WO2011086872A1 - リン酸鉄リチウムの製造方法 - Google Patents
リン酸鉄リチウムの製造方法 Download PDFInfo
- Publication number
- WO2011086872A1 WO2011086872A1 PCT/JP2010/073880 JP2010073880W WO2011086872A1 WO 2011086872 A1 WO2011086872 A1 WO 2011086872A1 JP 2010073880 W JP2010073880 W JP 2010073880W WO 2011086872 A1 WO2011086872 A1 WO 2011086872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron phosphate
- lithium iron
- lithium
- iron
- acid
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for manufacturing a cathode active material for a secondary battery represented by a lithium-ion battery.
- a method for producing lithium iron phosphate is a method for producing lithium iron phosphate.
- lithium cobaltate LiCoO 2
- This lithium cobaltate is expensive and does not have sufficient thermal and chemical stability, and at a high temperature of about 180 ° C., there is a risk of igniting the organic electrolyte by releasing oxygen. The problem remains. For this reason, development of a lithium ion battery containing large-scale equipment requires the development of a cathode active material that is cheaper than conventional lithium cobaltate, and that is thermally and chemically stable and highly safe.
- the new positive electrode active material that replaces lithium cobalt oxide is considered to be promising as a olivine-type lithium iron phosphate (LiFePO 4 or less), which is an iron-based active material with less resource constraints, low toxicity, and high safety.
- LiFePO 4 or less olivine-type lithium iron phosphate
- This lithium iron phosphate is an active material with high safety because it does not release oxygen up to about 400 ° C. due to a strong P—O bond in the crystal structure, and also has an active property with good long-term stability and quick charge characteristics. It is a substance.
- lithium iron phosphate When applying lithium iron phosphate to the positive electrode active material, in order to ensure high-speed charge / discharge characteristics, which is a characteristic required for the positive electrode active material, it is necessary to improve the electronic conductivity of lithium iron phosphate and It is required to shorten the diffusion distance. As a solution to this problem, it is effective to coat the surface of lithium iron phosphate particles with a conductive substance and to refine the lithium iron phosphate particles (about 100 nm or less) to increase the reaction surface area. Yes. There is also a report that doping with other elements is effective in improving electron conductivity and stabilizing the crystal structure.
- Patent Document 1 As a method for synthesizing lithium iron phosphate for the purpose of cost reduction, a method using inexpensive iron particles as an iron source is known. For example, in Patent Document 1, first, metal iron and a compound that liberates phosphate ions are reacted in an aqueous solution, and then lithium carbonate or lithium hydroxide is added to prepare a precursor of lithium iron phosphate and then dried. In addition, a method is described in which the dried product is subjected to primary firing in a temperature range of 300 to 450 ° C., and then a material that generates conductive carbon by thermal decomposition is added and fired at 500 to 800 ° C.
- phosphoric acid which is a hardly soluble divalent iron compound
- phosphoric acid is prepared by reacting high purity metal iron of 99.9% or more with phosphoric acid when preparing the precursor. Aggregated particles of iron (Fe 3 (PO 4 ) 2 ⁇ 8H 2 O) are generated and grown, and the solution becomes a creamy high-viscosity substance having a white to light blue color. As a result, stirring of the solution becomes insufficient, and unreacted metallic iron tends to remain, and the raw materials are not mixed uniformly.
- adding acids such as hydrochloric acid and oxalic acid, is also disclosed.
- Patent Document 2 discloses a method in which iron powder, a lithium salt, and a phosphate group compound are dissolved in an organic acid aqueous solution to prepare a precursor, and then the precursor is spray-dried and then fired at a temperature of 500 ° C. or higher. Is described.
- iron is oxidized with an organic acid or mixed organic acid to produce effective divalent iron, but it is difficult to stably exist divalent iron.
- the lithium salt is lithium nitrate
- nitrate ions act as an oxidizing agent during firing.
- lithium acetate can be used as the lithium salt, lithium acetate is an expensive raw material and is therefore inappropriate for cost reduction.
- an organic compound that generates pyrolytic carbon is mixed in the precursor solution, but this organic compound may be carbonized alone at the time of firing, and the surface of the lithium iron phosphate particles is decomposed on the pyrolytic carbon. Cannot be effectively coated.
- Patent Document 3 first, iron powder is reacted in an aqueous solution containing phosphoric acid and citric acid, then lithium hydroxide is added, and further a metal oxide or a metal salt that changes to a conductive oxide by firing is added to the precursor. A method is described in which the body is prepared and dried, and finally the dried product of the precursor is calcined.
- citric acid does not act effectively as a chelating agent. Therefore, iron in the precursor is oxidized to trivalent phosphorus, which is a trivalent iron compound. Ferric acid is generated.
- vanadium oxide V 2 O 5 is described as a conductive oxide, since in the above method are added after the precursor of lithium iron phosphate has generated a vanadium oxide, vanadium is not doped It adheres to the periphery of lithium iron phosphate particles.
- Patent Document 4 discloses phosphoric acid for a battery comprising firing a mixture containing iron powder having an average particle diameter of 20 to 150 ⁇ m and an apparent density of 2 g / cm 3 or less, a phosphoric acid compound, and a lithium compound. A method for producing iron lithium is described. However, the method described in Patent Document 4 also has a problem that it is difficult to make divalent iron stably exist as in the method of Patent Document 2.
- a precursor of lithium iron phosphate uniformly mixed at an atomic level is prepared, and is inexpensive and has a high discharge capacity. It aims at providing the manufacturing method of lithium iron phosphate which can obtain the positive electrode active material which consists of lithium iron oxide stably.
- the present inventors have intensively studied to solve the above problems.
- the amount of oxygen chemically bound to the iron particles is defined, and the iron particles, phosphoric acid, It has been found that it is effective to allow a carboxylic acid and a lithium source to coexist in a reaction in an oxidizing atmosphere.
- the above reaction provides a chelate of lithium iron phosphate that is uniformly dispersed in an aqueous solution, and drying this provides a precursor of lithium iron phosphate in which the raw materials are uniformly mixed at the atomic level.
- the present invention has been made based on the above findings, and the gist thereof is as follows.
- a method for producing lithium iron phosphate comprising: a primary firing step in which the lithium iron phosphate precursor obtained in the precursor generation step is fired in a non-oxidizing atmosphere to obtain lithium iron phosphate.
