WO2005078829A1 - リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池 - Google Patents

リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池 Download PDF

Info

Publication number
WO2005078829A1
WO2005078829A1 PCT/JP2005/001775 JP2005001775W WO2005078829A1 WO 2005078829 A1 WO2005078829 A1 WO 2005078829A1 JP 2005001775 W JP2005001775 W JP 2005001775W WO 2005078829 A1 WO2005078829 A1 WO 2005078829A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
negative electrode
powder
secondary battery
lithium secondary
Prior art date
Application number
PCT/JP2005/001775
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Uono
Keita Yamaguchi
Tooru Fuse
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to US10/589,132 priority Critical patent/US20070128518A1/en
Priority to EP05709827A priority patent/EP1717888A4/en
Publication of WO2005078829A1 publication Critical patent/WO2005078829A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Negative electrode material for lithium secondary battery method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery using the same
  • the present invention relates to a negative electrode material for a lithium secondary battery comprising a graphite composite mixed powder, a method for producing the same, and a negative electrode for a lithium secondary battery and a lithium secondary battery using the same. Specifically, when used at a high electrode density, a lithium secondary battery having a large discharge capacity, a high charge / discharge efficiency, excellent load characteristics, and a small electrode expansion during charging can be obtained.
  • the present invention relates to an excellent negative electrode material, a method for producing the same, and a negative electrode for a lithium secondary battery and a lithium secondary battery using the same.
  • Particle materials such as metals and graphite have been studied as anode materials for lithium secondary batteries.
  • a negative electrode material that can be used with a higher electrode density (for example, 1.6 gZcm 3 or more) is desired! /
  • Graphite negative electrode particles are known as a negative electrode material excellent in increasing capacity!
  • graphite negative particles are not spherical particles but flat particles such as scaly particles.In flat particles, the graphite crystal plane direction is parallel to the flat shape of the particles.
  • the press pressure is increased to achieve a higher electrode density, the flat graphite negative electrode particles are likely to be oriented parallel to the current collector, and the orientation of the entire electrode is uniform.
  • the electrode easily expands due to the formation of a graphite intercalation compound with lithium.
  • the amount of the active material that can be filled per unit volume of the electrode active material decreases, resulting in a problem that the battery capacity decreases.
  • Patent Document 1 discloses that high-grade flaky natural graphite or Kishgrafite and pitch resin are mixed, pulverized, carbonized, graphitized, and compounded to improve the disadvantages of natural graphite, and It is described that a graphite negative electrode material having high discharge efficiency, excellent cycle characteristics, high capacity, and excellent coatability is obtained.
  • Patent Document 2 discloses that a graphite powder having good orientation and a mesophase pitch having a softening point of 250 to 400 ° C are melt-mixed, and then pulverized, classified, calcined, graphitized, and compounded. It describes that a negative electrode material with high battery efficiency and high bulk density is obtained by incorporating both characteristics such as high capacity characteristics of graphite and good handling properties of mesophase pitch.
  • the graphite powder natural graphite, artificial graphite, and the like are used, but no particular attention has been paid to the shape of graphite particles represented by an aspect ratio or the like.
  • Another problem in using the electrode at a higher electrode density is that the graphite anode material is broken and a surface having high reactivity with the electrolyte is exposed more, so that the reaction with the electrolyte is reduced. And the charging / discharging efficiency tends to decrease.
  • Patent Document 3 discloses a graphitic core material (A) in which pitch and flaky natural graphite are melt-kneaded, compounded, mechanochemically treated, and then graphitized. Or ellipsoidal particles having a graphitic layer (C) on the outer surface of the composite particles composed of and a graphitic coating material (B) and having a crystallinity order of (A)>(B)> (C) It is described that, by obtaining a composite graphite material in the form of a matrix, irreversible capacity increases even at high density, and high-rate characteristics and deterioration of cycle characteristics are improved.
  • Patent Document 1 JP-A-2000-182617
  • Patent Document 2 JP-A-2002-373656
  • Patent Document 3 JP-A-2003-173778
  • the composite graphite negative electrode material described in Patent Document 1 uses highly crystalline flaky natural graphite or the like as a raw material for composite with a pitch or the like. Because of the scaly shape, graphite is easily oriented in a direction parallel to the electrode surface in the electrode active material particles, and the active material particles themselves are also easily flattened, so that the active material layer of the electrode is easily oriented. As a result, the electrodes tend to expand in the electrode thickness direction during battery charging. In addition, the battery capacity, charge / discharge efficiency, and load characteristics were poor, with poor lithium ion permeability.
  • the graphite-based negative electrode material described in Patent Document 2 combines graphite, which is usually flat, with a mesophase, but does not pay attention to the flatness of graphite.
  • graphite orientation in the composite powder and the electrode was easily aligned, and it was insufficient in terms of suppressing electrode expansion at a high electrode density.
  • the low crystallinity surface layer (C) is coated without peeling the core material strength, and the BET specific surface
  • the product indicates that the product is preferably lm 2 / g or less. If the BET specific surface area is reduced, the acceptance of lithium during charging is deteriorated, and the charging capacity is reduced! Was.
  • the present invention has been made in view of the above problems. That is, the present invention provides a graphite-based negative electrode material for a lithium secondary battery, which, when used at a high electrode density, has a large discharge capacity, a high charge-discharge efficiency, an excellent load characteristic, and a high charge-discharge characteristic.
  • a negative electrode material and a method for producing the same which can obtain a V ⁇ lithium secondary battery having a small electrode expansion, and a negative electrode for a lithium secondary battery and a lithium secondary battery using the same.
  • the inventors of the present invention have conducted intensive studies on a graphite-based negative electrode material for a lithium secondary battery.
  • a graphite mixed powder containing a graphite having an aspect ratio within a predetermined range, a graphite composite powder in which graphite having a different orientation from the graphite is compounded, and an artificial graphite powder is used as a negative electrode material.
  • an artificial graphite powder is used as a negative electrode material.
  • the present invention has been completed.
  • the gist of the present invention is that a graphite (D) having an aspect ratio of 1.2 or more and 4.0 or less and a graphite (E) having a different orientation from the graphite (D) are combined.
  • a negative electrode material for a lithium secondary battery comprising: a graphite composite mixed powder (C) comprising a modified graphite composite powder (A) and an artificial graphite powder (B).
  • Another gist of the present invention is that a crushed product of a graphite crystal precursor obtained by heat-treating a pitch raw material having a quinoline-insoluble content of 3% by weight or less has an aspect ratio of 1.2 or more, 4.0 or less and a graphite density (D) with a tap density of 0.7 g / cm 3 or more and 1.35 g / cm 3 or less, heat treatment A, pulverization, and heat treatment B. And a method for producing a negative electrode material for a lithium secondary battery.
  • another gist of the present invention is that a pitch raw material having a quinoline insoluble content of 3% by weight or less, an acetate ratio of 1.2 or more and 4.0 or less, and a tap density of 0.2 or less. 7g / cm 3 or more, 1. 35g / c m 3 while making less of graphite (D) because the graphite composite powder (A), to produce artificial graphite powder (B) from a pitch material, obtained graphite composite powder (A) and artificial A method for producing a negative electrode material for a lithium secondary battery, characterized by mixing a graphite powder (B).
  • Another aspect of the present invention is to provide a negative electrode for a lithium secondary battery, including a current collector and an active material layer formed on the current collector.
  • a negative electrode for a lithium secondary battery characterized by containing a material.
  • Another aspect of the present invention is to provide a power supply device including a current collector and an active material layer formed on the current collector, wherein the active material layer is manufactured by the above-described manufacturing method.
  • a negative electrode for a lithium secondary battery comprising a negative electrode material for a lithium secondary battery.
  • Another aspect of the present invention is characterized in that it includes a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte, and the negative electrode is the above-described negative electrode for a lithium secondary battery.
  • the negative electrode is the above-described negative electrode for a lithium secondary battery. In a lithium secondary battery.
  • the negative electrode material for a lithium secondary battery of the present invention when used at a high electrode density (for example, 1.6 g / cm 3 or more), a load characteristic in which a discharge capacity is large and a charge / discharge efficiency is high is obtained.
  • a high electrode density for example, 1.6 g / cm 3 or more
  • An excellent lithium secondary battery which is excellent and has small electrode expansion during charging can be realized.
  • the negative electrode material for a lithium secondary battery can be efficiently and stably produced, which is extremely useful in industry.
  • FIG. 1 (a) shows a portion of a graphite composite powder (A) in the particle cross section of the graphite composite mixed powder (C) after the graphitizing step of the negative electrode material of Example 2.
  • FIG. 1 (b) is a schematic view showing the shapes of graphite (D) and graphite (E) in the particle cross section of FIG. 1 (a).
  • the negative electrode material for a lithium secondary battery according to the present invention includes graphite (D) having an aspect ratio of 1.2 or more and 4.0 or less, and graphite having an orientation different from that of the graphite (D).
  • (E) is a graphite composite powder (C) composed of a graphite composite powder (A) and a synthetic graphite powder (B), or a mixture of the graphite composite powder (C) and natural graphite.
  • a graphite composite mixed powder (F) comprising the powder (G) is provided.
  • the type of the graphite (D) is not particularly limited as long as it satisfies the below-described orientation property.
  • Examples include natural graphite and artificial graphite.
  • Examples of natural graphite include flaky graphite, flaky graphite, soil graphite and the like.
  • Examples of the artificial graphite include graphitic particles such as mesocarbon microbeads, carbon fibers, coatas, needle coaters, and high-density carbon materials manufactured by heat-treating a pitch raw material at a high temperature.
  • the shape of the graphite (D) is not particularly limited. Examples include lumps, spheres, and ovals. However, it is preferable that the particles have a shape close to a sphere. Specifically, the aspect ratio must satisfy the following rules.
  • the aspect ratio of the graphite (D) is usually 1.2 or more, preferably 1.5 or more, and usually 4.0 or less, preferably 3.0 or less. If the aspect ratio falls below this range, the anisotropy is small, resulting in a shape close to a sphere or a cube, making it difficult to increase the packing density of the pressed electrode. On the other hand, if it exceeds the above range, the active material tends to be oriented on the electrode surface, and it is difficult to increase the load characteristics at a high electrode density. Or, when the battery is manufactured, the electrode expansion during charging of the battery is large. This makes it difficult to increase the battery capacity per unit volume of the electrode.
  • the aspect ratio of the graphite (D) was measured for the negative electrode material before manufacturing the negative electrode by using a negative electrode material powder dispersed on a flat plate and directly embedded in resin.
  • the negative electrode can be used in the following procedure.
  • the resin-embedded material or negative electrode of the negative electrode material is polished in parallel to a flat plate, a cross-sectional photograph thereof is taken, and the image of the photograph is taken to determine the major axis of the graphite (D) cross-section. Measure at least 50 points.
  • the resin-embedded material of the negative electrode material or the negative electrode is polished perpendicular to the flat plate, and a cross-sectional photograph is taken. Measure the diameter (particle thickness) at 50 points or more.
  • the average value is determined for each of the measured major axis and minor axis, and the ratio between the average major axis and average minor axis is defined as the aspect ratio (major axis Z minor axis). ⁇ Because particles embedded in fat or embossed on a plate usually tend to line up so that the thickness direction of the particles is perpendicular to a flat plate, the above method is used to determine the characteristic long diameter and short side of the particles. The diameter can be obtained.
  • a cross-sectional photograph of the particles is generally obtained by a scanning electron microscope (Scanning Electron Microscope).
  • the method for obtaining the graphite (D) having an aspect ratio in the above range is not particularly limited !, but, for example, compression, friction, shear force, etc., mainly including impact force and interaction of particles. It is preferable to use a device that repeatedly gives a mechanical action to the particles. Specifically, it has a rotor with a number of blades installed inside the casing, and the rotor rotates at high speed to apply a mechanism such as impact compression, friction, and shear force to the carbon material introduced inside. An apparatus which provides mechanical action and performs surface treatment is preferred. Further, it is preferable to have a mechanism for repeatedly giving a mechanical action by circulating the carbon material. Good An example of the apparatus is a hybridization system manufactured by Nara Machinery Co., Ltd.
  • Graphite (D) is, for example, a highly crystalline graphite which originally had a single orientation plane, but which has been partially made to have a different orientation by mechanical energy treatment or the like.
  • the tap density of the graphite (D) is not particularly limited, usually 0. 70gZcm 3 or more, preferably rather is 0. 80gZcm 3 or more, more preferably 0. 90gZcm 3 or more and usually 1. 35 g / cm 3 Or less, preferably in the range of 1.20 g / cm 3 or less. If the tap density is below this range, it is difficult to obtain a high-capacity battery in which it is difficult to increase the packing density of the active material. On the other hand, when the ratio exceeds this range, the amount of pores in the electrode decreases, and it is difficult to obtain favorable battery characteristics.
  • the tap density for example, a sieve having an opening of 300 ⁇ m is used, and a measurement object (here, graphite (D)) is dropped on a tapping cell of 20 cm 3 to fill the cell completely. Then, tapping with a stroke length of 10 mm is performed 1000 times using a powder density measuring device (for example, a tap denser manufactured by Seishin Enterprise Co., Ltd.), and the value obtained by measuring the tapping density at that time can be used.
  • a powder density measuring device for example, a tap denser manufactured by Seishin Enterprise Co., Ltd.
  • BET specific surface area of the graphite (D) is not particularly limited, usually 3. Om 2 Zg above, good Mashiku is 4. Om 2 / g or more, and usually 10. Om 2 / g or less, preferably Is in the range of 8. Om 2 / g or less. If the value of the BET specific surface area is less than the lower limit of this range, when used as a negative electrode material, lithium acceptability deteriorates during charging of a battery, and lithium tends to precipitate on the electrode surface, which is not preferable for safety. On the other hand, the value of BET specific surface area If it exceeds the limit, the reactivity with the electrolytic solution increases when used as a negative electrode material, and it is difficult to obtain a preferable battery that easily generates gas.
  • the BET specific surface area was measured using a surface area meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken) at 350 ° C for 15 minutes under a nitrogen flow with respect to the measurement object (here, graphite (D)). After preliminary drying, use a nitrogen helium mixed gas precisely adjusted so that the relative pressure of nitrogen with respect to the atmospheric pressure is 0.3. Nitrogen adsorption by gas flow method.Measurement by BET one-point method. The value obtained can be used.
  • a surface area meter for example, a fully automatic surface area measuring device manufactured by Okura Riken
  • the volume-based average particle size of the graphite (D) is not particularly limited, but is usually 1.O / zm or more, preferably 6.0 ⁇ m or more, and usually 60 ⁇ m or less, preferably 30 ⁇ m or less.
  • the range is as follows. If the volume-based average particle size is below this range, the graphite (D) tends to agglomerate, making it difficult to mix the graphite (C) with the graphite crystalline precursor in the manufacturing process described below. A) is likely to be heterogeneous. On the other hand, when the volume-based average particle size exceeds this range, coating unevenness is likely to occur when an electrode is manufactured by coating as a negative electrode material.
  • volume-based average particle diameter, 2 volumes 0/0 aqueous solution of a measurement target polyoxyethylene (20) sorbitan monolaurate as a surfactant in (graphite (D) in this case) (about lml)
  • graphite (D) in this case
  • a value obtained by measuring the volume-based average particle diameter (median diameter) with a laser diffraction particle size distribution meter (for example, LA-700 manufactured by HORIBA, Ltd.) using ion-exchanged water as a dispersion medium can be used.
  • the spacing d of the (002) plane of graphite (D) measured by X-ray diffraction is not particularly limited.
  • the lower limit of the above-mentioned plane distance d002 is usually at least 0.3354 nm as a theoretical limit.
  • the crystallite size falls below the range of the Lc force, the emission per active material weight when the electrode is manufactured is reduced. The capacitance is easily reduced.
  • the type of the graphite (E) is not particularly limited as long as it has a different orientation from the graphite (D).
  • An example is artificial graphite produced by subjecting a pitch raw material to a high-temperature heat treatment.
  • Graphite (E) has a different orientation from graphite (D).
  • “Different orientation” means that the pattern of anisotropic units in the optically anisotropic structure, that is, the size, direction, number, etc. of anisotropic units is visually observed when the powder is observed with a polarizing microscope. Means that at least one of the size, direction, number, and the like is different.
  • one of the graphites has a crystallographic orientation in one direction and the other has a random crystallographic orientation.
  • D) and graphite (E) both have a crystal directionality in one direction, and the directionality is different.
  • the unit of the aggregate is defined as one region, and the optical difference is determined. Compare the aggregation pattern of anisotropic units of anisotropic tissue!
  • the interplanar spacing d of the (002) plane of graphite (E) measured by X-ray diffraction is not particularly limited.
  • the 002 limit is usually 0.3354 nm or more as a theoretical limit.
  • the measurement of the spacing d is The procedure is the same as for graphite (D).
  • crystallite size Lc004 falls below this range, the discharge capacity per active material weight tends to be small when the electrode is manufactured.
  • the measurement of the crystallite size Lc is the same as for the graphite (D) above.
  • the graphite composite powder (A) is a composite of the above-mentioned graphite (D) and graphite (E).
  • Composite means that the graphite (E) is in a state where the graphite (D) is coated and Z-bonded with the graphite (D).
  • the form of the composite of graphite (D) and graphite (E) in the graphite composite powder (A) is not particularly limited, and specific examples include the following.
  • III A form in which the above I) and II) are mixed at an arbitrary ratio.
  • the shape of the graphite composite powder (A) is not particularly limited. Examples include spherical, elliptical, massive, and the like. However, it is preferable that the particles have a shape close to a sphere. Specifically, it is preferable that the aspect ratio satisfies the following rules.
  • the outside ratio of graphite composite powder (A) is not particularly limited, but is usually 1.1 or more, preferably 1.3 or more, and usually 4.0 or less, preferably 3.0 or less. It is. If the aspect ratio falls below this range, the anisotropy will be small, resulting in a shape close to a sphere or a cube, making it difficult to increase the filling density of the electrode after pressing. On the other hand, if it exceeds the above range, the active material tends to be oriented on the electrode surface, and it is difficult to increase the load characteristics at a high electrode density. Alternatively, when the battery is manufactured, the electrode expansion during charging of the battery increases, and the battery capacity per unit volume of the electrode increases. Difficult to kink.
  • the external ratio of graphite composite powder (A) can be measured by the following procedure, as in the case of graphite (D).
  • the resin-embedded material of the negative electrode material or the negative electrode is polished in parallel to the flat plate, a cross-sectional photograph is taken, and image analysis of the photograph shows that the major axis of the graphite composite powder (A) cross-section is 50 mm. Measure above the point.
  • the resin-embedded material of the negative electrode material or the negative electrode was polished and polished perpendicularly to the flat plate, a cross-sectional photograph was taken, and image analysis of the photographed photo revealed that the graphite composite powder (A) Measure the minor axis (particle thickness) of the cross section at 50 points or more. An average value is obtained for each of the measured major axis and minor axis, and the ratio of the average major axis to the average minor axis is defined as an astat ratio (major axis Z minor axis).
  • the cross-sectional photograph of the particles may be taken by any of SEM, polarizing microscope, and TEM. However, in the case of the graphite composite powder (A), it is usually taken using SEM.
  • the tap density of the graphite composite powder (A) is not particularly limited, usually 0. 80gZcm 3 than on, inter alia 0. 90gZcm 3 or more, and usually 1. 35gZcm 3 or less, preferably 1. 30 g / cm 3 or less of A range is preferred. If the tap density falls below this range, it is difficult to obtain a high-capacity battery in which the packing density of the active material is hardly increased. On the other hand, when the ratio exceeds this range, the amount of pores in the electrode decreases, and it is difficult to obtain favorable battery characteristics.
  • the measurement of the tap density is performed in the same manner as in the case of the graphite (D).
  • the BET specific surface area of the graphite composite powder (A) is not particularly limited, but is usually 0.8 mso g or more, especially 2.0 Om 2 / g or more, and usually 5.5 m 2 / g or less, especially 4.Om
  • the range of 2 / g or less is preferable. If the BET specific surface area is below the lower limit of this range, the acceptability of lithium during charging tends to deteriorate, and lithium tends to precipitate on the electrode surface, which is not preferable for safety. On the other hand, when the value exceeds the upper limit of this range, the reactivity between the negative electrode and the electrolytic solution increases, and it is difficult to obtain a preferable battery in which gas generation easily increases.
  • the measurement of the BET specific surface area is performed in the same manner as in the case of the graphite (D) described above.
  • the volume-based average particle size of the graphite composite powder (A) is not particularly limited, but is usually at least 6. ⁇ ⁇ m, especially at least 10.O / zm, and usually at most 80.O / zm, especially at least 40.O.
  • the range of / zm or less is preferable. Below this range, the tap density of the graphite composite mixed powder (C) is reduced, and it is difficult to obtain a high-capacity battery in which the packing density of the active material is hardly increased when the electrode is manufactured. On the other hand, if it exceeds this range, coating unevenness tends to occur when the electrode is manufactured by coating as a graphite composite mixed powder (C).
  • the measurement of the volume-based average particle size is performed in the same manner as in the case of the graphite (D).
  • the ratio of the graphite (D) contained in the graphite composite powder (A) is a value of the weight ratio of the graphite (D) to the graphite composite powder (A), and is usually 30% by weight or more, preferably 40% by weight or more. % By weight, more preferably 50% by weight or more, usually 97% by weight or less, preferably 90% by weight or less, more preferably 83% by weight or less.
  • the ratio of graphite (E) relatively increases, so that the packing density is not easily increased when the electrode is used. It is difficult to obtain the advantage of compounding D).
  • the type of the artificial graphite powder (B) is not particularly limited.
  • An example is artificial graphite produced by subjecting a pitch raw material to high-temperature heat treatment.
  • the artificial graphite powder (B) is composed of (i) artificial graphite particles produced alone, and (ii) graphite material.
  • the artificial graphite powder (B) has a feature that it has high crystallinity and does not include a portion having different orientation such as graphite particles inside. Therefore, by using a polarizing microscope or TEM, a cross-sectional photograph of the negative electrode material powder was prepared for the negative electrode material before the negative electrode was manufactured, and the negative electrode manufactured using the negative electrode material was manufactured using the same procedure as for the graphite (D). Is present in the negative electrode cross section
  • the artificial graphite powder (B) can be distinguished from the graphite composite powder (A) by taking a cross-sectional photograph of the negative electrode material powder to be obtained and confirming its orientation.
  • the shape of the artificial graphite powder (B) is not particularly limited. Examples include lumps, spheres, ellipses, flakes, fibers and the like. Among them, lumps, spheres and ellipses are preferred.
  • the BET specific surface area of the artificial graphite powder (B) is not particularly limited, but is usually 0.3 m 2 / g or more, especially 0.5 m 2 / g or more, further 0.6 m 2 / g or more, and usually 3. Om 2 / g or less, especially 2.8 m 2 / g or less, and more preferably 2. Om 2 / g or less. If the BET specific surface area falls below the lower limit of this range, the acceptability of lithium during charging deteriorates, and lithium is easily deposited on the electrode surface, which is not preferable for safety. On the other hand, when the value exceeds the upper limit, the reactivity with the electrolytic solution increases, and it is difficult to obtain a preferable battery that easily generates gas.
  • the measurement of the BET specific surface area is performed in the same manner as in the case of the graphite (D) described above.
  • the volume-based average particle size of the artificial graphite powder (B) is not particularly limited, but is usually not less than 5 ⁇ m, especially not less than 6 ⁇ m, and usually not more than 30 ⁇ m, especially not more than 20 ⁇ m. Is preferred. If the volume-based average particle size falls below this range, the tap density of the graphite composite mixed powder (C) will decrease, so that when the electrode is manufactured, the packing density of the active material is unlikely to increase. It is hard to get a battery. On the other hand, when it exceeds this range, coating unevenness is likely to occur when an electrode is manufactured by coating as a negative electrode material. The measurement of the volume-based average particle size is performed in the same manner as in the case of the graphite (D) described above.
  • the tap density of artificial graphite powder (B) is not particularly limited, usually 0. 90gZcm 3 or more and preferably 1. lOgZcm 3 or more, and usually 1. 35gZcm 3 or less, preferably 1. 30gZcm 3 follows ranges are preferred . If the tap density is below this range, the packing density of the active material is difficult to increase, and it is difficult to obtain a high-capacity battery. On the other hand, if it exceeds this range, the amount of pores in the electrode becomes small, and it is difficult to obtain favorable battery characteristics. The measurement of the tap density is performed in the same manner as in the case of the graphite (D).
  • the spacing d of the (002) plane of the artificial graphite powder (B) measured by X-ray diffraction is particularly limited.
  • the lower limit of the surface distance d is 0.3360 nm or less, preferably 0.3358 nm or less. If it exceeds this range, that is, if the crystallinity is inferior, the discharge capacity per unit weight of the active material tends to be small when the electrode is manufactured. On the other hand, the lower limit of the surface distance d is
  • the theoretical limit is usually 0.3354 nm or more.
  • the measurement of the plane distance d is based on the above graphite (
  • the discharge capacity per active material weight when the electrode is manufactured tends to be small.
  • the crystallite size Lc is measured by the same method as for the graphite (D) described above.
  • the graphite composite powder (C) is a mixture of the graphite composite powder (A) and the artificial graphite powder (B).
  • the tap density of the graphite composite mixed powder (C) is not particularly limited, but is usually 0.8 g / cm 3 or more, particularly 0.9 g / cm 3 or more, further 1.Og / cm 3 or more, and usually 1 g / cm 3 or more. . 4g / cm 3 hereinafter, inter alia 1. 35 g / cm 3 or less, more 1. 3 g / cm 3 is preferably in a range of about. If the tap density is below this range, it is difficult to obtain a high-capacity battery in which the packing density of the active material is difficult to increase. On the other hand, when the ratio exceeds this range, the amount of pores in the electrode decreases, and it is difficult to obtain favorable battery characteristics.
  • the tap density is measured in the same manner as for the graphite (D) above.
  • BET specific surface area of the graphite composite mixture powder (C) is not particularly limited, usually lm 2 / g or more and preferably 1. 5 m 2 / g or more, further 1. 8m 2 / g or more, and usually 5 m 2 / g or less, preferably 3.5 m 2 / g or less, more preferably 3 m 2 / g or less. If the value is below the lower limit, the acceptability of lithium during charging tends to deteriorate, and lithium is easily deposited on the electrode surface, which is not preferable in terms of safety. Above the upper limit, the reactivity with the electrolyte increases, and gas generation tends to increase. It is difficult to obtain a preferable battery. The measurement of the BET specific surface area is performed in the same manner as in the case of the graphite (D) described above.
