacetonate) indium (III), or the like.
  • Sn it is preferable to use salt, tin, tin_i-propoxide, tin_t-butoxide, or the like.
  • tantalum oxide As Ta, it is preferable to use tungstic acid, ammonium tungstate, tungstic silicic acid, 12 tungsten silicic acid 26 water, tungsten oxide, copper tungstate, cerium tungstate, or the like. In particular, it is more preferable to use one or more kinds of the same metal salt or oxide as the metal powder in the conductive ink because the conductor density is increased.
  • these metal salts or metal oxides are substances that themselves can become metals when forming a conductor through a reduction firing process
  • the metal particles or oxide powder particles in the conductive ink are used. It functions as a binder that binds each other firmly.
  • the power to use a large amount of organic substances in the binder material In the case of conductive inks that do not use these metal salts or oxides, the power to use a large amount of organic substances in the binder material.
  • the organic substances are decomposed and gasified. Not only cannot the powder particles be connected to each other, but the generated gas causes a large number of microcracks in the conductor, and if the electrical resistance of the conductor is increased, there are many voids in the conductor that can be removed by force. Low surface smoothness cannot be obtained.
  • Dispersion aid The dispersion medium constituting the conductive ink according to the present invention preferably contains a dispersion aid. This dispersion aid is for preventing re-aggregation of the metal powder in the dispersion medium and maintaining the quality as a conductive ink for a long period of time.
  • dispersing aid examples include: (a) polyacrylic acid, ester or salt thereof, (b) organic group-substituted ammonium hydroxide and (c) hydroxyl group-containing amine compounds (a) to (c). In addition, it is preferable to add one or a combination of two or more selected from either group. [0040] Further, in the case of the conductive ink according to the present invention, particularly in the case of nickel ink, it is also preferable to add a dispersion aid as necessary.
  • Examples of (a) polyacrylic acid, an ester thereof or a salt thereof used in the present invention include polyacrylic acid, polymethyl acrylate, sodium polyacrylate, ammonium polyacrylate, and the like.
  • the ammonium polyacrylate is easily coordinated to the surface of the metal particles, and at the same time, the coordinated polyacrylic acid ammonium suppresses the aggregation of the metal particles in the solvent by electrical repulsion and steric hindrance. preferable.
  • (a) can be used alone or in combination of two or more.
  • Examples of (b) organic group-substituted ammonium hydroxide used in the present invention include alkyl group-substituted water such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide.
  • Examples include alkyl group-substituted aryl-substituted ammonium hydroxide such as ammonium oxide, trimethylphenyl hydroxide, and benzyltrimethylammonium hydroxide.
  • alkyl group-substituted water and ammonium oxide are metal particles. It is preferable because it can be easily coordinated with each other and has high electric repulsion.
  • (b) can use the above-mentioned compounds alone or in combination of two or more.
  • Examples of the (c) hydroxyl group-containing amine compound used in the present invention include alkanolamines.
  • dialkanolamines such as dimethanolamine, diethanolamine, dipropanolamine and the like.
  • Min is preferred because it has good wettability with metal particles, and diethanolamine is more preferred because it most easily suppresses aggregation of metal particles over time.
  • (c) can be used alone or in combination of two or more.
  • the Nikkenore powder particles in the ink are prevented from aggregating over time.
  • the dispersion aid used in the present invention may be at least one of the above (a) to (c). Among these, it is preferable to use (a) and (c) together because nickel powder can be more stably dispersed.
  • the amount of "polyacrylic acid, its ester or its salt” is the weight of the metal powder 1 If the amount is usually 0.05 to 5 parts by weight, preferably 0.1 to 2 parts by weight with respect to 00 parts by weight, the ink life without hindering the adhesion of the ink to the substrate will be the longest. preferable.
  • the amount of "organic group-substituted ammonium hydroxide” is usually based on 100 parts by weight of the metal powder.
  • the amount of 0.01 part by weight to 5 parts by weight, preferably 0.05 part by weight to 1 part by weight, is preferred because the ink life that does not hinder the adhesion of the ink to the substrate is maximized.
  • the amount of "hydroxyl group-containing amine compound” is usually 0.5 with respect to 100 parts by weight of Nikkenole. ⁇ 30 parts by weight, preferably 5 to 20 parts by weight, is preferable because the ink life without damaging the adhesion of the ink to the substrate becomes the longest.
  • the conductive ink according to the present invention described below has a surface tension of 15 mN / m to 50 mNZm, which facilitates circuit formation by the inkjet method or the dispenser method. Therefore, the amount of the surface tension adjusting agent is such that various agents are added so that the surface tension of the conductive ink is usually 15 mN / m to 50 mNZm, preferably 20 mNZm to 40 mN / m. If the surface tension of the conductive ink deviates from the above range, even if the conductive ink cannot be discharged from the inkjet nozzle, or even if it can be discharged from the nozzle, a deviation occurs from the target printing position.
  • the surface tension adjusting agent uses an additive having a surface tension of 40 mNZm or less. Using a surface tension adjusting agent with such surface tension is the easiest to adjust the surface tension of ink suitable for use in an ink jet device, and it is possible to easily adjust the viscosity to match the design of the ink jet device. And since it is easy, a fine wiring circuit can be formed.
  • the surface tension modifier mentioned here is selected from the group consisting of alcohols and glycols that can also be used as solvents, a surface tension of 4 OmNZm or less, and a viscosity at 25 ° C of lOOcP or less. It is preferable to use one or a combination of two or more.
  • alcohols having a surface tension force of S40mNZm or less and a viscosity at 25 ° C of lOOcP or less include, for example, 1-butanol, 1-pentanol, 4-methyl-2-pen Examples include butanol, 2-ethoxyethanol, 2-n-butoxyethanol and n-butylcarbitol.
  • 2-n-butoxyethanol or 1-butanol among the surface tension modifiers from the viewpoint of maintaining long-term quality stability as a conductive ink.
  • the amount of the surface tension adjusting agent to be blended is not particularly limited as long as it is an amount that appropriately adjusts the surface tension of the conductive ink. However, it is generally 1% to 50% by weight, preferably 3% to 30% by weight in the conductive ink. If the amount of the surface tension adjusting agent is less than 1% by weight, the surface tension cannot be adjusted. In addition, when the amount of the surface tension adjusting agent is added by 50% by weight or more, the dispersion form of the fine metal powder contained in the conductive ink changes greatly before and after the surface tension adjusting agent is added, resulting in fine particles. Since the metal powder begins to aggregate and the uniform dispersion of the fine metal powder, the most important of the conductive ink, is hindered, it cannot be used as the conductive ink.
  • the surface tension modifier is a combination of one or more selected from the group consisting of alcohol and glycol having a boiling point of 100 ° C to 300 ° C at normal pressure. Things are preferable.
  • Adhesion improver The dispersion medium constituting the conductive ink according to the present invention includes a silane coupling agent, a titanium coupling agent, a zirconia coupling agent, and an ano-remium cup as an adhesion improving agent. It is preferable to include one or more selected from the group consisting of ring agents.
  • the adhesion improver mentioned here is not limited to the case of using one type of component selected from the above group, but can be used in combination of two or more types. That is, by including a plurality of types of components, it becomes possible to control the adhesion in accordance with the properties of the substrate on which a circuit or the like is formed.
  • the silane coupling agent referred to here is butyltrichlorosilane, butyltrimethoxysilane, vinylenotriethoxysilane, 2- (3,4 epoxy cyclohexyleno) ethinoretrimethoxysila.
  • methyltrimethoxysilane, methyltriethoxysilane, dimethyltriethoxysilane, or the like that exhibits the specified performance.
  • the titanium coupling agent referred to here is tetraisopropyl titanate, tetranormal butyrate titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, tetramethyl titanate, titanium acetyl acetylate, titanium tetra It is preferable to use any one of acetyl cetate, titanium ethinoreacetoacetate, titanium octanediolate, titanium latate, titanium triethanolamate, and polyhydroxytitanium stearate. Among these, from the viewpoint of stabilizing the adhesion to the substrate, it is preferable to use a stable performance.
  • zirconium coupling agent means zirconium normal propylate, zirconium nonolemanolebutyrate, dinoleconium tetraacetinoreacetonate, dinoleconium monoacetinoreacetonate, dinoleconone. It is preferable to use any one of musbycetinoreacetonate, dinoleconium monoethylenoacetoacetate, di / reconium methacety / reacetonate bisethi / reacetoacetate, zirconium acetate, and zirconium monostearate.
  • zirconium normal propylate zirconium normal butyrate, zirconium tetraacetinoreacetonate, dinoreconium monoacetinoreol exhibiting stable performance.
  • Acetonate, dinoleconium bisacetylacetonate, zirconium monoethylacetoacetate, zirconium acetylenoacetonate bisethinoreacetoacetate, and dinoleconium acetate are preferably used.
  • the aluminum coupling agent referred to here is aluminum isopropylate, mono sec-butoxyaluminum diisopropylate, aluminum sec-butyrate, aluminum ethylate, ethylacetoacetate aluminum diisopropylate, anoleminium tris (Ethylacetoacetate), alkylacetoacetate aluminum diisopropylate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetonate), aluminum monoisopropoxymonoio Leoxyethyl acetate, cyclic aluminum oxide isopropylate, cyclic aluminum oxide It is preferable to use either dooctylate or cyclic aluminum oxide stearate.
  • ethyl acetoacetate aluminum diisopropylate aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum diisopropylate which exhibit stable performance. It is preferable to use rate, aluminum monoacetylacetonate bis (ethylacetoacetate), or aluminum tris (acetylacetonate).
  • Metal powder or metal oxide powder The metal powder or metal oxide powder referred to here is selected from nickel powder, silver powder, gold powder, platinum powder, copper powder, palladium powder, and indium tin oxide. It is one or more mixed powders. There are no particular limitations on the primary particle size, particle size distribution, etc. of the metal powder or metal oxide powder. This is because, as long as the powder characteristics are the same, by using the above dispersion medium composition, compared to conventional conductive ink, the substrate adhesion is high, the formed conductor film shows excellent film density, and the conductor resistance is low. Because it becomes smaller.
  • the average primary particle size is preferably 500 nm or less. If the average primary particle size exceeds 500 nm, the conductive ink is extremely clogged in the ink jet nozzle, making continuous printing difficult. Even if printing is possible, the thickness of the formed wiring and electrodes will be too thick, and the desired fine wiring will not be achieved.
  • the selective use is usually in the range of 3 nm to 500 nm, preferably 5 nm to 200 nm, more preferably 10 nm to 150 nm. If the average primary particle size of the fine particles is less than 3 nm, the production method has not been established at this stage, and verification by experiment is not possible. On the other hand, if the average primary particle size exceeds 500 nm, it is difficult to form a wiring or electrode having a target width of 40 zm or less, and the formed wiring or electrode becomes too thick, which is inappropriate. It is.
  • the average primary particle size of the fine powder is a scissor type It means the particle size obtained by observing the particle size of a minimum of 200 particles contained in one field of view when observed with an electron microscope, and integrating and averaging them.
  • the average primary particle size of the fine powder is small means that the fine powder is a fine particle. If the particle size of the structure becomes large, it will easily cause clogging of the inkjet nozzle. Therefore, the agglomerated particles as the secondary structure of the fine metal powder in the conductive ink must be smaller than the size that does not cause clogging of the ink jet nozzle, which has been experimentally confirmed. By setting the maximum particle size of the aggregated particles to 0.8 zm or less, clogging of the ink jet nozzle can be prevented almost certainly. Further, as a method for confirming the aggregated particles, a laser type particle size distribution measuring device is used.
  • the conductive ink according to the present invention is mainly used for circuit formation of electronic materials. Therefore, it is selected from nickel powder, silver powder, gold powder, platinum powder, copper powder, nodium powder, and indium tin oxide that are frequently used for electronic materials, and the primary particle diameter of the metal powder is assumed to be 500 nm or less. is doing.
  • a fine and low resistance film can be formed by employing the following fine nickel powder, which is good. You can get a circuit with good quality. Specifically, if very small nickel powder is stored as a slurry rather than as a powder, long-term storage quality of the powder can be ensured.
  • nickel slurry in the case where fine nickel knoke powder having an average primary particle size of lOOnm or less is used for the conductive paste according to the present invention, it is preferably used in the form of nickel slurry. That is, “in the nickel slurry containing the epoxy particles, the nickel slurry is averaged with the organic solvent. A nickel slurry is used which is composed only of nickel particles whose primary particle size is lOOnm or less. The feature of this nickel slurry is that it is composed only of nickel particles and an organic solvent that can be volatilized by heating without using any organic agent such as resin. Unlike nickel colloid, this nickel slurry has the property that nickel particles settle easily when left standing. Therefore, when using the stored one, stirring work is required.
  • the organic agent such as a resin component
  • the surface of the nickel particles is also contaminated by the organic agent. Adjustment of resin components when used as a raw material for nickel ink becomes easy.
  • Nickel particles having an average primary particle size exceeding lOOnm can be produced to some extent even by applying a conventional production method.
  • the average primary particle diameter of the nickel particles in the nickel slurry used in the present invention is a value of lOOnm or less, even if a certain variation that is inevitably generated in production is considered.
  • fine nickel particles in the range of 10 nm to 70 nm can be obtained, and a high quality nickel slurry can be provided. It should be noted that nickel particles less than lOnm are generated in a certain range of process variations, not necessarily at all.
  • the average primary particle diameter which is difficult to see even with a field emission scanning electron microscope (FE SEM), is strictly measured, and statistically observed such as by looking at variations. It was just excluded because it was difficult to obtain data. Therefore, in order to observe the nickel particles contained in the nickel slurry according to the present invention, it is necessary to use an apparatus capable of observation at a magnification of a transmission electron microscope level capable of observing several hundred thousand times or more. preferable. Assuming that the nickel slurry used here is processed into a conductive ink later, the smaller the average primary particle size of the nickel particles, the easier the formation of fine circuits, electrodes, etc. It becomes. Therefore, the nickel particles are preferably fine and have a good particle size distribution.
  • the standard deviation of the primary particle diameter of the nickel particles will be described.
  • the nickel particles contained in the nickel slurry according to the present invention have an average primary particle size that is extremely fine on the order of nanometers. Therefore, it is difficult to strictly control the particle size in the manufacturing stage, and the target average It has the characteristic that the particle size variation varies depending on the primary particle size. Therefore, when considering the standard deviation of the primary particle diameter of the nickel particles, the inventors used [average primary particle diameter (nm)] / 2 based on the average primary particle diameter that is not the standard deviation as a simple numerical value. A value of 5 or less was used as an index showing good particle dispersibility. Standard deviation force [Average primary particle size (nm)] / 2.
  • the dispersion force of the primary particles when observed with a transmission electron microscope is visually noticeable and large, and the nickel has a sharp particle size distribution in the first place. It cannot be said that it is a particle.
  • the average primary particle size of these nickel particles was observed with a transmission electron micrograph, the standard deviation was calculated from the particle size distribution obtained from the observed image, and [average primary particle size (nm)] / 2 Compared with 5, the accuracy of particle distribution is judged.
  • the present inventors when capturing the variation in the particle diameter of nickel particles having an average primary particle diameter of the order of nm with a standard deviation, shows an observation image of a transmission electron microscope (including 25 to 60 nickel particles). From the observed image), it was considered that a more reliable value can be obtained by calculating the standard deviation based on the primary particle diameter measured directly.
  • the value of the standard deviation of the particle size distribution of the nickel particles in the nickel slurry according to the present invention is approximately [average primary particle size (nm)] Z6.0 to [average primary particle size (nm) ] /2.5 It was found to be in the range.
  • Such a variation can be said to be sufficiently resistant to use as a conductive ink for fine circuit formation.
  • the coefficient of variation CV value is expressed by the relational expression SDZD X 100 between the average primary particle size D and the standard deviation SD of the particle size distribution.
