JP2017162824A - 金属粒子ペースト、これを用いた硬化物、および半導体装置 - Google Patents

金属粒子ペースト、これを用いた硬化物、および半導体装置 Download PDF

Info

Publication number
JP2017162824A
JP2017162824A JP2017081341A JP2017081341A JP2017162824A JP 2017162824 A JP2017162824 A JP 2017162824A JP 2017081341 A JP2017081341 A JP 2017081341A JP 2017081341 A JP2017081341 A JP 2017081341A JP 2017162824 A JP2017162824 A JP 2017162824A
Authority
JP
Japan
Prior art keywords
metal
particle paste
polar solvent
particles
metal particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017081341A
Other languages
English (en)
Inventor
大祐 平塚
Daisuke Hiratsuka
大祐 平塚
井口 知洋
Tomohiro Iguchi
知洋 井口
内田 雅之
Masayuki Uchida
雅之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2017081341A priority Critical patent/JP2017162824A/ja
Publication of JP2017162824A publication Critical patent/JP2017162824A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】 高温環境下においても劣化が抑制された硬化物を得ることができる金属粒子ペースト提供することである。
【解決手段】 実施形態の金属粒子ペーストは、極性溶媒と、前記極性溶媒中に分散され、第一の金属を含む粒子とを含有する。前記極性溶媒には、前記第一の金属とは異なる第二の金属が溶解されていることを特徴とする。
【選択図】 なし

