WO2004036671A1 - 2次電池用正極材料の製造方法、および2次電池 - Google Patents

2次電池用正極材料の製造方法、および2次電池 Download PDF

Info

Publication number
WO2004036671A1
WO2004036671A1 PCT/JP2003/013314 JP0313314W WO2004036671A1 WO 2004036671 A1 WO2004036671 A1 WO 2004036671A1 JP 0313314 W JP0313314 W JP 0313314W WO 2004036671 A1 WO2004036671 A1 WO 2004036671A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
firing
electrode material
secondary battery
conductive carbon
Prior art date
Application number
PCT/JP2003/013314
Other languages
English (en)
French (fr)
Inventor
Shigeto Okada
Jun-Ichi Yamaki
Naoki Hatta
Izumi Uchiyama
Toshikazu Inaba
Original Assignee
Japan As Represented By President Of The University Of Kyusyu
Mitsui Engineering & Shipbuilding Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan As Represented By President Of The University Of Kyusyu, Mitsui Engineering & Shipbuilding Co.,Ltd. filed Critical Japan As Represented By President Of The University Of Kyusyu
Priority to AU2003301467A priority Critical patent/AU2003301467A1/en
Priority to EP03756675.9A priority patent/EP1553647B1/en
Priority to KR1020057006566A priority patent/KR101061664B1/ko
Priority to CA2502592A priority patent/CA2502592C/en
Priority to US10/531,196 priority patent/US7491468B2/en
Priority to JP2004544983A priority patent/JP4448976B2/ja
Publication of WO2004036671A1 publication Critical patent/WO2004036671A1/ja
Priority to HK06100329A priority patent/HK1080610A1/xx