- a method for producing lithium iron phosphate further comprising:
- lithium iron phosphate excellent in high-speed charge / discharge characteristics which is an important characteristic required for a positive electrode active material, can be produced stably at low cost.
- the method for producing lithium iron phosphate according to the present invention comprises adding an iron particle containing 0.5% by mass or more of oxygen to an aqueous solution containing phosphoric acid, a carboxylic acid, and a lithium source, and the above aqueous solution in an oxidizing atmosphere.
- Iron particles include reduced iron powder obtained by reducing mill scale (iron oxide) with coke, atomized iron powder obtained by pulverizing and cooling molten steel with high-pressure water, and electrolytic iron powder obtained by electrolyzing an iron salt aqueous solution and depositing it on the cathode. Etc. can be used.
- the average particle size of the iron powder is preferably 100 ⁇ m or less.
- the average particle size of ordinary general industrial iron powder is 70 to 80 ⁇ m, but since particles with a maximum particle size of 150 to 180 ⁇ m are also included, coarse particles can be removed by sieving as necessary, or by mechanical pulverization. It is more advantageous to synthesize a chelate of lithium iron phosphate by accelerating the subsequent reaction with phosphoric acid, carboxylic acid and lithium source, such as by refining coarse particles. is there.
- the oxygen contained in the iron particles refers to oxygen chemically bonded to iron, and the oxygen content is 0.5% by mass or more, which is essential for synthesizing a chelate of lithium iron phosphate. It becomes a condition.
- the oxygen content is preferably 0.6-2% by mass.
- the direct reaction between metallic iron and phosphoric acid is preferred, and iron phosphate (Fe 3 (PO 4 )) which is a hardly soluble divalent iron compound. Since 2 ⁇ 8H 2 O) aggregated particles are generated and grown, the aqueous solution becomes a creamy high-viscosity substance exhibiting white to light blue.
- the oxygen content of the iron particles is 2% by mass or less, the iron oxide scale does not segregate on the surface of the iron powder, and the reaction between the phosphoric acid and the carboxylic acid aqueous solution is not hindered. Therefore, the oxygen content of the iron particles is preferably 2% by mass or less.
- the oxygen content of the iron particles was quantified by TC436 manufactured by LECO, based on the JIS Z 613 (1992) vacuum melting infrared absorption method.
- the temperature at which mill scale (iron oxide) is reduced with coke is usually (1000 to The temperature may be lower than about 1200 ° C. (about 800 to 1000 ° C.).
- the molten steel is pulverized with high-pressure water, and positively brought into contact with air in the drying step after cooling.
- the raw iron powder is usually reduced with hydrogen to produce an oxygen content of about 0.4% by mass or less. Therefore, the iron particles used in the present invention may be adjusted for the degree of hydrogen reduction.
- the phosphoric acid is preferably an aqueous solution of orthophosphoric acid (H 3 PO 4 ), but an aqueous solution of higher-order condensed phosphoric acid (H n + 2 P n O 3n + 1 ) can also be used.
- Orthophosphoric acid is usually used in an amount of 75 to 85% by mass as an industrial product.
- 1 mol is a stoichiometric equivalent to 1 mol of iron, but about 0.1 mol may be added in excess.
- Carboxylic acid refers to an organic compound having a carboxyl group and functions as a chelating agent when a chelate of lithium iron phosphate is synthesized.
- carboxylic acid used in the present invention include carboxylic acids having a strong chelating power against iron, such as tartaric acid, malic acid, and citric acid.
- citric acid that forms a chelate that has a strong chelating power and is hardly oxidized is particularly preferable.
- the residual carbon ratio of the carboxylic acid is 3% by mass or more.
- the precursor is not oxidized by oxygen present in the non-oxidizing atmosphere.
- the non-oxidizing atmosphere refers to an inert gas atmosphere such as nitrogen or argon having an oxygen concentration of 1000 ppm or less, or an inert gas atmosphere containing a reducing gas such as hydrogen or carbon monoxide.
- the said remaining charcoal rate shall be 20 mass% or less, and when it exceeds 20 mass%, the amount of remaining charcoal after baking will become excess.
- the residual carbon ratio of the carboxylic acid is tartaric acid: 7% by mass, malic acid: 12% by mass, citric acid monohydrate: 7% by mass, oxalic acid dihydrate, acetic acid, etc. are less than 1% by mass. is there.
- the “residual carbon ratio” means carbon remaining after firing in accordance with JIS G 1211 (1995) high frequency induction furnace combustion-infrared absorption method, and divided by the original amount of carboxylic acid. Value.
- the content of carboxylic acid is preferably 0.18 to 0.5 mol, more preferably 0.2 to 0.4 mol, relative to 1 mol of iron.
- carboxylic acid content is less than 0.18 mol, the effect of chelation by the carboxylic acid is reduced, so that metal iron and phosphate ions react directly to produce hardly soluble aggregated iron phosphate particles.
- -It grows and the aqueous solution becomes a creamy high-viscosity substance having a white to light blue color. As a result, stirring of the aqueous solution becomes insufficient, and unreacted metallic iron is likely to remain, and the raw materials are not mixed uniformly.
- the synthesized lithium iron phosphate chelate is uniformly dispersed in the aqueous solution (the raw materials are uniformly mixed). Becomes excessive. As a result, the apparent discharge capacity of the finally obtained lithium iron phosphate is reduced.
- the lithium source is not particularly limited as long as it is a water-soluble lithium salt, but lithium hydroxide and lithium carbonate that do not generate harmful gas during firing are particularly preferable.
- the atmosphere in which iron particles are added to the aqueous solution containing phosphoric acid, carboxylic acid, and lithium source for reaction must be an oxidizing atmosphere.
- the chelate reaction proceeds and oxygen on the surface of the iron particles is consumed, the chelate reaction cannot be continued, and the direct reaction between metallic iron and phosphate ions is prioritized, resulting in the formation of hardly soluble aggregated iron phosphate particles. Generate and grow. Therefore, in the present invention, by setting the atmosphere during the reaction to an oxidizing atmosphere, the surface of the iron particles is appropriately oxidized to supplement oxygen, and the chelation reaction is continued.