Description

本発明の実施形態は、金属粒子ペースト、これを用いた硬化物、および半導体装置に関する。
はんだは、電子機器において電子部品と基板とを接合する材料として使用されており、鉛フリー化が進んでいる。しかしながら、使用時に高温となるパワーデバイスの接合部に適用されるはんだの場合には、鉛フリー化が困難であった。近年では、Siよりも高温での動作が可能なワイドバンドギャップ半導体の開発が進んでおり、デバイスの動作温度は300℃程度に達することが予想されている。このため、接合材料には、より高い耐熱性が求められている。
現在では、熱又は電磁波を利用した金属粒子の焼結接合によって、接合材料の耐熱性を高めようとしている。例えば、活性の高い金属ナノ粒子を容易に熱分解される有機物で被覆して、安定性を高めたペーストが提案されている。また、金属ナノ粒子を用いることで、被接合部材間を高強度で接合する方法が提案されている。さらに、金属ナノ粒子を用いて基板上へ微細な配線パターンを形成する方法が提案されている。
従来の金属粒子ペーストを用い、200〜350℃程度の熱処理を施すことによって形成される接合部は、微細なボイドを有する多孔質の金属からなる硬化物である。この硬化物は、いわば焼結が中途で停止した状態であるから、硬化温度又はそれより高温の環境で放置した場合には、接合部内で金属の拡散が進行する。そのため、接合部とチップとの界面近傍、又は接合部と電極との界面近傍へ微細なボイドが凝集して組織が劣化することが、これまでに報告されている。
高温環境下での劣化メカニズムが金属の拡散であることに着目すると、一般には、金属組織の粒界に微量の第二元素を分散させて、ピン止め効果により組織の安定化を図ることが有効である。ピン止め効果を発現するためには、第二元素の種類は特に制限されず、むしろ粒界に均一に分散させることが重要である。金属粒子ペーストを用いて第二元素を粒界に均一に分散させた組織を得るために、基本となる第一の金属からなる微細粒子と、第二の金属からなる微細粒子とを混合する方法が報告されている。
しかしながら、一般に微細粒子は凝集して二次粒子を形成するため、第一の金属からなる微細粒子と第二の金属からなる微細粒子とを均一に混合させた金属粒子ペーストを得ることは非常に困難である。
財団法人 神奈川科学技術アカデミー 平成21年度研究概要「次世代パワーエレクトロニクス」プロジェクト2010.7.16
特開2012−46779号公報 特開2011−240406号公報 特開2009−97074号公報 特開2012−169374号公報 特開2011−58041号公報
本発明が解決しようとする課題は、高温環境下においても劣化が抑制された硬化物を得ることができる金属粒子ペーストを提供することにある。
実施形態によれば、金属粒子ペーストは、極性溶媒と、前記極性溶媒中に分散され、第一の金属を含む粒子とを含有する。前記極性溶媒には、前記第一の金属とは異なる第二の金属が溶解されていることを特徴とする。
一実施形態にかかる金属粒子ペーストの概念図。 従来の金属粒子ペーストの概念図。 金属粒子ペーストを用いた接合方法のフローチャート。 実施例の金属粒子ペースト乾燥物の電子顕微鏡写真。 実施例の金属粒子ペースト乾燥物の高倍率の電子顕微鏡写真。 比較例の金属粒子ペースト乾燥物の電子顕微鏡写真。 試験片の概略を示す上面図。 試験片の概略を示す側面図。 ダイシェア試験強度を示す図。 ボイド面積比の算出方法を説明する図。
以下、図面を参照して本発明の実施形態について説明する。
図1は、一実施形態にかかる金属粒子ペーストの概念図である。一実施形態の金属粒子ペースト10は、第一の金属と第二の金属との二種類の異なる金属を含有する。本実施形態の金属粒子ペースト10においては、第一の金属は粒子1として極性溶媒4中に分散されており、一方、第二の金属は、極性溶媒4中に溶解されている。
本実施形態の金属粒子ペーストは、硬化させて硬化物とされ、第一の金属は、この硬化物中において主として電気伝導性および熱伝導性を担う母相を構成する。すでに説明したとおり、硬化物の母相を構成している第一の金属の拡散を抑制することが、この硬化物の劣化の抑制につながる。第一の金属の拡散を抑制するためには、第一の金属とは異なる第二の金属を、硬化物の母相を構成している第一の金属の粒界に均一に存在させることが有効である。本実施形態で用いられる第二の金属は、第一の金属とは異なるものであるので、硬化物中で第一の金属の拡散を抑制する作用を有する。
しかも、第二の金属は、粒子として存在するのではなく極性溶媒中に溶解していることから、本実施形態の金属粒子ペーストにおいては、第二の金属を均一に存在させることが可能となった。本実施形態の金属粒子ペーストを硬化させて得られる硬化物においては、第一の金属は母相を構成し、第二の金属は硬化プロセス中に第一の金属の表面に析出する。析出した第二の金属は、例えば100nm以下の粒子径を有する粒子である。第二の金属はペースト中に均一に存在しているので、硬化物中における第二の金属の析出も均一である。上述したとおり、母相を構成している第一の金属と異なる第二の金属は、第一の金属の拡散を抑制する。こうした第二の金属が、第一の金属の粒界近傍に均一に存在することによって、第一の金属の拡散を阻害してボイドの凝集を抑制する効果はよりいっそう高いものとなる。その結果、高温環境下においても劣化が抑制されるので、安定な組織を有する硬化物が得ることができる。
なお、従来の金属粒子ペーストにおいては、図2に示されるように、第一の金属を含む粒子(第一の粒子)1と第二の金属を含む粒子(第二の粒子)2とが溶媒3中に分散されている。第一および第二の二種類の粒子を含む従来の金属粒子ペースト12においては、各粒子の凝集という問題が伴う。しかも、原理的に粒子サイズ以下の大きさでの分散ができないことから、第一の粒子と第二の粒子とを均一に混合することが困難であった。そのため、従来の金属粒子ペーストを用いたところで、第二の金属が均一に分散した硬化物は必ずしも得られなかった。
上述したように、粒子を構成している金属(第一の金属)とは異なる種類の金属(第二の金属)が溶媒中に溶解した本実施形態の金属粒子ペーストを用いて得られる硬化物においては、第一の金属が母相を構成し、第二の金属は母相中に均一に存在する。こうした第二の金属によって第一の金属の拡散が阻害されるので、ボイドの凝集が抑制される。その結果、高温環境下においても劣化が抑制されて、安定な組織を有する硬化物を得ることが可能となった。
本実施形態の金属粒子ペーストにおいて、第一の金属は、電気伝導性および熱伝導性を付与できれば貴金属および非貴金属のいずれでもよく、特に限定されない。電気伝導性および熱伝導性を考慮すると、第一の金属は、例えば、Au、Pt、Pd、Ru、Rh、Ir、Ag、Cu、Ni、Zn、Bi、Fe、Mo、Al、CrおよびV等からなる群から選択することが好ましい。電気伝導性および熱伝導性を維持できれば、第一の金属は、金属酸化物等の化合物や合金の形態であってもよい。Ag、Cu、およびAuから選択される少なくとも一種を第一の金属として用いた場合には、得られる硬化物の電気伝導性および熱伝導性がよりいっそう高められる。