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for producing a positive electrode material for a secondary battery and a secondary battery having the positive electrode material. More specifically, for example, a metal alloy comprising lithium or a compound thereof as an active material
  • the electrode oxidation-reduction reaction proceeds in a form involving one step / dope.
  • These secondary batteries have been in the spotlight in recent years as large capacity batteries.
  • the starting materials used in the above methods (1) to (4) are all secondary compounds, and have a problem that they are expensive and difficult to obtain.
  • L i 3 P0 4 are relatively expensive, which is a factor of increasing the cost of manufacturing the cathode material for a relatively expensive oxalic iron (F e C 2 ⁇ 4).
  • Fe 3 ( ⁇ 4 ) 2 ⁇ 8H 20 another iron raw material, can be synthesized from, for example, Na 2 HP 2 4 and F e (II) S) 4 ⁇ 7H 20 , but the hydration number It is difficult to control the stoichiometric charge because it is an unstable hydrate, and in the synthesis process, Fe 3 ( ⁇ 0 4 ) 2 ⁇ 8 ⁇ 2 ⁇ is obtained as a precipitate, In order to remove such substances, complicated operations such as filtration are required. At this time, it is difficult to completely remove sodium ions and the like, which may cause impurities to be mixed.
  • F e 3 obtained as a precipitate (Ro_ ⁇ 4) fully grown in 2 ⁇ 8 ⁇ 2 0 crystals, large particle size (e.g., 10 / it is preferably not less than about im),
  • L i Fe P_ ⁇ 4 obtained by generally fired a large particle size of F e 3 (P0 4) mixture of 2 ⁇ 8H 2 ⁇ and L i 3 P_ ⁇ 4 Has a problem in that it becomes coarse and its activity as a positive electrode material is reduced.
  • L i F has e P_ ⁇ 4 manufacturing techniques, on having or contaminated with impurities, a problem such as complicated processing operations is required, both methods of metallic iron you are unable to use the easy primary raw materials available at low cost as inevitably cost increases, in L i F EP_ ⁇ 4 manufacturing on an industrial scale was not way satisfactory.
  • the present invention provides a 2.
  • the following positive electrode material for batteries L i F e P_ ⁇ 4 and its object is to provide a manufacturing method capable of reliably synthesized from readily and inexpensive primary raw material availability. Disclosure of the invention
  • a method for producing a cathode material for a secondary battery comprises mixing a compound that releases phosphate ions in a solution, water, and metallic iron. after dissolving the metal iron, adding lithium carbonate, lithium hydroxide or a hydrate thereof, and calcining the reaction product formed you wherein the synthesis of L i F e P_ ⁇ 4.
  • positive electrode materials for secondary batteries that is, metallic iron, which is an inexpensive and easily available primary material, and phosphoric acid and lithium hydroxide, which are also inexpensive and easily available
  • a complicated processing operation such as filtration of the precipitate is not required in the production process, and a calcination precursor having a small particle diameter can be obtained directly from the stoichiometric raw material mixture. Therefore, the production method of the present invention is a highly practicable production technique that can be sufficiently used in the production of a positive electrode material for a secondary battery on an industrial scale.
  • the method for producing a positive electrode material for a secondary battery according to a second aspect of the present invention is the method according to the first aspect, wherein the sintering process is performed in a first step from normal temperature to 300 ° C. to 450 ° C. And a second stage from normal temperature to a firing completion temperature, wherein a substance capable of generating conductive carbon by thermal decomposition is added to the raw material after the first firing, and then the second firing It is characterized by performing.
  • a substance capable of generating conductive carbon by thermal decomposition is added to the raw material after the first firing step, and the second firing step is performed.
  • Substances that can generate carbon can be prevented from foaming by gas (mainly water vapor) generated by decomposition of the raw material during firing.
  • gas mainly water vapor
  • more uniform Ru substance molten state near the spread in the molten state on the surface of L i F e P_ ⁇ 4 can be more uniformly deposited pyrolytic carbon.
  • the method for producing a positive electrode material for a secondary battery according to a third aspect of the present invention is the method according to the second aspect, wherein the conductive carbon is added to the raw material before firing in the first step and firing is performed.
  • the raw material to be heated and reacted by further adding conductive carbon to the raw material before the first-stage firing and performing firing and it is possible to lengthen the time of contact between the conductive carbon, the diffusion of L i F e P_ ⁇ 4 constituent element produced by the reaction therebetween, L i F e P_ ⁇ 4 at the grain boundary of the carbon It enters, together to form a more uniform and stable carbon one L i F e P_ ⁇ 4 complex, it is possible to effectively prevent sintering between L i F e P_ ⁇ 4 particles.
  • the sintering step may be a first step from normal temperature to 300 to 450 ° C. And a second stage from room temperature to a firing completion temperature, wherein firing is performed by adding conductive carbon to the raw material before firing in the first stage.
  • the crystal particles of L i F e P 0 4 obtained can be made to finely divided.
  • the crystal particles of L i F e P 0 4 obtained can be made to finely divided.
  • by adding conductive carbon to the raw material before firing in the first stage and performing firing it is possible to increase the contact time between the raw material to be heated and reacted and the conductive carbon, during which time the reaction time is reduced.
  • L i F e P_ ⁇ 4 enters the grain boundaries of the conductive carbon, a more uniform and stable carbon _ L i F e P_ ⁇ 4 complex It can be formed.
  • the method for producing a positive electrode material for a secondary battery according to a fifth aspect of the present invention is characterized in that, in the second or third aspect, the substance capable of producing conductive carbon by thermal decomposition is a bitumen. And Bitumens can generate conductive carbon by thermal decomposition to impart conductivity to the positive electrode material.
  • the method for producing a positive electrode material for a secondary battery according to a sixth aspect of the present invention is the method according to the fifth aspect, wherein the bitumen has a softening temperature of 80 ° C to 350 ° C.
  • heating Coal pitch whose decomposition starting temperature is in the range of 350 ° C to 450 ° C, and which can deposit conductive carbon by thermal decomposition and firing at 500 ° C to 800 ° C It is characterized by the following. Coal pitch having such properties is extremely inexpensive, melts during firing, spreads uniformly on the surface of the raw material particles during firing, and becomes a carbon precipitate that exhibits high conductivity after pyrolysis. Therefore, it has excellent properties as a substance that can generate conductive carbon.
  • the method for producing a cathode material for a secondary battery according to a seventh aspect of the present invention is the method according to the second aspect or the third aspect, wherein the substance capable of generating conductive carbon by thermal decomposition is a saccharide.
  • a saccharide By using a saccharide, a more excellent crystal growth suppressing effect and a conductivity imparting effect can be simultaneously obtained.
  • the method for producing a positive electrode material for a secondary battery according to an eighth aspect of the present invention is the method for producing a positive electrode material for a secondary battery according to the seventh aspect, wherein the saccharide is decomposed in a temperature range of 250 ° C. or more and less than 500 ° C. And at least partially melted at least once during the temperature rise process from 150 ° C to decomposition, and then thermally decomposed from 500 ° C to 800 ° C. It is a saccharide that produces carbon. Saccharide is suitably coated on the surface of L i F e P_ ⁇ 4 particles in the thermal reaction by melting, L i produced after the pressure pyrolysis F e P 0 4 conductive carbon particle surface having such particular properties Is favorably precipitated. In this process, crystal growth is suppressed as described above. For this reason, the saccharide having the above specific properties exhibits particularly excellent crystal growth suppressing effect and conductivity imparting effect.
  • the method for producing a positive electrode material for a secondary battery according to a ninth aspect of the present invention is the method according to any one of the first to eighth aspects, wherein one or two types selected from the group consisting of hydrogen, water, and water vapor are provided.
  • the above is characterized by being added at least at a temperature of 500 ° C. or more in the firing step. According to this feature, the crystal growth of the primary particles of the positive electrode material LiFeP ⁇ 4 can be suppressed, and the crystal particles of the obtained positive electrode material can be finely divided.
  • the raw material after the first baking is thermally decomposed by thermal decomposition.
  • the second stage baking is performed, and when hydrogen and / or water (water or water vapor) is added at least at a temperature of 500 ° C. or more, in addition to the effects of the second embodiment, resulting L i F the e P 0 4 primary particles are efficiently comminuted, is further uniformly and stably deposit a conductive carbon on L i F e PO 4 particles A high positive electrode performance can be obtained.
  • the conductive carbon is removed before the first stage firing.
  • firing is performed, and a substance capable of generating conductive carbon by thermal decomposition is added to the raw material after the first firing step, and then the second firing step is performed.
  • the resulting L i F e P 0 4 primary particle child efficiently is comminuted, it is possible to further uniformly and stably precipitate the conductive carbon on L i F e P 0 4 grains terminal, obtain higher cathode performance.
  • the conductive carbon is removed before the first stage firing.
  • the firing is performed in addition to the effects of the fourth aspect.
  • Rukoto it is possible Rukoto to efficiently fine the primary particles of L i F e P_ ⁇ 4 occurring.
  • there is no danger that the raw material is insufficiently fired to cause a chemical change to the final product or an intermediate product to remain. Can be synthesized.
  • Hydrogen and Z or moisture has a strong crystal growth suppression for production, and together with a strong effect of improving the adhesion state of the L i F e P_ ⁇ 4 of substances deposited conductive carbon is formed by pyrolysis, is easy to handle It is efficient because it is inexpensive.
  • the substance capable of producing conductive carbon by the thermal decomposition is bitumens, and among them, the softening temperature is in the range of 80 ° C. to 350 ° C., and the temperature at which the weight loss due to the thermal decomposition starts is reduced.
  • coal pitch is in the range of 350 ° C to 450 ° C and pyrolysis at 500 ° C to 800 ° C ''
  • coal pitch comes into contact with hydrogen and / or moisture (water or steam) at least in the temperature range of 500 ° C or higher. precipitation state of the resulting L i F e P 0 4 conductive carbon deposited on the particles, the positive electrode performance is improved to a more favorable state.
  • the substance capable of generating conductive carbon by the thermal decomposition is a saccharide, and among them, decomposition occurs particularly in a temperature range of 250 ° C. or more and less than 500 ° C., and from 150 ° C.
  • decomposition occurs particularly in a temperature range of 250 ° C. or more and less than 500 ° C., and from 150 ° C.
  • it is at least partially in a molten state, and is further heated to 500 ° C or more and 800 ° C or less.
  • hydrogen and Z moisture water or steam
  • the precipitation state of the conductive carbon deposits on the resulting L i F e P 0 4 particles, the positive potential, is improved to a more favorable state.
  • “adding” gaseous hydrogen or water vapor includes firing the raw material in the presence of a gas such as hydrogen (that is, in a hydrogen atmosphere or the like).
  • a gas such as hydrogen
  • the hydrogen added during firing is gold as the primary raw material. It is also possible to use hydrogen produced as a byproduct of the reaction between ferrous iron and compounds that release phosphate ions in solution (phosphoric acid, phosphorus pentoxide, ammonium dihydrogen phosphate, etc.).
  • Secondary battery according to a first 0 embodiment of the present invention to have the first to ninth one of the positive electrode material for a secondary battery produced by the process L i F e P_ ⁇ 4 components Special.
  • FIG. 1 is a schematic diagram for explaining the charging / discharging behavior of a secondary battery, wherein reference numeral 10 denotes a negative electrode, reference numeral 20 denotes an electrolyte, reference numeral 30 denotes a positive electrode, reference numeral 40 denotes an external circuit, and reference numeral C denotes a charging state.
  • the symbol D indicates the time of discharge.
  • FIG. 2 is a graph showing the results of X-ray diffraction of the primary reaction product of Example 1.
  • FIG. 3 is a graph showing the results of X-ray diffraction of the intermediate after calcination in Example 1.
  • FIG. 4 is a graph showing the results of X-ray diffraction of the positive electrode material of Example 1.
  • FIG. 5 is a graph showing charge / discharge characteristics of the coin-type secondary battery obtained in Example 1.
  • FIG. 6 is a graph showing the results of X-ray diffraction of the intermediate after calcination in Example 2.
  • FIG. 7 is a graph showing an X-ray diffraction result of the positive electrode material of Example 2.
  • FIG. 8 is a graph showing charge / discharge characteristics of the coin type secondary battery obtained in Example 2.
  • FIG. 9 is a graph showing the result of X-ray diffraction of the positive electrode material of Example 3.
  • FIG. 10 is a graph showing charge / discharge characteristics of the coin-type secondary battery obtained in Example 3.
  • FIG. 11 is a graph showing the result of X-ray diffraction of the positive electrode material of Example 4.
  • FIG. 12 is a graph showing charge / discharge characteristics of the coin-type secondary battery obtained in Example 4.
  • FIG. 13 is a graph showing the result of X-ray diffraction of the positive electrode material of Example 5.
  • FIG. 14 is a graph showing charge / discharge characteristics of the coin-type secondary battery obtained in Example 5.
  • the method for producing a positive electrode material for a secondary battery according to the present invention comprises the steps of mixing a compound that releases phosphate ions in a solution, water, and metallic iron to dissolve metallic iron, and then forming lithium carbonate and lithium hydroxide. Alternatively, it is carried out by adding a hydrate thereof and calcining the resulting reaction product.
  • the positive electrode material for a secondary battery in the present invention can be suitably used as a positive electrode material for a lithium secondary battery such as a lithium battery, a lithium ion battery, and a lithium polymer battery.
  • a lithium secondary battery such as a lithium battery, a lithium ion battery, and a lithium polymer battery.
  • the term "L i F e P_ ⁇ 4" and "cathode material" as used substantially interchangeably in the present invention in addition to means L i F e P_ ⁇ 4 itself, L i F e P_ ⁇ 4 particles surface state and the conductive carbon is deposited on the, it is sometimes used by L i F e P 0 meaning that includes four states where the particle and conductive carbon are mixed.
  • alkali metal-based secondary battery which can be repeatedly charged and discharged crystalline framework structure [orthorhombic P nma (olivine type)] is by electrochemical redox Can be used as As a positive electrode material, the as-is state of these substances corresponds to the discharge state, and the central metal element Fe is oxidized by electrochemical oxidation at the interface with the electrolyte, accompanied by undoping of the alkali metal Li. The battery is charged. When subjected to electrochemical reduction from the charged state, the central metal element Fe is reduced with re-doping of the alkali metal Li, and returns to the original discharged state.
  • a compound that releases phosphate ions in a solution As a raw material of the positive electrode material, a compound that releases phosphate ions in a solution, a metal iron, a compound serving as a lithium source, and water are used. Phosphorus: iron: li in these raw materials. By adjusting the molar ratio of titanium to 1: 1: 1, the generation of impurities during the firing process and the incorporation into the positive electrode material can be minimized.
  • Examples of the compound which releases phosphate ions in said solution such as phosphoric acid H 3 P_ ⁇ 4, phosphorus pentoxide P 2 ⁇ 5, dihydrogen phosphate Anmoniumu NH 4 H 2 P_ ⁇ 4, phosphate dibasic Anmoniumu ( NH 4) can be used 2 HP 0 4 like.
  • phosphoric acid, phosphorus pentoxide and ammonium dihydrogen phosphate are preferred as those which can be kept under relatively strong acidity at the stage of dissolving iron.
  • Commercially available reagents can be used for these, but when phosphoric acid is used as a raw material, it is preferable to accurately determine the purity by titration in advance and calculate the factor in order to ensure strict stoichiometry. .
  • the compound serving as a lithium source it is preferable to select a compound (Li-containing decomposed and volatile compound) in which only Li remains in the intended cathode material after calcination, for example, lithium hydroxide Li ⁇ H or the like.
  • hydroxides, other carbonates such as lithium carbonate L i 2 C_ ⁇ 3 organic acid salts of L i can be used as L i containing decomposable volatile compound.
  • hydrates thereof e.g., L i OH ⁇ H 2 0, etc.
  • metallic iron which is an inexpensive and easily available primary raw material, can be used. It is preferable to use metallic iron having a particle diameter of 200 m or less, preferably 100 m or less.
  • a compound such as phosphoric acid which releases phosphate ions in a solution, is mixed with metal iron and water, and the metal iron is sufficiently dissolved and reacted.
  • a compound such as phosphoric acid which releases phosphate ions in a solution
  • the metal iron is sufficiently dissolved and reacted.
  • an operation for dissolving the metal iron for example, grinding and Z or heating (reflux, etc.) can be performed.
  • the crushing operation is performed for the purpose of dissolving the metallic iron by applying a shearing force to the metallic iron in the solution to renew the surface, thereby improving the yield of the positive electrode material.
  • the crushing is performed using an automatic crusher, a pole mill, a pulse mill, or the like, and is preferably performed over a period of about 30 minutes to 10 hours, for example, depending on the efficiency of the crushing apparatus. New Furthermore, ultrasonic irradiation is also effective for the complete dissolution reaction to proceed.
  • heating operation promotes the reduction and dissolution reaction of metallic iron, so that the yield of the positive electrode material can be improved.
  • Heating is preferably performed by, for example, refluxing in an inert gas to avoid oxidation of iron. Refluxing is considered to be particularly advantageous for mass production because mechanical pulverization, which is relatively difficult to increase, is not required.
  • a volatile acid such as oxalic acid or hydrochloric acid
  • a volatile oxidizing agent such as an octylogen oxide such as an acid or bleaching powder can coexist. It is also effective to add nitric acid, a volatile acid having both oxidizing ability and acidity. It is preferable that these act on the oxidation of metallic iron to iron (II) ions in an amount that is equal to or less than the equivalent amount. This makes it possible to promote the dissolution reaction of metallic iron in a solution such as phosphoric acid, but does not remain in the positive electrode material because these volatile acids and oxidizing agents are removed during the firing process. .
  • lithium hydroxide or the like as a lithium source is added to the solution in which iron is dissolved. Even after the addition of the lithium source, it is preferable to perform further pulverization and grinding as necessary.
  • reaction process when iron, phosphoric acid, and lithium hydroxide hydrate are used as raw materials is considered to be as follows.
  • the hydrogen gas generated in the pre-firing reaction process can be recovered and added in a predetermined temperature range during firing described later.
  • F e 3 (P0 4) 2 and L i 3 P0 4 as the primary reaction products, changes in L i F e P0 4 according to the following reaction.
  • firing should be performed in the absence of oxygen gas (ie, in an atmosphere of an inert gas such as argon, nitrogen, helium, etc.) to prevent generation of oxidized impurities and promote reduction of remaining oxidized impurities. Is preferred.
  • calcination can be performed by adding conductive carbon or a conductive carbon precursor (a substance capable of generating conductive carbon by thermal decomposition).
  • Examples of the conductive carbon include graphitic carbon and amorphous carbon.
  • graphite carbon and amorphous carbon include so-called soot, carbon black Also included.
  • the conductive carbon precursor examples include bitumens (so-called asphalt; including pitches obtained from coal and petroleum sludge), saccharides, styrene-divinylbenzene copolymer, ABS resin, phenol resin, and the like.
  • bitumens especially refined, so-called coal pitch
  • sugars especially refined, so-called coal pitch
  • refined coal pitch is extremely inexpensive, melts during firing and spreads uniformly on the surface of the raw material particles during firing, and undergoes a pyrolysis process to a relatively low temperature (650 ° C to After firing at 800 ° C), it becomes a carbon precipitate exhibiting high conductivity.
  • sugars by interacting strongly to many hydroxyl raw materials and resulting L i F e P_ ⁇ 4 particle surfaces included in the saccharides, for both the crystal growth inhibition, by using saccharides, This is because a more excellent effect of suppressing crystal growth and an effect of imparting conductivity can be obtained.
  • the refined coal pitch has a softening temperature in the range of 80 ° C to 350 ° C and a temperature at which the weight loss due to pyrolysis starts is in the range of 350 ° C to 450 ° C.