- the oxidizing atmosphere is a state in which the surface of the iron particles in the aqueous solution can be appropriately oxidized.
- the interface of the aqueous solution is brought into contact with the oxygen-containing gas, or dissolved oxygen or oxygen-containing gas is dissolved in the aqueous solution.
- the oxygen-containing gas or dissolved oxygen or oxygen-containing gas is dissolved in the aqueous solution.
- Specific operations include stirring under an air atmosphere and air bubbling.
- the aqueous solution temperature is preferably controlled in the range of 10 to 40 ° C, more preferably 20 to 30 ° C.
- the aqueous solution is controlled within the range of 10 to 40 ° C.
- the surface of iron particles newly appearing when oxygen is consumed by the chelate reaction is appropriately oxidized by contacting with dissolved oxygen or air bubbles in the aqueous solution, and continuously.
- the aqueous solution temperature is less than 10 ° C., the chelation reaction of iron particles becomes slow, and it takes a long time to complete the reaction.
- iron particles are added to an aqueous solution containing phosphoric acid, carboxylic acid and a lithium source and exposed to an oxidizing atmosphere, whereby the carboxylic acid chelates iron via oxygen or hydroxyl groups present on the surface of the iron particles.
- carboxylic acid chelates iron via oxygen or hydroxyl groups present on the surface of the iron particles.
- phosphoric acid oxidizes and bonds iron to produce iron phosphate, and a part of the hydrogen of the carboxyl group is replaced with lithium.
- a chelate of lithium iron phosphate represented by the following chemical formula 1 is synthesized, and it is presumed that a reaction liquid in which this chelate is uniformly dispersed is obtained.
- This chelate of lithium iron phosphate is present in a dispersed state in the reaction solution, but some of the chelate may exist as aggregated particles and may become a precipitate. In such a case, in order to make the precursor solution uniform, it is desirable to make the agglomerated particles finer by wet mechanical pulverization.
- the wet pulverization method include a bead mill, a wet jet mill, and ultrasonic irradiation.
- X-ray diffraction analysis is performed on a dried product (lithium iron phosphate precursor) obtained by drying this reaction solution, a crystalline compound is not detected, and an amorphous phase caused by a chelate mixed uniformly at an atomic level. Is confirmed.
- lithium iron phosphate When doping lithium iron phosphate with other elements, it is possible to uniformly mix the elements to be doped by previously dissolving the metal or compound of the element to be doped in an aqueous solution containing phosphoric acid, carboxylic acid and a lithium source. It can.
- Ti (OH) 4 TiOSO 4 .H 2 O in the case of titanium
- FeV FeV
- V 2 O 5 VOSO 4 ⁇ 2H 2 O in the case of vanadium
- Mg, MgO, Mg (OH) 2 in the case of magnesium.
- the upper limit varies greatly depending on factors such as the ionic radius, valence, and coordination number of the doping element, so it cannot be determined unconditionally.
- the doping amount exceeds the threshold value, the formation of impurity phases or changes in the band structure There is a tendency that the characteristics are deteriorated due to localization of electrons due to.
- the inlet temperature (heating air temperature) of the spray drying apparatus is set to 150 to 250 ° C., considering that the oxidation temperature of the precursor (of lithium iron phosphate) is about 250 ° C. It is preferable. If the inlet temperature is 150 to 250 ° C., the ultimate temperature of the dried product to be produced is about 100 to 150 ° C., although it depends on the balance with the amount of liquid to be fed.
- the lithium iron phosphate precursor which is a dry product to be produced, is in powder form, and the particle size is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and even more preferably 50 ⁇ m or less.
- the particle size is more than 100 ⁇ m, coarse particles remain when the pulverization after firing is insufficient, and there is a possibility that the current collector is damaged when an electrode is produced using this as a positive electrode active material.
- the firing temperature is preferably 300 ° C. or higher, and more preferably 350 to 700 ° C.
- the upper limit of the firing temperature is preferably set to 700 ° C. or lower because when the temperature exceeds 700 ° C., the resulting crystal grains become coarse. The reason why baking is performed in a non-oxidizing atmosphere is to prevent oxidation.
- lithium iron phosphate which is the fired product, is used as the primary fired product, and further, the carbon source is mixed and subjected to secondary firing, thereby improving the crystallinity of the lithium iron phosphate and the surface of the lithium iron phosphate.
- the conductivity of lithium iron phosphate can be increased by coating with carbon or attaching carbon to the surface.
- a substance that thermally decomposes at the time of secondary firing to generate carbon, or conductive carbon is used.
- the substance that generates carbon by pyrolysis during the secondary firing is preferably a substance that melts and wets the surface of the lithium iron phosphate particles during the secondary firing, such as glucose, fructose, maltose, sucrose, ascorbic acid, erythorbic acid, etc. , Carboxymethylcellulose, acenaphthylene, quinoline-insoluble matter less pitch (quinoline-insoluble content ⁇ 0.1 mass%, ash ⁇ 0.01 mass%), and the like can be used.
- the conductive carbon for example, carbon black, acetylene black, ketjen black, VGCF, carbon nanofiber, fullerene, or the like can be used. These substances can be used alone or in combination.
- Examples of the method of mixing the carbon source with the primary fired product include a method in which the carbon source is added before or after the primary fired product is pulverized wet or dry, and then pulverized using a ball mill, a jet mill, or the like. It is done.
- the amount of the carbon source added is preferably such that the amount of carbon contained in the lithium iron phosphate after the secondary firing is 1 to 5% by mass, and more preferably 1.5 to 4% by mass.
- the amount of carbon is less than 1% by mass, the conductivity of lithium iron phosphate becomes insufficient, and the performance of the lithium iron phosphate particles as the positive electrode active material may not be sufficiently extracted.
- the carbon content is more than 5% by mass, the apparent discharge capacity tends to decrease.
- the primary firing is preferably performed at 350 to 400 ° C. in a non-oxidizing atmosphere. Although the crystallization of lithium iron phosphate is surely performed by firing at 350 ° C. or higher, the primary firing is sufficient at 400 ° C. because grain growth occurs as the temperature rises.
- the secondary firing is preferably performed at 550 to 750 ° C. in a non-oxidizing atmosphere, and more preferably 600 to 700 ° C.