所望の硬化物が形成できる範囲であれば、第一の金属を含む粒子1の粒子径は特に限定されないが、粒子径は小さいほうが好ましい。粒子径が小さくなるほど活性が高められ、しかも粒子同士の接触面積が増大する。その結果、得られる硬化物の電気伝導性や熱伝導性が向上する。こうした第一の金属を含む粒子を含有する金属粒子ペーストを被接合部材の接合に用いた場合には、接合強度も高められる。
第一の金属の粒子の粒子径は、例えば、1〜10000nmとすることができる。ここでの粒子径は、透過型電子顕微鏡を用いた観察によって求めることができる。第一の金属を含む粒子の粒子径は、5〜5000nmがより好ましく、10〜1000nmがさらに好ましい。第一の金属を含む粒子の粒子径は、さらにより好ましくは10〜500nmであり、最も好ましくは10〜100nmである。第一の金属を含む粒子は、特定の粒子径範囲のものを単独で使用することができる。あるいは、異なる範囲の粒子径を有する複数の粒子を組み合わせて使用してもよい。
金属粒子ペースト中における第一の金属を含む粒子の含有量についても、所望の硬化物が形成可能な範囲内であれば特に限定されない。第一の金属を含む粒子の含有量が高いほど、硬化の初期における固体充填率を高めることができる。このため、本実施形態の金属粒子ペースト中においては、第一の金属を含む粒子の含有量は、好ましくは50質量%以上100質量%未満(例えば99質量%未満)である。
第一の金属を含む粒子1の表面には、親水性基を有する有機物が吸着または結合されている。この有機物は、粒子の表面を保護するとともに、極性溶媒中における粒子の分散安定性を高める作用を有する。親水性基によって、金属粒子の極性溶媒への分散安定性が向上するので、粒子の凝集を抑制することができる。親水性基としては、例えば、水酸基、アミノ基及びイミノ基等が挙げられる。
金属粒子ペースト中における有機物の含有量は特に限定されないが、金属粒子の含有量を多くするためには可能な限り少量であることが望ましい。例えば、0.1〜10質量%であることが好ましい。粒子表面に存在する有機物の量は、熱重量分析などによって確認することができる。
なお、容易に供給するためには、本実施形態においては、第一の金属を含む粒子は、第二の金属が溶解した極性溶媒と混合してペーストとして用いられる。極性溶媒を用いることによって、第二の金属を良好に溶解することができる。極性溶媒は、例えば、以下の群から選択することができる。
(a)アルコール類(例えば、脂肪族アルコール類(ヘプタノール、オクタノール(1−オクタノール、2−オクタノール等)、デカノール(1−デカノール等)、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、オクタデシルアルコール、ヘキサデセノール、オレイルアルコール等の飽和又は不飽和脂肪族アルコール、脂環族アルコール類(例えば、シクロヘキサノール等のシクロアルカノール類;テルピネオール、ジヒドロテルピネオール等のテルペンアルコール類(例えば、モノテルペンアルコール等))、芳香脂肪族アルコール(例えば、ベンジルアルコール、フェネチルアルコール等)、多価アルコール類(エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等))
(b)グリコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールブチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル;2−フェノキシエタノール等の(ポリ)アルキレングリコールモノアリールエーテル等)
(c)グリコールエステル類(例えば、酢酸カルビトール等の(ポリ)アルキレングリコールアセテート等)
(d)グリコールエーテルエステル類(例えば、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等の(ポリ)アルキレングリコールモノアルキルエーテルアセテート)
(e)エステル類(例えば、酢酸ベンジル、酢酸イソボルネオール、安息香酸メチル、安息香酸エチル等)
(f)アミノ化合物(モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン等)
(g)上記以外の脂肪族炭化水素類(例えば、テトラデカン、オクタデカン、ヘプタメチルノナン、テトラメチルペンタデカン等の飽和又は不飽和脂肪族炭化水素類)
(h)上記以外の芳香族炭化水素類(例えば、トルエン、キシレン等))
また、極性溶媒として水を用いることもできる。これらの極性溶媒は、分離せず均一に混合できる限り、2種以上組み合わせて使用してもよい。
本実施形態の金属粒子ペーストには、粒子として分散される第一の金属とともに、この第一の金属とは異なる第二の金属が含有される。本実施形態の金属粒子ペーストを硬化させてなる硬化物の母相は第一の金属により構成されるので、金属粒子ペースト中の第二の金属の量は、第一の金属より少ない。第二の金属は、第一の金属に対して0.001原子%以上の量でペースト中に存在していれば、硬化物中において第一の金属の拡散を阻害するという効果を発揮することができる。第二の金属の量は第一の金属よりも少ないことから、十分に高い電気伝導率および熱伝導率を有していない金属を第二の金属として用いた場合でも、硬化物の特性が大きく損なわれることはない。
なお、第一の金属に対する第二の金属の量(原子%)は、一般的には、各金属の種類および含有量に基づいて算出することができる。
上述したとおり硬化物中では第一の金属が構成するので、金属粒子ペースト中においては、第二の金属より第一の金属の量が多量に含有される。第一の金属が硬化物の母相を構成することから、この第一の金属の電気伝導率および熱伝導率は、第二の金属より優れていることが好ましい。
第二の金属としては、例えば、アルカリ土類金属、Au、Pt、Pd、Ag、Cu、Cr、Ni、Nb、Mo、Sn、Bi、In、Sb、Ge、Co、Zn、Ti、Al、V、Y、Zr、Hf、Be、Mg、Mn、Fe、Zr、およびW等から、第一の金属とは異なるものを選択して用いることができる。
第二の金属として酸化性非貴金属を用いた場合には、硬化中に酸化し、融点が上昇して安定性が高められる。硬化物中においては、酸化した第二の金属は、第一の金属からなる母相中で安定に存在する。その結果、より高温の条件下においても第一の金属の拡散を抑制することができる。さらに、第二の金属が酸化物を形成した場合は、その硬度も高くなるため、強度等の機械的特性も、よりいっそう高めることができる。先に列挙した金属のうちでは、アルカリ土類金属、Cu、Cr、Ni、Nb、Mo、Sn、Bi、In、Sb、Ge、Co、Zn、Ti、Al、V、Y、Zr、Hf、Be、Mg、Mn、Fe、Zr、およびWが酸化性非貴金属に該当する。
第二の金属が非酸化性の場合であっても、第一の金属と金属間化合物を形成する金属を第二の金属として用いた場合には、第一の金属の拡散を抑制することができる。硬化物中に金属間化合物が形成され、融点が上昇して安定性が高められる。形成された金属間化合物は、第一の金属によって構成される硬化物の母相中で安定に存在し、より高温の条件下においても第一の金属の拡散を抑制できる。さらに、第一の金属と第二の金属とで金属間化合物が形成された場合には硬度も高くなるため、強度等の機械的特性もさらに高めることができる。そのような組み合わせとしては、例えば,Ag,Cu,Ni,Au,Pdから選択される少なくとも1種と、Snとの組み合わせが挙げられる.