  • SDZD X the relational expression between the average primary particle size D and the standard deviation SD of the particle size distribution.
  • the average primary particle diameter is a primary particle diameter measured directly from an observation image of a transmission electron microscope (an observation image containing 25 to 60 nickel particles).
  • the content of nickel particles is preferably 15 wt% to 92 wt%.
  • various organic agents and the like are added to the ink as a binder and a viscosity modifier. Therefore, if the nickel particle content necessary for the nickel ink is ensured, the content in the above range is preferable from the viewpoint.
  • the organic solvent used in the nickel slurry is not particularly limited as long as it does not cause chemical alteration such as oxidation of the particle surface as nickel powder.
  • Examples of the organic solvent that can be used include terpenes such as terpineol and dihydroterpineol, and alcohols such as otathanol and decanol. The above organic solvents can be used alone or in combination.
  • the nickel slurry production method described above will be described.
  • a method for producing a nickel slurry a reaction solution containing a nickel salt, a polyol, and a noble metal catalyst is heated to a reaction temperature, and nickel ions in the reaction solution are reduced while maintaining the reaction temperature.
  • a method for producing a nickel slurry to be replaced with It is preferable to employ a method characterized by adding an acid.
  • the nickel salt used here is not particularly limited, and examples thereof include nickel hydroxide, nickel sulfate, nickel chloride, nickel bromide, nickel acetate and the like. Of these, nickel hydroxide is particularly preferred because it contains elements such as io and halogen that have a negative effect when nickel ink is used.
  • These nickel salts preferably have a nickel concentration in the reaction solution of lgZl to lOOg / l.
  • concentration is less than lg / 1
  • industrially required production efficiency cannot be obtained, and when it exceeds the lOOg / 1 concentration, the particle size tends to increase due to agglomeration of nickel particles that are reduced and precipitated.
  • nickel particles having an average primary particle size of 50 nm or less cannot be obtained.
  • the polyol used in the production of the nickel slurry is a substance having a hydrocarbon chain and a plurality of hydroxyl groups.
  • examples of the polyol include ethylene glycol (boiling point 197 ° C), diethylene glycol (boiling point 245 ° C), triethylene glycol (boiling point 278 ° C), tetraethylenedaricol (boiling point 327 ° C), 1, 2 propanediol.
  • Boiling point 188 ° C dipropylene glycol (boiling point 232 ° C), 1,2 butanediol (boiling point 193 ° C), 1,3 butanediol (boiling point 208 ° C), 1,4 butanediol (boiling point 235 ° C), 2,3 butanediol (boiling point 177 ° C) 1,5 pentanediol (boiling point 239 ° C) and at least one selected from the group consisting of polyethylene glycol.
  • ethylene glycol is preferred because it is liquid at room temperature with a low boiling point and has excellent handleability.
  • the polyol serves as a reducing agent for the nickel salt and also functions as a solvent.
  • the concentration of these polyols in the reaction solution is determined according to the nickel concentration. Therefore, on the premise that it is in the above-mentioned Nikkenore concentration range, the polyol concentration in the reaction solution is preferably added so as to be 11 equivalents to 1100 equivalents relative to Nikkenore. If the concentration is less than 11 equivalents, the Nikkenore concentration becomes high and aggregation of the precipitated particles tends to occur.
  • the noble metal catalyst used in the production of the nickel slurry promotes the reduction reaction of the nickel salt with polyol in the reaction solution.
  • palladium chloride, palladium nitrate, palladium acetate, ammonium chloride is used.
  • Palladium compounds such as palladium, silver compounds such as silver nitrate, silver lactate, silver oxide, silver sulfate, silver cyclohexanoate, silver acetate, platinum compounds such as chloroplatinic acid, potassium chloroplatinate, sodium chloroplatinate, and the like
  • platinum compounds such as chloroplatinic acid, potassium chloroplatinate, sodium chloroplatinate, and the like
  • gold compounds such as chloroauric acid and sodium chloroaurate.
  • the catalyst can be used as it is or in the form of a solution of the compound as long as the compound is stable.
  • the concentration of these noble metal catalysts in the reaction solution determines the reduction deposition rate of nickel particles. Therefore, it is necessary to obtain an optimum reduction rate when trying to produce nickel particles having an average primary particle diameter of lOOnm or less as described above. Therefore, the concentration of the precious metal catalyst in the reaction solution is preferably 0.01 mg / l to 0.5 mg / l. When the concentration of the noble metal catalyst is less than 0. Olmg / 1, nickel particles with a slow reduction rate become coarse and the operating conditions in the industrial sense cannot be satisfied. When the concentration of the noble metal catalyst exceeds 0.5 mg / l, the reduction rate increases, the particle size of the resulting nickel particles varies widely, and many coarse particles with a force exceeding lOOnm are generated.
  • the reaction liquid containing the nickel salt, polyol and noble metal catalyst described above can be prepared, for example, by adding the nickel salt, polyol and noble metal catalyst to water, stirring, and mixing.
  • the noble metal catalyst is present as an aqueous solution such as palladium nitrate, it can be prepared by simply mixing the nickel salt, polyol and noble metal catalyst without water.
  • the order of addition and the mixing method are not particularly limited.
  • a slurry may be prepared by premixing a nickel salt, a polyol and a noble metal catalyst, and if necessary, a dispersant described later, and mixing the slurry and the remainder of the polyol to prepare a reaction solution.
  • an amino acid is added to the reaction solution.
  • the amino acid those having a boiling point or a decomposition point higher than the reaction temperature and forming a complex with nickel and a noble metal catalyst in a polyol are used. Specifically, L-arginine and / or L-cystine is preferably used. It is done.
  • the amount of amino acid added is preferably 0.01 to 20% by weight based on nickel in the reaction solution. If the amount of amino acid added is less than 0.01% by weight, the above effect cannot be obtained, and if it exceeds 20% by weight, no further effect is obtained, which is economically disadvantageous.
  • the reaction solution contains a certain amount of a dispersant, whereby the obtained nickel particles become finer, prevent aggregation of particles that have been reduced and precipitated, and prevent particle size distribution. Can be made sharper. Therefore, this dispersant is necessary only in the reaction process, is unnecessary in the nickel slurry as the product, and is preferably not included in the nickel slurry.
  • the dispersant used in the present invention include nitrogen-containing organic compounds such as poly (vinyl-2-pyrrolidone), polyethyleneimine, polyacrylolamide, poly (2-methyl-2-oxazoline), and polybial alcohol. Can be mentioned.
  • polyvinylpyrrolidone is preferred because the particle size distribution of the resulting nickel particles tends to be sharp.
  • the above dispersants can be used alone or in combination of two or more.
  • the amount added varies depending on the type of dispersant, but generally 1 wt% to 20 wt%, more preferably 1 wt% of the nickel amount, based on the nickel amount in the reaction solution. % By weight-preferably 12% by weight.
  • the dispersant is less than 1% by weight, the effect of improving the particle size distribution of the nickel particles in the nickel slurry cannot be exhibited as an effect of adding the dispersant.
  • even if a dispersant is added in excess of 20% by weight the effect of including the dispersant does not change any more. Rather, the contamination of the nickel particles by the dispersant as an organic agent becomes serious.
  • the reaction solution is heated to the reduction temperature, and the nickel salt in the reaction solution is reduced while maintaining the reduction temperature to produce nickel particles.
  • the reaction temperature at which the reduction reaction is performed will be described.
  • the reaction temperature it is preferable to employ a temperature range of 150 ° C to 210 ° C, preferably 150 ° C to 200 ° C.
  • the reaction temperature in the case of the present invention, this is the temperature of the reaction solution.
  • the reaction temperature is less than 150 ° C within the range of the above reaction solution composition, the reduction reaction rate is industrially used. It becomes an operating condition that cannot be done.
  • reaction temperature exceeds 210 degreeC since the product obtained by a reductive reaction contains carbon easily and becomes a nickel carbide particle, it is preferable.
  • the time for maintaining the reaction solution at the above-mentioned reduction temperature cannot be generally specified because an appropriate time varies depending on the composition of the reaction solution and the reduction temperature, but is usually 1 to 20 hours, preferably 2 to 15 hours. is there.
  • the time for maintaining the reaction solution at the above-mentioned reduction temperature is within the above range, the growth of nickel particle nuclei is suppressed, and an atmosphere in which a large number of nickel particle nuclei are likely to be generated is formed. Since the particle growth of the nickel particles becomes substantially uniform, the resulting nickel particles can be prevented from becoming coarse particles or agglomerating.
  • the temperature of the reaction solution may be set outside the range of the above reduction temperature thereafter.
  • the temperature of the reaction solution may be set to a temperature exceeding the reduction temperature.
  • the reaction liquid from which the nickel particles are obtained is replaced with an organic solvent to form a nickel slurry.
  • organic solvent used here include terpenes such as tervineol and dihydroterbinol, and alcohols such as octanol and decanol, as described above.
  • the above organic solvents can be used alone or in combination.
  • Viscosity of conductive ink In the present invention, the viscosity of the conductive ink at 25 ° C is set to 60 cP or less so that circuit formation by an ink jet method or a dispenser method is further facilitated.
  • the viscosity adjustment in the present invention is achieved by optimally blending the above-described solvent, dispersant, and oxide-coated metal powder. The reason why the lower limit of the viscosity is not described is that the purpose and location of the conductive ink of each metal are different for circuit formation, and the desired wiring, electrode size and shape are different.
  • the viscosity at 25 ° C exceeds 60 cP
  • the viscosity of the conductive ink is higher than the energy for discharging the conductive ink from the nozzle, even if fine wiring and electrodes are formed using the inkjet method. Therefore, it is difficult to stably discharge conductive ink droplets from the nozzle. It has been found that when the viscosity at 25 ° C is 60 cP or less, fine wiring and electrodes can be formed experimentally by the ink jet method or the dispenser method.
  • the method for producing the conductive ink described above there is no particular limitation on the method for producing the conductive ink described above. Les Even if this method is adopted, it is sufficient to finally include at least a metal powder, a main solvent, and a film density improver, and appropriately include a dispersion aid, a surface tension improver, and an adhesion improver. is there. However, considering the use of a dispersion aid, disperse the metal powder in the main solvent and add the dispersion aid at this stage as a mother slurry, and then improve the surface tension and / or adhesion by any procedure below. It is preferable to add an agent appropriately.
  • conductive ink was prepared according to the following procedure, an electrode film was formed using the conductive ink, and the state of conductor resistance, adhesion, and electrode film cross-section was observed.
  • PVP polyvinylpyrrolidone
  • the reaction solution PVP line Le the reaction liquid in decantation with ethylene glycol was washed out, this was subject to two decantation with Tabineoru, nickel powder content of 80 wt 0/0, the balance Tabineoru A nickel slurry was produced.
  • Table 1 shows the results of observation of the primary particle size (average, standard deviation, maximum value, minimum value) of 50 nickel particles in the nickel slurry with a transmission electron microscope.
  • the observation image of FE-SEM is shown in Fig. 1 (X100000). It can be seen that sufficient particle observation is not possible with FE-SEM level resolution.
  • Figure 6 shows an image observed with a transmission electron microscope. In Fig. 2, the state of the obtained nickel particles can be clearly observed. Also in the following examples, the same nickel slurry as obtained here was used as a raw material.
  • Dispersion aid adjustment In a 1L beaker, diethanolamine (manufactured by Wako Pure Chemical Industries, Ltd.) 380g, 44% ammonium polyacrylate solution (manufactured by Wako Pure Chemical Industries, Ltd.) 45.6g, 15% water Tetramethylammonium oxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) 13.4 g was added and stirred with a magnetic stirrer to prepare a dispersion aid.
  • diethanolamine manufactured by Wako Pure Chemical Industries, Ltd.
  • 44% ammonium polyacrylate solution manufactured by Wako Pure Chemical Industries, Ltd.
  • Tetramethylammonium oxide solution manufactured by Wako Pure Chemical Industries, Ltd.
  • the slurry was subjected to a dispersion treatment with TK Finolemix (manufactured by Tokushu Kika Kogyo Co., Ltd.), which is a high-speed emulsifying and dispersing machine, to obtain a nickel slurry in which nickel particles were dispersed.
  • TK Finolemix manufactured by Tokushu Kika Kogyo Co., Ltd.
  • tungstic acid manufactured by Wako Pure Chemical Industries, Ltd.
  • a film density improver was further added.
  • conductive ink A a filtrate (hereinafter referred to as “conductive ink A”).
  • Conductive ink A was formed on an alkali-free glass substrate ⁇ A_10 (manufactured by NEC Glass Co., Ltd.) using a spin coater (MIKASA) at 2500 rpm for 10 seconds. .
  • MIKASA spin coater
  • heat treatment was performed at 300 ° C. for 2 hours in a hydrogen-nitrogen mixed atmosphere having a hydrogen content of 2% by volume, and a nickel electrode film having a film thickness of about 500 nm was obtained.
  • the specific resistance was measured by four-probe resistance measuring device Loresta GP (manufactured by Mitsubishi Chemical Co., Ltd.), 3. a 2 X 10_ 4 Q 'cm.
  • a conductive ink B was produced in the same manner as in Example 1 except that the film density improver to be added was nickel kennate. Therefore, in order to avoid duplicate descriptions, explanations regarding the manufacturing process are omitted here.
  • conductive ink C was produced in the same manner as in Example 1 except that copper acetate was used as the film density improver to be added. Therefore, to avoid duplicate descriptions, A description of the process is omitted.
  • Example 2 In the same manner as in Example 1, the conductive ink C was used to obtain a nickel electrode film having a film thickness of about 500 nm. With respect to the electrode film, the specific resistance was measured by a four-point probe resistance measuring instrument Loresta GP (manufactured by Mitsubishi Chemical Corporation), and it was 5.92 X 10 — 4 Q ′ cm.
  • Loresta GP manufactured by Mitsubishi Chemical Corporation
  • conductive ink D was prepared in the same manner as in Example 1 except that the film density improver to be added was molybdic acid. Therefore, in order to avoid duplicate descriptions, explanations regarding the manufacturing process are omitted here.
  • the conductive ink D was used to obtain a nickel electrode film having a film thickness of about 500 nm.
  • the specific resistance was measured by a four-probe resistance measuring instrument Loresta GP (manufactured by Mitsubishi Chemical Corporation), and it was 5.28 X 10 — 4 Q ′ cm.
  • the conductive ink G was used to obtain a nickel electrode film having a film thickness of about 500 nm.
  • resistivity at four-probe resistance measuring apparatus Loresta GP (manufactured by Mitsubishi Chemical Corporation), 4. a 10 X 10 _3 ⁇ 'cm.
  • the conductive ink containing the metal salt as the film density improver is more conductive than the conductive ink not containing the film density improver of the comparative example, and the conductive resistance of the electrode film formed using the conductive ink. Is clearly lower.
  • the conductive ink according to the present invention improves the film density of a conductor formed using the conductive ink and enables the formation of a low-resistance conductor, a circuit with low power consumption can be formed.
  • the conductor has excellent adhesion to various substrates. Therefore, if the powder characteristics of the metal powder to be included in the conductive ink according to the present invention are fine and have excellent dispersibility, fine wiring on the substrate using an inkjet method or a dispenser method. And is suitable for applications for forming electrodes.
  • the conductive ink according to the present invention by appropriately using an additive such as an adhesion improver, adhesion with various substrates can be adjusted, and fine wirings and electrodes can be adjusted.
  • the conductive metal ink can be formed. For example, it is possible to form circuits on glass substrates, circuits formed using silver or copper, or wiring, electrodes, protective circuits, protective coatings, etc. on transparent electrodes using ITO. Is. Therefore, it is useful in the manufacturing process of liquid crystal displays and the like.
  • FIG. 1 is a scanning field emission electron microscope image of fine nickel powder contained in a nickel slurry used in the conductive ink (nickel ink) according to the present invention.
  • FIG. 2 is a transmission electron microscope image of fine nickel powder contained in a nickel slurry used in the conductive ink (nickel ink) according to the present invention.
  • FIG. 3 is a scanning electron microscope image of a cross section of an electrode film (Example 1).
  • FIG. 4 is a scanning electron microscope image of a cross section of an electrode film (Example 2).
  • FIG. 5 is a scanning electron microscope image of a cross section of an electrode film (Example 3).
  • FIG. 6 Scanning electron microscope image of the electrode film surface (Example 4).
  • FIG. 7 is a scanning electron microscope image of a cross section of an electrode film (comparative example).
  • FIG. 8 is a scanning electron microscope image of the electrode film surface (comparative example).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Conductive Materials (AREA)
  • Ink Jet (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