- a substance that generates pyrolytic carbon as a carbon source, if it is less than 550 ° C., the generation of pyrolytic carbon becomes insufficient, and the conductivity of lithium iron phosphate obtained after secondary firing may not be sufficiently exhibited. .
- it exceeds 750 ° C. there is a concern about the coarsening of lithium iron phosphate particles.
- iron particles containing 0.5% by mass or more of oxygen are added to an aqueous solution containing phosphoric acid, carboxylic acid and a lithium source and reacted in an oxidizing atmosphere to synthesize a chelate of lithium iron phosphate.
- a lithium iron phosphate precursor in which the raw materials are uniformly mixed at the atomic level is obtained.
- high-performance lithium iron phosphate as a positive electrode active material can be obtained.
- the present inventors filed a method for producing lithium iron phosphate having the following steps in PCT / JP2010 / 001691.
- An aqueous solution preparation step of preparing an aqueous solution containing phosphoric acid and carboxylic acid; Iron particles containing 0.5% by mass or more of oxygen are added to the aqueous solution, and phosphoric acid and carboxylic acid in the aqueous solution are reacted with the iron particles in an oxidizing atmosphere to produce a first reaction liquid.
- two steps of PCT / JP2010 / 001691, the first production step for producing the first reaction solution and the second production step for producing the second reaction solution are combined into the following one synthesis step. To implement.
- Example 1 Distilled water: 2000 g of phosphoric acid: 10 mol, citric acid monohydrate: 2 mol and lithium carbonate: 5 mol were dissolved, and iron powder (manufactured by JFE Steel Co., Ltd., oxygen content: 0.68% by mass, average particle size: 80 ⁇ m, apparent density: 3.18 g / cm 3 ): 10 mol was added, and the mixture was allowed to react for 1 day with stirring under an air atmosphere at a liquid temperature of 25-30 ° C. This reaction solution was dried at 200 ° C. at an inlet temperature of 200 ° C. using a spray dryer (FOC16 manufactured by Okawahara Chemical Industries), and a dry powder having an average particle size of about 30 ⁇ m was obtained from SEM observation.
- iron powder manufactured by JFE Steel Co., Ltd., oxygen content: 0.68% by mass, average particle size: 80 ⁇ m, apparent density: 3.18 g / cm 3
- the dry powder was subjected to primary firing at 400 ° C. for 5 hours in a nitrogen stream, and further 40 g of ascorbic acid as a carbon source was added to the total amount of the primary fired product, followed by wet grinding and mixing in a ball mill.
- the obtained mixture was dried, then subjected to secondary baking at 700 ° C. for 10 hours in a nitrogen stream, and finally sieved with an opening of 75 ⁇ m to prepare lithium iron phosphate.
- the oxygen content of iron powder was quantified using TC436 made from LECO. The apparent density of the iron powder was measured according to JIS Z 2504 (2000).
- Example 2 lithium iron phosphate was prepared by the same method as Example 1 except that malic acid: 2 mol was used instead of citric acid monohydrate.
- Example 3 lithium iron phosphate was prepared by the same method as Example 1 except that tartaric acid: 2 mol was used instead of citric acid monohydrate.
- Example 4 lithium iron phosphate was prepared by the same method as in Example 1 except that citric acid monohydrate was 2.5 mol and ascorbic acid was not added to the primary baked product.
- Example 5 In Example 1, except that iron powder (manufactured by Kishida Chemical Co., Ltd., oxygen content: 1.55% by mass, average particle size: 70 ⁇ m, apparent density: 2.47 g / cm 3 ) was used. 1 was used to prepare lithium iron phosphate.
- Example 6 In Example 1, 0.05 mol of vanadium pentoxide V 2 O 5 as a vanadium source (1 mol% substitution of iron element) was added to a mixed solution of phosphoric acid, citric acid monohydrate and lithium carbonate, and dissolved. Lithium iron phosphate was prepared by the same method as in Example 1 except that 9.9 mol of the same iron powder as in Example 1 was added to this mixed solution.
- Example 7 In Example 1, 0.15 mol of titanyl sulfate as a titanium source (substitution of 1 mol% of iron element) was added to a mixed solution of phosphoric acid, citric acid monohydrate and lithium carbonate, and dissolved in the mixed solution.
- Example 8 In Example 1, 0.1 mol of magnesium source magnesium oxide (substitution of 1 mol% of iron element) was added to a mixed solution of phosphoric acid, citric acid monohydrate and lithium carbonate, and dissolved in the mixed solution.
- Example 9 In Example 1, 0.1 mol of manganese source manganese acetate was added to a mixed solution of phosphoric acid, citric acid monohydrate and lithium carbonate (substitution of 1 mol% of iron element) and dissolved therein.
- Example 1 (Comparative Example 1) In Example 1, except that iron powder (manufactured by JFE Steel Corporation, oxygen content: 0.41% by mass, average particle size: 80 ⁇ m, apparent density: 2.55 g / cm 3 ) was used. 1 was used to prepare lithium iron phosphate.
- iron powder manufactured by JFE Steel Corporation, oxygen content: 0.41% by mass, average particle size: 80 ⁇ m, apparent density: 2.55 g / cm 3
- Example 2 lithium iron phosphate was prepared by the same method as Example 1 except that stirring after adding iron powder was performed in a nitrogen atmosphere.
- Example 3 lithium iron phosphate was prepared by the same method as Example 1 except that 2 mol of oxalic acid dihydrate was used instead of citric acid monohydrate.
- each lithium iron phosphate prepared in Examples 1 to 9 and Comparative Examples 1 to 3 was measured by the following method.
- KFL # 1320 polyvinylidene fluoride
- KFL # 1320 polyvinylidene fluoride
- As the negative electrode a half cell (made by Hosen) was assembled using metallic lithium.
- the measurement conditions were that constant current charging was performed at 0.2 mA / cm 2 to 4.0 V, then constant current discharging was performed at 0.2 mA / cm 2 to 2.5 V, and the discharge capacity was determined.
- Table 1 shows the measurement results of the identification analysis, carbon content, primary particle size, and discharge capacity.
- Examples 1 to 9 the olivine-type lithium iron phosphate having a high discharge capacity with a carbon content of 1.5% by mass or more and a primary particle size of 100 nm or less is obtained. It was. In particular, Examples 6 to 9 have a slightly larger discharge capacity than Examples 1 to 5, and it is estimated that the effect of improving the discharge capacity is an effect of doping.