  • a material that generates conductive carbon by thermal decomposition and firing at a temperature of 500 to 800 ° C. is suitably used.
  • a refined coal pitch having a softening temperature in the range of 200 ° C. to 300 ° C. is more preferable. It is needless to say that the impurities contained in the refined coal pitch do not adversely affect the performance of the positive electrode, but it is particularly preferable that the ash content is 500 ppm or less.
  • saccharides decompose in the temperature range of 250 ° C. or higher and lower than 500 ° C., and at least partially partially melt in the process of raising the temperature from 150 ° to the aforementioned temperature range.
  • a saccharide that generates conductive carbon by thermal decomposition and baking at a temperature of 500 ° C. or more and 800 ° C. or less is particularly preferable.
  • Sugars having such particular properties is suitably coated on the surface of L i F e P_ ⁇ 4 particles in the thermal reaction by melting, Conductive carbon together when favorably precipitated occurred after thermolysis L i F e P 0 4 particles surface and of suppressing the crystal growth as described above in this process.
  • the thermal decomposition temperature is preferably set at 570 ° C or more and 850 ° C or less, more preferably at 650 ° C or more and 800 ° C or less. it can.
  • the saccharide is preferably capable of producing at least 15% by weight or more, preferably 20% by weight or more, of conductive carbon based on the dry weight of the saccharide before calcination by thermal decomposition. This is to facilitate the quantitative management of the resulting conductive carbon.
  • saccharides having the above-mentioned properties include oligosaccharides such as dextrin, and high molecular weight polymers such as soluble starch and starch with low cross-linking that is easily melted by heating (for example, starch containing 50% or more amylose). Sugars.
  • the conductive carbon, the refined coal pitch, and the conductive carbon precursor represented by sugars are mixed and added to raw materials (including intermediate products) at an appropriate timing.
  • raw materials including intermediate products
  • an operation for sufficiently mixing with the raw materials for example, pulverization and kneading can be performed as necessary.
  • the conductive carbon or the conductive carbon precursor has a weight concentration of the conductive carbon of 0.1% or more and 10% or less, preferably 0.5% or more and 7% or less, more preferably It can be added in an amount of 1% or more and 5% or less.
  • the calcination is not limited to a method in which the calcination is carried out only once by a series of heating and subsequent temperature holding process.
  • temporary firing To 450 ° C; hereinafter may be referred to as “temporary firing”), and the second stage firing process in a higher temperature range [usually normal temperature to firing completion temperature (500 ° C to 800 ° C). 0); hereinafter, it may be referred to as “final firing”.
  • the performance of the obtained positive electrode material can be further improved by mixing the conductive carbon and the conductive carbon precursor at the following timing.
  • the raw material of the cathode material is heated to the final cathode material. Reaction, often accompanied by gas generation due to thermal decomposition.
  • the end temperature of the pre-calcination is determined to be the temperature at which most of the generated gas has been released and the reaction of the final product to the positive electrode material does not proceed completely (that is, in the second stage at a higher temperature range). during the sintering L i F e temperature re diffusion and homogenization has residual room occurring constituent elements P_ ⁇ 4) is selected.
  • the constituent elements are re-diffused and homogenized, the reaction to the positive electrode material is completed, and the temperature is raised and maintained to a temperature range that minimizes crystal growth due to sintering and the like. Done.
  • a conductive carbon precursor particularly coal pitch or saccharides that melts by heating
  • it can be added to the raw material before calcining (even in this case, a corresponding positive electrode performance improvement effect can be obtained).
  • materials such as coal pitch or saccharide melting 'thermally decomposed by heating, prevents foaming by gas generated from the raw material, more uniformly spread in the molten state on the surface of L i F e P_ ⁇ 4, more Pyrolytic carbon can be uniformly deposited.
  • carbon conductive carbon; graphite carbon such as soot and carbon black, amorphous carbon, etc.
  • carbon conductive carbon; graphite carbon such as soot and carbon black, amorphous carbon, etc.
  • both conductive carbon precursors such as coal pitch and saccharides that melt and pyrolyze when heated and conductive carbon
  • the conductive carbon be added to the raw material before calcining, and that substances such as coal pitch and saccharides that are melted and thermally decomposed by heating be added to the raw material after calcining.
  • the raw material is fired while continuously supplying a predetermined amount of hydrogen or moisture (water, steam, etc.) together with an inert gas into the furnace.
  • a predetermined amount of hydrogen or moisture water, steam, etc.
  • the temperature from below 500 ° C. to the completion of firing preferably the temperature from below 400 ° C. to the completion of firing, more preferably 300 ° C.
  • Hydrogen and moisture can be added at a firing temperature from below ° C to the completion of firing.
  • hydrogen can be added in a temperature range of at least 500 ° C. or more during the firing in the second step.
  • a temperature of 500 ° C. or less to a firing completion temperature more preferably 40 ° C.
  • Ot It can be added over a range from below to the firing completion temperature, desirably from 300 ° C. or below to the firing completion temperature (for example, almost the entire firing period). In this range, suppression of crystal growth occurs effectively, probably for the reasons described below.
  • L i F e P 0 4 oxidation can be prevented by the reducing.
  • the volume concentration of hydrogen in the atmosphere in the above temperature range can be about 0.1% to 20%, preferably 1% to 10%.
  • Te cowpea thereto the crystal growth of L i F e P_ ⁇ 4 consisting of the transition metal compound is suitably suppressed.
  • the ingredients of the cathode material, and baked while supplying hydrogen and / or moisture in oxygen gas absence a slight crystallinity of the resulting L i F e P 0 4 particles It was found that turbulence occurred and the primary particles formed became finer. That is, it has been proved that hydrogen and moisture are effective crystal growth inhibitors.
  • Water has a crystal growth suppressing effect similarly to hydrogen. Although the reason is not yet clear, it is presumed that, as in the case of adding hydrogen gas, hydroxyl groups are generated on the surfaces of the raw material and the positive electrode active material, and this may delay crystal growth.
  • a high temperature about 500 ° C or higher
  • hydrogen and carbon monoxide are generated by a so-called water gas reaction, This hydrogen also provides a crystal growth suppressing effect and a reducing effect. In other words, when water is continuously supplied, even in a high temperature range of 500 ° C.
  • the water is sprayed into the furnace or preferably pre-vaporized and supplied in the form of steam.
  • the supply temperature range and supply amount can be the same as in the case of hydrogen. That is, the water is preferably added in a temperature range of at least 500 or more at the time of completion of the firing in the second stage firing. For example, preferably, the temperature ranges from 50 ° C or lower to the firing completion temperature during the second stage firing, more preferably from 400 ° C or lower to the firing completion temperature, and preferably from about 300 ° C to firing completion temperature.
  • the volume concentration of water vapor in the atmosphere in the above temperature range can be about 0.1% to 20%, preferably 1% to 10%. This allows crystal growth of L i F e P 0 4 is suitably suppressed.
  • the added hydrogen comes into contact with conductive carbon precursors such as coal pitch and sugars that melt and thermally decompose by heating.
  • conductive carbon precursors such as coal pitch and sugars that melt and thermally decompose by heating.
  • the softening temperature is in the range of 80 ° C to 350 ° C, and the temperature at which the weight loss due to thermal decomposition starts is 350 ° C to 450 ° C.
  • the outline of the production method of the present invention will be described by taking a case of two-stage firing as an example.
  • the step of adding conductive carbon [powder frame, mixing, Crushing, etc.)], [first-stage calcination process], [process of crushing, mixing, grinding, etc. of raw materials (intermediates) as necessary], [second stage Main firing step].
  • the hydrogen added during the firing is a compound that releases phosphate ions in solution with metallic iron as the primary material (phosphoric acid, phosphorus pentoxide, diammonium hydrogen phosphate, etc.). ) Can be used to make use of hydrogen that is by-produced when the firing precursor is synthesized.
  • the baking step and the baking precursor synthesis step of the next batch can be performed at the same time, so that the hydrogen generated in the latter can be used in the former.
  • Examples of the secondary battery using the positive electrode material of the present invention obtained as described above include a metal lithium battery, a lithium ion battery, and a lithium polymer battery.
  • Lichi Pum ion batteries are characterized by the fact that Li + ions reciprocate between the negative and positive electrode active materials as they are charged and discharged, as is commonly referred to as a rocking chair type or shuttlecock (patminton blade) type. (See Figure 1).
  • L i + ions are inserted into the negative electrode (carbon such as graphite is used in the current system) to form an intercalation compound (at this time, the negative electrode is reduced, and the positive electrode from which L i + is removed)
  • L i + ions are introduced into the positive electrode to form a monolithium iron compound complex (at this time, the iron of the positive electrode is reduced and the L i + escapes.
  • the negative electrode is oxidized and returns to graphite or the like).
  • the Li + ions reciprocate in the electrolyte during charge and discharge, and simultaneously carry charge.
  • electrolyte examples include a mixed solution of a cyclic organic solvent such as ethylene carbonate, propylene carbonate, and carboxylactone, and a chain organic solvent such as dimethyl carbonate and ethyl methyl carbonate. 6, L i CF 3 S 0 3, L i C 1_Rei liquid electrolyte an electrolyte salt dissolved in such 4, the gel electrolyte these liquid electrolyte impregnated in the polymeric gel material, partially crosslinked Poryechireno A solid polymer electrolyte such as one obtained by impregnating the above electrolyte with oxide is used.
  • a cyclic organic solvent such as ethylene carbonate, propylene carbonate, and carboxylactone
  • a chain organic solvent such as dimethyl carbonate and ethyl methyl carbonate.
  • a porous membrane (separator) made of polyolefin or the like is interposed between them so that the positive and negative electrodes do not short circuit in the battery.
  • a conductivity-imparting agent such as carbon black
  • a binder is formed by adding a binder such as rubber, and if necessary, further adding a polar organic solvent, kneading the mixture, and forming a thin film.
  • metal lithium is used for the negative electrode, a change in Li ( ⁇ ) / L i + occurs with charging and discharging at the negative electrode, and a battery is formed.
  • the present invention it is possible to produce a positive electrode material for a highly active secondary battery L i F e P 0 4 directly in high purity from easy primary raw materials available at low cost.
  • complicated processing operations such as filtration of the precipitate are not required in the production process. Therefore,
  • the production method of Ming is a highly practical production technology that can be sufficiently used in the production of cathode materials for secondary batteries on an industrial scale.
  • the secondary batteries using the positive electrode material L i F e P_ ⁇ 4 produced by the process of the present invention is a secondary battery having a sufficient voltage efficiency and available battery discharge capacity at a practical level.
  • the positive electrode material L i F e P_ ⁇ 4 was synthesized by the following procedure.
  • reaction product obtained after further 2 hours milling in a planetary ball mill and subjected to 1 hour milled in a planetary ball mill was added to L i OH ⁇ H 2 0 of 3. 381 g.
  • water was removed with an evaporator, and the residue was vacuum-dried for 2 days in a desiccator.
  • 0.630 g of coal pitch softened product from Adchemco Co., Ltd. 250 was added, and the mixture was manually ground for 5 minutes. Crushing was performed to obtain a primary reaction product (calcination precursor).
  • the calcination was performed at 400 C for 5 hours in a nitrogen atmosphere. After air cooling, it was taken out of the furnace and crushed manually for 5 minutes (pre-baked intermediate).
  • the main baking was carried out at 725 ° C for 10 hours after holding at 300 ° C for 5 hours under a nitrogen atmosphere. As a result, a desired cathode material was obtained.
  • This positive electrode material acetylene black as a conductivity-imparting material [Denka Black (registered trademark); 50% pressed product manufactured by Denki Kagaku Kogyo Co., Ltd.], and unfired PTFE (polytetrafluoroethylene) as a binder
  • the powder was mixed to a weight ratio of 70.6 / 24.4 Z5, kneaded and rolled into a 0.7 mm thick sheet, which was punched into a 1.0 cm diameter pellet to serve as the positive electrode. .
  • a titanium metal mesh and a metal nickel mesh were spot welded to a stainless steel coin battery case (model number CR2032) as positive and negative electrode current collectors, respectively, and the positive electrode and lithium metal foil negative electrode were made of porous polyethylene diaphragm cell guard 3501 (Cell guard). incorporated via the company Ltd.), 1/1 mixed solution of Jimechiruka one port Ne one Bok Z ethylene carbonate was dissolved L i PF 6 of 1M as an electrolytic solution and sealed meet, to prepare a coin-type lithium secondary battery .
  • a series of battery assembly including the positive and negative electrodes, the diaphragm, and the electrolyte was performed in a glow pox substituted with argon.
  • the positive electrode material L i F e P_ ⁇ 4 was synthesized by the following procedure.
  • the resulting reaction product (calcination precursor) was 2 h pulverized ⁇ a planetary ball mill, after 1 hour milled in a planetary ball mill by adding L I_ ⁇ _Ita ⁇ H 2 0 of 3. 381 g, Ebapore Moisture was removed in the evening and vacuum dried for two days overnight in a dessicator.
  • the calcination was performed at 400 ° C. for 5 hours in a nitrogen atmosphere. After air cooling, it was taken out of the furnace, and 0.6630 g of coal pitch (made by Adchemco Co., Ltd., softened at 250 ° C) was added and crushed manually for 5 minutes (intermediate after calcination).
  • the main firing was performed at 725 for 10 hours after maintaining the temperature at 300 ° C for 5 hours in a nitrogen atmosphere. As a result, a desired cathode material was obtained.
  • a secondary battery was prepared in the same manner as in Example 1.
  • This secondary battery at a current density of 0.5 mA / cm 2 per apparent area of the cathode Peretsuto, was repeatedly charged and discharged at an operating voltage range of 3.0V ⁇ 4.0V, the initial discharge capacity of 1 to 1 0 cycle It was as shown in Fig. 8 (the initial discharge capacity was normalized by the amount of the positive electrode active material in the product).
  • the discharge capacity at the end of 10 cycles was 144.7 mAh / g, and continued to increase thereafter, reaching 147.2 mAh / g after 20 cycles.
  • Examples 1 and 2 inexpensive and from easy primary raw material availability, that the olivine-type lithium iron phosphate L i Fe P0 4 can directly synthesized Indicated.
  • the discharge capacity of the positive electrode materials obtained in Examples although there remains room for improvement slightly present invention production process, sufficient utility that may be utilized as a new method for synthesizing L i F e P_ ⁇ 4 It can be evaluated that the method has.
  • Example 2 In addition, in the comparison between Example 1 and Example 2, the discharge in Example 2 in which coal pitch was added at the timing after calcination was higher than that in Example 1 in which coal pitch was added before calcination. The capacity has increased. From this, it was shown that control of the mixing and addition timing of the conductive carbon precursor was effective as a means for improving the discharge capacity.
  • the positive electrode material L i F e.P0 4 was synthesized by the following procedure.
  • the mixture was ground with a planetary pole mill for 2 hours, added with lithium hydroxide (1.1270 g), and ground with a planetary pole mill for 1 hour. After that, moisture was removed by an evaporator and dried overnight in a vacuum desiccator to obtain a calcination precursor.
  • the obtained calcined precursor was calcined in 5% H 2 + 95% Ar at 400 ° C. for 5 hours. After this calcining, 0.241 g of coal pitch (Adchemco, 250 ° C.) was added to the intermediate. C softened product) and crushed, followed by main firing at 725 ° C for 10 hours in 5% H 2 + 95% Ar to obtain the desired cathode material.
  • This positive electrode material acetylene black as a conductivity-imparting material [Denka Black (registered trademark); 50% pressed product manufactured by Denki Kagaku Kogyo Co., Ltd.], and unfired PTFE (polytetrafluoroethylene) as a binder ) Powder was mixed at a weight ratio of 72.2: 23.8: 5, crushed and rolled into a sheet having a thickness of 0.6 mm. This was punched into a 1.0 cm diameter pellet and used as a positive electrode. did.
  • a titanium metal mesh and a metal nickel mesh are spot-welded to a stainless steel coin battery case (model number CR2032) as current collectors for the positive and negative electrodes, respectively.
  • the positive electrode and the lithium metal foil negative electrode are made of porous polyethylene diaphragm cell guard 3501 (Celgard). incorporated via Ltd.), 1/1 mixture of dimethyl Capo sulfonate / ethylene carbonate was dissolved L i PF 6 of 1M as an electrolytic solution and sealed meet, to prepare a coin-type lithium secondary battery.
  • the mixture was ground for 2 hours with a planetary pole mill, and 1.1270 g of lithium hydroxide was added, followed by grinding for 1 hour with a planetary pole mill. After that, moisture was removed overnight in the evaporator and dried in a vacuum desiccator for one day to obtain a calcination precursor.
  • This calcination precursor was subjected to X-ray diffraction, the crystal peak of ferrous phosphate octahydrate were not observed, ferrous dihydrate oxalic acid [F e C 2 ⁇ 4 * 2H 2 0] and lithium phosphate were generated, and almost no residual metallic iron was observed.
  • the illustration of the X-ray diffraction results for the firing precursor is omitted.
  • the obtained calcined precursor was calcined at 400 ° C. for 5 hours in 5% H 2 + 95% Ar, and 0.241 g of coal pitch (Adchemco, 250 After softening, the mixture was ground and baked at 725 ° C for 10 hours in 5% H 2 + 95% Ar to obtain the desired cathode material.
  • X-ray diffraction was performed on the positive electrode material.
  • Fig. 11 shows the results.
  • Synthesized cathode material was identified as L i Fe P_ ⁇ 4 having an olivine-type crystal structure by X-ray diffraction.
  • a secondary battery was prepared in the same manner as in Example 3. This secondary battery at a current density of 0.5 m A / cm 2 per apparent area of Seikyokube cmdlet 1 hour current off period when Shi return folded constant current conditions (folding in the operating voltage range of 3.0V ⁇ 4.0V When the charge and discharge were repeated, the initial discharge capacity for 1 to 11 cycles was as shown in Fig. 12 (the initial discharge capacity was normalized by the amount of the positive electrode active material in the product).
  • the maximum discharge capacity (corrected by the amount of carbon in elemental analysis) was 144.7 mAh Zg.
  • the cathode materials obtained by adding substantially equimolar hydrochloric acid or oxalic acid to iron, lithium, phosphate ions, etc. in the raw materials were respectively about 156 mAhZg and about 143 mAh.
  • a discharge capacity of mA h / g was obtained.
  • the former (actual ⁇ 3; hydrochloric acid) was conductive carbon deposition resulting from the raw material system used conventionally L i FeP_ ⁇ 4 and capacity equal to or levels above it.
  • the value of the latter (Example 4; oxalic acid added) was slightly smaller than that in the case where no acid was added under almost the same conditions (Example 2).
  • the positive electrode material L i F e P_ ⁇ 4 was synthesized by the following procedure. Stoichiometric iron powder [Wako Pure Chemical Industries, Ltd .; 325 mesh (44 under, purity 99.9% or more)] 6.0 g and phosphorus pentoxide (Wako Pure Chemical Industries, Ltd.) 12. 3868 to 100 g of pure water, placed in a glass triangular flask equipped with a water-cooled condenser, and refluxed in N 2 gas for 3 days while heating to 100 ° C with a hot stirrer. Reflux method "). 4.508 g of lithium hydroxide was added to the contents after the reflux, and the mixture was stirred well. The contents were taken out, the water content was removed by an evaporator, and dried overnight in a vacuum desiccator to obtain a firing precursor.
  • the obtained calcined precursor was calcined for 5 hours at 400 ° C. in 5% H 2 + 95% Ar. After this calcining, 1.11764 g of coal pitch (Adchemco, 250 ° C.) C softened product) and crushed, followed by main firing at 725 ° C for 10 hours in 5% H 2 + 95% Ar to obtain the desired cathode material.
  • a secondary battery was prepared in the same manner as in Example 3.
  • the folded constant current condition in the operating voltage range of 3.0 V to 4.0 V current off section was inserted for 1 hour when folded
  • the initial discharge capacity of the cycle was as shown in Fig. 14 (the initial discharge capacity was normalized by the amount of the positive electrode active material in the product).
  • the maximum discharge capacity (value corrected by the amount of carbon in elemental analysis) was 148.6 mAhZg.
  • the positive electrode material obtained by the method of the present invention can be used, for example, as a positive electrode material of a secondary battery represented by a metal lithium battery, a lithium ion battery, a lithium polymer battery and the like.
  • a secondary battery using this positive electrode material is also expected to be applied as a power source that requires a large current, such as for driving a moving object such as a hybrid electric vehicle or for a mobile phone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