極性溶媒へ可溶であって、所望の硬化物が形成可能であれば、第二の金属の含有量は特に限定されない。金属粒子ペースト中における第二の金属の量が、溶解度に対して小過剰量の場合でも、硬化物中で第一の金属の拡散を抑制する効果は確認されている。第二の金属は、量が少ないほど極性溶媒へ容易に溶解し、硬化物の強度や電気伝導性および熱伝導性へ及ぼす影響も小さい。
第二の金属の含有量が過剰に高い場合は、極性溶媒への溶解度を超えて溶け残りが生じる。金属粒子ペースト中に第二の金属の溶け残りが生じていると、硬化物における第一の金属の粒界に、第二の金属を均一に分散させることができない。最悪の場合には、硬化物中に粗大粒子や粗大空隙などの欠陥が発生することが見出された。粗大粒子は、第二の金属が凝集・析出して形成され、粗大な空隙は,第二の金属の原料(錯体、有機金属化合物又は塩)中に含まれる有機成分が硬化中にガス化することによって生成される。
粗大粒子や粗大空隙が存在することによって、硬化物の強度や熱伝導性および電気伝導性の低下が引き起こされるおそれがある。したがって、金属粒子ペースト中における第二の金属の添加量の上限は極性溶媒へ完全に溶けきる、溶解度以下であることが望まれる。なお、極性溶媒に対する第二の金属の溶解度は、物性値として文献等から得ることができる。
硬化物の強度や熱伝導性および電気伝導性を極力損なうことなく、目的の効果を十分に得るためには、第二の金属の量は、第一の金属に対して0.001原子%以上であって、極性溶媒に対する溶解度以下の量であることが好ましい。
本実施形態の金属粒子ペーストは、例えば、第一の金属を含む粒子と、第二の金属の原料と、極性溶媒とを混合することによって調製することができる。上述したように第二の金属の原料としては、第二の金属を含む錯体、有機金属化合物、または塩が挙げられる。第二の金属の原料として錯体が用いられた場合には、第二の金属はこの錯イオンの状態で金属粒子ペースト中に存在し、第二の金属の原料として有機金属化合物または塩が用いられた場合には、第二の金属は有機金属イオン,又は金属単体のイオンの状態で金属粒子ペースト中に存在する。
第二の金属の原料の熱分解温度は、硬化温度の上限である400℃以下であることが好ましい。特に限定されるものではないが、極性溶媒への溶解性が優れていることから、第二の金属の原料としては金属のカルボン酸塩が好ましく、例えば、Niのカルボン酸塩などである。
混合にあたっては、まず、第一の金属を含む粒子を極性溶媒中に分散させ、得られた分散液中に第二の金属の原料を加えることができる。あるいは、第二の金属の原料を極性溶媒に溶解し、得られた溶液中に第一の金属を含む粒子を分散させて、本実施形態にかかる金属粒子ペーストを調製してもよい。
本実施形態の金属粒子ペーストは、第一の金属を含む粒子が極性溶媒中に分散されたペーストと、第二の金属の原料とを混合することによって調製することもできる。例えば、第一の金属を含む粒子としてのAgナノ粒子が、極性溶媒としてのテルピネオール中に分散されたペーストは、配線形成や接合用途向けの金属ナノ粒子ペーストとして知られている。
本実施形態の金属粒子ペーストは、例えば、半導体装置における被接合部材の接合に用いることができる。
被接合部材の材質は特に限定されず、金属材料、プラスチック材料、またはセラミック材料等を使用することができる。金属材料は、例えば、Au、Ag、Cu、およびAl、Fe、ステンレス等から選択することができる。プラスチック材料は、例えば、ポリイミド、ポリエチレン、ポリプロピレン、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリカーボネート、ポリエチレンナフタレート、ポリビニルブチラール、ナイロン、およびエポキシ等から選択することができる。セラミック材料は、例えば、ガラス、アルミナ、窒化アルミニウム、窒化ケイ素、窒化ガリウム、酸化ガリウム、酸化マグネシウム、炭化ケイ素、窒化ホウ素、ムライト、ダイヤモンドおよびベリリア等から選択することができる。
上述した材質からなる部材の表面には、Au,Pt,Pd,Ag,Cu,Sn,およびNiからなる群から選ばれる少なくとも一種を含む金属の薄膜が設けられていてもよい。
また、被接合部材として、半導体素子を使用することもできる。特に、第一の金属としてAu、Pt、Pd、Ag、Cu、およびNi等の耐熱性の高い金属を使用する場合には、シリコンだけでなく、炭化ケイ素や窒化ガリウム、酸化ガリウム、およびダイヤモンド等のパワーデバイス素子を被接合部材として使用することができる。パワーデバイス素子の接合へ適用することにより、熱抵抗を低下させることで、冷却器の簡素化が可能となる。これによって、装置の小型化を図ることができ、設計自由度も向上する。
半導体素子に適用する場合も同様に、これらの部材の表面に、Au,Pt,Pd,Ag,Cu,Sn,およびNiからなる群から選ばれる少なくとも一種を含む金属の薄膜が設けられていてもよい。
接合にあたっては、図3のフローチャートに示されるように、まず、金属粒子ペーストを一方の被接合部材に金属粒子ペーストを適用してペースト層を形成し、この上に他方の被接合部材を積層する。金属粒子ペーストは、印刷または塗布等により適用することができる。次いで、金属粒子同士を接合させることによって硬化物からなる接合層を介して、2つの被接合部材が接合される。
金属粒子同士は、例えば加熱、加圧によって接合することができる。加熱温度は特に限定されないが、パワーデバイス素子を接合する場合には、チップ上の有機絶縁膜が耐え得る温度以下とすることが好ましい。一般的には、400℃以下であれば有機絶縁膜の熱安定性が損なわれるおそれは少ないとされている。なお、超音波衝撃、電磁波衝撃、化学反応等を利用して、加熱無しで金属粒子同士を接合することも可能である。
また、加圧により金属粒子の接触点が増えて接合が促進されるため、加圧力は5MPa以上が好ましいが、この限りでない。超音波、電磁波および化学反応等を利用して、加圧無しでの金属粒子同士を接合してもよい。
場合によっては、金属粒子ペースト中の極性溶媒によって金属粒子同士の接合が阻害されることがある。ペーストを適用後、焼結等により金属粒子の接合を開始するまでに溶媒を除去しておくことによって、こうした不都合を回避することができる。具体的には、本実施形態の金属粒子ペーストを乾燥させて乾燥物を作製しておく。乾燥物は、剥離可能な支持シート上に作製してもよい。本明細書においては、金属粒子ペースト中の極性溶媒が実質的に除去された状態を、「乾燥」と称する。
例えば、接合部に適した寸法および形状で金属粒子ペーストを成型し、これを放置して極性溶媒を除去することによって乾燥物が得られる。常温で放置してもよいが、低温で加熱した場合には、極性溶媒を除去に要する時間を短縮することができる。得られた乾燥物を介して基板上に電子部品を配置し、所定の温度で加熱することによって、電子部品を基板に接合することができる。剥離可能な支持シート上に作製された乾燥物は、基板の所定の領域に転写して、配線の形成に用いることができる。