- Comparative Examples 1 to 3 lithium iron phosphate having a sufficient discharge capacity cannot be obtained. In Comparative Examples 1 to 3, it is presumed that phosphorus, iron, and lithium are not uniformly mixed at the atomic level.
- lithium iron phosphate that is inexpensive and has a high discharge capacity as a positive electrode active material by using inexpensive iron particles as an iron source.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
特に、リン酸鉄リチウムの製造方法(method for producing lithium iron phosphate)に関する。
そのため、大型機器を睨んだリチウムイオン電池の用途展開には、従前のコバルト酸リチウムよりも安価で、しかも熱的、化学的に安定で安全性の高い正極活物質の開発が不可欠である。
かかる問題の解決策としては、リン酸鉄リチウム粒子の表面に導電性物質を被覆し、かつリン酸鉄リチウム粒子を微細化(約100nm以下)して反応表面積を増大させることが有効とされている。また、他元素をドープすることが、電子伝導性の改善や結晶構造の安定化に有効であるという報告もある。
例えば、特許文献1には、まず金属鉄とリン酸イオンを遊離する化合物とを水溶液中で反応させ、その後、炭酸リチウムまたは水酸化リチウムを加えてリン酸鉄リチウムの前駆体を調製して乾燥し、この乾燥物を300~450℃の温度範囲で一次焼成、ついで熱分解により導電性炭素を生成する物質を加えて500~800℃で焼成する方法が記載されている。
しかしながら、特許文献2に記載された上記方法では、有機酸あるいは混合有機酸で鉄を酸化して有効な2価鉄を生成させるとあるものの、2価鉄を安定して存在させることは難しいという問題があった。また、リチウム塩が硝酸リチウムである場合には硝酸イオンが焼成時に酸化剤として作用する。更に、リチウム塩として酢酸リチウムを使用することも可能であるが、酢酸リチウムは高価な原料であるため、低コスト化を図る上では不適当である。また、上記方法では、前駆体溶液に熱分解炭素を生成する有機化合物を混合しているが、この有機化合物は焼成時に単独で炭化するものもあり、リン酸鉄リチウム粒子の表面を熱分解炭素で有効に被覆することができない。
しかしながら、上記方法では鉄粉末がリン酸と反応する際にクエン酸がキレート剤としては有効に作用していないため、前駆体中の鉄が3価まで酸化されて3価の鉄化合物であるリン酸第二鉄が生成している。また、導電性酸化物として酸化バナジウムV2O5を加える例が記載されているが、上記方法では酸化バナジウムをリン酸鉄リチウムの前駆体が生成した後に加えているため、バナジウムはドープされずにリン酸鉄リチウム粒子の周囲に付着する。
しかしながら、特許文献4に記載された方法も、特許文献2の方法と同様、2価鉄を安定して存在させることは難しいという問題を残していた。
本発明は、かかる事情に鑑みなされたものであり、鉄粒子の反応を制御することにより、原子レベルで均一に混合したリン酸鉄リチウムの前駆体を調製し、安価でかつ放電容量の高いリン酸鉄リチウムからなる正極活物質を安定して得ることができるリン酸鉄リチウムの製造方法を提供することを目的とする。
(1)リン酸、カルボン酸およびリチウム源を含む水溶液に、酸素を0.5質量%以上含有する鉄粒子を添加し、酸化雰囲気下で上記水溶液中の成分と上記鉄粒子とを反応させて反応液を作製する合成工程と、
上記合成工程で得られた反応液を乾燥させてリン酸鉄リチウム前駆体を生成する前駆体生成工程と、
上記前駆体生成工程で得られたリン酸鉄リチウム前駆体を非酸化性雰囲気下で焼成してリン酸鉄リチウムを得る一次焼成工程とを有する、リン酸鉄リチウムの製造方法。
本発明によるリン酸鉄リチウムの製造方法は、リン酸と、カルボン酸と、リチウム源とを含む水溶液に、酸素を0.5質量%以上含有する鉄粒子を添加し、酸化雰囲気下で上記水溶液中の成分と上記鉄粒子とを反応させて反応液を作製する合成工程と、
上記合成工程で得られた反応液を乾燥させてリン酸鉄リチウム前駆体を生成する前駆体生成工程と、
上記前駆体生成工程で得られたリン酸鉄リチウム前駆体を非酸化性雰囲気下で焼成してリン酸鉄リチウムを得る一次焼成工程とを有することを特徴とする。
また、水アトマイズ鉄粉を原料とする場合には、溶鋼を高圧水で粉化、冷却後の乾燥工程で積極的に空気と接触させればよい。
鉄粒子の純度を上げる場合、通常、原料鉄粉を水素還元して、酸素含有量が0.4質量%程度以下のものを作る。したがって、本発明に用いる鉄粒子は、この水素還元の程度を調整すればよい。
また、上記残炭率は20質量%以下とすることが好ましく、20質量%を超えると焼成後の残炭量が過剰となる。上記カルボン酸の残炭率は、酒石酸:7質量%、リンゴ酸:12質量%、クエン酸一水和物:7質量%であり、シュウ酸二水和物、酢酸などは1質量%未満である。
なお、本発明において「残炭率」とは、焼成後に残留する炭素をJIS G 1211(1995年)高周波誘導加熱炉燃焼−赤外線吸収法に準拠して定量し、元のカルボン酸量で除した値とした。
そこで、本発明では、上記反応時の雰囲気を酸化雰囲気とすることにより、鉄粒子表面を適度に酸化して酸素を補い、キレート反応を持続させるのである。本発明において酸化雰囲気とは、水溶液中の鉄粒子の表面を適度に酸化させることができる状態であり、例えば水溶液界面を酸素含有ガスと接触させる、或いは、水溶液中に溶存酸素、酸素含有ガスのバブルまたはナノバブルを導入する等による。また、具体的な操作としては、空気雰囲気下での撹拌や、空気のバブリングなどが挙げられる。
また、この反応液を乾燥した乾燥物(リン酸鉄リチウム前駆体)についてX線回折分析を行うと、結晶質の化合物は検出されず、原子レベルで均一に混合したキレート体に起因するアモルファス相が確認される。
リン酸とカルボン酸とを含む水溶液を準備する水溶液準備工程と、
前記水溶液に、0.5質量%以上の酸素を含有する鉄粒子を添加し、酸化雰囲気下で前記水溶液中のリン酸及びカルボン酸と、前記鉄粒子とを反応させて第1反応液を作製する第1の作製工程と、
前記第1の作製工程で得られた第1反応液にリチウム源を添加して第2反応液を作製する第2の作製工程と、
前記第2反応液を乾燥させてリン酸鉄リチウム前駆体を生成する前駆体生成工程と、
前記リン酸鉄リチウム前駆体を非酸化性雰囲気下で焼成してリン酸鉄リチウムを得る一次焼成工程。
本発明においては、PCT/JP2010/001691での、第1反応液を作製する第1の作製工程と第2反応液を作製する第2の作製工程の二つの工程を、下記の一つの合成工程で実施する。
“リン酸、カルボン酸およびリチウム源を含む水溶液に、酸素を0.5質量%以上含有する鉄粒子を添加し、酸化雰囲気下で上記水溶液中の成分と上記鉄粒子とを反応させて反応液を作製する合成工程”
