WO2006033256A1 - 歪補償増幅装置 - Google Patents

歪補償増幅装置 Download PDF

Info

Publication number
WO2006033256A1
WO2006033256A1 PCT/JP2005/016746 JP2005016746W WO2006033256A1 WO 2006033256 A1 WO2006033256 A1 WO 2006033256A1 JP 2005016746 W JP2005016746 W JP 2005016746W WO 2006033256 A1 WO2006033256 A1 WO 2006033256A1
Authority
WO
WIPO (PCT)
Prior art keywords
distortion
level
threshold
distortion compensation
signal
Prior art date
Application number
PCT/JP2005/016746
Other languages
English (en)
French (fr)
Inventor
Satoshi Furuta
Naoki Hongo
Original Assignee
Hitachi Kokusai Electric Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc. filed Critical Hitachi Kokusai Electric Inc.
Priority to US11/662,331 priority Critical patent/US7514996B2/en
Priority to CN2005800315778A priority patent/CN101023578B/zh
Priority to JP2006536345A priority patent/JP4284630B2/ja
Publication of WO2006033256A1 publication Critical patent/WO2006033256A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3233Adaptive predistortion using lookup table, e.g. memory, RAM, ROM, LUT, to generate the predistortion

Definitions

  • the present invention relates to a distortion compensation amplifying apparatus, and more particularly to a distortion compensation amplifying apparatus in which an input signal is distorted by a predistorter having a reverse characteristic of the distortion characteristic of the amplifying apparatus and the output is input to the amplifying apparatus. .
  • the base station apparatus is a mobile station apparatus that is physically far away. It is necessary to make the wireless signal reach to. For this reason, it is necessary for the amplifying device of the base station to greatly amplify the signal, and amplification is performed up to the range where the nonlinear characteristics due to saturation appear, and measures are taken to suppress distortion signals generated by nonlinear characteristics. .
  • W-CDMA Wide-band Code Division Multiple Access
  • FIG. 3 is a block diagram showing an outline of a conventional distortion compensation amplifier using a predistortion system.
  • the distortion compensation table 32 has each level of the input signal S.
  • the amplitude compensation value a and the phase compensation value corresponding to the bell are stored, for example, in a complex amplitude (outside) format.
  • the level (power or amplitude) of the input signal S is detected by the level detector 31.
  • an address signal A corresponding to the detected value is sent to the distortion compensation table 32.
  • This address signal A designates the address of the amplitude compensation value a and the phase compensation value b read from the distortion compensation table 32.
  • the predistorter 33 outputs the amplitude and phase of the input signal S from the distortion compensation table 32.
  • a change is given to each of the predistortion control signals. Therefore, the amplitude compensation value a and the phase of the distortion compensation table 32 are changed so that this change changes the input signal S with the amplitude and phase distortion generated corresponding to each input level of the amplifier 34, that is, the inverse characteristic of the distortion characteristic.
  • predistortion Suppresses leakage power outside the signal band, that is, interference power to adjacent channels. wear.
  • predistortion the change given to the input signal s by this compensation value is referred to as predistortion.
  • the amplifying device 34 in FIG. 3 is a force distortion compensation table 32 which is an amplifier in a radio frequency signal band, the control unit 35 and the like are digital circuits, and an input signal to the predistorter 33 and the level detection unit 31.
  • S may be a radio frequency signal or an intermediate frequency signal. So actually
  • the frequency converter, AZD, and DZA modification ⁇ will be added to the circuit of Fig. 3 according to these circuit configurations. Since such a circuit configuration difference is not related to the present invention.
  • FIG. 3 shows only the basic configuration.
  • the characteristics of the amplifying device 34 change due to aging and temperature changes. If the amplitude compensation value a and the phase compensation value b in the distortion compensation table 32 are not changed corresponding to the change, distortion compensation by predistortion cannot be performed accurately.
  • the control unit 35 takes at least the output signal of the amplifying device 34 or the evaluation value of the residual distortion included in the output signal as a feedback signal, and calculates the compensation value of the distortion compensation table corresponding to the characteristic change of the amplifying device 34. The update is performed so as to keep the optimum value.
  • FIG. 4 is a diagram illustrating an example of the input / output characteristics of the amplifying device 34.
  • the nonlinearity of the input / output characteristics of the amplifying device becomes more prominent as it approaches the region where the output with a high input level is saturated. Therefore, the feedback signal of the output signal with a large amplitude is taken into the control unit 35. Therefore, it is necessary to reflect it in the distortion compensation table.
  • W-CDMA signals for example, have large amplitudes and low signal generation probabilities, so there is no instantaneous force generation! ,.
  • the signal bandwidth is 20 MHz. If a sampling signal of about 100 MHz is used to handle third-order and fifth-order distortion, real-time processing is possible with standard digital devices. Can not do. For this reason, while the feedback signal force distortion component acquired by the control unit 35 is detected, the acquisition of the feedback signal is stopped and the feedback signal is acquired only intermittently. The probability of obtaining the feedback signal is further reduced.
  • Patent Document 1 discloses a “nonlinear distortion compensation transmission / reduction for correcting and interpolating distortion compensation coefficient”.
  • distortion compensation coefficient correction means is provided, and when the distortion compensation coefficient corresponding to a certain input signal level is significantly different from the distortion compensation coefficient corresponding to the level near that level, the deviation is corrected! / ⁇ Correction processing is performed to replace the distortion compensation coefficient with an average value of nearby values.
  • the processing time of the distortion compensation coefficient update process is reduced while referring to the distortion power of the transmission output.
  • the distortion compensation coefficient is stored and updated only for discrete values of the input signal level, and the distortion compensation coefficient corresponding to the ⁇ level in the table is interpolated from the value on the table. Propose a configuration to generate by.
  • an error between the input signal and the output signal is obtained, and a coefficient such that this error becomes 0 is calculated using a clipped LMS (Least Mean Square) algorithm. .
  • the input signal level is divided into a plurality of blocks, each block is sequentially extracted, and the compensation value corresponding to the input level of the block is perturbed so that the transmission output distortion is eliminated.
  • Update using when the input signal level is the highest and the block is updated, the update processing is performed using the transmission output distortion only when the input signal level exceeds a predetermined value. This is the case when the transmission signal has a peak value or close to it, such as when handling a multicode like the CDMA system, or when handling a transmission signal of an OFDM (Orthogonal Frequency Division Multiplexing) system. , Taking into account the case where the time rate for taking a value is small! /.
  • the update process is performed using distortion for an arbitrary input level when updating the compensation value corresponding to a large input level, the compensation value becomes correct and becomes a value. This takes a long time, and the accuracy of the table compensation value also decreases. Therefore, when updating the block with the largest input level as described above, the update process is not performed when the input level is small, and the update process is executed only when there is an input exceeding a predetermined value, so that the convergence speed is high. ⁇ I am trying to improve efficiency.
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-223171
  • Patent Document 2 JP 2003-78360 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-87065
  • each base station may be set in a non-transmission state at random timing in order to deal with a near / far problem when detecting the position of a terminal.
  • This non-transmission period is called IPDL (Idle Periods create in the Down Link) and is specified in section 9.1 of TS25.305 "UTRA N Stage 2 specification" in the 3GPP specification.
  • the input of the amplifying device 34 is completely no input, so the output is only a little noise and does not include distortion according to the input level.
  • control unit 35 uses a method of detecting out-of-band leakage power by FFT (Fast Fourier Transform) and using it as a distortion, nonlinear distortion does not occur!
  • FFT Fast Fourier Transform
  • the frequency at which the feedback signal of the low-level transmission signal is captured is low. If it is high, increase / decrease in distortion cannot be detected correctly, and convergence will be slow.
  • the adaptive algorithm commonly used to update the distortion compensation table has a kind of inertia, so if the distortion compensation table is updated in the wrong direction, the time until convergence in the correct direction is reached. become longer.
  • the next update is also in the wrong direction. Then, the update direction is corrected, and the next compensation returns to the original compensation amount. If distortion is detected correctly, one update is required. Will be needed.
  • the compensation value of that block is shifted by a minute amount to the input signal.
  • the block is updated by repeating the operation of giving pre-distortion, waiting for the input signal to exceed a predetermined threshold in that state, and checking the amount of distortion of the output signal when the input exceeds the threshold.
  • the minimum input level in the block is used as the threshold value, the input signal level exceeds the threshold value because the time rate is small. Therefore, the input level below the threshold value occupies many time zones during the block update. However, at that time, nothing is done (until the input signal level exceeds this threshold), and further improvement in efficiency is desired.
  • An object of the present invention is to make it more efficient to update a compensation value used in a predistortion distortion compensation method in the case where a value near the peak value of a transmission signal occurs with a low frequency as in the CDMA method and the OFDM method.
  • Another object of the present invention is to provide a distortion compensation amplifying apparatus that is configured so as to be able to converge and further converges in a short time without increasing the hardware scale even when a signal having a non-transmission period is amplified.
  • a first distortion compensation amplification apparatus includes a predistorter that predistorts an input signal, and an amplification unit that amplifies the input signal given the predistortion. Based on a threshold detection unit for detecting that the level of the input signal exceeds a threshold, and a feedback signal from the amplification unit when the threshold detection unit senses it! And a controller that updates the distortion compensation mode by the predistorter.
  • the apparatus further includes a memory for storing the feedback signal based on a timing at which the threshold detection unit senses that the input signal level exceeds the threshold, and the control unit stores the feedback signal in the memory.
  • the distortion compensation mode is updated using the obtained feedback signal.
  • the threshold detection unit receives the feedback signal, and senses that the level of the input signal exceeds the threshold based on the feedback signal.
  • the control unit does not update the distortion compensation mode unless the threshold value detection unit senses that the input signal level exceeds the threshold value!
  • the threshold value is set to be smaller than a level when the normal input signal is larger than a level when there is no input signal.
  • control unit models the predistortion with a power function of the amplitude of the input signal, evaluates a time average value of out-of-band leakage power included in the feedback signal as a distortion amount, and The power function coefficient is updated so that the amount of distortion is reduced.
  • the threshold value is set to a peak level higher than a standard level in a normal state.
  • control unit sets a different threshold value in the early threshold value detection unit according to an update state of the distortion compensation mode.
  • control unit expresses a distortion compensation mode with a plurality of parameters, and sets a threshold corresponding to the parameters in the previous-stage threshold value detection unit when updating each parameter.
  • the second distortion compensation amplifying device outputs a level detection means for detecting the level of the input signal and a predistortion control signal corresponding to the input level detected by the level detection means.
  • a distortion compensation table, a predistorter that gives distortion to the input signal according to a predistortion control signal output from the distortion compensation table, and an input signal that is distorted by the predistorter An amplifier; distortion detection means for detecting a time average of distortion output from the amplifier as a distortion quantity; and a table updating means for updating a predistortion control signal so that the distortion quantity becomes smaller.
  • the updating means sets the predistortion control signal corresponding to an input level with which the input signal is larger than a predetermined threshold as a first group, and at least of other predistortion control signals.
  • a part is divided into a second group, the input level is captured, and when the captured input level is greater than the threshold value, the predistortion control signal of the first group is updated, and the captured input signal level is When it is smaller than the second threshold, the predistortion control signal of the second group is updated.