乾燥物を作製する際には、金属粒子ペーストにバインダーや可塑剤を配合してもよい。この場合には、乾燥物の成型性や可塑性を高めることができる。
バインダーとしては、以下の群から選ばれる樹脂等を用いることができる。すなわち、各種変性ポリエステル樹脂(例えば、ポリエステル樹脂、ウレタン変性ポリエステル樹脂、エポキシ変性ポリエステル樹脂、およびアクリル変性ポリエステル樹脂など)、ポリエーテルウレタン樹脂、ポリカーボネートウレタン樹脂、アクリルウレタン樹脂、塩化ビニル・酢酸ビニル共重合体、エポキシ樹脂、フェノール樹脂、フェノキシ樹脂、アクリル樹脂、ポリビニルブチラール樹脂、ポリアミドイミド、ポリイミド、ポリアミド、変性セルロース類(例えば、ニトロセルロース、セルロース・アセテート・ブチレート(CAB)、およびセルロース・アセテート・プロピオネート(CAP)など)、ビニル系樹脂(例えば、酢酸ビニル、およびポリフッ化ビニリデンなど)、セルロース系樹脂(例えば、エチルセルロース、およびニトロセルロースなど)、およびパラフィン等である。
上述したようなバインダーは、単独で、又は分離しない限りは2種以上を混合して使用することができる。
可塑剤は、例えば、ジカルボン酸エステル、リン酸エステル、ポリエステル、エポキシ化植物油、ポリエーテルポリオール、フタル酸エステル、ジブチルフタレート、ジオクチルフタレート、ポリエチレングリコール、およびグリセリン等からなる群から選択することができる。可塑剤もまた、単独で、又は分離しない限りは2種以上を混合して使用することができる。
バインダーおよび可塑剤の量は、他の有機物と合わせて、0.1〜10質量%以下であることが好ましい。
なお、乾燥物においては、第一の金属を含む粒子をドメイン(一次粒子)として、アグリゲート(凝集体)が形成される。アグリゲートの表面には、第二の金属が析出してなる粒子径100nm以下程度の粒子が均一に形成される。乾燥物の状態は、電子顕微鏡により観察することができる。
本実施形態の金属粒子ペーストを用いて得られる接合層においては、第二の金属が組織内に析出して、第一の金属の拡散を阻害する。このため、ボイドの凝集が抑制されて、得られる接合層は優れた熱安定性を有する。接合層中の第二の金属は、必ずしも粒子を構成している必要はない。組織内に第二の金属が析出していれば、所望の効果を発揮することができる。
接合層の組織内における第二の金属の分布状態は、特に限定されない。本実施形態においては、第二の金属を、硬化物を形成する第一の金属の粒界近傍へ均一に分散させて第一の金属の拡散を抑制し、それにより安定な組織を得るものである。したがって、第二の金属は、第一の金属を含む硬化物組織の粒界及び粒界近傍に存在することが好ましい。粒界近傍とは、特に限定されるものではないが、任意の粒界を基点とし、粒界に隣接する粒子に対してその粒子径の1/10以下の範囲であることが好ましい。こうした範囲内に第二の金属が存在する場合には、第一の金属の拡散を抑制する効果が十分に発揮される。したがって、本実施形態は第一の金属の拡散抑制に効果的である。
第二の金属の分布状態は、これに限定されるものではない。任意の粒界を基点とし、粒界に隣接する粒子に対してその粒子径の1/10以下の範囲外に、第二の金属が存在していてもよい。また、接合層の組織中における第二の金属は、接合層の電気伝導性および熱伝導性を維持している限り、金属酸化物等の化合物や合金の形態であってもよい。
本実施形態の金属粒子ペーストは、電子基板上に配線や放熱部を形成するために使用することも可能である。本実施形態の金属粒子ペーストにおいては、極性溶媒中に第二の金属が溶解しており、この第二の金属は硬化物からなる配線を形成する際に配線組織内に析出する。得られる配線においては、第一の金属の拡散が阻止されてボイドの凝集が抑制されることから、熱安定性に優れた配線となる。
また、本実施形態にかかる金属粒子ペーストを電極の形成に用いた場合には、熱安定性に優れた電極を得ることができる。
本実施形態にかかる金属粒子ペーストは、第一の金属を含む粒子と、前記第一の金属とは異なる第二の金属が溶解され、前記第一の金属を含む粒子が分散された極性溶媒とを含有することにより、高温環境下においても劣化が抑制された硬化物を形成することが可能である。
以下、金属粒子ペーストの具体例を説明する。
1.金属粒子ペーストの調製
第一の金属としてAgを用い、第二の金属としてNiを用いて、金属粒子ペーストを調製した。第一の金属の粒子としては、粒子径20nm程度のAg粒子が含有されており、このAg粒子が極性溶媒としてのテルピネオール中に分散されている。ペースト中におけるAg粒子の量は、80質量%程度である。
第二の金属としてのNiは、カルボン酸塩として用いた。第二の金属(Ni)の量が所定の値となるように、Niのカルボン酸塩をAgナノ粒子ペーストに加えて複数の金属粒子ペーストを調製した。それぞれにおける第二の金属(Ni)の量は、下記表1に示すとおりである。
サンプルNo.7〜9の金属粒子ペーストにおいては、Niのカルボン酸塩の溶け残りが確認された。このため、0.2原子%以上の添加量では、溶解度を超えてNiのカルボン酸塩が過剰に添加されたものといえる。
得られた金属粒子ペーストを基材上に塗布し、100℃で30分加熱することで極性溶媒を蒸発させて乾燥物を作製した。得られた乾燥物を電子顕微鏡で観察した結果、Niのカルボン酸塩を含有するサンプルNo.2〜9の乾燥物では、5〜20nm程度の粒子が分散していることが確認された。この粒子は、Niのカルボン酸塩が析出して形成されたものである。
一例として、サンプルNo.9の乾燥物の電子顕微鏡写真を図4に示す。図4中には、第一の金属を含む粒子のアグリゲート(凝集体)が示されており、このアグリゲートは、粒子径が500nm以下の粒子をドメイン(一次粒子)として形成されていることがわかる。また、黒色の三角形のマーカは、析出したNiカルボン酸塩の微細な粒子を指している。
図5は、より高い倍率での電子顕微鏡写真である。析出したNiカルボン酸塩の微細な粒子がアグリゲートの表面に明確に現れており、この粒子の粒子径は100nm以下であることがわかる。
図6には、サンプルNo.1の乾燥物の電子顕微鏡写真を示す。倍率は図4の場合と同様である。Niカルボン酸塩が含有されない場合には、Niカルボン酸塩の微細な粒子は生じていないことがわかる。
2.ダイシェア試験
表1に記載された金属粒子ペーストを用いて試験片を作製し、ダイシェア試験を行なった。まず、Cu貼りセラミック基板を用意し、アセトン中での超音波洗浄および塩酸中での酸洗いによる前処理を施した。なお、Cu膜は電極として用いられる。次いで、水洗し、乾燥してCu電極上の酸化膜を除去した。このCu電極上に0.05mm厚のメタルマスクを用い、金属粒子ペーストを4mm□のパターンに印刷した。
金属粒子ペーストのパターンを100℃で30分間乾燥させた後、印刷パターンの中央に3mm□のSiCチップを配置した。用いたSiCチップの裏面最表面には、Au電極が設けられている。ダイボンダを用いて窒素雰囲気中、300℃/5MPaで5分加熱加圧することによりチップを基板に接合して試験片を作製した。
得られた試験片の上面図および側面図を、それぞれ図7および図8に示す。図示するように、試験片9においては、Cu貼りセラミック基板7上に、接合層6を介してSiCチップ5が配置されている。