  • the interplanar spacing d of the (002) plane of the graphite composite mixed powder (C) measured by X-ray diffraction is
  • the range is usually 0.3360 nm or less, especially 0.3358 nm or less. If it exceeds this range, that is, if the crystallinity is poor, the discharge capacity per unit weight of the active material tends to be small when the electrode is manufactured. On the other hand, the lower limit of the surface distance d
  • 002 is usually 0.3354 nm or more as a theoretical limit.
  • the crystallite size Lc in the c-axis direction of the graphite composite mixed powder (C) measured by X-ray diffraction is not particularly limited, but is usually preferably 90 nm or more, particularly preferably 100 nm or more.
  • the ratio of the graphite composite powder (A) contained in the graphite composite powder (C) is usually 35% by weight or more, preferably by weight of the graphite composite powder (A) to the graphite composite powder (C). Or more preferably 50% by weight or more, more preferably 55% by weight or more, and usually 98% by weight or less, preferably 90% by weight or less, more preferably 86% by weight or less. If the weight ratio of the graphite composite powder (A) falls below this range, the proportion of the artificial graphite powder (B) relatively increases, so that an excessive press load is required to increase the packing density when forming an electrode. However, it is difficult to obtain the advantage of mixing artificial graphite powder (B). On the other hand, if the ratio exceeds this range, the ratio of the graphite composite powder (A) is too large, so that the electrode coatability may be impaired.
  • the volume-based average particle size of the graphite composite mixed powder (C) is not particularly limited, but is usually 5 m or more, preferably 8 ⁇ m or more, and usually 60 ⁇ m or less, preferably 30 ⁇ m or less. It is. Below this range, the tap density will decrease, making it difficult to obtain a high-capacity battery in which the active material packing density is unlikely to increase when the electrode is manufactured. On the other hand, If it turns, coating unevenness tends to occur when manufacturing an electrode by coating. The measurement of the volume-based average particle size is performed in the same manner as in the case of the graphite (D) described above.
  • the graphite composite mixed powder (C) is obtained from the same raw material by the same manufacturing method, a plurality of types of graphite composites in which only the mixing ratio of the graphite composite powder (A) and the artificial graphite powder (B) is changed.
  • the mixed powder (C) is prepared, and data such as tap density, specific surface area, and particle size are measured for the graphite composite mixed powder (C) at each mixing ratio. Data such as tap density, specific surface area, and particle size of the composite powder (A) alone and the artificial graphite powder (B) alone can be obtained.
  • the graphite composite mixed powder (F) further includes a natural graphite powder (G) in addition to the components of the graphite composite mixed powder (C).
  • the natural graphite powder (G) is used for the purpose of controlling the BET specific surface area of the anode material, improving the electrode pressability, improving the discharge capacity, and reducing the cost.
  • the type of the natural graphite powder (G) is not particularly limited.
  • Examples of the type of natural graphite include flaky graphite, flaky graphite, earthy graphite and the like.
  • the shape of the natural graphite powder (G) is not particularly limited. Specific examples include lumps, spheres, ellipses, flakes, fibers, and the like.
  • the BET specific surface area of the natural graphite powder (G) is not particularly limited, but is usually at least 3.Om 2 Zg, preferably at least 3.5 m 2 / g, more preferably at least 4.Om 2 / g, and The range is 10 m 2 / g or less, preferably 8.Om 2 / g or less, and more preferably 7. Om 2 / g or less. If the value of BET specific surface area is below the lower limit of this range, the effect of controlling the BET specific surface area of the graphite composite mixed powder (F) is undesirably reduced. On the other hand, when the value exceeds the upper limit of the range of the BET specific surface area, the safety is lowered, which is not preferable. The measurement of the BET specific surface area is performed in the same manner as in the case of the graphite (D) described above. ⁇ Volume-Based Average Particle Size>
  • the volume-based average particle size of the natural graphite powder (G) is not particularly limited, but is usually in a range of at least 10 ⁇ m, preferably at least 40 ⁇ m, and preferably at most 30 ⁇ m. Below this range, when the graphite composite mixed powder (F) is used, the tap density decreases, so that it is difficult to obtain a high-capacity battery in which the packing density of the active material does not easily increase during electrode production. On the other hand, when it exceeds this range, coating unevenness is likely to occur when an electrode is manufactured by coating as a negative electrode material. The measurement of the volume-based average particle size is performed in the same manner as in the case of the graphite (D) described above.
  • the proportion of the graphite composite mixed powder (C) in the graphite composite mixed powder (F) is usually 20% by weight or more, preferably 30% by weight or more, more preferably 40% by weight or more, based on the total weight.
  • the content is usually 90% by weight or less, preferably 80% by weight or less, more preferably 70% by weight or less.
  • the ratio of the graphite composite mixed powder (C) falls below the lower limit of this range, the excellent battery characteristics provided by the graphite composite mixed powder (C) cannot be exhibited, which is not preferable.
  • the value exceeds the upper limit of this range it is difficult to improve electrode pressability, which is not preferable.
  • the graphite composite mixed powder (C) will be referred to as “the negative electrode material (1) of the present invention” and the graphite composite mixed powder (F) as “the negative electrode material (II) of the present invention” as appropriate. Shall be.
  • the graphite composite mixed powder (C) and the graphite composite mixed powder (F) are not particularly distinguished from each other, they will be referred to as “anode materials of the present invention”.
  • the negative electrode material of the present invention preferably has the following characteristics when a negative electrode for a lithium secondary battery is produced using the negative electrode material as an active material.
  • the electrode density was 1.63 ⁇ 0. That, 1. 58 g / cm 3 or more: 1.
  • the active material orientation ratio of the electrode is usually 0.07 or more and preferably 0.09 or more, Furthermore, it may be in the range of 0.10 or more, usually 0.20 or less, especially 0.18 or less, and even 0.16 or less. preferable. If the ratio is below the above range, the expansion of the electrode during battery charging when the battery is manufactured becomes large, and it is difficult to increase the battery capacity per unit volume of the electrode. On the other hand, if it exceeds the above range, the crystallinity of the active material at the time of producing the battery will be low, and it will be difficult to increase the discharge capacity of the battery or to increase the packing density of the electrode after pressing.
  • the active material orientation ratio of the electrode is an index indicating the degree of orientation of the hexagonal mesh plane of the graphite crystal with respect to the thickness direction of the electrode. The higher the orientation ratio, the more uniform the direction of the hexagonal mesh plane of the graphite crystals of the particles, indicating a state.
  • the specific procedure for measuring the active material orientation ratio of the electrode is as follows.
  • the negative electrode material, a CMC (carboxymethylcellulose) aqueous solution as a thickener, and an SBR (styrene butadiene rubber) aqueous solution as a binder resin were added to the CMC based on the total weight of the dried mixture of the negative electrode material, CMC, and SBR. And SBR are mixed and stirred so that each becomes 1% by weight to form a slurry.
  • the slurry is applied on an 18 m thick copper foil using a doctor blade. Coating thickness, after drying the electrode weight (exclusive of the copper foil) to select the gap so that lOmgZc m 2. After drying this electrode at 80 ° C, press the electrode so that the electrode density (excluding copper foil) force is S1. 63 ⁇ 0.05 g / cm 3 .
  • the active material orientation ratio of the electrode is measured by X-ray diffraction.
  • the standard method is to measure the charts of the (110) and (004) planes of graphite by X-ray diffraction and use the measured chart as a profile function as an asymmetric Pearson VII.
  • the peaks on the (110) plane and the (004) plane are integrated by performing peak separation by fitting. From the obtained integrated intensity, a ratio represented by (110) area intensity Z (004) area intensity is calculated and defined as the active material orientation ratio of the electrode.
  • the X-ray diffraction measurement conditions here are as follows. “2 °” indicates a diffraction angle.
  • the active material orientation ratio by X-ray diffraction can be obtained for an electrode formed to have an electrode density of 1.63 ⁇ 0.05 g / cm 3 .
  • the negative electrode material of the present invention preferably has the following characteristics when a lithium secondary battery is manufactured using this as a negative electrode active material.
  • the discharge capacity of the lithium secondary battery is usually 345 mAhZg or more. Especially, it is preferable to be in the range of 350 mAhZg or more. If the discharge capacity falls below this range, the battery capacity tends to decrease. The higher the discharge capacity, the better, but the upper limit is usually about 365 mAhZg.
  • the specific method for measuring the discharge capacity is not particularly limited, but a standard measurement method is as follows.
  • an electrode using a negative electrode material is manufactured.
  • the electrode is manufactured by using a copper foil as a current collector and forming an active material layer on the current collector.
  • a mixture of a negative electrode material and styrene butadiene rubber (SBR) as a binder resin is used for the active material layer.
  • SBR styrene butadiene rubber
  • the amount of nodular resin shall be 1% by weight based on the weight of the electrode.
  • the electrode density is set to 1.45 gZcm 3 or more and 1.95 gZcm 3 or less.
  • the discharge capacity is evaluated by preparing a bipolar coin cell using metallic lithium as a counter electrode on the prepared electrode, and performing a charge / discharge test on the coin cell.
  • the electrolyte of the two-pole coin cell is optional.
  • the separator used for the bipolar coin cell is optional.
  • the thickness is 15 ⁇ m
  • a 35 ⁇ m polyethylene sheet can be used.
  • a charge / discharge test is performed using the two-pole coin cell thus produced, and the discharge capacity is determined. Specifically, at a current density of 0. 2mAZcm 2, charged to 5mV the lithium counter electrode, further charged until the current value becomes 0. 02MA a constant voltage of 5mV, doped lithium in the negative electrode After that, the charge and discharge cycle of discharging the lithium counter electrode to 1.5 V at a current density of 0.4 mAZcm 2 is repeated three cycles, and the discharge value at the third cycle is defined as the discharge capacity.
  • the negative electrode material (1) of the present invention that is, the graphite composite mixed powder (C) is a graphite composite in which graphite (D) and graphite (E) having a different orientation from graphite (D) are compounded. It contains a powder (A) and an artificial graphite powder (B), but this graphite composite mixed powder (C) is different from the conventional production of composite graphite powder, It can be obtained by selecting conditions.
  • the obtained graphite composite powder (A) also has the specified aspect ratio.
  • the graphite (D) is coated or bound to the graphite (E) having a different orientation and bonded in a random orientation direction.
  • the graphite composite mixed powder (C) can be obtained by the following two production methods and the like.
  • a graphite crystal precursor which is a raw material of the graphite (E) and the artificial graphite powder (B), and the graphite (D) are mixed at a predetermined ratio, heat-treated A, and then pulverized. Then, heat treatment B (firing, graphitization) is performed to produce a graphite composite mixed powder (C).
  • a graphite crystal precursor having a volatile content of usually 5% by weight or more and 20% by weight or less is preferable to use.
  • a graphite crystal precursor having a volatile content in this range the graphite (D) and the graphite (E) are combined by the heat treatment A, so that the graphite having the physical properties specified above is used.
  • the composite mixed powder (C) can be obtained.
  • the active material orientation ratio of the negative electrode formed using the graphite composite mixed powder (C) as an active material preferably satisfies the above-mentioned range.
  • a graphite composite powder (A) is produced.
  • an artificial graphite powder (B) is produced from a graphite crystal precursor in the same manner as in Production Method 1.
  • the graphite composite powder (C) is prepared by mixing the graphite composite powder (A) thus obtained and the artificial graphite powder (B) independently.
  • the content of graphite (E) with respect to graphite composite powder (A) was obtained at a ratio of 3% by weight or more and 70% by weight or less.
  • the graphite composite mixed powder (C ) can be obtained.
  • the pitch raw material is preliminarily subjected to a heat treatment to produce a precursor of graphite crystal, baltamesophose (a graphite crystal precursor that has been heat treated in advance. V, u) will be described.
  • a pitch raw material As a starting material for the graphite (E) and the artificial graphite powder (B) contained in the graphite composite mixed powder (C) of the present invention, a pitch raw material is used.
  • the term "pitch raw material” refers to a pitch and a material equivalent thereto, which can be subjected to graphite treatment by performing an appropriate treatment.
  • Specific examples of the pitch raw material include tar and heavy oil pitch.
  • tar include coal tar and petroleum tar.
  • Specific examples of heavy oil include catalytic cracking oil of petroleum heavy oil, thermal cracking oil, residual oil under normal pressure, residual oil under reduced pressure, and the like.
  • Specific examples of pitch include Coulter-Rubich, petroleum-based pitch, and synthetic pitch. Of these, Coulter Rubich is preferred because of its high aromaticity. Any one of these pitch materials may be used alone, or two or more thereof may be used in any combination and in any ratio.
  • the content of the quinoline-insoluble component is not particularly limited, but is usually 3.0% by weight or less, preferably 1.0% by weight or less, and more preferably 0.02% by weight. % Use those in the following range.
  • the quinoline-insoluble matter is submicron carbon particles or microscopic sludge contained in trace amounts in coal tar, and if too much, significantly impairs the improvement of the crystallinity during the graphitizing process, and the graphitic product becomes insoluble. The subsequent discharge capacity is significantly reduced.
  • a method of measuring the quinoline-insoluble content for example, a method specified in JIS K2425 can be used.
  • thermosetting resins thermoplastic resins, and the like may be used in combination with the above-mentioned pitch raw material as a raw material.
  • the pitch raw material selected from the above is heat-treated in advance to obtain a heat-treated graphite crystal precursor.
  • This preliminary heat treatment is called pitch heat treatment.
  • This heat-treated graphite crystal precursor is pulverized, mixed with graphite (D), and then subjected to heat treatment A. A force that melts part or all of it. By doing so, the molten state can be appropriately controlled.
  • the volatile components contained in the heat-treated graphite crystal precursor hydrogen, benzene, naphthalene, anthracene, pyrene and the like are usually mentioned.
  • the temperature conditions for the pitch heat treatment are not particularly limited, but are usually 300 ° C or higher, preferably 450 ° C or higher, and usually 550 ° C or lower, preferably 510 ° C or lower. If the temperature of the heat treatment falls below this range, volatile components will increase, making it difficult to safely pulverize in the atmosphere.If the temperature exceeds the upper limit, part or all of the heat-treated graphite crystal precursor will not melt during heat treatment A. In addition, it is difficult to obtain composite particles of graphite (D) and a heat-treated graphite crystal precursor (graphite composite powder (A)).
  • the time for performing the pitch heat treatment is not particularly limited, but is usually 1 hour or more, preferably 10 hours or more, and is usually 48 hours or less, preferably 24 hours or less. If the heat treatment time is less than this range, it becomes a non-uniform heat-treated graphite crystal precursor, which is not preferable for production. On the other hand, if the heat treatment time exceeds the upper limit, the productivity is low and the processing cost is high, which is also not preferable. Note that the heat treatment may be performed a plurality of times as long as the temperature and the cumulative time of the heat treatment are within the above ranges.
  • the pitch heat treatment is performed in an atmosphere of an inert gas such as a nitrogen gas or an atmosphere of a volatile component generated from the pitch raw material.
  • the apparatus used for the pitch heat treatment is not particularly limited, and for example, a reaction furnace such as a shuttle furnace, a tunnel furnace, an electric furnace, and an autoclave, a coker (a heat treatment tank manufactured by Cotus), and the like can be used.
  • a reaction furnace such as a shuttle furnace, a tunnel furnace, an electric furnace, and an autoclave
  • a coker a heat treatment tank manufactured by Cotus
  • stirring may be performed if necessary.
  • the volatile content of the graphite crystal precursor obtained by the pitch heat treatment is not particularly limited, but is usually 5% by weight or more, preferably 6% by weight or more, and usually 20% by weight or less, preferably 15% by weight or less. If the volatile content is less than the above range, the volatile content is large, so that pulverization is performed safely in the atmosphere, and it becomes difficult. If the volatile content exceeds the upper limit, part or all of the graphite crystal precursor does not melt during heat treatment A, It is difficult to obtain composite particles of graphite (D) and a heat-treated graphite crystal precursor (graphite composite powder (A)).
  • a method for measuring the volatile content for example, a method specified in JIS M8812 can be used.
  • the softening point of the graphite crystal precursor obtained by pitch heat treatment is not particularly limited,
  • the temperature is usually 250 ° C. or higher, preferably 300 ° C. or higher, more preferably 370 ° C. or higher, and usually 470 ° C. or lower, preferably 450 ° C. or lower, more preferably 430 ° C. or lower.
  • the carbonization yield of the graphite crystal precursor after heat treatment is low. If it is difficult to obtain a uniform mixture with the graphite (D), if it exceeds the upper limit, part or part of the graphite crystal precursor during heat treatment A All of them are not melted, and it is difficult to obtain composite particles of graphite (D) and a heat-treated graphite crystal precursor (graphite composite powder (A)).
  • the softening point was determined using a thermo-mechanical analyzer (for example, Bruker TMA4000 manufactured by AX Corporation) for a sample molded to a lmm thickness using a tablet molding machine, under nitrogen flow, at a heating rate of 10 ° CZ min. The value measured by the penetration method under the conditions of a needle tip shape lmm ⁇ and a load of 20 gf can be used.
  • the graphite crystal precursor obtained by the pitch heat treatment is pulverized.
  • the crystal of graphite crystal precursor by arranging in large units by heat treatment in the same direction, and to uniformly mix and compound Z or graphite (D) with heat-treated graphite crystal precursor It is to make it.
  • the pulverization of the graphite crystal precursor obtained by the pitch heat treatment is not particularly limited, but the particle size of the pulverized graphite crystal precursor is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, and usually 10 mm or less. , Preferably 5 mm or less, particularly preferably 500 m or less, more preferably 200 m or less, particularly preferably 50 m or less.
  • the particle size is less than 1 ⁇ m, the surface of the graphite crystal precursor heat-treated during or after the pulverization is oxidized by contact with air, which hinders the improvement of the crystallinity in the graphitization process and causes graphitization. There is a possibility that the discharge capacity will be reduced later.
  • the particle size is more than 10 mm, the pulverization effect by pulverization is weakened, the crystals are easily oriented, the graphite (E) and Z or the artificial graphite powder (B) are easily oriented, and the graphite composite mixed powder ( The active material orientation ratio of the electrode using C) becomes low, and it becomes difficult to suppress electrode expansion during battery charging.
  • the difference in particle size between Z and Z or the graphite (D) and the heat-treated graphite crystal precursor is large, the composite is difficult to be uniformly mixed, and the composite is likely to be non-uniform.
  • the apparatus used for pulverization there is no particular limitation on the apparatus used for pulverization.
  • the coarse pulverizer include a shear mill, a jaw crusher, an impact crusher, and a cone crusher
  • the intermediate pulverizer includes a roll crusher, a hammer mill, and the like.
  • Ball mill as a fine grinding machine Mill, vibration mill, pin mill, stirring mill, jet mill, and the like.
  • the graphite (D) and the heat-treated graphite crystal precursor (raw material of the graphite (E) and the artificial graphite powder (B)) are mixed at a predetermined ratio, heat-treated A, pulverized, and heat-treated B (fired, graphitized).
  • the mixing ratio of the graphite (D) to be subjected to heat treatment A and the heat-treated graphite crystal precursor is not particularly limited, but the ratio of the graphite (D) to the mixture is usually 20% by weight or more, preferably 30% by weight. It is carried out in such a manner that the content is at least 40% by weight, usually at most 80% by weight, preferably at most 70% by weight.
  • the proportion of the graphite (E) and Z or the artificial graphite powder (B) in the graphite composite mixed powder (C) increases, resulting in an excessive press load that makes it difficult to increase the packing density when used as an electrode. Therefore, it is difficult to obtain the effect of compounding graphite (D).
  • Exceeding the upper limit may increase the exposure of the graphite (D) surface in the graphite composite powder (A) and increase the specific surface area of the graphite composite mixed powder (C). Not good.
  • the apparatus used for mixing the graphite (D) and the heat-treated graphite crystal precursor adjusted to a predetermined particle size is not particularly limited, and examples thereof include a V-type mixer, a W-type mixer, and a container-variable mixer. , A kneader, a drum mixer, a shear mixer and the like.
  • heat treatment A is performed on the mixture of the graphite (D) and the heat-treated graphite crystal precursor. This is because by re-melting or fusing the pulverized heat-treated Kurofune crystal precursor, the graphite (D) and the refined heat-treated Kurofune crystal precursor particles are fixed in a non-oriented state while in contact. As a result, the mixture of the graphite (D) and the heat-treated graphite crystal precursor can be more simply a mixture of particles than a mixture of particles (hereinafter, appropriately referred to as a “graphite composite mixture”). Monkey
  • the temperature condition of the heat treatment A is not particularly limited, but is usually 300 ° C or higher, preferably 400 ° C or higher, more preferably 450 ° C or higher, and usually 650 ° C or lower, preferably 600 ° C or lower. so is there. If the temperature of the heat treatment A is lower than the above range, a large amount of volatile matter remains in the material after the heat treatment A, so that there is a possibility that the powders will fuse together during the firing or graphitization step, and Pulverization is required, which is not preferable. On the other hand, if it exceeds the above range, the re-melted component may be broken into needles at the time of pulverization, leading to a decrease in tap density, which is not preferable.
  • the time for performing the heat treatment A is not particularly limited, but is usually 5 minutes or more, preferably 20 minutes or more, and is usually 3 hours or less, preferably 2 hours. If the time for performing the heat treatment A is less than the above range, the volatile components become non-uniform, which causes fusion during firing or graphitizing treatment. .
  • Heat treatment A is performed in an atmosphere of an inert gas such as nitrogen gas or in an atmosphere of volatile components generated from a heat-treated graphite crystal precursor that has been refined by pulverization.
  • the apparatus used for the heat treatment A is not particularly limited, and for example, a shuttle furnace, a tunnel furnace, an electric furnace, and the like can be used.
  • a treatment capable of miniaturizing and non-orienting the structure of the heat-treated graphite crystal precursor for example, a temperature at which the heat-treated graphite crystal precursor melts or softens. It is also possible to mix and heat-treat with graphite (D) while performing the process of applying mechanical energy in the region.
  • the heat treatment as this alternative treatment is not particularly limited, but is usually performed at 200 ° C or higher, preferably 250 ° C or higher, and usually 450 ° C or lower, preferably 400 ° C or lower. If the temperature condition is lower than the above range, the melting and softening of the graphite crystal precursor during the substitution treatment is insufficient, and it is difficult to form a composite with the graphite (D). On the other hand, if it exceeds, the particles such as the artificial graphite powder (B) are broken into needles at the time of pulverization at the time of pulverization, so that the tap density tends to decrease.
  • the treatment time is not particularly limited, but is usually 30 minutes or more, preferably 1 hour or more, and is usually 24 hours or less, preferably 10 hours or less. If the treatment time is shorter than the above range, the graphite crystal precursor subjected to the substitution treatment becomes non-uniform, which is not preferable in production. On the other hand, if it exceeds, the productivity is poor and the processing cost increases, which is not preferable.
  • This substitution treatment is usually performed in an inert atmosphere such as nitrogen gas or an acid atmosphere such as air.
  • an inert atmosphere such as nitrogen gas or an acid atmosphere such as air.
  • high crystallinity is obtained after graphitization. Therefore, it is necessary to prevent infusibilization by oxygen from proceeding too much.
  • the amount of oxygen in the graphite crystal precursor after the substitution treatment is usually adjusted to 8% by weight or less, preferably 5% by weight or less.
  • a mixer for example, a mixer, a kneader, or the like can be used.
  • the graphite composite mixture subjected to the heat treatment A is pulverized. This is because the mass of the graphite composite mixture that has been composited with the graphite (D) by heat treatment A and has been melted or fused in a state where the structure has been refined and non-oriented has been pulverized to a target particle size.
  • the particle size of the graphite composite mixture after pulverization is not particularly limited, but is usually at least, preferably at least 9 ⁇ m, and is usually at most 65 ⁇ m, preferably at most 35 ⁇ m. If the particle size is less than the above range, the tap density of the graphite composite negative electrode material C becomes small, so that it is difficult to obtain a high-capacity battery in which the packing density of the active material hardly increases when used as an electrode. On the other hand, when it exceeds the above range, when the electrode is produced by applying the graphite composite negative electrode material C, coating unevenness is likely to occur, which is not preferable.
  • Examples of the coarse pulverizer include a jaw crusher, an impact crusher, and a cone crusher, and examples of the intermediate pulverizer include a roll crusher and a hammer mill.
  • Examples of the fine pulverizer include a ball mill, a vibration mill, a pin mill, a stirring mill, and a jet mill.
  • Heat treatment B refers to firing and graphitizing. Hereinafter, the firing force will be described. However, baking can be omitted.
  • the crushed graphite composite mixture is fired by crushing. This is for removing volatile components of the graphite composite mixture by baking to suppress fusion of the graphite composite mixture during graphitization.
  • the temperature conditions for baking are not particularly limited, but are usually 600 ° C or higher, preferably 1000 ° C or higher, and usually 2400 ° C or lower, preferably 1300 ° C or lower. If the temperature condition is lower than the above range, the graphite composite mixture is liable to cause fusion of powder at the time of graphitization, which is not preferable. On the other hand, if it exceeds the above range, it is not preferable because the firing equipment is expensive. When performing the firing, the holding time for maintaining the temperature condition in the above range is not particularly limited. The force is usually 30 minutes or more and 72 hours or less.
  • the firing is performed in an atmosphere of an inert gas such as nitrogen gas or in a non-oxidizing atmosphere by a gas generated from the re-ground graphite composite mixture.
  • an inert gas such as nitrogen gas
  • a non-oxidizing atmosphere by a gas generated from the re-ground graphite composite mixture.
  • the apparatus used for firing is not particularly limited, and for example, a shuttle furnace, a tunnel furnace, an electric furnace, a lead normal furnace, a rotary kiln, and the like can be used.
  • the fired graphite composite mixture is graphitized. This is to improve the crystallinity in order to increase the discharge capacity in battery evaluation.
  • the graphite composite mixed powder (C) (negative electrode material (I) of the present invention) can be obtained by graphite shading.
  • the temperature conditions for graphitization are not particularly limited, but are usually 2800 ° C or higher, preferably 3000 ° C or higher, and usually 3200 ° C or lower, preferably 3100 ° C or lower. Above the above range, the reversible capacity of the battery may be reduced, making it difficult to produce a high capacity battery. Also
  • the holding time for performing the graphite dagger is not particularly limited, but is usually longer than 0 minutes,
  • Graphitizing is performed in an atmosphere of an inert gas such as argon gas, or in a non-oxidizing atmosphere with a gas generated from a fired graphite composite mixture.
  • an inert gas such as argon gas
  • a non-oxidizing atmosphere with a gas generated from a fired graphite composite mixture.
  • graphite such as Si, B, etc. is placed on or in the material (graphite (D), pitch raw material or graphite crystal precursor). It is OK to add a catalyst.
  • the above-mentioned pitch raw material and graphite (D) are mixed at an arbitrary ratio, and heat treatment B is performed.
  • a composite powder (A) is prepared.
  • the pitch raw material is subjected to pitch heat treatment in the same manner as in Production Method 1 to obtain a graphite crystal precursor.
  • This graphite crystal precursor may be subjected to the above-mentioned medium pulverizer and fine pulverization step to obtain a powder. Further, the graphite crystal precursor is pulverized and subjected to heat treatments A and B to produce an artificial graphite powder (B).
  • heat treatment A may be omitted.
  • the graphite composite powder (A) and the artificial graphite powder (B) are mixed using any apparatus used in the “mixing” of the production method 1.