 導電性インクを用いて形成した回路等と基板との密着性に優れ、且つ、膜密度が高く電気抵抗の低い導体を得ることの出来る導電性インクの提供を目的とする。この目的を達成するため、分散媒に金属粉又は金属酸化物粉を分散させた導電性インクであって、前記分散媒中に、当該導電性インクを用いて形成した導体の膜密度を向上させるための膜密度向上剤としての金属塩又は金属酸化物を含むことを特徴とする導電性インクを採用する。そして、前記分散媒を構成する主溶媒は、常圧での沸点が300°C以下である水、アルコール類、グリコール類、飽和炭化水素類からなる群より選択した1種又は2種以上を組み合わせたもの等を採用する。

Description

明 細 書
導電性インク
技術分野
[0001] 本件発明は、導電性インク及びその製造方法に関し、詳しくは、例えば、インクジェ ット等で回路形状等を描き、固化させることにより基板上に回路を形成することが可能 な導電性インクに関するものである。
背景技術
[0002] 従来、各種基板上に回路パターンを形成する方法として、特許文献 1や特許文献 2 に開示されているようにフォトリソグラフィーゃエッチングを利用する方法やスクリーン 印刷方法があった。この従来方法として、銅張積層板の銅箔をエッチングカ卩ェして回 路パターンを形成させる方法や、金属粉を溶剤や樹脂と混練しペーストィヒした導電 性ペーストを、スクリーン印刷により配線や電極パターンを基板表面に直接形成させ る方法が、広く普及してきた。
[0003] そして、金属粉をペースト(以下、単に「導電性ペースト」と称する。 )又はインク(以 下、単に「導電性インク」と称する。)に加工し、スクリーン印刷法等の技術を転用する ことで基板表面に回路形成を直接行うことは、銅張積層板の銅箔をエッチング力卩ェし て回路形成を行うエッチング法に比べ、工程数も少なぐ生産コストを著しく削減出来 る技術として広く普及してきた。
[0004] ところが、近年の電気回路には、電子機器等の小型化、軽量化の要求に合わせて 、より微細な回路の形成が求められる。導電性ペーストを用いて、基板に回路を直接 形成する場合の最大の問題は、スクリーン印刷等を用いての微細回路の形成が困難 な点にあった。そして、近年は、特許文献 3に開示されているように、導電性インクを 用いて微細回路を形成する技術として、プリンターに応用されてきたインクジェット技 術を応用しての回路形成が試みられている。
[0005] そして、近年では、携帯情報機器や TVに代表される薄型ディスプレイ内部の導電 性回路パターンは、年々高密度化してきており、配線幅が 40 μ m以下の領域が検討 されているだけではなぐフレキシブル樹脂基板への低温焼成による回路パターン形 成技術も検討されている。一般的に用いられてきたスクリーン印刷による回路パター ン形成では、断線がなぐ配線形状に優れる線幅が 100 μ ΐη程度とされているが、こ れよりも微細な領域、特に線幅が 40 μ ΐη以下となる領域では、実質的な配線形成が 困難である。また、多種多様な基板へ低温焼成により回路パターンを形成させる技 術としては、特許文献 4に示すように銀ナノ粒子を含む銀インクが検討されている。
[0006] 一方、金属粉を多量の有機溶剤と樹脂類と混合した導電性インクに関しては、ディ スペンサー塗布法や、特許文献 3に示すように、インクジェット印刷技術を利用した極 微細回路パターン形成原料として提案されているが、各種基板に対する密着強度を 有機樹脂類に依存しているため、一般的に低抵抗な配線や電極を形成する際に用 レ、られる水素や窒素を用いた還元焼成の工程において、有機樹脂分の分解により発 生するガスによって微小なクラックが発生しやすぐまた、これによつて配線や電極の バルタ密度が低レ、ものとなり、結果的に低抵抗な回路を形成することが困難であった
[0007] また一方、導電性インクの組成を示したものとしては、特許文献 5に、水と、個々の 微粒ニッケノレ粉の粉粒表面に不溶性無機酸化物が固着しているニッケル微粉末と、 ポリアクリル酸、そのエステル又はその塩と、有機基置換水酸化アンモニゥムとを含 む水性ニッケルスラリー及び該水性ニッケルスラリーとバインダーとを含む導電性べ 一ストが開示されている。この水性ニッケルスラリーは、高濃度のニッケル微粉末が再 凝集することなく安定して分散した水性ニッケルスラリーではある力 インクジェット印 刷技術を利用して極微細回路パターンを形成しょうとする場合、印刷に適した表面 張力を有していないため、連続印刷による回路形成を行おうとすると、ノズルにインク が目詰まりしゃすぐ又、 目的の印刷位置にインクが着地しない現象が発生するため 、工業的な連続印刷による回路形成を行うことが実質的に困難であった。又、基板と の密着強度を付与するバインダーが含有されていないため、仮に印刷工程の工夫に より基板に印刷が出来たとしても、基板との密着強度が実質的にゼロであるため、積 層セラミックコンデンサーの内部電極作製に代表される高温焼成によって金属粉を 焼結させるような用途以外では、実質的な回路形成が困難であった。
[0008] 特許文献 1 :特開平 9一 246688号公報 特許文献 2 :特開平 8— 18190号公報
特許文献 3:特開 2002— 324966号公報
特許文献 4 :特開 2002— 334618号公報
特許文献 5 :特開 2002— 317201号公報
発明の開示
発明が解決しょうとする課題
[0009] し力しながら、上述の如ぐディスペンサー塗布法やインクジェット印刷方法を利用 して、極微細配線や電極を基板に印刷し、高密度な回路パターンを形成するための 導電性インクが検討されているが、インクジェット法での使用そのものが出来なレ、、各 種基板との密着強度が極めて低いとレ、う問題があった。
[0010] また、一方では、各種基板との密着性は確保出来ても、その導電性インクを用いて 形成した導体回路の膜密度が低ぐ導体抵抗が高くなるため、通電時の発熱が大き ぐ基板寿命が短くなる。又、導体の密度が低いということは、導体内に空隙が多いと レ、うことであり、多層配線を実現するために必要不可欠な導体の表面平滑性が得ら れない。これは、導体表面に存在する空隙が、導体表面からみて窪んでいることによ る。さらに、湿度の高い環境で使用された場合、導体の膜密度が低いが故に、大気 中に存在する水や酸素が導体中を拡散しやすぐ導体を形成した金属粉が酸化され たり、マイグレーション現象により、金属イオンの拡散や粒成長が起こり、回路ショート を引き起こす可能性がある。
[0011] 従って、ディスペンサー塗布法やインクジェット法で使用する導電性インクは、インク が吐出されるノズノレの目詰まりを防止する必要があり、そのためには導電性インクに 含まれる金属粉粒子の粒径を微粒にすることが求められる。そして、同時に、導体の 膜密度を高いものとするために、導電性インクを構成する分散媒の性質も重要となり 、これらの品質が重畳して、初めて良好な品質の導電性インクとなり、各種基板との 密着性と、形成した導体回路の良好な膜密度を達成出来ると考える。
[0012] 以上のことから、本件発明は、導電性インクを用いて形成した回路等と基板との密 着性を向上させ、且つ、形成した導体回路の膜密度が高く電気的に低い抵抗を得る ことの出来る導電性インクの提供を目的とする。そして、その導電性インクに含ませる 金属粉として微粒且つ分散性に優れたものを用いることで、インクジェット装置及び ディスペンサー装置を用いて、極微細な配線や電極を基板上に印刷し、回路形成を 行う事の可能な導電性インク組成の提供を目的とする。
課題を解決するための手段
[0013] そこで、上記目的を達成するため、本件発明者等は鋭意検討を行った結果、以下 の構成の導電性インクとすることで、当該導電性インクを用いると、形成した導体回路 の膜密度が高ぐ電気的に低い導体抵抗を備える回路が得られることに想到したの である。
[0014] 本件発明に係る導電性インクは、分散媒に金属粉又は金属酸化物粉を分散させた 導電性インクであって、前記分散媒中に、当該導電性インクを用いて形成した導体 の膜密度を向上させるための膜密度向上剤としての金属塩又は金属酸化物を含む ことを特徴とする基本的構成を採用する。
[0015] そして、前記分散媒を構成する主溶媒は、常圧での沸点が 300°C以下である水、 アルコール類、グリコール類、飽和炭化水素類からなる群より選択した 1種又は 2種以 上を組み合わせたものを用いることが好ましい。
[0016] そして、本件発明に係る導電性インクにおいて、前記膜密度向上剤は、 Ti、 V、 Ni 、 Cu、 Zn、 Y、 Zr、 Nb、 Mo、 Ag、 In、 Sn、 Ta、 Wを含む金属塩又は金属酸化物群 より選択される 1種又は 2種以上を含むものを用いることが好ましい。
[0017] そして、本件発明に係る導電性インクを構成する前記分散媒は、分散助剤を含むも のである事が好ましい。
[0018] その分散助剤は、(a)ポリアクリル酸、そのエステル又はその塩、(b)有機基置換水 酸化アンモニゥム及び(c)ヒドロキシル基含有アミン化合物の(a)〜(c)力もなる群より 選択される 1種又は 2種以上を混合したものを用いることが好ましい。
[0019] また、本件発明に係る導電性インクは、前記分散媒に、表面張力調整剤を用いて 表面張力が 15mN/m〜50mN/mの範囲に調整することが好ましレ、。
[0020] そして、前記表面張力調整剤は、常圧での沸点が 100°C〜300°Cであるアルコー ノレ、グリコールからなる群より選択される 1種又は 2種以上を組み合わせたものである 事が好ましい。 [0021] また、本件発明に係る導電性インクを構成する前記分散媒は、密着性向上剤として シランカップリング剤、チタンカップリング剤、ジルコニァカップリング斉 lj、アルミニウム カップリング剤からなる群より選択される 1種又は 2種以上を含むことが好ましい。
[0022] また、本件発明に係る導電性インクにおいて、前記金属粉又は金属酸化物粉は、 ニッケル粉、銀粉、金粉、白金粉、銅粉、パラジウム粉、インジウム一錫酸化物から選 択された 1種又は 2種以上の混合粉であるものを用いることが好ましい。
[0023] そして、本件発明に係る導電性インクにおいて、前記金属粉又は金属酸化物粉の 内、ニッケル粉は、平均一次粒径が lOOnm以下のものを用いることが好ましい。
[0024] 更に、本件発明に係る導電性インクにぉレ、て、前記ニッケル粉は、ニッケル粒子の 平均一次粒径が 10nm〜70nmであるものを用いることが好ましい。
[0025] 以上に述べてきた本件発明に係る導電性インクは、 25°Cにおける粘度力 60cP以 下であるものとして用いることが好ましい。
発明の効果
[0026] 本件発明に係る導電性インクは、ディスペンサー塗布方式やインクジェット印刷方 式を採用して正確且つ微細な配線や電極を形成するのに適したものである。そして、 本件発明に係る導電性インクは、ガラス基板、異種元素で形成した回路等に対する 密着性に優れる。従って、該導電性インクは、 TFTパネルに使用するガラス基板、 IT O透明電極表面、銀電極表面、銅電極表面へ配線、電極、保護電極や保護被膜を 形成することが可能となる。
[0027] そして、本件発明に係る導電性インクは、上述の密着性のみならず、形成した導体 回路の密度を高くすることで電気抵抗を下げ、異種金属の接合が可能なレベルの導 体表面の平滑性を確保出来る配線形成を可能とする点に大きな特徴を有している。 発明を実施するための最良の形態
[0028] <本件発明に係る導電性インク >
上述のように本件発明に係る導電性インクは、分散媒に金属粉又は金属酸化物粉 を分散させた導電性インクであって、前記分散媒中に、膜密度向上剤としての金属 塩又は金属酸化物群を含むことを特徴とする基本的構成を採用する。この膜密度向 上剤とは、当該導電性インクを用いて形成した導体の膜密度を向上させ、通電時の 抵抗を減少させるためのものである。
[0029] 主溶媒: 本件発明に係る導電性インクにおける分散媒の主溶媒としては、水、有機 溶媒等を幅広く用いることが可能であり、少なくとも下記、膜密度向上剤、密着性向 上剤等と相溶性のあるものであり、所定の粘度に調製出来るものであれば、特に限 定は要さなレ、。従って、限定するとすれば、常圧での沸点が 300°C以下である水、ァ ルコール類、飽和炭化水素類からなる群より 1種又は 2種以上を組み合わせたもので ある。
[0030] ここで、「常圧での沸点が 300°C以下」という限定を行ったのは、沸点が 300°Cを超 える温度領域では、還元焼成工程において電極を形成させる際、高温で溶媒がガス 化し、このガスが電極内に微小なクラックや空隙を発生させるため、緻密な電極が形 成できないばかりか、結果的に電極膜の緻密化が出来ないため、各種基材との高い 密着強度を発揮し得ないば力、りでなぐ電極膜の電気抵抗も上昇するのである。
[0031] 主溶媒として、水を用いる場合には、イオン交換水、蒸留水等のレベルの純度を有 するものであり、水道水等の純度の水は含まない。
[0032] 主溶媒として、アルコール類を用いるには、 1 プロパノール、 1ーブタノール、 1 ペンタノ一ノレ、 1一へキサノーノレ、シクロへキサノーノレ、 1 ヘプタノ一ノレ、 1 オタタノ ール、 1ーノナノール、 1ーデカノール、グリシドール、ベンジルアルコール、メチルシ クロへキサノール、 2 メチル 1ーブタノール、 3—メチルー 2 ブタノール、 4ーメチノレ 2—ペンタノール、イソプロピルアルコール、 2—ェチルブタノール、 2—ェチルへ キサノール、 2—ォクタノール、テルピネオール、ジヒドロテルピネオール、 2—メトキシ エタノール、 2—エトキシエタノール、 2—n—ブトキシエタノール、 2—フエノキシェタノ ール、カノレビトーノレ、ェチルカルビトール、 n—ブチルカルビトール、ジアセトンアルコ ールから選ばれた 1種又は 2種以上を組み合わせて用いることが好ましい。中でも、 常圧での沸点が 80°C以上で且つ、室温の常圧下で気化しづらいものが良ぐ 1ーブ タノ一ノレ、 1—ォクタノール、テルピネオール、ジヒドロテルピネオール、 2—メトキシェ タノ一ノレ、 2_エトキシエタノール、 2_n—ブトキシエタノール、ジアセトンアルコール を用いることがより好ましい。
[0033] 主溶媒として、グリコール類を用いるにはエチレングリコール、ジエチレングリコール トリエチレングリコール、テトラエチレンダリコール、プロピレングリコール、トリメチレン グリコール、ジプロピレングリコール、トリプロピレングリコール、 1, 2—ブチレングリコ ール、 1 , 3—ブチレングリコール、 1 , 4ーブチレングリコール、ペンタメチレングリコー ノレ、へキシレンダリコールから選ばれた 1種又は 2種以上を組み合わせて用いること が好ましい。中でも、常温での粘度が lOOcP以下であるものが良ぐエチレングリコー ノレ、ジエチレングリコーノレ、プロピレングリコーノレ、 1, 4_ブチレングリコーノレ、ジプロ ピレングリコールを用いることが好ましい。粘度が高すぎる場合、インクジェットに適し た粘度調整が困難となるからである。
[0034] 主溶媒として、飽和炭化水素類を用いるにはヘプタン、オクタン、ノナン、デカン、ゥ ンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、へキサデカンから選ば れた 1種又は 2種以上を組み合わせて用いることが好ましい。中でも、デカン、ゥンデ カン、ドデカン、トリデカン、テトラデカンを用いることがより好ましい。常圧での沸点が 300°C以下であり、且つ、蒸気圧が低く室温で気化しづらいため取り扱いが容易だ からである。
[0035] 膜密度向上剤: そして、本件発明に係る導電性インクにおいて、前記膜密度向上 剤は、 Ti、 V、 Ni、 Cu、 Zn、 Y、 Zr、 Nb、 Mo、 Ag、 In、 Sn、 Ta、 Wを含む金属塩群 又は金属酸化物群より選択される 1種又は 2種以上を含むものを用いることが好まし レ、。
[0036] より具体的に言えば、 Tiとしては塩化チタン、硫酸チタンテトラキス(ジェチルァミノ) チタン、へキサフルォロチタン酸アンモニゥム、水酸化チタン、クレシル酸チタン、二 酸化チタン等を用いることが好ましい。 Vとしてはァセチルァセトナトバナジウム、酸化 バナジウムァセチルァセトナート等を用いることが好ましレ、。 Niとしては酸化ニッケル 、水酸化ニッケル、酢酸ニッケル、硝酸ニッケル、クェン酸ニッケル、ォレイン酸ニッケ ノレ、 2—ェチルへキサン酸ニッケル、ナフテン酸ニッケル等を用いることが好ましい。