試験片の接合強度を、ダイシェア試験(試験速度0.2mm/秒)により測定した。その結果を、Niカルボン酸塩を含有しないサンプルNo.1の値で規格化して図9に示す。0.001原子%以上の第二の金属(Ni)が接合層中に含有されたサンプルNo.3〜9は、サンプルNo.1〜2より高い強度を有していることが図9からわかる。
3。高温放置試験
前述と同様の処理を施して、Cu電極表面の酸化膜が除去されたCu貼りセラミック基板を用意した。このCu貼りセラミック基板上に、前述と同様のメタルマスクを用いて金属粒子ペーストを8mm□のパターンに印刷した。それを100℃で30分乾燥させた後、印刷パターンの中央に7mm□のSiCチップを配置した。用いたSiCチップの裏面最表面には、Au電極が設けられている。ダイボンダを用いて窒素雰囲気中、300℃/5MPaで5分加熱加圧することにより接合して試験片を作製した。
金属粒子を含む接合層においては、微細なボイドが接合層の中央からチップ又は基板電極側へ凝集し、ボイドが偏ることによって劣化が生じることが報告されている。接合層の劣化を定量化するため、接合層の断面組織を観察した。断面組織の観察は、高温放置試験の前後において、研磨加工した後に電子顕微鏡により実施した。
図10を参照して、ボイドの偏りの算出手法について説明する。図10には、Cu貼りセラミック基板上のCu電極13とSiCチップ5との間の接合層6の概略図を示している。図示するように、SiCチップ5側の上側層6aと、Cu電極13側の下側層6bとに接合層6を中央で二等分して、それぞれの組織に含まれる微小なボイドの面積率を求める。ボイド面積率(%)は、以下のように定義される。
(ボイド面積率)≡(ボイドの面積)/((ボイドの面積)+(金属の面積))×100
断面組織中のボイド及び金属の面積は、市販の画像処理ソフトを用いて断面組織写真を二値化した後、それぞれの画素数から算出した。
上側層6aおよび下側層6bについてのボイド面積率を、それぞれS6aおよびS6bとし、以下のようにボイド面積比を求める。
(ボイド面積比)=S6b/S6a
このボイド面積比の値が1に近いほど、接合層6中におけるボイドが偏りなく存在していることになる。高温放置試験前(初期)においては、いずれの金属粒子ペーストを用いた試験片でもボイド面積比は1であった。
次いで、各試験片を300℃に加熱したオーブン内に載置して、100時間の高温放置試験を実施した。試験後の試験片の断面を研磨加工し、これを電子顕微鏡により観察して、上述した手法によりボイド面積比を求めた。
各試験片について、高温放置試験後のボイド面積比を、試験前(初期)のボイド面積比とともに下記表2にまとめる。
上記表2に示されるように、いずれの試験片でも高温放置試験前(初期)においては、チップ側および電極側のボイド面積比はほぼ1である。第二の金属としてのNiの濃度によらず、接合層中におけるボイドに偏りはない。
しかしながら、高温放置試験後では、サンプルNo.1〜2のボイド面積比は0.5に減少している。第二の金属が含有されない金属粒子ペースト(サンプルNo.1)、および第二の金属の含有量が0.0002原子%金属粒子のペースト(サンプルNo.2)を用いた場合には、得られる接合層のSiCチップ5側には、電極13側のほぼ2倍のボイドが存在していることがわかる。このようなボイドに大きな偏りが生じると、劣化が顕著になる。
それに対して、サンプルNo.3〜9では、高温放置試験後のボイド面積比は0.7〜0.8であり、上述の0.5よりも大きい。これらにおけるボイドの偏りは、サンプルNo.1,2より小さいことがわかる。サンプルNo.3〜9におけるNi添加量は、0.001原子%以上である。ボイド面積比が0.7以上であれば、ボイドが偏っていたところで劣化を引き起こすおそれは小さい。このように、本実施形態により劣化が抑制できることが明らかとなった。
一実施形態においては、第一の金属および第二の金属として、それぞれAgおよびNiを含む金属粒子ペーストを例に挙げて説明したが、これに限定されるものではない。極性溶媒中に第一の金属を含む粒子が分散され、第一の金属とは異なる第二の金属が極性溶媒中に溶解している本実施形態にかかる金属粒子ペーストを用いることによって、上述と同等の効果が得られる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
本実施形態は、以下の態様を含む。
(付記1)
極性溶媒と、
前記極性溶媒中に分散され、第一の金属を含む粒子とを含有し、
前記極性溶媒中には、前記第一の金属とは異なる第二の金属が溶解されていることを特徴とする金属粒子ペースト。
(付記2)
前記第二の金属の濃度は、前記第一の金属に対して0.001原子%以上であることを特徴とする付記1に記載の金属粒子ペースト。
(付記3)
前記第一の金属は、Au、Pt、Pd、Ru、Rh、Ir、Ag、Cu、Ni、Zn、Bi、Fe、Mo、Al、Cr、およびVからなる群から選択されることを特徴とする付記1または2に記載の金属粒子ペースト。
(付記4)
前記第二の金属は、アルカリ土類金属、Ag、Cu、Cr、Ni、Nb、Mo、Sn、Bi、In、Sb、Ge、Co、Zn、Ti、Al、V、Y、Zr、Hf、Be、Mg、Mn、Fe、Zr、およびWからなる群から選択されることを特徴とする付記1〜3のいずれかに記載の金属粒子ペースト。
(付記5)
前記第二の金属の量は、前記極性溶媒に対する溶解度以下であることを特徴とする付記1〜4のいずれかに記載の金属粒子ペースト。
(付記6)
前記第二の金属は、金属単体または有機金属のイオンとして含有されていることを特徴とする付記1〜5のいずれかに記載の金属粒子ペースト。
(付記7)
前記第二の金属は、有機金属化合物または塩として添加されたものであることを特徴とする付記1〜5のいずれかに記載の金属粒子ペースト。
(付記8)
付記1〜7のいずれかに記載の金属粒子ペーストを乾燥させてなる乾燥物であって、前記第二の金属が析出した粒子を含むことを特徴とする乾燥物。
(付記9)
前記第一の金属を含む粒子は凝集体を形成し、個々の粒子の粒子径は500nm以下であり、前記第二の金属が析出した粒子の粒子径は100nm以下であることを特徴とする付記8に記載の乾燥物。
(付記10)
バインダーをさらに含有する付記8または9に記載の乾燥物。
(付記11)
付記1〜7のいずれかに記載の金属粒子ペースト、または付記8〜10のいずれかに記載の乾燥物を硬化させてなる硬化物であって、前記第一の金属の粒界及び粒界近傍に前記第二の金属が存在することを特徴とする硬化物。
(付記12)
配線を有する基板と、接合部を介して前記基板上に設けられた電子部品および/または電極とを具備する半導体装置であって、
前記配線、前記接合部、および前記電極の少なくとも1つに付記11に記載の硬化物を含むことを特徴とする半導体装置。
1…第一の金属を含む粒子; 2…第二の金属を含む粒子; 3…極性溶媒
4…第二の金属が溶解された極性溶媒; 5…SiCチップ; 6…接合層
6a…上側層; 6b…下側層; 7…Cu貼りセラミック基板; 9…試験片
10…金属粒子ペースト; 12…金属粒子ペースト; 13…Cu電極
14…ボイド。