2次電池用正極材料の製造方法、 および 2次電池
技術分野
本発明は、 2次電池用正極材料の製造方法及びその正極材料を有する 2次電池 に関し、 より詳しくは、 例えば、 リチウムやその化合物を活物質とする、 金属リ 明
チウム電池、 リチウムイオン電池、 リチウムポリマ一電池等に代表される 2次電 池用の正極材料 L i F e P〇4の製造方法、書および該方法により製造される正極 材料を有する 2次電池に関する。
背景技術
金属リチウム電池、 リチウムイオン電池、 リチウムポリマー電池等の 2次電池 において正極材料となるオリビン型 (Pnma) の結晶構造を有する L i F e P 〇4は、 放電あるいは充電の過程で、 リチウムのド一プ /脱ド一プを伴う形で電 極酸化還元反応が進行する。 こうした 2次電池は、 大容量電池として近年脚光を 浴びている。
従来において、 上記正極材料 L i FeP〇4を合成する方法としては、 例えば、 (1) リン酸第一鉄 8水和物 [Fe3 (P04) 2 · 8H2〇] とリン酸水素アンモ ニゥム [(NH4) 2HP〇4] と炭酸リチウム (L i C03) を所定比で混合し、 焼成する方法 (例えば、 特開平 9一 171827号公報) ;(2) 鉄源としてシュ ゥ酸鉄 (F eC24) を用い、 リン酸水素アンモニゥム (NH4H2P〇4) と炭 酸リチウム (L i C〇3) とを所定比で混合する方法 (特開 2000-2942 38号公報) ;(3) F e3 (Ρθ4) 2 · 8H2〇と L i 3P〇4とを混合し、 炭素 材料を添加するとともに、 焼成雰囲気中の酸素濃度を 1012 p pm (体積) 以 下で焼成を行う方法(例えば、特開 2002— 110163号公報);等が提案さ れている。
また、 (4) L i F e P〇4の製造に際して、 原料となる Fe3 (P〇4) 2 · 8 H20と L i 3P04とに、熱分解により炭素を析出する有機物(高分子、モノマー、 低分子等) を共存させ、 焼成により熱分解する方法も提案されている (特開 20 01— 15111号公報)。
しかし、 上記 (1) 〜 (4) の方法で出発原料となる物質は、 いずれも 2次的 な化合物であり、 高価で入手が困難であるという問題があった。 例えば、 L i 3 P04は比較的高価であり、 シユウ酸鉄 (F e C24) も比較的高価であるため 正極材料の製造コストを上昇させる要因となっている。 他の鉄原料である F e 3 (Ρ〇4) 2 · 8H20は、 例えば Na2HP〇4と F e (II) S〇4 · 7H20から 合成可能であるが、 水和数の安定しない水和物であるため化学量論的な仕込みの 制御が難しく、 また、 その合成過程においては、 F e3 (Ρ04) 2 · 8Η2〇が沈 澱として得られるので、 ナトリウムイオン等を除去するには、 濾過などの煩雑な 操作が必要となる。 この時、 完全にナトリウムイオン等を除去することは困難で あり、 不純物混入の要因になる。 また、 濾過を完全に行い、 焼成前駆体の純度を 上げるには、 沈澱として得られる F e 3 (Ρ〇4) 2 · 8Η20の結晶を十分に成長 させ、 大粒径 (例えば、 10 /im程度以上) とすることが好ましいが、 一般に大 粒径の F e3 (P04) 2 · 8H2〇と L i 3P〇4の混合物を焼成して得られる L i Fe P〇4は粗粒となり、 正極材料としての活性が低くなる問題がある。
このように、 従来提案されてきた L i F e P〇4の製造技術は、 不純物が混入 したり、 煩雑な処理操作が必要になるなどの問題点を有する上、 いずれの方法も 金属鉄のように安価で入手が容易な 1次原料を使用できないため、 必然的に原価 が高くなり、 工業的規模での L i F eP〇4の製造においては満足のいく方法で はなかった。
従って、 本発明は、 2.次電池用正極材料 L i F e P〇4を、 入手が容易で安価 な 1次原料から確実に合成し得る製造方法を提供することを目的としている。 発明の開示
上記課題を解決するため、 本発明の第 1の態様に係る 2次電池用正極材料の製 造方法は、 溶液中でリン酸イオンを遊離する化合物と、 水と、 金属鉄とを混合し て該金属鉄を溶解させた後、 炭酸リチウム、 水酸化リチウムまたはその水和物を 添加し、 生じた反応生成物を焼成して L i F e P〇4を合成することを特徴とす る。
この特徴によれば、 安価で入手が容易な 1次原料である金属鉄と、 同様に安価 で入手容易なリン酸や水酸化リチウム等から直接、 2次電池用の正極材料 (すな わち、 正極活物質としての L i F e P 04) を製造することができる。 しかも、 製造過程で沈澱の濾別などの煩雑な処理操作は必要とせず、 化学量論比の原料混 合物から直接に微小粒径の焼成前駆体が得られる。 したがって、 本発明の製造方 法は、 工業的な規模での 2次電池用正極材料の製造において十分に利用可能な実 用性の高い製造技術である。
本発明の第 2の態様に係る 2次電池用正極材料の製造方法は、 第 1の態様にお いて、 前記焼成過程は、 常温から 3 0 0 °Cないし 4 5 0 °Cに至る第一段階と、 常 温から焼成完了温度に至る第二段階と、 を含み、 加熱分解により導電性炭素を生 じ得る物質を、 第一段階の焼成後の原料に添加した後、 第二段階の焼成を行うこ とを特徴とする。
この第 2の態様によれば、 加熱分解により導電性炭素を生じ得る物質を、 第一 段階の焼成後の原料に添加して第二段階の焼成を行うことにより、 加熱分解によ り導電性炭素を生じ得る物質が、 焼成中に原料の分解により生成するガス (主と して水蒸気) により発泡することを防ぐことができる。 その結果、 融解状態にあ る該物質がより均一に L i F e P〇4の表面に溶融状態で広がり、 より均一に熱 分解炭素を析出させることができる。 このため、 得られる正極材料の表面導電性 がさらに良好になり、 また接触が強固に安定化される。 本発明の第 3の態様に係る 2次電池用正極材料の製造方法は、 第 2の態様にお いて、 導電性炭素を、 第一段階の焼成前の原料に添加して焼成を行うことを特徴 とする。
この第 3の態様によれば、 第 2の態様と同様の作用効果に加え、 さらに導電性 炭素を、 第一段階の焼成前の原料に添加して焼成を行うことにより、 加熱反応す る原料と該導電性炭素との接触時間を長く取ることが可能になり、 その間に反応 によって生じる L i F e P〇4の構成元素の拡散により、 該炭素の粒界に L i F e P〇4が入り込み、 より均一で安定な炭素一 L i F e P〇4複合体を形成すると ともに、 L i F e P〇4粒子同士の焼結を効果的に防止することができる。
本発明の第 4の態様に係る 2次電池用正極材料の製造方法は、 第 1の態様にお いて、 前記焼成過程は、 常温から 3 0 0 ないし 4 5 0 °Cに至る第一段階と、 常 温から焼成完了温度に至る第二段階と、 を含み、 導電性炭素を、 第一段階の焼成 前の原料に添加して焼成を行うことを特徴とする。
この第 4の態様によれば、 L i F e P〇4の 1次粒子の結晶成長を抑制して、 得られる L i F e P 04の結晶粒子を細粒化することができる。 すなわち、 導電 性炭素を、 第一段階の焼成前の原料に添加して焼成を行うことにより、 加熱反応 する原料と導電性炭素との接触時間を長く取ることができ、 その間に反応によつ て生じる L i F e P〇4の構成元素の拡散により、 導電性炭素の粒界に L i F e P〇4が入り込み、 より均一で安定な炭素 _ L i F e P〇4複合体を形成させるこ とができる。
本発明の第 5の態様に係る 2次電池用正極材料の製造方法は、 第 2または第 3 の態様において、 前記加熱分解により導電性炭素を生じ得る物質が、 ビチューメ ン類であることを特徴とする。 ビチューメン類は、 加熱分解により導電性炭素を 生じて正極材料に導電性を付与することができる。
本発明の第 6の態様に係る 2次電池用正極材料の製造方法は、 第 5の態様にお いて、 前記ビチューメン類が、 軟化温度 8 0 °Cから 3 5 0。Cの範囲にあり、 加熱 分解による減量開始温度が 3 5 0 °Cから 4 5 0 °Cの範囲にあり、 かつ、 5 0 0 °C から 8 0 0 °Cの加熱分解 ·焼成により導電性炭素を析出し得る石炭ピッチである ことを特徴とする。 かかる性質を有する石炭ピッチは、 非常に安価であるととも に、 焼成中に融解して焼成中の原料粒子の表面に均一に広がり、 熱分解後、 高い 導電性を発現する炭素析出物となるため、 導電性炭素を生じ得る物質として優れ た性質を有する物質である。
本発明の第 7の態様に係る 2次電池用正極材料の製造方法は、 第 2の態様また は第 3の態様において、 前記加熱分解により導電性炭素を生じ得る物質が、 糖類 であることを特徴とする。 糖類を用いることによって、 より優れた結晶成長抑制 効果と導電性付与効果を同時に得ることができる。 糖類は加熱分解によって導電 性炭素を生じて正極材料に導電性を付与するだけでなく、 糖類に含まれる多くの 水酸基が原料および生じた L i F e P〇4粒子表面に強く相互作用することによ り、 結晶成長抑制作用も併せ持つと推測されるためである。
本発明の第 8の態様に係る 2次電池用正極材料の製造方法は、 第 7の態様にお いて、 前記糖類が、 2 5 0 °C以上 5 0 0 °C未満の温度域において分解を起こし、 かつ 1 5 0 °Cから分解までの昇温過程において一度は少なくとも部分的に融液状 態をとり、 さらに 5 0 0 °C以上 8 0 0 °C以下までの加熱分解 '焼成によって導電 性炭素を生成する糖類であることを特徴とする。 かかる特定の性質を有する糖類 は、 融解により加熱反応中の L i F e P〇4粒子の表面に好適にコートされ、 加 熱分解後生じた L i F e P 04粒子表面に導電性炭素を良好に析出させる。 また、 この過程で前記したように結晶成長を抑制する。 このため、 上記特定の性質の糖 類は、 特に優れた結晶成長抑制効果と導電性付与効果を奏する。
本発明の第 9の態様に係る 2次電池用正極材料の製造方法は、 第 1ないし第 8 の態様のいずれか 1つにおいて、 水素、 水および水蒸気よりなる群から選ばれる 1種または 2種以上を、 少なくとも前記焼成過程における 5 0 0 °C以上の温度に おいて添加することを特徴とする。 この特徴によれば、 正極材料 L i F e P〇4の 1次粒子の結晶成長を抑制して、 得られる正極材料の結晶粒子を細粒ィ匕することができる。
また、 常温から 3 0 0 °Cないし 4 5 0 に至る第一段階と、 常温から焼成完了 温度に至る第二段階と、 を含む焼成に際し、 第一段階の焼成後の原料に加熱分解 により導電性炭素を生じ得る物質を添加した後、 第二段階の焼成を行い、 少なく ともその 5 0 0 °C以上の温度において、 水素および または水分 (水または水蒸 気) を添加する場合には、 第 2の態様の効果に加え、 生じる L i F e P 04の 1 次粒子を効率的に細粒化させ、 さらに均一かつ安定に導電性炭素を L i F e P O 4粒子上に析出させ、 高い正極性能を得ることができる。 この過程において、 水 素 (水分から生じる水素を含む) が加熱により、 融解,熱分解する導電性炭素前 駆物質に接触すると、 恐らくは水素付加反応により、 該物質の融液粘性を低下さ せるため、 さらに良好な炭素析出状態を実現できる。
また、 常温から 3 0 0 °Cないし 4 5 0 °Cに至る第一段階と、 常温から焼成完了 温度に至る第二段階と、 を含む焼成に際し、 導電性炭素を、 第一段階の焼成前の 原料に添加して焼成を行うとともに、 加熱分解により導電性炭素を生じ得る物質 を、 第一段階の焼成後の原料に添加した後、 第二段階の焼成を行い、 少なくとも その 5 0 0 °C以上の温度域において、水素および/または水分(水または水蒸気) を添加する場合にも、 第 3の態様の効果に加え、 生じる L i F e P 04の 1次粒 子を効率的に細粒化させ、 さらに均一かつ安定に導電性炭素を L i F e P 04粒 子上に析出させ、 より高い正極性能を得ることができる。
また、 常温から 3 0 0 °Cないし 4 5 0 °Cに至る第一段階と、 常温から焼成完了 温度に至る第二段階と、 を含む焼成に際し、 導電性炭素を、 第一段階の焼成前の 原料に添加して焼成を行い、 少なくとも第二段階の焼成の 5 0 0 以上の温度域 において、 水素および または水分 (水または水蒸気) を添加する場合には、 第 4の態様の効果に加え、 生じる L i F e P〇4の 1次粒子を効率的に細粒化させ ることが可能である。 また、 第 9の態様によれば、 原料の焼成が不十分で最終製品にまで化学変化し なかったり、 中間生成物が残留したりする恐れはなく、 焼成によって目的の正極 材料を原料から確実に合成できる。 水素および Zまたは水分は、 強い結晶成長抑 制作用、 および加熱分解により導電性炭素を析出する物質の L i F e P〇4への 付着状態を改善する強い作用を持つとともに、 取り扱いが容易であり、 しかも安 価であるため、 効率的である。 さらに、 前記加熱分解により導電性炭素を生じ得 る物質が、 ビチューメン類であり、 その中でも特に、 軟化温度が 8 0 °Cから 3 5 0 °Cの範囲にあり、 加熱分解による減量開始温度が 3 5 0 °Cから 4 5 0 °Cの範囲 にあり、 かつ、 5 0 0 °Cから 8 0 0 °Cの加熱分解 '焼成により導電性炭素を生じ 得る石炭ピッチである場合には、 かかる石炭ピッチが第二段階の焼成中に加熱に より融解 ·熱分解する過程で、 少なくとも 5 0 0 °C以上の温度域において、 水素 および/水分 (水または水蒸気) に接触することになるため、 得られる L i F e P 04粒子上に析出する導電性炭素の析出状態が、 正極性能上、 より良好な状態 に改善される。
また、 前記加熱分解により導電性炭素を生じ得る物質が、 糖類であり、 その中 でも特に 2 5 0 °C以上 5 0 0 °C未満の温度域において分解を起こし、 かつ 1 5 0 °Cから分解までの昇温過程において一度は少なくとも部分的に融液状態をと り、 さらに 5 0 0 °C以上 8 0 0 °C以下までの加熱分解 ·焼成によって導電性炭素 を生じ得る糖類 (例えばデキストリン等) である場合にも、 かかる糖類が、 第二 段階の焼成中に加熱により融解 ·熱分解する過程で、 少なくとも 5 0 0 °C以上の 温度域において、 水素および Z水分 (水または水蒸気) に接触することになるた め、 得られる L i F e P 04粒子上に析出する導電性炭素の析出状態が、 正極性 能上、 より良好な状態に改善される。
なお、 本発明において、 気体である水素や水蒸気を 「添加する」 ことには、 水 素等のガスの存在下 (つまり、 水素雰囲気下等) で原料の焼成を行うことが含ま れる。 また、 以上において、 焼成中に添加する水素としては、 1次原料である金 属鉄と溶液中でリン酸イオンを遊離する化合物 (リン酸、 五酸化リン、 リン酸二 水素アンモニゥム等) とを反応させたときに副生成する水素を利用することもで きる。
本発明の第 1 0の態様に係る 2次電池は、 第 1から第 9のいずれか 1つの方法 により製造された 2次電池用正極材料 L i F e P〇4を構成要素に持つことを特 徵とする。
本発明方法によって製造された正極材料 L i F e P〇4を用いた 2次電池は、 実用レベルの電圧効率と有効電池放電容量を有する 2次電池である。 図面の簡単な説明
図 1は、 2次電池の充放電挙動の説明に供する模式図であり、符号 1 0は負極、 符号 2 0は電解質、 符号 3 0は正極、 符号 4 0は外部回路、 符号 Cは充電時、 符 号 Dは放電時を示す。
図 2は、 実施例 1の 1次反応生成物の X線回折結果を示すグラフ図面である。 図 3は実施例 1の仮焼成後中間体の X線回折結果を示すグラフ図面である。 図 4は、 実施例 1の正極材料の X線回折結果を示すグラフ図面である。
図 5は、 実施例 1で得たコィン型 2次電池の充放電特性を示すグラフ図面であ る。
図 6は、 実施例 2の仮焼成後中間体の X線回折結果を示すグラフ図面である。 図 7は、 実施例 2の正極材料の X線回折結果を示すグラフ図面である。
図 8は、 実施例 2で得たコィン型 2次電池の充放電特性を示すグラフ図面であ る。
図 9は、 実施例 3の正極材料の X線回折結果を示すグラフ図面である。
図 1 0は、 実施例 3で得たコイン型 2次電池の充放電特性を示すグラフ図面で ある。
図 1 1は、 実施例 4の正極材料の X線回折結果を示すグラフ図面である。 図 1 2は、 実施例 4で得たコイン型 2次電池の充放電特性を示すグラフ図面で ある。
図 1 3は、 実施例 5の正極材料の X線回折結果を示すグラフ図面である。
図 1 4は、 実施例 5で得たコイン型 2次電池の充放電特性を示すグラフ図面で める。 発明を実施するための最良の形態
本発明の 2次電池用正極材料の製造方法は、 溶液中でリン酸イオンを遊離する 化合物と、 水と、 金属鉄とを混合し金属鉄を溶解させた後、 炭酸リチウム、 水酸 化リチウムまたはその水和物を添加し、 生じた反応生成物を焼成することによつ て実施される。
本発明における 2次電池用正極材料は、 例えばリチウム電池、 リチウムイオン 電池、 リチウムポリマー電池等のリチウム系 2次電池の正極材料として好適に使 用できる。 なお、 本発明において 「L i F e P〇4」 と略同義に用いられる 「正 極材料」 の語は、 L i F e P〇4そのものを意味するほか、 L i F e P〇4粒子の 表面に導電性炭素が析出した状態や、 L i F e P 04粒子と導電性炭素が混合さ れた状態も含む意味で用いる場合がある。
L i F e P〇4は結晶骨格構造 [斜方晶 P n m a (オリビン型) ] が電気化学的 酸化還元によってほとんど変化しないため、 繰返し充放電が可能なアルカリ金属 系 2次電池用の正極材料として用いることができる。 正極材料としては、 これら の物質のそのままの状態は放電状態に相当し、 電解質との界面での電気化学的酸 化によって、 アルカリ金属 L iの脱ドープを伴いながら中心金属元素 F eが酸化 され、 充電状態になる。 充電状態から電気化学的還元を受けると、 アルカリ金属 L iの再ドープを伴いながら中心金属元素 F eが還元され、元の放電状態に戻る。 正極材料の原料としては、 溶液中でリン酸イオンを遊離する化合物、 金属鉄、 リチウム源となる化合物および水が用いられる。 これらの原料中のリン:鉄: リ チウムのモル比を 1 : 1 : 1となるように調整することにより、 焼成過程での不 純物の生成と正極材料への混入を極力抑えることができる。
前記溶液中でリン酸イオンを遊離する化合物としては、 例えばリン酸 H 3 P〇 4、 五酸化リン P 25、 リン酸二水素アンモニゥム NH4 H 2 P〇4、 リン酸水素 二アンモニゥム (N H 4) 2 H P 04等を用いることができる。 これらの中でも鉄 を溶解する段階で比較的強い酸性下に保つことができるものとして、 リン酸、 五 酸化リン、 リン酸二水素アンモニゥムが好ましい。 これらには市販の試薬を利用 できるが、 原料としてリン酸を用いる場合には、 化学量論的に厳密を期するため に予め滴定により純度を正確に求め、ファクターを算出しておくことが好ましい。 リチウム源となる化合物としては、 焼成後に L iのみ目的の正極材料中に残留 するような化合物 (L i含有分解揮発性化合物) を選択することが好ましく、 例 えば水酸化リチウム L i〇H等の水酸化物、炭酸リチウム L i 2 C〇3等の炭酸塩 のほか、 L iの有機酸塩等も L i含有分解揮発性化合物として使用できる。なお、 これらにおいては、 その水和物を用いることも可能である (例えば、 L i OH · H20等)0
また、 F e導入用の原料としては、 安価で入手が容易な 1次原料である金属鉄 を用いることができる。 金属鉄は、 2 0 0 m以下、 好ましくは 1 0 0 m以下 の粒径のものを用いることが好ましい。
上記原料の混合に際しては、 まず、 リン酸などの、 溶液中でリン酸イオンを遊 離する化合物と金属鉄と水を混合し、 金属鉄を十分に溶解させて反応させる。 金 属鉄を溶解させるための操作として、 例えば、 擂潰および Zまたは加熱 (還流な ど) を行うことができる。