  • the ratio of graphite composite powder (A) to artificial graphite powder (B) is the value of the weight ratio of artificial graphite powder (B) to the total amount of graphite composite powder (A) and artificial graphite powder (B). It is in the range of 2% by weight or more, preferably 10% by weight or more, more preferably 14% by weight or more, and usually 65% by weight or less, preferably 50% by weight or less, more preferably 45% by weight or less. Below this range, the proportion of the artificial graphite powder (B) increases, so that an excessive press load is required to increase the packing density when forming an electrode, and it is difficult to obtain the advantage of mixing the artificial graphite powder (B). On the other hand, if the ratio exceeds this range, the ratio of the graphite composite powder (A) is too large, so that the electrode coatability may be impaired.
  • the classification treatment is for removing coarse and fine powders which have a target particle size after the graphitization treatment.
  • the apparatus used for the classification is not particularly limited.
  • dry sieving a rotary sieve, an oscillating sieve, a oscillating sieve, a vibrating sieve, or a dry air flow classification: gravity Classifier, inertial classifier, centrifugal classifier (classifier, cyclone, etc.), wet sieving, mechanical wet classifier, hydraulic classifier, sedimentation classifier, centrifugal classifier, etc. Can be.
  • Classification can be carried out immediately after pulverization after heat treatment A, or other types. It may be performed after the immersion, for example, after the firing after the pulverization, or after the graphite siding. Further, the classification process itself can be omitted. However, from the viewpoint of lowering the BET specific surface area of the graphite composite mixed powder (C) and the productivity, it is preferable to carry out the classification treatment immediately after the pulverization after the heat treatment A.
  • the graphite composite mixed powder (C) produced by the above procedure was further separated for the purpose of controlling the BET specific surface area of the negative electrode material, improving the electrode pressability, improving the discharge capacity, and reducing the cost.
  • the manufactured artificial graphite powder or natural graphite powder may be added and mixed.
  • artificial graphite powder it can be regarded as a part of artificial graphite powder (B) which is a component of graphite composite mixed powder (C).
  • B artificial graphite powder
  • natural graphite powder when natural graphite powder is added, it functions as the above-described natural graphite powder (G), and the whole mixed powder functions as the above-described graphite composite mixed powder (F).
  • an active material layer containing the negative electrode material of the present invention as an active material on a current collector, a negative electrode for a lithium secondary battery can be manufactured.
  • the negative electrode may be manufactured according to a conventional method. For example, there is a method in which a binder, a thickener, a conductive material, a solvent, and the like are added to the negative electrode active material to form a slurry, the slurry is applied to a current collector, dried, and then pressed to increase the density. Further, in addition to the negative electrode material of the present invention, another active material can be used in combination.
  • the density of [0146] the negative electrode layer is usually 1. 45 g / cm 3 or more, preferably preferably 1. 55 g / cm 3 or more, more preferable properly, upon a 1. 6 g / cm 3 or more, than the capacity of the battery increases .
  • the negative electrode layer refers to a layer made of an active material, a binder, a conductive agent, and the like on the current collector, and the density refers to a density at the time of being formed into a battery.
  • any material can be used as long as it is a material that is stable with respect to a solvent or an electrolytic solution used in manufacturing an electrode.
  • examples include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, styrene-butadiene rubber, isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, and the like. These may be used alone or in any combination of two or more. It is acceptable to use them together at the same ratio and ratio.
  • a known thickener for example, carboxynoremethinoresenololose, methinoresenololose, hydroxymethinoresenorelose, etinoresenololose, polyvinyl alcohol, oxidized Starch, phosphorylated starch and casein.
  • a known thickener for example, carboxynoremethinoresenololose, methinoresenololose, hydroxymethinoresenorelose, etinoresenololose, polyvinyl alcohol, oxidized Starch, phosphorylated starch and casein.
  • One of these may be used alone, or two or more of them may be used in any combination and in any ratio.
  • Examples of the conductive material include a metal material such as copper or nickel; and a carbon material such as graphite or carbon black. These may be used alone or in combination of two or more in any combination and in any ratio.
  • Examples of the material of the current collector for the negative electrode include copper, nickel, and stainless steel.
  • copper foil is preferred from the viewpoint of easy processing into a thin film and the cost.
  • One of these may be used alone, or two or more of them may be used in any combination and in any ratio.
  • the negative electrode material of the present invention is useful as a material for a battery electrode.
  • the use of the above-described negative electrode material of the present invention for a negative electrode is extremely useful for a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a nonaqueous secondary battery such as a lithium secondary battery provided with an electrolytic solution.
  • a negative electrode is produced using the negative electrode material of the present invention, and a non-aqueous secondary battery composed of a generally used metal chalcogenide-based positive electrode for a lithium secondary battery and an organic electrolyte mainly containing a carbonate-based solvent is used.
  • Batteries have a large capacity. The irreversible capacity found in the initial site is small. The rapid charge / discharge capacity is high. The cycle characteristics are excellent, and the battery is highly preserved and highly reliable when left at high temperatures. It is extremely excellent in characteristics and discharge characteristics at low temperatures.
  • the positive electrode includes, for example, lithium cobalt oxide, lithium nickel oxide, and lithium man oxide.
  • Lithium transition metal composite oxide materials such as cancer oxides; transition metal oxide materials such as manganese dioxide; materials capable of occluding and releasing lithium such as carbonaceous materials such as fluorinated graphite can be used.
  • Non-stoichiometric compounds from 2 2 2 4, MnO, TiS, FeS, Nb S, Mo S, CoS, V O, P O, CrO
  • the method for producing the positive electrode is not particularly limited,
  • the electrode can be manufactured by the same method as the above-described method of manufacturing the electrode.
  • valve metal for the positive electrode current collector, for example, it is preferable to use a valve metal or an alloy thereof that forms a passive film on the surface by anodizing in an electrolytic solution.
  • the valve metal include metals belonging to Group Illb, Group IVa, and Group Va in the short period type periodic table and alloys thereof.
  • Al, Ti, Zr, Hf, Nb, Ta and alloys containing these metals can be exemplified.Al, Ti, Ta, and alloys containing these metals can be preferably used. .
  • A1 and its alloys are desirable because of their light weight and high energy density.
  • any electrolyte such as an electrolytic solution and a solid electrolyte can be used.
  • the electrolyte means all of the ionic conductors, and the electrolyte and the solid electrolyte are both included in the electrolyte.
  • the electrolytic solution for example, a solution in which a solute is dissolved in a nonaqueous solvent can be used.
  • an alkali metal salt, a quaternary ammonium salt, or the like can be used as the solute.
  • LiN (CF SO) (CF SO)
  • LiC LiC
  • non-aqueous solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and bi- lene carbonate; cyclic ester conjugates such as butyrolataton; and chains such as 1,2-dimethoxyethane.
  • One solute and one solvent may be selected for use, or a mixture of two or more may be used. May be. Among these, those containing a non-aqueous solvent-based cyclic carbonate and a chain carbonate are preferable.
  • the non-aqueous electrolytic solution may be a solid electrolyte in the form of a gel, a rubber, or a solid sheet by including an organic polymer compound in the electrolytic solution.
  • organic polymer compound include polyether polymer compounds such as polyethylene oxide and polypropylene oxide; crosslinked polymers of polyether polymer compounds; and vinyl alcohol compounds such as polyvinyl alcohol and polyvinyl butyral.
  • Polymer compound insolubilized poly (vinyl alcohol) polymer; polyepichlorhydrin; polyphosphazene; polysiloxane; poly (vinylpyrrolidone), poly (vinylidene carbonate, polyacrylonitrile, etc.); polymer copolymers such as ⁇ -methoxyoligooxyethylene methacrylate and poly ( ⁇ -methoxy oligooxyethylene methacrylate methyl methacrylate).
  • the material and shape of the separator are not particularly limited.
  • the separator separates the positive electrode and the negative electrode so that they do not physically contact each other, and preferably has high ion permeability and low electric resistance.
  • the separator is preferably selected from materials that are stable with respect to the electrolytic solution and have excellent liquid retention.
  • the above electrolyte solution can be impregnated using a porous sheet or nonwoven fabric made of polyolefin such as polyethylene or polypropylene as a raw material.
  • a method for producing a lithium secondary battery having at least an electrolytic solution, a negative electrode, and a positive electrode is not particularly limited, and can be appropriately selected from commonly employed methods.
  • an outer can, a separator, a gasket, a sealing plate, a cell case, and the like can be used, if necessary, in addition to the electrolytic solution, the negative electrode, and the positive electrode.
  • a negative electrode is placed on an outer can, an electrolytic solution and a separator are provided thereon, and a positive electrode is placed so as to face the negative electrode.
  • the battery can be squeezed together with the mouth plate.
  • the shape of the battery is not particularly limited, and examples thereof include a cylinder type in which a sheet electrode and a separator are formed in a spiral shape, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, and a coin type in which a pellet electrode and a separator are stacked. Nasu You can do it.
  • the negative electrode material of the present invention When the negative electrode material of the present invention is used as a negative electrode active material at a high electrode density, a battery having a high discharge capacity, a high charge / discharge efficiency, excellent load characteristics, and a small electrode expansion during charging can be obtained. The reason is not necessarily clear, but is presumed as follows.
  • the negative electrode material (I) of the present invention that is, the graphite composite mixed powder (C) has a high degree of crystallinity and a graphite (D) having an external ratio in the above specified range, Excellent discharge characteristics with high discharge capacity. Further, by having the graphite (E) having a different orientation from the graphite (D), an increase in the specific surface area is suppressed, and the charge / discharge efficiency is high. Further, since the graphite (D) and the graphite are combined, the active material orientation ratio is high and the expansion is small.
  • the negative electrode material (II) of the present invention ie, the graphite composite mixed powder (F), further includes a natural graphite powder (G) in addition to the above-described graphite composite mixed powder (C). This enables more precise control of the powder properties, and is preferred because of its excellent load characteristics and cycle life.
  • the low crystallinity surface layer (C) covers the core material without peeling, and the BET specific surface area is preferably lm 2 Zg or less.
  • the spherical graphite, oval, or massive graphite composite powder (A) contains the artificial graphite powder (B), so that the filling rate of the negative electrode material in the electrode can be easily increased.
  • the combination of graphite composite powder (A) with a high BET specific surface area and artificial graphite powder (B) with a low BET specific surface area it is possible to increase the electrode density and increase the BET specific surface area. Control becomes possible.
  • a coal tar pitch having a quinoline insoluble content of 0.05% by weight or less is heat-treated in a reaction furnace at 460 ° C for 10 hours to obtain a fusible lumped heat-treated graphite crystal precursor having a softening point of 385 ° C. Obtained.
  • the value measured by the method described above was used for the value of the soft dagger point.
  • the obtained massive heat-treated graphite crystal precursor is pulverized using an intermediate pulverizer (Oriental Mill manufactured by Seishin Enterprise Co., Ltd.), and further pulverized using a pulverizer (Turbo Mill manufactured by Matsubo Co., Ltd.) to obtain a median diameter of 17%.
  • a fine graphite crystal precursor powder having a particle size of m was obtained.
  • the value of the median diameter a value measured by the method described above was used.
  • Natural graphite having a median diameter of 17 m, an aspect ratio of 1.9, and a tap density of 1. OgZcm 3 was added to the above-mentioned finely divided graphite crystal precursor powder, and the total weight of the finely divided graphite crystal precursor powder and the natural graphite.
  • a mixed powder of graphite (D) and a heat-treated graphite crystal precursor As the value of the aspect ratio, a value measured by the method described above was used.
  • the mixed powder of the heat-treated graphite crystal precursor was packed in a metal container, and heat treatment A was performed at 540 ° C for 2 hours in a box-shaped electric furnace under a flow of nitrogen gas. During heat treatment A, the refined graphite crystal precursor powder melted and became a lump of a mixture of heat-treated graphite crystal precursor uniformly mixed with natural graphite.
  • the solidified lump of the heat-treated graphite crystal precursor mixture is pulverized by a coarse crusher (Yoshida Seisakusho's roll jaw crusher), and further finely crushed by a fine crusher (Matsubo Turbo Mill) to obtain a median diameter of 18.5 ⁇ m. A powder was obtained.
  • the obtained powder was placed in a container and calcined in an electric furnace under a nitrogen atmosphere at 1000 ° C for 1 hour. After firing, the powder was in the form of powder, and melting and fusion were hardly observed.
  • the calcined powder was transferred to a graphite crucible, and subjected to graphite sintering at 3,000 ° C. for 5 hours in an inert atmosphere using a direct current furnace to obtain a graphite composite mixed powder (C) (the negative electrode of Example 1). Material).
  • C graphite composite mixed powder
  • the graphite composite powder (A) had a median diameter of 19.5 m and an aspect ratio of 1.2.
  • the artificial graphite powder (B) had a median diameter of 8.5 ⁇ m.
  • an electrode having an electrode density of 1.63 ⁇ 0.05 gZcm 3 was produced according to the following method, and the active material orientation ratio of the electrode was determined. Met.
  • a lithium secondary battery was manufactured according to the following method, and the discharge capacity, charge / discharge efficiency, and load characteristics were measured. Similarly, a lithium secondary battery was prepared, disassembled in the charged state, and the thickness of the electrode was measured to measure the charge expansion coefficient.
  • Tables 13 to 13 show the evaluation results of the physical properties of the negative electrode material of Example 1.
  • a negative electrode material, a CMC aqueous solution as a thickening agent, and an SBR aqueous solution as a binder resin are mixed and stirred so that each of the dried negative electrode material is 1% by weight of CMC and SBR to form a slurry.
  • This slurry was applied on a copper foil using a blade. The coating thickness was selected such that the electrode basis weight after drying (excluding the copper foil) was 10 mgZcm 2 .
  • a coin battery (lithium secondary battery) was fabricated using a polyethylene separator as the data and a lithium metal counter electrode as the counter electrode.
  • the charge termination condition of the fourth cycle after three cycles of charge / discharge was performed with a constant capacity charge of 300 mAhZg.
  • the charged coin battery was disassembled in an argon glove box so as not to be short-circuited, the electrode was taken out, and the thickness of the electrode during charging (excluding the copper foil) was measured.
  • the charge expansion coefficient was determined based on the following equation.
  • a finely divided graphite crystal precursor powder having a median diameter of 21.O ⁇ m under the sieve was sieved using a sieve having an opening of 45 m. After that, the same process as in Example 1 was performed to carry out the processes after the sintering process to obtain a graphite composite mixed powder (C) (a negative electrode material of Example 2).
  • the ratio of the graphite composite powder (A) and the artificial graphite powder (B) in the negative electrode material (graphite composite mixed powder (C)) of Example 2 was measured in the same manner as in Example 1.
  • the graphite composite powder (A) was 60% by weight
  • the artificial graphite powder (B) was 40% by weight.
  • the graphite composite powder (A) had a median diameter of 22.3 / zm and an aspect ratio of 1.8.
  • the artificial graphite powder (B) had a median diameter of 7.1 ⁇ m.
  • FIG. 1 (b) is a schematic diagram showing the shapes of the graphite (D) and the graphite (E) in the cross section of the particles of FIG. 1 (a).
  • this photograph explains “different orientation” and does not limit the particles of the graphite composite mixed powder (C) of Example 2.
  • the part corresponding to the graphite (D) on the center side of the particle is spread over a wide range of colors of the same type.
  • the portion corresponding to the graphite material (E) on the outer side is composed of a plurality of small regions with various color anisotropic units, and the anisotropic structure of the optically anisotropic structure is different from graphite (D).
  • the unit pattern is different.
  • Example 2 a lithium secondary battery was formed in the same procedure as in Example 1. The battery was fabricated and measured for discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion coefficient. Tables 13 to 13 show the evaluation results of the physical properties of the negative electrode material of Example 2.
  • the ratio of the graphite composite powder (A) and the artificial graphite powder (B) in the negative electrode material (graphite composite mixed powder (C)) of Example 3 was measured in the same manner as in Example 1. As a result, 73% by weight of the graphite composite powder (A) and 27% by weight of the artificial graphite powder (B) were obtained. Furthermore, when the physical properties of the graphite composite powder (A) and the artificial graphite powder (B) were measured, the graphite composite powder (A) had a median diameter of 19.5 / zm and an aspect ratio of 1.8. . The artificial graphite powder (B) had a median diameter of 5.2 ⁇ m.
  • a lithium secondary battery was fabricated using the negative electrode material of Example 3 in the same procedure as in Example 1, and the discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion rate were measured.
  • Tables 13 to 13 show the evaluation results of the physical properties of the negative electrode material of Example 3.
  • the ratio of the graphite composite powder (A) and the artificial graphite powder (B) in the negative electrode material (graphite composite mixed powder (C)) of Example 4 was measured in the same manner as in Example 1.
  • the graphite composite powder (A) was 58% by weight and the artificial graphite powder (B) was 42% by weight.
  • the graphite composite powder (A) had a median diameter of 23.0 / zm and an aspect ratio of 2.9. .
  • the artificial graphite powder (B) had a median diameter of 10.2 ⁇ m.
  • An electrode was produced using the negative electrode material of Example 4 in the same procedure as in Example 1, and the active material orientation ratio of the electrode was 0.08.
  • a lithium secondary battery was fabricated using the negative electrode material of Example 4 in the same procedure as in Example 1, and the discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion rate were measured.
  • Tables 13 to 13 show the evaluation results of the physical properties of the negative electrode material of Example 4.
  • Example 5 Except for using a material pitch of 430 ° C. as the material pitch, the same procedure as in Example 2 was performed to obtain a graphite composite mixed powder (C) (a negative electrode material of Example 5).
  • the ratio of the graphite composite powder (A) and the artificial graphite powder (B) in the negative electrode material (graphite composite mixed powder (C)) of Example 5 was measured in the same manner as in Example 1.
  • the graphite composite powder (A) was 53% by weight and the artificial graphite powder (B) was 47% by weight.
  • the graphite composite powder (A) had a median diameter of 19.8 / zm and an aspect ratio of 1.4.
  • artificial graphite powder ( B) had a median diameter of 7.9 ⁇ m.
  • a lithium secondary battery was produced using the negative electrode material of Example 5 in the same procedure as in Example 1, and the discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion coefficient were measured.
  • Tables 13 to 13 show the evaluation results of the physical properties of the negative electrode material of Example 5.
  • Example 2 In the method for producing the negative electrode material of Example 2, except that the bulk heat-treated graphite crystal precursor was not pulverized and natural graphite was mixed with the graphite crystal precursor having a median diameter of 60 m. The same procedure as in Example 2 was performed to obtain a graphite composite mixed powder (C) (a negative electrode material of Example 6).
  • the ratio of the graphite composite powder (A) and the artificial graphite powder (B) in the negative electrode material (graphite composite mixed powder (C)) of Example 6 was measured in the same manner as in Example 1.
  • the graphite composite powder (A) was 52% by weight, and the artificial graphite powder (B) was 48% by weight.
  • the graphite composite powder (A) had a median diameter of 19.3 / zm and an aspect ratio of 2.1. .
  • the artificial graphite powder (B) had a median diameter of 7.0 ⁇ m.
  • a lithium secondary battery was fabricated using the negative electrode material of Example 6 in the same procedure as in Example 1, and the discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion rate were measured.
  • Tables 13 to 13 show the evaluation results of the physical properties of the negative electrode material of Example 6.
  • Example 7 was manufactured by Manufacturing Method 2. 23% by weight of the natural graphite powder (median diameter: 17.0 m, aspect ratio: 1.9, tap density: 1.0 OgZcm 3 ) used in Example 1 was mixed with 77% by weight of petroleum heavy oil, and the mixture was mixed at 1000 ° C. The powder fired in the above was put into a graphite crucible and subjected to graphite sintering at 3000 ° C. for 5 hours using a direct current furnace to obtain a graphite composite powder (A). When the physical properties of the obtained graphite composite powder (A) were measured, the median diameter was 18.5 m, the aspect ratio was 2.3, and the tap density was 1. lg / cm 3 .
  • This graphite crystal precursor powder was packed in a metal container, and further heat-treated at 540 ° C for 2 hours in a box-shaped electric furnace under nitrogen gas flow. During the reheat treatment, the refined graphite crystal precursor powder became a mass of molten and solidified graphite crystal precursor (bulk mesophase).
  • the solidified mass of the graphite crystal precursor is crushed again by a coarse crusher (Roll jaw crusher manufactured by Yoshida Seisakusho) and further finely crushed by a fine crusher (Matsubo Turbo Mill). Classification was performed using OMC-100) (manufactured by a company) to obtain a powder having a median diameter of 15.3 m.
  • the obtained powder was placed in a container and calcined in an electric furnace under a nitrogen atmosphere at 1000 ° C for 1 hour.
  • the fired powder was transferred to a graphite crucible, and heated at 3,000 ° C. for 5 hours using a direct current furnace, followed by graphite sintering to obtain an artificial graphite powder (B).
  • the median diameter was 15.5 ⁇ m.
  • the graphite composite powder (C) (the negative electrode of Example 7) was mixed by mixing 50% by weight of the graphite composite powder (A) obtained by the above procedure and 50% by weight of the artificial graphite powder (B). Material).
  • a lithium secondary battery was fabricated using the negative electrode material of Example 7 in the same procedure as in Example 1, and the discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion rate were measured.
  • Tables 13 to 13 show the evaluation results of the physical properties of the negative electrode material of Example 7.
  • the physical properties of the negative electrode materials of Examples 8, 9, and 10 were measured in the same manner as in Example 1. Tables 13 to 13 show the evaluation results of the negative electrode materials of Examples 8, 9, and 10.
  • the graphite materials (D), graphite composite powder (A), artificial graphite powder (B), and graphite composite powder (C) of the negative electrode materials of these examples all had the same physical properties as Example 1. is there.
  • Comparative Example 1 was performed in the same manner as in Example 7, except that the graphite (D) was not coated with the graphite (E).
  • Example 2 Put the natural graphite powder (median diameter 17.O ⁇ m, aspect ratio 1.9, tap density 1.OgZcm 3 ) powder used in Example 1 into a graphite crucible and use a direct current furnace at 3,000 ° C for 5 hours. To obtain graphite powder ( ⁇ ') derived from natural graphite. It is coated with graphite ( ⁇ ) Not equivalent to powdery (D) powder. The median diameter of the obtained graphite powder ( ⁇ ′) was 16.8 ⁇ m.
  • an artificial graphite powder (B) was obtained by the following procedure.
  • a coal tar pitch having a quinoline insoluble content of 0.05% by weight or less as in Example 1 was heat-treated in a reaction furnace at 460 ° C for 10 hours to obtain a fusible massive heat-treated graphite crystal precursor (bulk mesophase). ).
  • the obtained massive heat-treated graphite crystal precursor was pulverized using an intermediate pulverizer (Orient Mill manufactured by Seishin Enterprise Co., Ltd.), and further pulverized using a pulverizer (Turbomill manufactured by Matsubo Corporation).
  • a fine graphite crystal precursor powder having a median diameter of 17 m was obtained. This graphite crystal precursor powder was packed in a metal container, and further heat-treated at 540 ° C.
  • the refined graphite crystal precursor powder became a lump of molten and solidified graphite crystal precursor (bulk mesophase).
  • the solidified mass of the graphite crystal precursor is crushed again by a coarse crusher (Roll jaw crusher manufactured by Yoshida Seisakusho) and further finely crushed by a fine crusher (Matsubo Turbo Mill).
  • Classification was performed using OMC-100 (manufactured by a company) to obtain a powder having a median diameter of 13.5 m.
  • the obtained powder was put in a container and fired at 1000 ° C. for 1 hour in a nitrogen atmosphere in an electric furnace.
  • the powder was in the form of powder, and almost no melting or fusion was observed. Further, the fired powder was transferred to a graphite crucible, and subjected to graphite sintering at 3000 ° C. for 5 hours using a direct current furnace to obtain an artificial graphite powder (B). The median diameter of this powder is 12.
  • a lithium secondary battery was formed in the same procedure as in Example 1. It was fabricated and measured for discharge capacity, charge / discharge efficiency, load characteristics and charge expansion.
  • Tables 13 to 13 show the evaluation results of the physical properties of the negative electrode material of Comparative Example 1.
  • the ratio of the graphite composite powder (A) and the artificial graphite powder (B) in the negative electrode material (graphite composite mixed powder (C)) of Comparative Example 2 was measured in the same manner as in Example 1.
  • the graphite composite powder (A) was 54% by weight, and the artificial graphite powder (B) was 46% by weight.
  • the graphite composite powder (A) had a median diameter of 19.0 / zm and an aspect ratio of 13.2.
  • the artificial graphite powder (B) had a median diameter of 7.5 ⁇ m.
  • An electrode was produced using the negative electrode material of Comparative Example 2 in the same procedure as in Example 1, and the active material orientation ratio was determined to be 0.04.
  • Example 2 a lithium secondary battery was produced in the same procedure as in Example 1, and the discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion were measured.
  • Tables 13 to 13 show the evaluation results of the physical properties of the negative electrode material of Comparative Example 2.
  • the ratio of the graphite composite powder (A) and the artificial graphite powder (B) in the negative electrode material (graphite composite mixed powder (C)) of Comparative Example 3 was measured in the same manner as in Example 1. As a result, the graphite composite powder (A) was 57% by weight, and the artificial graphite powder (B) was 43% by weight. Further, when the physical properties of the graphite composite powder (A) and the artificial graphite powder (B) were measured, the graphite composite powder (A) had a median diameter of 25.2 / zm and an aspect ratio of 22.3. . The artificial graphite powder (B) had a median diameter of 7.8 ⁇ m.
  • Tables 13 to 13 show the evaluation results of the physical properties of the negative electrode material of Comparative Example 3.
  • Example 1 The same natural graphite powder (median diameter: 17.0 m, aspect ratio: 1.9, tap density: 1.0 OgZcm 3 ) powder used in Example 1 was finely powdered with the same graphite crystal precursor powder as that used in Example 1. 50% by weight based on the total weight of the graphite powder precursor and the natural graphite were mixed to obtain a mixed powder of the graphite (D) and the graphite crystal precursor.
  • the value of the aspect ratio obtained the value measured by the method described above.
  • this powder was subjected to heat treatment A, pulverization, baking, and graphite treatment to obtain a negative electrode material of Comparative Example 4.
  • Tables 13 to 13 show the evaluation results of the physical properties of the negative electrode materials of Comparative Examples 4 and 5.
  • Comparative Examples 4 and 5 Does not use a component equivalent to the artificial graphite powder (B), and uses the graphite composite powder (A) as it is as the anode material. Therefore, the values of tap density, particle size, and specific surface area of the graphite composite powders (A) of Comparative Examples 4 and 5 are the same as the values of tap density, particle size, and specific surface area of the negative electrode material (Table 1). Then, the value is omitted. ) o
  • the negative electrode material of Comparative Example 1 was composed of graphite (D) and artificial graphite powder (B), which was coated or bound with graphite (E).
  • the electrode orientation ratio is low because it is not compounded.
  • the charge expansion coefficient of the electrode has become extremely high.
  • anode material for lithium secondary battery of the present invention when used in high electrode density (e.g., 1. 6 g / cm 3 or higher), the discharge capacity is large instrument charge-discharge efficiency in the high tool load characteristics Since an excellent lithium secondary battery that is excellent and has small electrode expansion during charging can be realized, it can be suitably used in various fields such as electronic devices using the lithium secondary battery.
  • the lithium secondary battery Since the anode material for secondary batteries can be produced efficiently and stably, it is of great value in the industrial production field of lithium secondary batteries!