Cuとしてはクェン酸銅、ォレイン酸銅、酢酸銅、硝酸銅、ダルコン酸銅、ナフテン酸 銅、ェチルァセト酢酸銅、銅ァセチルァセトナート、酸化銅、亜酸化銅、水酸化銅等 を用いることが好ましい。 Znとしてはクェン酸亜鉛、ァセチルァセトナト亜鉛、酸化亜 鉛等を用いることが好ましい。 Yとしては酢酸イットリウム、シユウ酸イットリウム等を用 レ、ることが好ましい。 Zrとしては硝酸ジルコニウム、ァセチルァセトナトジルコニウム、 酸化ジルコニウム等を用いることが好ましい。 Nbとしては酸化ニオブを用いることが 好ましい。 Moとしてはチォモリブデン酸アンモニゥム、モリブデン酸、 12モリブドけい 酸、モリブデン酸アンモニゥム等を用いることが好ましい。 Agとしては炭酸銀、酢酸銀 、硝酸銀、塩素酸銀、過塩素酸銀、酸化銀等を用いることが好ましい。 Inとしては硝 酸インジウム、塩化インジウム、水酸化インジウム、 2—ェチルへキサン酸インジウム、 トリス(ァセチルァセトナト)インジウム(III)等を用いることが好ましレ、。 Snとしては塩ィ匕 スズ、スズ _i-プロポキシド、スズ _t -ブトキシド等を用いることが好ましレ、。 Taとしては 酸化タンタルを用いることが好ましい。 Wとしては、タングステン酸、タングステン酸ァ ンモニゥム、タンダストけい酸、 12タンダストけレヽ酸 26水、酸ィ匕タングステン、タングス テン酸銅、タングステン酸セリウム等を用いる事が好ましい。特に導電性インク中の金 属粉と同じ金属塩又はその酸化物を 1種類以上用いることが、導体密度を高くするの でより好ましい。
[0037] これらの金属塩又は金属酸化物は、還元焼成工程を経て導体を形成する際、それ 自身が金属となり得る物質であるが故に、導電性インク中の金属粉又は酸化物粉の 粉粒同士を強固に結びつけるバインダーとして機能する。これらの金属塩又は酸化 物を使用しない導電性インクの場合、バインダー物質に多量の有機物を使用してい る力 還元焼成工程時に、有機物が分解しガス化するため、 目的とする導電性インク 中の粉粒同士を結びつけることができないばかりか、発生するガスにより、導体中に 多量の微小クラックを発生させてしまい、導体の電気抵抗の上昇ば力りでなぐ導体 中の空隙が多いため、密度が低ぐ表面の平滑性が得られない。
[0038] 分散助剤: そして、本件発明に係る導電性インクを構成する前記分散媒は、分散助 剤を含むものである事が好ましい。この分散助剤は、分散媒中における金属粉の再 凝集を防止し、導電性インクとしての品質を長期に亘り維持するためのものである。
[0039] この分散助剤としては、 (a)ポリアクリル酸、そのエステル又はその塩、(b)有機基置 換水酸化アンモニゥム及び(c)ヒドロキシル基含有アミン化合物の(a)〜(c)のレ、ず れかの群より選択された 1種又は 2種以上を組み合わせたものを添加することが好ま しいのである。 [0040] 更に、本件発明に係る導電性インクの場合、特にニッケルインクの場合、必要に応 じて分散助剤を添加することも好ましい。この分散助剤としては、(a)ポリアクリル酸、 そのエステル又はその塩、 (b)有機基置換水酸化アンモニゥム及び(c)ヒドロキシノレ 基含有アミン化合物の(a)〜(c)のいずれかの群より選択された 1種又は 2種以上を 組み合わせたものを添カ卩することが好ましいのである。
[0041] 本件発明で用いられる(a)ポリアクリル酸、そのエステル又はその塩としては、例え ば、ポリアクリル酸、ポリアクリル酸メチル、ポリアクリル酸ナトリウム、ポリアクリル酸アン モニゥム等が挙げられ、これらのうちポリアクリル酸アンモニゥムが金属粒子表面へ配 位し易ぐ又同時に、配位したポリアクリル酸アンモニゥムが溶媒中での金属粒子の 凝集を、電気的反発と立体的阻害効果により抑制するため好ましい。本件発明にお いて(a)は上記のものを 1種単独で又は 2種以上組み合わせて用いることができる。
[0042] 本件発明で用いられる(b)有機基置換水酸化アンモニゥムとしては、例えば、テトラ メチルアンモニゥムヒドロキシド、テトラエチルアンモニゥムヒドロキシド、テトラブチルァ ンモニゥムヒドロキシド等のアルキル基置換水酸化アンモニゥム、トリメチルフエニルァ ンモニゥムヒドロキシド、ベンジルトリメチルアンモニゥムヒドロキシド等のアルキル基置 換ァリール基置換水酸化アンモニゥム等が挙げられ、これらのうちアルキル基置換水 酸化アンモニゥムが金属粒子に配位し易ぐ又、電気的反発力が高いため好ましい。 本件発明において (b)は上記のものを 1種単独で又は 2種以上組み合わせて用いる こと力 Sできる。
[0043] 本件発明で用いられる(c)ヒドロキシノレ基含有アミン化合物としては、例えば、アル カノールァミンが挙げられ、これらのうち、ジメタノールァミン、ジエタノールァミン、ジ プロパノールァミン等のジアルカノールァミンが金属粒子との濡れ性が良いため好ま しぐまたジエタノールァミンが金属粒子の経時的な凝集を最も抑制し易いためさらに 好ましい。本件発明において(c)は上記のものを 1種単独で又は 2種以上組み合わ せて用いることができる。
[0044] 本件発明では、導電性ニッケルインク中に上記分散助剤を添加することにより、イン ク内でのニッケノレ粉の粉粒が経時的に凝集することを防止するのである。本件発明 で用いられる分散助剤は、上記(a)〜(c)のうち少なくとも 1種であればよいが、これら のうち、(a)及び (c)を併用すると、ニッケル粉をより安定して分散させることができる ため好ましい。
[0045] 本件発明に係る導電性インクは、「ポリアクリル酸、そのエステル又はその塩」が存 在する場合には、「ポリアクリル酸、そのエステル又はその塩」の量が金属粉の重量 1 00重量部に対し、通常 0. 05重量部〜 5重量部、好ましくは 0. 1重量部〜 2重量部 であると、基板に対するインクの密着性を阻害することなぐインク寿命が最も長くなる ため好ましい。
[0046] 本件発明に係る導電性インクは、「有機基置換水酸化アンモニゥム」が存在する場 合には、「有機基置換水酸化アンモニゥム」の量が金属粉の重量 100重量部に対し、 通常 0. 01重量部〜 5重量部、好ましくは 0. 05重量部〜 1重量部であると、基板に 対するインクの密着性を阻害することなぐインク寿命が最も長くなるため好ましい。
[0047] 本件発明に係る導電性インクは、「ヒドロキシル基含有アミン化合物」が存在する場 合には、「ヒドロキシル基含有アミン化合物」の量がニッケノレの重量 100重量部に対し 、通常 0. 5〜30重量部、好ましくは 5〜20重量部であると、基板に対するインクの密 着性を阻害することなぐインク寿命が最も長くなるため好ましい。
[0048] 本件発明に係る導電性インクにおいて分散剤を組み合わせて用いる場合、「ポリア クリル酸、そのエステル又はその塩」及び「有機基置換水酸化アンモニゥム」が存在 する場合には、「有機基置換水酸化アンモニゥム」の量が、「ポリアクリル酸、そのエス テル又はその塩」の重量 100重量部に対し、通常 1重量部〜 30重量部、好ましくは 5 重量部〜 20重量部であると、基板に対するインクの密着性を阻害することなぐイン ク寿命が最も長くなるため好ましレ、。
[0049] 導電性インクの表面張力: 以下に述べる本件発明に係る導電性インクは、表面張 力が 15mN/m〜50mNZmとなり、インクジェット法、ディスペンサー法での回路形 成等が容易となる。従って、前記表面張力調整剤の添加量は、導電性インクの表面 張力が、通常 15mN/m〜50mNZm、好ましくは 20mNZm〜40mN/mになる ように各種薬剤等を添加するのである。導電性インクの表面張力が、上記範囲を逸 脱すると、特にインクジェットノズルからの導電性インクの吐き出しが不能となったり、 仮にノズルからの吐き出しが出来たとしても、 目的の印刷位置からズレが生じたり、連 続的な印刷が不可能となる等の現象が発生する。従って、本件発明では導電性イン クの表面張力を、インクジェット法を使用するのに適した上記範囲内に調整すること により、インクジェット装置を用いての微細回路配線等の形成を可能とするのである。
[0050] 表面張力調整剤: そして、前記表面張力調整剤は、その表面張力が 40mNZm以 下の添加剤を用いるのである。このような表面張力を備える表面張力調整剤を用いる ことがインクジェット装置での使用に適したインクの表面張力調整が最も容易であり、 インクジェット装置の設計に合致させた粘度調整が簡単に可能であり且つ容易なた め、微細な配線回路の形成が可能となるのである。ここで言う、表面張力調整剤には 、溶媒としても使用可能なアルコール類、グリコール類であって、かつ、表面張力が 4 OmNZm以下であり、 25°Cにおける粘度が lOOcP以下からなる群より選択される 1 種又は 2種以上を組み合わせたものを用いることが好ましい。
[0051] 当該表面張力調整剤のうち、表面張力力 S40mNZm以下であり、 25°Cにおける粘 度が lOOcP以下のアルコール等としては、例えば、 1—ブタノール、 1—ペンタノール 、 4ーメチルー 2—ペンタノール、 2—エトキシエタノール、 2—n—ブトキシエタノーノレ 、 n—プチルカルビトール等が挙げられる。本件発明では、上記表面張力調整剤のう ち、 2—n—ブトキシエタノールや 1ーブタノールを用いること力 導電性インクとしての 長期間の品質安定性を維持するという観点から好ましい。
[0052] 本件発明に係る導電性インクにおいて、配合される表面張力調整剤の量は導電性 インクの表面張力を適宜調整する量とすればよぐ特に限定されるものではない。し かし、一般的には導電性インク中、通常 1重量%〜50重量%、好ましくは 3重量%〜 30重量%である。表面張力調整剤の量が 1重量%未満の場合には、表面張力の調 整が出来ないのである。また、表面張力調整剤の量を 50重量%以上添加すると、表 面張力調整剤を添加する前後で、導電性インク中に含有される微粒金属粉の分散 形態が大きく変化し、結果的に微粒金属粉が凝集をはじめ、導電性インクで最も重 要な微粒金属粉の均一分散が阻害されてしまうため、導電性インクとして使用できな くなる。
[0053] そして、前記表面張力調整剤は、常圧での沸点が 100°C〜300°Cであるアルコー ノレ、グリコールからなる群より選択される 1種又は 2種以上を組み合わせたものである 事が好ましい。
[0054] 密着性向上剤: 本件発明に係る導電性インクを構成する前記分散媒は、密着性向 上剤としてシランカップリング剤、チタンカップリング剤、ジルコニァカップリング剤、ァ ノレミニゥムカップリング剤からなる群より選択される 1種又は 2種以上を含むことが好ま しい。
[0055] ここで言う密着性向上剤とは、前記群より選択した 1種の成分を用いる場合のみなら ず、 2種以上を組み合わせて用いることが可能である。即ち、複数種の成分を含有さ せることで、回路等の形成を行う基板性質に合わせた密着性の制御が可能となるの である。
[0056] ここで言うシランカップリング剤とは、ビュルトリクロルシラン、ビュルトリメトキシシラン 、ビニノレトリエトキシシラン、 2- (3, 4エポキシシクロへキシノレ)ェチノレトリメトキシシラ
シシラン、 3—メタクリロキシプロピルメチルジェトキシシラン、 3—メタクリロキシプロピ ノレトリエトキシシラン、 3—アタリロキシプロピルトリメトキシシラン、 N— 2 (アミノエチル) 3 ァミノプロピルメチルジメトキシシラン、 N— 2 (アミノエチル) 3 ァミノプロピルトリメ トキシシラン、 N— 2 (アミノエチル) 3 ァミノプロピルトリエトキシシラン、 3 ァミノプロ ピルトリメトキシシラン、 3—アミノトリエトキシシラン、 3—トリエトキシシリル一 N— (1 , 3 —ジメチル一ブチリデン)プロピルァミン、 N フエ二ルー 3—ァミノプロピルトリメトキ シシラン、 N— (ビニルベンジル) 2 アミノエチル一 3 ァミノプロビルトリメトキシシ ラン塩酸塩、 3 _ウレイドプロピルトリエトキシシラン、 3 _クロ口プロピルトリメトキシシラ ラン、ビス(トリエトキシシリルプロピル)テトラスルフイド、 3 _イソシァネートプロピルトリ エトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メ チルトリエトキシシラン、ジメチルトリエトキシシラン、フエニルトリエトキシシラン、へキ
を用いる事が好ましい。中でも、基板への密着性の安定化を図るという観点から、安 定した性能を発揮するメチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルトリ エトキシシラン等を用いることが好ましい。
[0057] ここで言うチタンカップリング剤とは、テトライソプロピルチタネート、テトラノルマルブ チルチタネート、ブチルチタネートダイマー、テトラ(2—ェチルへキシル)チタネート、 テトラメチルチタネート、チタンァセチルァセトネート、チタンテトラァセチルァセトネー ト、チタンェチノレアセトアセテート、チタンオクタンジォレート、チタンラタテート、チタン トリエタノールアミネート、ポリヒドロキシチタンステアレートのいずれかを用いることが 好ましい。中でも、基板への密着性の安定化を図るという観点から、安定した性能を 一ト等を用いることが好ましい。
[0058] ここで言うジルコニウムカップリング剤とは、ジルコニウムノルマルプロピレート、ジル コニゥムノノレマノレブチレート、ジノレコニゥムテトラァセチノレアセトネート、ジノレコニゥム モノァセチノレアセトネート、ジノレコニゥムビスァセチノレアセトネート、ジノレコニゥムモノ ェチノレアセトアセテート、ジ/レコニゥムァセチ/レアセトネートビスェチ/レアセトァセテー ト、ジルコニウムアセテート、ジルコニウムモノステアレートのいずれかを用いることが 好ましい。中でも、基板への密着性の安定化を図るという観点から、安定した性能を 発揮するジルコニウムノルマルプロピレート、ジルコニウムノルマルブチレート、ジルコ 二ゥムテトラァセチノレアセトネート、ジノレコニゥムモノァセチノレアセトネート、ジノレコニゥ ムビスァセチルァセトネート、ジルコニウムモノェチルァセトアセテート、ジルコニウム ァセチノレアセトネートビスェチノレアセトアセテート、ジノレコニゥムアセテートを用いるこ とが好ましい。
[0059] ここで言うアルミニウムカップリング剤とは、アルミニウムイソプロピレート、モノ sec— ブトキシアルミニウムジイソプロピレート、アルミニウム sec—ブチレート、アルミニウム ェチレート、ェチルァセトアセテートアルミニウムジイソプロピレート、ァノレミニゥムトリス (ェチルァセトアセテート)、アルキルァセトアセテートアルミニウムジイソプロピレート、 アルミニウムモノァセチルァセトネートビス(ェチルァセトアセテート)、アルミニウムトリ ス(ァセチルァセトネート)、アルミニウムモノイソプロポキシモノォレオキシェチルァセ トアセテート、環状アルミニウムオキサイドイソプロピレート、環状アルミニウムォキサイ ドォクチレート、環状アルミニウムオキサイドステアレートのいずれかを用いることが好 ましい。中でも、基板への密着性の安定化を図るという観点から、安定した性能を発 揮するェチルァセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(ェ チルァセトアセテート)、アルキルァセトアセテートアルミニウムジイソプロピレート、ァ ルミ二ゥムモノアセチルァセトネートビス(ェチルァセトアセテート)、アルミニウムトリス (ァセチルァセトネート)を用いることが好ましい。
[0060] 金属粉又は金属酸化物粉: そして、ここで言う金属粉又は金属酸化物粉とは、ニッ ケル粉、銀粉、金粉、白金粉、銅粉、パラジウム粉、インジウム一錫酸化物から選択さ れる一種又は二種以上の混合粉のことである。そして、この金属粉又は金属酸化物 粉の、一次粒径、粒度分布等に関しては、特段の限定はない。なぜなら、粉体特性 が同じである限り、上記分散媒組成を用いることで、従来の導電性インクと比べ、高 い基板密着性と、形成した導体膜は優れた膜密度を示し、導体抵抗が小さくなるから である。
[0061] し力 ながら、インクジェット方式で使用することを考慮すると、平均一次粒径が 500 nm以下であることが好ましい。平均一次粒径が 500nmを超えると、極端にインクジ エツトノズルに導電性インクが目詰まりしやすくなり連続印刷が困難となる。仮に、印 刷可能であったとしても、形成される配線や電極の膜厚が厚くなりすぎるため、 目的と する微細配線とならない。
[0062] 更に言えば、形成する回路のファイン化レベルに応じて、適正な一次粒径を持つ 微粒金属粉又は金属酸化物粉を適宜選択使用すればよいのである。し力しながら、 微粒粉という概念からして、通常 3nm〜500nm、好ましくは 5nm〜200nm、さらに 好ましくは 10nm〜: 150nmの範囲の選択的使用が好ましレ、。微粒の粉粒の平均一 次粒径が 3nm未満の場合は、現段階ではその製法が確立されていないものもあり、 実験による検証ができない。一方、平均一次粒径が 500nmを超えると、 目的とする 幅 40 z m以下の配線や電極を形成することが困難であり、又、形成した配線や電極 の膜厚が厚くなりすぎるため不適となるのである。傾向として、微粒粉の粉粒の平均 一次粒径が微細であるほど、インクジェットのノズノレの目詰まりを引き起こす可能性は 低ぐ微細回路の形成に適してくる。本件発明において平均一次粒径とは、走查型 電子顕微鏡で観察したときの、一視野中に含まれた最低 200個の粉粒の粒径を観 察し、これらを積算し平均することにより求められる粒径を意味する。