それゆえに、本発明は、PCT/JP2010/001691に対して下記の利点を有している。
(a)一つの合成工程で原料を一括して混合できる。
(b)、PCT/JP2010/001691における第1の作製工程での初期の激しい反応を抑制することが出来る。
蒸留水:2000gに、85質量%のリン酸:10mol、クエン酸一水和物:2molおよび炭酸リチウム:5molを溶解し、この混合溶液に鉄粉(JFEスチール(株)製、酸素含有量:0.68質量%、平均粒径:80μm、見掛け密度:3.18g/cm3):10molを添加して、液温:25~30℃、空気雰囲気下で撹拌しながら1日間反応させた。この反応液をスプレードライヤ(大川原化工機製FOC16)を用いて入口温度:200℃で乾燥し、平均粒径がSEM観察より約30μmの乾燥粉末を得た。この乾燥粉末に、窒素気流中にて400℃×5hの一次焼成を施し、更に一次焼成物全量に炭素源としてアスコルビン酸:40gを加えてボールミルにて湿式粉砕・混合を行った。得られた混合物を乾燥後、窒素気流中にて700℃×10hの二次焼成を施し、最後に目開き75μmで篩い、リン酸鉄リチウムを調製した。
なお、鉄粉の酸素含有量は、LECO社製TC436を用いて定量した。
また、鉄粉の見掛け密度は、JIS Z 2504(2000年)に準じて測定した。
実施例1において、クエン酸一水和物に代えてリンゴ酸:2molを使用したこと以外は、実施例1と同じ方法によりリン酸鉄リチウムを調製した。
実施例1において、クエン酸一水和物に代えて酒石酸:2molを使用したこと以外は、実施例1と同じ方法によりリン酸鉄リチウムを調製した。
実施例1において、クエン酸一水和物を2.5molとし、一次焼成物にアスコルビン酸を加えなかったこと以外は、実施例1と同じ方法によりリン酸鉄リチウムを調製した。
実施例1において、鉄粉(キシダ化学(株)製、酸素含有量:1.55質量%、平均粒径:70μm、見掛け密度:2.47g/cm3)を使用したこと以外は、実施例1と同じ方法によりリン酸鉄リチウムを調製した。
実施例1において、リン酸、クエン酸一水和物および炭酸リチウムの混合溶液に、バナ
ジウム源の五酸化バナジウムV2O5を0.05mol(鉄元素の1mol%置換)を加えて溶解させ、この混合溶液に実施例1と同じ鉄粉:9.9molを添加したこと以外は、実施例1と同じ方法によりリン酸鉄リチウムを調製した。
実施例1において、リン酸、クエン酸一水和物および炭酸リチウムの混合溶液に、チタ
ン源の硫酸チタニルを0.15mol(鉄元素の1mol%置換)を加えて溶解させ、この混合溶液に実施例1と同じ鉄粉:9.9molを添加したこと以外は、実施例1と同じ方法によりリン酸鉄リチウムを調製した。
実施例1において、リン酸、クエン酸一水和物および炭酸リチウムの混合溶液に、マグネシウム源の酸化マグネシウムを0.1mol(鉄元素の1mol%置換)を加えて溶解させ、この混合溶液に実施例1と同じ鉄粉:9.9molを添加したこと以外は、実施例1と同じ方法によりリン酸鉄リチウムを調製した。
実施例1において、リン酸、クエン酸一水和物および炭酸リチウムの混合溶液に、マンガン源の酢酸マンガンを0.1mol(鉄元素の1mol%置換)を加えて溶解させ、この混合溶液に実施例1と同じ鉄粉:9.9molを添加したこと以外は、実施例1と同じ方法によりリン酸鉄リチウムを調製した。
実施例1において、鉄粉(JFEスチール(株)製、酸素含有量:0.41質量%、平均粒径:80μm、見掛け密度:2.55g/cm3)を使用したこと以外は、実施例1と同じ方法によりリン酸鉄リチウムを調製した。
実施例1において、鉄粉を添加した後の撹拌を窒素雰囲気下で行ったこと以外は、実施例1と同じ方法によりリン酸鉄リチウムを調製した。
実施例1において、クエン酸一水和物に代えてシュウ酸二水和物:2molを使用したこと以外は、実施例1と同じ方法によりリン酸鉄リチウムを調製した。
Claims (7)
- リン酸、カルボン酸およびリチウム源を含む水溶液に、酸素を0.5質量%以上含有する鉄粒子を添加し、酸化雰囲気下で上記水溶液中の成分と上記鉄粒子とを反応させて反応液を作製する合成工程と、
上記合成工程で得られた反応液を乾燥させてリン酸鉄リチウム前駆体を生成する前駆体生成工程と、
上記前駆体生成工程で得られたリン酸鉄リチウム前駆体を非酸化性雰囲気下で焼成してリン酸鉄リチウムを得る一次焼成工程と、
を有するリン酸鉄リチウムの製造方法。 - 前記一次焼成工程で得られたリン酸鉄リチウムと、炭素源を混合し、非酸化性雰囲気下で焼成して、表面が炭素で被覆されたリン酸鉄リチウムを得る二次焼成工程を更に有する、リン酸鉄リチウムの製造方法。
- 前記カルボン酸の含有量が、前記鉄粒子中の鉄1molに対して、0.18~0.5molである、請求項1または2に記載のリン酸鉄リチウムの製造方法。
- 前記カルボン酸の残炭率が3質量%以上である、請求項1~3の何れか1項に記載のリン酸鉄リチウムの製造方法。
- 前記カルボン酸が、酒石酸、リンゴ酸およびクエン酸から選ばれる少なくとも1種である、請求項1~4のいずれか1項に記載のリン酸鉄リチウムの製造方法。
- 前記リン酸、カルボン酸およびリチウム源を含む水溶液に、ドープする元素の金属または化合物を予め溶解させる、請求項1~5のいずれか1項に記載のリン酸鉄リチウムの製造方法。
- 前記リン酸鉄リチウムが、二次電池用正極活物質である、請求項1~6のいずれか1項に記載のリン酸鉄リチウムの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/521,574 US20120292560A1 (en) | 2010-01-14 | 2010-12-24 | Method for producing lithium iron phosphate |
EP10843224.6A EP2511233A4 (en) | 2010-01-14 | 2010-12-24 | PROCESS FOR PRODUCING IRON AND LITHIUM PHOSPHATE |
CN201080061311.9A CN102725225B (zh) | 2010-01-14 | 2010-12-24 | 磷酸铁锂的制造方法 |
KR1020127020739A KR101422378B1 (ko) | 2010-01-14 | 2010-12-24 | 인산철 리튬의 제조방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-006183 | 2010-01-14 | ||
JP2010006183A JP5581065B2 (ja) | 2010-01-14 | 2010-01-14 | リン酸鉄リチウムの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011086872A1 true WO2011086872A1 (ja) | 2011-07-21 |
Family