  • the threshold value is an expectation of the number of times that the level belonging to the first group appears within a time for performing a time average of distortion when the input level is determined to be larger than the threshold value.
  • the value is set to 0.5 or higher.
  • FIG. 1 is a block diagram showing a basic configuration of a distortion compensation amplifying apparatus of the present invention.
  • FIG. 2 is a flowchart showing a distortion compensation table update process in the apparatus of FIG.
  • FIG. 3 is a block diagram showing a basic configuration of a conventional distortion compensation amplifying apparatus.
  • FIG. 4 is a diagram illustrating an example of input / output characteristics of an amplifier.
  • FIG. 5 is a block diagram showing a basic configuration of a distortion compensation amplifying apparatus of Example 1.
  • FIG. 6 is a time chart for explaining the operation of the first embodiment.
  • FIG. 7 is a block diagram illustrating a configuration of a distortion compensation amplifying apparatus according to a second embodiment.
  • FIG. 8 is a time chart for explaining the operation of the second embodiment.
  • FIG. 9 is a diagram showing acquisition positions of feedback signals in the prior art and in Example 2.
  • FIG. 10 is a diagram for explaining acquisition of feedback signals by a plurality of threshold values according to the third embodiment.
  • FIG. 11 is a block diagram showing a configuration of a distortion compensation amplifying apparatus in Example 4.
  • the function realization means described in each embodiment may be any circuit or device as long as it is a means for realizing the function, and a part or all of the functions may be realized by software. Is also possible. Further, the function realizing means may be realized by a plurality of circuits. A plurality of function realizing means may be realized by a common circuit.
  • the present invention can include any combination of the characteristic portions of the embodiments and combinations with the prior art cited above.
  • FIG. 5 is a block diagram illustrating a basic configuration of the distortion compensation amplifying apparatus according to the first embodiment.
  • the distortion compensation amplifying apparatus of this example explicitly includes a threshold detection unit 17 that detects when the signal level exceeds the threshold and gives a feedback signal acquisition timing, and a memory 16 that stores the feedback signal. Etc.
  • the frequency converter depends on whether the predistorter 13 and the level detection unit 11 are configured for a radio frequency signal or an intermediate frequency signal.
  • the installation and configuration of the AZD and DZA converters vary, it is irrelevant to the essence of this example and can be applied to either case, so only the basic components are shown.
  • the input signal means an input signal to the distortion compensation amplification device in FIG. 5 unless otherwise specified.
  • the level detection unit 11 receives an input signal and sets a level corresponding to the instantaneous power of the input signal, such as the instantaneous power of the input signal, its square root amplitude, or the logarithm thereof. Detected and output to the distortion compensation table 12 and the threshold detector 17.
  • the operating period is, for example, twice or more the frequency corresponding to the bandwidth of the input signal.
  • the distortion compensation table 12 stores a distortion compensation value for performing distortion compensation by a predistortion method in association with a level given from the level detection unit 11, and each time a level is input from the level detection unit 11. The corresponding compensation value is output to the predistorter 13.
  • the predistorter 13 receives the compensation value referenced in the distortion compensation table 12 and the input signal, controls the amplitude and phase of the input signal according to the compensation value, and outputs them to the amplifying device 4.
  • the amplifying device 4 amplifies and outputs an input signal that has been previously distorted by a predistortion method.
  • the memory 16 writes and stores a feedback signal, which is appropriately demodulated or detected out-of-band leakage power, etc. with respect to the output of the amplifying device 4 and stores it in time series, and reads it as needed according to the reference from the control unit 15. Extrude and output.
  • the write operation is performed, for example, in a ring buffer format, and is paused and resumed according to instructions from the threshold detection unit 17.
  • the controller 15 first gives an activation instruction to the threshold detector 17.
  • the feedback signal corresponding to the address range is read from the memory 16, the residual distortion is evaluated, and an adaptive algorithm using the evaluation value is used. To update the distortion compensation table 12.
  • the threshold detection unit 17 Upon receiving an activation instruction from the control unit 15, the threshold detection unit 17 restarts writing the feedback signal to the memory 16, and always compares the level with the threshold, and the write given to the memory 16 when the threshold is exceeded. Get the address as the detection address. In addition, after a certain time from the time when the threshold is exceeded, the writing of the feedback signal by the memory 16 is stopped, and the write address given to the memory 16 at that time is acquired as the end address, and the control unit 15 together with the detection time address is acquired. Stop operation after reporting completion.
  • the threshold is a force set to a value several dB higher than the level detected in IPDL, for example. This threshold is much smaller than the standard level during normal transmission. The threshold can be any value as long as it is definitely (substantially) smaller than the normal transmission level that is definitely larger than the IPDL level.
  • FIG. 6 is a time chart for explaining the operation of this example.
  • the upper row shows the time waveform of the level detected by the level detector 11
  • the middle row shows the processing mainly performed by hardware
  • the lower row shows the processing mainly performed by software.
  • the level detection unit 11, the distortion compensation table 12, the predistorter 13, the memory 16, and the threshold detection unit 17 are configured by hardware such as an FPGA (Field Programmable Gate Array) or a memory
  • the control unit 15 is a software. It is assumed that it consists of a DSP (Digital Signal Processor) that operates according to the above.
  • DSP Digital Signal Processor
  • the operation of this example can be broadly divided into a table update period, a feedback signal acquisition period after activation instruction, and a distortion evaluation period after completion report.
  • the feedback data is leveled by the level detector 11 below the threshold value. Until the upper transmission data appears, it is written in the memory 16 in a cyclic manner. When transmission data exceeding the threshold value is detected, new data is written for the amount set by the currently written address and the process is terminated. At this time, as the end report of writing, the detected address at which it is detected that it is equal to or greater than the threshold and the end address at which writing has been completed are reported to the control unit 15, and the signal level detecting function is stopped. The number of addresses to be written after activation and detection of the level detector 11 is controlled by the controller 15.
  • the control unit 15 that has received the report performs distortion detection using data between the detection-time address and the end address.
  • the offset address is used for the detection address and the end address.
  • Distortion detection usually includes an averaging process to suppress variation in detection values, and the number of data (number of samples) used for distortion detection is a fixed number. In other words, the average distortion that occurs in a certain time is detected. However, if the variation can be absorbed by the table update algorithm, the number of data may be one.
  • the control unit 15 updates the distortion compensation table 12 based on the distortion component detected in the distortion evaluation period, and starts the feedback signal acquisition period by activating the level detection unit 11 again. Thereafter, the same processing is repeated.
  • the address offset that can be obtained for delay correction can be calculated by transmitting an impulse signal and examining the address of the memory 16 that has reached the maximum level in the feedback signal. Alternatively, it can be calculated by delaying the feedback signal by one sample, cross-correlating with the input signal, and determining the delay when the correlation is strongest. This delay correction amount can be obtained and set in advance, or can be calculated and set during the operation of the amplifier.
  • the feedback signal is not acquired unless the threshold is exceeded, and the distortion compensation table is not updated by the control unit.
  • the threshold is not performed. Therefore, at the time of no transmission, predistortion by the control unit such as distortion detection after data acquisition and distortion compensation table update processing is performed.
  • One adaptive control can be stopped. Therefore, there is no transmission state instantaneously like IPDL. Even in the case of signals, feedback signal data in the transmission state can always be acquired. Since there is no useless data acquisition, the effective data acquisition time is shortened, resulting in faster convergence.
  • FIG. 7 is a block diagram showing a configuration of the distortion compensation amplifying apparatus of this example.
  • This example differs from the previous Example 1 in that the threshold value of the threshold detection unit 27 is set to a level corresponding to a so-called peak that is higher than the standard level during normal transmission. Thus, the distortion is evaluated more specifically, and the distortion of the amplifier 4 is modeled with a power function. Configurations not mentioned in the present embodiment are equivalent to those in the first embodiment.
  • the input signal S is a digital IF signal and is wider than the signal band to be amplified (e.g. 3-5
  • the distortion compensation table 22 stores a compensation amount for distortion caused by AM-AM conversion and AM-PM conversion, which are nonlinear characteristics of the amplification device 4, in a complex format.
  • the predistorter 23 is composed of a complex multiplier and combines the input signal S and the compensation amount.
  • a DZA modulator and an analog quadrature modulator are provided between the predistorter 23 and the amplifying device 4.
  • Analog IZQ signal is converted to RF signal by analog quadrature modulator.
  • the feedback circuit unit 28 reduces a part of the output signal S of the amplifying device 4 to IF after band limiting.
  • the control unit 25 includes at least an FFT unit, an adaptive update unit, and a table calculation unit.
  • the FFT section performs spectral analysis on the feedback signal and detects the spectral power outside the signal band to be amplified as distortion.
  • the specific configuration is the same as Japanese Patent Application 2005-24847. For example, use a 1024 to 4096 point FFT! /.
  • the adaptive updating unit updates the coefficient of each term of the two power functions describing the compensation value by the perturbation method based on the detected increase / decrease in distortion.
  • the implementation of the perturbation method is equivalent to the well-known Patent Document 2, for example, the coefficient of each term is updated cyclically.
  • the two power functions are real functions related to instantaneous amplitude (the square root of instantaneous power). AM-AM conversion and AM-PM conversion are respectively performed. To express. Since the two function values indicate the amplitude compensation value and the phase compensation value, respectively, it is actually converted into a complex form (IZQ signal), stored in the distortion compensation table 22, and multiplied by the input signal S by the predistorter 23. Occasionally, odd-order intermodulation distortion is mainly generated.
  • the table calculation unit calculates all table values by power function calculation using the coefficients updated by the adaptive update unit, and writes them in the distortion compensation table 22.
  • the distortion compensation value may be calculated from the power function value for each sample without necessarily having to write the distortion compensation value in the distortion compensation table in advance.
  • the level detection unit 21, the distortion compensation table 22, the predistorter 23, etc. are not distinguished, and may be a single predistorter unit 20 illustrated by a broken line!
  • the threshold detection unit 27 halves the time from when the threshold is exceeded until the writing is stopped to a half of that in the first embodiment, and instead adds an offset that allows the detection time address to go back by half that time. Report completion. As a result, the position force FFT detected data that exceeds the threshold value becomes the center of the FFT target data, and the peak data is not deleted by the window function used when using the FFT.
  • FIG. 8 is a time chart for explaining the operation of this example. It is clearly indicated that the feedback signal before the position where the threshold is detected is also saved.
  • the waveform of the input level shows that not only signals exceeding the threshold but also various levels of signals are easily included in the stored data.
  • the update of one coefficient can affect the entire range of the input level, so the distortion evaluation value for determining the correctness of the update is also the same for all ranges of the input level. Should reflect the distortion. Therefore, the combination of the power series model and FFT is preferable. In the normal perturbation method, if the result of distortion evaluation by FFT cannot be obtained, the correctness of the previous update cannot be determined, and the next update cannot be made. Is never acquired. That is, the feedback signal acquisition period after the activation instruction, the distortion evaluation period after the completion report, and the table update period are always repeated sequentially.
  • FIG. 9 is a diagram showing acquisition positions of feedback signals in the prior art and in this example.