[0063] 微粒粉の平均一次粒径が小さな事は、細かな粉粒であるとレ、う根拠になる力 微粒 であっても導電性インク中の粉粒同士の凝集が進行し、二次構造体としての粒径が 大きくなると、やはりインクジェットノズノレの目詰まりを引き起こしやすくなるのである。 従って、導電性インク中の微粒金属粉の二次構造体としての凝集粒は、インクジヱッ トノズルの目詰まりを引き起こさない大きさ以下とする必要があり、これは実験的に確 認されたもので、凝集粒の最大粒子径を 0. 8 z m以下とすれば、ほぼ確実にインク ジェットノズルの目詰まりを防止出来るのである。又、この凝集粒の確認方法としては 、レーザー式粒度分布測定装置を用いている。
[0064] そして、粉粒の形態に関しては、特に限定はなぐ粉粒形状が球状、フレーク状や 表面コート層を備える粉粒の全ての概念を包含するものとして記載している。し力、しな がら、本件発明に係る導電性インクは、主に電子材料の回路形成に使用することを 前提としている。従って、電子材料用途に多用されるニッケル粉、銀粉、金粉、白金 粉、銅粉、ノ ジウム粉、インジウム 錫酸化物から選択され、且つ、その金属粉の 一次粒子径は 500nm以下のものを想定している。また、導電性インクとしての経時 的変化、焼結特性等を考慮すると、ォレイン酸ゃステアリン酸等で表面処理した金属 粉や、粉粒表面に所定の酸化物を付着させたような酸化物コート粉を用いる等、導 電性インクに求められる要求特性を考慮したものを選択的に使用すればよいのであ る。
[0065] 中でも、本件発明に係る導電性インクで、ニッケノレ粉を用いることを考えると、次の ような微粒の微粒ニッケル粉を採用することで、緻密で且つ低抵抗な膜を形成でき、 良好な品質を回路を得ることが出来る。具体的には極めて小さな微粒ニッケル粉は、 粉体としてより、スラリー状態として保存しておく方が、粉体としての品質の長期保存 性が確保できる。
[0066] そこで、本発明に係る導電性ペーストに、平均一次粒径が lOOnm以下の微粒ニッ ケノレ粉を用いる場合には、ニッケルスラリーの形で用いることが好ましい。即ち、「エツ ケル粒子を含むニッケルスラリーにおいて、当該ニッケルスラリーは、有機溶媒と平均 一次粒径が lOOnm以下のニッケル粒子のみからなることを特徴とするニッケルスラリ 一」を用いる。このニッケルスラリーの特徴は、樹脂等の有機剤を全く用いることなぐ 加熱により揮散可能な有機溶媒と、ニッケル粒子のみで構成されている点にある。こ のニッケルスラリーは、ニッケルコロイドと異なり、静置しているとニッケル粒子が容易 に沈降する性質を持つ。従って、保存したものを使用するときには、攪拌作業が必要 となるが、ニッケルスラリーの溶液側に不必要に樹脂成分等の有機剤を含まないため に、当該有機剤によるニッケル粒子の表面の汚染もなぐニッケルインクの原料として 使用するときの樹脂成分の調整等も容易となる。
[0067] しカゝも、ここでは単にニッケル粒子の平均一次粒径が lOOnm以下と記載している 力 従来、このレベルの微粒のニッケル粒子を狙って作り出すことは困難であり、量 産性に欠け市場供給は出来なレ、ものであり、従来、市場供給することが不可能であ つた微粒のニッケル粒子を含むのである。
[0068] 平均一次粒径が lOOnmを超えるレベルのニッケル粒子は、従来の製造方法を適 用してもある程度の製造は可能である。これに対し、本発明で用いるニッケルスラリー 中のニッケル粒子の平均一次粒径は、製造上不可避的に発生する一定のバラツキ を考えても、 lOOnm以下の値となる。そして、より最適な製造条件を適用することで、 10nm〜70nmの範囲の微粒ニッケル粒子を得ることができ、高品質のニッケルスラ リーを提供する事が可能となる。なお、ここで明記しておくが、 lOnm未満のニッケル 粒子は、全く存在しないわけではなぐある一定の工程バラツキの範囲で発生する。 しかしながら、 lOnm未満のニッケル粒子は、電界放射型の走査型電子顕微鏡 (FE SEM)を用いても視認することが難しぐ平均一次粒子径を厳密に測定し、バラッ キを見る等の統計的なデータを得にくいため除外したに過ぎない。従って、本件発明 に係るニッケルスラリー中に含まれるニッケル粒子を観察するには、数十万倍以上の 観察の可能な透過型電子顕微鏡レベルの倍率での観察の可能な装置を用いて行う ことが好ましい。ここで言うニッケルスラリーは、事後的に導電性インクに加工され使 用されることを想定すれば、ニッケル粒子の平均一次粒径は小さなものであるほど、 微細な回路、電極等の形成が容易となる。従って、ニッケル粒子は、細かく且つ良好 な粒度分布を備えることが好ましレ、のである。 [0069] また、金属粉の粒子の一般的性質として、微粒化すればするほど、粒子同士が擬 似的に連結する凝集が起こりやすい傾向がある場合がある。従って、本件発明に係 るニッケルスラリー中のニッケル粒子の平均一次粒子径が如何に細力べとも、粒子同 士が強固な凝集をした二次粒子を構成していると、上述のような微細な回路等を形 成するためのニッケルインクとしての使用は不可能と言える。そこで、粒子の粒度分 布が良好であることを推し量る指標として一次粒子径の標準偏差を用いることとする
[0070] ここで、上記ニッケル粒子の一次粒径の標準偏差に関して述べる。本件発明に係 るニッケルスラリーに含まれるニッケル粒子は、平均一次粒径が nmオーダーと極め て細かいことから、その製造段階における厳格な意味での粒径制御は困難であり、 狙い目とした平均一次粒径によっても粒径のバラツキが異なるという特性を持ってい る。そこで、発明者等は、上記ニッケル粒子の一次粒径の標準偏差を考える際に、単 なる数値としての標準偏差ではなぐ平均一次粒径を基準として、 [平均一次粒径 (n m) ] /2. 5以下であることを良好な粒子分散性を示す指標として用いた。標準偏差 力 [平均一次粒径 (nm) ]/2. 5を超えると、透過電子顕微鏡で観察したときの一 次粒子のバラツキ力 目に見えて大きく感じられ、そもそもシャープな粒度分布のニッ ケル粒子であるとは言えないものである。なお、これらニッケル粒子の平均一次粒径 は、透過型電子顕微鏡写真により観察し、その観察像から得られた粒径分布より標 準偏差を算出し、 [平均一次粒径 (nm) ]/2. 5と対比して粒子分布の精度を判断す るのである。
[0071] そして、 nmオーダーの粒径を持つニッケル粒子を、通常のレーザー回折散乱式粒 度分析法で測定しょうとすると、一般的な装置ではなぐ超微粒子測定の可能な動的 光散乱式 (ドップラー散乱光解析)装置を用いなければならない。そこで、本件発明 者等は、 0. 0032 z m〜6. 5406 μ mの粒度分布の測定の可能な日機装株式会社 製 UPA150を用いてみた。ところ力 この装置で測定したときの測定データは、検 出器の持つ特性から、 2つのピークを示す場合が多ぐこの事象に関しての原因が明 確でない。従って、この事象を特に考慮することなぐ粒度分布の標準偏差を求める 事も可能であるが、好ましいとは言えない。 [0072] そこで、本件発明者等は、平均一次粒子径が nmオーダーのニッケル粒子の粒径 バラツキを標準偏差で捉える場合、透過型電子顕微鏡の観察像 (ニッケル粒子が 25 個〜 60個含まれる観察像)から、直接測定した一次粒子径をもとに、標準偏差を計 算により導き出す事の方が、より信頼性のある値が得られると考えた。そして、この方 法によれば、本件発明に係るニッケルスラリー中のニッケル粒子の粒度分布の標準 偏差の値は、ほぼ [平均一次粒径 (nm) ] Z6. 0〜[平均一次粒径 (nm) ]/2. 5の 範囲となることが分かった。この程度のバラツキであれば、微細な回路形成等に用い る導電性インクとしての使用には十分に耐えると言える。
[0073] また、粒子分散性を見る指標として変動係数を採用する事も好ましい。ここで変動 係数 CV値は、平均一次粒径 Dと粒度分布の標準偏差 SDとの関係式 SDZD X 100 で表されるものであり、この CV値の値が小さいほど、粉粒の粒径が揃っており、大き なバラツキをもっていないことを意味している。なお、ここでの平均一次粒径は、透過 型電子顕微鏡の観察像 (ニッケル粒子が 25個〜 60個含まれる観察像)から、直接測 定した一次粒子径である。
[0074] また、上記ニッケルスラリーにおいて、ニッケル粒子の含有量は、 15重量%〜92重 量%であることが好ましい。本件発明に係るニッケルスラリーを用いて、ニッケルインク を製造する場合には、この中にバインダー、粘度調整剤等として、種々の有機剤など を添加することになる。従って、ニッケルインクとして必要な、ニッケル粒子含有量を 確保するとレ、う観点から、上記範囲の含有量が好ましいのである。
[0075] 当該ニッケルスラリーに使用される有機溶媒は、ニッケル粉としての粒子表面の酸 化等の化学的変質を引き起こさ無い限り、特に限定されない。使用可能な有機溶媒 としては、例えば、ターピネオール、ジヒドロターピネオール等のテルペン類や、オタ タノ一ノレ、デカノール等のアルコール等が挙げられる。上記有機溶剤は 1種又は 2種 以上を混合して用いることができる。
[0076] 以上に述べてきたニッケルスラリーの製造方法に関して説明する。ニッケルスラリー の製造方法として、ニッケル塩、ポリオール及び貴金属触媒を含む反応液を反応温 度まで加熱し、該反応温度を維持しながら該反応液中のニッケルイオンを還元し、次 レ、で有機溶媒で置換するニッケルスラリーの製造方法において、上記反応液にアミノ 酸を添加することを特徴とする方法を採用することが好ましい。
[0077] ここで用いるニッケル塩は、特に限定されるものではなぐ例えば、水酸化ニッケノレ 、硫酸ニッケル、塩ィ匕ニッケル、臭化ニッケル、酢酸ニッケル等が挙げられる。これら の中で水酸化ニッケルは、ニッケルインキとした時に悪影響を及ぼすィォゥ、ハロゲ ン等の元素を含んでレ、なレ、ため特に好ましレ、。
[0078] そして、これらニッケル塩は、当該反応液中でニッケル濃度として lgZl〜: lOOg/l の濃度とすることが好ましい。 lg/1未満の濃度では、工業的に必要な生産効率を得 ることが出来ず、 lOOg/1濃度を超えると、還元析出するニッケル粒子が凝集するこ とによって粒径が大きくなる傾向にあり、平均一次粒径を 50nm以下にしたニッケル 粒子を得ることができなくなるのである。
[0079] そして、このニッケルスラリーの製造で用いるポリオールは、炭化水素鎖及び複数 の水酸基を有する物質をいう。該ポリオールとしては、例えば、エチレングリコール( 沸点 197°C)、ジエチレングリコール(沸点 245°C)、トリエチレングリコール(沸点 278 °C)、テトラエチレンダリコール(沸点 327°C)、 1, 2 プロパンジオール(沸点 188°C )、ジプロピレングリコール(沸点 232°C)、 1, 2 ブタンジオール(沸点 193°C)、 1, 3 ブタンジオール(沸点 208°C)、 1, 4 ブタンジオール(沸点 235°C)、 2, 3 ブタ ンジオール(沸点 177°C) 1, 5 ペンタンジオール(沸点 239°C)及びポリエチレング リコールからなる群より選択される少なくとも 1種が挙げられる。このうちエチレングリコ ールは、沸点が低ぐ常温で液状であり取り扱い性に優れるため好ましい。ここでポリ オールは、ニッケル塩に対する還元剤として作用すると共に、溶媒としても機能する ものである。
[0080] そして、これらポリオールの当該反応液中での濃度は、ニッケル濃度に対応して添 加量が定められるのである。従って、上述のニッケノレ濃度範囲であることを前提として 、反応液中のポリオール濃度は、ニッケノレに対して 11当量〜 1100当量となるように 添加することが好ましい。 11当量未満の濃度では、ニッケノレ濃度が高くなり析出粒子 の凝集が起こりやすくなるのである。そして、上記ニッケル濃度の上限濃度を考慮し ても、還元析出したニッケル粒子表面への有機化合物層の形成を考慮すると 1100 当量濃度を超えると、反応時間を僅かに長くしても、有機化合物層が無用に厚くなり 、ニッケルインクに加工して回路等を形成したときの抵抗上昇の原因となるのである。
[0081] このニッケルスラリーの製造で用いる貴金属触媒は、上記反応液中において、ポリ オールによるニッケル塩の還元反応を促進するものであり、例えば、塩化パラジウム、 硝酸パラジウム、酢酸パラジウム、塩化アンモニゥムパラジウム等のパラジウム化合物 、硝酸銀、乳酸銀、酸化銀、硫酸銀、シクロへキサン酸銀、酢酸銀等の銀化合物、塩 化白金酸、塩化白金酸カリウム、塩化白金酸ナトリウム等の白金化合物、及び塩化金 酸、塩化金酸ナトリウム等の金化合物等が挙げられる。このうち、硝酸パラジウム、酢 酸パラジウム、硝酸銀又は酢酸銀は、得られるニッケル粉の純度が高くなり易ぐまた 、製造コストが低くて済むため好ましい。上記触媒は、上記化合物が安定である限り そのままの形態で又は該化合物の溶液の形態で用いることができる。
[0082] そして、これら貴金属触媒の当該反応液中での濃度は、ニッケル粒子の還元析出 速度を定めるものである。従って、上述の如き lOOnm以下の平均一次粒子径を持つ ニッケル粒子を製造しょうとするときの、最適な還元速度を得る必要がある。従って、 反応液中の貴金属触媒濃度は、 0. 01mg/l〜0. 5mg/lの濃度とすることが好まし レ、。貴金属触媒濃度が 0. Olmg/1未満の濃度では、還元速度が遅ぐニッケル粒 子が粗大化する上、工業的な意味での操業条件を満足し得ない。そして、貴金属触 媒濃度が 0. 5mg/lを超えると、還元速度が速くなり、得られるニッケル粒子の粒径 のバラツキが大きくなり、し力も lOOnmを超える粗粒が多く発生するのである。
[0083] 以上に述べてきたニッケル塩、ポリオール及び貴金属触媒を含む反応液は、例え ば、水にニッケル塩、ポリオール及び貴金属触媒を投入し攪拌し、混合することにより 調製することができ、また、貴金属触媒が硝酸パラジウム等のように水溶液として存在 する場合は、ニッケル塩、ポリオール及び貴金属触媒を水なしで混合するだけで調 製すること力 Sできる。ニッケル塩、ポリオール及び貴金属触媒を混合して反応液を調 製する際、添加する順序や混合方法は、特に限定されない。例えば、ニッケル塩、ポ リオール及び貴金属触媒、さらに必要により後述の分散剤を予備混合してスラリーを 調製し、該スラリーとポリオールの残部とを混合して反応液を作製してもよレ、。
[0084] そして、このニッケルスラリーの製造では、上記反応液にアミノ酸を添加する。このよ うに反応液にアミノ酸を添加することによって、ニッケル粒子の一次粒径を小さぐか つ分散性を良好にすることができる。上記アミノ酸は、沸点又は分解点が反応温度以 上であり、かつニッケル及び貴金属触媒とポリオール中で錯体を形成するものが用い られ、具体的には L—アルギニン及び/又は L—シスチンが好ましく用いられる。アミ ノ酸の添加量は反応液中のニッケルに対して 0. 01重量%〜20重量%が好ましい。 アミノ酸の添加量が 0. 01重量%未満では上記効果が得られず、 20重量%を超えて 添加してもそれ以上の効果が得られず、経済的に不利である。
[0085] また、上記反応液は、必要に応じて、一定量の分散剤を含むことにより、得られる二 ッケル粒子がより微粒になり、還元析出した粒子同士の凝集化を防止し、粒度分布を よりシャープにできる。従って、この分散剤は、反応過程においてのみ必要なもので あり、製品であるニッケルスラリー中では不要なものであり、ニッケルスラリー中には含 ませないようにすることが好ましい。本発明で用いられる分散剤としては、例えば、ポ リビエノレピロリドン、ポリエチレンィミン、ポリアクリノレアミド、ポリ(2—メチルー 2—ォキ サゾリン)等の含窒素有機化合物、及びポリビエルアルコール等が挙げられる。このう ち、ポリビニルピロリドンは、得られるニッケル粒子の粒度分布がシャープになりやす いため好ましい。上記分散剤は、 1種又は 2種以上組み合わせて用いることができる 。分散剤を含ませる場合には、分散剤の種類に応じて添加量が異なるが、反応液中 のニッケル量を基準として、一般的にニッケル量の 1重量%〜20重量%、より好ましく は 1重量%〜: 12重量%を含ませることが好ましい。分散剤が、 1重量%未満の場合 には、分散剤を添加した効果として、ニッケルスラリー中でのニッケル粒子の粒度分 布改善効果を発揮し得ない。一方、分散剤を 20重量%を超えて添加しても、分散剤 を含ませる効果は、それ以上に変化せず、むしろニッケル粒子の有機剤としての分 散剤による汚染が深刻化するのである。