Claims (8)

  1. 極性溶媒と、
    前記極性溶媒中に分散された、第一の金属を含む粒子と、
    前記極性溶媒中に溶解された、前記第一の金属とは異なる第二の金属とを含み、
    前記極性溶媒はアルコール、グリコールエーテル、エステル、アミノ化合物、脂肪族炭化水素、および芳香族炭化水素からなる群より選択され、
    前記第二の金属は有機金属化合物または塩として添加されている
    ことを特徴とする金属粒子ペースト。
  2. 前記第二の金属の濃度は、前記第一の金属に対して0.001原子%以上であることを特徴とする請求項1に記載の金属粒子ペースト。
  3. 前記第一の金属は、Au、Pt、Pd、Ru、Rh、Ir、Ag、Cu、Ni、Zn、Bi、Fe、Mo、Al、Cr、およびVからなる群から選択されることを特徴とする請求項1または2に記載の金属粒子ペースト。
  4. 前記第二の金属は、アルカリ土類金属、Ag、Cu、Cr、Ni、Nb、Mo、Sn、Bi、In、Sb、Ge、Co、Zn、Ti、Al、V、Y、Zr、Hf、Be、Mg、Mn、Fe、Zr、およびWからなる群から選択されることを特徴とする請求項1〜3のいずれか1項に記載の金属粒子ペースト。
  5. 前記第二の金属の量は、前記極性溶媒に対する溶解度以下であることを特徴とする請求項1〜4のいずれか1項に記載の金属粒子ペースト。
  6. 請求項1〜5のいずれか1項に記載の金属粒子ペーストを乾燥させてなる乾燥物であって、前記第二の金属が析出した粒子を含むことを特徴とする乾燥物。
  7. 請求項1〜5のいずれか1項に記載の金属粒子ペースト、または請求項6に記載の乾燥物を硬化させてなる硬化物であって、前記第一の金属の粒界及び粒界近傍に前記第二の金属が存在することを特徴とする硬化物。
  8. 配線を有する基板と、接合部を介して前記基板上に設けられた電子部品および/または電極とを具備する半導体装置であって、
    前記配線、前記接合部、および前記電極の少なくとも1つに請求項7に記載の硬化物を含むことを特徴とする半導体装置。
JP2017081341A 2017-04-17 2017-04-17 金属粒子ペースト、これを用いた硬化物、および半導体装置 Pending JP2017162824A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017081341A JP2017162824A (ja) 2017-04-17 2017-04-17 金属粒子ペースト、これを用いた硬化物、および半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081341A JP2017162824A (ja) 2017-04-17 2017-04-17 金属粒子ペースト、これを用いた硬化物、および半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013187709A Division JP6132716B2 (ja) 2013-09-10 2013-09-10 金属粒子ペースト、これを用いた硬化物、および半導体装置