  • feedback signals were acquired at regular time intervals depending on the processing speed of the control unit.In contrast, in this example, feedback signals near the peak exceeding the threshold are acquired efficiently. .
  • the threshold value to a high level at which the nonlinear characteristic of the amplifier 4 appears, it is possible to obtain data preferable for updating the series to which the distortion compensation value should be given, and the distortion compensation table is optimal. The convergence time to reach the value is shortened.
  • a plurality of threshold values are provided, and a plurality of levels of data can be acquired by sequentially setting the threshold values in the threshold detection unit 27 during amplifier operation.
  • Example 2 differs from Example 2 in that the threshold value is changed, and the power function is more specific.
  • the configurations not mentioned in the present embodiment are equivalent to the first or second embodiment.
  • Macrolin series developed around zero amplitude which is a general power function model, cannot express the compensation values for both small and large amplitudes well. Therefore, it is described in Japanese Patent Application No. 2005-198349 that a function that should generate even-order distortion, such as a series developed at a point other than the zero point, is used.
  • C (X) is an amplitude compensation value
  • C (X) is a phase compensation value
  • C (X) includes A to A for amplitudes less than 1.
  • a 0 Determines the gain of the tota and is not updated directly by the perturbation method, but is adjusted to suppress fluctuations in the average gain each time another coefficient is updated. The same applies to C (X)
  • the thresholds to be given to the threshold detection unit are A to A.
  • the change of the threshold value is useful other than when the power function model as described above is used.
  • FIG. 10 is a diagram for explaining acquisition of a feedback signal using a plurality of threshold values.
  • the compensation value when it is in the early stage of convergence, such as immediately after turning on the power of the distortion compensation amplifier, it is set slightly lower than acquiring the distortion accurately over time with a higher threshold as in Example 2. The faster it converges, the faster it gets the distortion and the number of updates. Therefore, the threshold value given to the threshold value detection unit is set to a threshold value 1 set low at the beginning of convergence, and thereafter set to a threshold value 2 set normally.
  • FIG. 11 is a block diagram showing a configuration of the distortion compensation amplification device of this example. This example differs from Example 2 in that the threshold detection unit 47 detects that the feedback signal has exceeded the threshold, and the control unit 15 evaluates distortion by comparing time waveforms. .
  • the configuration that is not mentioned in the present embodiment is assumed to be equivalent to the second embodiment or the first embodiment.
  • the input signal S is a digital IF signal as in the second embodiment.
  • the level detection unit 41 may be equivalent to the level detection unit 11 of the first embodiment.
  • Memory 46 uses the same IF frequency as S obtained by quadrature demodulation (orthogonal detection) of the output of amplifier 4
  • the threshold detector 47 is different from the first embodiment in that it receives a feedback signal and outputs a result of comparing the level of the feedback signal with the threshold. Since the level of the input signal and the level of the period signal are almost proportional, it is not limited to this example.
  • the memory 49 stores the inputted input signal S and responds to reading from the control unit 45. Output memorized s.
  • control unit 15 When the control unit 15 receives the report that the feedback signal exceeding the threshold is detected from the threshold detection unit 47, the control unit 15 stores the stored input signal S and the corresponding stored signal from the memories 46 and 49.
  • each of these feedback signals is read out and the difference is calculated. Since the SIN and feedback signals are IZQ signals, the time waveform difference is detected as an error vector. Then, based on the LMS algorithm similar to Patent Document 1, the distortion corresponding to the input signal S that is the source of the difference is obtained.
  • the distortion compensation value in the compensation table 12 is updated. However, before calculating the difference, it is necessary to match the sample rate, delay, phase, gain, etc. of the input signal S and the feedback signal. Shi
  • control unit 15 is provided with an interpolation / decimation filter for matching the sample rates, and an address control means for causing the memories 46 and 49 to function as delay means for matching the delays. Or a phase rotation compensation means to match the phases.
  • address control means uses the input signal S
  • the feedback signal is read out.
  • the update direction of the distortion compensation value may be determined and convergence may be quickly accelerated as compared with detection using a scalar quantity.
  • Fig. 1 is a block diagram showing a basic configuration of the distortion compensation amplifying apparatus of the present example. As long as this basic block configuration is used, it is almost the same as the conventional configuration shown in Fig. 3, The point that the distortion detector 6 clearly indicates that the distortion remaining in the output of the amplifying device is detected, the point that the controller 5 clearly indicates that the address signal A is input to the distortion compensation table 2, and the processing The contents are different. Note that, as described in the explanation of FIG.
  • the predistorter 3 and the level detection unit 1 are configured for a radio frequency signal or an intermediate frequency band signal according to a frequency converter or
  • the level detector 1 detects the level (power or amplitude) of the input signal S.
  • An address signal A corresponding to the level is generated.
  • the value of this address signal A is Is generated so that the input level is larger and the address value becomes larger.
  • Distortion compensation Table 2 shows the amplitude compensation value a and predistortion for the input signal S.
  • the phase compensation value b is stored corresponding to the input signal level, and these compensation values are read out according to the address signal A generated by the level detector 1 and sent to the predistorter 3.
  • the predistorter 3 gives predistortion to the input signal S so as to compensate for the nonlinear characteristic of the amplifying device 4.
  • the distortion detector 6 detects distortion remaining in the output of the amplification device 4. It is desirable to detect an average amount of distortion that does not depend on the input level as much as possible, and it is achieved by converting the instantaneous distortion into power (scalarization) and averaging it for the required time.
  • the control unit 5 updates the amplitude compensation value a and the phase compensation value b of the distortion compensation table 2 so that predistortion adapted to the aging and temperature changes of the amplification device characteristics is given.
  • FIG. 2 is a flowchart showing an example of a distortion compensation table update processing method in the distortion compensation amplifying apparatus of the present invention.
  • the address space of address signal A is divided into Nmax blocks, block 1 to block Nmax, as in the case of Patent Document 2 described above, and the larger the block number, the higher the input signal level.
  • Each block has a set of amplitude compensation value a and phase compensation value b that represents the block, and interpolates between these values to obtain amplitude compensation value a and phase compensation value b corresponding to all addresses. calculate.
  • the update process can always maintain the compensation value of this block Nmax at an appropriate value. Is required.
  • both the control parameters NA and NP are set to 1 (step 201).
  • the parameters NA and NP are control variables for sequentially updating the amplitude compensation value and the phase compensation value of the blocks l to Nmax-l sequentially.
  • the address signal A generated at that time is taken in by the level detection unit, It is compared with a predetermined threshold value Al (step 202).
  • the threshold A1 is, for example, an address corresponding to the minimum level of the input level range corresponding to the block Nmax.
  • the value of the address signal A is larger than the threshold value A1
  • the distortion amount detected when the threshold value A1 is exceeded is stored, and then the amplitude compensation value a of the block Nmax is provisionally updated (step 203)
  • the address signal A is smaller than the threshold value A1
  • the value of the distortion at that time is stored and the amplitude compensation value a of the block NA is temporarily updated (step 204).
  • the parameter NA is less than Nmax—1, NA is incremented by 1. If it is equal to Nmax—1, NA is set to 1, and the amplitude compensation value of blocks l to Nmax—l Are sequentially updated cyclically (steps 205 to 207).
  • the amplitude compensation value tentative update of the V or shift block is performed, the amplitude compensation value and the phase compensation value at address A are read from the updated table and pre-distorted in the input signal S.
  • step 208 it is checked whether the amount of distortion taken in from the distortion detector 6 is smaller than before the temporary update (step 209). As a result, if the amount of distortion has decreased, the temporary update in step 203 or 204 is made valid and the value after the temporary update is made a table value (step 210). If the amount of distortion has not been reduced, the temporary update is made invalid. Return the table value to the value before the temporary update (step 211).
  • the amplitude compensation value update process described above is a method called a perturbation method, and the temporary update in step 203 or 204 is performed by adding a predetermined small! /, Value (perturbation) to the amplitude compensation value of the block at that time. (Amount) is added. Whether the perturbation amount is set to + or 1 is determined if the previous temporary update result of the amplitude compensation value of the block is in a direction to reduce distortion. Update in the opposite direction. In this way, the same block is updated many times, so that it is possible to give predistortion that further reduces output distortion. For this purpose, the determination result in step 209 is stored in order to determine the increase / decrease direction at the next temporary update of the same block.
  • steps 212 to 221 in Fig. 2 is to perform update processing of the phase compensation value b using the perturbation method in the same manner as the update processing using the perturbation method of the amplitude compensation value a of steps 202 to 211. Description of these steps is omitted.
  • [0058] Indicates the level distribution of the input signal S (that is, the probability of occurrence at each level)
  • the probability density function has a certain tendency, but in multicarrier signals and CDMA signals, the appearance probability decreases monotonically as the level increases. This is opposite to the relationship between the level and the amount of distortion in the amplifying device 4, so that the influence of the large distortion that occurs when the input level is high on the detected distortion is weakened. Therefore, the distortion detector 6 simply averages the distortion for a certain period of time so that the difference in level distribution due to level distribution fluctuation can be ignored. Therefore, the detection method is the same for all blocks except Nmax.
  • the accuracy of the amount of distortion is maintained by detecting the amount of distortion under the condition that the threshold A1 is exceeded.
  • the threshold A1 in this embodiment depends on the variance of the input signal S, but the number of occurrences of distortion within the average time.
  • the compensation value update algorithm usually converges slowly, so the threshold A1 is not severely determined. It is essential to set the average distortion time and threshold so that the expected value of the number of occurrences of distortion based on the distortion compensation amount belonging to the block to be updated is 0.5 or more. And by optimizing the balance between detection accuracy by increasing the average distortion time and the parameters (perturbation, step size, etc.) that determine the stability of the compensation value update algorithm, The best convergence speed and accuracy are obtained.
  • the amplitude compensation value a and the phase compensation value b are read from the updated distortion compensation table 2 and given to the predistorter 3. It may take some time before it is given. In particular, the compensation value of block Nmax is read infrequently, but a large signal corresponding to block Nmax is often generated in a short period of time. If the temporary update is performed when the value exceeds the limit, the amount of distortion after the temporary update may be detected in a shorter time than before. However, if reading is incapacitated within a predetermined time, a timeout may be set, the temporary update may be discarded without returning the sign of the perturbation amount, and the process may return to step 202. On the other hand, since the reading frequency of block NA is high, predistortion is performed based on the temporarily updated compensation value, and the residual distortion amount captured by the distortion detection unit 6 is also obtained immediately after provisional updating. To improve accuracy
  • the range where the nonlinear characteristic due to the saturation of the amplification device is remarkable is set to one block Nmax. It is easy to preferentially update these plural blocks. Also, the force to use the perturbation method as the update method. This may be another method.
  • the effect of reducing the power consumption by bringing the operating point of the amplifier closer to the compression point is greater than the increase in the power consumption due to the provision of the distortion compensation configuration.
  • This is suitable for application to linear amplification.
  • it can be widely applied not only to electricity but also to devices that require high linearity in signal conversion using various physical properties, such as modulation of light and sound waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