[0086] このニッケルスラリーの製造では、上記反応液を上記還元温度まで加熱し、該還元 温度を維持しながら該反応液中のニッケル塩を還元し、ニッケル粒子を製造する。
[0087] ここで、還元反応を行う反応温度に関して説明する。反応温度としては、 150°C〜2 10°C、好ましくは 150°C〜200°Cの温度範囲を採用することが好ましい。反応温度と 称しているが、本件発明の場合には反応液の液温の事である。上記反応液組成の 範囲で、反応温度が 150°C未満の場合には、還元反応速度が遅ぐ工業的に使用 出来ない操業条件となる。そして、反応温度が 210°Cを超えると、還元反応で得られ る生成物が炭素を含有して炭化ニッケル粒子になり易いため好ましくなレ、。
[0088] 反応液を上記還元温度に維持する時間は、反応液の組成や還元温度により適切 な時間が異なるため一概に特定できないが、通常 1時間〜 20時間、好ましくは 2時間 〜15時間である。反応液を上記還元温度に維持する時間が該範囲内であると、ニッ ケル粒子の核の成長が抑制されると共にニッケル粒子の核が多数発生し易い雰囲 気となることにより系内でのニッケル粒子の粒成長が略均一となるため、得られるニッ ケル粒子が粗大粒子になったり凝集したりすることを抑制することができる。このため 、本発明では、上記還元温度に上記時間だけ維持すれば、これ以後は、反応液の 温度を上記還元温度の範囲外の温度にしてもよい。例えば、還元反応の速度を向上 させるために、反応液の温度を上記還元温度を超える温度にしてもよい。
[0089] 次に、ニッケル粒子が得られた反応液を、有機溶媒で置換してニッケルスラリーとす る。ここで用いられる有機溶媒は、上述したように、例えば、タービネオール、ジヒドロ タービネオール等のテルペン類や、ォクタノール、デカノール等のアルコール等が挙 げられる。上記有機溶剤は 1種又は 2種以上混合して用いることができる。
[0090] 導電性インクの粘度: 本件発明では、インクジェット法やディスペンサー法での回路 形成等がさらに容易なものとなるよう、導電性インクの 25°Cにおける粘度を 60cP以 下とするのである。本件発明での粘度調整は、上述した溶媒、分散剤、酸化物コート 金属粉を最適に配合することで達成する。粘度の下限値を敢えて記載しないのは、 各金属の導電性インクが回路形成に使用される場所と目的が異なり、所望とされる配 線、電極サイズ及びその形状が異なるためである。 25°Cにおける粘度が 60cPを超 える場合、インクジェット法ゃデイスペンサ—法を利用し、微細な配線や電極を形成し ようとしても、ノズルから導電性インクを吐き出すエネルギー以上に導電性インクの粘 度が高いため、安定にノズルから導電性インクの液滴を吐き出す事が困難なものとな る。 25°Cにおける粘度が 60cP以下の場合、実験的にインクジェット法ゃデイスペン サ一法での微細な配線や電極の形成が可能となることが解っている。
[0091] <本件発明に係る導電性インクの製造方法 >
以上に述べてきた導電性インクの製造方法に関しては、特段の限定はない。レ、か なる方法を採用しても、最終的に、少なくとも金属粉と主溶媒と膜密度向上剤とを含 み、分散助剤、表面張力向上剤、密着性向上剤を適宜含むものとすればよいのであ る。しかしながら、分散助剤を使用することを考えるに、金属粉を主溶媒に分散させ 母スラリーとして、この段階で分散助剤を添加し、以下任意の手順で表面張力向上 剤及び/又は密着性向上剤を適宜添加する事が好ましい。
実施例 1
[0092] この実施例では、以下の手順にて導電性インクを調整し、その導電性インクを用い て電極膜を形成し、導体抵抗、密着性、電極膜断面の状態観察を行った。
[0093] <ニッケル粒子の製造 >
反応容器に張り込まれたエチレングリコール 445· 28g中で水酸ィ匕エッケノレ 31. 31 g、ポリビニルピロリドン(PVP) 2. 15g、 lOOg/1の硝酸パラジウム溶液 0. 69ml及び L—アルギニン 1. Ogを攪拌しながら 190°Cで 10時間加熱し、平均一次粒径 37. 86 nmのニッケル粒子を得た。この反応液をエチレングリコールでデカンテーシヨンを行 レ、、反応液中の PVPを洗浄除去し、これをタービネオールで 2回のデカンテーシヨン を行い、ニッケル粉含有量 80重量0 /0、残部タービネオールのニッケルスラリーを製造 した。
[0094] 上記ニッケルスラリー中の 50個のニッケル粒子の一次粒径(平均、標準偏差、最大 値、最小値)を透過型電子顕微鏡で観察した結果を表 1に示す。そして、 FE- SEM の観察像を図 1 ( X 100000)に示した。し力、し、 FE— SEMレベルの分解能では、十 分な粒子観察が出来ないことが分かる。そこで、図 6に透過型電子顕微鏡での観察 像を示す。この図 2では、得られたニッケル粒子の様子が明瞭に観察出来る。以下の 実施例でも、ここで得られたと同じニッケルスラリーを原料として用いた。
[0095] <導電性インクの製造 >
分散助剤の調整: 容量 1Lのビーカーに、ジエタノールァミン (和光純薬工業株式会 社製) 380g、 44%ポリアクリル酸アンモニゥム溶液 (和光純薬工業株式会社製) 45. 6g、 15%水酸化テトラメチルアンモニゥム溶液(和光純薬工業株式会社製) 13. 4g を加え、マグネチックスターラーで攪拌して分散助剤を調製した。
[0096] 金属粉スラリーの調整: 上記ニッケル粒子の製造で得られたニッケルスラリー 3Lを 遠心分離機により固液分離を行い上澄みを除去した。次に、得られた固形分に含ま れる反応に使用した有機物等を取り除く為、得られた固形分に除去した上澄み量と 同量の純水を加え良く混合した後、遠心分離機により固形分を回収する操作を 3回 行った。得られた固形分に、ニッケル濃度が 21wt%となるように純水をカ卩ぇ良く混合 し、水性ニッケルスラリーとした。この水性ニッケルスラリー 262. 3gに、前記分散助剤 14. 8gを添加した。次に、該スラリーを、高速乳化分散機である T. K.フィノレミックス (特殊機化工業株式会社製)にて分散化処理を行い、ニッケル粒子を分散させた二 ッケルスラリーを得た。
[0097] 導電性インクの調製: 次に、前記ニッケルスラリーをジルコ二ァビーズ (株式会社二 ッカトー製、 0. 3mm φ )を解砕メディアとし、ペイントシェーカー(浅田鉄鋼株式会社 製)にて 30分間解砕処理を行った。続いて、表面張力調整剤として 2_n—ブトキシ エタノール(関東化学株式会社製、表面張力 28. 2mN/m) 19. 7gと、密着性向上 剤としてチタンラタテート(松本純薬工業株式会社製 TC— 315) 13. 8gを添加し、ぺ イントシエーカー(浅田鉄鋼株式会社製)にて 30分間混合処理を行った。
[0098] その後、更に、膜密度向上剤としてタングステン酸 (和光純薬工業株式会社製) 1.
89gを添加し、ペイントシェーカー(浅田鉄鋼株式会社製)にて 30分間粉砕処理を行 つた。そして、次に、該スラリーに含有される 5 μ ΐη以上の粒子をカートリッジ式フィル ター(アドバンテック東洋株式会社製 MCP— 3)に通液することで除去し、さらに 1 μ m以上の粒子をカートリッジ式フィルター(アドバンテック東洋株式会社製 MCP— H X)にてろ過し、ろ液 (以下、「導電性インク A」と称する)を得た。
[0099] <導電性インクとしての評価 >
膜抵抗の測定: 上記導電性インク Aを、無アルカリガラス基板〇A_ 10 (日本電気 硝子株式会社製)上にスピンコーター(MIKASA社製)を用い、 2500rpmで 10秒 間の条件で成膜した。次に、水素含有量が 2容量%の水素一窒素混合雰囲気下、 3 00°Cで 2時間加熱処理を行レ、、膜厚みが約 500nmのニッケル電極膜を得た。該電 極膜について、比抵抗を四探針抵抗測定機ロレスタ GP (三菱化学株式会社製)にて 測定したところ、 3. 2 X 10_4 Q ' cmであった。
[0100] 密着性の評価: ガラス基板との密着性を JIS K 5600 パラグラフ 5— 6に準じ、ク ロスカット法により評価したところ、分類 0であり、良好な密着性を有していた。また、上 述のようにして作製した電極膜を、水中で 10分間超音波洗浄し、続いてアセトン中で 10分間超音波洗浄したものを、マイクロスコープにて観察したところ、係る場合でも電 極膜の剥離は観察されなかった。
[0101] 電極膜断面の状態観察: 上述のようにして調製した電極膜の断面を走査型電子顕 微鏡 (FEI COMPANY社製 FE— SEM)にて観察したところ、図 3に示すように 緻密な膜が得られていた。
実施例 2
[0102] く導電性インクの製造〉
この実施例は、添加する膜密度向上剤をクェン酸ニッケルにする以外は、実施例 1 と同様の方法で導電性インク Bを作製した。従って、重複した記載を避けるため、ここ での製造プロセスに関しての説明は省略する。
[0103] <導電性インクとしての評価 >
膜抵抗の測定: 上記導電性インク Bを、実施例 1と同様にして、膜厚みが約 500nm のニッケル電極膜を得た。該電極膜について、比抵抗を四探針抵抗測定機ロレスタ
GP (三菱化学株式会社製)にて測定したところ、 2. 5 X 10_4 Q ' cmであった。
[0104] 密着性の評価: ガラス基板との密着性を JIS K 5600 パラグラフ 5— 6に準じ、ク ロスカット法により評価したところ、分類 0であり、良好な密着性を有していた。また、上 述のようにして作製した電極膜を、水中で 10分間超音波洗浄し、続いてアセトン中で
10分間超音波洗浄したものを、マイクロスコープにて観察したところ、係る場合でも電 極膜の剥離は観察されなかった。
[0105] 電極膜断面の状態観察: 上述のようにして調製した電極膜の断面を走査型電子顕 微鏡 (FEI COMPANY社製 FE— SEM)にて観察したところ、図 4に示すように 緻密な膜が得られていた。
実施例 3
[0106] く導電性インクの製造〉
この実施例は、添加する膜密度向上剤を酢酸銅にする以外は、実施例 1と同様の 方法で導電性インク Cを作製した。従って、重複した記載を避けるため、ここでの製造 プロセスに関しての説明は省略する。
[0107] <導電性インクとしての評価 >
膜抵抗の測定: 上記導電性インク Cを、実施例 1と同様にして、膜厚みが約 500nm のニッケル電極膜を得た。該電極膜について、比抵抗を四探針抵抗測定機ロレスタ GP (三菱化学株式会社製)にて測定したところ、 5. 92 X 10_4 Q ' cmであった。
[0108] 密着性の評価: ガラス基板との密着性を JIS K 5600 パラグラフ 5— 6に準じ、ク ロスカット法により評価したところ、分類 0であり、良好な密着性を有していた。また、上 述のようにして作製した電極膜を、水中で 10分間超音波洗浄し、続いてアセトン中で 10分間超音波洗浄したものを、マイクロスコープにて観察したところ、係る場合でも電 極膜の剥離は観察されなかった。
[0109] 電極膜断面の状態観察: 上述のようにして調製した電極膜の断面を走査型電子顕 微鏡 (FEI COMPANY社製 FE— SEM)にて観察したところ、図 5に示すように 緻密な膜が得られていた。
実施例 4
[0110] く導電性インクの製造〉
この実施例は、添加する膜密度向上剤をモリブデン酸にする以外は、実施例 1と同 様の方法で導電性インク Dを作製した。従って、重複した記載を避けるため、ここでの 製造プロセスに関しての説明は省略する。
[0111] く導電性インクとしての評価〉
膜抵抗の測定: 上記導電性インク Dを、実施例 1と同様にして、膜厚みが約 500nm のニッケル電極膜を得た。該電極膜について、比抵抗を四探針抵抗測定機ロレスタ GP (三菱化学株式会社製)にて測定したところ、 5. 28 X 10_4 Q ' cmであった。
[0112] 密着性の評価: ガラス基板との密着性を JIS K 5600 ノ ラグラフ 5— 6に準じ、ク ロスカット法により評価したところ、分類 0であり、良好な密着性を有していた。また、上 述のようにして作製した電極膜を、水中で 10分間超音波洗浄し、続いてアセトン中で 10分間超音波洗浄したものを、マイクロスコープにて観察したところ、係る場合でも電 極膜の剥離は観察されなかった。
[0113] 電極膜断面の状態観察: 上述のようにして調製した電極膜の表面を走査型電子顕 微鏡(FEI COMPANY社製 FE— SEM)にて観察したところ、図 6に示すように 緻密な膜が得られていた。
比較例
[0114] <導電性インクの製造 >
この比較例は、添加する膜密度向上剤を省略し、その他は実施例 1と同様の方法 で、上記実施例と対比するための導電性インク Gを作製した。従って、重複した記載 を避けるため、ここでの製造プロセスに関しての説明は省略する。
[0115] <導電性インクとしての評価 >
膜抵抗の測定: 上記導電性インク Gを、実施例 1と同様にして、膜厚みが約 500nm のニッケル電極膜を得た。該電極膜について、比抵抗を四探針抵抗測定機ロレスタ GP (三菱化学株式会社製)にて測定したところ、 4. 10 X 10_3 Ω ' cmであった。
[0116] 密着性の評価: ガラス基板との密着性を JIS K 5600 パラグラフ 5— 6に準じ、ク ロスカット法により評価したところ、分類 0であり、良好な密着性を有していた。また、上 述のようにして作製した電極膜を、水中で 10分間超音波洗浄し、続いてアセトン中で 10分間超音波洗浄したものを、マイクロスコープにて観察したところ、係る場合でも電 極膜の剥離は観察されなかった。
[0117] 電極膜断面の状態観察: 上述のようにして調製した電極膜の状態を走査型電子顕 微鏡 (FEI COMPANY社製 FE— SEM)にて観察したところ、図 7に示す平面観 察像(図 1〜図 3と対比すべきもの)、図 8に示す断面観察像(図 4と対比すべきもの) 力 分かるように充填性に優れた良好な膜が得られ無かった。
[0118] ぐ実施例と比較例との対比 >
比較例と上記各実施例とを対比すると、各実施例の膜抵抗の測定値は、 10_4ォー ダ一の抵抗値を示しているのに対し、比較例は 10_3オーダーの抵抗値を示している 。従って、膜密度向上剤としての金属塩を含む導電性インクの方が、比較例の膜密 度向上剤を含まない導電性インクに比べ、その導電性インクを用いて形成した電極 膜の導体抵抗が低くなることが明らかである。
[0119] また、電極膜表面又は断面の状態観察は、電極膜の導体抵抗に生じた差異を裏 付けるように、走査型電子顕微鏡力 明らかなように、比較例の電極膜は各実施例の 電極膜に比べ、膜内にクラックが確認でき充填性に欠け、緻密な膜となっていない事 が理解でき、導電性インクの中で膜密度向上剤の果たす機能が視覚的に捉えられる
産業上の利用可能性
[0120] 本件発明に係る導電性インクは、当該導電性インクを用いて形成した導体の膜密 度を向上させ低抵抗の導体形成を可能とするため、低消費電力の回路形成を可能と する。また、その導体は、各種基板等との密着性に優れるものとなる。従って、本件発 明に係る導電性インクに含ませる金属粉の粉体特性を、微粒且つ分散性に優れたも のとすれば、インクジェット方式やディスペンサー方式を用いて、基板上に微細な配 線や電極を形成する用途等に好適なものである。
[0121] また、本件発明に係る導電性インクにおいて、密着性向上剤等の添加剤を適宜用 レ、ることにより、各種基板との密着性の調整が可能で、且つ、微細な配線や電極の形 成が可能な導電性金属インクとなる。例えば、ガラス基板上への回路形成、銀若しく は銅を用いて形成した回路、又は ITOを用いた透明電極等の上への配線、電極、保 護回路、保護被膜等の形成が可能なものである。従って、液晶ディスプレイ等の製造 過程において有用なものである。
図面の簡単な説明
[0122] [図 1]本件発明に係る導電性インク(ニッケルインク)に用いるニッケルスラリーに含ま れる微粒ニッケル粉の走査型電界放射型電子顕微鏡像。
[図 2]本件発明に係る導電性インク(ニッケルインク)に用いるニッケルスラリーに含ま れる微粒ニッケル粉の透過型電子顕微鏡像。
[図 3]電極膜断面の走査型電子顕微鏡観察像 (実施例 1)。
[図 4]電極膜断面の走査型電子顕微鏡観察像 (実施例 2)。
[図 5]電極膜断面の走査型電子顕微鏡観察像 (実施例 3)。
[図 6]電極膜表面の走査型電子顕微鏡観察像 (実施例 4)。
[図 7]電極膜断面の走査型電子顕微鏡観察像 (比較例)。
[図 8]電極膜表面の走査型電子顕微鏡観察像 (比較例)。