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 リチウム二次電池用の黒鉛系負極材料であって、高い電極密度で使用した場合に、放電容量が大きく、充放電効率が高く、負荷特性に優れ、且つ、充電時の電極膨張が小さいリチウム二次電池を得ることができる、優れた負極材料を提供する。  アスペクト比が1.2以上、4.0以下である黒鉛質(D)及び前記黒鉛質(D)とは配向性の異なる黒鉛質(E)が複合化した黒鉛複合体粉末(A)と、人造黒鉛粉末(B)とからなる黒鉛複合体混合粉末(C)を備える。

Description

明 細 書
リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリ チウムニ次電池用負極及びリチウム二次電池
技術分野
[0001] 本発明は、黒鉛複合体混合粉末からなるリチウム二次電池用負極材料及びその製 造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池に関す る。具体的には、高い電極密度で使用した場合に、放電容量が大きぐ充放電効率 が高ぐ負荷特性に優れ、且つ、充電時の電極膨張が小さいリチウム二次電池を得 ることができる、優れた負極材料及びそれを製造する方法、並びにそれを用いたリチ ゥム二次電池用負極及びリチウム二次電池に関する。
背景技術
[0002] 近年、電子機器の小型化に伴 、、高容量の二次電池が必要になってきて!/、る。特 に、ニッケル 'カドミウム、ニッケル '水素電池に比べ、よりエネルギー密度の高い非水 溶媒系リチウム二次電池が注目されてきている。従来、電池の高容量は広く検討され ていたが、電池に要求される性能も高度化してきており、更なる高容量化が必要とさ れている。
[0003] リチウム二次電池の負極材料として、これまで金属や黒鉛などの粒子状材料が検 討されている。特に、電池の更なる高容量ィ匕に伴い、より高い電極密度 (例えば、 1. 6gZcm3以上)で使える負極材料が望まれて!/、る。
[0004] 高容量化に優れた負極材料として黒鉛負極粒子が知られて!/、る。しかし、黒鉛負 極粒子は、完全な球状ではなく鱗片状などの扁平形状粒子であり、さら〖こ、扁平な粒 子内では黒鉛質の結晶面方向が、粒子の扁平形状と平行になっている場合が多い 。このような場合に、より高い電極密度にするためにプレス圧を上げていくと、扁平な 黒鉛負極粒子が集電体に対して平行に配向し易くなり、電極全体の配向が揃った状 態となり、リチウムとの黒鉛層間化合物の生成により電極が膨張し易い。電極が膨張 すると、電極活物質の単位体積当たりに充填できる活物質量が減少し、結果として電 池容量が低下すると 、う課題がある。 [0005] こうした課題を解決するために、黒鉛とピッチ等とを混合し、焼成した複合化炭素材 料を用いることが検討されて 、る。
特許文献 1には、高結晶な鱗片状天然黒鉛やキッシュグラフアイトとピッチゃ榭脂と を混合、粉砕、炭化、黒鉛化し複合化することにより、天然黒鉛の欠点を改善し、初 期の充放電効率が高ぐサイクル特性に優れ、高容量で塗工性に優れた、黒鉛負極 材料を得ることが記載されて 、る。
[0006] また、特許文献 2には、配向性の良い黒鉛粉末と軟ィ匕点が 250— 400°Cのメソフエ ーズピッチとを溶融混合した後、粉砕、分級、焼成、黒鉛化し複合化することにより、 黒鉛の高容量特性と、メソフェーズピッチの良好なハンドリング性等の両方の特性を 取り入れて、高い電池効率で且つ高嵩密度の負極材料を得ることが記載されている 。黒鉛粉末としては、天然黒鉛、人造黒鉛などが用いられているが、アスペクト比など で表わされる黒鉛粒子の形状にっ 、ては特に着目して 、なかった。
[0007] また、より高 、電極密度で使用する場合の別の課題として、黒鉛負極材料が壊れて 、電解液との反応性の高い面がより多く露出するために、電解液との反応が大きくな り充放電効率が低下し易くなることが挙げられる。
[0008] さらに、より高い電極密度で使用する場合には、粒子がつぶれ易いために、電極内 でのリチウムイオンの通り道である空間が減少し、リチウムイオンの通過性も悪くなり、 負荷特性が悪くなる。こうした課題は、粒子が扁平であるほど起こり易い。
[0009] したがって、リチウム二次電池の更なる高容量化にお!、ては、活物質の高容量化だ けでなぐより高い電極密度で使える負極材料が望まれており、高い電極密度におい ても、電池充電時の膨張を抑制し、充放電効率を維持し、負荷特性を維持することが 強く求められている。
[0010] これに対して、特許文献 3には、ピッチと鱗片状天然黒鉛とを溶融混練し、複合化、 メカノケミカル処理を施した後、黒鉛化することで、黒鉛質芯材 (A)と黒鉛質被覆材( B)からなる複合粒子の外表面に黒鉛質層 (C)が存在し、且つ、結晶性の順が (A) > (B) > (C)である球状または楕円体状の複合質黒鉛材料を得ることで、高密度で も不可逆容量の増大や、ハイレート特性、サイクル特性の低下を改善することが記載 されている。また、メカノケミカル処理により黒鉛質層(C)を形成することで電解液との 反応性を制御し、且つ、黒鉛質芯材 (A)に黒鉛質被覆材 (B)を緻密に含有すること に依って、高密度でも複合粒子が破壊されず、前記の優れた特性が発現することが 記載されている。
[0011] 特許文献 1 :特開 2000-182617号公報
特許文献 2:特開 2002-373656号公報
特許文献 3 :特開 2003— 173778号公報
発明の開示
発明が解決しょうとする課題
[0012] 特許文献 1に記載の複合化した黒鉛負極材料は、ピッチ等との複合化の原料とし て高結晶な鱗片状天然黒鉛等を用いている。鱗片状である為に、電極活物質粒子 内で黒鉛が電極面と平行な方向に配向し易い上に、活物質粒子自体も扁平になり 易いため、電極の活物質層が配向し易ぐこのため電池充電時の電極厚み方向の膨 張を起こし易力つた。また、リチウムイオンの通過性も悪ぐ電池容量、充放電効率、 負荷特性が不十分であった。
[0013] また、特許文献 2に記載の黒鉛系負極材料は、通常は扁平である黒鉛をメソフエ一 ズで複合ィ匕しているが、黒鉛の扁平度には着目しておらず、特許文献 1と同様に、結 果として複合ィ匕粉体及び電極における黒鉛配向が揃い易ぐ高い電極密度での電 極の膨張抑制という点で不十分であった。
[0014] 一方、特許文献 3に記載の技術によれば、前記の様な球状で緻密な硬!、材料とす ることで、特許文献 1, 2に記載の技術に比べより高い電極密度での特性が改善され ると思われる。
[0015] しかしながら、黒鉛質被覆材 (B)と一体ィ匕しているが故に、外表面の黒鉛質層 (C) の厚さをコントロールすることが困難であり、安定した電池特性を発揮し難いという課 題があった。また、球状の緻密な硬い材料のみで構成されているが故に、電極中の 負極材の充填率を上げ 1 、更に高い電極密度にすることが困難であるという課題 があった。カロえて、工業的生産の観点からは、製造工程が煩雑でコストが高いという 課題があった。
[0016] また、低結晶性の表層(C)が芯材力 剥離することなく被覆しており、 BET比表面 積は lm2/g以下が好ましい旨が記載されている力 BET比表面積が小さくなること により充電時のリチウムの受け入れが悪ィ匕し、充電容量が低下すると!、う点で不十分 であった。
[0017] 本発明は、上記の課題に鑑みて創案されたものである。即ち、本発明は、リチウム 二次電池用の黒鉛系負極材料であって、高い電極密度で使用した場合に、放電容 量が大きぐ充放電効率が高ぐ負荷特性に優れ、且つ、充電時の電極膨張が小さ Vヽリチウム二次電池を得ることができる、優れた負極材料及びそれを製造する方法、 並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池を提供すること を目的とする。
課題を解決するための手段
[0018] 本発明の発明者らは、リチウム二次電池用の黒鉛系負極材料について、鋭意検討 を行なった。その結果、所定範囲内のアスペクト比を有する黒鉛質及びそれとは配向 性の異なる黒鉛質が複合化した黒鉛複合体粉末と、人造黒鉛粉末とを含有する黒 鉛混合粉末を負極材料として用いることで、高い電極密度において、放電容量が大 きぐ充放電効率が高ぐ負荷特性に優れ、且つ、充電時の電極膨張が小さい、高性 能のリチウム二次電池を安定して効率的に製造できることを見出し、本発明を完成さ せた。
[0019] 即ち、本発明の要旨は、アスペクト比が 1. 2以上、 4. 0以下である黒鉛質 (D)及び 前記黒鉛質 (D)とは配向性の異なる黒鉛質 (E)が複合化した黒鉛複合体粉末 (A) と、人造黒鉛粉末 (B)とからなる黒鉛複合体混合粉末 (C)を備えることを特徴とする 、リチウム二次電池用負極材料に存する。
[0020] また、本発明の別の要旨は、キノリン不溶分が 3重量%以下であるピッチ原料を熱 処理して得られた黒鉛結晶前駆体の粉砕物と、アスペクト比が 1. 2以上、 4. 0以下 であり、タップ密度が 0. 7g/cm3以上、 1. 35g/cm3以下である黒鉛質 (D)とを混 合し、熱処理 Aをした後、粉砕し、熱処理 Bをすることを特徴とする、リチウム二次電池 用負極材料の製造方法に存する。
[0021] また、本発明の別の要旨は、キノリン不溶分が 3重量%以下であるピッチ原料と、ァ スぺタト比が 1. 2以上、 4. 0以下であり、タップ密度が 0. 7g/cm3以上、 1. 35g/c m3以下である黒鉛質 (D)とから黒鉛複合体粉末 (A)を作製する一方で、ピッチ原料 から人造黒鉛粉末 (B)を作製し、得られた黒鉛複合体粉末 (A)と人造黒鉛粉末 (B) とを混合することを特徴とする、リチウム二次電池用負極材料の製造方法に存する。
[0022] また、本発明の別の要旨は、集電体と、該集電体上に形成された活物質層とを備 えると共に、該活物質層が、上述のリチウム二次電池用負極材料を含有することを特 徴とする、リチウム二次電池用負極に存する。
[0023] また、本発明の別の要旨は、集電体と、該集電体上に形成された活物質層とを備 えると共に、該活物質層が、上述の製造方法によって製造されたリチウム二次電池用 負極材料を含有することを特徴とする、リチウム二次電池用負極に存する。
[0024] また、本発明の別の要旨は、リチウムイオンを吸蔵 ·放出可能な正極及び負極と、 電解質とを備えると共に、該負極が、上述のリチウム二次電池用負極であることを特 徴とする、リチウム二次電池に存する。
発明の効果
[0025] 本発明のリチウム二次電池用負極材料によれば、高い電極密度 (例えば 1. 6g/c m3以上)で使用した場合に、放電容量が大きぐ充放電効率が高ぐ負荷特性に優 れ、且つ、充電時の電極膨張が小さい、優れたリチウム二次電池を実現することがで きる。
また、本発明のリチウム二次電池用負極材料の製造方法によれば、上記リチウム二 次電池用負極材料を効率よく安定して製造することができるため、工業上非常に有 用である。
図面の簡単な説明
[0026] [図 1]図 1 (a)は、実施例 2の負極材料の黒鉛ィ匕工程の後における黒鉛複合体混合 粉末 (C)の粒子断面のうち、黒鉛複合体粉末 (A)部分の偏光顕微鏡写真 (倍率 150 0倍)であり、図 1 (b)は、図 1 (a)の粒子断面における黒鉛質 (D)及び黒鉛質 (E)の 形状を表わす模式図である。
発明を実施するための最良の形態
[0027] 以下、本発明を詳細に説明するが、本発明は以下の説明に制限されるものではな ぐ本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる [1.リチウム二次電池用負極材料]
[0028] 本発明のリチウム二次電池用負極材料は、アスペクト比が 1. 2以上、 4. 0以下であ る黒鉛質 (D)及び前記黒鉛質 (D)とは配向性の異なる黒鉛質 (E)が複合ィ匕した黒 鉛複合体粉末 (A)と、人造黒鉛粉末 (B)とからなる黒鉛複合体混合粉末 (C)、又は 、この黒鉛複合体混合粉末 (C)と天然黒鉛粉末 (G)からなる黒鉛複合体混合粉末( F)を備えることを特徴とする。
[0029] 電池の高容量は、高結晶性を有する黒鉛質 (D)、 (E)、人造黒鉛粉末 (B)により達 せられた。黒鉛質 (E)と複合化した黒鉛質 (D)、及び人造黒鉛粉末 (B)が共に存在 することで、電池効率の向上と充電時の電極膨張の抑制を同時に実現することが可 能になった。さらに、規定のアスペクト比を有する黒鉛質 (D)を複合化することで、規 定した黒鉛複合体粉末 (A)を作製することが可能となり、高い負荷特性を得られた。 以下、これら (A)— (G)につ 、て説明する。
[0030] 〔1—1.黒鉛質 (D)〕
黒鉛質 (D)は、後述の配向性の規定を満たすものであれば、その種類は特に制限 されない。例としては、天然黒鉛、人造黒鉛が挙げられる。天然黒鉛としては、鱗状 黒鉛、鱗片状黒鉛、土壌黒鉛等が挙げられる。人造黒鉛としては、ピッチ原料を高温 熱処理して製造した、メソカーボンマイクロビーズ、炭素繊維、コータス、ニードルコー タス、高密度炭素材料等の黒鉛質粒子が挙げられる。
[0031] 黒鉛質 (D)の形状も特に制限されない。例としては、塊状、球状、楕円状が挙げら れる。但し、粒子が球に近い形状であることが好ましい。具体的には、そのアスペクト 比が以下の規定を満たすことを要する。
[0032] <アスペクト比 >
黒鉛質 (D)のアスペクト比は、通常 1. 2以上、好ましくは 1. 5以上、また、通常 4. 0 以下、好ましくは 3. 0以下の範囲である。アスペクト比がこの範囲を下回ると、異方性 が小さいため球形や立方体に近い形状になり、プレス後の電極の充填密度を上げ難 い。一方、前記範囲を上回ると、活物質が電極表面で配向し易くなり、高電極密度で の負荷特性を高くし難い。又は、電池を作製したときの電池充電時の電極膨張が大 きくなつてしまい、電極の単位体積当たりの電池容量を大きくしにくい。
[0033] なお、黒鉛質 (D)のアスペクト比の測定は、負極製造前の負極材料につ!、ては、 負極材料粉末を平板上に分散し、そのまま榭脂包埋したものを用いて、また、負極材 料を用いて製造された負極については、その負極を用いて、以下の手順で行なうこと ができる。
[0034] 負極材料の榭脂包埋物又は負極を、平板に対して平行に研磨して、その断面写真 を撮影し、撮影された写真の画像解析により、黒鉛質 (D)断面の長径を 50点以上測 定する。また、負極材料の榭脂包埋物又は負極を、平板に対して垂直に研磨に研磨 して、その断面写真を撮影し、撮影された写真の画像解析により、黒鉛質 (D)断面の 短径 (粒子の厚み)を 50点以上測定する。測定された長径及び短径のそれぞれにつ いて平均値を求め、これら平均長径と平均短径との比を、アスペクト比 (長径 Z短径) とする。榭脂包埋又は極板ィ匕した粒子は、通常は平板に対して粒子の厚み方向が垂 直になるように並ぶ傾向があることから、上記の方法により、粒子に特徴的な長径と 短径を得ることが出来る。
[0035] なお、粒子の断面写真は、一般的には、走査型電子顕微鏡 (Scanning Electron
Microscope : SEM)を用いて撮影する。但し、 SEM写真では黒鉛質 (D)の形状を特 定できな!/ヽ場合には、偏光顕微鏡又は透過型電子顕微鏡 (TransmissionElectron Microscope :TEM)を用いて、上述と同様に断面写真を撮影する。黒鉛質 (D)は黒 鉛質 (E)と配向性が異なるので、偏光顕微鏡写真又は TEM写真を用いて配向性を 確認することにより、黒鉛質 (D)の形状を特定することができる。よって、上述と同様 の画像解析を行なうことにより、アスペクト比を求めることができる。
[0036] 上記範囲のアスペクト比を有する黒鉛質 (D)を得る方法は、特に限定されな!、が、 例えば、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械 的作用を繰り返し粒子に与える装置を用いることが好ましい。具体的には、ケーシン グ内部に多数のブレードを設置したローターを有し、そのローターが高速回転するこ とによって、内部に導入された炭素材料に対して衝撃圧縮、摩擦、せん断力等の機 械的作用を与え、表面処理を行なう装置が好ましい。また、炭素材料を循環させるこ とによって機械的作用を繰り返して与える機構を有するものであるのが好ましい。好 ま 、装置の一例として、(株)奈良機械製作所製のハイブリダィゼーシヨンシステム を挙げることができる。
[0037] <配向性 >
黒鉛質 (D)は、例えば、高結晶性の黒鉛で、もともと配向面が単一であったものを、 力学的エネルギー処理などにより一部を異なる配向性を持つ状態にしたものを用い る。
黒鉛質 (D)の配向性を確認する手法としては、偏光顕微鏡による観察があげられ る。これは、 1つの光源から出た光が結晶組織方向が異方な異方体に入ると、光は限 られた振動方向に変化することを利用するものであり、この原理により同一粒子内に おいて単色又は数色が観察され、その違いにより粒子の配向性を観察することがで きる。
[0038] <タップ密度 >
黒鉛質 (D)のタップ密度は、特に制限されないが、通常 0. 70gZcm3以上、好まし くは 0. 80gZcm3以上、更に好ましくは 0. 90gZcm3以上、また、通常 1. 35g/cm3 以下、好ましくは 1. 20g/cm3以下の範囲である。タップ密度がこの範囲を下回ると 、活物質の充填密度を上げ難ぐ高容量の電池を得難い。一方、この範囲を上回ると 、電極中の気孔量が少なくなり、好ましい電池特性を得難い。
[0039] タップ密度としては、例えば、目開き 300 μ mの篩を使用し、 20cm3のタッピングセ ルに測定対象 (ここでは黒鉛質 (D) )を落下させてセルを満杯に充填した後、粉体密 度測定器 (例えば、セイシン企業社製タップデンサ一)を用いてストローク長 10mmの タッピングを 1000回行な 、、その時のタッピング密度を測定した値を用いることがで きる。
[0040] < BET比表面積 >
黒鉛質 (D)の BET比表面積は、特に制限されないが、通常は 3. Om2Zg以上、好 ましくは 4. Om2/g以上、また、通常は 10. Om2/g以下、好ましくは 8. Om2/g以下 の範囲である。 BET比表面積の値がこの範囲の下限を下回ると、負極材料に用いた 場合、電池の充電時にリチウムの受け入れ性が悪くなり易ぐリチウムが電極表面で 析出し易くなるため、安全上好ましくない。一方、 BET比表面積の値力この範囲の上 限を上回ると、負極材料とした時に電解液との反応性が増加し、ガス発生が多くなり 易ぐ好ましい電池が得られ難い。
[0041] BET比表面積としては、表面積計 (例えば、大倉理研製全自動表面積測定装置) を用い、測定対象 (ここでは黒鉛質 (D) )に対して窒素流通下 350°Cで 15分間、予 備乾燥を行なった後、大気圧に対する窒素の相対圧の値が 0. 3となるように正確に 調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着 BET1点法によつ て測定した値を用いることができる。
[0042] <体積基準平均粒径 >
黒鉛質 (D)の体積基準平均粒径は、特に制限されないが、通常 1. O /z m以上、好 ましくは 6. 0 μ m以上、また、通常 60 μ m以下、好ましくは 30 μ m以下の範囲である 。体積基準平均粒径がこの範囲を下回ると、黒鉛質 (D)が凝集し易ぐ後述する製 造過程において黒鉛結晶性前駆体との混合が困難となってしまい、得られる黒鉛複 合体粉末 (A)が不均質なものになり易い。一方、体積基準平均粒径がこの範囲を上 回ると、負極材料として塗布により電極を製造する時に塗工むらが生じ易い。
[0043] 体積基準平均粒径としては、測定対象 (ここでは黒鉛質 (D) )に界面活性剤である ポリオキシエチレン(20)ソルビタンモノラウレートの 2体積0 /0水溶液 (約 lml)を混合し 、イオン交換水を分散媒としてレーザー回折式粒度分布計 (例えば、堀場製作所社 製 LA— 700)にて体積基準の平均粒径 (メジアン径)を測定した値を用いることができ る。
[0044] <面間隔等 >
X線回折により測定される黒鉛質 (D)の(002)面の面間隔 d は、特に制限されな
002
いが、通常 0. 3360nm以下、好ましくは 0. 3358nm以下の範囲である。面間隔 d
002 の値力この範囲を上回る場合、即ち、結晶性が劣る場合には、電極を製造したときに 活物質の単位重量当たりの放電容量が小さくなり易い。一方、前記の面間隔 d002の 下限は、理論的限界として通常 0. 3354nm以上である。
[0045] また、 X線回折により測定される黒鉛質 (D)の c軸方向の結晶子の大きさ Lc は、
004 特に制限されないが、通常 90nm以上、好ましくは lOOnm以上の範囲である。結晶 子の大きさ Lc 力 の範囲を下回ると、電極を製造したときに活物質重量当たりの放 電容量が小さくなり易い。
[0046] 上記の X線回折により測定される面間隔 d 及び結晶子の大きさ Lc としては、炭
002 004
素材料学会の学振法に従って測定される値を用いることができる。なお、学振法にお いては、 lOOnm(lOOOA)を超える値は区別されず、全て「> 1000 (A)」と記述さ れる。
[0047] [1-2.黒鉛質 (E)〕
黒鉛質 (E)は、黒鉛質 (D)と配向性が異なるものであれば、その種類は特に制限さ れない。例としては、ピッチ原料を高温熱処理して製造した人造黒鉛などが挙げられ る。
[0048] <配向性 >
黒鉛質 (E)は、黒鉛質 (D)と配向性が異なる。「配向性が異なる」とは、偏光顕微鏡 で粉末を観察した際に、光学的異方性組織の異方性単位のパターン、即ち、異方性 単位の大きさ、方向、数等を目視し、対比した場合に、それらの大きさ、方向、数等の うち少なくとも何れかが異なることをいう。例えば、黒鉛質 (D)及び黒鉛質 (E)のうち、 一方の黒船質が一方向への結晶方向性を有し、他方の黒鉛質がランダムな結晶方 向性を有する場合や、黒鉛質 (D)及び黒鉛質 (E)がともに一方向への結晶方向性 を有し、その方向性が異なっている場合などが挙げられる。
なお、黒鉛質 (D)及び黒鉛質 (E)の一方又は双方が、単一の結晶ではなぐ複数 の結晶の集合体である場合には、集合体の単位を 1領域として、その光学的異方性 組織の異方性単位の集合パターンを対比すればよ!、。
[0049] 具体的に、黒鉛質 (E)の配向性を確認する手法としては、上記の黒鉛質 (D)の場 合と同様の手法を用いることができる。
[0050] <面間隔 >
X線回折により測定される黒鉛質 (E)の(002)面の面間隔 d は、特に制限されな
002
いが、通常 0. 3360nm以下、好ましくは 0. 3358nm以下の範囲である。面間隔 d
002 の値力この範囲を上回る場合、即ち、結晶性が劣る場合には、電極を製造したときに 活物質の単位重量当たりの放電容量が小さくなり易い。一方、前記の面間隔 d の下
002 限は、理論的限界として通常 0. 3354nm以上である。面間隔 d の測定は、上記の 黒鉛質 (D)の場合と同様の手法で行なう。
[0051] また、 X線回折により測定される黒鉛質 (E)の c軸方向の結晶子の大きさ Lc は、
004 特に制限されないが、通常 90nm以上、好ましくは lOOnm以上である。結晶子の大 きさ Lc004がこの範囲を下回ると、電極を製造したときに活物質重量当たりの放電容 量が小さくなり易い。結晶子の大きさ Lc の測定は、上記の黒鉛質 (D)の場合と同
004
様の手法で行なう。
[0052] [1-3.黒鉛複合体粉末 (A)〕
黒鉛複合体粉末 (A)は、上述の黒鉛質 (D)と黒鉛質 (E)が複合化したものである。 複合化とは、黒鉛質 (E)が黒鉛質 (D)を被覆及び Z又は結合して ヽる状態であるこ とをさす。
[0053] <複合の形態 >
黒鉛複合体粉末 (A)における黒鉛質 (D)と黒鉛質 (E)の複合化の形態は、特に制 限されないが、具体的には以下の形態が挙げられる。
I)黒鉛質 (D)の表面全体又は一部が黒鉛質 (E)で被覆された形態。
II)黒鉛質 (D)の表面全体又は一部に黒鉛質 (E)が結着し、 2個以上の黒鉛質 (D)と 黒鉛質 (E)とが複合化した形態。
III)上記 I)及び II)が任意の割合で混合した形態。
[0054] <形状>
黒鉛複合体粉末 (A)の形状は特に制限されない。例としては、球状、楕円状、塊状 等が挙げられる。但し、粒子が球に近い形状であることが好ましい。具体的には、そ のアスペクト比が以下の規定を満たすことが好ましい。
[0055] <アスペクト比 >
黒鉛複合体粉末 (A)のァスぺ外比は、特に制限されないが、通常 1. 1以上、好ま しくは 1. 3以上、また、通常 4. 0以下、好ましくは 3. 0以下の範囲である。アスペクト 比がこの範囲を下回ると、異方性が小さいため球形や立方体に近い形状になり、プ レス後の電極の充填密度を上げ難い。一方、前記範囲を上回ると、活物質が電極表 面で配向し易くなり、高電極密度での負荷特性を高くし難い。又は、電池を作製した ときの電池充電時の電極膨張が大きくなり、電極の単位体積当たりの電池容量を大 きくしにくい。
[0056] 黒鉛複合体粉末 (A)のァスぺ外比の測定は、黒鉛質 (D)の場合と同様に、以下 の手順で行なうことができる。
負極材料の榭脂包埋物又は負極を、平板に対して平行に研磨して、その断面写真 を撮影し、撮影された写真の画像解析により、黒鉛複合体粉末 (A)断面の長径を 50 点以上測定する。また、負極材料の榭脂包埋物又は負極を、平板に対して垂直に研 磨に研磨して、その断面写真を撮影し、撮影された写真の画像解析により、黒鉛複 合体粉末 (A)断面の短径 (粒子の厚み)を 50点以上測定する。測定された長径及び 短径のそれぞれにつ 、て平均値を求め、これら平均長径と平均短径との比をァスぺ タト比 (長径 Z短径)とする。
なお、粒子の断面写真は SEM,偏光顕微鏡, TEMの何れにより撮影してもよいが 、黒鉛複合体粉末 (A)の場合、通常は SEMを用いて撮影する。
[0057] <タップ密度 >
黒鉛複合体粉末 (A)のタップ密度は、特に制限されないが、通常 0. 80gZcm3以 上、中でも 0. 90gZcm3以上、また、通常 1. 35gZcm3以下、中でも 1. 30g/cm3 以下の範囲が好ましい。タップ密度がこの範囲を下回ると、活物質の充填密度が上 力 Sり難ぐ高容量の電池が得られ難い。一方、この範囲を上回ると、電極中の気孔量 が少なくなり、好ましい電池特性が得られ難い。タップ密度の測定は、上記の黒鉛質 (D)の場合と同様の手法で行なう。
[0058] < BET比表面積 >
黒鉛複合体粉末 (A)の BET比表面積は、特に制限されないが、通常 0. 8mソ g 以上、中でも 2. Om2/g以上、また、通常 5. 5m2/g以下、中でも 4. Om2/g以下の 範囲が好ましい。 BET比表面積がこの範囲の下限を下回ると、充電時にリチウムの 受け入れ性が悪くなり易ぐリチウムが電極表面で析出し易くなるため、安全上好まし くない。一方、この範囲の上限を上回ると、負極と電解液との反応性が増加し、ガス 発生が多くなり易ぐ好ましい電池が得られ難い。 BET比表面積の測定は、上記の 黒鉛質 (D)の場合と同様の手法で行なう。
[0059] <体積基準平均粒径 > 黒鉛複合体粉末 (A)の体積基準平均粒径は、特に制限されないが、通常 6. Ο μ m以上、中でも 10. O /z m以上、また、通常 80. O /z m以下、中でも 40. O /z m以下の 範囲が好ましい。この範囲を下回ると、黒鉛複合体混合粉末 (C)としてのタップ密度 力 、さくなつてしまうため、電極を製造したときに活物質の充填密度が上がり難ぐ高 容量の電池を得られ難い。一方、この範囲を上回ると、黒鉛複合体混合粉末 (C)とし て塗布により電極を製造する時に塗工むらが生じ易い。体積基準平均粒径の測定は 、上記の黒鉛質 (D)の場合と同様の手法で行なう。
[0060] く黒鉛複合体粉末 (A)に含まれる黒鉛質 (D)の割合〉