擂潰操作は、 溶液中の金属鉄にせん断力を加え、 表面を更新させることにより 金属鉄を溶解させる目的で行うものであり、 これにより正極材料の収率を向上さ せ得る。 攉潰は、 自動搐潰機、 ポールミル、 ピ一ズミルなどを用い、 擂潰装置の 効率にもよるが、 例えば 3 0分から 1 0時間程度の時間をかけて行うことが好ま しい。 さらに、 完全に溶解反応を進行させるには、 超音波照射を行うことも効果 がある。
また、 加熱操作により、 金属鉄の還元溶解反応が促進されるので、 正極材料の 収率を向上させ得る。 加熱は、 鉄の酸化を回避するため、 例えば不活性ガス中で の還流などにより実施することが好ましい。 還流では、 比較的大型化が困難な機 械的微粉碎操作が不要になるため、 大量生産を行う上で特に有利であると考えら れる。
また、 金属鉄を溶解させる場合に、 シユウ酸や塩酸などの揮発性の酸を添加し て酸濃度を上げたり、 あるいは、酸素、過酸化水素、ハロゲン(臭素、塩素など)、 もしくは次亜塩素酸、 さらし粉などの八ロゲン酸化物等の揮発性の酸化剤を共存 させることができる。 また、 酸化能と酸性を兼ね備えた揮発性酸である硝酸を添 加することも効果がある。 これらは、 金属鉄から鉄(Π)イオンへの酸化に対し、 等量以下となる量で作用させることが好ましい。 これにより、 金属鉄のリン酸等 の溶液への溶解反応を促進させることが可能となる一方で、 これらの揮発性酸、 酸化剤等は焼成過程で除去されるため正極材料中には残存しない。
また、 酸添加による焼成前駆体合成反応の際、 超音波照射を行うことにより反 応を促進させることが可能である。 これは反応進行に伴って金属鉄表面に生じる 反応生成物の局所剥離を超音波照射が促進するためと考えられる。 なお、 自動擂 潰機や遊星ポールミルに比べ微粉砕効果が高いビーズミル型合成装置を用いるこ とにより同様の効果が期待される。
次に、鉄を溶解させた溶液にリチウム源としての水酸化リチウム等を添加する。 リチウム源を添加した後も、 必要に応じてさらに粉碎、 擂潰を行うことが好まし い。
本発明製造方法において、 原料として、 鉄とリン酸と水酸化リチウム水和物を 用いた場合の反応過程は以下の通りであると考えられる。
焼成前反応過程の反応 (水溶液中反応): F e +2/3H3P04 + 8/3H20→l/3F e 3 (P 04) 2 ·8Η20 + Η2
1/3H3P04 + L i〇H'H2〇→1/3L i 3P〇4 + 2H2
この焼成前反応過程で発生する水素ガスは回収しておき、 後述する焼成時の所 定温度域において添加することができる。 上記反応において、 1次反応生成物と なる F e 3(P04)2と L i 3P04を焼成することにより、 次の反応に従い L i F e P04に変化する。
焼成過程の反応:
1/3F e3(P04)2-8H20 + l/3L i 3P〇4→L i F e P04 + 8/3H20个 焼成は、 一般に採用されるような 300〜900°Cに至る焼成過程において、 適切な温度範囲及び時間を選んで実施することができる。 また、 焼成は、 酸化態 不純物の生成防止や、 残存する酸化態不純物の還元を促すため、 酸素ガス不存在 下 (すなわち、 例えばアルゴン、 窒素、 ヘリウム等の不活性ガス雰囲気中) で行 うことが好ましい。
なお、 原料に酸 (例えばシユウ酸、 塩酸など) を添加した場合、 焼成前反応過 程の反応(水溶液中反応)は前記とは異なる経路をとる。すなわち、酸添加によつ て得られた焼成前駆体中では、 これらを添加しない場合と異なる生成物 (例えば シユウ酸添加の場合はシユウ酸第一鉄 2水和物とリン酸リチウム、 塩酸添加の場 合は塩化第一鉄 4水和物と塩化リチウム) が生じる。 2座配位子となるシユウ酸 の場合は、 錯体安定度が高いこと、 また、 塩酸の場合はリン酸より強い酸である ことが、 それぞれの焼成前駆体中の生成化学種を変化させる要因であると考えら れる。 また、 これらの酸添加によって焼成前駆体中に残留する金属鉄の量を低下 させることができる。
本発明製造方法においては、 導電性炭素や導電性炭素前駆物質 (加熱分解によ り導電性炭素を生じ得る物質) を添加して焼成を行うことができる。
導電性炭素としては、 例えば、 黒鉛質炭素、 無定形炭素等を挙げることができ る。 ここで、 黒鉛質炭素や無定形炭素には、 いわゆる、 すす、 カーボンブラック なども含まれる。
また、 導電性炭素前駆物質としては、 例えば、 ビチューメン類 (いわゆるァス フアルト;石炭や石油スラッジから得られるピッチ類を含む)、糖類、 スチレン一 ジビエルベンゼン共重合体、 A B S樹脂、 フヱノール樹脂、 その他芳香族基を有 する架橋高分子などが挙げられる。 これらの中でも、 ピチューメン類 (特に、 精 製された、 いわゆる石炭ピッチ) および糖類が好ましい。 これらのビチューメン 類や糖類は加熱分解によって導電性炭素を生じて正極材料に導電性を付与する。 特に、 精製された石炭ピッチは、 非常に安価であり、 かつ焼成中に融解して焼成 中の原料粒子の表面に均一に広がり、また熱分解過程を経て比較的低温(6 5 0 °C 〜8 0 0 °C) での焼成後、 高い導電性を発現する炭素析出物となる。 また、 糖類 の場合は、 糖類に含まれる多くの水酸基が原料および生じた L i F e P〇4粒子 表面に強く相互作用することにより、 結晶成長抑制作用も併せ持つため、 糖類を 用いることによって、 より優れた結晶成長抑制効果と導電性付与効果を得ること ができるからである。
ここで、 精製石炭ピッチとしては、 軟化温度が 8 0 °Cから 3 5 0 °Cの範囲内に あり、 熱分解による減量開始温度が 3 5 0 °Cから 4 5 0 °Cの範囲内にあり、 5 0 O t以上 8 0 0 °C以下までの加熱分解 ·焼成により、 導電性炭素を生成するもの が好適に用いられる。 正極性能をより高めるためには、 軟化温度が 2 0 0 °C〜3 0 0 °Cの範囲内にある精製石炭ピッチがより好ましい。 また、 精製石炭ピッチの 含有不純物としては、 正極性能に悪影響を与えることがないものが良いことは言 うまでもないが、 特に灰分が 5 0 0 0 p p m以下であることが好ましい。
さらに、 糖類としては、 2 5 0 °C以上 5 0 0 未満の温度域において分解を起 こし、 かつ 1 5 0でから前記温度域までの昇温過程において一度は少なくとも部 分的に融液状態をとり、 さらに 5 0 0 °C以上 8 0 0 °C以下までの加熱分解'焼成 によって導電性炭素を生成する糖類が特に好ましい。 かかる特定の性質を有する 糖類は、 融解により加熱反応中の L i F e P〇4粒子の表面に好適にコートされ、 加熱分解後生じた L i F e P 04粒子表面に導電性炭素を良好に析出するととも に、 この過程で上記したように結晶成長を抑制するからである。 ここで、 良好な 導電性を生じさせるために、 加熱分解温度は、 好ましくは 5 7 0 °C以上 8 5 0 °C 以下、 より好ましくは 6 5 0 °C以上 8 0 0 °C以下に設定できる。 また、 上記糖類 は加熱分解によって、 該糖類の焼成前の乾燥重量に対し、 少なくとも 1 5重量% 以上、 好ましくは 2 0重量%以上の導電性炭素を生じ得るものがよい。 これは、 生じる導電性炭素の量的な管理を容易にするためである。 以上のような性質を有 する糖類としては、 例えばデキストリンなどのオリゴ糖や、 可溶性でんぷん、 加 熱により融解しやすい架橋の少ないでんぷん (例えば 5 0 %以上のアミロースを 含むでんぷん) 等の高分子多糖類が挙げられる。
上記導電性炭素や、精製石炭ピッチ、糖類に代表される導電性炭素前駆物質は、 適切なタイミングで原料 (中間生成物を含む) 中に混合して添加される。 添加時 には、 必要に応じて原料と充分に混合するための操作、 例えば粉碎ゃ混練を行う こともできる。
導電性炭素や導電性炭素前駆物質は、 生じる正極材料中において、 導電性炭素 の重量濃度が 0 . 1 %以上 1 0 %以下、 好ましくは 0 . 5 %以上 7 %以下、 より好 ましくは 1 %以上 5 %以下となるように添加することができる。
本発明方法において、 焼成は、 一連の昇温およびこれに引き続く温度保持過程 の一回のみにより実施する方式に限らず、 例えば第一段階のより低温域での焼成 過程(通例常温〜 3 0 0ないし 4 5 0での温度範囲;以下、 「仮焼成」 と記すこと がある)、および第二段階のより高温域での焼成過程 [通例常温〜焼成完了温度(5 0 0 °Cないし 8 0 0で程度) ;以下、 「本焼成」 と記すことがある] の 2段階に分 けて行うこともできる。 この場合、 以下のタイミングで導電性炭素や導電性炭素 前駆物質の混合を行うことにより、 得られる正極材料の性能をより向上させるこ とができる。
仮焼成においては、 正極材料の原料が加熱により最終的な正極材料に至る中間 的な状態まで反応し、 その際、 多くの場合は熱分解によるガス発生を伴う。 仮焼 成の終了温度としては、 発生ガスの大部分が放出し終わり、 かつ最終生成物の正 極材料に至る反応が完全には進行しない温度 (すなわち、 より高温域での第二段 階の本焼成時に L i F e P〇4中の構成元素の再拡散 ·均一化が起こる余地を残 した温度) が選択される。
仮焼成に続く本焼成では、 構成元素の再拡散,均一化が起こるとともに、 正極 材料への反応が完了し、 しかも焼結などによる結晶成長を極力防げるような温度 域まで昇温および温度保持がなされる。
導電性炭素前駆物質、 特に加熱により融解する石炭ピッチや糖類を用いる場合 は、 仮焼成前の原料に添加することも可能であるが (この場合でも相応の正極性 能向上効果が得られる)、さらに高性能の正極材料を得るには、仮焼成後の原料 (既 に原料からのガス発生の大半が終了し、 中間生成物となった状態) に添加し、 本 焼成を行うことがより好ましい。 つまり、 焼成過程における仮焼成と本焼成との 間に、 原料への導電性炭素前駆物質の添加工程を設けることになる。
これにより、 加熱により融解 '熱分解する石炭ピッチや糖類等の物質が、 原料 から発生するガスにより発泡することを防ぎ、 より均一に L i F e P〇4の表面 に溶融状態で広がり、 より均一に熱分解炭素を析出させることができる。
これは以下の理由による。
すなわち、 仮焼成において 1次反応生成物の分解により発生するガスの大半が 放出されてしまう結果、 本焼成ではガスの発生が殆ど起こらず、 仮焼成後のタイ ミングで導電性炭素前駆物質を添加することにより、 均一な導電性炭素の析出が 可能になる。 このため、 得られる正極材料の表面導電性がさらに良好になり、 ま た接触が強固に安定化される。 これに対し、 仮焼成前の原料に導電性炭素前駆物 質を添加すると、 仮焼成中に原料から旺盛に発生するガスにより、 融解状態で未 だ完全には熱分解していない導電性炭素前駆物質が発泡し、 均一な析出が妨げら れる。 また、 既に導電性を有し、 加熱による重量減少、 形態変化やガス発生が最早殆 ど起こらなくなった炭素 (導電性炭素;例えば、 スス、 カーボンブラックなどの 黒鉛質炭素や無定形炭素など) を添加する場合は、 仮焼成前の原料にこれらの所 定量を混合し、 仮焼成から一連の焼成過程を開始することが好ましい。 これによ り、 加熱反応する原料と該導電性炭素との接触時間を長く取ることができ、 その 間に反応によって生じる L i F e P〇4の構成元素の拡散により、 導電性炭素の 粒界に L i F e P 04が入り込み、 より均一で安定な炭素— L i F e P O ^ 合体 を形成するとともに、 L i F e P 04粒子同士の焼結を効果的に防止できるから である。
また、 導電性炭素前駆物質、 例えば加熱により融解,熱分解する石炭ピッチや 糖類等の物質と、 導電性炭素との両方を添加することは、 高い正極性能を持つ正 極材料を得る上で有効である。 この場合、導電性炭素は仮焼成前の原料に添加し、 加熱により融解 ·熱分解する石炭ピッチや糖類等の物質は仮焼成後の原料に添加 することが好ましい。
本発明のさらに好ましい態様においては、所定量の水素や水分(水、水蒸気等) を継続的に炉内に不活性ガスとともに供給しながら原料を焼成する。 例えば、 焼 成過程の全時間に渡って、 または特に 5 0 0 °C以下から焼成完了までの温度、 好 ましくは 4 0 0 °C以下から焼成完了までの温度、 より好ましくは 3 0 0 °C以下か ら焼成完了までの焼成温度において、 水素や水分を添加することができる。
気体である水素を用いる場合、 一般に採用されるような 3 0 0〜9 0 0 °Cに至 る焼成過程において、 適切な温度範囲及び時間を選んで必要十分な量の水素を供 給でき、 L i F e P〇4表面の酸素原子への付加や脱酸素、 L i F e P〇4の還元 等を効果的に起こすことが可能である。
本発明方法では、 水素は、 第二段階の焼成時の、 少なくとも 5 0 0 °C以上の温 度範囲において添加することができる。 例えば第二段階の焼成時の好ましくは 5 0 0 °C以下から焼成完了温度までの温度範囲にわたって、 より好ましくは 4 0 O t:以下から焼成完了温度まで、 望ましくは 3 0 0 °C以下から焼成完了温度まで の範囲 (例えば、 ほぼ焼成期間全域) にわたつて添加することができる。 この範 囲においては、 恐らくは後述する理由から、 結晶成長の抑制が効果的に起こる。 さらに、 第一段階の焼成時においても水素を添加すると、 その還元性により L i F e P 04の酸化が防止できる等の効果が期待できる。
上記温度範囲における雰囲気中の水素の体積濃度は、およそ 0 . 1 %以上 2 0 % 以下とすることができ、 1 %以上 1 0 %以下とすることが好ましい。 これによつ て、 前記遷移金属化合物からなる L i F e P〇4の結晶成長が好適に抑制される。 本発明者らによる研究では、 正極材料の原料を、 酸素ガス不存在下で水素およ び/または水分を供給しながら焼成すると、 生じる L i F e P 04の粒子の結晶 性にわずかな乱れが生じ、生成する 1次粒子がより細粒化されることが判明した。 すなわち、 水素および水分は有力な結晶成長抑制剤となることが実証された。 こ のメカニズムは未だ明らかではないが、 焼成中に原料から合成され、 成長する L i F e P 04の結晶粒子の成長面において、 表面酸素原子に水素が結合して水酸 基を生じたり、 その水酸基から生成した水分子が再脱離したりすることにより、 結晶表面構造に乱れや不整合が生じる結果、 粒子の成長が抑制されるものと考え られる。
水は、 水素と同様に結晶成長抑制効果を有する。 その理由は未だ明らかではな いが、 水素ガス添加時と同様に、 原料および正極活物質の表面に水酸基を生じさ せ、 これが結晶成長を遅らせるためではないかと推定される。 また、 水蒸気は、 導電性炭素または熱分解により導電性炭素を生じ得る物質と高温 (約 5 0 0 °C以 上) で接触することによって、 いわゆる水性ガス反応により水素と一酸化炭素を 生じ、 この水素によっても結晶成長抑制効果および還元効果が得られる。つまり、 水分を連続的に供給し続けた場合、 5 0 0 °C以上の高温域においても、 水性ガス 反応によって、 より多くの水素を確実に、 かつ継続的に発生させることが可能で あり、結晶成長抑制作用および還元作用を最大限に発揮させることが可能となる。 水分の供給方法としては、 炉内に噴霧するか、 好ましくは予気化して水蒸気の 形で供給する。 供給温度範囲および供給量は水素の場合と同様にすることができ る。 すなわち、 水は、 第二段階の焼成時の、 少なくとも 5 0 0 以上から焼成が 完了する温度範囲において添加することが好ましい。 例えば好ましくは第二段階 の焼成時の 5 0 以下から焼成完了温度までの温度範囲にわたって、 より好ま しくは 4 0 0 °C以下から焼成完了温度まで、 望ましくは 3 0 0 °C程度から焼成完 了温度までの範囲 (例えば、 ほぼ焼成期間全域) にわたつて、 添加することがで きる。 この範囲においては、 恐らくは前記遷移金属化合物の表面酸素原子への水 素付加や水酸基形成が良好に起こりやすいため、 結晶成長の抑制が効果的に起こ ると考えられる。 なお、 第一段階の焼成時に水分を添加することもできる。
上記温度範囲における雰囲気中の水蒸気の体積濃度は、 およそ 0 . 1 %以上 2 0 %以下とすることができ、 1 %以上 1 0 %以下とすることが好ましい。 これに よって、 L i F e P 04の結晶成長が好適に抑制される。
また、 本焼成中において水素を添加して焼成する場合、 添加された水素 (水分 から生じる水素を含む) が、 加熱により融解,熱分解する石炭ピッチや糖類等の 導電性炭素前駆物質に接触すると、恐らくは該物質の融液粘性を低下させるため、 前述の炭素析出法において、 さらに良好な状態を実現できる。 例えば、 導電性炭 素前駆物質として、 軟化温度が 8 0 °Cから 3 5 0 °Cの範囲内にあり、 熱分解によ る減量開始温度が 3 5 0 °Cから 4 5 0 °Cの範囲内にあり、 5 0 0 °C以上 8 0 0 °C 以下までの加熱分解により、導電性炭素を生成する精製石炭ピッチを用いる場合、 焼成過程で融解状態になった石炭ピッチに水素 (水分から生じる水素を含む) が 作用すると、 その粘性が低下し、 流動性が向上して得られる正極材料中で極めて 均一かつ被覆厚みの薄い析出状態が実現できる。
本発明製造方法の概要を二段階焼成の場合を例に挙げて示す。
まず、 二段階に分けて行われる焼成の第一段階の仮焼成後に導電性炭素前駆物 質を添加する場合は、 [原料の粉碎、混合、擂潰等を行う工程]、 [第一段階の焼成 工程]、 [導電性炭素前駆物質の添加 (必要に応じて、 粉砕、 混合、 擂潰等を行う こともできる)]、 [第二段階の本焼成工程] の順に実施される。
また、 二段階に分けて行われる焼成の第一段階の仮焼成前に導電性炭素を添加 し、かつ第一段階の仮焼成後に導電性炭素前駆物質を添加する場合は、 [導電性炭 素の添加を行う工程 (原料とともに粉砕、 混合、 擂潰等を行うこともできる)]、 [第一段階の仮焼成工程]、 [導電性炭素前駆物質の添加(必要に応じて、原料(中 間体) とともに粉碎、 混合、擂潰等を行うことができる)]、 [第二段階の本焼成ェ 程] の順に実施される。
さらに、 二段階に分けて行われる焼成の第一段階の仮焼成前に導電性炭素を添 加する場合は、 [導電性炭素の添加を行う工程 (必要に応じて原料とともに粉枠、 混合、擂潰等を行うこともできる)]、 [第一段階の仮焼成工程]、 [必要に応じて原 料 (中間体) の粉砕、 混合、 擂潰等を行う工程]、 [第二段階の本焼成工程] の順 に実施される。
以上において、 水素または水分を添加する場合は、 少なくとも第二段階の本焼 成工程の一部において、 好ましくは第二段階の本焼成工程全域において、 さらに 望ましくは、 これに加えて第一段階の仮焼成工程の少なくとも一部においても添 加される。 また、 先に述べたように、 焼成中に添加する水素としては、 1次原料 である金属鉄と溶液中でリン酸イオンを遊離する化合物 (リン酸、 五酸化リン、 リン酸水素二アンモニゥム等) を反応させて焼成前駆体を合成した時に副生成す る水素を利用することもできる。 その際、 一連の工程を繰り返して数バッチ製造 する場合には、焼成工程と次のバッチの焼成前駆体合成工程を同時に行えるため、 後者で発生する水素を前者で利用することも可能である。
以上のようにして得られる本発明の正極材料を使用した 2次電池としては、 例 えば、 金属リチウム電池、 リチウムイオン電池、 リチウムポリマー電池等を挙げ ることができる。