Claims

請求の範囲
[1] 分散媒に金属粉又は金属酸化物粉を分散させた導電性インクであって、
前記分散媒中に、当該導電性インクを用いて形成した導体の膜密度を向上させる ための膜密度向上剤としての金属塩又は金属酸化物を含むことを特徴とする導電性 インク。
[2] 前記分散媒を構成する主溶媒は、常圧での沸点が 300°C以下である水、アルコール 類、グリコール類、飽和炭化水素類からなる群より選択した 1種又は 2種以上を組み 合わせたものである請求項 1に記載の導電性インク。
[3] 前記膜密度向上剤は、 Ti、 V、 Ni、 Cu、 Zn、 Y、 Zr、 Nb、 Mo、 Ag、 In、 Sn、 Ta、 W を含む金属塩又は金属酸化物群より選択される 1種又は 2種以上を含むことを特徴と する請求項 1又は請求項 2に記載の導電性インク。
[4] 前記分散媒は、分散助剤を含むものである請求項 1〜請求項 3のいずれかに記載の 導電性インク。
[5] 分散助剤は、(a)ポリアクリル酸、そのエステル又はその塩、(b)有機基置換水酸化 アンモニゥム及び(c)ヒドロキシル基含有アミン化合物の(a)〜(c)力 なる群より選択 される 1種又は 2種以上を混合したものである請求項 4に記載の導電性インク。
[6] 前記分散媒は、表面張力調整剤を用いて表面張力が 15mN/m〜50mNZmの範 囲に調整したことを特徴とする請求項 1〜請求項 5のいずれかに記載の導電性インク
[7] 前記表面張力調整剤は、常圧での沸点が 100°C〜300°Cであるアルコール、グリコ ールからなる群より選択される 1種又は 2種以上を組み合わせたものである請求項 6 に記載の導電性インク。
[8] 前記分散媒は、密着性向上剤としてシランカップリング剤、チタンカップリング剤、ジ ルコユアカップリング剤、アルミニウムカップリング剤からなる群より選択される 1種又 は 2種以上を含むことを特徴とする請求項 1〜請求項 7のいずれかに記載の導電性 インク。
[9] 前記金属粉又は金属酸化物粉は、ニッケノレ粉、銀粉、金粉、白金粉、銅粉、パラジゥ ム粉、インジウム 錫酸化物から選択された 1種又は 2種以上の混合粉である請求項 1〜請求項 8のいずれかに記載の導電性インク。
[10] 前記金属粉又は金属酸化物粉の内、ニッケノレ粉は、平均一次粒径が lOOnm以下 のものを用いる請求項 1〜請求項 9のいずれかに記載の導電性インク。
[11] 前記ニッケル粉は、ニッケル粒子の平均一次粒径が 10nm〜70nmである請求項 10 に記載の導電性インク。
[12] 25°Cにおける粘度力 60cP以下である請求項 1〜請求項 12のいずれかに記載の 導電性インク。
PCT/JP2005/023795 2004-12-27 2005-12-26 導電性インク WO2006070747A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05819587A EP1847575A4 (en) 2004-12-27 2005-12-26 CONDUCTIVE INK
US11/722,897 US8043535B2 (en) 2004-12-27 2005-12-26 Conductive ink

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004375893 2004-12-27
JP2004-375893 2004-12-27
JP2005048662A JP4799881B2 (ja) 2004-12-27 2005-02-24 導電性インク
JP2005-048662 2005-02-24

Publications (1)

Publication Number Publication Date
WO2006070747A1 true WO2006070747A1 (ja) 2006-07-06

Family

ID=36614864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023795 WO2006070747A1 (ja) 2004-12-27 2005-12-26 導電性インク

Country Status (6)

Country Link
US (1) US8043535B2 (ja)
EP (1) EP1847575A4 (ja)
JP (1) JP4799881B2 (ja)
KR (1) KR20070097055A (ja)
TW (1) TW200636027A (ja)
WO (1) WO2006070747A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116649A1 (ja) * 2006-04-10 2007-10-18 Mitsui Mining & Smelting Co., Ltd. ニッケルインク
US8758891B2 (en) 2007-04-19 2014-06-24 Mitsubishi Materials Corporation Conductive reflective film and production method thereof
US8816193B2 (en) 2006-06-30 2014-08-26 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US8822814B2 (en) 2006-10-11 2014-09-02 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition
JP2015056238A (ja) * 2013-09-10 2015-03-23 株式会社東芝 金属粒子ペースト、これを用いた硬化物、および半導体装置
JP2015160151A (ja) * 2014-02-26 2015-09-07 セイコーエプソン株式会社 分散液およびその製造方法、製造装置
WO2016031619A1 (ja) * 2014-08-29 2016-03-03 三井金属鉱業株式会社 導電体の接続構造及びその製造方法、導電性組成物並びに電子部品モジュール
US9416290B2 (en) 2012-12-28 2016-08-16 Nthdegree Technologies Worldwide Inc. Nickel inks and oxidation resistant and conductive coatings
JP2017162824A (ja) * 2017-04-17 2017-09-14 株式会社東芝 金属粒子ペースト、これを用いた硬化物、および半導体装置