黒鉛複合体粉末 (A)に含まれる黒鉛質 (D)の割合は、黒鉛複合体粉末 (A)に対 する黒鉛質 (D)の重量比の値で、通常 30重量%以上、好ましくは 40重量%以上、 更に好ましくは 50重量%以上、また、通常 97重量%以下、好ましくは 90重量%以下 、更に好ましくは 83重量%以下の範囲である。黒鉛質 (D)の割合力この範囲を下回 ると、黒鉛質 (E)の割合が相対的に増える為、電極にした時に充填密度が上がり難く 、過大なプレス荷重を必要とし黒鉛質 (D)を複合ィ匕した利点が得られ難い。一方、黒 鉛質 (D)の割合力この範囲を上回ると、電極にした時に電解液との反応性が増加し 、ガス発生が多くなり易ぐ黒鉛質 (E)で複合ィ匕した利点が得られ難い。
[0061] [ 1-4.人造黒鉛粉末 (B)〕
人造黒鉛粉末 (B)の種類は特に制限されない。例としては、ピッチ原料を高温熱処 理して製造した人造黒鉛等が挙げられる。
[0062] 具体的に、人造黒鉛粉末 (B)は、 (i)単独で作製された人造黒鉛粒子、 (ii)黒鉛質
(D)を黒鉛質 (D)とは配向性の異なる黒鉛質 (E)と複合化する際に、黒鉛質 (D)を 含まずに黒鉛質 (E)のみが粒状ィ匕して得られた人造黒鉛粒子、の何れであってもよ い。(ii)の場合、黒鉛質 (E)と人造黒鉛粉末 (B)とが同一の原料から一度に製造され るので、製造の容易性の観点からは有利である。
[0063] 人造黒鉛粉末 (B)は、高い結晶性を有し、内部に黒鉛質粒子など配向性が異なる 部分を包含していないという特徴がある。よって、偏光顕微鏡又は TEMを用いて、黒 鉛質 (D)の場合と同様の手順により、負極製造前の負極材料については負極材料 粉末の断面写真を、負極材料を用いて製造された負極については負極断面に存在 する負極材料粉末の断面写真を撮影し、その配向性を確認することで、人造黒鉛粉 末 (B)を黒鉛複合体粉末 (A)と区別することができる。
[0064] 人造黒鉛粉末 (B)の形状も特に制限されない。例としては塊状、球状、楕円状、薄 片状、繊維状等が挙げられる。中でも塊状、球状、楕円状が好ましい。
[0065] < BET比表面積 >
人造黒鉛粉末 (B)の BET比表面積は、特に制限されないが、通常 0. 3m2/g以上 、中でも 0. 5m2/g以上、更には 0. 6m2/g以上、また、通常 3. Om2/g以下、中で も 2. 8m2/g以下、更には 2. Om2/g以下の範囲が好ましい。 BET比表面積力この 範囲の下限を下回ると、充電時にリチウムの受け入れ性が悪くなり、リチウムが電極 表面で析出し易ぐ安全上好ましくない。一方、上限を上回ると、電解液との反応性 が増加し、ガス発生が多くなり易ぐ好ましい電池が得られ難い。 BET比表面積の測 定は、上記の黒鉛質 (D)の場合と同様の手法で行なう。
[0066] <体積基準平均粒径 >
人造黒鉛粉末 (B)の体積基準平均粒径は、特に制限されないが、通常 以上 、中でも 5 μ m以上、更には 6 μ m以上、また、通常 30 μ m以下、中でも 20 μ m以下 の範囲が好ましい。体積基準平均粒径がこの範囲を下回ると、黒鉛複合体混合粉末 (C)としてのタップ密度が小さくなつてしまうため、電極を製造したときに活物質の充 填密度が上がり難ぐ高容量の電池を得難い。一方、この範囲を上回ると、負極材料 として塗布により電極を製造する時に塗工むらが生じ易い。体積基準平均粒径の測 定は、上記の黒鉛質 (D)の場合と同様の手法で行なう。
[0067] <タップ密度 >
人造黒鉛粉末 (B)のタップ密度は、特に制限されないが、通常 0. 90gZcm3以上 、中でも 1. lOgZcm3以上、また、通常 1. 35gZcm3以下、中でも 1. 30gZcm3以 下の範囲が好ましい。タップ密度がこの範囲を下回ると、活物質の充填密度が上がり 難く、高容量の電池が得られ難い。一方、この範囲を上回ると、電極中の気孔量が少 なくなり、好ましい電池特性が得られ難い。タップ密度の測定は、上記の黒鉛質 (D) の場合と同様の手法で行なう。
[0068] <面間隔 > X線回折により測定される人造黒鉛粉末 (B)の(002)面の面間隔 d は、特に制限
002
されないが、通常 0. 3360nm以下、中でも 0. 3358nm以下の範囲が好ましい。この 範囲を上回る場合、即ち、結晶性が劣る場合には、電極を製造したときに活物質の 単位重量当たりの放電容量が小さくなり易い。一方、前記の面間隔 d の下限は、理
002
論的限界として通常 0. 3354nm以上である。面間隔 d の測定は、上記の黒鉛質(
002
D)の場合と同様の手法で行なう。
[0069] X線回折により測定される人造黒鉛粉末 (B)の c軸方向の結晶子の大きさ Lc は、
004 特に制限されないが、通常 90nm以上、中でも lOOnm以上の範囲が好ましい。この 範囲を下回ると、電極を製造したときの活物質重量当たりの放電容量が小さくなり易 い。結晶子の大きさ Lc の測定は、上記の黒鉛質 (D)の場合と同様の手法で行なう
004
[0070] [1-5.黒鉛複合体混合粉末 (C)〕
黒鉛複合体混合粉末 (C)は、黒鉛複合体粉末 (A)と人造黒鉛粉末 (B)が混合さ れた状態にあるものである。
[0071] <タップ密度 >
黒鉛複合体混合粉末 (C)のタップ密度は、特に制限されないが、通常 0. 8g/cm3 以上、中でも 0. 9g/cm3以上、更には 1. Og/cm3以上、また、通常 1. 4g/cm3以 下、中でも 1. 35g/cm3以下、更には 1. 3g/cm3以下の範囲が好ましい。タップ密 度がこの範囲を下回ると、活物質の充填密度が上がり難ぐ高容量の電池が得られ 難い。一方、この範囲を上回ると、電極中の気孔量が少なくなり、好ましい電池特性 が得られ難い。タップ密度の測定は、上記の黒鉛質 (D)の場合と同様の手法で行な
[0072] < BET比表面積 >
黒鉛複合体混合粉末 (C)の BET比表面積は、特に制限されないが、通常 lm2/g 以上、中でも 1. 5m2/g以上、更には 1. 8m2/g以上、また、通常 5m2/g以下、中 でも 3. 5m2/g以下、更には 3m2/g以下の範囲が好ましい。下限を下回ると、充電 時にリチウムの受け入れ性が悪くなり易ぐリチウムが電極表面で析出し易ぐ安全上 好ましくない。上限を上回ると、電解液との反応性が増加し、ガス発生が多くなり易く 、好ましい電池が得られ難い。 BET比表面積の測定は、上記の黒鉛質 (D)の場合と 同様の手法で行なう。
[0073] <面間隔等 >
X線回折により測定される黒鉛複合体混合粉末 (C)の (002)面の面間隔 d は、特
002 に制限されないが、通常 0. 3360nm以下、中でも 0. 3358nm以下の範囲が好まし い。この範囲を上回る場合、即ち、結晶性が劣る場合には、電極を製造したときに活 物質の単位重量当たりの放電容量が小さくなり易い。一方、前記の面間隔 d の下限
002 は、理論的限界として通常 0. 3354nm以上である。面間隔 d の測定は、上記の黒
002
鉛質 (D)の場合と同様の手法で行なう。
[0074] X線回折により測定される黒鉛複合体混合粉末 (C)の c軸方向の結晶子の大きさ L c は、特に制限されないが、通常 90nm以上、中でも lOOnm以上の範囲が好まし
004
い。この範囲を下回ると、本発明の黒鉛複合体混合粉末 (C)を用いて電極を製造し たときの活物質重量当たりの放電容量が小さくなり易い。結晶子の大きさ Lc の測定
004 は、上記の黒鉛質 (D)の場合と同様の手法で行なう。
[0075] <黒鉛複合体混合粉末 (C)に含まれる黒鉛複合体粉末 (A)の割合 >
黒鉛複合体混合粉末 (C)に含まれる黒鉛複合体粉末 (A)の割合は、黒鉛複合体 混合粉末 (C)に対する黒鉛複合体粉末 (A)の重量比で、通常 35重量%以上、好ま しくは 50重量%以上、更に好ましくは 55重量%以上、また、通常 98重量%以下、好 ましくは 90重量%以下、更に好ましくは 86重量%以下の範囲である。黒鉛複合体粉 末 (A)の重量比がこの範囲を下回ると、人造黒鉛粉末 (B)の割合が相対的に増える 為、電極にした時に充填密度が上がり難ぐ過大なプレス荷重を必要とし、人造黒鉛 粉末 (B)を混合した利点が得られ難い。一方、この範囲を上回ると、黒鉛複合体粉末 (A)の割合が多過ぎる為、電極塗布性を損なう可能性がある。
[0076] <体積基準平均粒径 >
黒鉛複合体混合粉末 (C)の体積基準平均粒径は、特に制限されないが、通常 5 m以上、好ましくは 8 μ m以上、また、通常 60 μ m以下、好ましくは 30 μ m以下の範 囲である。この範囲を下回ると、タップ密度が小さくなつてしまうため、電極を製造した ときに活物質の充填密度が上がり難ぐ高容量の電池を得難い。一方、この範囲を上 回ると、塗布により電極を製造する時に塗工むらが生じ易い。体積基準平均粒径の 測定は、上記の黒鉛質 (D)の場合と同様の手法で行なう。
[0077] なお、黒鉛複合体混合粉末 (C)から、それに含まれる黒鉛複合体粉末 (A)単体及 び人造黒鉛粉末 (B)単体のタップ密度、比表面積、粒径などのデータを得る場合に は、以下の手法に従う。
[0078] 同一原料で、同一製法により黒鉛複合体混合粉末 (C)を得る場合に、黒鉛複合体 粉末 (A)及び人造黒鉛粉末 (B)の配合比のみを変えた複数種の黒鉛複合体混合 粉末 (C)を作製し、それぞれの配合比の黒鉛複合体混合粉末 (C)についてタップ密 度、比表面積、粒径などのデータを測定することにより、その配合比依存性から、黒 鉛複合体粉末 (A)単体及び人造黒鉛粉末 (B)単体のタップ密度、比表面積、粒径 などのデータを得ることができる。
[0079] [1-6.黒鉛複合体混合粉末 (F)及び天然黒鉛粉末 (G)〕
次に、黒鉛複合体混合粉末 (F)について説明する。黒鉛複合体混合粉末 (F)は、 上記の黒鉛複合体混合粉末 (C)の各成分に加えて、更に天然黒鉛粉末 (G)を備え たものである。天然黒鉛粉末 (G)は、負極材料の BET比表面積の制御、電極プレス 性の向上、放電容量の向上、安価化等の目的で使用される。
[0080] 天然黒鉛粉末 (G)の種類は特に制限されない。天然黒鉛の種類としては、鱗状黒 鉛、鱗片状黒鉛、土状黒鉛等が挙げられる。
また、天然黒鉛粉末 (G)の形状も特に制限されない。具体例としては、塊状、球状 、楕円状、薄片状、繊維状等が挙げられる。
[0081] < BET比表面積 >
天然黒鉛粉末 (G)の BET比表面積は、特に制限されないが、通常 3. Om2Zg以 上、好ましくは 3. 5m2/g以上、更に好ましくは 4. Om2/g以上、また、通常 10m2/ g以下、好ましくは 8. Om2/g以下、更に好ましくは 7. Om2/g以下の範囲である。 B ET比表面積の値力 Sこの範囲の下限を下回ると、黒鉛複合体混合粉末 (F)の BET比 表面積の制御の効果が少なくなつてしまい好ましくない。一方、 BET比表面積の値 力 の範囲の上限を上回ると、安全性が低下してしまいやはり好ましくない。 BET比 表面積の測定は、上記の黒鉛質 (D)の場合と同様の手法で行なう。 [0082] <体積基準平均粒径 >
天然黒鉛粉末 (G)の体積基準平均粒径は、特に制限されないが、通常 以上 、好ましくは 10 μ m以上、また、通常 40 μ m以下、好ましくは 30 μ m以下の範囲であ る。この範囲を下回ると、黒鉛複合体混合粉末 (F)とした場合にタップ密度が小さくな つてしまうため、電極の製造時に活物質の充填密度が上がり難ぐ高容量の電池を 得難い。一方、この範囲を上回ると、負極材料として塗布により電極を製造する時に 塗工むらが生じ易い。体積基準平均粒径の測定は、上記の黒鉛質 (D)の場合と同 様の手法で行なう。
[0083] <黒鉛複合体混合粉末 (F)中における黒鉛複合体混合粉末 (C)の割合 >
黒鉛複合体混合粉末 (F)中における黒鉛複合体混合粉末 (C)の割合は、合計重 量に対して、通常 20重量%以上、好ましくは 30重量%以上、更に好ましく 40重量% 以上、また、通常 90重量%以下、好ましくは 80重量%以下、更に好ましくは 70重量 %以下の範囲である。黒鉛複合体混合粉末 (C)の割合力 Sこの範囲の下限を下回ると 、黒鉛複合体混合粉末 (C)がもたらす優れた電池特性が発揮できず好ましくない。 一方、この範囲の上限を上回ると、電極プレス性が向上しにくくなりやはり好ましくな い。
[0084] [1-7.その他〕
以下、必要に応じて適宜、黒鉛複合体混合粉末 (C)を「本発明の負極材料 (1)」、 黒鉛複合体混合粉末 (F)を「本発明の負極材料 (II)」と呼び換えるものとする。また、 黒鉛複合体混合粉末 (C)と黒鉛複合体混合粉末 (F)を特に区別しな!ヽ場合には、「 本発明の負極材料」と呼び換えるものとする。
[0085] <電極を形成したときの活物質配向比 >
本発明の負極材料は、これを活物質としてリチウム二次電池用負極を作製した場 合に、以下の特徴を有することが好ましい。
[0086] 即ち、本発明の負極材料を活物質として、電極密度が 1. 63±0.
Figure imgf000020_0001
即ち 、 1. 58g/cm3以上 1. 68g/cm3以下の範囲内となるように電極を形成した場合、 その電極の活物質配向比は、通常 0. 07以上、中でも 0. 09以上、更には 0. 10以 上、また、通常 0. 20以下、中でも 0. 18以下、更には 0. 16以下の範囲にあることが 好ましい。前記範囲を下回ると、電池を作製したときの電池充電時の電極膨張が大き くなり、電極の単位体積当たりの電池容量を大きくし難い。一方、前記範囲を上回る と、電池を作製したときの活物質の結晶性が低くなつてしまい、電池の放電容量を大 きくし難ぐ又は、プレス後の電極の充填密度を上げ難くなる。
[0087] ここで、電極の活物質配向比とは、電極の厚み方向に対する、黒鉛結晶六角網面 の配向の程度を表す指標である。配向比が大きいほど、粒子の黒鉛結晶六角網面 の方向が揃って 、な 、状態を表わす。
電極の活物質配向比を測定する具体的な手順は、以下の通りである。
[0088] (1)電極の形成:
負極材料と、増粘剤として CMC (カルボキシメチルセルロース)水溶液と、バインダ 榭脂として SBR (スチレンブタジエンゴム)水溶液とを、負極材料と CMCと SBRとの 混合物の乾燥後の総重量に対して、 CMC及び SBRがそれぞれ 1重量%になるよう に混合撹拌し、スラリーとする。次いで、ドクターブレードを用いて 18 m厚さの銅箔 上にスラリーを塗布する。塗布厚さは、乾燥後の電極目付 (銅箔を除く)が lOmgZc m2になるようにギャップを選択する。この電極を 80°Cで乾燥した後、電極密度 (銅箔 を除く)力 S1. 63 ±0. 05g/cm3になるようにプレスを行なう。
[0089] (2)活物質配向比の測定
プレス後の電極について、 X線回折により電極の活物質配向比を測定する。具体 的手法は特に制限されないが、標準的な方法としては、 X線回折により黒鉛の(110) 面と(004)面とのチャートを測定し、測定したチャートについて、プロファイル関数とし て非対称ピアソン VIIを用いてフィッティングすることによりピーク分離を行な \ (110 )面と (004)面のピークの積分強度を算出する。得られた積分強度から、(110)面積 分強度 Z (004)面積分強度で表わされる比率を算出し、電極の活物質配向比と定 義する。
[0090] ここでの X線回折測定条件は次の通りである。なお、「2 Θ」は回折角を示す。
'ターゲット: Cu (K a線)グラフアイトモノクロメーター
'スリット : 発散スリット = 1度、受光スリット =0. lmm、散乱スリット = 1度'測定範 囲、及び、ステップ角度 Z計測時間: (110)面 : 76. 5度≤2 0≤78. 5度 0. 01度 Z3秒
(004)面 : 53. 5度≤2 0≤56. 0度 0. 01度 Z3秒
•試料調整 : 硝子板に 0. 1mm厚さの両面テープで電極を固定
上記の方法により、電極密度 1. 63±0. 05g/cm3となるように形成した電極につ V、て、 X線回折による活物質配向比を求めることができる。
[0091] <リチウム二次電池としたときの放電容量 >
本発明の負極材料は、これを負極の活物質として用いてリチウム二次電池を作製し た場合に、以下の特徴を有することが好ましい。
即ち、本発明の負極材料を活物質として集電体上に活物質層を形成し、リチウム二 次電池の負極として使用した場合に、そのリチウム二次電池の放電容量は、通常 34 5mAhZg以上、中でも 350mAhZg以上の範囲にあることが好ましい。放電容量が この範囲を下回ると、電池容量の低下が生じ易い。また、放電容量は高ければ高い 方が好ま 、が、その上限は通常 365mAhZg程度である。
[0092] 具体的な放電容量の測定方法について特に制限はないが、標準的な測定方法を 示すと、次の通りである。
まず、負極材料を用いた電極を作製する。電極は、集電体として銅箔を用い、この 集電体に活物質層を形成することにより作製する。活物質層は、負極材料と、バイン ダ榭脂としてスチレンブタジエンゴム(SBR)とを混合したものを用いる。ノインダ榭脂 の量は、電極の重量に対して 1重量%とする。また、電極密度は 1. 45gZcm3以上、 1. 95gZcm3以下とする。
[0093] 放電容量の評価は、この作製した電極にっ 、て、対極に金属リチウムを用いた 2極 式コインセルを作製し、その充放電試験をすることにより行なう。
2極式コインセルの電解液は任意である力 例えば、エチレンカーボネート(EC)と ジェチルカーボネート (DEC)とを、体積比で DEC/EC= 1/1— 7/3となるように 混合した混合液、又は、エチレンカーボネートとェチルメチルカーボネート(EMC)と を、体積比で EMCZEC = 1Z1— 7Z3となるように混合した混合液を用いることが できる。
また、 2極式コインセルに用いるセパレータも任意である力 例えば、厚さ 15 μ m— 35 μ mのポリエチレンシートを用いることができる。
[0094] こうして作製した 2極式コインセルを用いて充放電試験を行な 、、放電容量を求め る。具体的には、 0. 2mAZcm2の電流密度で、リチウム対極に対して 5mVまで充電 し、更に、 5mVの一定電圧で電流値が 0. 02mAになるまで充電し、負極中にリチウ ムをドープした後、 0. 4mAZcm2の電流密度でリチウム対極に対して 1. 5Vまで放 電を行なう、という充放電サイクルを 3サイクル繰り返し、 3サイクル目の放電値を放電 容量とする。
[0095] [2.リチウム二次電池用負極材料の製造方法]
〔黒鉛複合体混合粉末 (C)の製造方法〕
本発明の負極材料 (1)、即ち黒鉛複合体混合粉末 (C)は、黒鉛質 (D)及び黒鉛質 (D)とは配向性の異なる黒鉛質 (E)が複合化された黒鉛複合体粉末 (A)と、人造黒 鉛粉末 (B)とを含有するが、この黒鉛複合体混合粉末 (C)は、従来の複合化黒鉛質 粉末の製造とは異なり、次のような材料及び製造条件の選択により取得することがで きる。
[0096] 即ち、黒鉛質 (D)として、上に規定したァスぺ外比を有する材料を選択すること、こ れに、黒鉛質 (E)の前駆体であるピッチ原料、又はピッチ原料を熱処理し粉砕したも のを、混合し、熱処理することなどが挙げられる。
[0097] 上記の材料及び製造条件の選択によって、黒鉛複合体混合粉末 (C)が得られる 理由としては、次のように考えられる。
即ち、アスペクト比が 1. 2以上、 4. 0以下の範囲内にある黒鉛質 (D)を使用するこ とで、得られる黒鉛複合体粉末 (A)も規定のアスペクト比を有するものになる。また、 黒鉛複合体粉末 (A)粒子内において黒鉛質 (D)は、配向性の異なる黒鉛質 (E)に 被覆又は結着され、ランダムな配向方向で結合されることになる。
[0098] 具体的には、黒鉛複合体混合粉末 (C)は、以下に挙げる二つの製造方法等によつ て得ることができる。
[0099] (製造方法 1)
キノリン不溶分が 3. 0重量%以下であるピッチ原料をピッチ熱処理した黒鉛結晶前 駆体の粉砕物と、アスペクト比が 1. 2以上、 4. 0以下であり、タップ密度が 0. 7g/c m3以上、 1. 35gZcm3以下である黒鉛質 (D)とを混合し、熱処理 Aを行なった後、 粉砕し、熱処理 Bを行なう。
[0100] すなわち、黒鉛質 (E)及び人造黒鉛粉末 (B)の原料である黒鉛結晶前駆体と、黒 鉛質 (D)とを所定の割合で混合し、熱処理 Aを行なった後、粉砕し、更に熱処理 B ( 焼成、黒鉛化)を行なうことにより、黒鉛複合体混合粉末 (C)を作製する。
[0101] なお、黒鉛結晶前駆体として、揮発分の含有率が通常 5重量%以上、 20重量%以 下のものを用いることが好ましい。揮発分含有率がこの範囲にある黒鉛結晶前駆体 を使用することで、熱処理 Aにより黒鉛質 (D)と黒鉛質 (E)が複合ィ匕することから、上 述に規定する物性を有する黒鉛複合体混合粉末 (C)を得ることができる。また、この 黒鉛複合体混合粉末 (C)を活物質として形成した負極の活物質配向比も、上述の 範囲を満たすことになるので好まし 、。
[0102] (製造方法 2)
キノリン不溶分が 3重量%以下であるピッチ原料と、アスペクト比が 1. 2以上、 4. 0 以下であり、タップ密度が 0. 7g/cm3以上、 1. 35g/cm3以下である黒鉛質 (D)と から、黒鉛複合体粉末 (A)を作製する。また、それとは別に、人造黒鉛粉末 (B)を、 製造方法 1と同様に黒鉛結晶前駆体から作製する。こうして独立に得られた黒鉛複 合体粉末 (A)と人造黒鉛粉末 (B)を混合することにより、黒鉛複合体混合粉末 (C) を作製する。
[0103] 特に、熱処理又は溶媒により液状となるピッチ原料を用いて、黒鉛複合体粉末 (A) に対する黒鉛質 (E)の含有率が 3重量%以上、 70重量%以下の割合で得られた黒 鉛複合体粉末 (A)と、これとは別に黒鉛質前駆体から得られた人造黒鉛粉末 (B)と を混合処理することにより、上述に規定する物性を有する黒鉛複合体混合粉末 (C) を得ることができる。
以下、これらの製造方法 1及び製造方法 2について、詳しく説明する。
[0104] [2-1.製造方法 1〕
まず、製造方法 1について説明する。
始めに、ピッチ原料に事前に熱処理を施し、黒鉛結晶の前駆体であるバルタメソフ ーズ (事前に熱処理した黒鉛結晶前駆体。以下適宜、「熱処理黒鉛結晶前駆体」と V、う)の製造方法にっ 、て説明する。
[0105] <出発物質 >
本発明の黒鉛複合体混合粉末 (C)中に含まれる黒鉛質 (E)、及び人造黒鉛粉末( B)の出発物質としては、ピッチ原料を用いる。なお、本明細書において「ピッチ原料」 とは、ピッチ及びそれに順ずるものであり、適当な処理を行なうことによって黒鉛ィ匕す ることができるものをいう。具体的なピッチ原料の例としては、タールや重質油ゃピッ チなどを用いることができる。タールの具体例としては、コールタール、石油系タール などが挙げられる。重質油の具体例としては、石油系重質油の接触分解油、熱分解 油、常圧残油、減圧残油などが挙げられる。また、ピッチの具体例としては、コールタ 一ルビッチ、石油系ピッチ、合成ピッチなどが挙げられる。これらの中でもコールター ルビッチが芳香族性に高く好ましい。これらのピッチ原料は、何れか 1種を単独で用 V、ても良く、 2種以上を任意の組み合わせ及び比率で併用しても良 、。
[0106] また、上述のピッチ原料であって、キノリン不溶分の含有量は、特に制限されないが 、通常 3. 0重量%以下、好ましくは 1. 0重量%以下、さらに好ましくは 0. 02重量% 以下の範囲にあるものを用いる。キノリン不溶分とは、コールタール中に微量に含ま れるサブミクロンの炭素粒子や極微小なスラッジ等であり、これが多過ぎると黒鉛ィ匕過 程での結晶性向上を著しく阻害し、黒鉛ィ匕後の放電容量の著しい低下を招く。なお 、キノリン不溶分の測定方法としては、例え «JIS K2425に規定された方法を用い ることがでさる。
なお、本発明の効果を妨げない限り、原料として上述のピッチ原料に加え、各種の 熱硬化性榭脂、熱可塑性榭脂等を併用してもよい。
[0107] <熱処理黒鉛結晶前駆体の製造 >
上記から選択したピッチ原料に事前に熱処理を施し、熱処理黒鉛結晶前駆体を得 る。この事前の熱処理をピッチ熱処理と呼ぶこととする。この熱処理黒鉛結晶前駆体 を粉砕後、黒鉛質 (D)と混合後、熱処理 Aをする際に、その一部又は全部が溶融す る力 ここで事前の熱処理によって揮発分の含量を調整しておくことにより、その溶融 状態を適切に制御することができる。なお、熱処理黒鉛結晶前駆体に含まれる揮発 分としては、通常、水素、ベンゼン、ナフタレン、アントラセン、ピレン等が挙げられる。 [0108] ピッチ熱処理の際の温度条件は、特に制限されないが、通常 300°C以上、好ましく は 450°C以上、また、通常 550°C以下、好ましくは 510°C以下の範囲である。熱処理 の温度がこの範囲を下回ると揮発分が多くなるため、大気中で安全に粉砕を行ない 難くなる一方で、上限を上回ると熱処理 A時に熱処理黒鉛結晶前駆体の一部又は 全部が溶融せず、黒鉛質 (D)と熱処理黒鉛結晶前駆体の複合化した粒子 (黒鉛複 合体粉末 (A) )を得難い。
[0109] また、ピッチ熱処理を行なう時間は、特に制限されないが、通常 1時間以上、好まし くは 10時間以上、また、通常 48時間以下、好ましくは 24時間以下である。熱処理の 時間がこの範囲を下回ると不均一な熱処理黒鉛結晶前駆体となり製造上好ましくな い一方で、上限を上回ると生産性が悪く処理費用が高くなり、やはり好ましくない。 なお、熱処理の温度及び累積時間が前記の範囲内であれば、複数回に分けて熱 処理を行なってもよい。
[0110] ピッチ熱処理を行なう際には、窒素ガス等の不活性ガス雰囲気下、又は、ピッチ原 料から発生する揮発分雰囲気下で行なう。
ピッチ熱処理に用いる装置としては特に制限はないが、例えば、シャトル炉、トンネ ル炉、電気炉、オートクレープ等の反応槽、コーカー(コータス製造の熱処理槽)など を用いることができる。
ピッチ熱処理時には、必要に応じて攪拌を行なってもよ 、。
[0111] <熱処理黒鉛結晶前駆体の揮発分 >
ピッチ熱処理によって得られる黒鉛結晶前駆体の揮発分は、特に制限されないが 、通常 5重量%以上、好ましくは 6重量%以上、また、通常 20重量%以下、好ましくは 15重量%以下とする。揮発分が上記範囲を下回ると揮発分が多いため、大気中で 安全に粉砕を行な 、難くなる一方で、上限を上回ると熱処理 A時に黒鉛結晶前駆体 の一部又は全部が溶融せず、黒鉛質 (D)と熱処理黒鉛結晶前駆体の複合化した粒 子 (黒鉛複合体粉末 (A) )を得難い。なお、揮発分の測定方法としては、例え «JIS M8812に規定された方法を用いることができる。
[0112] <熱処理黒鉛結晶前駆体の軟化点 >
ピッチ熱処理によって得られる黒鉛結晶前駆体の軟ィ匕点は、特に制限されないが 、通常 250°C以上、好ましくは 300°C以上、更に好ましくは 370°C以上、また、通常 4 70°C以下、好ましくは 450°C以下、更に好ましくは 430°C以下の範囲とする。下限を 下回ると、熱処理後の黒鉛結晶前駆体の炭素化収率が低ぐ黒鉛質 (D)との均一な 混合物を得難ぐ上限を上回ると、熱処理 A時に黒鉛結晶前駆体の一部又は全部が 溶融せず、黒鉛質 (D)と熱処理黒鉛結晶前駆体の複合化した粒子 (黒鉛複合体粉 末 (A) )を得難い。軟化点としては、錠剤成型器で lmm厚さに成型した試料につい て、熱機械分析装置 (例えば、ブルカー.エイエックス株式会社製 TMA4000)を用 いて、窒素流通下、昇温速度 10°CZ分、針先形状 lmm φ、加重 20gfの条件で、ぺ ネトレーシヨン法により測定した値を用いることができる。
[0113] <熱処理黒鉛結晶前駆体の粉砕 >
次に、ピッチ熱処理によって得られた黒鉛結晶前駆体を粉砕する。熱処理により大 きな単位で同一方向に並びかけて 、る黒鉛結晶前駆体の結晶を微細化するため、 及び Z又は、黒鉛質 (D)と熱処理黒鉛結晶前駆体との混合、複合化を均一にする ためである。