以下、 リチウムイオン電池を例に挙げ、 2次電池の基本構成を説明する。 リチ ゥムイオン電池は、 俗にロッキングチェア型とか、 シャトルコック (パトミント ンの羽根) 型などと言われるように、 充放電に伴い、 負極、 正極活物質の間を L i +イオンが往復することを特徴とする 2次電池である (図 1参照)。 充電時には 負極 (現行系は黒鉛などのカーボンが用いられる) の内部に L i +イオンが挿入 されて層間化合物を形成し (この時、 負極力一ボンが還元され、 L i +の抜けた 正極が酸化される)、 放電時には、 正極の内部に L i +イオンが揷入されて鉄化合 物一リチウムの複合体を形成する (この時、 正極の鉄が還元され、 L i +の抜け た負極は酸化されて黒鉛等に戻る)。 L i +イオンは充放電の間、 電解質中を往復 し、 同時に電荷を運ぶ。 電解質としては、 例えばエチレンカーボネート、 プロピ レンカーボネ一ト、 ァープチロラクトンなどの環状有機溶媒と、 例えばジメチル カーボネート、 ェチルメチルカーボネート等の鎖状有機溶媒との混合溶液に、 例 えば L i P F 6、 L i C F 3 S 03、 L i C 1〇4等の電解質塩類を溶解させた液状 電解質、 これらの液状電解質を高分子ゲル状物質に含浸させたゲル電解質、 部分 架橋ポリェチレンォキシドに前記電解質を含浸させたもの等の固体ポリマー電解 質等が用いられる。 液状電解質を用いる場合には、 正極と負極が電池内で短絡し ないようにポリオレフイン製等の多孔質隔膜 (セパレー夕) をそれらの間に挟ん で絶縁させる。 正極および負極は、 正極材料および負極材料にそれぞれカーボン ブラック等の導電性付与剤を所定量加え、 例えばポリ 4弗化工チレンやポリ弗化 ビニリデン、 フッ素樹脂等の合成樹脂、 エチレンプロピレンゴムなどの合成ゴム 等の結着剤および必要な場合はさらに極性有機溶媒を加えて混練、 薄膜化させた ものを用い、 金属箔ゃ金属網等で集電して電池が構成される。 一方、 負極に金属 リチウムを用いた場合、 負極では L i (〇) /L i +の変化が充放電とともに起 こり、 電池が形成される。
以上のように、 本発明によれば、 安価で入手が容易な 1次原料から直接高純度 で高活性な 2次電池用正極材料 L i F e P 04を製造することができる。 しかも、 製造過程で沈澱の濾別などの煩雑な処理操作は必要としない。 したがって、 本発 明の製造方法は、 工業的な規模での 2次電池用正極材料の製造において十分に利 用可能な実用性の高い製造技術である。
また、 本発明方法によって製造された正極材料 L i F e P〇4を用いた 2次電 池は、実用レベルの十分な電圧効率と有効電池放電容量を有する 2次電池である。 次に、実施例等により、本発明を更に詳細に説明するが、本発明はこれらによつ て制約されるものではない。
実施例 1
( 1 ) 正極材料の調製:
正極材料 L i F e P〇4を、 以下の手順で合成した。
4.5 gの鉄粉 [325メッシュ (44 m) アンダー (純度 99.9 %):株式 会社ニラコ製] に、 9.2901 gの 85%H3P04 (和光純薬工業株式会社製) を加え、 自動擂潰機により擂潰しながら 2時間溶解反応させた (擂潰中に粘度が 上昇した場合は蒸留水を加え、 粘度を下げて擂潰を継続した)。
得られた反応物を、 さらに遊星ポールミルで 2時間微粉砕した後、 3. 381 gの L i OH · H20を加えて遊星ポールミルで 1時間粉砕を行った。 次に、 ェ バポレーターで水分を除去し、 デシケ一夕中で二日間真空乾燥した後、 0. 66 30 gの石炭ピッチ (アドケムコ社製 ' 250 軟化品) を添加して手動で 5分 間擂潰を行い、 1次反応生成物 (焼成前駆体) を得た。
仮焼成は、 窒素雰囲気下、 400 Cで 5時間行った。 空冷後、 炉より取出し、 手動で 5分間擂潰した (仮焼成後中間体)。
本焼成は、 窒素雰囲気下、 300°Cに 5時間保持した後、 725°Cで 10時間 行った。 これにより、 目的の正極材料を得た。
上記 1次反応生成物、仮焼成後中間体および正極材料について、 X線回折を行つ た。 その結果を図 2〜図 4にそれぞれ示す。 合成された正極材料は、 X線回折に よりオリビン型結晶構造を有する L i F e P〇4であると同定された。
また、 X線回折の結果、 仮焼成後中間体(図 3) では金属鉄が残存していたが、 本焼成後の正極材料(図 4)では金属鉄のピークはほとんど消滅していた。 また、 本焼成後の正極材料の表面を電子顕微鏡で観察したところ、 0. 5 um以下の微 細な粒状結晶の凝集物 (約 前後) が見られ、 粒状結晶の大きさのばらつき や針状結晶の存在はほとんど認められず、 均一な結晶形成が行われたことが示さ れた。
得られた正極材料についての元素分析結果を以下に示す。
<元素分析結果 > (Pを基準:モル比)
L i : F e : P = 0. 987 : 0. 989 : 1
C 4. 35重量%
(2) 2次電池の調製:
この正極材料と、 導電性付与材としてのアセチレンブラック [デンカブラック (登録商標);電気化学工業株式会社製、 50%プレス品] と、 結着材としての未 焼成 PTFE (ポリテトラフルォロエチレン) 粉とを重量比で 70.6/24.4 Z 5となるように混合 '混練して、厚さ 0.7 mmのシ一ト状に圧延し、 これを直 径 1.0 cmに打抜いたペレツトを正極とした。
ステンレス製コイン電池ケース(型番 CR 2032)に金属チタン網、金属ニッ ケル網をそれぞれ正負極集電体としてスポッ卜溶接し、 前記正極及び金属リチウ ム箔負極を多孔質ポリエチレン製隔膜セルガード 3501 (セルガード社製) を 介して組入れ、 電解液として 1Mの L i PF6を溶解したジメチルカ一ポネ一卜 Zエチレンカーボネートの 1/1混合溶液を満たして封入し、 コイン型リチウム 2次電池を作製した。 正負極、 隔膜、 電解液等の一連の電池組立ては、 アルゴン 置換されたグロ一ブポックス内で行った。
以上のようにして得た正極材料を組み込んだ 2次電池について、 正極ペレツト の見かけ面積当たりの電流密度 0.5mAZcm2にて、 3.0 V〜4.0 Vの作動 電圧範囲で充放電を繰り返したところ、 1〜11サイクルの初期放電容量は図 5 に示すとおりであった(初期放電容量は、生成物中の正極活物質量で規格化した)。 また、 10サイクル経過時点での放電容量は、 124. 5mAhZgであり、 それ以後も増加が続き、 20サイクル後には 131. OmAh/gとなった。 実施例 2
( 1 ) 正極材料の調製:
正極材料 L i F e P〇4を、 以下の手順で合成した。
4.5 gの鉄粉 [325メッシュ (44 tm) アンダー (純度 99.9 %):株式 会社ニラコ製] に、 9.2901 gの 85%H3P04 (和光純薬工業株式会社製) を加え、 自動擂潰機により擂潰しながら 2時間溶解反応させた (擂潰中に粘度が 上昇した場合は蒸留水を加え、 粘度を下げて擂潰を継続した)。
得られた反応物 (焼成前駆体) を、 遊星ポールミルで 2時間微粉碎した後、 3. 381 gの L i〇Η · H20を加えて遊星ポールミルで 1時間粉砕を行った後、 エバポレー夕一で水分を除去し、 デシケ一夕一中で二日間真空乾燥した。
仮焼成は、 窒素雰囲気下、 400°Cで 5時間行った。 空冷後、 炉より取出し、 0. 6630 gの石炭ピッチ (アドケムコ社製' 250°C軟化品) を添加して手 動で 5分間擂潰を行った (仮焼成後中間体)。
本焼成は、 窒素雰囲気下、 300°Cに 5時間保持した後、 725 で 10時間 行った。 これにより、 目的の正極材料を得た。
上記仮焼成後中間体および正極材料について、 X線回折を行った。 その結果を 図 6および図 7にそれぞれ示す。 合成された正極材料は、 X線回折によりオリビ ン型結晶構造を有する L i F e P〇4であると同定された。
また、 X線回折の結果、 仮焼成後中間体 (図 6)では金属鉄が残存していたが、 焼成後の正極材料 (図 7) では金属鉄のピークはほとんど消滅していた。 また、 本焼成後の正極材料の表面を電子顕微鏡で観察したところ、 0. 5 m以下の微 細な粒状結晶の凝集物 (約 l^m前後) が見られ、 粒状結晶の大きさのばらつき や針状結晶の存在はほとんど認められず、 均一な結晶形成が行われたことが示さ れた。 得られた正極材料についての元素分析結果を以下に示す。
<元素分析結果 > (Pを基準:モル比)
L i : F e : P=0. 997 : 0. 989 : 1
C 3. 96重量%
(2) 2次電池の調製:
得られた正極材料について、 実施例 1と同様にして 2次電池を調製した。 この 2次電池について、正極ペレツトの見かけ面積当たりの電流密度 0.5mA/cm 2にて、 3.0V〜4.0Vの作動電圧範囲で充放電を繰り返したところ、 1〜1 0サイクルの初期放電容量は図 8に示すとおりであった (初期放電容量は、 生成 物中の正極活物質量で規格化した)。
また、 10サイクル経過時点での放電容量は、 144. 7mAh/gであり、 それ以後も増加がつづき、 20サイクル後には 147. 2mAh/gとなった。 以上、 実施例 1および実施例 2に示されるように、 本発明方法によれば、 安価 で入手が容易な 1次原料から、 オリビン型リン酸鉄リチウム L i Fe P04を直 接合成できることが示された。実施例で得られた正極材料の放電容量については、 改善の余地が若干残されているが、 本発明製造方法は、 L i F e P〇4の新しい 合成法として利用し得る十分な実用性を備えた方法であると評価できる。 また、 実施例 1と実施例 2との比較では、 仮焼成前のタイミングで石炭ピッチを添加し た実施例 1よりも、 仮焼成後のタイミングで石炭ピッチを添加した実施例 2の方 が放電容量が大きくなつた。 このことから、 放電容量を向上させる手段として、 導電性炭素前駆物質の混合および添加タイミングの制御等が有効であることも示 された。
実施例 3
( 1 ) 正極材料の調製:
正極材料 L i F e.P04を、 以下の手順で合成した。
1.5 gの鉄粉 [325メッシュ (44 m) アンダー (純度 99.9%):株式 会社ニラコ製] に、 3.0967 gの 85%H3P〇4 (和光純薬工業株式会社製) と 1. 1 191 c cの塩酸 (L i、 F eおよび P〇4に対し略等モル添加) をメ ノウ乳鉢で擂潰しながら 2時間粉碎反応させた。 その際、 適宜純水を滴下して粘 性を下げ、 粉碎を続けた後、 ビーカーに移して超音波照射を 40分間実施して反 応を進行させた。その後、遊星ポールミルにて 2時間粉碎し、水酸化リチウム 1. 1270 gを添加して遊星ポールミルで 1時間粉碎を行った。その後、エバポレー ターで水分除去を行い、 真空デシケ一夕で 1日乾燥して焼成前駆体を得た。
この焼成前駆体について、 X線回折を行ったところ、 リン酸第一鉄 8水和物お よびリン酸リチウム以外に塩化第一鉄 4水和物の生成が認められ、 また塩化リチ ゥムの生成も示唆されたが、 金属鉄の残存は認められなかった。 なお、 焼成前駆 体についての X線回折結果の図示は省略する。
得られた焼成前駆体に対し、 5%H2+ 95%Ar中 400°Cで 5時間仮焼成 を行い、 この仮焼成後中間体に 0. 2941 gの石炭ピッチ (アドケムコ社製、 250°C軟化品) を添加して擂潰後、 5%H2+95%Ar中 725°Cで 10時 間本焼成を行い、 目的の正極材料を得た。
上記正極材料について、 X線回折を行った。 その結果を図 9に示す。 合成され た正極材料は、 X線回折によりオリビン型結晶構造を有する L i F e P04であ ると同定された。 また、 X線回折の結果、 焼成後の正極材料 (図 9) では金属鉄 のピークはほとんど消滅していた。 また、 本焼成後の正極材料の表面を電子顕微 鏡で観察したところ、 0. 5 ^m以下の微細な粒状結晶の凝集物(約 l ^m前後) が見られ、粒状結晶の大きさのばらつきや針状結晶の存在はほとんど認められず、 均一な結晶形成が行われたことが示された。
得られた正極材料についての元素分析結果を以下に示す。
<元素分析結果 > (Pを基準:モル比)
L i : F e : P = 0. 987 : 0. 989 : 1
C 4. 80重量% (2) 2次電池の調製:
この正極材料と、 導電性付与材としてのアセチレンブラック [デンカブラック (登録商標);電気化学工業株式会社製、 50%プレス品] と、 結着材としての未 焼成 PTFE (ポリテトラフルォロエチレン)粉とを重量比で 72.2 : 23. 8 : 5となるように混合、擂潰して、厚さ 0.6 mmのシート状に圧延し、 これを直径 1. 0 cmに打抜いたペレツトを正極とした。
ステンレス製コイン電池ケース(型番 CR 2032)に金属チタン網、金属ニッ ケル網をそれぞれ正負極集電体としてスポット溶接し、 前記正極及び金属リチウ ム箔負極を多孔質ポリエチレン製隔膜セルガード 3501 (セルガード社製) を 介して組入れ、 電解液として 1Mの L i PF6を溶解したジメチルカーポネート /エチレンカーボネートの 1/1混合溶液を満たして封入し、 コイン型リチウム 2次電池を作製した。 正負極、 隔膜、 電解液等の一連の電池組立ては、 アルゴン 置換されたグローブボックス内で行った。
以上のようにして得た正極材料を組み込んだ 2次電池について、 正極ペレツト の見かけ面積当たりの電流密度 0.5mA/ cm2にて、 3.0V〜4.0Vの作動 電圧範囲において折り返し定電流条件 浙り返し時に電流オフ区間を 1時間挿入 した) で充放電を繰り返したところ、 1〜1 1サイクルの初期放電容量は図 10 に示すとおりであった (初期放電容量は、生成物中の正極活物質量で規格化した) また、 最大放電容量 (元素分析の炭素量で補正した値) は、 156. ImAh /gであった。
実施例 4
(1) 正極材料の調製: ' 正極材料 L i F e P〇4を、 以下の手順で合成した。
1.5 gの鉄粉 [325メッシュ (44 m) アンダー (純度 99.9%):株式 会社ニラコ製] に、 3.0967 gの 85%H3P04 (和光純薬工業株式会社製) と 3. 386 l gのシユウ酸 (L i、 F eおよび P〇4に対し略等モル添加) を メノウ乳鉢で擋潰しながら 2時間粉砕反応させた。 その際、 適宜純水を滴下して 粘性を下げ、 粉砕を続けた後、 ビーカーに移して超音波照射を 30分間実施して 反応を進行させた。 その後、 遊星ポールミルにて 2·時間粉砕し、 水酸化リチウム 1. 1270 gを添加して遊星ポールミルで 1時間粉砕を行った。 その後、 エバ ポレ一夕一で水分除去を行い、 真空デシケ一夕一で 1日乾燥して焼成前駆体を得 た。
この焼成前駆体について、 X線回折を行ったところ、 リン酸第一鉄 8水和物の 結晶ピークは認められず、 シユウ酸第一鉄 2水和物 [F e C24 * 2H20] と リン酸リチウムが生成しており、 金属鉄の残存はほとんど認められなかった。 な お、 焼成前駆体についての X線回折結果の図示は省略する。
得られた焼成前駆体に対し、 5 %H2+ 95 %A r中 400°Cで 5時間仮焼成 を行い、 この仮焼成後中間体に 0. 2941 gの石炭ピッチ (アドケムコ社製、 250°C軟化品) を添加して擂潰後、 5%H2+95%Ar中 725°Cで 10時 間本焼成を行い、 目的の正極材料を得た。
上記正極材料について、 X線回折を行った。 その結果を図 11に示す。 合成さ れた正極材料は、 X線回折によりオリビン型結晶構造を有する L i Fe P〇4で あると同定された。
また、 X線回折の結果、 焼成後の正極材料 (図 1 1) では金属鉄のピークはほ とんど消滅していた。 また、 本焼成後の正極材料の表面を電子顕微鏡で観察した ところ、 0. 5 m以下の微細な粒状結晶の凝集物 (約 1 m前後) が見られ、 粒状結晶の大きさのばらつきや針状結晶の存在はほとんど認められず、 均一な結 晶形成が行われたことが示された。
得られた正極材料についての元素分析結果を以下に示す。
<元素分析結果 > (Pを基準:モル比)
L i : F e : P = 0. 982 : 0. 989 : 1
C 4. 85重量% (2) 2次電池の調製:
得られた正極材料について、 実施例 3と同様にして 2次電池を調製した。 この 2次電池について、正極べレットの見かけ面積当たりの電流密度 0.5 m A/ c m 2にて、 3.0V〜4.0Vの作動電圧範囲において折り返し定電流条件 (折り返 し時に電流オフ区間を 1時間挿入した) で充放電を繰り返したところ、 1〜11 サイクルの初期放電容量は図 12に示すとおりであった (初期放電容量は、 生成 物中の正極活物質量で規格化した)。
また、 最大放電容量 (元素分析の炭素量で補正した値) は、 144. 7mAh Zgであった。
上記実施例 3および実施例 4から、 原料中の鉄、 リチウム、 リン酸イオンなど に対し、略等モルの塩酸またはシユウ酸を添加して得られた正極材料については、 それぞれ約 156mAhZg、 約 143 mA h/ gの放電容量を得た。 前者 (実 施例 3;塩酸添加) は、 従来用いられている原料系から得られる導電性炭素析出 L i FeP〇4と同等もしくはそれを超えるレベルの容量であった。 後者 (実施 例 4 ;シユウ酸添加) は、 ほぼ同条件で酸を添加しない場合 (実施例 2) と比較 して僅かに小さな値となった。
また、 塩酸またはシユウ酸の添加により合成した焼成前駆体の焼成中において は、 それぞれ異なる反応経路でリン酸鉄リチウム正極材料の合成反応が進行する と考えられる。 塩酸を添加して合成した焼成前駆体由来の正極材料 (実施例 3) では、図 10に示すように放電容量が 156mAhZgに達した。 このことより、 塩化第一鉄、塩化リチウムおよびリン酸を主体とする焼成前駆体から、焼成によつ て非常に効率的にリン酸鉄リチウムが得られることが判る。 一方、 シユウ酸を添 加して合成した焼成前駆体由来の正極材料の場合 (実施例 4) は、 塩酸添加のよ うに高い放電容量は得られていないが、 鉄の溶解を促進する効果が認められた。 実施例 5
正極材料 L i F e P〇4を、 以下の手順で合成した。 化学量論比の鉄粉 [和光純薬工業株式会社製; 325メッシュ (44 アン ダ一、 純度 99.9%以上)] 6. 0 gと五酸化リン (和光純薬工業株式会社製) 12. 3868 gに純水 100mlを加え、 水冷冷却管を取り付けたガラス製三 角フラスコに入れて、 ホットスターラーで 100°Cに加熱しながら 3日間 N2ガ ス中で還流した (以下、 本製法を 「還流法」 と記す)。還流後の内容物に水酸化リ チウム 4. 508 gを加えてよく攪拌した。 内容物を取出してエバポレーターで 水分除去し、 真空デシケ一夕一中で 1日乾燥して焼成前駆体を得た。
この焼成前駆体について、 X線回折測定を行ったところ、 リン酸第一鉄 8水和 物およびリン酸リチウムの生成が認められ、 金属鉄の回折ピークは認められな かった。 なお、 焼成前駆体についての X線回折結果の図示は省略する。
得られた焼成前駆体に対し、 5%H2+95%Ar中 400°Cで 5時間仮焼成 を行い、 この仮焼成後中間体に 1. 1764 gの石炭ピッチ (アドケムコ社製、 250°C軟化品) を添加して擂潰後、 5%H2+ 95%Ar中 725°Cで 10時 間本焼成を行い、 目的の正極材料を得た。
上記正極材料について、 X線回折を行った。 その結果を図 13に示す。 合成さ れた正極材料は、 X線回折によりオリビン型結晶構造を有する L i Fe P〇4で あると同定され、 残留金属鉄の結晶ピークは認められなかつた。
得られた正極材料についての元素分析結果を以下に示す。
<元素分析結果 > (Pを基準:モル比)
L i : F e : P = 0. 997 : 1. 002 : 1
C 3. 73重量%
(2) 2次電池の調製:
得られた正極材料について、 実施例 3と同様にして 2次電池を調製した。 この 2次電池について、正極ペレツ卜の見かけ面積当たりの電流密度 0.5mAZcm 2にて、 3.0V〜4.0Vの作動電圧範囲において折り返し定電流条件 (折り返 し時に電流オフ区間を 1時間挿入した) で充放電を繰り返したところ、 1〜1 1 サイクルの初期放電容量は図 1 4に示すとおりであった (初期放電容量は、 生成 物中の正極活物質量で規格化した)。
また、 最大放電容量 (元素分析の炭素量で補正した値) は、 1 4 8 . 6 mA h Z gであった。
以上より、 還流法によっても遊星ポールミル等で原料を粉砕 ·反応させた場合 と同等の焼成前駆体を合成可能であり、 これを焼成することによって高性能の正 極材料が得られることが判る。 産業上の利用可能性
本発明方法により得られる正極材料は、 例えば、 金属リチウム電池、 リチウム イオン電池、 リチウムポリマー電池等に代表される 2次電池の正極材料として利 用できる。 また、 この正極材料を使用した 2次電池は、 例えばハイブリット電気 自動車等の移動体の駆動用や、 携帯電話用等の大電流を要する電源としても適用 が期待される。