Publications (1)

Publication Number Publication Date
JP2017162824A true JP2017162824A (ja) 2017-09-14

Family

ID=59858097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081341A Pending JP2017162824A (ja) 2017-04-17 2017-04-17 金属粒子ペースト、これを用いた硬化物、および半導体装置

Country Status (1)

Country Link
JP (1) JP2017162824A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011180A1 (ja) * 2004-06-23 2006-02-02 Harima Chemicals, Inc. 導電性金属ペースト
WO2006070747A1 (ja) * 2004-12-27 2006-07-06 Mitsui Mining & Smelting Co., Ltd. 導電性インク
JP2008069374A (ja) * 2006-09-12 2008-03-27 Nippon Shokubai Co Ltd 金属ナノ粒子分散体および金属被膜
JP2008135190A (ja) * 2005-11-15 2008-06-12 Mitsubishi Materials Corp 太陽電池の電極形成用組成物及び該電極の形成方法並びに該形成方法により得られた電極を用いた太陽電池
JP2009295965A (ja) * 2008-05-01 2009-12-17 Xerox Corp 導電性インク用の二金属ナノ粒子
JP2011034749A (ja) * 2009-07-31 2011-02-17 Tosoh Corp 導電膜形成用組成物、及び導電膜形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011180A1 (ja) * 2004-06-23 2006-02-02 Harima Chemicals, Inc. 導電性金属ペースト
WO2006070747A1 (ja) * 2004-12-27 2006-07-06 Mitsui Mining & Smelting Co., Ltd. 導電性インク
JP2008135190A (ja) * 2005-11-15 2008-06-12 Mitsubishi Materials Corp 太陽電池の電極形成用組成物及び該電極の形成方法並びに該形成方法により得られた電極を用いた太陽電池
JP2008069374A (ja) * 2006-09-12 2008-03-27 Nippon Shokubai Co Ltd 金属ナノ粒子分散体および金属被膜
JP2009295965A (ja) * 2008-05-01 2009-12-17 Xerox Corp 導電性インク用の二金属ナノ粒子
JP2011034749A (ja) * 2009-07-31 2011-02-17 Tosoh Corp 導電膜形成用組成物、及び導電膜形成方法

Similar Documents

Publication Publication Date Title
JP6132716B2 (ja) 金属粒子ペースト、これを用いた硬化物、および半導体装置
JP6199048B2 (ja) 接合材
JP3939735B2 (ja) 銅微粒子焼結体型の微細形状導電体の形成方法、該方法を応用した銅微細配線ならびに銅薄膜の形成方法
JP5416153B2 (ja) 導電性ペースト、及びその製造方法、並びに導電接続部材
US12048964B2 (en) Bonding material and bonding method using same
JP6422289B2 (ja) ニッケル粒子組成物、接合材及び接合方法
KR20160051766A (ko) 금속 소결 필름 조성물
JP2009267374A (ja) 半導体装置及び接合材料
CN106660116A (zh) 多层金属纳米和微米颗粒
WO2015060173A1 (ja) 銀ペースト及びそれを用いた半導体装置
TW201930529A (zh) 接合體的製造方法及接合材
JP6153076B2 (ja) 金属ナノ粒子ペースト、それを含有する接合材料、及びそれを用いた半導体装置
JP6617049B2 (ja) 導電性ペースト及び半導体装置
JP6032110B2 (ja) 金属ナノ粒子材料、それを含有する接合材料、およびそれを用いた半導体装置
JP2017074598A (ja) 銅粒子を用いた低温接合方法
JP2020097774A (ja) 電力半導体接合用焼結ペースト組成物
WO2018116813A1 (ja) 接合フィルムおよびウエハ加工用テープ
JP6562196B2 (ja) 銅微粒子焼結体と導電性基板の製造方法
JPWO2019021637A1 (ja) 金属接合積層体の製造方法
JP5733638B2 (ja) 接合材料およびそれを用いた半導体装置、ならびに配線材料およびそれを用いた電子素子用配線
JP6347385B2 (ja) 銅材の接合方法
JP2017162824A (ja) 金属粒子ペースト、これを用いた硬化物、および半導体装置
US20230025330A1 (en) Silver paste, and method of producing joined article
JP2019070174A (ja) 接合用ペースト及びそれを用いた半導体装置
KR102354209B1 (ko) 접합재 및 그것을 사용한 접합 방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180918