[0114] ピッチ熱処理によって得られる黒鉛結晶前駆体の粉砕は、特に制限されないが、 粉砕後の黒鉛結晶前駆体の粒度が、通常 1 μ m以上、好ましくは 5 μ m以上、また、 通常 10mm以下、好ましくは 5mm以下、中でも好ましくは 500 m以下、更に好まし くは 200 m以下、特に好ましくは 50 m以下となるように行なう。前記粒度が 1 μ m 未満では、粉砕中若しくは粉砕後に熱処理した黒鉛結晶前駆体の表面が空気と触 れることで酸ィ匕し、黒鉛ィ匕過程での結晶性の向上を阻害し、黒鉛化後の放電容量の 低下を招く虞がある。一方、前記粒度が 10mmを超えると、粉砕による微細化効果が 薄れ結晶が配向し易くなり、黒鉛質 (E)及び Z又は人造黒鉛粉末 (B)が配向し易く なり、黒鉛複合体混合粉末 (C)を用いた電極の活物質配向比が低くなり、電池充電 時の電極膨張を抑制し難くなる。及び Z又は、黒鉛質 (D)と熱処理黒鉛結晶前駆体 の粒径差が大きくなる為に、均一な混合がし難ぐ複合ィ匕が不均一になり易い。
[0115] 粉砕に用いる装置に特に制限はないが、例えば、粗粉砕機としてはせん断式ミル、 ジョークラッシャー、衝撃式クラッシャー、コーンクラッシャー等が挙げられ、中間粉砕 機としてはロールクラッシャー、ハンマーミル等が挙げられ、微粉砕機としてはボール ミル、振動ミル、ピンミル、攪拌ミル、ジェットミル等が挙げられる。
[0116] <黒鉛複合体混合粉末 (C)の製造方法 >
黒鉛質 (D)と熱処理黒鉛結晶前駆体 (黒鉛質 (E)と人造黒鉛粉末 (B)の原料)を 所定の割合で混合、熱処理 A、粉砕、熱処理 B (焼成、黒鉛化)することにより黒鉛複 合体混合粉末 (C)を作製する。
[0117] く黒鉛質 (D)と熱処理黒鉛結晶前駆体との混合割合〉
熱処理 A前に行なう黒鉛質 (D)と熱処理黒鉛結晶前駆体との混合割合は、特に制 限されないが、混合物に対する黒鉛質 (D)の割合が、通常 20重量%以上、好ましく は 30重量%以上、更に好ましくは 40重量%以上、また、通常 80重量%以下、好まし くは 70重量%以下となるように行なう。下限を下回ると、黒鉛複合体混合粉末 (C)中 の黒鉛質 (E)及び Z又は人造黒鉛粉末 (B)の割合が増える為、電極にした時に充 填密度が上がり難ぐ過大なプレス荷重を必要とし黒鉛質 (D)を複合化した効果が 得られ難い。上限を上回ると、黒鉛複合体粉末 (A)中の黒鉛質 (D)表面の露出が増 し、黒鉛複合体混合粉末 (C)の比表面積が大きくなる可能性があり、粉体物性上好 ましくない。
[0118] <混合 >
黒鉛質 (D)と、所定粒度に調整した熱処理黒鉛結晶前駆体を混合する際に、用い る装置に特に制限はないが、例えば、 V型混合機、 W型混合機、容器可変型混合機 、混練機、ドラムミキサー、せん断ミキサー等が挙げられる。
[0119] <熱処理 A>
次に、黒鉛質 (D)と熱処理黒鉛結晶前駆体の混合物に熱処理 Aを施す。粉砕した 熱処理黒船結晶前駆体を再溶融又は融着することにより、黒鉛質 (D)と微細化した 熱処理黒船結晶前駆体粒子が無配向状態で接触したまま固定ィ匕するためである。こ れにより、黒鉛質 (D)と熱処理黒鉛結晶前駆体の混合物は、単なる粒子の混合物で はなぐより均一な複合ィ匕した混合物 (以下適宜、「黒鉛複合混合物」という)とするこ とがでさる。
[0120] 熱処理 Aの温度条件は、特に制限されないが、通常 300°C以上、好ましくは 400°C 以上、更に好ましくは 450°C以上、また、通常 650°C以下、好ましくは 600°C以下で ある。熱処理 Aの温度が前記範囲を下回ると、熱処理 Aの後の材料中に揮発分が多 く残存する為、焼成、若しくは黒鉛化工程時に粉体同志の融着を起こす可能性があ り、再粉砕が必要となり好ましくない。一方、前記範囲を上回ると、再溶融した成分が 粉碎時に針状に割れ、タップ密度の低下を招く可能性があり好ましくない。
[0121] 熱処理 Aを行なう時間は、特に制限されないが、通常 5分以上、好ましくは 20分以 上、また、通常 3時間以下、好ましくは 2時間である。熱処理 Aを行なう時間が前記範 囲を下回ると揮発分が不均一になり、焼成もしくは黒鉛ィ匕処理時に融着の原因となり 好ましくなぐ上回ると生産性が悪ぐ処理費用も高くなる為やはり好ましくない。
[0122] 熱処理 Aは、窒素ガス等の不活性ガス雰囲気下、又は、粉砕により微細化した熱処 理黒鉛結晶前駆体から発生する揮発分雰囲気下で行なう。
熱処理 Aに用いる装置に特に制限はないが、例えば、シャトル炉、トンネル炉、電 気炉などを用いることができる。
[0123] <熱処理黒鉛結晶前駆体の粉砕及び熱処理 Aの代替処理 >
ところで、上記の粉砕及び熱処理 Aの代替処理として、熱処理黒鉛結晶前駆体の 組織を微細化、無配向化することが可能な処理、例えば、熱処理した黒鉛結晶前駆 体が溶融若しくは軟化する様な温度領域で機械的エネルギーを付与する処理を行 ないながら、黒鉛質 (D)と混合、熱処理を行なうことも可能である。
[0124] この代替処理としての熱処理は、特に制限されないが、通常 200°C以上、好ましく は 250°C以上、また、通常 450°C以下、好ましくは 400°C以下で行なう。温度条件が 前記範囲を下回ると代替処理中の黒鉛結晶前駆体の溶融、軟化が不十分であり、 黒鉛質 (D)との複合ィ匕がし難くなる。また、上回ると熱処理が急速に進み易ぐ粉砕 時に人造黒鉛粉末 (B)等の粒子が針状に割れ、タップ密度の低下を招き易 、。
[0125] また、その処理時間は、特に制限されないが、通常 30分以上、好ましくは 1時間以 上、また、通常 24時間以下、好ましくは 10時間以下で行なう。処理時間が前記範囲 を下回ると代替処理をした黒鉛結晶前駆体が不均一となり、製造上好ましくない。ま た、上回ると生産性が悪ぐ処理費用が高くなり好ましくない。
[0126] この代替処理は、通常、窒素ガス等の不活性雰囲気下、又は空気等の酸ィヒ性雰囲 気下で行なう。但し、酸化性雰囲気で処理する場合は、黒鉛化後に高結晶性を得る ことが難しくなる虞があるので、酸素による不融化が進み過ぎない様にする必要があ る。具体的には、代替処理後の黒鉛結晶前駆体中の酸素量が、通常 8重量%以下、 好ましくは 5重量%以下となるようにする。
また、代替処理に用いる装置としては特に制限はないが、例えば、ミキサー、ニー ダ一等を用いることができる。
[0127] <粉碎>
次に、熱処理 Aを行なった黒鉛複合混合物を粉砕する。熱処理 Aにより黒鉛質 (D) と複合化され組織が微細化、無配向化した状態で溶融又は融着した黒鉛複合混合 物の塊を、粉砕により目的の粒子径にするためである。
[0128] 粉砕後の黒鉛複合混合物の粒度は、特に制限されないが、通常 以上、好ま しくは 9 μ m以上、また、通常 65 μ m以下、好ましくは 35 μ m以下とする。粒度が前 記範囲を下回ると、黒鉛複合体負極材料 Cとしてタップ密度が小さくなつてしまうため 、電極とした場合に活物質の充填密度が上がり難ぐ高容量の電池を得難い。一方、 前記範囲を上回ると、黒鉛複合体負極材料 Cとして塗布により電極を作製するときに 塗工むらが生じ易く好ましくない。
[0129] 粉砕に用いる装置について特に制限はないが、例えば、粗粉砕機としてはジョーク ラッシャー、衝撃式クラッシャー、コーンクラッシャー等が挙げられ、中間粉砕機として はロールクラッシャー、ハンマーミル等が挙げられ、微粉砕機としてはボールミル、振 動ミル、ピンミル、攪拌ミル、ジェットミル等が挙げられる。
[0130] <熱処理 B :焼成 >
熱処理 Bは、焼成及び黒鉛ィ匕のことを言う。以下、焼成力 説明する。但し、焼成は 、省略することも可能である。
粉砕により粉砕された黒鉛複合混合物を焼成する。黒鉛化時の黒鉛複合混合物の 融着を抑制するべぐ焼成により黒鉛複合混合物の揮発分を除去するためである。
[0131] 焼成を行なう際の温度条件は、特に制限されないが、通常 600°C以上、好ましくは 1000°C以上、また、通常 2400°C以下、好ましくは 1300°C以下である。温度条件が 前記範囲を下回ると、黒鉛ィ匕時に黒鉛複合混合物が粉体の融着を起こし易く好まし くない。一方、前記範囲を上回ると、焼成設備に費用が掛カるため好ましくない。 焼成を行なう時に、温度条件を上記範囲に保持する保持時間は特に制限されない 力 通常 30分以上、 72時間以下である。
[0132] 焼成は、窒素ガス等の不活性ガス雰囲気下、又は、再粉砕した黒鉛複合混合物か ら発生するガスによる非酸ィ匕性雰囲気下で行なう。また、製造工程の簡略ィ匕のため、 焼成工程を組み込まずに、直接黒鉛ィ匕を行なうことも可能である。
焼成に用いる装置としては特に制限はないが、例えば、シャトル炉、トンネル炉、電 気炉、リードノヽンマー炉、ロータリーキルン等を用いることができる。
[0133] <熱処理 B :黒鉛化 >
次に、焼成を行なった黒鉛複合混合物に黒鉛化を施す。電池評価での放電容量 を大きくするために、結晶性を向上させるためである。黒鉛ィ匕により、黒鉛複合体混 合粉末 (C) (本発明の負極材料 (I) )を得ることができる。
[0134] 黒鉛化を行なう際の温度条件は、特に制限されないが、通常 2800°C以上、好まし くは 3000°C以上、また、通常 3200°C以下、好ましくは 3100°C以下である。前記範 囲を上回ると、電池の可逆容量が小さくなる虞があり、高容量な電池を作り難い。また
、前記範囲を上回ると、黒鉛の昇華量が多くなり易く好ましくない。
[0135] 黒鉛ィ匕を行なう際の保持時間は特に制限されないが、通常 0分より長時間であり、 2
4時間以下である。
黒鉛ィ匕は、アルゴンガス等の不活性ガス雰囲気下、又は、焼成した黒鉛複合混合 物から発生するガスによる非酸ィ匕性雰囲気下で行なう。
[0136] 黒鉛ィ匕に使用する装置としては特に制限はないが、例えば、直接通電炉、アチソン 炉、間接通電式として抵抗加熱炉、誘導加熱炉等が挙げられる。
なお、黒鉛化処理時、若しくはそれ以前の工程、即ち、熱処理から焼成までの工程 で、材料 (黒鉛質 (D)、ピッチ原料又は黒鉛結晶前駆体)の中若しくは表面に Si、 B 等の黒鉛ィ匕触媒を添加しても構わな 、。
[0137] 〔製造方法 2〕
次に製造方法 2について説明する。
[0138] <黒鉛複合体粉末 (A)の製造方法 >
上述のピッチ原料と黒鉛質 (D)を、任意の割合で混合し、熱処理 Bを実施して黒鉛 複合体粉末 (A)を作製する。
[0139] <人造黒鉛粉末 (B)の製造方法 >
ピッチ原料を、製造方法 1と同様にピッチ熱処理して黒鉛結晶前駆体を得る。この 黒鉛結晶前駆体は、上述の中粉砕機、微粉砕工程を施して粉末としても良い。 さらに、この黒鉛結晶前駆体を粉砕、熱処理 A、 Bを施すことにより、人造黒鉛粉末( B)を作製する。但し、粉砕及び、熱処理は、任意の順番で行なうことができ、熱処理 Aは省略しても良い。
[0140] く混合 >
この黒鉛複合体粉末 (A)と人造黒鉛粉末 (B)を製造方法 1の「混合」で用いた任意 の装置を使用して混合する。
黒鉛複合体粉末 (A)と人造黒鉛粉末 (B)の比率は、黒鉛複合体粉末 (A)と人造 黒鉛粉末 (B)の合計量に対する人造黒鉛粉末 (B)の重量比の値で、通常 2重量% 以上、好ましくは 10重量%以上、より好ましくは 14重量%以上、また、通常 65重量 %以下、好ましくは 50重量%以下、より好ましくは 45重量%以下の範囲である。この 範囲を下回ると、人造黒鉛粉末 (B)の割合が増える為、電極にした時に充填密度が 上がり難ぐ過大なプレス荷重を必要とし人造黒鉛粉末 (B)を混合した利点が得られ 難い。一方、この範囲を上回ると、黒鉛複合体粉末 (A)の割合が多過ぎる為、電極 塗布性を損なう可能性がある。
[0141] <その他の処理 >
その他、発明の効果が妨げられない限りにおいて、上記の各処理に加え、分級処 理等の各種の処理を行なうことができる。分級処理は、黒鉛化処理後の粒度を目的 の粒径にするベぐ粗粉や微粉を除去するためのものである。
[0142] 分級処理に用いる装置としては特に制限はないが、例えば、乾式篩い分けの場合 :回転式篩い、動揺式篩い、旋動式篩い、振動式篩い、乾式気流式分級の場合:重 力式分級機、慣性力式分級機、遠心力式分級機 (クラシファイア、サイクロン等)、湿 式篩い分け、機械的湿式分級機、水力分級機、沈降分級機、遠心式湿式分級機等 を用いることができる。
分級処理は、熱処理 A後の粉砕のすぐ後に続けて行なうこともできるし、その他のタ イミング、例えば、粉砕後の焼成の後、あるいは黒鉛ィ匕の後に行なってもよい。更に は、分級処理自体を省略することも可能である。但し、黒鉛複合体混合粉末 (C)の B ET比表面積を低下させる点、及び、生産性の点からは、熱処理 A後の粉砕のすぐ 後に続けて分級処理を行なうことが好ま 、。
[0143] 〔黒鉛複合体混合粉末 (C)の製造後の処理〕
上述の手順で製造した黒鉛複合体混合粉末 (C)に対して、更に、負極材料の BE T比表面積の制御、電極プレス性の向上、放電容量の向上、安価化等の目的で、別 に製造した人造黒鉛粉末又は天然黒鉛粉末を加えて混合しても良い。人造黒鉛粉 末を加える場合、これは黒鉛複合体混合粉末 (C)の成分である人造黒鉛粉末 (B)の 一部と捉えることができる。一方、天然黒鉛粉末を加える場合、これは上述の天然黒 鉛粉末 (G)として機能し、混合粉末全体では、上述の黒鉛複合体混合粉末 (F)とし て機能することになる。
[0144] [3.リチウム二次電池用負極]
本発明の負極材料を活物質として含有する活物質層を集電体上に形成すること〖こ より、リチウム二次電池用負極を作製することができる。
[0145] 負極の製造は、常法にしたがって製造すればよい。例えば、負極活物質に、結着 剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体に塗布し、乾燥した後 にプレスして高密度化する方法が挙げられる。また、本発明の負極材料に加えて、他 の活物質を併用して用いることもできる。
[0146] 負極層の密度は、通常 1. 45g/cm3以上、好ましくは 1. 55g/cm3以上、より好ま しくは 1. 6g/cm3以上とすると、電池の容量が増加するので好ましい。なお、負極層 とは集電体上の活物質、結着剤、導電剤などよりなる層をいい、その密度とは電池に 糸且立てる時点での密度を 、う。
[0147] 結着剤としては、電極製造時に使用する溶媒や電解液に対して安定な材料であれ ば、任意のものを使用することができる。例えば、ポリフッ化ビ-リデン、ポリテトラフル 才ロエチレン、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム、イソプレンゴム 、ブタジエンゴム、エチレン アクリル酸共重合体及びエチレンーメタクリル酸共重合 体等が挙げられる。なお、これらは 1種を単独で用いてもよぐ 2種以上を任意の組み 合わせ及び比率で併用しても良 ヽ。
[0148] 増粘剤としては公知のものを任意に選択して用いることができる力 例えば、カルボ キシノレメチノレセノレロース、メチノレセノレロース、ヒドロキシメチノレセノレロース、ェチノレセノレ ロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ及びガゼイン等が挙 げられる。なお、これらは 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及 び比率で併用しても良い。
[0149] 導電材としては、銅又はニッケル等の金属材料;グラフアイト又はカーボンブラック 等の炭素材料などが挙げられる。なお、これらは 1種を単独で用いてもよぐ 2種以上 を任意の組み合わせ及び比率で併用しても良!、。
[0150] 負極用集電体の材質としては、銅、ニッケル又はステンレス等が挙げられる。これら のうち、薄膜に加工し易いという点及びコストの点から銅箔が好ましい。なお、これら は 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用しても良 い。
[0151] [4.リチウム二次電池]
本発明の負極材料は、電池の電極の材料として有用である。特に、リチウムイオン を吸蔵'放出可能な正極及び負極、並びに電解液を備えたリチウム二次電池などの 非水系二次電池において、上述した本発明の負極材料を負極に用いることは、極め て有用である。例えば、本発明の負極材料を使用して負極を作製し、通常使用され るリチウム二次電池用の金属カルコゲナイド系正極及びカーボネート系溶媒を主体と する有機電解液を組み合わせて構成した非水系二次電池は、容量が大きぐ初期サ イタルに認められる不可逆容量が小さぐ急速充放電容量が高ぐまたサイクル特性 が優れ、高温下での放置における電池の保存性及び信頼性も高ぐ高効率放電特 性及び低温における放電特性に極めて優れたものである。
[0152] このようなリチウム二次電池を構成する正極、電解液等の電池構成上必要な部材 の選択については特に制限されない。以下において、本発明の負極材料を用いたリ チウムニ次電池を構成する部材の材料等を例示するが、使用し得る材料はこれらの 具体例に限定されるものではな 、。
[0153] 正極には、例えば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマン ガン酸化物等のリチウム遷移金属複合酸化物材料;二酸化マンガン等の遷移金属 酸ィ匕物材料;フッ化黒鉛等の炭素質材料などのリチウムを吸蔵'放出可能な材料を 使用することができる。具体的には、 LiFeO、 LiCoO、 LiNiO、 LiMn O及びこれ
2 2 2 2 4 らの非定比化合物、 MnO、 TiS、 FeS、 Nb S、 Mo S、 CoS、 V O、 P O、 CrO
2 2 2 3 4 3 4 2 2 5 2 5
、 V O、 TeO、 GeO等を用いることができる。正極の製造方法は特に制限されず、
3 3 3 2 2
上記の電極の製造方法と同様の方法により製造することができる。
[0154] 正極集電体には、例えば、電解液中での陽極酸ィ匕によって表面に不動態皮膜を 形成する弁金属又はその合金を用いるのが好ましい。弁金属としては、短周期型周 期表における第 Illb族、第 IVa族、第 Va族に属する金属及びこれらの合金を例示す ることができる。具体的には、 Al、 Ti、 Zr、 Hf、 Nb、 Ta及びこれらの金属を含む合金 などを例示することができ、 Al、 Ti、 Ta及びこれらの金属を含む合金を好ましく使用 することができる。特に A1及びその合金は軽量であるためエネルギー密度が高くて 望ましい。
[0155] 電解質としては、電解液や固体電解質など、任意の電解質を用いることができる。
なおここで電解質とはイオン導電体全てのことを!ヽ!ヽ、電解液及び固体電解質は共 に電解質に含まれるものとする。
[0156] 電解液としては、例えば、非水系溶媒に溶質を溶解したものを用いることができる。
溶質としては、アルカリ金属塩や 4級アンモ-ゥム塩などを用いることができる。具体 的には、 LiCIO、 LiPF、 LiBF、 LiCF SO、 LiN (CF SO ) 、 LiN (CF CF SO )
4 6 4 3 3 3 2 2 3 2 2 2
、 LiN (CF SO ) (C F SO )、 LiC (CF SO )からなる群から選択される 1以上の化
3 2 4 9 2 3 2 3
合物を用いるのが好まし 、。
[0157] 非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブ チレンカーボネート、ビ-レンカーボネート等の環状カーボネート、 Ύ ブチロラタトン などの環状エステルイ匕合物; 1, 2—ジメトキシェタン等の鎖状エーテル;クラウンエー テル、 2—メチルテトラヒドロフラン、 1, 2—ジメチルテトラヒドロフラン、 1, 3—ジォキソラ ン、テトラヒドロフラン等の環状エーテル;ジェチルカーボネート、ェチルメチルカーボ ネート、ジメチルカーボネート等の鎖状カーボネートなどを用いることができる。溶質 及び溶媒はそれぞれ 1種類を選択して使用してもよいし、 2種以上を混合して使用し てもよい。これらの中でも非水系溶媒力 環状カーボネートと鎖状カーボネートを含 有するものが好ましい。
[0158] また、非水系電解液は、電解液中に有機高分子化合物を含ませ、ゲル状又は、ゴ ム状、或いは固体シート状の固体電解質としてもよい。有機高分子化合物の具体例 としては、ポリエチレンォキシド、ポリプロピレンォキシド等のポリエーテル系高分子化 合物;ポリエーテル系高分子化合物の架橋体高分子;ポリビニルアルコール、ポリビ -ルブチラールなどのビュルアルコール系高分子化合物;ビュルアルコール系高分 子化合物の不溶化物;ポリェピクロルヒドリン;ポリフォスファゼン;ポリシロキサン;ポリ ビュルピロリドン、ポリビ-リデンカーボネート、ポリアクリロニトリルなどのビュル系高 分子化合物;ポリ( ω—メトキシオリゴォキシエチレンメタタリレート)、ポリ( ω—メトキシ オリゴォキシエチレンメタタリレート メチルメタタリレート)等のポリマー共重合体 などが挙げられる。
[0159] セパレータの材質や形状は特に制限されない。セパレータは正極と負極が物理的 に接触しないように分離するものであり、イオン透過性が高ぐ電気抵抗が低いもので あるのが好ま ヽ。セパレータは電解液に対して安定で保液性が優れた材料の中か ら選択するのが好ましい。具体例としては、ポリエチレン、ポリプロピレン等のポリオレ フィンを原料とする多孔性シート又は不織布を用いて、上記電解液を含浸させること ができる。
[0160] 電解液、負極及び正極を少なくとも有するリチウム二次電池を製造する方法は、特 に限定されず通常採用されている方法の中から適宜選択することができる。
リチウム二次電池には、電解液、負極、正極の他に、必要に応じて、外缶、セパレ ータ、ガスケット、封口板、セルケースなどを用いることもできる。
[0161] リチウム二次電池の製造方法の例を挙げると、外缶上に負極を乗せ、その上に電 解液とセパレータを設け、さらに負極と対向するように正極を乗せて、ガスケット、封 口板と共に力しめて電池にすることができる。
[0162] 電池の形状は特に制限されず、例えば、シート電極及びセパレータをスパイラル状 にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト 構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等にす ることがでさる。
[0163] [本発明の負極材料が優れた電池性能を示す活物質となる推定理由]
本発明の負極材料を負極活物質として、高い電極密度で使用した場合に、放電容 量が高ぐ充放電効率が高ぐ負荷特性に優れ、且つ、充電時の電極膨張が小さい 電池が得られる理由は、必ずしも明らかではないが、次のように推定される。
[0164] 本発明の負極材料 (I)、即ち黒鉛複合体混合粉末 (C)は、結晶性が高ぐ上記の 規定範囲のァスぺ外比を有する黒鉛質 (D)を有することで、放電容量が高ぐ負荷 特性に優れる。また、この黒鉛質 (D)と配向性の異なる黒鉛質 (E)を有することで、 比表面積の増加が抑制され、充放電効率が高い。更に、これらの黒鉛質 (D)と黒鉛 質 )とが複合ィ匕していることで、活物質配向比が高く膨張が小さくなる。
[0165] また、本発明の負極材料 (II)、即ち黒鉛複合体混合粉末 (F)は、上述の黒鉛複合 体混合粉末 (C)に加えて、更に天然黒鉛粉末 (G)が共存していることで、粉体物性 のより精密な制御が可能となり、負荷特性やサイクル寿命に優れるため好ま 、。
[0166] ここで、特に特許文献 3に記載の技術との比較で、本発明の利点を考察する。
特許文献 3に記載の複合質黒鉛材料では、外表面の黒鉛質層 (C)が黒鉛質被覆 材 (B)と一体ィ匕しているが故に、外表面の黒鉛質層(C)の厚さをコントロールすること が困難であり、安定した電池特性を発揮し難いという課題があった。また、球状の緻 密な硬い材料のみで構成されているが故に、電極中の負極材の充填率を上げ難ぐ 更に高い電極密度にすることが困難であるという課題があった。カロえて、工業的生産 の観点力もは、製造工程が煩雑でコストが高いという課題があった。また、低結晶性 の表層(C)が芯材カも剥離することなく被覆しており、 BET比表面積は lm2Zg以下 が好ましい旨が記載されている力 BET比表面積が小さくなることにより充電時のリ チウムの受け入れが悪ィ匕し、充電容量が低下すると!/、う点で不十分であった。
[0167] それに対して、本発明は球状、楕円状、塊状の黒鉛複合体粉末 (A)に、人造黒鉛 粉末 (B)が存在することで、電極中の負極材の充填率を上げ易く更に高い電極密度 にすることが可能であり、且つ、 BET比表面積の高い黒鉛複合体粉末 (A)と、 BET 比表面積の低 、人造黒鉛粉末 (B)の組み合わせを変えることで、 BET比表面積の 制御が可能となる。 実施例
[0168] 以下に本発明の実施例について説明する力 本発明は以下の実施例によってな んら限定されるものではなぐその要旨を逸脱しない範囲において、任意に変更をカロ えて実施することが可能である。
[0169] [実施例 1]
キノリン不溶分が 0. 05重量%以下のコールタールピッチを、反応炉にて 460°Cで 10時間熱処理し、軟ィ匕点 385°Cの、溶融性のある塊状の熱処理黒鉛結晶前駆体を 得た。なお、軟ィ匕点の値は、前記記載の手法にて測定した値を用いた。
得られた塊状の熱処理黒鉛結晶前駆体を、中間粉砕機 (セイシン企業社製オリエ ントミル)を用いて粉砕し、更に微粉砕機 (マツボー社製ターボミル)を用いて微粉砕 して、メジアン径 17 mの微細化した黒鉛結晶前駆体粉末を得た。なお、メジアン径 の値は、前記記載の手法にて測定した値を用いた。
[0170] 上記の微細化黒鉛結晶前駆体粉末に、メジアン径 17 m、アスペクト比 1. 9、タツ プ密度 1. OgZcm3の天然黒鉛を、微細化黒鉛結晶前駆体粉末及び天然黒鉛の全 重量に対して 50重量%混合し、黒鉛質 (D)と熱処理黒鉛結晶前駆体との混合粉末 を得た。なお、アスペクト比の値は、前記記載の手法にて測定した値を用いた。
[0171] この熱処理黒鉛結晶前駆体の混合粉末を金属製の容器に詰め、箱形の電気炉で 窒素ガス流通下、 540°Cで 2時間、熱処理 Aを行なった。熱処理 A中に、微細化した 黒鉛結晶前駆体粉末は溶融し、天然黒鉛と均一に複合ィヒした熱処理黒鉛結晶前駆 体の混合物の塊となった。
この固化した熱処理黒鉛結晶前駆体混合物の塊を粗砕機 (吉田製作所製ロール ジョークラッシャー)で粉砕、更に微粉砕機 (マツボー社製ターボミル)を用いて微粉 砕し、メジアン径 18. 5 μ mの粉末を得た。
[0172] 得られた粉末を容器に入れ、電気炉にて窒素雰囲気下、 1000°Cで 1時間焼成し た。焼成後は粉末のままの形態であり、溶融、融着は殆ど見られな力つた。
更に、焼成した粉末を黒鉛坩堝に移し替え、直接通電炉を用いて不活性雰囲気下 で 3000°Cで 5時間かけて黒鉛ィ匕し、黒鉛複合体混合粉末 (C) (実施例 1の負極材 料)を得た。 [0173] 得られた実施例 1の負極材料の物性を測定したところ、メジアン径 17. 5 m、タツ プ密度 1. 2gZcm3、 BET比表面積 2. 3m2Zgであった。
[0174] また、前記記載の手順に従!ヽ、偏光顕微鏡を用いて黒鉛複合体混合粉末 (C)の 断面写真を撮影し、配向性の異なる黒鉛複合体粉末 (A)を選別することにより、実施 例 1の負極材料中の黒鉛複合体粉末 (A)を特定した。その結果、実施例 1の負極材 料 (黒鉛複合体混合粉末 (C) )に含まれる黒鉛複合体粉末 (A)の割合は 55重量%、 人造黒鉛粉末 (B)の割合は 45重量%であった。
[0175] 更に、黒鉛複合体粉末 (A)及び人造黒鉛粉末 (B)の各々の物性を測定したところ
、黒鉛複合体粉末 (A)は、メジアン径 19. 5 m、アスペクト比 1. 2であった。また、 人造黒鉛粉末 (B)は、メジアン径 8. 5 μ mであった。
[0176] また、実施例 1の負極材料の結晶性を X線回折法にて測定したところ、 d =0. 33
002
57nm、 Lc 〉1000A (100nm)であった。
004
[0177] 更に、実施例 1の負極材料を用いて、下記の方法に従って電極密度 1. 63±0. 05 gZcm3の電極を作製し、電極の活物質配向比を求めたところ、 0. 17であった。
[0178] また、実施例 1の負極材料を用いて、下記の方法に従ってリチウム二次電池を作製 し、放電容量、充放電効率、負荷特性の測定を行なった。また、同様にリチウム二次 電池を作製し、充電状態で解体して電極の厚みを測定することにより、充電膨張率の 測定を行なった。