 プリディストーションを与えて歪補償を行う増幅装置において、入力信号ピーク近傍レベルの出現頻度が小さい場合でも歪補償用のテーブル更新を効率よく行い歪補償の精度向上をはかる。歪補償テーブル2の補償値を、出力歪みが大きくなる大きな入力レベル対応の第1補償値グループとそれ以外の小さな入力レベル対応の第2補償値グループに分け、制御部5は、レベル検出部1の検出したレベルが閾値以上のときは第1補償値グループの更新を行い、閾値以下のときは第2補償値グループの更新を行う。これによりCDMAやOFDM方式のように信号レベルのピーク値出現頻度の少ない信号に対しても効率よく更新処理が行え、歪補償精度が向上する。

Description

明 細 書
歪補償増幅装置
技術分野
[0001] 本発明は歪補償増幅装置に関し、特に、増幅装置の歪み特性の逆特性をもつプリ ディストータによって入力信号に歪みを与え、その出力を増幅装置へ入力するように した歪補償増幅装置に関する。
背景技術
[0002] 例えば W— CDMA (Wide- band Code Division Multiple Access:広帯域符号分割 多元接続)方式を移動通信方式として採用した移動通信システムでは、その基地局 装置は、物理的に遠く離れた移動局装置の所まで無線信号を到達させる必要がある 。このため基地局の増幅装置は信号を大幅に増幅する必要があり、飽和による非線 形特性が現れるレンジまで使った増幅が行われ、非線形特性などにより発生する歪 信号を抑圧する対策がとられる。
[0003] この歪信号抑圧法としては、増幅効率のよいプリディストーション方式が近年多く用 いられるようになつている。図 3は、プリディストーション方式を用いた従来の歪補償増 幅装置の概略を示すブロック図で上記歪補償テーブル 32には入力信号 S の各レ
IN
ベルに応じた振幅補償値 a及び位相補償値 が、例えば複素振幅 (ベ外ル)形式で 格納されている。入力信号 S のレベル (電力又は振幅)はレベル検出部 31で検出さ
IN
れ、その検出値に応じたアドレス信号 Aが歪補償テーブル 32へ送られる。このアドレ ス信号 Aは歪補償テーブル 32から読み出す振幅補償値 a及び位相補償値 bのァドレ スを指定する。
[0004] プリディストータ 33は入力信号 S の振幅及び位相に、歪補償テーブル 32から出力
IN
される予歪制御信号に応じてそれぞれ変化を与える。従ってこの変化が増幅装置 34 の各入力レベルに対応して発生する振幅及び位相歪、即ち歪み特性の逆特性でも つて入力信号 S に変化を与えるように歪補償テーブル 32の振幅補償値 a及び位相
IN
補償値 bを設定しておけば、増幅装置 34から出力される出力信号 S の歪み成分
OUT
が除去され、信号帯域外への漏洩電力、即ち隣接チャネルへの干渉電力を抑圧で きる。以後、この補償値により入力信号 s に与えられる変化を予歪と呼ぶ。
IN
[0005] 尚、図 3の増幅装置 34は無線周波信号帯の増幅器である力 歪補償テーブル 32 、制御部 35等はディジタル回路であり、またプリディストータ 33、レベル検出部 31へ の入力信号 S は、無線周波帯でも中間周波帯の信号であってもよい。従って実際に
IN
は、これら回路構成に応じて周波数コンバータや AZD、 DZA変^^が図 3の回路 に付加されることになる力 そのような回路構成の違いは本発明には関係しないので
、図 3では原理的な構成のみを示した。
[0006] ところで、増幅装置 34の特性は経年変化や温度変化のために変化する。その変化 に対応して歪補償テーブル 32の振幅補償値 a及び位相補償値 bの値も変化させな いとプリディストーションによる歪補償が正確に行えなくなる。制御部 35は、少なくとも 増幅装置 34の出力信号か、その出力信号に含まれる残留歪の評価値などを帰還信 号として取り込み、増幅装置 34の特性変化に対応して歪補償テーブルの補償値を 最適値に保つよう更新を行うものである。
[0007] この制御部 35による歪補償テーブル 32の適応更新は、高速に最適値に収束する ことが望ま 、が、以下の理由により高速な収束が困難になって 、る。
図 4は増幅装置 34の入出力特性の一例を示す図である。図 4のように、増幅装置 の入出力特性の非線形性は、入力レベルが高ぐ出力が飽和する領域に近いほど 顕著に表われるため、振幅の大きい出力信号の帰還信号を制御部 35に取り込んで 、歪補償テーブルに反映させる必要がある。しかし、例えば W— CDMA信号は、振 幅の大き 、信号の発生確率が低く、瞬時的にし力発生しな!、。
また、たとえば W— CDMAの 4キャリアを想定した場合、信号帯域は 20MHzであり、 更に 3次、 5次歪を扱うために約 100MHzのサンプリング信号を用いると、標準的なデ ジタルデバイスではリアルタイム処理を行うことができない。そのため、制御部 35が取 得した帰還信号力 歪成分を検出している間、帰還信号の取得を停止して、間欠的 にしか帰還信号を取得しな 、ようにすると、振幅の大きい出力信号の帰還信号を取 得できる確率は更に減る。
[0008] そのため、補償値を高速に収束させるための種々の検討がなされて!/、る。
例えば特許文献 1に開示された「歪補償係数を補正及び補間する非線形歪補償送 信装置」では、歪補償係数補正手段を設けて、ある入力信号レベル対応の歪補償係 数がそのレベルの近傍レベル対応の歪補償係数と大きくずれているようなときに当該 ずれて!/ヽる歪補償係数を近傍の値の平均値等に置き換える補正処理を行う。これに よって送信出力の歪み電力を参照しながらの歪補償係数更新処理の処理時間短縮 をはかっている。又、歪補償テーブルのメモリ量を減らすために、入力信号レベルの とびとびの値に対してだけ歪補償係数を記憶 ·更新し、テーブルにな ヽレベル対応 の歪補償係数はテーブル上の値から補間によって生成する構成を提案して 、る。尚 、この特許文献 1に於るテーブル更新は、入力信号と出力信号の誤差を求め、この 誤差が 0となるような係数をクリップト LMS (Least Mean Square)アルゴリズムを用いて 算出するものとしている。
[0009] 特許文献 2の「歪補償装置」では、入力信号レベルを複数のブロックに分割し、各 ブロックを順次取り出してそのブロックの入力レベル対応の補償値を送信出力歪み がなくなるように摂動法を用いて更新する。このうち入力信号レベルが一番大き 、ブ ロックの更新時には、入力信号レベルが所定値をこえているときのみの送信出力歪 みを用いて更新処理を行う。これは CDMA方式のようにマルチコードを扱う場合や、 OFDM (Orthogonal Frequency Division Multiplexing)方式のよつなマノレテキャリ ァの送信信号を扱う場合など、送信信号がピーク値或 、はそれに近!、値をとる時間 率が小さ!/、ような信号の場合を考慮したものである。即ち入力信号レベルが小さ!、時 の歪出力は小さいので、大きな入力レベル対応の補償値更新時に任意の入カレべ ルに対する歪みを用いて更新処理を行うと補償値が正し 、値になるまでには長 、時 間を要してしまい、テーブル補償値の精度も低下する。従って前記のように入カレべ ルが一番大きいブロック更新時には、入力レベルが小さいときには更新処理を行わ ず、所定値以上の入力があつたときのみ更新処理を実行するようにして、収束の高速 ィ匕、効率化をはかっている。
[0010] 特許文献 3の「電力増幅器」では、フィードフォワード方式の歪補償にぉ 、て、歪検 出ループや歪除去ループにおける振幅及び位相合わせの制御を、残留歪が閾値以 下になつたときに停止する。これにより高速に収束し、収束後も安定した歪補償を維 持できるものとなっている。 特許文献 1 :特開 2002— 223171号公報
特許文献 2:特開 2003 - 78360号公報
特許文献 3:特開 2003— 87065号公報
発明の開示
発明が解決しょうとする課題
[0011] 携帯電話システムでは、端末の位置検出の際の遠近問題に対処するために、各基 地局をランダムなタイミングで無送信状態にすることがある。この無送信期間は IPDL (Idle Periods create in the Down Link)と呼ばれ、 3GPP仕様では TS25.305 "UTRA N Stage 2 specification"のセクション 9.1に規定されている。
この期間において、増幅装置 34の入力は完全な無入力となるので、出力は僅かな 雑音のみであり入力レベルに応じた歪を含むものとはなっていない。
[0012] し力しながら従来の歪補償増幅装置では、このような無送信期間である力否かに関 わらず、帰還信号から歪を検出し、その結果に基づいて歪補償テーブルを更新して いたので、少なくとも無駄なデータ取得およびデータ処理を行っていた。そのため、 他の処理に割り当てられる時間が圧迫されるという問題があった。
また、制御部 35が FFT (Fast Fourier Transform)などにより帯域外漏洩電力を検 出して歪とする方式の場合、非線形歪の発生しな!、低 、レベルの送信信号の帰還 信号を取り込む頻度が高いと、歪の増減を正しく検出できず、収束が遅くなる。すな わち、歪補償テーブルの更新に一般的に用いられる適応アルゴリムには一種の惰性 があるので、歪補償テーブルが誤った方向に更新されると、正しい方向に収束するま での時間が長くなる。例えば、摂動法の一種では、最適値力 遠ざ力る方向に更新さ れたにも関わらず無送信期間のため歪が減少したように検出された場合、次回の更 新もその誤った方向に行われるので、その後更新方向が修正され、次の更新で元の 補償量に戻ることになるので、正しく歪が検出されていれば 1回の更新で済んだもの 力 3〜4回の更新が必要になってしまう。
[0013] このような問題に対し、無送信期間の占める割合が少な 、のであれば、無送信帰 還よりも十分長い時間取得することで、無送信期間の影響を無視できるようになる。し かし、そのためには帰還信号を一時記憶するメモリに大容量のものが必要となり、ま たデータ取得時間が増加するため収束も遅くなるという問題がある。
[0014] また、前記した特許文献 2に開示された技術では、入力レベルが一番大き ヽブロッ クの補償値更新を行って ヽるとき、そのブロックの補償値を微小量ずらして入力信号 にプリディストーションを与え、その状態で入力信号が所定の閾値をこえるのを待って 、閾値をこえた入力があつたときの出力信号の歪み量を調べる、という動作を繰り返し て当該ブロックの更新を行って 、る。上記の閾値として例えば当該ブロック内の最小 入力レベルを用いると、入力信号レベルがこの閾値をこえる時間率が小さいのである から、当該ブロック更新中には閾値以下の入力レベルが多くの時間帯を占めている のに、そのときは何もしないで (入力信号レベルカこの閾値を超えるまで)待つことに なり、更なる効率の改善が望まれる。
[0015] 本発明の目的は、 CDMA方式や OFDM方式のように、送信信号のピーク値近辺 の値が小さい頻度で発生するような場合のプリディストーション歪補償方式に用いる 補償値の更新を更に効率ィ匕できるように構成し、更には無送信期間を有する信号を 増幅する場合でも、ハードウェア規模を増カロさせること無く短時間で収束する歪補償 増幅装置を提供することにある。
課題を解決するための手段
[0016] 上記目的を達成するために、本発明にかかる第 1の歪補償増幅装置は、入力信号 に予歪を与えるプリディストータと、予歪を与えられた入力信号を増幅する増幅部と、 前記入力信号のレベルが閾値を越えたことを感知する閾値検出部と、前記閾値検出 部で感知されたときの前記増幅部からの帰還信号に基づ!/ヽて、前記プリディストータ による歪補償態様を更新する制御部とを備える。
[0017] 好適には、前記入力信号レベルが前記閾値を越えたことを前記閾値検出部が感知 したタイミングに基づいて、前記帰還信号を蓄えるメモリを更に備え、前記制御部が、 前記メモリに蓄えられた帰還信号を用いて前記歪補償態様を更新する。
[0018] 好適には、閾値検出部は、前記帰還信号を入力され、前記帰還信号に基づ!ヽて前 記入力信号のレベルが閾値を越えたことを感知する。
[0019] 好適には、前記制御部は、前記入力信号レベルが前記閾値を越えたことを前記閾 値検出部が感知しない限り、前記歪補償態様を更新しな!、。 [0020] 好適には、前記閾値は、前記入力信号が無い時のレベルより大きぐ通常の前記 入力信号の時のレベルより小さく設定されている。
[0021] 好適には、前記制御部は、前記予歪を前記入力信号の振幅についてのべき関数 でモデル化し、前記帰還信号が含む帯域外漏洩電力の時間平均値を歪み量として 評価し、前記歪み量が減少するように前記べき関数の係数を更新する。
[0022] 好適には、前記閾値は、通常時の標準的なレベルより高いピークレベルに設定さ れている。
[0023] 好適には、前記制御部は、前記歪補償態様の更新状況に応じて異なる閾値を前 期閾値検出部に設定する。
[0024] 好適には、前記制御部は、複数のパラメータにより歪補償態様を表現し、各パラメ ータを更新するときに、このパラメータに対応する閾値を前期閾値検出部に設定する
[0025] また、本発明にかかる第 2の歪補償増幅装置は、入力信号のレベルを検出するレ ベル検出手段と、前記レベル検出手段により検出された入力レベルに対応した予歪 制御信号を出力する歪補償テーブルと、前記歪補償テーブルカゝら出力された予歪 制御信号に応じた歪みを前記入力信号に与えるプリディストータと、前記プリディスト ータで歪みを与えられた入力信号を増幅する増幅器と、前記増幅器から出力される 歪みの時間平均を歪み量として検出する歪み検出手段と、記予歪制御信号を前記 歪み量がより小さくなるように更新するテーブル更新手段とを備え、前記テーブル更 新手段は、前記入力信号が予め定めた閾値より大きい入力レベルに対応する前記 予歪制御信号を第 1グループとし、これ以外の予歪制御信号の少なくとも一部を第 2 グループとして分割し、前記入力レベルを取り込み、取り込んだ入力レベルが前記閾 値よりも大きいときは、前記第 1グループの予歪制御信号を更新し、前記取り込んだ 入力信号レベルが前記第 2の閾値よりも小さいときは、前記第 2グループの予歪制御 信号を更新する。
[0026] 好適には、前記閾値は、前記入力レベルが前記閾値よりも大きいと判断されたとき の歪みの時間平均を行う時間内に、前記第 1グループに属するレベルの出現する回 数の期待値が 0. 5以上になるように設定される。 発明の効果
[0027] 本発明によれば、歪補償量の更新に無用な歪み量を取得しな 、ようにしたので、歪 補償態様が高速に収束する歪補償増幅装置とすることができる。
また請求項 Xに係る発明によれば、 CDMA方式や OFDM方式のように、ピーク値 やその近傍のレベルの出現頻度が小さい場合でも、第 2の閾値を超える入力があつ たときは、歪み特性に影響の大き!、第 1グループの振幅補償値及び位相補償値の 更新が必ず実行され、更に第 2の閾値以下の入力レベルのときは第 2グループの振 幅補償値及び位相補償値の更新が必ず実行される。従って第 1グループの振幅補 償値及び位相補償値の更新頻度が従来より向上し、更に低入力レベル時には必ず 第 2グループの更新を行って高入力レベルの入力を待つことがなくなる。こうして歪 補償の収束を従来より速めることができる。