ID=44304150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/073880 WO2011086872A1 (ja) | 2010-01-14 | 2010-12-24 | リン酸鉄リチウムの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120292560A1 (ja) |
EP (1) | EP2511233A4 (ja) |
JP (1) | JP5581065B2 (ja) |
KR (1) | KR101422378B1 (ja) |
CN (1) | CN102725225B (ja) |
WO (1) | WO2011086872A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109326777A (zh) * | 2018-08-28 | 2019-02-12 | 北京泰丰先行新能源科技有限公司 | 一种磷酸铁锂电池材料的制备方法 |
JP2022514404A (ja) * | 2018-12-21 | 2022-02-10 | ホガナス アクチボラグ (パブル) | 純鉄含有化合物 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2859113C (en) * | 2011-11-15 | 2020-04-14 | Denki Kagaku Kogyo Kabushiki Kaisha | Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery |
CN103137964B (zh) * | 2011-11-24 | 2016-02-17 | 清华大学 | 磷酸铁锂二次结构及其制备方法以及锂离子电池 |
CN102683684B (zh) * | 2011-12-12 | 2015-09-30 | 张雅静 | 硒、钡掺杂磷酸铁锂纳米正极材料及其制备方法 |
CN103165881B (zh) * | 2011-12-12 | 2017-06-30 | 张健 | 掺杂磷酸铁锂纳米正极材料及其制备方法 |
CN102683680B (zh) * | 2011-12-12 | 2015-09-30 | 张雅静 | 铝、钡掺杂磷酸铁锂纳米正极材料及其制备方法 |
JP2013251227A (ja) * | 2012-06-04 | 2013-12-12 | Jfe Chemical Corp | リチウムイオン二次電池正極材用リン酸鉄リチウム粒子およびその製造方法、ならびに上記リン酸鉄リチウム粒子を用いたリチウムイオン二次電池正極およびその正極を備えるリチウムイオン二次電池 |
JP5750086B2 (ja) * | 2012-08-20 | 2015-07-15 | Jfeケミカル株式会社 | リチウムイオン二次電池正極材用リン酸鉄リチウム粒子およびその製造方法、ならびにこれを用いたリチウムイオン二次電池正極およびリチウムイオン二次電池 |
CN102867957A (zh) * | 2012-09-22 | 2013-01-09 | 浙江振华新能源科技有限公司 | 一种球形介孔磷酸铁锂正极材料的制备方法 |
KR101592773B1 (ko) * | 2014-10-17 | 2016-02-11 | 오씨아이 주식회사 | 음극 활물질 및 이를 포함하는 이차전지 |
CN106129404A (zh) * | 2016-07-24 | 2016-11-16 | 合肥国轩电池材料有限公司 | 一种磷酸铁锂的干燥工艺 |
CN109742352A (zh) * | 2018-12-29 | 2019-05-10 | 浙江南都电源动力股份有限公司 | 磷酸铁锂/碳复合材料的制备方法 |
CN112952058B (zh) * | 2021-02-04 | 2022-11-15 | 台州学院 | 一种基于混合金属有机骨架合成掺杂磷酸锰锂/碳复合材料的制备方法 |
CN113896182B (zh) * | 2021-09-10 | 2023-05-23 | 上海量孚新能源科技有限公司 | 一种绿色磷酸铁锂前驱体及其制备方法、应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004036671A1 (ja) | 2002-10-18 | 2004-04-29 | Japan As Represented By President Of The University Of Kyusyu | 2次電池用正極材料の製造方法、および2次電池 |
JP2006131485A (ja) | 2004-11-03 | 2006-05-25 | Tatung Co | オリビン型リン酸鉄リチウム正極材料の製造方法 |
JP2007022894A (ja) * | 2005-07-21 | 2007-02-01 | Seimi Chem Co Ltd | リチウム鉄複合酸化物の製造方法 |
JP2007305585A (ja) | 2006-05-11 | 2007-11-22 | Aquire Energy Co Ltd | 充電式バッテリ製造用の陰極材料 |
JP2008004317A (ja) | 2006-06-21 | 2008-01-10 | Gs Yuasa Corporation:Kk | 電池用リン酸鉄リチウムの製造方法及びそれを用いた電池 |
WO2010103821A1 (ja) * | 2009-03-13 | 2010-09-16 | Jfeケミカル株式会社 | リン酸鉄リチウムの製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4343618B2 (ja) * | 2003-08-21 | 2009-10-14 | セントラル硝子株式会社 | ポリアニオン型リチウム鉄複合酸化物の製造方法及びそれを用いた電池 |
JP4522683B2 (ja) * | 2003-10-09 | 2010-08-11 | 住友大阪セメント株式会社 | 電極材料粉体の製造方法と電極材料粉体及び電極並びにリチウム電池 |
CN101546830A (zh) * | 2008-07-19 | 2009-09-30 | 深圳市德方纳米科技有限公司 | 一种纳米磷酸铁锂材料及其制备方法 |
CN101355158B (zh) * | 2008-09-17 | 2010-11-17 | 长沙矿冶研究院 | 锂离子电池正极材料LiFePO4的制备方法 |
CN101546826B (zh) * | 2009-04-30 | 2013-02-06 | 宁波职业技术学院 | 一种锂离子电池正极材料球形磷酸铁锂的制备方法 |
CN101567439B (zh) * | 2009-06-01 | 2011-01-12 | 南京工业大学 | 三价铁源合成纳米级LiFePO4锂离子动力电池正极材料的方法 |
CN101913588B (zh) * | 2010-07-08 | 2012-08-22 | 宁波艾能锂电材料科技股份有限公司 | 一种磷酸铁锂纳米材料的制备方法 |
-
2010
- 2010-01-14 JP JP2010006183A patent/JP5581065B2/ja not_active Expired - Fee Related