実施例 1の負極材料の各物性の評価結果を表 1一 3に示す。
[0179] <電極作製方法 >
負極材料と、増粘剤として CMC水溶液と、バインダ榭脂として SBR水溶液とを、乾 燥後の負極材料に対して CMC及び SBRがそれぞれ 1重量%になるように混合撹拌 してスラリーとし、ドクターブレードを用いて銅箔上にこのスラリーを塗布した。塗布厚 さは、乾燥後の電極目付 (銅箔除く)が lOmgZcm2になるようにギャップを選択した。
[0180] この電極を 80°Cで乾燥した後、電極密度 (銅箔除く)が 1. 73±0. 05gZcm3にな るようにプレスを行なった。プレス後の電極から 12mm φの電極を打ち抜き、重量より 負極活物質重量 (電極重量 銅箔重量 バインダ榭脂重量)を求めた。
[0181] <リチウム二次電池作成方法 > 上記の電極作製方法で作製した電極を 110°Cで真空乾燥した後、グローブボック スへ移し、アルゴン雰囲気下で、電解液としてエチレンカーボネート(EC) Zジェチ ルカーボネート(DEC) = 1Z1の混合液を溶媒とした 1M— LiPF電解液と、セパレ
6
ータとしてポリエチレンセパレータと、対極としてリチウム金属対極とを用い、コイン電 池 (リチウム二次電池)を作製した。
[0182] <放電容量の測定方法 >
0. 2mAZcm2の電流密度でリチウム対極に対して 5mVまで充電し、更に、 5mV の一定電圧で電流値が 0. 02mAになるまで充電し、負極中にリチウムをドープした 後、 0. 4mAZcm2の電流密度でリチウム対極に対して 1. 5Vまで放電を行なう充放 電サイクルを 3サイクル繰り返し、 3サイクル目の放電値を放電容量として測定した。
[0183] <充放電効率の計算方法 >
以下に従って計算した。
•電極密度 1. 73±0. 05g/cm3
•充放電効率 (%) = {初回放電容量 (mAhZg) Z初回充電容量 (mAhZg) } X 10 0
[0184] <充電膨張率の測定方法 >
放電容量の測定において 3サイクル充放電後、 4サイクル目の充電終止条件を 300 mAhZgの定容量充電で行なった。充電状態のコイン電池をアルゴングローブボック ス中で短絡させないように解体し、電極を取り出して、充電時の電極の厚み (銅箔除 く)を測定した。電池作製前のプレス電極の厚み (銅箔除く)を基準として、次式に基 づいて充電膨張率を求めた。
{ (充電電極厚み プレス電極厚み),プレス電極厚み } X 100 =充電膨張率(%) [0185] <負荷特性の計算方法 >
•電極密度 1. 73±0. 05g/cm3
•2C放電容量 (mAhZg) : 7. OmAZcm2の電流密度で放電した時の放電容量 •0. 2C放電容量 (mAhZg) : 0. 7mA/cm2の電流密度で放電した時の放電容量 '負荷特性 (%) = {2C放電容量 (mAhZg)ZO. 2C放電容量 (mAhZg) } X 100 [0186] [実施例 2] 実施例 1と同様の手順で得られた塊状の黒鉛結晶前駆体混合物を、粗砕機 (吉田 製作所製ロールジョークラッシャー)で粉砕後、粉砕機 (ダルトン社製ノヽンマーミル)を 用いて粉砕し、目開き 45 mの篩を使用して篩った、篩い下のメジアン径 21. O ^ m の微細化した黒鉛結晶前駆体粉末を得た。その後は実施例 1と同様の手順で焼成 処理以降の処理を行ない、黒鉛複合体混合粉末 (C) (実施例 2の負極材料)を得た
[0187] 得られた実施例 2の負極材料の物性を、実施例 1と同様にして測定したところ、メジ アン径 20. 0 m、タップ密度 1. 20g/cm3、 BET比表面積 1. 8m2Zgであった。ま た、実施例 1と同様にして X線回折法にてその結晶性を測定したところ、 d =0. 33
002
57nm、 Lc 〉1000A (100nm)であった。
004
[0188] また、実施例 2の負極材料 (黒鉛複合体混合粉末 (C) )中における黒鉛複合体粉 末 (A)及び人造黒鉛粉末 (B)の割合を、実施例 1と同様にして測定したところ、黒鉛 複合体粉末 (A)が 60重量%、人造黒鉛粉末 (B)が 40重量%であった。更に、黒鉛 複合体粉末 (A)及び人造黒鉛粉末 (B)の各々の物性を測定したところ、黒鉛複合体 粉末 (A)は、メジアン径 22. 3 /z m、アスペクト比 1. 8であった。また、人造黒鉛粉末( B)は、メジアン径 7. 1 μ mであった。
[0189] 実施例 2の負極材料にっ ヽて、黒鉛化工程の後における黒鉛複合体混合粉末 (C )の粒子断面のうち、黒鉛複合体粉末 (A)部分の偏光顕微鏡写真 (倍率 1500倍)を 図 1 (a)に示す。また、図 1 (a)の粒子断面における黒鉛質 (D)及び黒鉛質 (E)の形 状を表わす模式図を図 1 (b)に示す。但し、この写真は「異なる配向」について説明 するものであり、実施例 2の黒鉛複合体混合粉末 (C)の粒子をこれに限定するもので はない。粒子の中心側にある黒鉛質 (D)に当たる部分は、同系統の色が広い領域に 広がっている。一方、その外側の黒鉛質 (E)に当たる部分は、様々な色の異方性単 位が複数の小さな領域となっており、黒鉛質 (D)とは光学的異方性組織の異方性単 位のパターンが異なる。
[0190] また、実施例 2の負極材料を用いて、実施例 1と同様の手順で電極を作製し、電極 の活物質配向比を求めたところ、 0. 15であった。
更に、実施例 2の負極材料を用いて、実施例 1と同様の手順でリチウム二次電池を 作製し、放電容量、充放電効率、負荷特性及び充電膨張率の測定を行なった。 実施例 2の負極材料の各物性の評価結果を表 1一 3に示す。
[0191] [実施例 3]
実施例 2の負極材料の製造方法にお 、て、微細化黒鉛結晶前駆体粉末に混合す る天然黒鉛 (メジアン径 17. O ^ m,アスペクト比 1. 9、タップ密度 1. Og/cm3)の量 を、微細化黒鉛結晶前駆体粉末及び天然黒鉛の全重量に対して 30重量%とした以 外は、実施例 2と同様の手順で処理を行ない、黒鉛複合体混合粉末 (C) (実施例 3 の負極材料)を得た。
[0192] 得られた実施例 3の負極材料の物性を、実施例 1と同様にして測定したところ、メジ アン径 17. 5 m、タップ密度 1. 16g/cm3、 BET比表面積 2. 5m2/gであった。ま た、実施例 1と同様にして X線回折法にてその結晶性を測定したところ、 d =0. 33
002
56nm、 Lc 〉1000A (100nm)であった。
004
[0193] また、実施例 3の負極材料 (黒鉛複合体混合粉末 (C) )中における黒鉛複合体粉 末 (A)及び人造黒鉛粉末 (B)の割合を、実施例 1と同様にして測定したところ、黒鉛 複合体粉末 (A)が 73重量%、人造黒鉛粉末 (B)が 27重量%であった。更に、黒鉛 複合体粉末 (A)及び人造黒鉛粉末 (B)の各々の物性を測定したところ、黒鉛複合体 粉末 (A)は、メジアン径 19. 5 /z m、アスペクト比 1. 8であった。また、人造黒鉛粉末( B)は、メジアン径 5. 2 μ mであった。
[0194] また、実施例 3の負極材料を用いて、実施例 1と同様の手順で電極を作製し、電極 の活物質配向比を求めたところ、 0. 10であった。
更に、実施例 3の負極材料を用いて、実施例 1と同様の手順でリチウム二次電池を 作製し、放電容量、充放電効率、負荷特性及び充電膨張率の測定を行なった。 実施例 3の負極材料の各物性の評価結果を表 1一 3に示す。
[0195] [実施例 4]
実施例 2の負極材料の製造方法にお 、て、微細化黒鉛結晶前駆体粉末に混合す る天然黒鉛としてメジアン径 21. O ^ m,アスペクト比 2. 4、タップ密度 0. 9g/cm3の ものを用い、これを微細化黒鉛結晶前駆体粉末及び天然黒鉛の全重量に対して 50 重量%混合した以外は、実施例 2と同様の手順で処理を行ない、黒鉛複合体混合粉 末 (C) (実施例 4の負極材料)を得た。
[0196] 得られた実施例 4の負極材料の物性を、実施例 1と同様にして測定したところ、メジ アン径 22. O ^ m,タップ密度 1. 10g/cm3、 BET比表面積 1. 7m2Zgであった。ま た、実施例 1と同様にして X線回折法にてその結晶性を測定したところ、 d =0. 33
002
56nm、 Lc 〉1000A (100nm)であった。
004
[0197] また、実施例 4の負極材料 (黒鉛複合体混合粉末 (C) )中における黒鉛複合体粉 末 (A)及び人造黒鉛粉末 (B)の割合を、実施例 1と同様にして測定したところ、黒鉛 複合体粉末 (A)が 58重量%、人造黒鉛粉末 (B)が 42重量%であった。更に、黒鉛 複合体粉末 (A)及び人造黒鉛粉末 (B)の各々の物性を測定したところ、黒鉛複合体 粉末 (A)は、メジアン径 23. 0 /z m、アスペクト比 2. 9であった。また、人造黒鉛粉末( B)は、メジアン径 10. 2 μ mであった。
[0198] また、実施例 4の負極材料を用いて、実施例 1と同様の手順で電極を作製し、電極 の活物質配向比を求めたところ、 0. 08であった。
更に、実施例 4の負極材料を用いて、実施例 1と同様の手順でリチウム二次電池を 作製し、放電容量、充放電効率、負荷特性及び充電膨張率の測定を行なった。 実施例 4の負極材料の各物性の評価結果を表 1一 3に示す。
[0199] [実施例 5]
原料ピッチとして軟ィ匕点 430°Cのものを使用した以外は、実施例 2と同様の手順で 処理を行ない、黒鉛複合体混合粉末 (C) (実施例 5の負極材料)を得た。
[0200] 得られた実施例 5の負極材料の物性を、実施例 1と同様にして測定したところ、メジ アン径 18. O ^ m,タップ密度 1. 16g/cm3、 BET比表面積 2. 4m2Zgであった。ま た、実施例 1と同様にして X線回折法にてその結晶性を測定したところ、 d =0. 33
002
57nm、 Lc 〉
004 1000A (100nm)であった。
[0201] また、実施例 5の負極材料 (黒鉛複合体混合粉末 (C) )中における黒鉛複合体粉 末 (A)及び人造黒鉛粉末 (B)の割合を、実施例 1と同様にして測定したところ、黒鉛 複合体粉末 (A)が 53重量%、人造黒鉛粉末 (B)が 47重量%であった。更に、黒鉛 複合体粉末 (A)及び人造黒鉛粉末 (B)の各々の物性を測定したところ、黒鉛複合体 粉末 (A)は、メジアン径 19. 8 /z m、アスペクト比 1. 4であった。また、人造黒鉛粉末( B)は、メジアン径 7. 9 μ mであった。
[0202] また、実施例 5の負極材料を用いて、実施例 1と同様の手順で電極を作製し、電極 の活物質配向比を求めたところ、 0. 10であった。
更に、実施例 5の負極材料を用いて、実施例 1と同様の手順でリチウム二次電池を 作製し、放電容量、充放電効率、負荷特性及び充電膨張率の測定を行なった。 実施例 5の負極材料の各物性の評価結果を表 1一 3に示す。
[0203] [実施例 6]
実施例 2の負極材料の製造方法にお 、て、塊状の熱処理黒鉛結晶前駆体の微粉 砕処理を行なわず、メジアン径が 60 mの黒鉛結晶前駆体に対して天然黒鉛を混 合した以外は、実施例 2と同様の手順で処理を行ない、黒鉛複合体混合粉末 (C) ( 実施例 6の負極材料)を得た。
[0204] 得られた実施例 6の負極材料の物性を、実施例 1と同様にして測定したところ、メジ アン径 18. 0 m、タップ密度 1. 22g/cm3、 BET比表面積 1. 9m2Zgであった。ま た、実施例 1と同様にして X線回折法にてその結晶性を測定したところ、 d =0. 33
002
57nm、 Lc 〉1000A (100nm)であった。
004
[0205] また、実施例 6の負極材料 (黒鉛複合体混合粉末 (C) )中における黒鉛複合体粉 末 (A)及び人造黒鉛粉末 (B)の割合を、実施例 1と同様にして測定したところ、黒鉛 複合体粉末 (A)が 52重量%、人造黒鉛粉末 (B)が 48重量%であった。更に、黒鉛 複合体粉末 (A)及び人造黒鉛粉末 (B)の各々の物性を測定したところ、黒鉛複合体 粉末 (A)は、メジアン径 19. 3 /z m、アスペクト比 2. 1であった。また、人造黒鉛粉末( B)は、メジアン径 7. 0 μ mであった。
[0206] また、実施例 6の負極材料を用いて、実施例 1と同様の手順で電極を作製し、電極 の活物質配向比を求めたところ、 0. 09であった。
更に、実施例 6の負極材料を用いて、実施例 1と同様の手順でリチウム二次電池を 作製し、放電容量、充放電効率、負荷特性及び充電膨張率の測定を行なった。 実施例 6の負極材料の各物性の評価結果を表 1一 3に示す。
[0207] [実施例 7]
実施例 7は、製造方法 2により、製造を行なった。 実施例 1で用いた天然黒鉛 (メジアン径 17. 0 m、アスペクト比 1. 9、タップ密度 1 . OgZcm3)粉末 23重量%と石油系重質油 77重量%とを混合し、 1000°Cで焼成し た粉末を黒鉛坩堝に入れ、直接通電炉を用いて 3000°Cで 5時間かけて黒鉛ィ匕し、 黒鉛複合体粉末 (A)を得た。得られた黒鉛複合体粉末 (A)の物性を測定したところ 、メジアン径 18. 5 m、アスペクト比 2. 3、タップ密度 1. lg/cm3であった。
[0208] さらに、実施例 1と同様のキノリン不溶分が 0. 05重量0 /0以下のコールタールピッチ を、反応炉にて 460°Cで 10時間熱処理し、溶融性のある塊状の熱処理黒鉛結晶前 駆体 (バルクメソフ ーズ)を得た。得られた塊状の熱処理黒鉛結晶前駆体を、中間 粉砕機 (セイシン企業社製オリエントミル)を用いて粉砕し、更に微粉砕機 (マツボー 社製ターボミル)を用いて微粉砕した。メジアン径 17. 0 mの微細化した黒鉛結晶 前駆体粉末を得た。
[0209] この黒鉛結晶前駆体粉末を金属製の容器に詰め、箱形の電気炉で窒素ガス流通 下、更に 540°Cで 2時間再熱処理した。再熱処理中に、微細化した黒鉛結晶前駆体 粉末は溶融し固化した黒鉛結晶前駆体 (バルクメソフェーズ)の塊となった。
この固化した黒鉛結晶前駆体の塊を粗砕機 (吉田製作所製ロールジョークラッシャ 一)で再粉砕、更に微粉砕機 (マツボー社製ターボミル)を用いて微粉砕した後、風 力式分級機(セイシン企業社製 OMC— 100)を用いて分級し、メジアン径 15. 3 m の粉末を得た。
[0210] 得られた粉末を容器に入れ、電気炉にて窒素雰囲気下、 1000°Cで 1時間焼成し た。
更に、焼成した粉末を黒鉛坩堝に移し替え、直接通電炉を用いて 3000°Cで 5時間 カゝけて黒鉛ィ匕し、人造黒鉛粉末 (B)を得た。得られた人造黒鉛粉末 (B)の物性を測 定したところ、メジアン径 15. 5 μ mであった。
[0211] 以上の手順で得られた黒鉛複合体粉末 (A) 50重量%と人造黒鉛粉末 (B) 50重量 %とを混合して、黒鉛複合体混合粉末 (C) (実施例 7の負極材料)を得た。
[0212] 得られた実施例 7の負極材料の物性を、実施例 1と同様にして測定したところ、メジ アン径 15. 0 m、タップ密度 1. 15g/cm3、 BET比表面積 1. 4m2Zgであった。ま た、実施例 1と同様にして X線回折法にてその結晶性を測定したところ、 d =0. 33 56nm、Lc > 1000A (100nm)であった。
004
[0213] また、実施例 7の負極材料を用いて、実施例 1と同様の手順で電極を作製し、電極 の活物質配向比を求めたところ、 0. 07であった。
更に、実施例 7の負極材料を用いて、実施例 1と同様の手順でリチウム二次電池を 作製し、放電容量、充放電効率、負荷特性及び充電膨張率の測定を行なった。 実施例 7の負極材料の各物性の評価結果を表 1一 3に示す。
[0214] [実施例 8]
実施例 1と同様に作製した黒鉛複合体混合粉末 (C)に、天然黒鉛粉末 (G) (メジァ ン径 18. 2 m、アスペクト比 10. 1、タップ密度 0. 41gZcm3)を 50重量%混合した 黒鉛複合体混合粉末 (F)を、実施例 8の負極材料として用いた。
[0215] [実施例 9]
実施例 1と同様に作製した黒鉛複合体混合粉末 (C)に、天然黒鉛粉末 (G) (メジァ ン径 18. 2 m、アスペクト比 10. 1、タップ密度 0. 41gZcm3)を 30重量%混合した 黒鉛複合体混合粉末 (F)を、実施例 9の負極材料として用いた。
[0216] [実施例 10]
実施例 1と同様に作製した黒鉛複合体混合粉末 (C)に、天然黒鉛粉末 (G) (メジァ ン径 23. O ^ m,アスペクト比 2. 3、タップ密度 0. 98gZcm3)を 50重量0 /0混合した 黒鉛複合体混合粉末 (F)を、実施例 10の負極材料とした。
[0217] 実施例 8、 9、 10の負極材料の物性を実施例 1と同様にして測定した。実施例 8、 9 、 10の負極材料の評価結果を表 1一 3に示す。なお、これらの実施例の負極材料の 黒鉛質 (D)、黒鉛複合体粉末 (A)、人造黒鉛粉末 (B)、黒鉛複合体混合粉末 (C) は、いずれも実施例 1と同一物性である。
[0218] [比較例 1]
比較例 1は、実施例 7と同様の方法であるが、黒鉛質 (D)を黒鉛質 (E)で被覆せず に用いた。
実施例 1で用いた天然黒鉛 (メジアン径 17. O ^ m,アスペクト比 1. 9、タップ密度 1 . OgZcm3)粉末を黒鉛坩堝に入れ、直接通電炉を用いて 3000°Cで 5時間かけて 黒鉛化し、天然黒鉛由来の黒鉛粉末 (Α' )を得た。これは、黒鉛質 (Ε)に被覆されて いない黒鉛質 (D)の粉末に相当する。得られた黒鉛粉末 (Α' )のメジアン径は 16. 8 μ mであった。
[0219] さらに、以下の手順で人造黒鉛粉末 (B)を得た。
実施例 1と同様のキノリン不溶分が 0. 05重量%以下のコールタールピッチを、反 応炉にて 460°Cで 10時間熱処理し、溶融性のある塊状の熱処理黒鉛結晶前駆体( バルクメソフェーズ)を得た。得られた塊状の熱処理黒鉛結晶前駆体を、中間粉砕機 (セイシン企業社製オリエントミル)を用いて粉砕し、更に微粉砕機 (マツボー社製タ ーボミル)を用いて微粉砕した。メジアン径 17 mの微細化した黒鉛結晶前駆体粉 末を得た。この黒鉛結晶前駆体粉末を金属製の容器に詰め、箱形の電気炉で窒素 ガス流通下、更に 540°Cで 2時間再熱処理した。再熱処理中に、微細化した黒鉛結 晶前駆体粉末は溶融し固化した黒鉛結晶前駆体 (バルクメソフェーズ)の塊となった 。この固化した黒鉛結晶前駆体の塊を粗砕機 (吉田製作所製ロールジョークラッシャ 一)で再粉砕、更に微粉砕機 (マツボー社製ターボミル)を用いて微粉砕した後、風 力式分級機(セイシン企業社製 OMC— 100)を用いて分級し、メジアン径 13. 5 m の粉末を得た。得られた粉末を容器に入れ、電気炉にて窒素雰囲気下、 1000°Cで 1時間焼成した。焼成後は粉末のままの形態であり、溶融、融着は殆ど見られなかつ た。更に、焼成した粉末を黒鉛坩堝に移し替え、直接通電炉を用いて 3000°Cで 5時 間かけて黒鉛ィ匕し、人造黒鉛粉末 (B)を得た。この粉末のメジアン径は 12. で めつに。
[0220] 以上の手順で得られた黒鉛粉末 (Α' ) 50重量%と人造黒鉛粉末 (Β) 50重量%と を混合して、黒鉛複合体混合粉末 (C) (比較例 1の負極材料)を得た。
[0221] 得られた比較例 1の負極材料の物性を実施例 1と同様にして測定したところ、メジァ ン径 16. 0 m、タップ密度 1. 20gZcm3、 BET比表面積 2. lm2/gであった。また 、実施例 1と同様にして X線回折法にてその結晶性を測定したところ、 d =0. 3357
002 nm、 Lc 〉1000A (100nm)であった。
004
[0222] また、比較例 1の負極材料を用いて、実施例 1と同様の手順で電極を作製し、電極 の活物質配向比を求めたところ、 0. 06であった。
更に、比較例 1の負極材料を用いて、実施例 1と同様の手順でリチウム二次電池を 作製し、放電容量、充放電効率、負荷特性及び充電膨張の測定を行なった。
比較例 1の負極材料の各物性の評価結果を表 1一 3に示す。
[0223] [比較例 2]
実施例 2の負極材料の製造手順にお ヽて、黒鉛結晶前駆体に混合する天然黒鉛 として、メジアン 20. O ^ m,アスペクト比 10. 5、タップ密度 0. 4g/cm3のものを用い た以外は、実施例 2と同様の手順により、黒鉛複合体混合粉末 (C) (比較例 2の負極 材料)を得た。
[0224] 得られた比較例 2の負極材料の物性を実施例 1と同様にして測定したところ、メジァ ン径 20. 3 m、タップ密度 0. 62gZcm3、 BET比表面積 2. lm2Zgであった。また 、実施例 1と同様にして X線回折法にて結晶性を測定したところ、 d =0. 3356nm
002
、 Lc 〉1000A (100nm)であった。
004
[0225] また、比較例 2の負極材料 (黒鉛複合体混合粉末 (C) )中における黒鉛複合体粉 末 (A)及び人造黒鉛粉末 (B)の割合を、実施例 1と同様にして測定したところ、黒鉛 複合体粉末 (A)が 54重量%、人造黒鉛粉末 (B)が 46重量%であった。更に、黒鉛 複合体粉末 (A)及び人造黒鉛粉末 (B)の各々の物性を測定したところ、黒鉛複合体 粉末 (A)は、メジアン径 19. 0 /z m、アスペクト比 13. 2であった。また、人造黒鉛粉 末(B)は、メジアン径 7. 5 μ mであった。
[0226] また、比較例 2の負極材料を用いて、実施例 1と同様の手順で電極を作製し、活物 質配向比を求めたところ、 0. 04であった。
更に、比較例 2の負極材料を用いて、実施例 1と同様の手順でリチウム二次電池を 作製し、放電容量、充放電効率、負荷特性及び充電膨張の測定を行なった。
比較例 2の負極材料の各物性の評価結果を表 1一 3に示す。
[0227] [比較例 3]
実施例 2の負極材料の製造手順にお ヽて、黒鉛結晶前駆体に混合する天然黒鉛 として、メジアン 24. O ^ m,アスペクト比 25. 1、タップ密度 0. 3gZcm3のものを用い た以外は、実施例 2と同様の手順により、黒鉛複合体混合粉末 (C) (比較例 2の負極 材料)を得た。
[0228] 得られた比較例 3の負極材料の物性を実施例 1と同様にして測定したところ、メジァ ン径 23.: m、タップ密度 0. 51gZcm3、 BET比表面積 1. 7m2Zgであった。また 、実施例 1と同様にして X線回折法にて結晶性を測定したところ、 d =0. 3356nm
002
、 Lc 〉1000A (100nm)であった。
004
[0229] また、比較例 3の負極材料 (黒鉛複合体混合粉末 (C) )中における黒鉛複合体粉 末 (A)及び人造黒鉛粉末 (B)の割合を、実施例 1と同様にして測定したところ、黒鉛 複合体粉末 (A)が 57重量%、人造黒鉛粉末 (B)が 43重量%であった。更に、黒鉛 複合体粉末 (A)及び人造黒鉛粉末 (B)の各々の物性を測定したところ、黒鉛複合体 粉末 (A)は、メジアン径 25. 2 /z m、アスペクト比 22. 3であった。また、人造黒鉛粉 末(B)は、メジアン径 7. 8 μ mであった。
[0230] また、比較例 3の負極材料を用いて、実施例 1と同様の手順にて電極を作製し、活 物質配向比を求めたところ、 0. 03であった。
更に、比較例 3の負極材料を用いて、実施例 1と同様の手順でリチウム二次電池を 作製し、放電容量、充放電効率、負荷特性及び充電膨張の測定を行なった。
比較例 3の負極材料の各物性の評価結果を表 1一 3に示す。
[0231] [比較例 4]
実施例 1で用いた天然黒鉛 (メジアン径 17. 0 m、アスペクト比 1. 9、タップ密度 1 . OgZcm3)粉末に、実施例 1で用いたものと同様の黒鉛結晶前駆体粉末を、微細化 黒鉛結晶前駆体粉末及び天然黒鉛の全重量に対して 50重量%混合し、黒鉛質 (D )と黒鉛結晶前駆体との混合粉末を得た。なお、アスペクト比の値は前記記載の手法 にて測定した値を得た。実施例 1と同様の方法で、この粉末に熱処理 A、粉砕、焼成 、黒鉛ィ匕を行ない、比較例 4の負極材料を得た。
[0232] [比較例 5]
比較例 4で得られた黒鉛質 (D)と黒鉛結晶前駆体との混合粉末に、更に、市販のメ タノール溶媒で 50重量%に希釈されたフエノール榭脂溶液を、前記混合粉末の全 重量に対して 5重量%混合した。実施例 1と同様の方法で、この粉末に熱処理 A、粉 砕、焼成、黒鉛ィ匕を行ない、比較例 5の負極材料を得た。
[0233] 得られた比較例 4, 5の負極材料の物性を実施例 1と同様にして測定した。
比較例 4, 5の負極材料の各物性の評価結果を表 1一 3に示す。なお、比較例 4, 5 では人造黒鉛粉末 (B)に相当する成分を使用しておらず、黒鉛複合体粉末 (A)をそ のまま負極材料として扱っている。よって、比較例 4, 5の黒鉛複合体粉末 (A)のタツ プ密度、粒径、比表面積の値は、負極材料のタップ密度、粒径、比表面積の値と同 じとなる(表 1では )で記し、値は省略した。 ) o
[0234] [表 1] 表 1
Figure imgf000050_0001
[0235] [表 2]
黒鉛複合本混合粉末(C) (黒鉛複合体粉末(A) +人造黒鉛粉末(B ))
夕ッブ密度 比表面 粒径 ;
g/cm;3) (m2 g) (//. m) ( n in) ( n in)
^施例
■M
支 -施例
^施例
' 施例
実施例
实施例
実施例
突施例
実施例
比較例
比較例
比較例
比絞例
比較例
[0236] [表 3]
表 3
Figure imgf000051_0001
[02371 なお、上記表 1 3の「複合化の有無」の欄では、黒鉛複合体粉末 (Α)と人造黒鉛 粉末 (B)を同時に製造して 、るものを〇、別個に製造して混合したものを「混合」と!ヽ う表記で示している。
[0238] 表 1一 3の結果をみると、比較例 1の負極材料は、黒鉛質 (E)によって被覆又は結 着されて ヽな 、黒鉛質 (D)と人造黒鉛粉末 (B)から構成されて!、るが、複合化され ていないため電極配向比が低い。その結果、電極の充電膨張率が極めて高くなつて しまっている。
[0239] 比較例 2、 3の負極材料では、黒鉛質 (D)のアスペクト比が本発明の規定値を上回 つているため、得られる負極材料は、電極配向比が本発明の規定範囲を大きく下回 つており、その結果、いずれの電極の充電膨張率も極めて高くなつてしまっている。ま た、充放電効率が低ぐ負荷特性も低い。
[0240] 比較例 4、 5の負極材料では、本発明の人造黒鉛粉末 (B)に相当する粒子が存在 しない。その結果、充分な電池容量が得られておらず、また、電極の充電膨張率も高 くなつてしまっている。
[0241] これらに対して、実施例 1一 7の負極材料では、タップ密度、結晶性、及び電極配 向性の全てが本発明の規定範囲を満たしている。そして、これらの負極材料を用い て作製した電池は高い放電容量を示しており、且つ、電極の充電膨張率も低く抑え られている。
[0242] 以上、本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離 れることなく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、 2004年 2月 12日付で出願された日本特許出願 (特願 2004— 03 5207号明細書)に基づいており、その全体が引用により援用される。
産業上の利用可能性
[0243] 本発明のリチウム二次電池用負極材料によれば、高い電極密度 (例えば 1. 6g/c m3以上)で使用した場合に、放電容量が大きぐ充放電効率が高ぐ負荷特性に優 れ、且つ、充電時の電極膨張が小さい、優れたリチウム二次電池を実現することがで きるため、リチウム二次電池が用いられる電子機器等の各種の分野において好適に 利用できる。
[0244] また、本発明のリチウム二次電池用負極材料の製造方法によれば、上記リチウム二 次電池用負極材料を効率よく安定して製造することができるため、リチウム二次電池 の工業生産分野にお!、てその価値は大き 、。