図面の簡単な説明
[0028] [図 1]本発明の歪補償増幅装置の基本的な構成を示すブロック図である。
[図 2]図 1の装置における歪補テーブル更新処理を示すフローチャートである。
[図 3]従来の歪補償増幅装置の基本的な構成を示すブロック図である。
[図 4]増幅装置の入出力特性の一例を示す図である。
[図 5]実施例 1の歪補償増幅装置の基本的な構成を示すブロック図である。
[図 6]実施例 1の動作を説明するタイムチャートである。
[図 7]実施例 2の歪補償増幅装置の構成を示すブロック図である。
[図 8]実施例 2の動作を説明するタイムチャートである。
[図 9]従来及び実施例 2の帰還信号の取得位置を示す図である。
[図 10]実施例 3の複数の閾値による帰還信号の取得を説明する図である。
[図 11]実施例 4の歪補償増幅装置の構成を示すブロック図である。
発明を実施するための最良の形態
[0029] 本発明の実施の形態について以下、図面を参照しながら説明する。
尚、各実施例で説明する機能実現手段は、当該機能を実現する手段であれば、ど のような回路又は装置であっても構わず、また機能の一部又は全部をソフトウェアで 実現することも可能である。更に、機能実現手段を複数の回路によって実現してもよ ぐ複数の機能実現手段を共通の回路で実現してもよい。
また各実施例の特徴部分の任意の組み合わせや、先に引用した従来技術との組 み合わせも本発明に含まれうる。
実施例 1
[0030] 図 5は、本実施例 1の歪補償増幅装置の基本的な構成を示すブロック図である。本 例の歪補償増幅装置は、信号レベルが閾値を超えたことを検出して帰還信号の取得 タイミングを与える閾値検出部 17や、帰還信号を記憶するメモリ 16などを、明示的に 備えた点などを特徴とする。
尚、図 3の説明で述べたように、プリディストータ 13、レベル検出部 11を無線周波 帯の信号に対して構成するか中間周波帯の信号に対して構成するかに応じて周波 数コンバータや AZD、 DZA変換器の設置、構成が変わってくるが、本例の本質に は無関係であり、且ついずれの場合にも適用可能であるので、基本的構成要素のみ を示してある。
[0031] 図 5の各部を説明する。従来技術の説明と同じ符号を付した要素は、基本的に従 来と同じ構成である。以下、入力信号とは、特に断らない限り図 5の歪補償増幅装置 への入力信号を意味するものとする。
レベル検出部 11は、入力信号を入力され、入力信号の瞬時電力、或いはその平 方根である振幅、若しくはそれらの対数値など、入力信号の瞬時電力に対して一対 一対応する値をレベルとして検出し、歪補償テーブル 12および閾値検出部 17に出 力する。その動作周期は例えば、入力信号の帯域幅に相当する周波数の 2倍かそ れ以上である。
歪補償テーブル 12は、プリディストーション方式で歪補償を行うための歪補償値を 、レベル検出部 11から与えられるレベルに対応付けて記憶しており、レベル検出部 1 1からレベルが入力されるたびに、それに対応した補償値をプリディストータ 13に出 力する。
プリディストータ 13は、歪補償テーブル 12にて参照された補償値と入力信号とを入 力され、補償値に従って入力信号の振幅及び位相を制御して増幅装置 4に出力する 増幅装置 4は、プリディストーション方式で予め歪を与えられた入力信号を増幅して 出力する。
[0032] メモリ 16は、増幅装置 4の出力に対し適宜復調或いは帯域外漏洩電力検出等が為 された帰還信号を時系列に書込んで記憶し、制御部 15からの参照に応じて随時読 み出して出力する。書込み動作は、例えばリングバッファ形式にて行い、閾値検出部 17の指示に従って、一時停止及び再開する。
制御部 15は、まず閾値検出部 17に起動指示を与える。そして閾値検出部 17から 帰還信号が格納されたアドレス範囲を示す終了報告を受けると、そのアドレス範囲に 対応する帰還信号をメモリ 16から読み出して残留歪を評価し、その評価値を用いた 適応アルゴリズムにより歪補償テーブル 12を更新する。
閾値検出部 17は、制御部 15から起動指示を受けると、メモリ 16に帰還信号の書き 込みを再開させるとともに、レベルを常に閾値と比較し、閾値を超えた時にメモリ 16に 与えられていた書込みアドレスを検出時アドレスとして取得する。また、閾値を超えた 時点から一定時間後に、メモリ 16による帰還信号の書き込みを停止させるとともに、 その時メモリ 16に与えられていた書込みアドレスを終了アドレスとして取得して、検出 時アドレスと共に制御部 15に終了報告した後、動作を停止する。本例において閾値 は、例えば IPDLにおいて検出されるレベルより数 dB高い値に設定される力 この閾 値は通常送信時の標準的なレベルよりかなり小さ 、。閾値は IPDL時のレベルより確 実に大きぐ通常送信時のレベルより(ほぼ)確実に小さければ、任意の値でよい。
[0033] 図 6は、本例の動作を説明するタイムチャートである。図 6において、上段はレベル 検出部 11で検出されたレベルの時間波形、中段は主にハードウ アによりなされる 処理、下段は主にソフトウェアを用いてなされる処理を示す。本例では、レベル検出 部 11、歪補償テーブル 12、プリディストータ 13、メモリ 16、閾値検出部 17は FPGA ( Field Programmable Gate Array)やメモリのようなハードウェアで構成され、制御部 15 はソフトウェアにより動作する DSP (Digital Signal Processor)で構成されているものと する。本例の動作はテーブル更新期間と、起動指示後の帰還信号取得期間と、終了 報告後の歪評価期間とに大きく分けられる。
帰還信号取得期間において、帰還データは、レベル検出部 11でレベルが閾値以 上の送信データが出現するまで、メモリ 16に巡回して書かれ、閾値以上の送信デー タを検出した場合、現在書き込んだアドレス力 設定された分だけ、新たにデータの 書き込みを行い終了する。このとき、書き込みの終了報告として閾値以上であること を検出した前記検出時アドレス、書き込みを終了した前記終了アドレスを制御部 15 に報告し、信号レベル検出機能を停止する。レベル検出部 11の起動、検出後に書き 込むアドレス数は、制御部 15から制御される。
[0034] 歪評価期間において、報告を受けた制御部 15は、検出時アドレスと終了アドレスの 間のデータを用いて、歪検出を行う。実際には、レベルを検出された入力信号がプリ ディストータ 13から増幅部 4を経てメモリ 16に帰還信号として格納されるまでの遅延 を補正するために、検出時アドレスや終了アドレスにはオフセットアドレスが加えられ る。歪検出は通常、検出値のばらつきを抑えるための平均処理を含み、歪検出に用 いられるデータ数 (サンプル数)は一定の複数である。つまり一定時間に発生する平 均的な歪を検出する。ただしテーブル更新アルゴリズムの側でばらつきを吸収できる 場合、データ数は 1つでもよい。
テーブル更新期間において、制御部 15は、歪評価期間に検出した歪成分に基づ き歪補償テーブル 12を更新し、再度、レベル検出部 11を起動することで帰還信号取 得期間を開始させる。以後同様の処理を繰り返す。
なお、遅延補正を行うためにカ卩えるアドレスオフセットは、インパルス信号を送信し、 帰還信号において、最大レベルとなったメモリ 16のアドレスを調べることで算出できる 。または、帰還信号を 1サンプルづっ遅延させ、入力信号と相互相関をとり、最も相 関が強くなつたときの遅延量を求めることで算出できる。この遅延補正量は、予め求 めておいて設定しておくことも可能であるし、増幅器動作中に算出し設定することも 可能である。
[0035] 本例によれば、閾値を超えない限り帰還信号は取得されず、制御部による歪補償 テーブルの更新も行われない。特に、閾値をノイズレベルよりも高いレベルに設定す ることで、無送信時のデータ取得が行われなくなるので、無送信時には、データ取得 以降の歪検出、歪補償テーブル更新処理といった制御部によるプリディスト一タの適 応制御を停止させることができる。従って、 IPDLのような瞬間的に無送信状態になる 信号においても、必ず送信状態時の帰還信号データが取得できるようになる。無駄 なデータ取得が無くなるため、有効なデータの取得時間が結果的に短縮され、収束 が速くなる。
実施例 2
[0036] 図 7は、本例の歪補償増幅装置の構成を示すブロック図である。本例は、先の実施 例 1に対し、閾値検出部 27の閾値として通常送信時の標準的なレベルより高い所謂 ピークに該当するようなレベルを設定した点で異なり、また制御部 25が FFTにより歪 を評価し、増幅装置 4の歪をべき関数でモデルィ匕する点などでより具体ィ匕されたもの である。本実施例で言及されない構成は、実施例 1と等価であるとする。
入力信号 S はデジタル IF信号であり、増幅すべき信号帯域より広い (例えば 3〜5
IN
倍の)帯域を扱えるサンプリング周波数を有し、また I相および Q相の成分力もなるた め、 2本の線により図示している。歪補償テーブル 22は、増幅装置 4の非線形特性で ある AM— AM変換および AM— PM変換による歪に対する補償量を複素形式で記 憶する。プリディストータ 23は、複素乗算器で構成され、入力信号 S と補償量とを複
IN
素乗算して出力する。プリディストータ 23と増幅装置 4との間に、 DZA変^^とアナ ログ直交変調器が備えられる。アナログ直交変調器によりアナログ IZQ信号が RF信 号に変換される。
[0037] 帰還回路部 28は、増幅装置 4の出力信号 S の一部を帯域制限後に IFにダウン
OUT
コンバートし、送信側の DZA変換機と同等以上のサンプリング周波数で AZD変換 し、デジタル直交検波することで、 S の
OUT 復調 IZQ信号を帰還信号として出力する。 制御部 25は、少なくとも FFT部と適応更新部とテーブル算出部とを備える。 FFT部 は、帰還信号をスペクトル分析し、増幅すべき信号帯域の外側のスペクトル電力を歪 として検出する。具体的な構成は特願 2005-24847と同じでよぐ例えば 1024〜4096 ポイントの FFTを用いるとよ!/、。
適応更新部は、検出された歪の増減に基づき、補償値を記述する 2つのべき関数 の各項の係数を摂動法により更新する。摂動法の実装は、公知の特許文献 2と同等 でよぐ例えば各項の係数を巡回的に更新する。 2つのべき関数は、瞬時振幅(瞬時 電力の平方根)に関する実関数であって、 AM— AM変換と AM— PM変換をそれぞ れ表現する。 2つの関数値はそれぞれ振幅補償値と位相補償値を示すので、実際に は複素形式 (IZQ信号)に変換して歪補償テーブル 22に格納され、プリディストータ 23により入力信号 S と乗算されたときに主に奇数次の相互変調歪を生じさせる。
IN
テーブル算出部は、適応更新部により更新された係数を用いて、べき関数の計算 により全テーブル値を算出し、歪補償テーブル 22に書き込む。ただし、べき関数を用 いた場合、必ずしも予め歪補償値を歪補償テーブルに書き込む必要はなぐサンプ ル毎に歪補償値をべき関数値により計算する構成としても良い。その場合、レベル検 出部 21、歪補償テーブル 22、プリディストータ 23などを区別せず、破線で図示する 1 つのプリディストータ部 20としてもよ!/、。
[0038] 閾値検出部 27は、閾値を超えた時点から書き込みを停止させるまでの時間を実施 例 1の半分にし、その代わり検出時アドレスにはその半分の時間だけ遡らせるような オフセットを加えて終了報告する。これにより、閾値を超えたことを検出した位置力FF T対象データの中央になって、 FFTを用いる際に使用する窓関数によってピークの データが削られなくなる。
[0039] 図 8は、本例の動作を説明するタイムチャートである。閾値を超えたことを検出した 位置より前の帰還信号も保存されることが明示されている。入力レベルの波形は、保 存データの中に閾値を超える信号のみならず様々なレベルの信号も容易に含まれる ことを示している。べき級数による歪補償値を算出する場合、 1つの係数の更新は入 カレベルの全てのレンジに影響を与え得るため、更新の正否を判断するための歪評 価値も、入力レベルの全てのレンジにおける歪を反映したものであるべきである。そ のため、べき級数モデルと FFTとの組み合わせは好適である。なお通常の摂動法で は、 FFTによる歪評価結果が得られないと直前の更新の正否を判断できず、次の更 新に進めないので、 FFTには時間がかかるもののその間に次の帰還信号の取得を 行うことは無い。つまり、起動指示後の帰還信号取得期間と、終了報告後の歪評価 期間と、テーブル更新期間とが必ずシーケンシャルに繰り返される。
[0040] 図 9は、従来及び本例の帰還信号の取得位置を示す図である。従来は制御部の処 理速度などに依存する一定の時間間隔で帰還信号が取得されて 、たのに対し、本 例では、閾値を超えるピーク付近の帰還信号が取得が効率的に取得される。 [0041] 本例によれば、閾値を増幅器 4の非線形特性が表われるような高いレベルに設定 することで、歪補償値を与えるべき級数の更新に好ましいデータが取得でき、歪補償 テーブルが最適値になるまでの収束時間が短縮される。また、図 10に示すように、こ の閾値を複数設け、増幅器動作中に閾値検出部 27に順次設定することで複数のレ ベルのデータが取得可能となる。
実施例 3
[0042] 本例は、先の実施例 2に対し、閾値を変化させる点で異なり、またべき関数がより具 体ィ匕されたものである。本実施例で言及されない構成は、実施例 1または 2と等価で あるとする。
べき関数モデルとして一般的な、ゼロ振幅を中心に展開された所謂マクローリン級 数では、小振幅時と大振幅時の双方の補償値をうまく表現できない。そのため、ゼロ 点以外で展開した級数のように偶数次歪を生じさせるべき関数を用いるとよ 、ことが 、特願 2005-198349に記載されている。
本例では、低入力レベル時の補償値に対する自由度を上げるため、下記の式で表 されるべき関数モデルを用いる。
[0043] [数 1]
Figure imgf000015_0001
[0044] なお C (X)は振幅補償値、 C (X)は位相補償値であり、ともに入力信号の振幅 Xの実
A P
関数である。また 1は Xのダイナミックレンジ 0〜x 内であって補償値の再現が困難だ max
つた低入力レベルより若干大きく設定される。 C (X)には、 1未満の振幅時に A〜Aの
A 3 7 項が付加される。これらの項は C (X)が切り替わる x = lにおいてその値及び任意回数
A
の微分係数が 0となるので、 C (X)は、滑らかな関数となる。また定数項 aはプリディス