Claims

請求の範囲
1 . 溶液中でリン酸イオンを遊離する化合物と、 水と、 金属鉄とを混合して 該金属鉄を溶解させた後、 炭酸リチウム、 水酸化リチウムまたはその水和物を添 加し、 生じた反応生成物を焼成して L i F e P〇4を合成することを特徴とする、 2次電池用正極材料の製造方法。
2 . 請求項 1において、 前記焼成過程は、 常温から 3 0 0 °Cないし 4 5 0 °C に至る第一段階と、 常温から焼成完了温度に至る第二段階と、 を含み、
加熱分解により導電性炭素を生じ得る物質を、 第一段階の焼成後の原料に添加 した後、 第二段階の焼成を行うことを特徴とする、 2次電池用正極材料の製造方 法。
3 . 請求項 2において、 導電性炭素を、 第一段階の焼成前の原料に添加して 焼成を行うことを特徴とする、 2次電池用正極材料の製造方法。
4. 請求項 1において、 前記焼成過程は、 常温から 3 0 0 °Cないし 4 5 O に至る第一段階と、 常温から焼成完了温度に至る第二段階と、 を含み、
導電性炭素を、 第一段階の焼成前の原料に添加して焼成を行うことを特徴とす る、 2次電池用正極材料の製造方法。
5 . 請求項 2または請求項 3において、 前記加熱分解により導電性炭素を生 じ得る物質が、 ビチュ一メン類であることを特徴とする、 2次電池用正極材料の 製造方法。
6 . 請求項 5において、前記ビチューメン類が、軟化温度 8 0 °Cから 3 5 0 °C の範囲にあり、 加熱分解による減量開始温度が 3 5 0 °Cから 4 5 0 の範囲にあ り、 かつ、 5 0 0 °Cから 8 0 0 °Cの加熱分解 ·焼成により導電性炭素を析出し得 る石炭ピッチであることを特徴とする、 2次電池用正極材料の製造方法。
7 . 請求項 2または請求項 3において、 前記加熱分解により導電性炭素を生 じ得る物質が、 糖類であることを特徴とする、 2次電池用正極材料の製造方法。
8 . 請求項 7において、 前記糖類が、 2 5 0 °C以上 5 0 0 °C未満の温度域に おいて分解を起こし、 かつ 1 5 0 °Cから分解までの昇温過程において一度は少な くとも部分的に融液状態をとり、 さらに 5 0 0 °C以上 8 0 0 °C以下までの加熱分 解 ·焼成によって導電性炭素を生成する糖類であることを特徴とする、 2次電池 用正極材料の製造方法。
9 . 請求項 1ないし請求項 8のいずれか 1項において、 水素、 水および水蒸 気よりなる群から選ばれる 1種または 2種以上を、 少なくとも前記焼成過程にお ける 5 0 0 °C以上の温度において添加することを特徴とする、 2次電池用正極材 料の製造方法。
1 0 . 請求項 1から請求項 9のいずれか 1項に記載の方法により製造された 2次電池用正極材料 L i F e P〇4を構成要素に持つことを特徴とする 2次電 池。
PCT/JP2003/013314 2002-10-18 2003-10-17 2次電池用正極材料の製造方法、および2次電池 WO2004036671A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2003301467A AU2003301467A1 (en) 2002-10-18 2003-10-17 Method for preparing positive electrode material for secondary cell, and secondary cell
EP03756675.9A EP1553647B1 (en) 2002-10-18 2003-10-17 Method for preparing positive electrode material for secondary cell, and secondary cell
KR1020057006566A KR101061664B1 (ko) 2002-10-18 2003-10-17 2차 전지용 양극 재료의 제조방법, 및 2차 전지
CA2502592A CA2502592C (en) 2002-10-18 2003-10-17 Method for producing cathode material for secondary battery and secondary battery
US10/531,196 US7491468B2 (en) 2002-10-18 2003-10-17 Method for preparing positive electrode material for secondary cell, and secondary cell
JP2004544983A JP4448976B2 (ja) 2002-10-18 2003-10-17 2次電池用正極材料の製造方法、および2次電池
HK06100329A HK1080610A1 (en) 2002-10-18 2006-01-09 Method for producing cathode material for secondary battery and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-303931 2002-10-18
JP2002303931 2002-10-18

Publications (1)

Publication Number Publication Date
WO2004036671A1 true WO2004036671A1 (ja) 2004-04-29

Family

ID=32105092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013314 WO2004036671A1 (ja) 2002-10-18 2003-10-17 2次電池用正極材料の製造方法、および2次電池

Country Status (9)

Country Link
US (1) US7491468B2 (ja)
EP (1) EP1553647B1 (ja)
JP (1) JP4448976B2 (ja)
KR (1) KR101061664B1 (ja)
CN (1) CN100359726C (ja)
AU (1) AU2003301467A1 (ja)
CA (1) CA2502592C (ja)
HK (1) HK1080610A1 (ja)
WO (1) WO2004036671A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035295A (ja) * 2005-07-22 2007-02-08 Tayca Corp 炭素−オリビン型リン酸鉄リチウム複合粒子の製造方法、およびリチウムイオン電池用正極材料
JP2008034306A (ja) * 2006-07-31 2008-02-14 Furukawa Battery Co Ltd:The リチウム二次電池正極活物質の製造方法
JP2008052970A (ja) * 2006-08-23 2008-03-06 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法及び正極材料並びに電池
CN100389515C (zh) * 2005-11-04 2008-05-21 南开大学 磷酸铁锂及其复合金属磷化物的电极材料和制备方法
JP2008210701A (ja) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd 非水電解質二次電池用正極活物質の製造方法
JP2009029663A (ja) * 2007-07-27 2009-02-12 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体の製造方法及びリチウム、鉄及びリンを含む共沈体の製造方法
WO2010103821A1 (ja) 2009-03-13 2010-09-16 Jfeケミカル株式会社 リン酸鉄リチウムの製造方法
JP2011077036A (ja) * 2009-09-30 2011-04-14 Qinghua Univ リチウムイオン二次電池正極活物質の製造方法
WO2011086872A1 (ja) 2010-01-14 2011-07-21 Jfeケミカル株式会社 リン酸鉄リチウムの製造方法
JP2012059594A (ja) * 2010-09-10 2012-03-22 Murata Mfg Co Ltd 二次電池用電極活物質の製造方法、二次電池用電極活物質、二次電池、および、二次電池用電極活物質の前駆体
JP2012520817A (ja) * 2009-03-17 2012-09-10 ビーエーエスエフ ソシエタス・ヨーロピア リチウム−イオン−フォスフェイトの合成
JP2013514606A (ja) * 2009-12-17 2013-04-25 フォステック リチウム インコーポレイテッド アルカリ金属オキシアニオン電極材料の電気化学性能を改善するための方法、及びそれにより得られたアルカリ金属オキシアニオン電極材料
CN103303892A (zh) * 2005-06-29 2013-09-18 尤米科尔公司 制备结晶的LiFePO4粉末的方法
JP2013539167A (ja) * 2010-08-12 2013-10-17 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー リチウム2次電池用オリビン系正極材の製造方法
CN103985869A (zh) * 2014-05-29 2014-08-13 广西博士海意信息科技有限公司 锂离子电池正极材料的制备方法
WO2023036308A1 (zh) 2021-09-10 2023-03-16 上海量孚新能源科技有限公司 一种新型绿色磷酸铁锂前驱体及其制备方法、应用