- 2010-12-24 WO PCT/JP2010/073880 patent/WO2011086872A1/ja active Application Filing
- 2010-12-24 CN CN201080061311.9A patent/CN102725225B/zh not_active Expired - Fee Related
- 2010-12-24 KR KR1020127020739A patent/KR101422378B1/ko active IP Right Grant
- 2010-12-24 US US13/521,574 patent/US20120292560A1/en not_active Abandoned
- 2010-12-24 EP EP10843224.6A patent/EP2511233A4/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004036671A1 (ja) | 2002-10-18 | 2004-04-29 | Japan As Represented By President Of The University Of Kyusyu | 2次電池用正極材料の製造方法、および2次電池 |
JP2006131485A (ja) | 2004-11-03 | 2006-05-25 | Tatung Co | オリビン型リン酸鉄リチウム正極材料の製造方法 |
JP2007022894A (ja) * | 2005-07-21 | 2007-02-01 | Seimi Chem Co Ltd | リチウム鉄複合酸化物の製造方法 |
JP2007305585A (ja) | 2006-05-11 | 2007-11-22 | Aquire Energy Co Ltd | 充電式バッテリ製造用の陰極材料 |
JP2008004317A (ja) | 2006-06-21 | 2008-01-10 | Gs Yuasa Corporation:Kk | 電池用リン酸鉄リチウムの製造方法及びそれを用いた電池 |
WO2010103821A1 (ja) * | 2009-03-13 | 2010-09-16 | Jfeケミカル株式会社 | リン酸鉄リチウムの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2511233A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109326777A (zh) * | 2018-08-28 | 2019-02-12 | 北京泰丰先行新能源科技有限公司 | 一种磷酸铁锂电池材料的制备方法 |
JP2022514404A (ja) * | 2018-12-21 | 2022-02-10 | ホガナス アクチボラグ (パブル) | 純鉄含有化合物 |
JP7536765B2 (ja) | 2018-12-21 | 2024-08-20 | ホガナス アクチボラグ (パブル) | 純鉄含有化合物 |
Also Published As
Publication number | Publication date |
---|---|
EP2511233A1 (en) | 2012-10-17 |
JP5581065B2 (ja) | 2014-08-27 |
JP2011146254A (ja) | 2011-07-28 |
KR101422378B1 (ko) | 2014-07-22 |
US20120292560A1 (en) | 2012-11-22 |
CN102725225A (zh) | 2012-10-10 |
KR20120127438A (ko) | 2012-11-21 |
CN102725225B (zh) | 2015-04-15 |
EP2511233A4 (en) | 2015-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5388822B2 (ja) | リン酸鉄リチウムの製造方法 | |
JP5581065B2 (ja) | リン酸鉄リチウムの製造方法 | |
WO2012172839A1 (ja) | リン酸鉄リチウムの製造方法 | |
JP5517032B2 (ja) | 非水電解質二次電池用オリビン型複合酸化物粒子粉末及びその製造方法、並びに二次電池 | |
JP5835334B2 (ja) | リン酸アンモニウムマンガン鉄とその製造方法、および該リン酸アンモニウムマンガン鉄を用いたリチウム二次電池用正極活物質の製造方法 | |
JP5281765B2 (ja) | リチウム鉄リン系複合酸化物炭素複合体の製造方法及びリチウム、鉄及びリンを含む共沈体の製造方法 | |
JP5004413B2 (ja) | 燐酸アンモニウム鉄及びリチウムイオン二次電池用正極材料の製造方法、並びにリチウムイオン二次電池 | |
JP5245084B2 (ja) | オリビン型化合物超微粒子およびその製造方法 | |
WO2014163124A1 (ja) | リン酸鉄リチウムの製造方法 | |
JP2004259471A (ja) | リチウムイオン電池用正極活物質の製造方法 | |
JP5505868B2 (ja) | リチウム二次電池用正極活物質の前駆体とその製造方法 | |
JP4707950B2 (ja) | リチウム電池用正極活物質の製造方法とリチウム電池用正極活物質及びリチウム電池用電極並びにリチウム電池 | |
JP6345227B2 (ja) | リン酸バナジウムリチウムの製造方法 | |
JP5750086B2 (ja) | リチウムイオン二次電池正極材用リン酸鉄リチウム粒子およびその製造方法、ならびにこれを用いたリチウムイオン二次電池正極およびリチウムイオン二次電池 | |
JP2014082219A (ja) | リチウム二次電池用正極活物質とその製造方法、および該正極活物質を用いたリチウム二次電池 | |
JP2019034877A (ja) | リン酸バナジウムリチウムの製造方法 | |
WO2017154690A1 (ja) | リン酸バナジウムリチウムの製造方法 | |
JP2013251227A (ja) | リチウムイオン二次電池正極材用リン酸鉄リチウム粒子およびその製造方法、ならびに上記リン酸鉄リチウム粒子を用いたリチウムイオン二次電池正極およびその正極を備えるリチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080061311.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10843224 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010843224 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13521574 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20127020739 Country of ref document: KR Kind code of ref document: A |