A 0 トータの利得を決定するものであり、摂動法では直接に更新されないが、他の係数が 更新される度に平均利得の変動を抑えるように調整される。 C (X)についても同様で
A
あるが、 Pは必須でない。 [0045] 上記の数 1を用いた場合、 A〜Aや P〜Pを更新するために、 1以上の閾値を超え
3 7 3 7
たときの帰還信号を取得できるまで待つ必要はない。むしろ、閾値を超えたときに発 生する大きな歪は、更新に不必要なためノイズと同じであり、 SZNを悪ィ匕させるので 取得すべきではない。従って本例では、閾値検出部に与える閾値を、 A〜A
3 7や P〜
3
Pを更新するときには実施例 1同様に極めて低くし、 a〜aや 〜pを更新するとき
7 3 7 3 7
には実施例 2同様に平均的なレベルより高く設定する。より一般的には、べき関数の 係数のように歪補償態様を表現するパラメータの更新に際して、パラメータ毎に最適 な閾値を設定する。
[0046] 閾値の変更は、上記のようなべき関数モデルを用いたとき以外にも有用である。
図 10は、複数の閾値による帰還信号の取得を説明する図である。例えば歪補償増 幅装置の電源をオンした直後のように補償値が収束初期の場合、実施例 2のような 高めの閾値により時間をかけて歪を正確に取得するより、やや低めに設定した閾値 により速く歪を取得して更新回数を稼いだほうが速く収束する。従って、閾値検出部 に与える閾値を、収束初期には低めに設定された閾値 1とし、それ以降は通常に設 定された閾値 2とする。
実施例 4
[0047] 図 11は、本例の歪補償増幅装置の構成を示すブロック図である。本例は、先の実 施例 2に対し、閾値検出部 47が帰還信号に対して閾値を超えたことを検出する点や 、制御部 15が時間波形比較により歪を評価する点などで異なる。本実施例で言及さ れな ヽ構成は、実施例 2或いは実施例 1と等価であるとする。
入力信号 S は実施例 2同様にデジタル IF信号である。
IN
レベル検出部 41は、実施例 1のレベル検出部 11と同等でよい。
メモリ 46は、増幅装置 4の出力を直交復調 (直交検波)した、 S と同じ IF周波数を
IN
有する帰還信号を入力される点で、実施例 2のメモリ 26と異なる。
閾値検出部 47は、帰還信号を入力され、帰還信号のレベルと閾値とを比較した結 果を出力する点で実施例 1と異なる。入力信号のレベルと期間信号のレベルはほと んど比例するので、本例に限らずどちらを使っても良い。
メモリ 49は、入力された入力信号 S を記憶し、制御部 45からの読み出しに応じて 記憶している s を出力する。
IN
[0048] 制御部 15は、閾値検出部 47より閾値を超えた帰還信号が感知された報告を受け ると、メモリ 46および 49から、記憶された入力信号 S およびそれに対応する記憶さ
IN
れた帰還信号をそれぞれ読み出し、その差分を算出する。 S INや帰還信号は IZQ信 号であるで、時間波形の差が誤差ベクトルとして検出される。そして、特許文献 1同様 の LMSアルゴリズムに基づいて、当該差分の元になつた入力信号 S に対応する歪
IN
補償テーブル 12中の歪補償値を更新する。ただし、差分を算出する前に、入力信号 S と帰還信号のサンプルレート、遅延、位相、利得などを一致させる必要がある。し
IN
たがって制御部 15は、サンプルレートを一致させるためにインターポレーシヨンゃデ シメーシヨンフィルタを備えたり、遅延を一致させるためにメモリ 46、 49を遅延手段と して機能させるアドレス制御手段を備えたり、位相を一致させるために位相回転補償 手段を備えたりする。例えばアドレス制御手段は、入力信号 S リ
INカ モ 49に入力され るまでの遅延と、増幅装置 4を経てメモリ 46に入力されるまでの遅延時間差に対応す るアドレスオフセットを用いて、帰還信号の読み出しを制御する。
[0049] 本実施例によれば、歪を誤差ベクトルとして検出するので、スカラー量で検出するも のと比べ、歪補償値の更新方向を定めやすぐ収束が速くなる場合がある。
実施例 5
[0050] 図 1は、本例の歪補償増幅装置の基本的な構成を示すブロック図で、この基本的 なブロック構成の限りでは図 3に示した従来構成とほぼ同様になつているが、歪検出 部 6が増幅装置の出力に残留する歪を検出することを明示した点、制御部 5が歪補 償テーブル 2へのアドレス信号 Aを取り込んで 、ることを明示した点、およびその処理 内容が異なっている。尚、図 3の説明で述べたように、プリディストータ 3、レベル検出 部 1を無線周波帯の信号に対して構成するか中間周波帯の信号に対して構成する 力に応じて周波数コンバータや AZD、 DZA変翻の設置、構成が変わってくるが 、本発明でもこの違いは無関係でいずれの場合も適用可能であるので、基本的構成 要素のみを示したものである。
[0051] 図 1において、レベル検出部 1は入力信号 S のレベル (電力又は振幅)を検出して
IN
そのレベルに対応したアドレス信号 Aを生成する。このアドレス信号 Aの値は、以下で は入力レベルが大き 、程大きなアドレス値となるように生成されるものとする。歪補償 テーブル 2には入力信号 S にプリディストーションを与えるための振幅補償値 a及び
IN
位相補償値 bが入力信号レベルに対応して格納されており、これら補償値がレベル 検出部 1により生成されたアドレス信号 Aに応じたアドレス力 読み出され、プリディス トータ 3へ送られる。こうしてプリディストータ 3は、増幅装置 4のもつ非線形特性を補 償するように入力信号 S にプリディストーションを与える。本例では可変位相器と可
IN
変減衰器力もなるアナログのプリディストータを想定している。歪検出部 6は、増幅装 置 4の出力に残留する歪を検出する。入力レベルになるべく依存しない平均的な歪 み量を検出することが望ましぐそれは瞬時歪みを電力化 (スカラー化)し、必要な時 間だけ平均化することで達成される。制御部 5は、増幅装置特性の経年変化、温度 変化に適応したプリディストーションを与えられるように、歪補償テーブル 2の振幅補 償値 a及び位相補償値 bの更新処理を行う。
[0052] 図 2は、本発明の歪補償増幅装置に於ける歪補償テーブルの更新処理方法の例 を示すフローチャートである。この例では、前述の特許文献 2の場合と同様に、ァドレ ス信号 Aのアドレス空間はブロック 1〜ブロック Nmaxの Nmax個のブロックに分割され ており、ブロック番号が大きい程大きい入力信号レベルに対応する。各ブロックはそ のブロックを代表する振幅補償値 a及び位相補償値 bを 1組備え、それらの値の間を 補間することですベてのアドレスに対応する振幅補償値 a及び位相補償値 bを算出 する。
最大のブロック番号を持つブロック Nmaxに対応した入力信号レベルの範囲にお!ヽ て、増幅装置の入出力特性で顕著に非線形特性が現れる。従って、増幅装置出力 の歪み成分は、入力信号レベルがブロック Nmax対応の入力レベルとなったときに主 に発生するから、このブロック Nmaxの補償値を常に適正な値に維持出来るような更 新処理が求められる。
[0053] このために、図 2の処理では、まず制御パラメータ NA、 NPをともに 1にセットする( ステップ 201)。このパラメータ NA及び NPは、ブロック l〜Nmax—lの振幅補償値 及び位相補償値を順次サイクリックに更新するための制御変数である。
[0054] 次にレベル検出部によりその時点に生成されたアドレス信号 Aを取り込んで、予め 定めてある閾値 Alと比較する(ステップ 202)。閾値 A1は、例えばブロック Nmax対 応の入力レベル範囲の最小レベルに対応するアドレスとする。この閾値 A1よりアドレ ス信号 Aの値が大きいときは、閾値 A1を超えたときに検出された歪み量を記憶した 上でブロック Nmaxの振幅補償値 aの仮更新を行 、 (ステップ 203)、閾値 A1よりアド レス信号 Aが小さ!/、値のときは、そのときの歪み量を記憶した上でブロック NAの振幅 補償値 aの仮更新を行う(ステップ 204)。さらにステップ 204の後にはパラメータ NA が Nmax— 1未満の値であれば NAを + 1し、 Nmax— 1に等しくなつていれば NAを 1 にセットしてブロック l〜Nmax—lの振幅補償値が順次サイクリックに更新処理される ように制御する(ステップ 205〜207)。
[0055] V、ずれかのブロックの振幅補償値仮更新が行われるとその更新後のテーブルから アドレス Aの振幅補償値及び位相補償値を読み出して入力信号 S にプリディスト
IN 一 シヨンを与え (ステップ 208)、その結果、歪み検出部 6から取り込んだ歪み量が仮更 新前よりも減少したかを調べる (ステップ 209)。この結果、歪み量が減少していれば ステップ 203又は 204に於ける仮更新を有効として仮更新後の値をテーブル値とし( ステップ 210)、歪み量が減少していなければ仮更新を無効としてテーブル値を仮更 新前の値に戻す (ステップ 211)。
[0056] 以上の振幅補償値の更新処理は摂動法と呼ばれる方法であり、ステップ 203又は 204に於ける仮更新は、その時点の当該ブロックの振幅補償値に所定の小さ!/、値( 摂動量)を加えて行う。摂動量を +とするか一とするかは当該ブロックの振幅補償値 の前回仮更新の結果が歪みを減らす方向であったときはその方向と同じ方向へ更新 し、増やす方向であったときはその方向と逆の方向へ更新する。こうして同一ブロック が何回も更新されることでより出力歪みを小さくするプリディストーションを与えること ができるようになる。このためにステップ 209の判定結果を、次の同一ブロック仮更新 時の増減方向を決めるために記憶しておくものとする。
[0057] 図 2のステップ 212〜221の処理は、ステップ 202〜211の振幅補償値 aの摂動法 による更新処理と同様にして位相補償値 bの摂動法による更新処理を行うものであり 、個々のステップの説明は省略する。
[0058] 入力信号 S のレベル分布(つまり各レベルにどの程度の確率で出現するかを示す 確率密度関数)には一定の傾向があるが、マルチキャリア信号や CDMA信号ではレ ベルが増加するほど出現確率が単調に減少する。これは増幅装置 4におけるレベル と歪み量の関係と逆のため、入力レベルが大きいときに生じる大きな歪みの、検出歪 み量への影響力が弱められる。したがって歪み検出部 6は、レベル分布変動による 検出毎のレベル分布の違いが無視できる程度の一定時間、単に歪みを平均するだ けで、各レベルの歪みを安定した条件で反映した 1つの歪み量を得ることができるの で、 Nmax以外の全てブロックに対して検出方法を同じにしている。し力しながら、平 均時間内の出現回数の期待値が 1以下となるようなレベルになると検出毎のばらつき は避けらず、 0. 5以下になると更新の正否と検出歪み量の増減はほとんど無相関に なる。そのようにして検出された精度の悪い歪み量は更新の結果を適切に反映する ものではなぐ収束を遅らせる原因となる。したがって、閾値 A1を超えるという条件を つけて、歪み量を検出することで、歪み量の精度を維持している。例えば、本実施例 の閾値 A1は、入力信号 S の分散にも因るが、歪みの平均時間内における出現回数
IN
の期待値が 1前後となるようなレベルにおよそ対応し、平均時間内にブロック Nmaxに 対応するピークを常に 1個(サンプリング周波数が高いと、 1つのピークは複数サンプ ルで表現されうる)以上含むようにする。実際のところ、真の歪み量と検出された歪み 量との間にわずかでも正の相関があれば、補償値更新アルゴリズムは大抵遅いなり に収束するので、閾値 A1の決め方はシビアではない。更新対象のブロックに属する 歪補償量に基づく歪みの出現回数の期待値が 0. 5以上になるように歪みの平均時 間と閾値とを設定することが本質的に重要である。そして、歪みの平均時間を長くす ることによる検出の高精度化と、補償値更新アルゴリズム側の安定性を決定するパラ メータ (摂動量やステップサイズ等)とのバランスを最適化することにより、最良の収束 速度と収束精度が得られる。
ところで、ステップ 203又は 204で振幅補償値の仮更新が行われたのち、その結果 の更新された歪補償テーブル 2から振幅補償値 a及び位相補償値 bが読み出されて プリディストータ 3に与えられるまでの間には多少時間が力かる場合がある。特にブロ ック Nmaxの補償値は読み出し頻度が低いが、ブロック Nmaxに対応するような大きな 信号は比較的短時間に立て続けに発生することが多いという性質を利用し、閾値 A1 を超えたことを契機に仮更新を行うことで、その仮更新後の歪み量の検出を従来より 短時間で行える可能性がある。しかしながら所定の時間内に読み出しが無力つたとき はタイムアウトとし、摂動量の符号は反転させずに仮更新を破棄してステップ 202に 戻ってもよい。一方、ブロック NAの読み出し頻度は高いので、仮更新した補償値に 基づきプリディストーションされ、歪み検出部 6で取り込まれる残留歪み量も仮更新後 すぐに得られるので、多数の歪み量を取り込んで平均することで精度を高めてもよい
[0060] 以上に説明した図 2の処理によれば、入力信号のレベルが所定値以上のときは確 実に最大振幅範囲のブロックの振幅補償値又は位相補償値の更新処理を行うから、 CDMA方式や OFDM方式の信号のようなピーク値出現頻度の少ない場合であって も非線形歪みの主要因である大きな入力振幅に対する補償値の更新頻度を高め、 より正確なプリディストーションによる歪補償を行うことができる。また、入力振幅が所 定値以下のときは最大振幅範囲以外に対応するブロックの補償値を順次サイクリック に更新するので、これらブロックに対する更新処理も従来技術より多く行うことができ る。またこのように所定値を境に場合分けすることで、歪み量を全レベルに対して安 定に検出する必要がなくなり歪み量の平均時間が短縮できるとともに、検出の対象と なる更新を行ったブロックにおける歪をより強く反映した歪み量を検出することができ る。
[0061] なお、図 2の例では、増幅装置の飽和による非線形特性が顕著な範囲を 1つのプロ ック Nmaxとしたが、これが複数個となるような入力レベル範囲の分割であってもそれ らの複数ブロックを優先的に更新するようにすることも容易である。また、更新方法と しては摂動法を用いるものとした力 これは他の方法であってもよ 、。
産業上の利用可能性
[0062] 本発明は、歪補償のための構成を備えたことによる電力消費の増加よりも、増幅器 の動作点をよりコンプレツシヨンポイントに近づけられることによる電力消費の削減の 効果の方が大きくなるような線形増幅への応用に好適である。また、電気に限らず光 や音響などの波の変調のように、各種物性を利用した信号の変換において高度の線 形性が要求されるものにも広く応用できる。 符号の説明
1, 11···レベル検出部,
2, 12···歪補償テーブル,
3, 13···プリディストータ,
4···増幅装置,
5, 15···制御部,
6···歪検出部,
16 メモリ,
17···閾値検出部,
28···帰還回路部,
49…メモリ,