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2476290T3 (es) * 2001-07-31 2014-07-14 Mitsui Engineering And Shipbuilding Co, Ltd. Procedimiento de producción de materiales de cátodo de batería secundaria y batería secundaria
KR100718020B1 (ko) * 2004-09-17 2007-05-14 주식회사 엘지화학 LiFeP04의 제조방법
TWI279020B (en) * 2004-11-03 2007-04-11 Tatung Co Ltd Preparation of olivine LiFePO4 cathode materials for lithium batteries via a solution method
JP2006155941A (ja) * 2004-11-25 2006-06-15 Kyushu Univ 電極活物質の製造方法
US7824581B2 (en) * 2007-06-18 2010-11-02 Advanced Lithium Electrochemistry Co., Ltd. Cocrystalline metallic compounds and electrochemical redox active material employing the same
KR100808446B1 (ko) * 2006-12-26 2008-03-03 건국대학교 산학협력단 리튬 전지의 LiFePO4 분말의 제조방법
CN101327920B (zh) * 2007-06-20 2010-08-11 中国科学院金属研究所 一种薄片状LiFePO4纳米晶粉体及其制备方法
JP4905267B2 (ja) * 2007-06-21 2012-03-28 ソニー株式会社 正極合剤および非水電解質電池
CN101399343B (zh) 2007-09-25 2011-06-15 比亚迪股份有限公司 锂离子二次电池正极活性物质磷酸铁锂的制备方法
TWI435493B (zh) * 2007-11-05 2014-04-21 Univ Nat Taiwan Science Tech 電池用電極材料的製造方法
DE102007058674A1 (de) 2007-12-06 2009-07-02 Süd-Chemie AG Nanopartikuläre Zusammensetzung und Verfahren zu deren Herstellung
CN101494305B (zh) 2008-01-25 2011-05-18 比亚迪股份有限公司 锂离子电池电解液和含有该电解液的电池及电池组
US8088305B2 (en) 2008-02-22 2012-01-03 Byd Company Limited Lithium iron phosphate cathode material
US8052897B2 (en) 2008-02-29 2011-11-08 Byd Company Limited Composite compound with mixed crystalline structure
US8062560B2 (en) 2008-02-29 2011-11-22 Byd Company Limited Composite compound with mixed crystalline structure
US8062559B2 (en) 2008-02-29 2011-11-22 Byd Company Limited Composite compound with mixed crystalline structure
US8057711B2 (en) 2008-02-29 2011-11-15 Byd Company Limited Composite compound with mixed crystalline structure
US8148015B2 (en) 2008-03-21 2012-04-03 Byd Company Limited Cathode materials for lithium batteries
CN101597089A (zh) 2008-06-06 2009-12-09 比亚迪股份有限公司 一种过渡金属氢氧化物及其氧化物和正极材料的制备方法
CN101640288B (zh) 2008-07-30 2012-03-07 比亚迪股份有限公司 一种锂离子电池电解液及含有该电解液的锂离子电池
US8465873B2 (en) 2008-12-11 2013-06-18 Envia Systems, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
TW201029918A (en) * 2009-02-12 2010-08-16 Enerage Inc Method for synthesizing lithium phosphate compound having olivine crystal structure
CN101540392B (zh) * 2009-04-09 2011-04-06 西安建筑科技大学 一种锂离子电池正极材料硅酸锰锂的制备方法
CN101587949B (zh) * 2009-07-02 2012-03-21 复旦大学 一种高导电性磷酸亚铁锂电池正极材料的合成方法
KR20120046297A (ko) 2009-07-31 2012-05-09 도요타지도샤가부시키가이샤 정극 활물질 및 그 제조 방법
US9318741B2 (en) * 2010-04-28 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage device
CN102447099B (zh) * 2010-10-09 2014-01-29 河南环宇集团有限公司 用铁屑、磷酸、氢氧化锂制备锂亚铁磷酸复盐正极材料的新方法
WO2012045211A1 (zh) * 2010-10-09 2012-04-12 河南环宇集团有限公司 一种锂亚铁磷酸复盐正极材料的制备方法以及制得的正极材料
WO2013010505A1 (zh) 2011-07-20 2013-01-24 台湾立凯电能科技股份有限公司 电池复合材料及其前驱体的制备方法
US9296612B2 (en) * 2012-08-24 2016-03-29 Guiqing Huang Methods of making low cost electrode active composite materials for secondary electrochemical batteries
CN103208614B (zh) * 2013-04-15 2015-10-21 黄科竣 一种锂离子电池用磷酸铁锂正极材料的合成方法
US10236512B2 (en) 2013-05-08 2019-03-19 Advanced Lithium Electrochemistry Co., Ltd. Preparation method of battery composite material and precursor thereof
CN103441266B (zh) * 2013-08-05 2015-10-28 北大先行科技产业有限公司 一种化学计量相锂离子电池正极材料及其制备方法
JP6097198B2 (ja) * 2013-10-30 2017-03-15 住友大阪セメント株式会社 電極材料及び電極並びにリチウムイオン電池
CN103647045A (zh) * 2013-11-15 2014-03-19 成都兴能新材料有限公司 正极材料LiFePO4-C的制备方法
AU2016370962B2 (en) 2015-12-16 2020-09-24 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
CN108305991A (zh) * 2017-01-11 2018-07-20 宁德时代新能源科技股份有限公司 磷酸铁锂/碳复合材料及其制备方法
CN108408709B (zh) * 2018-03-30 2021-12-14 南阳逢源新能源科技有限公司 一种无污染低成本磷酸锰铁锂晶体材料的制备工艺
EP3810358A1 (en) 2018-06-19 2021-04-28 6K Inc. Process for producing spheroidized powder from feedstock materials
KR102220358B1 (ko) * 2019-01-16 2021-02-25 금오공과대학교 산학협력단 인(p)계 복합체의 제조 방법 및 이를 포함하는 리튬 또는 나트륨 이온 이차전지
KR102644961B1 (ko) 2019-04-30 2024-03-11 6케이 인크. 리튬 란타넘 지르코늄 산화물(llzo) 분말
WO2020223358A1 (en) 2019-04-30 2020-11-05 6K Inc. Mechanically alloyed powder feedstock
WO2021118762A1 (en) 2019-11-18 2021-06-17 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
JP2023532457A (ja) 2020-06-25 2023-07-28 シックスケー インコーポレイテッド 微細複合合金構造体
CN116547068A (zh) 2020-09-24 2023-08-04 6K有限公司 用于启动等离子体的系统、装置及方法
KR20230095080A (ko) 2020-10-30 2023-06-28 6케이 인크. 구상화 금속 분말을 합성하는 시스템 및 방법
US20230238516A1 (en) * 2022-01-21 2023-07-27 Nano One Materials Corp. Method for Preparing Lithium Metal Phosphate (LMP) Cathode Materials
CN115477296A (zh) * 2022-09-30 2022-12-16 欧赛新能源科技股份有限公司 一种一步工艺制备高倍率钛掺杂磷酸锂铁的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060679A1 (en) * 1999-04-06 2000-10-12 Sony Corporation Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell
JP2000294238A (ja) * 1999-04-06 2000-10-20 Sony Corp LiFePO4の合成方法及び非水電解質電池の製造方法
JP2001250555A (ja) * 2000-03-06 2001-09-14 Sony Corp 正極活物質の製造方法及び非水電解質電池の製造方法
JP2002015735A (ja) * 2000-06-29 2002-01-18 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム鉄複合酸化物、その製造方法およびそれを用いたリチウム二次電池
EP1193786A2 (en) * 2000-09-29 2002-04-03 Sony Corporation Method for the preparation of cathode active material and method for the preparation of a non-aqueous electrolyte cell
JP2002117831A (ja) * 2000-10-05 2002-04-19 Sony Corp 正極活物質の製造方法及び非水電解質二次電池の製造方法
JP2002151082A (ja) * 2000-11-10 2002-05-24 Kansai Research Institute 鉄リン酸リチウム及びその製造方法並びにこれを用いた二次電池
JP3319258B2 (ja) * 1995-12-21 2002-08-26 ソニー株式会社 リチウム二次電池用正極活物質の製造方法及びリチウム二次電池の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289749A (ja) * 1985-10-15 1987-04-24 Mitsubishi Petrochem Co Ltd 電極材料
JP3606289B2 (ja) * 1995-04-26 2005-01-05 日本電池株式会社 リチウム電池用正極活物質およびその製造法
US6514640B1 (en) * 1996-04-23 2003-02-04 Board Of Regents, The University Of Texas System Cathode materials for secondary (rechargeable) lithium batteries
EP0810680B1 (en) * 1996-05-27 2005-05-18 SANYO ELECTRIC Co., Ltd. Non-aqueous electrolyte battery with carbon electrode
JP2001284188A (ja) * 2000-04-03 2001-10-12 Asahi Glass Co Ltd 電気二重層キャパシタ電極用炭素材料の製造方法及びこの炭素材料を用いた電気二重層キャパシタの製造方法
CA2320661A1 (fr) * 2000-09-26 2002-03-26 Hydro-Quebec Nouveau procede de synthese de materiaux limpo4 a structure olivine
ES2476290T3 (es) * 2001-07-31 2014-07-14 Mitsui Engineering And Shipbuilding Co, Ltd. Procedimiento de producción de materiales de cátodo de batería secundaria y batería secundaria

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3319258B2 (ja) * 1995-12-21 2002-08-26 ソニー株式会社 リチウム二次電池用正極活物質の製造方法及びリチウム二次電池の製造方法
WO2000060679A1 (en) * 1999-04-06 2000-10-12 Sony Corporation Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell
JP2000294238A (ja) * 1999-04-06 2000-10-20 Sony Corp LiFePO4の合成方法及び非水電解質電池の製造方法
JP2001250555A (ja) * 2000-03-06 2001-09-14 Sony Corp 正極活物質の製造方法及び非水電解質電池の製造方法
JP2002015735A (ja) * 2000-06-29 2002-01-18 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム鉄複合酸化物、その製造方法およびそれを用いたリチウム二次電池
EP1193786A2 (en) * 2000-09-29 2002-04-03 Sony Corporation Method for the preparation of cathode active material and method for the preparation of a non-aqueous electrolyte cell
JP2002117831A (ja) * 2000-10-05 2002-04-19 Sony Corp 正極活物質の製造方法及び非水電解質二次電池の製造方法
JP2002151082A (ja) * 2000-11-10 2002-05-24 Kansai Research Institute 鉄リン酸リチウム及びその製造方法並びにこれを用いた二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1553647A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954227B2 (en) 2005-06-29 2018-04-24 Umicore Crystalline nanometric LiFePO4
CN103303892A (zh) * 2005-06-29 2013-09-18 尤米科尔公司 制备结晶的LiFePO4粉末的方法
JP2007035295A (ja) * 2005-07-22 2007-02-08 Tayca Corp 炭素−オリビン型リン酸鉄リチウム複合粒子の製造方法、およびリチウムイオン電池用正極材料
CN100389515C (zh) * 2005-11-04 2008-05-21 南开大学 磷酸铁锂及其复合金属磷化物的电极材料和制备方法
JP2008034306A (ja) * 2006-07-31 2008-02-14 Furukawa Battery Co Ltd:The リチウム二次電池正極活物質の製造方法
JP2008052970A (ja) * 2006-08-23 2008-03-06 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法及び正極材料並びに電池
JP2008210701A (ja) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd 非水電解質二次電池用正極活物質の製造方法
JP2009029663A (ja) * 2007-07-27 2009-02-12 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体の製造方法及びリチウム、鉄及びリンを含む共沈体の製造方法
CN102348634A (zh) * 2009-03-13 2012-02-08 杰富意化学株式会社 磷酸铁锂的制造方法
JP2011042553A (ja) * 2009-03-13 2011-03-03 Jfe Chemical Corp リン酸鉄リチウムの製造方法
WO2010103821A1 (ja) 2009-03-13 2010-09-16 Jfeケミカル株式会社 リン酸鉄リチウムの製造方法
JP2012520817A (ja) * 2009-03-17 2012-09-10 ビーエーエスエフ ソシエタス・ヨーロピア リチウム−イオン−フォスフェイトの合成
JP2011077036A (ja) * 2009-09-30 2011-04-14 Qinghua Univ リチウムイオン二次電池正極活物質の製造方法
US8795550B2 (en) 2009-09-30 2014-08-05 Tsinghua University Method for preparing cathode active material
JP2013514606A (ja) * 2009-12-17 2013-04-25 フォステック リチウム インコーポレイテッド アルカリ金属オキシアニオン電極材料の電気化学性能を改善するための方法、及びそれにより得られたアルカリ金属オキシアニオン電極材料
WO2011086872A1 (ja) 2010-01-14 2011-07-21 Jfeケミカル株式会社 リン酸鉄リチウムの製造方法
JP2013539167A (ja) * 2010-08-12 2013-10-17 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー リチウム2次電池用オリビン系正極材の製造方法
JP2012059594A (ja) * 2010-09-10 2012-03-22 Murata Mfg Co Ltd 二次電池用電極活物質の製造方法、二次電池用電極活物質、二次電池、および、二次電池用電極活物質の前駆体
CN103985869A (zh) * 2014-05-29 2014-08-13 广西博士海意信息科技有限公司 锂离子电池正极材料的制备方法
WO2023036308A1 (zh) 2021-09-10 2023-03-16 上海量孚新能源科技有限公司 一种新型绿色磷酸铁锂前驱体及其制备方法、应用

Also Published As

Publication number Publication date
US20060147365A1 (en) 2006-07-06
KR20050089793A (ko) 2005-09-08
KR101061664B1 (ko) 2011-09-01
CN1706057A (zh) 2005-12-07
AU2003301467A1 (en) 2004-05-04
US7491468B2 (en) 2009-02-17
AU2003301467A8 (en) 2004-05-04
EP1553647A1 (en) 2005-07-13
EP1553647B1 (en) 2016-12-07
CA2502592A1 (en) 2004-04-29
CA2502592C (en) 2014-05-06
JPWO2004036671A1 (ja) 2006-02-16
CN100359726C (zh) 2008-01-02
JP4448976B2 (ja) 2010-04-14
HK1080610A1 (en) 2006-04-28
EP1553647A4 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4448976B2 (ja) 2次電池用正極材料の製造方法、および2次電池
KR100941549B1 (ko) 2차전지 양극재료의 제조방법 및 2차전지
JP4297406B2 (ja) 2次電池正極材料の製造方法、および2次電池
JP4660812B2 (ja) 蓄電池用リチウム遷移金属ホスフェート粉末
JP5650875B2 (ja) Lixm1−ym’y(xo4)nを主成分とする物質の合成法
JP4656653B2 (ja) 二次電池用正極材料、二次電池用正極材料の製造方法、および二次電池
KR101237686B1 (ko) 2차 전지용 양극 재료, 이것의 제조방법, 및 2차 전지
JP5153189B2 (ja) リチウムイオン二次電池正極材料の製造方法
US10062905B2 (en) Process for producing cathode active material for lithium ion secondary battery
JP4475882B2 (ja) 2次電池用正極材料の製造方法、および2次電池
EP2407426A1 (en) Process for producing lithium borate compound
KR20120137357A (ko) 리튬-함유 인산철 및 탄소를 포함하는 리튬 배터리
KR20110100221A (ko) 전지용 플루오르화 리튬 바나듐 폴리음이온 분말의 제조 방법
JP2003157850A (ja) 2次電池用正極材料、および2次電池
JP4120860B2 (ja) 2次電池用正極材料の製造方法、および2次電池
JP5324731B2 (ja) 2次電池正極材料の製造方法、および2次電池
Talebi-Esfandarani et al. Effects of palladium doping on the structure and electrochemical properties of LiFePO4/C prepared using the sol-gel method
CN116101995B (zh) 一种纳米氧化物制备橄榄石型磷酸盐正极材料的方法
JP2023183400A (ja) アルカリ金属イオン電池用オキソ酸系正極活物質の製造方法
JP2013251227A (ja) リチウムイオン二次電池正極材用リン酸鉄リチウム粒子およびその製造方法、ならびに上記リン酸鉄リチウム粒子を用いたリチウムイオン二次電池正極およびその正極を備えるリチウムイオン二次電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004544983

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057006566

Country of ref document: KR

Ref document number: 2502592

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20038A16740

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2003756675

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003756675

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003756675

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057006566

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006147365

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10531196

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10531196

Country of ref document: US