Claims

請求の範囲
[1] アスペクト比が 1. 2以上 4. 0以下である黒鉛質 (D)及び前記黒鉛質 (D)とは配向 性の異なる黒鉛質 (E)が複合化した黒鉛複合体粉末 (A)と、人造黒鉛粉末 (B)とか らなる黒鉛複合体混合粉末 (C)を備える
ことを特徴とする、リチウム二次電池用負極材料。
[2] 黒鉛質 (D)が天然黒鉛である
ことを特徴とする、請求項 1記載のリチウム二次電池用負極材料。
[3] 黒鉛複合体混合粉末 (C)のタップ密度が 0. 8gZcm3以上であり、 BET比表面積 力 Slm2Zg以上、 5m2Zg以下であり、 X線回折による(002)面の面間隔 d が 0. 33
002
60nm以下である
ことを特徴とする、請求項 1又は請求項 2に記載のリチウム二次電池用負極材料。
[4] 黒鉛複合体粉末 (A)のアスペクト比が 1. 1以上、 4. 0以下である
ことを特徴とする、請求項 1一 3の何れか一項に記載のリチウム二次電池用負極材料
[5] 黒鉛複合体粉末 (A)のタップ密度が 0. 80g/cm3以上、 1. 35g/cm3以下であり 、 BET比表面積が 0. 8m2/g以上、 5. 5m2/g以下であり、体積基準平均粒径が 6 μ m以上、 80 μ m以下である
ことを特徴とする、請求項 1一 4の何れか一項に記載のリチウム二次電池用負極材料
[6] 人造黒鉛粉末 (B)の BET比表面積が 0. 3m2Zg以上、 3m2Zg以下であり、体積 基準平均粒径が 3 μ m以上、 30 μ m以下である
ことを特徴とする、請求項 1一 5の何れか一項に記載のリチウム二次電池用負極材料
[7] 黒鉛複合体粉末 (A)に対する黒鉛質 (D)の割合が 30重量%以上、 97重量%以 下である
ことを特徴とする、請求項 1一 6の何れか一項に記載のリチウム二次電池用負極材料
[8] 黒鉛複合体混合粉末 (C)に対する黒鉛複合体粉末 (A)の割合が 35重量%以上、 98重量%以下である
ことを特徴とする、請求項 1一 7の何れか一項に記載のリチウム二次電池用負極材料
[9] 黒鉛質 (E)と人造黒鉛粉末 (B)とが同一の原料からなる
ことを特徴とする、請求項 1一 8の何れか一項に記載のリチウム二次電池用負極材料
[10] 天然黒鉛粉末 (G)を更に備えると共に、黒鉛複合体混合粉末 (C)及び天然黒鉛 粉末 (G)の総量に対する黒鉛複合体混合粉末 (C)の割合が 20重量%以上、 90重 量%以下である
ことを特徴とする、請求項 1一 9の何れか一項に記載のリチウム二次電池用負極材料
[11] 該負極材料を活物質として電極密度 1. 63±0. 05gZcm3で形成した電極の活物 質配向比が 0. 07以上である
ことを特徴とする、請求項 1一 10の何れか一項に記載のリチウム二次電池用負極材 料。
[12] 該負極材料を用いて作製したリチウム二次電池の放電容量が 345mAhZg以上で ある
ことを特徴とする、請求項 1一 11の何れか一項に記載のリチウム二次電池用負極材 料。
[13] キノリン不溶分が 3重量%以下であるピッチ原料を熱処理して得られた黒鉛結晶前 駆体の粉砕物と、アスペクト比が 1. 2以上、 4. 0以下であり、タップ密度が 0. 7g/c m3以上、 1. 35gZcm3以下である黒鉛質 (D)とを混合し、熱処理 Aをした後、粉砕し 、熱処理 Bをする
ことを特徴とする、リチウム二次電池用負極材料の製造方法。
[14] キノリン不溶分が 3重量%以下であるピッチ原料と、アスペクト比が 1. 2以上、 4. 0 以下であり、タップ密度が 0. 7g/cm3以上、 1. 35g/cm3以下である黒鉛質 (D)と から黒鉛複合体粉末 (A)を作製する一方で、ピッチ原料から人造黒鉛粉末 (B)を作 製し、得られた黒鉛複合体粉末 (A)と人造黒鉛粉末 (B)とを混合する ことを特徴とする、リチウム二次電池用負極材料の製造方法。
[15] 集電体と、該集電体上に形成された活物質層とを備えると共に、
該活物質層が、請求項 1一 12の何れか一項に記載のリチウム二次電池用負極材 料を含有する
ことを特徴とする、リチウム二次電池用負極。
[16] 集電体と、該集電体上に形成された活物質層とを備えると共に、
該活物質層が、請求項 13又は請求項 14に記載の製造方法によって製造されたリ チウムニ次電池用負極材料を含有する
ことを特徴とする、リチウム二次電池用負極。
[17] リチウムイオンを吸蔵 ·放出可能な正極及び負極と、電解質とを備えると共に、 該負極力 請求項 15又は請求項 16に記載のリチウム二次電池用負極である ことを特徴とする、リチウム二次電池。
PCT/JP2005/001775 2004-02-12 2005-02-07 リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池 WO2005078829A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/589,132 US20070128518A1 (en) 2004-02-12 2005-02-07 Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
EP05709827A EP1717888A4 (en) 2004-02-12 2005-02-07 NEGATIVE ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERY, PROCESS FOR PRODUCING SAID NEGATIVE ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERY USING THE MATERIAL, AND LITHIUM SECONDARY BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004035207 2004-02-12
JP2004-035207 2004-02-12

Publications (1)

Publication Number Publication Date
WO2005078829A1 true WO2005078829A1 (ja) 2005-08-25

Family

ID=34857677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001775 WO2005078829A1 (ja) 2004-02-12 2005-02-07 リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池

Country Status (6)

Country Link
US (1) US20070128518A1 (ja)
EP (1) EP1717888A4 (ja)
JP (2) JP5823790B2 (ja)
KR (2) KR100954306B1 (ja)
CN (1) CN100468834C (ja)
WO (1) WO2005078829A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100090173A1 (en) * 2005-12-28 2010-04-15 Mitsuaki Dohzono Process of Producing Negative Electrode Material for Lithium-Ion Secondary Batteries
CN102067363A (zh) * 2008-06-25 2011-05-18 三菱化学株式会社 非水系二次电池用复合石墨粒子、含有其的负极材料、负极及非水系二次电池
JP2018523912A (ja) * 2015-12-23 2018-08-23 エルジー・ケム・リミテッド リチウム二次電池用負極活物質及びこれを含むリチウム二次電池用負極
JP2022108944A (ja) * 2021-01-14 2022-07-27 プライムプラネットエナジー&ソリューションズ株式会社 黒鉛系負極活物質

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989114B2 (ja) * 2006-06-02 2012-08-01 日本カーボン株式会社 リチウム二次電池用負極及び負極活物質
KR101365568B1 (ko) * 2006-07-19 2014-02-20 니폰 카본 컴퍼니 리미티드 리튬 이온 2차 전지용 음극 활물질 및 이를 포함한 음극
JP4968183B2 (ja) * 2007-11-14 2012-07-04 ソニー株式会社 非水電解質二次電池および非水電解質二次電池の製造方法
KR100945619B1 (ko) * 2008-04-23 2010-03-04 엘에스엠트론 주식회사 2차 전지용 음극 활물질, 이를 포함하는 2차 전지 및 그제조 방법
CN102150307B (zh) * 2008-07-17 2014-03-12 中央电气工业株式会社 混合碳材料和非水系二次电池用负极
KR101131937B1 (ko) * 2008-10-10 2012-04-03 강원대학교산학협력단 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP5473886B2 (ja) * 2010-12-21 2014-04-16 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料、リチウムイオン二次電池負極およびリチウムイオン二次電池
KR101942599B1 (ko) * 2011-03-29 2019-01-25 미쯔비시 케미컬 주식회사 비수계 이차 전지용 부극 탄소재, 및 부극 그리고, 비수계 이차 전지
WO2012133788A1 (ja) * 2011-03-30 2012-10-04 三菱化学株式会社 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池
CN102290572B (zh) * 2011-08-05 2013-12-25 江西正拓新能源科技有限公司 锂离子二次电池用负极活性物质及负极
US20140227522A1 (en) * 2011-09-09 2014-08-14 Sumitomo Bakelite Company Limited Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery and lithium ion secondary battery
JP6040022B2 (ja) * 2012-03-02 2016-12-07 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
FI3326968T3 (fi) * 2012-04-05 2023-01-13 Pintamuunneltu grafiitti, cvd-menetelmä sen valmistamiseksi ja mainittujen käyttöjä
KR101415697B1 (ko) 2012-08-28 2014-07-04 (주)뉴메드 산사 및 진피의 복합 추출물을 유효성분으로 함유하는 비만 또는 지질 관련 대사성 질환의 치료 또는 예방용 약학 조성물
WO2014109406A1 (ja) * 2013-01-11 2014-07-17 日本電気株式会社 リチウムイオン二次電池
TW201446329A (zh) * 2013-03-11 2014-12-16 道達爾研究及技術弗呂公司 用噴射磨製造形態優化的細顆粒的方法、用於該方法的噴射磨和所製造的顆粒
JP6476431B2 (ja) * 2013-12-16 2019-03-06 Jfeケミカル株式会社 リチウムイオン二次電池負極材用炭素質被覆黒鉛粒子、リチウムイオン二次電池負極およびリチウムイオン二次電池
KR101790400B1 (ko) 2013-12-20 2017-10-25 주식회사 엘지화학 음극 활물질 및 이를 포함하는 리튬 이차전지
JP2016058350A (ja) * 2014-09-12 2016-04-21 Jfeケミカル株式会社 リチウムイオン二次電池負極用炭素材料およびその製造方法、リチウムイオン二次電池負極ならびにリチウムイオン二次電池
KR101950859B1 (ko) 2016-02-15 2019-02-22 주식회사 엘지화학 음극 제조방법 및 음극
WO2017142261A1 (ko) * 2016-02-15 2017-08-24 주식회사 엘지화학 음극 제조방법 및 음극
CN108352505B (zh) * 2016-07-04 2021-07-30 株式会社Lg化学 负极和包含其的二次电池
WO2018008955A1 (ko) * 2016-07-04 2018-01-11 주식회사 엘지화학 음극 및 상기 음극을 포함하는 이차 전지
KR102209653B1 (ko) * 2016-09-09 2021-01-28 주식회사 엘지화학 스웰링 현상이 개선된 음극 및 이를 포함하는 리튬이차전지
KR102484406B1 (ko) 2016-11-01 2023-01-02 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR102417267B1 (ko) 2016-11-02 2022-07-04 삼성에스디아이 주식회사 리튬 이차 전지
KR102467348B1 (ko) * 2017-05-19 2022-11-16 주식회사 엘지에너지솔루션 리튬 이차전지용 음극 활물질, 이를 포함하는 리튬 이차전지용 음극 및 리튬 이차전지
KR101964518B1 (ko) * 2017-06-19 2019-07-31 서울대학교산학협력단 고용량 음극 및 이를 이용한 리튬이온 배터리
KR101981706B1 (ko) * 2017-06-29 2019-05-23 인하대학교 산학협력단 이온 전지 음극용 소재 및 이의 제조 방법
KR102321261B1 (ko) * 2017-10-27 2021-11-03 주식회사 엘지에너지솔루션 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
CN109841804A (zh) * 2017-11-28 2019-06-04 上海杉杉科技有限公司 一种锂离子动力电池复合负极材料及其制备方法
JP7147157B2 (ja) 2017-11-30 2022-10-05 株式会社Gsユアサ 蓄電素子
KR102417774B1 (ko) 2018-04-20 2022-07-05 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR102417773B1 (ko) 2018-04-27 2022-07-05 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR102486245B1 (ko) * 2018-08-13 2023-01-10 주식회사 엘지에너지솔루션 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
CN109585821A (zh) * 2018-11-23 2019-04-05 四川大学 石墨/石墨烯复合材料、制备方法、应用及锂离子电池负极
CN110723729B (zh) * 2019-09-26 2021-08-17 湖南中科星城石墨有限公司 一种锂离子电池用Kish石墨负极材料及其改性工艺
WO2021108983A1 (zh) * 2019-12-03 2021-06-10 宁德时代新能源科技股份有限公司 二次电池、装置、人造石墨及制备方法
CN112479200A (zh) * 2020-12-24 2021-03-12 河南开炭新材料设计研究院有限公司 一种利用余热伴烧生产负极材料的方法
CN115744894B (zh) * 2022-11-30 2024-03-15 山西沁新能源集团股份有限公司 一种锂离子电池人造石墨负极材料制备技术

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147862A (ja) * 1995-11-22 1997-06-06 Hitachi Maxell Ltd 有機電解液二次電池
WO2000022687A1 (en) * 1998-10-09 2000-04-20 Showa Denko K.K. Carbonaceous material for cell and cell containing the carbonaceous material
JP2001089118A (ja) * 1999-09-16 2001-04-03 Hitachi Chem Co Ltd 黒鉛粒子、その製造法、リチウム二次電池用負極及びリチウム二次電池
JP2002175810A (ja) * 2000-09-26 2002-06-21 Mitsubishi Chemicals Corp リチウム二次電池及び負極
JP2003128405A (ja) * 2001-10-23 2003-05-08 Sec Corp 炭素複合粉体の製造方法
JP2003173774A (ja) * 2001-12-04 2003-06-20 Nippon Carbon Co Ltd リチウムイオン系二次電池用負極材およびその製造方法、および該負極材を用いたリチウムイオン系二次電池
JP2003176115A (ja) * 2001-12-12 2003-06-24 Adchemco Corp 黒鉛粉末の製造方法、黒鉛粉末およびリチウムイオン二次電池
JP2004063321A (ja) * 2002-07-30 2004-02-26 Jfe Chemical Corp 複合黒鉛質粒子およびその製造方法ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2004127913A (ja) * 2002-07-31 2004-04-22 Matsushita Electric Ind Co Ltd リチウム二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69422854T2 (de) * 1993-06-03 2000-10-19 Sony Corp., Tokio/Tokyo Sekundärbatterie mit flüssigem nicht-wässerigen Elektrolyten
EP0917223A4 (en) * 1997-02-04 2006-10-04 Mitsubishi Chem Corp LITHIUM-ION SECONDARY BATTERY
JP2001185147A (ja) * 1999-12-27 2001-07-06 Asahi Kasei Corp 非水電解液二次電池
US8133612B2 (en) * 2003-05-16 2012-03-13 Byd Company Limited Negative electrodes for rechargeable batteries
JP5081375B2 (ja) * 2004-02-12 2012-11-28 三菱化学株式会社 リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147862A (ja) * 1995-11-22 1997-06-06 Hitachi Maxell Ltd 有機電解液二次電池
WO2000022687A1 (en) * 1998-10-09 2000-04-20 Showa Denko K.K. Carbonaceous material for cell and cell containing the carbonaceous material
JP2001089118A (ja) * 1999-09-16 2001-04-03 Hitachi Chem Co Ltd 黒鉛粒子、その製造法、リチウム二次電池用負極及びリチウム二次電池
JP2002175810A (ja) * 2000-09-26 2002-06-21 Mitsubishi Chemicals Corp リチウム二次電池及び負極
JP2003128405A (ja) * 2001-10-23 2003-05-08 Sec Corp 炭素複合粉体の製造方法
JP2003173774A (ja) * 2001-12-04 2003-06-20 Nippon Carbon Co Ltd リチウムイオン系二次電池用負極材およびその製造方法、および該負極材を用いたリチウムイオン系二次電池
JP2003176115A (ja) * 2001-12-12 2003-06-24 Adchemco Corp 黒鉛粉末の製造方法、黒鉛粉末およびリチウムイオン二次電池
JP2004063321A (ja) * 2002-07-30 2004-02-26 Jfe Chemical Corp 複合黒鉛質粒子およびその製造方法ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2004127913A (ja) * 2002-07-31 2004-04-22 Matsushita Electric Ind Co Ltd リチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1717888A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100090173A1 (en) * 2005-12-28 2010-04-15 Mitsuaki Dohzono Process of Producing Negative Electrode Material for Lithium-Ion Secondary Batteries
CN102067363A (zh) * 2008-06-25 2011-05-18 三菱化学株式会社 非水系二次电池用复合石墨粒子、含有其的负极材料、负极及非水系二次电池
US8974968B2 (en) 2008-06-25 2015-03-10 Mitsubishi Chemical Corporation Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
JP2018523912A (ja) * 2015-12-23 2018-08-23 エルジー・ケム・リミテッド リチウム二次電池用負極活物質及びこれを含むリチウム二次電池用負極
JP2022108944A (ja) * 2021-01-14 2022-07-27 プライムプラネットエナジー&ソリューションズ株式会社 黒鉛系負極活物質
JP7296994B2 (ja) 2021-01-14 2023-06-23 プライムプラネットエナジー&ソリューションズ株式会社 黒鉛系負極活物質

Also Published As

Publication number Publication date
JP2012023048A (ja) 2012-02-02
CN100468834C (zh) 2009-03-11
KR20060113784A (ko) 2006-11-02
EP1717888A4 (en) 2013-03-13
CN1918730A (zh) 2007-02-21
JP5447467B2 (ja) 2014-03-19
JP5823790B2 (ja) 2015-11-25
KR20080075039A (ko) 2008-08-13
EP1717888A1 (en) 2006-11-02
KR100912849B1 (ko) 2009-08-18
JP2012018933A (ja) 2012-01-26
US20070128518A1 (en) 2007-06-07
KR100954306B1 (ko) 2010-04-21

Similar Documents

Publication Publication Date Title
JP5447467B2 (ja) リチウム二次電池用負極材料、それを用いたリチウム二次電池用負極及びリチウム二次電池
JP5081375B2 (ja) リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池
US11031587B2 (en) Negative electrode material for lithium-ion batteries including non-flaky artificial graphite including silicon-containing particles, artificial graphite particles and carbonaceous material
US10693135B2 (en) Method for producing composite, and negative electrode material for lithium ion battery
JP6664040B2 (ja) リチウムイオン電池用負極材及びその用途
JP7192499B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP5678414B2 (ja) 黒鉛負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池
JP5346962B2 (ja) 黒鉛質材料とその製造方法、リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR20190042725A (ko) 리튬이온 이차전지용 음극재
KR20130094853A (ko) 리튬 이온 2차 전지용 부극 재료, 리튬 이온 2차 전지 부극 및 리튬 이온 2차 전지
KR102191190B1 (ko) 리튬 이온 2차전지용 부극재료, 그 제조 방법, 부극용 페이스트, 부극 시트 및 리튬 이온 2차전지
JP2017063040A (ja) リチウムイオン電池用負極材及びその用途
JP2015164127A (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP4933092B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5821932B2 (ja) 黒鉛負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池
JP7334735B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP4045438B2 (ja) 二次電池用の二層炭素材料及びそれを用いたリチウム二次電池
JP5551883B2 (ja) メソフェーズ小球体および炭素材料の製造方法ならびにリチウムイオン二次電池
JP4470467B2 (ja) 粒子状人造黒鉛負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池
JP6625336B2 (ja) 非水系二次電池負極用炭素材及び非水系二次電池
JP2003176115A (ja) 黒鉛粉末の製造方法、黒鉛粉末およびリチウムイオン二次電池
JP2018006271A (ja) リチウムイオン二次電池負極用炭素材料、その中間体、その製造方法、及びそれを用いた負極又は電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007128518

Country of ref document: US

Ref document number: 10589132

Country of ref document: US

Ref document number: 200580004708.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005709827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067018616

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005709827

Country of ref document: EP

Ref document number: 1020067018616

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10589132

Country of ref document: US