Claims

請求の範囲
[1] 入力信号に予歪を与えるプリディストータと、
予歪を与えられた入力信号を増幅する増幅部と、
前記入力信号のレベルが閾値を越えたことを感知する閾値検出部と、 前記閾値検出部で感知されたときの前記増幅部からの帰還信号に基づ 、て、前記 プリディストータによる歪補償態様を更新する制御部と
を備える歪補償増幅装置。
[2] 前記入力信号レベルが前記閾値を越えたことを前記閾値検出部が感知したタイミ ングに基づいて、前記帰還信号を蓄えるメモリを更に備え、
前記制御部が、前記メモリに蓄えられた帰還信号を用いて前記歪補償態様を更新 する
請求の範囲 1に記載の歪補償増幅装置。
[3] 閾値検出部は、前記帰還信号を入力され、前記帰還信号に基づ!、て前記入力信 号のレベルが閾値を越えたことを感知する
請求の範囲 1に記載の歪補償増幅装置。
[4] 前記制御部は、前記入力信号レベルが前記閾値を越えたことを前記閾値検出部 が感知しない限り、前記歪補償態様を更新しない
請求の範囲 1に記載の歪補償増幅装置。
[5] 前記閾値は、前記入力信号が無い時のレベルより大きぐ通常の前記入力信号の 時のレベルより小さく設定されて 、る
請求の範囲 4に記載の歪補償増幅装置。
[6] 前記制御部は、前記予歪を前記入力信号の振幅につ!、てのべき関数でモデルィ匕 し、前記帰還信号が含む帯域外漏洩電力の時間平均値を歪み量として評価し、前 記歪み量が減少するように前記べき関数の係数を更新する
請求の範囲 1に記載の歪補償増幅装置。
[7] 前記閾値は、通常時の標準的なレベルより高いピークレベルに設定されている 請求の範囲 6に記載の歪補償増幅装置。
[8] 前記制御部は、前記歪補償態様の更新状況に応じて異なる閾値を前期閾値検出 部に設定する
請求の範囲 1に記載の歪補償増幅装置。
[9] 前記制御部は、複数のパラメータにより歪補償態様を表現し、各パラメータを更新 するときに、このパラメータに対応する閾値を前期閾値検出部に設定する
請求の範囲 1に記載の歪補償増幅装置。
[10] 入力信号のレベルを検出するレベル検出手段と、
前記レベル検出手段により検出された入力レベルに対応した予歪制御信号を出力 する歪補償テーブルと、
前記歪補償テーブルから出力された予歪制御信号に応じた歪みを前記入力信号 に与えるプリディストータと、
前記プリディストータで歪みを与えられた入力信号を増幅する増幅器と、 前記増幅器から出力される歪みの時間平均を歪み量として検出する歪み検出手段 と、
前記予歪制御信号を前記歪み量がより小さくなるように更新するテーブル更新手段 と
を備え、
前記テーブル更新手段は、
前記入力信号が予め定めた閾値より大きい入力レベルに対応する前記予歪制御 信号を第 1グループとし、これ以外の予歪制御信号の少なくとも一部を第 2グループ として分割し、
前記入力レベルを取り込み、取り込んだ入力レベルが前記閾値よりも大きいときは 、前記第 1グループの予歪制御信号を更新し、
前記取り込んだ入力信号レベルが前記第 2の閾値よりも小さいときは、前記第 2グ ループの予歪制御信号を更新する
歪補償増幅装置。
[11] 前記閾値は、前記入力レベルが前記閾値よりも大きいと判断されたときの歪みの時 間平均を行う時間内に、前記第 1グループに属するレベルの出現する回数の期待値 が 0. 5以上になるように設定される 請求の範囲 10に記載の歪補償増幅装置。
PCT/JP2005/016746 2004-09-21 2005-09-12 歪補償増幅装置 WO2006033256A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/662,331 US7514996B2 (en) 2004-09-21 2005-09-12 Distortion compensation amplifying apparatus
CN2005800315778A CN101023578B (zh) 2004-09-21 2005-09-12 失真补偿放大装置
JP2006536345A JP4284630B2 (ja) 2004-09-21 2005-09-12 歪補償増幅装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-272986 2004-09-21
JP2004272986 2004-09-21

Publications (1)

Publication Number Publication Date
WO2006033256A1 true WO2006033256A1 (ja) 2006-03-30

Family

ID=36090019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016746 WO2006033256A1 (ja) 2004-09-21 2005-09-12 歪補償増幅装置

Country Status (4)