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060254387A1 (en) * 2005-05-10 2006-11-16 Samsung Electro-Mechanics Co., Ltd. Metal nano particle and method for manufacturing them and conductive ink
WO2006135113A1 (ja) * 2005-06-17 2006-12-21 Sumitomo Metal Mining Co., Ltd. ニッケル膜形成用塗布液、及びニッケル膜とその製造方法
WO2007149881A2 (en) * 2006-06-19 2007-12-27 Cabot Corporation Metal-containing nanoparticles, their synthesis and use
KR100790457B1 (ko) * 2006-07-10 2008-01-02 삼성전기주식회사 금속 나노입자의 제조방법
WO2008047641A1 (fr) * 2006-10-11 2008-04-24 Mitsubishi Materials Corporation Composition pour former une électrode et procédé pour former l'électrode à l'aide de la composition
JP5151150B2 (ja) * 2006-12-28 2013-02-27 株式会社日立製作所 導電性焼結層形成用組成物、これを用いた導電性被膜形成法および接合法
JP4994086B2 (ja) * 2007-04-03 2012-08-08 旭化成イーマテリアルズ株式会社 金属薄膜前駆体分散液
US8404160B2 (en) * 2007-05-18 2013-03-26 Applied Nanotech Holdings, Inc. Metallic ink
US8058195B2 (en) 2007-06-19 2011-11-15 Cabot Corporation Nanoglass and flame spray processes for producing nanoglass
KR100817856B1 (ko) * 2007-07-13 2008-03-31 주식회사 신우테크 감시카메라용 투명히터판
JP2009079239A (ja) * 2007-09-25 2009-04-16 Sumitomo Electric Ind Ltd ニッケル粉末、またはニッケルを主成分とする合金粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサ
KR101000684B1 (ko) * 2007-10-11 2010-12-10 세종대학교산학협력단 이산화티타늄 나노튜브분말 및 이를 이용한 고압수소저장탱크 삽입용 판형 필름의 제조방법
JP5166844B2 (ja) * 2007-12-07 2013-03-21 三井金属鉱業株式会社 Itoインク
US8506849B2 (en) * 2008-03-05 2013-08-13 Applied Nanotech Holdings, Inc. Additives and modifiers for solvent- and water-based metallic conductive inks
US20100025848A1 (en) * 2008-08-04 2010-02-04 Infineon Technologies Ag Method of fabricating a semiconductor device and semiconductor device
US20110139228A1 (en) * 2008-08-27 2011-06-16 Mitsubishi Materials Corporation Transparent electroconductive film for solar cell, composition for transparent electroconductive film and multi-junction solar cell
WO2010023920A1 (ja) * 2008-08-27 2010-03-04 三菱マテリアル株式会社 太陽電池用透明導電膜及びその透明導電膜用組成物、多接合型太陽電池
JP5544774B2 (ja) * 2008-08-27 2014-07-09 三菱マテリアル株式会社 多接合型太陽電池
CN101754585B (zh) 2008-11-27 2011-09-21 富葵精密组件(深圳)有限公司 导电线路的制作方法
JP2010225287A (ja) * 2009-03-19 2010-10-07 Hitachi Maxell Ltd 透明導電膜形成用インク及び透明導電膜
KR101055625B1 (ko) * 2009-11-06 2011-08-10 에이비씨나노텍 주식회사 배선용 잉크 조성물 및 이를 이용한 구리 배선의 형성방법
DE102009053688A1 (de) 2009-11-19 2011-05-26 Ferro Gmbh Siebdruckfähige Zusammensetzung und Verfahren zur Herstellung einer leitfähigen und transparenten Schicht
KR20110139941A (ko) * 2010-06-24 2011-12-30 삼성전기주식회사 금속 잉크 조성물 및 이를 이용한 금속 배선 형성 방법, 그리고 상기 금속 잉크 조성물로 형성된 도전성 패턴
KR20110139942A (ko) * 2010-06-24 2011-12-30 삼성전기주식회사 금속 잉크 조성물 및 이를 이용한 금속 배선 형성 방법, 그리고 상기 금속 잉크 조성물로 형성된 도전성 패턴
KR101276237B1 (ko) * 2010-12-02 2013-06-20 한국기계연구원 저온소결 전도성 금속막 및 이의 제조방법
CN102675964B (zh) * 2011-02-02 2014-09-03 日本特殊陶业株式会社 油墨及设备
JP5689081B2 (ja) 2011-02-02 2015-03-25 日本特殊陶業株式会社 インク及びデバイス
JP5923894B2 (ja) 2011-02-17 2016-05-25 セイコーエプソン株式会社 インクジェット記録方法
US20120217453A1 (en) 2011-02-28 2012-08-30 Nthdegree Technologies Worldwide Inc. Metallic Nanofiber Ink, Substantially Transparent Conductor, and Fabrication Method
US10494720B2 (en) 2011-02-28 2019-12-03 Nthdegree Technologies Worldwide Inc Metallic nanofiber ink, substantially transparent conductor, and fabrication method
JP5624915B2 (ja) * 2011-03-03 2014-11-12 株式会社アルバック 金属ナノ粒子分散液
WO2012121196A1 (ja) * 2011-03-08 2012-09-13 Dic株式会社 インクジェット記録用導電性水性インク
DE102011016335B4 (de) * 2011-04-07 2013-10-02 Universität Konstanz Nickelhaltige und ätzende druckbare Paste sowie Verfahren zur Bildung von elektrischen Kontakten beim Herstellen einer Solarzelle
JP5957187B2 (ja) * 2011-06-23 2016-07-27 株式会社アルバック 金属微粒子の製造方法
EP2771920B1 (en) * 2011-10-28 2016-08-24 nanograde AG Solution-processable tungsten oxide buffer layers and organic electronics comprising same
WO2013128449A2 (en) * 2012-02-29 2013-09-06 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd Inks containing metal precursors nanoparticles
JP2015110682A (ja) * 2012-03-21 2015-06-18 旭硝子株式会社 導電インク、導体付き基材、および導体付き基材の製造方法
CN103377753B (zh) * 2012-04-17 2017-07-14 赫劳斯贵金属北美康舍霍肯有限责任公司 用于导电糊组合物的无机反应体系
SG194311A1 (en) 2012-04-17 2013-11-29 Heraeus Precious Materials North America Conshohocken Llc Conductive thick film paste for solar cell contacts
US9648753B2 (en) * 2012-12-31 2017-05-09 Amogreentech Co., Ltd. Flexible printed circuit board and method for manufacturing same
JP2014199720A (ja) * 2013-03-29 2014-10-23 富士フイルム株式会社 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP6032110B2 (ja) * 2013-04-17 2016-11-24 株式会社豊田中央研究所 金属ナノ粒子材料、それを含有する接合材料、およびそれを用いた半導体装置
US9799421B2 (en) 2013-06-07 2017-10-24 Heraeus Precious Metals North America Conshohocken Llc Thick print copper pastes for aluminum nitride substrates
EP2822000B1 (en) * 2013-07-03 2020-10-21 Heraeus Precious Metals North America Conshohocken LLC Thick print copper pastes for aluminium nitride substrates
KR20160073972A (ko) * 2013-10-24 2016-06-27 주식회사 다이셀 은 나노 입자 함유 분산액의 제조 방법 및 은 나노 입자 함유 분산액
US9540734B2 (en) * 2013-11-13 2017-01-10 Xerox Corporation Conductive compositions comprising metal carboxylates
SG11201706566XA (en) * 2015-02-12 2017-09-28 Avantama Ag Optoelectronic devices comprising solution-processable metal oxide buffer layers
JP2019513183A (ja) 2016-02-16 2019-05-23 アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティーArizona Board of Regents on behalf of Arizona State University 様々な材料の溶解性サポートを用いる3dプリンティングを使用する金属製またはセラミックス製部品の製作
WO2018013178A1 (en) 2016-07-15 2018-01-18 Arizona Board Of Regents On Behalf Of Arizona State University Dissolving metal supports in 3d printed metals and ceramics using sensitization
EP3287499B1 (en) * 2016-08-26 2021-04-07 Agfa-Gevaert Nv A metallic nanoparticle dispersion
US10286713B2 (en) 2016-10-11 2019-05-14 Arizona Board Of Regents On Behalf Of Arizona State University Printing using reactive inks and conductive adhesion promoters
WO2018118460A1 (en) * 2016-12-24 2018-06-28 Electroninks Incorporated Copper based conductive ink composition and method of making the same
TW201842087A (zh) 2017-02-08 2018-12-01 加拿大國家研究委員會 具改良之熱穩定性的分子油墨
WO2018146619A2 (en) 2017-02-08 2018-08-16 National Research Council Of Canada Silver molecular ink with low viscosity and low processing temperature
TW201842088A (zh) 2017-02-08 2018-12-01 加拿大國家研究委員會 可印刷分子油墨
WO2018213640A1 (en) 2017-05-17 2018-11-22 Mariana Bertoni Systems and methods for controlling the morphology and porosity of printed reactive inks for high precision printing
TW201920515A (zh) 2017-08-01 2019-06-01 加拿大國家研究委員會 銅墨水
JP7031258B2 (ja) * 2017-11-30 2022-03-08 住友金属鉱山株式会社 ニッケルスラリー、ニッケルスラリーの製造方法およびニッケルペーストの製造方法
CN111630119B (zh) * 2017-12-22 2022-10-25 加拿大国家研究委员会 用于高电导率精细印刷的铜油墨
TWI678711B (zh) * 2018-11-01 2019-12-01 磐采股份有限公司 導電漿料組合物及應用該導電漿料組合物之太陽能電池
JP7286404B2 (ja) * 2019-04-26 2023-06-05 キヤノン株式会社 ニッケル粒子分散液及びこれを用いた物品の製造方法
CN111496266A (zh) * 2020-05-09 2020-08-07 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种绿色环保的导电纳米铜墨水及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317201A (ja) * 2001-02-15 2002-10-31 Mitsui Mining & Smelting Co Ltd 水性ニッケルスラリー、その製造方法及び導電ペースト
JP2002324966A (ja) * 2001-04-24 2002-11-08 Harima Chem Inc インクジェット印刷法を利用する回路パターンの形成方法
WO2004005413A1 (en) * 2002-07-03 2004-01-15 Nanopowders Industries Ltd. Low sintering temperatures conductive nano-inks and a method for producing the same
JP2004087183A (ja) * 2002-08-23 2004-03-18 Toppan Forms Co Ltd 軟ろう金属微粒子を含有する導電性インキ
JP2004143571A (ja) * 2001-11-22 2004-05-20 Fuji Photo Film Co Ltd 導電パターン描画用基板およびインク、ならびに導電パターンの形成方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2111072A (en) * 1981-12-08 1983-06-29 Johnson Matthey Plc Ultra violet-curable ink or paint containing electrically conductive metal particles
EP0452118B1 (en) * 1990-04-12 1996-08-21 Matsushita Electric Industrial Co., Ltd. Conductive ink composition and method of forming a conductive thick film pattern
JPH0537126A (ja) * 1991-07-30 1993-02-12 Toshiba Corp 金属酸化物を用いた配線基板および情報記録媒体
JPH0818190A (ja) 1994-06-24 1996-01-19 Cmk Corp プリント配線板の製造方法
JP3229163B2 (ja) * 1995-04-04 2001-11-12 キヤノン株式会社 有機金属錯体、導電性膜形成用材料、並びにそれを用いた電子放出素子、電子源、表示パネルおよび画像形成装置の製造方法
JP2761866B2 (ja) 1996-03-04 1998-06-04 東海ゴム工業株式会社 プリント回路体及びその製造方法
EP0910935A1 (en) * 1996-06-12 1999-04-28 Brunel University Electrical circuit
JP4298069B2 (ja) * 1999-06-30 2009-07-15 ハリマ化成株式会社 回路描画用導電性ペーストおよび回路印刷方法
JP2002194287A (ja) * 2000-12-27 2002-07-10 Sumitomo Osaka Cement Co Ltd 透明導電膜形成用塗料および透明導電膜と表示装置
TW507500B (en) * 2001-01-09 2002-10-21 Sumitomo Rubber Ind Electrode plate for plasma display panel and manufacturing method thereof
TW522062B (en) * 2001-02-15 2003-03-01 Mitsui Mining & Smelting Co Aqueous nickel slurry, method for preparing the same and conductive paste
JP3764349B2 (ja) 2001-05-07 2006-04-05 ハリマ化成株式会社 金属微粒子分散液を用いたメッキ代替導電性金属皮膜の形成方法
AU2002363192A1 (en) * 2001-11-01 2003-05-12 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ink-jet inks containing metal nanoparticles
US20030146019A1 (en) * 2001-11-22 2003-08-07 Hiroyuki Hirai Board and ink used for forming conductive pattern, and method using thereof
KR100622336B1 (ko) * 2001-12-18 2006-09-18 아사히 가세이 가부시키가이샤 금속 산화물 분산체, 그를 이용한 금속 박막 및 금속 박막의 제조방법
US6780772B2 (en) * 2001-12-21 2004-08-24 Nutool, Inc. Method and system to provide electroplanarization of a workpiece with a conducting material layer
JP2003272453A (ja) * 2002-03-13 2003-09-26 Kanegafuchi Chem Ind Co Ltd 半導電性無機フィラー及びその製造方法ならびに半導電性樹脂組成物
US7566360B2 (en) * 2002-06-13 2009-07-28 Cima Nanotech Israel Ltd. Nano-powder-based coating and ink compositions
DE60330344D1 (de) * 2002-06-13 2010-01-14 Nanopowders Ind Ltd Ein verfahren zur herstellung von transparenten und leitfähigen nano-beschichtungen und nano-pulverbeschichtungen
JP4416080B2 (ja) * 2003-01-29 2010-02-17 富士フイルム株式会社 プリント配線基板形成用インク、プリント配線基板の形成方法及びプリント配線基板
JP2004277627A (ja) * 2003-03-18 2004-10-07 Asahi Kasei Corp インクジェット用インクおよびこれを用いた金属含有薄膜の形成方法
US7683107B2 (en) * 2004-02-09 2010-03-23 E.I. Du Pont De Nemours And Company Ink jet printable thick film compositions and processes
US20050173680A1 (en) * 2004-02-10 2005-08-11 Haixin Yang Ink jet printable thick film ink compositions and processes
US8282860B2 (en) * 2006-08-07 2012-10-09 Inktec Co., Ltd. Process for preparation of silver nanoparticles, and the compositions of silver ink containing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317201A (ja) * 2001-02-15 2002-10-31 Mitsui Mining & Smelting Co Ltd 水性ニッケルスラリー、その製造方法及び導電ペースト
JP2002324966A (ja) * 2001-04-24 2002-11-08 Harima Chem Inc インクジェット印刷法を利用する回路パターンの形成方法
JP2004143571A (ja) * 2001-11-22 2004-05-20 Fuji Photo Film Co Ltd 導電パターン描画用基板およびインク、ならびに導電パターンの形成方法
WO2004005413A1 (en) * 2002-07-03 2004-01-15 Nanopowders Industries Ltd. Low sintering temperatures conductive nano-inks and a method for producing the same
JP2004087183A (ja) * 2002-08-23 2004-03-18 Toppan Forms Co Ltd 軟ろう金属微粒子を含有する導電性インキ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1847575A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281307A (ja) * 2006-04-10 2007-10-25 Mitsui Mining & Smelting Co Ltd ニッケルインク
US8012378B2 (en) 2006-04-10 2011-09-06 Mitsui Minning & Smelting Co., Ltd Nickel ink
WO2007116649A1 (ja) * 2006-04-10 2007-10-18 Mitsui Mining & Smelting Co., Ltd. ニッケルインク
US9312404B2 (en) 2006-06-30 2016-04-12 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US8816193B2 (en) 2006-06-30 2014-08-26 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US9620668B2 (en) 2006-06-30 2017-04-11 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US8822814B2 (en) 2006-10-11 2014-09-02 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition
US8758891B2 (en) 2007-04-19 2014-06-24 Mitsubishi Materials Corporation Conductive reflective film and production method thereof
US10020409B2 (en) 2007-04-19 2018-07-10 Mitsubishi Materials Corporation Method for producing a conductive reflective film
US9416290B2 (en) 2012-12-28 2016-08-16 Nthdegree Technologies Worldwide Inc. Nickel inks and oxidation resistant and conductive coatings
US9815998B2 (en) 2012-12-28 2017-11-14 Printed Energy Pty Ltd Nickel inks and oxidation resistant and conductive coatings
US10329444B2 (en) 2012-12-28 2019-06-25 Printed Energy Pty Ltd Nickel inks and oxidation resistant and conductive coatings
US10961408B2 (en) 2012-12-28 2021-03-30 Printed Energy Pty Ltd Nickel inks and oxidation resistant and conductive coatings
JP2015056238A (ja) * 2013-09-10 2015-03-23 株式会社東芝 金属粒子ペースト、これを用いた硬化物、および半導体装置
US10086478B2 (en) 2013-09-10 2018-10-02 Kabushiki Kaisha Toshiba Metallic particle paste, cured product using same, and semiconductor device
JP2015160151A (ja) * 2014-02-26 2015-09-07 セイコーエプソン株式会社 分散液およびその製造方法、製造装置
WO2016031619A1 (ja) * 2014-08-29 2016-03-03 三井金属鉱業株式会社 導電体の接続構造及びその製造方法、導電性組成物並びに電子部品モジュール
JPWO2016031619A1 (ja) * 2014-08-29 2017-04-27 三井金属鉱業株式会社 導電体の接続構造及びその製造方法、導電性組成物並びに電子部品モジュール
CN106663880A (zh) * 2014-08-29 2017-05-10 三井金属矿业株式会社 导电体的连接结构及其制造方法、导电性组合物以及电子部件模块
JP2017162824A (ja) * 2017-04-17 2017-09-14 株式会社東芝 金属粒子ペースト、これを用いた硬化物、および半導体装置

Also Published As

Publication number Publication date
US8043535B2 (en) 2011-10-25
US20080134936A1 (en) 2008-06-12
TW200636027A (en) 2006-10-16
EP1847575A1 (en) 2007-10-24
KR20070097055A (ko) 2007-10-02
JP2006210301A (ja) 2006-08-10
EP1847575A4 (en) 2008-05-07
TWI377237B (ja) 2012-11-21
JP4799881B2 (ja) 2011-10-26

Similar Documents

Publication Publication Date Title
WO2006070747A1 (ja) 導電性インク
TWI308347B (ja)
KR100768341B1 (ko) 금속성 잉크, 그리고 이를 이용한 전극형성방법 및 기판
KR100967371B1 (ko) 구리 미립자 분산액 및 그 제조 방법
TWI391451B (zh) Nickel ink
US20100025639A1 (en) Silver particle composite powder and process production thereof
US20090236567A1 (en) Silver particle powder and process for production thereof
JP4756163B2 (ja) 複合粒子粉の分散液及びペースト並びにこれに用いる銀粒子粉の製造法
KR20080069606A (ko) 니켈 잉크 및 그 니켈 잉크로 형성한 도체막
EP2033229A1 (en) Photovoltaic conductive features and processes for forming same
CN101835555A (zh) 铜微粒和其制造方法及铜微粒分散液
KR20190093628A (ko) 분산체, 그리고 이것을 이용한 도전성 패턴 구비 구조체의 제조 방법 및 도전성 패턴 구비 구조체
WO2009031849A2 (en) Conductive ink compositions incorporating nano glass frit and nano metal for enhanced adhesion with glass and ceramic substrates used in displays
JP4947509B2 (ja) ニッケルスラリー及びその製造方法並びに該ニッケルスラリーを用いたニッケルペースト又はニッケルインキ
KR100911439B1 (ko) 나노 은 콜로이드를 이용한 잉크젯용 수계 전도성 잉크 조성물 및 이를 이용한 디스플레이용 전극 형성방법
CN103702786B (zh) 银微颗粒以及含有该银微颗粒的导电性膏、导电性膜和电子器件
JP2010137220A (ja) スプレーによる薄膜形成方法及びこの薄膜を用いた電極形成方法
KR20100014277A (ko) 은 입자 분산액 및 그 제조법
JP2008135416A (ja) 太陽電池の電極形成用組成物及び該電極の形成方法並びに該形成方法により得られた電極を用いた太陽電池
KR100728910B1 (ko) 금속성 잉크, 그리고 이를 이용한 전극형성방법 및 기판
TWI440672B (zh) ITO ink
JP2012147014A (ja) 太陽電池の電極形成用組成物及び該電極の形成方法並びに該形成方法により得られた電極を用いた太陽電池
KR100819904B1 (ko) 금속성 잉크, 그리고 이를 이용한 전극형성방법 및 기판
JP5314451B2 (ja) 金属ニッケル粒子粉末およびその分散液並びに金属ニッケル粒子粉末製造法
JP4756628B2 (ja) 水系itoインク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077015677

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005819587

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11722897

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005819587

Country of ref document: EP