Country Link
US (1) US7514996B2 (ja)
JP (2) JP4284630B2 (ja)
CN (1) CN101023578B (ja)
WO (1) WO2006033256A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288492A (ja) * 2006-04-17 2007-11-01 Fujitsu Ltd 歪補償装置及び歪補償方法
WO2008035439A1 (fr) * 2006-09-22 2008-03-27 Panasonic Corporation Circuit de compensation de distorsion et procÉDÉ pour commander celui-ci
JP2008193253A (ja) * 2007-02-01 2008-08-21 Hitachi Kokusai Electric Inc 増幅装置
WO2009093094A1 (en) * 2008-01-24 2009-07-30 Agence Spatiale Europeenne A method for compensating signal distortion in an emitting payload
JP2010068217A (ja) * 2008-09-10 2010-03-25 Fujitsu Ltd 歪補償装置及び方法
JP2010206370A (ja) * 2009-03-02 2010-09-16 Fujitsu Ltd 歪補償装置及び方法
JP2011091499A (ja) * 2009-10-20 2011-05-06 Hitachi Kokusai Electric Inc 歪補償装置
JP2012529225A (ja) * 2009-06-04 2012-11-15 ザイリンクス インコーポレイテッド 予測的オーバードライブ検出のための装置および方法
JP2014039260A (ja) * 2012-08-20 2014-02-27 Fujitsu Ltd デジタルプリディストーション係数の更新を制御する方法及び装置
US9203447B2 (en) 2012-07-02 2015-12-01 Fujitsu Limited Distortion compensating device and distortion compensating method
US9225364B1 (en) 2014-08-25 2015-12-29 Fujitsu Limited Distortion compensation method, distortion compensation apparatus, and non-transitory computer readable storage medium
JP2017098871A (ja) * 2015-11-27 2017-06-01 日本電気株式会社 特性検出装置及び特性検出方法
JP2018133603A (ja) * 2017-02-13 2018-08-23 株式会社日立国際電気 プリディストータ
JP2020141379A (ja) * 2019-03-01 2020-09-03 富士通株式会社 歪み補償装置及び歪み補償方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002195A1 (de) * 2005-01-17 2006-07-27 Siemens Ag Verfahren und Anordnung zur Regeneration eines optischen Datensignals
JP5242024B2 (ja) * 2006-06-08 2013-07-24 株式会社東芝 歪補償装置、増幅装置、送信装置、歪補償方法
US7606539B2 (en) * 2006-08-07 2009-10-20 Infineon Technologies Ag Adaptive predistorter coupled to a nonlinear element
US7957707B2 (en) * 2007-03-30 2011-06-07 Freescale Semiconductor, Inc. Systems, apparatus and method for performing digital pre-distortion based on lookup table gain values
JP5157479B2 (ja) * 2008-01-28 2013-03-06 富士通株式会社 歪補償装置及びこれを備えた電力増幅装置
CN101610230B (zh) * 2008-06-17 2012-07-18 富士通株式会社 信号失衡补偿装置和方法
WO2010001357A1 (en) * 2008-07-02 2010-01-07 Innovaradio S.A. A pre-distortion method and device to enhance the power utility of power amplifiers in wireless digital communication applications
US20100119012A1 (en) * 2008-11-11 2010-05-13 Debajyoti Pal Programmable wide band digital receiver/transmitter
JP2010130071A (ja) * 2008-11-25 2010-06-10 Fujitsu Ltd 非線形歪み補償装置および非線形歪み補償方法
JP5233651B2 (ja) * 2008-12-18 2013-07-10 富士通株式会社 歪補償装置及び方法
US8145150B1 (en) * 2008-12-19 2012-03-27 Scintera Networks, Inc. Integrated signal analyzer for adaptive control of mixed-signal integrated circuit
JP2010154042A (ja) * 2008-12-24 2010-07-08 Sumitomo Electric Ind Ltd 歪補償回路
JP5354262B2 (ja) * 2008-12-27 2013-11-27 住友電気工業株式会社 歪補償回路及び無線基地局
US8170508B2 (en) * 2009-05-07 2012-05-01 Rockstar Bidco Lp Pre-distortion for a radio frequency power amplifier
JP5158034B2 (ja) * 2009-08-12 2013-03-06 富士通株式会社 無線装置及び信号処理方法
JP2011103536A (ja) * 2009-11-10 2011-05-26 Panasonic Corp 送信回路及び通信機器
EP2502345A1 (en) * 2009-11-16 2012-09-26 Innovaradio S.A. An adaptive digital pre-distortion method and device to enhance the power utility of power amplifiers in wireless digital communication applications
JP5488073B2 (ja) * 2010-03-12 2014-05-14 富士通株式会社 無線装置、歪補償装置及び歪補償方法
JP5434818B2 (ja) * 2010-06-25 2014-03-05 富士通株式会社 歪補償装置、歪補償方法及び無線通信装置
US8615054B2 (en) * 2010-09-24 2013-12-24 Intel Corporation Close-loop power amplifier pre-distortion correction
WO2012046561A1 (ja) * 2010-10-04 2012-04-12 日本電気株式会社 歪補償増幅器および歪補償方法
CN102480450B (zh) * 2010-11-30 2014-12-10 富士通株式会社 预失真器控制装置和方法、功率控制状态检测方法
JP5702660B2 (ja) * 2011-04-27 2015-04-15 日本無線株式会社 プリディストータ
KR20130043425A (ko) * 2011-10-20 2013-04-30 삼성전자주식회사 입력 레벨에 따라 메모리 차수를 달리하는 디지털 전치 왜곡 방법 및 장치
US8837633B2 (en) 2011-10-21 2014-09-16 Xilinx, Inc. Systems and methods for digital processing based on active signal channels of a communication system
WO2013069087A1 (ja) * 2011-11-07 2013-05-16 富士通株式会社 歪補償回路及び歪補償方法
US9071207B2 (en) * 2012-02-03 2015-06-30 Telefonaktiebolaget L M Ericsson (Publ) Predistortion of concurrent multi-band signal to compensate for PA non-linearity
JP5861521B2 (ja) * 2012-03-19 2016-02-16 富士通株式会社 送信装置及びルックアップテーブルの更新方法
US8639199B1 (en) * 2012-08-24 2014-01-28 Mcafee, Inc. System and method for high performance coherent peak compression estimation
US20140250309A1 (en) * 2013-03-01 2014-09-04 Qualcomm Incorporated Predictive self calibrated power control
JP6303348B2 (ja) 2013-09-11 2018-04-04 株式会社ソシオネクスト 移相器、プリディストータ、及びフェーズドアレイアンテナ
JP6209925B2 (ja) * 2013-10-09 2017-10-11 富士通株式会社 歪補償装置および歪補償方法
US10038503B2 (en) * 2014-08-13 2018-07-31 Xilinx, Inc. Adaptive optical channel compensation
JP2016115952A (ja) * 2014-12-10 2016-06-23 富士通株式会社 歪補償装置及び歪補償方法
JP2017098711A (ja) * 2015-11-20 2017-06-01 富士通株式会社 歪補償装置および歪補償方法
JP6738019B2 (ja) * 2016-10-21 2020-08-12 アイコム株式会社 送信機および歪補正方法
US11239804B2 (en) * 2019-05-14 2022-02-01 Empower RF Systems, Inc. Systems and methods for controlling a power amplifier output
JP2021034818A (ja) * 2019-08-21 2021-03-01 株式会社村田製作所 電力増幅回路、半導体デバイス、及び半導体デバイスの製造方法
US11323140B2 (en) * 2020-01-27 2022-05-03 Anritsu Corporation Signal generation apparatus and signal generation method
US11233485B2 (en) * 2020-03-12 2022-01-25 Qorvo Us, Inc. Power amplifier linearization circuit and related apparatus
CN111749801B (zh) * 2020-06-04 2022-03-11 重庆长安汽车股份有限公司 一种基于插值计算的电喷系统闭环自学习控制方法
CN115567358A (zh) * 2022-09-09 2023-01-03 中信科移动通信技术股份有限公司 相位补偿方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032435A (ja) * 1996-03-22 1998-02-03 Matra Commun 増幅器の非線形性を補正する方法及びその方法を使用する無線送信機
JP2001284976A (ja) * 2000-03-29 2001-10-12 Matsushita Electric Ind Co Ltd アダプティブプリディストーション歪補償方法及び装置
JP2002533022A (ja) * 1998-12-17 2002-10-02 ノキア ネットワークス オサケ ユキチュア 送信器の線形化
JP2003078360A (ja) * 2001-09-05 2003-03-14 Hitachi Kokusai Electric Inc 歪み補償装置
JP2003229727A (ja) * 2002-02-05 2003-08-15 Nagano Japan Radio Co 非線形歪補償回路
JP2004128833A (ja) * 2002-10-02 2004-04-22 Fujitsu Ltd 多面イコライザフィルタ付き歪補償装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773243B2 (ja) * 1985-12-12 1995-08-02 日本電気株式会社 送信機
JPH0548346A (ja) * 1991-08-20 1993-02-26 Oki Electric Ind Co Ltd 線形化電力増幅回路
JP2002009556A (ja) * 2000-06-16 2002-01-11 Sony Corp 歪補償装置及び歪補償方法
JP2002111397A (ja) * 2000-09-29 2002-04-12 Sony Corp 歪補償装置及び歪補償方法
JP2002223171A (ja) 2001-01-29 2002-08-09 Fujitsu Ltd 歪補償係数を補正及び補間する非線形歪補償送信装置
WO2002087097A1 (fr) * 2001-04-18 2002-10-31 Fujitsu Limited Dispositif de correction de distorsion
JP2003087065A (ja) 2001-09-07 2003-03-20 Hitachi Kokusai Electric Inc 電力増幅器
JP3957077B2 (ja) * 2002-05-31 2007-08-08 富士通株式会社 歪補償装置
JP2004128921A (ja) * 2002-10-03 2004-04-22 Hitachi Kokusai Electric Inc 歪補償装置
JP4063628B2 (ja) * 2002-10-03 2008-03-19 株式会社日立国際電気 歪補償装置
JP2004072331A (ja) * 2002-08-05 2004-03-04 Hitachi Kokusai Electric Inc 歪補償装置
JP3917509B2 (ja) * 2002-12-06 2007-05-23 日本電信電話株式会社 非線形歪補償装置
JP2005024847A (ja) 2003-07-01 2005-01-27 Hitachi Cable Ltd 光ファイバ用コネクタ
US7259630B2 (en) * 2003-07-23 2007-08-21 Andrew Corporation Elimination of peak clipping and improved efficiency for RF power amplifiers with a predistorter
JP2005198349A (ja) 2005-03-16 2005-07-21 Victor Co Of Japan Ltd 記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032435A (ja) * 1996-03-22 1998-02-03 Matra Commun 増幅器の非線形性を補正する方法及びその方法を使用する無線送信機
JP2002533022A (ja) * 1998-12-17 2002-10-02 ノキア ネットワークス オサケ ユキチュア 送信器の線形化
JP2001284976A (ja) * 2000-03-29 2001-10-12 Matsushita Electric Ind Co Ltd アダプティブプリディストーション歪補償方法及び装置
JP2003078360A (ja) * 2001-09-05 2003-03-14 Hitachi Kokusai Electric Inc 歪み補償装置
JP2003229727A (ja) * 2002-02-05 2003-08-15 Nagano Japan Radio Co 非線形歪補償回路
JP2004128833A (ja) * 2002-10-02 2004-04-22 Fujitsu Ltd 多面イコライザフィルタ付き歪補償装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288492A (ja) * 2006-04-17 2007-11-01 Fujitsu Ltd 歪補償装置及び歪補償方法
WO2008035439A1 (fr) * 2006-09-22 2008-03-27 Panasonic Corporation Circuit de compensation de distorsion et procÉDÉ pour commander celui-ci
JP2008193253A (ja) * 2007-02-01 2008-08-21 Hitachi Kokusai Electric Inc 増幅装置
CN101237221B (zh) * 2007-02-01 2011-04-06 株式会社日立国际电气 放大装置
WO2009093094A1 (en) * 2008-01-24 2009-07-30 Agence Spatiale Europeenne A method for compensating signal distortion in an emitting payload
US8325851B2 (en) 2008-01-24 2012-12-04 Agence Spatiale Europeene Method for compensating signal distortion in an emitting payload
JP2010068217A (ja) * 2008-09-10 2010-03-25 Fujitsu Ltd 歪補償装置及び方法
JP2010206370A (ja) * 2009-03-02 2010-09-16 Fujitsu Ltd 歪補償装置及び方法
JP2012529225A (ja) * 2009-06-04 2012-11-15 ザイリンクス インコーポレイテッド 予測的オーバードライブ検出のための装置および方法
JP2011091499A (ja) * 2009-10-20 2011-05-06 Hitachi Kokusai Electric Inc 歪補償装置
US9203447B2 (en) 2012-07-02 2015-12-01 Fujitsu Limited Distortion compensating device and distortion compensating method
JP2014039260A (ja) * 2012-08-20 2014-02-27 Fujitsu Ltd デジタルプリディストーション係数の更新を制御する方法及び装置
US9225364B1 (en) 2014-08-25 2015-12-29 Fujitsu Limited Distortion compensation method, distortion compensation apparatus, and non-transitory computer readable storage medium
JP2017098871A (ja) * 2015-11-27 2017-06-01 日本電気株式会社 特性検出装置及び特性検出方法
JP2018133603A (ja) * 2017-02-13 2018-08-23 株式会社日立国際電気 プリディストータ
JP2020141379A (ja) * 2019-03-01 2020-09-03 富士通株式会社 歪み補償装置及び歪み補償方法

Also Published As

Publication number Publication date
US7514996B2 (en) 2009-04-07
JP2008295089A (ja) 2008-12-04
CN101023578A (zh) 2007-08-22
JPWO2006033256A1 (ja) 2008-05-15
CN101023578B (zh) 2010-04-21
US20080197925A1 (en) 2008-08-21
JP4995784B2 (ja) 2012-08-08
JP4284630B2 (ja) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4284630B2 (ja) 歪補償増幅装置
US6072364A (en) Adaptive digital predistortion for power amplifiers with real time modeling of memoryless complex gains
JP5071370B2 (ja) 歪補償装置及び方法
JP3857652B2 (ja) 歪補償装置
JP3590571B2 (ja) 歪補償装置
CN100571023C (zh) 一种宽带线性化功率放大器的自适应预失真方法及系统
EP2221962B1 (en) Predistorter and distortion compensation method
JP4863729B2 (ja) 歪補償装置及び歪補償方法
EP2244380A1 (en) Predistorter
JP4617265B2 (ja) 歪補償装置及び歪補償方法
JP6542120B2 (ja) ワイヤレス通信システムにおける広帯域デジタルプリディストーションのために周波数が広く離間している信号を整合させるための方法及びシステム
CN101662821B (zh) 信号处理方法及通信系统
US8451055B2 (en) Distortion compensating apparatus, transmitting apparatus, and distortion compensating method
JP2010518660A (ja) 多チャンネル広帯域通信システムにおけるベースバンドプリディストーション線形化の方法及びシステム
JP2012509614A (ja) リソースの効率的なアダプティブ・デジタル前置補償システム
US8514019B2 (en) Distortion compensation amplifier
Abi Hussein et al. Digital predistortion for RF power amplifiers: State of the art and advanced approaches
JP2005073032A (ja) 歪補償増幅装置及び歪補償方法
US9203447B2 (en) Distortion compensating device and distortion compensating method
JPWO2007049474A1 (ja) プリディストーション方式歪補償増幅装置
JP5004823B2 (ja) 送信装置
WO2008053535A1 (fr) Circuit de compensation de distorsion
JP4063628B2 (ja) 歪補償装置
Santucci et al. A block adaptive predistortion algorithm for transceivers with long transmit-receive latency
JP2006279775A (ja) 歪み補償装置及び歪み補償方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006536345

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11662331

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580031577.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase