JP2014082219A - リチウム二次電池用正極活物質とその製造方法、および該正極活物質を用いたリチウム二次電池 - Google Patents
リチウム二次電池用正極活物質とその製造方法、および該正極活物質を用いたリチウム二次電池 Download PDFInfo
- Publication number
- JP2014082219A JP2014082219A JP2014015302A JP2014015302A JP2014082219A JP 2014082219 A JP2014082219 A JP 2014082219A JP 2014015302 A JP2014015302 A JP 2014015302A JP 2014015302 A JP2014015302 A JP 2014015302A JP 2014082219 A JP2014082219 A JP 2014082219A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- lithium
- lithium secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
【解決手段】 一般式LixMySiO4(1.90≦x≦2.15、0.90≦y≦1.10、MはMn、Fe、Ni、Coから選択される1種以上の元素)で表されるケイ酸金属リチウム塩からなるリチウム二次電池用正極活物質で、一次粒子および一次粒子が凝集した二次粒子からなるケイ酸金属リチウム塩粒子で構成され、一次粒子径は、SEM観察による測定において10〜300nm、正極活物質の比表面積が25〜35m2/g、炭素含有量が3〜7質量%であり、前記ケイ酸金属リチウム塩粒子の電解液との接触面の少なくとも一部が、導電性を有する炭素質材料で被覆されていることを特徴とする。
【選択図】なし
Description
これらの小型電池には主として、LiCoO2、LiCoNiMnO2、LiNiAlO2などの層状岩塩化合物からなる正極活物質が用いられている。
このような状況下において高い安全性と優れたサイクル性能を示し、低価格で製造可能なLiFePO4が、LiCoO2やLiMn2O4等の代替正極材料として注目されている。
このLiFePO4は、リン酸の強固な骨格を有するため、安全で放電容量が高く、サイクル寿命の良い材料である。しかし、LiFePO4の実容量は170mAh/gと理論値に達しており、更なる高容量化は困難である。
さらに、一般的に固相法では反応に必要な温度が高いために、1次粒子の粗大化や凝集成長しやすく、粒子径が大きくなる。このようにして得られたLi2MSiO4は、粒子が粗大で導電性が低いために、強力な微細化処理が必要となる。
さらに、短時間で効率的な上記ケイ酸金属リチウム塩の製造方法として、アルカリ金属、遷移金属およびケイ素の供給源となる化合物を混合、加熱して溶融した後、徐冷する工程を含む製造方法が提案されている(例えば、特許文献2)。この提案においては、原料を溶融状態にまで加熱するため、得られるケイ酸金属リチウム塩は粗大粒子となり、微粒化することが困難と思われる。
ケイ酸金属リチウム塩と炭素材料を含む混合物を、不活性雰囲気中で熱処理することで、ケイ酸金属リチウム塩と炭素材料に由来する炭素成分とを含む非水電解質二次電池用正極活物質を製造することが提案されている(例えば、特許文献2)。この提案によれば、高安全性および大容量の非水電解質二次電池を提供できるとしているが、用いたケイ酸金属リチウム塩の粒子径は数十μmであり、微粒化の効果を十分に活用できているとは言い難い。
さらに、本発明者らは、該前駆体をリチウム化合物および炭素源と混合して焼成することでリチウム二次電池用として好適な正極活物質が得られること、その炭素源として炭水化物を用いるとともに、炭水化物と混合して焼成する前に特定温度で加熱した後に焼成を施すことによって、ケイ酸金属リチウム塩粒子が微細化されるとともに導電性が改善され、高容量化が可能なリチウム二次電池用正極活物質が得られることを見出し、本発明の完成に至ったものである。
さらに、上記焼成前に、前記前駆体の粉砕を行うことが好ましい。
さらに、そのリチウム二次電池用正極活物質を用いた正極を備えたリチウム二次電池は、高い安全性と高容量を兼ね備え、かつサイクル寿命にも優れており、工業的価値が極めて高いものである。
まず、リチウム二次電池用正極活物質とその前駆体について説明した後、これらの製造方法について説明する。
本発明のリチウム二次電池用正極活物質は、一般式LixMySiO4(1.90≦x≦2.15、0.90≦y≦1.10、MはMn、Fe、Ni、Coから選択される1種以上の元素)で表されるケイ酸金属リチウム塩からなる正極活物質で、一次粒子および一次粒子が凝集した二次粒子からなるケイ酸金属リチウム塩粒子で構成されている。
その一次粒子径は10〜300nm、二次粒子径は0.5〜10μmで、正極活物質の比表面積は25〜35m2/g、炭素含有量は3〜7質量%であることを特徴とする。
この炭素の含有は、一次粒子径を細かくするとともに比表面積を大きくしても、ケイ酸金属リチウム塩粒子の導電性が低いと充放電反応に伴う電子の移動が阻害され、十分な電池の容量が得られない。そこで、炭素はケイ酸金属リチウム塩には固溶しないため、含有された炭素は、炭素単体もしくは炭素含有物(以下、総称して炭素質材料と記載する。)としてケイ酸金属リチウム塩の一次粒子外部に存在することとなる。炭素は一般的に導電性を有するため、この炭素質材料が存在することにより電子の移動が改善されて電池の容量が増加する。
特に、導電性を有する炭素質材料がケイ酸金属リチウム塩の一次粒子表面に存在すると、その一次粒子表面で起こる電池反応に伴う電子の移動の改善に対する効果が大きい。したがって、ケイ酸金属リチウム塩粒子の表面の少なくとも一部が炭素質材料で被覆されていることが好ましい。
M元素は、遷移金属であればよいが、工業的に生産されている遷移金属としてMn、Fe、Ni、Coが挙げられ、これらから選択される1種以上の元素であればよい。特に、MnおよびFeは、資源的に豊富で安価であり、コスト面から好ましい。
本発明のリチウム二次電池用正極活物質の前駆体は、一般式MySiO3(0.90≦y≦1.10、MはMn、Fe、Ni、Coから選択される1種以上の元素)で表されるケイ酸金属塩であって、一般式中M元素の2価イオンを含む溶液とケイ酸イオン(SiO3 2−)を含む溶液を混合して得たM元素とケイ酸の非晶質共沈殿物であることを特徴とするものである。
この共沈殿物は、Mと珪素が均一に分布したケイ酸金属塩の非晶質となっているため、リチウムとの反応が容易であり、反応温度を低温化することができる。非晶質であることは、X線回折分析において回折ピークが現れないことで確認できる。このため、本発明の正極活物質を製造するための焼成温度を低温化することが可能であり、一次粒子径が微細で比表面積の大きな正極活物質が得られる。
この前駆体を用いることで、一次粒子径が微細で比表面積の大きな正極活物質が容易に得られることから、本発明のリチウム二次電池用正極活物質の前駆体として好適である。
本発明のリチウム二次電池用正極活物質の前駆体の製造方法は、一般式MySiO3(0.90≦y≦1.10、M元素はMn、Fe、Ni、Coから選択される1種以上の元素)で表されるケイ酸金属塩を得る製造方法であって、一般式中のM元素の2価イオンを含む溶液とケイ酸イオン(SiO3 2−)を含む溶液を、pH8〜11の範囲に調整、保持しながら混合して共沈殿物を晶析させ、固液分離後、水洗、乾燥することにより生成することを特徴とするものである。
ケイ酸ナトリウムの濃度が、0.5mol/L未満では、反応中の液量が多くなりすぎ生産性が低下するため、好ましくない。ケイ酸ナトリウムの濃度が、2mol/Lを超えると、該溶液の粘度が高くなるため、供給時の容易性が低下することがある。なお、ケイ酸ナトリウム以外のケイ酸塩を用いる場合においても、ケイ酸ナトリウムと同様の濃度範囲で用いることが好ましい。
なお、M塩溶液およびケイ酸塩溶液は、いずれも水溶液であるが、M塩およびケイ酸塩は蒸留水、イオン交換水などの純水に溶解することが好ましい。
水酸化ナトリウムは、安価なアルカリ源であり、pH9以下に保持した場合は残留ナトリウムも少ない。水酸化リチウムを用いた場合においても、基本的にはリチウムは沈澱しないが、少量のリチウムが前駆体に残留しても後工程でリチウム化合物と混合するため問題とならない。アンモニアは、排水中に多量の窒素が含有されるため、排水処理等の必要が生じる。さらに、水酸化リチウム、アンモニアは高価であるため、コスト的に不利となる。以上の理由より、前記pH調整には、水酸化ナトリウムを用いることが特に好ましい。
その乾燥時の雰囲気は、特に限定されるものではなく、酸化を防止するため、不活性雰囲気、還元雰囲気、真空、減圧のいずれかの雰囲気とすることが好ましい。また、乾燥温度も、特に限定されるものではないが、50〜200℃とすることが好ましい。乾燥装置は、雰囲気制御が可能な通常の乾燥装置を用いることが好ましい。
本発明のリチウム二次電池用正極活物質の製造方法は、一般式LixMySiO4(1.90≦x≦2.15、0.90≦y≦1.10、MはMn、Fe、Ni、Coから選択される1種以上の元素)で表されるケイ酸金属リチウム塩からなるリチウム二次電池用正極活物質の製造方法であって、上記前駆体をリチウム化合物および炭素源と混合した後、非酸化性雰囲気中、450℃〜750℃で焼成することを特徴とする。
この炭水化物の融点が250℃を超えるか、あるいは加熱処理温度が300℃を超えると、炭水化物が浸透する前にケイ酸金属リチウム塩の生成反応が開始されるため、上記粒成長の抑制効果が十分には得られない場合がある。さらに、炭素材料の被覆層の形成も不十分となることがある。
さらに、本発明の製造方法においては、微細なケイ酸金属リチウム塩粒子を得るために焼成前に使用する前駆体を粉砕することが好ましい。粉砕は、混合の前あるいは後のいずれでもよいが、混合時に混合機として挙げた各種ミルを用いることで、粉砕と同時に十分な混合を行うことができるため好ましい。粉砕にはアルミナ、ジルコニア球を用いた乾式、湿式ミルを用いることができる。
本発明の製造方法は、炭素源を含有する混合物を焼成するものであり、用いる炭素源にもよるが600℃以上で黒鉛化が進行するので、600〜700℃で保持することにより、黒鉛と複合化したケイ酸金属リチウム塩微粒子を得ることができる。
焼成時間は、特に限定されるものではなく、上記温度範囲で十分に結晶化したケイ酸金属リチウム塩が得られる時間とするが、例えば、1〜20時間とすることが好ましい。1時間未満では、ケイ酸金属リチウム塩の結晶性が十分でないことがあり、20時間を超えると、ケイ酸金属リチウム塩粒子の焼結が進行して微細な粒子が得られないことがある。また、この熱処理時間は、用いた炭水化物が溶融して前駆体に浸透する時間とすればよく、例えば、1〜5時間とすることが好ましい。
本発明の製造方法によれば、水熱合成装置のような高圧容器を用いる必要がなく、また、安価で毒性の低い原料を用いて合成できるため、工業的に安価にケイ酸金属リチウム塩を製造することができる。
本発明によるリチウム二次電池は、正極、負極、非水電解質など、一般のリチウム二次電池と同様の構成要素から構成される。
以下、本発明のリチウム二次電池の実施形態について、その構成要素、用途などの項目に分けて詳しく説明するが、以下の実施形態は例示にすぎず、本発明のリチウム二次電池は、本明細書に記載の実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。
正極は、本発明の正極活物質、導電材および結着剤を含んだ正極合材から形成される。
詳しくは、粉末状の正極活物質、導電材を混合し、それに結着剤を加え、必要に応じて、粘度調整などのための溶剤をさらに添加して、正極合材ペーストを調整し、その正極合材ペーストを、たとえば、アルミニウム箔製の集電体の表面に塗布、乾燥、必要に応じて加圧することにより、シート状の正極を作製する。
結着剤は、活物質粒子を繋ぎ止める役割を果たすもので、たとえば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴムなどの含フッ素樹脂、ポリプロピレン、ポリエチレンなどの熱可塑性樹脂、その他の適切な材料を用いることができる。必要に応じて正極合材に添加する溶剤、つまり、活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤としては、N−メチル−2−ピロリドンなどの有機溶剤を用いることができる。
また、活性炭を、電気二重層容量を増加させるために添加することができる。
正極合材中のそれぞれの混合比も、リチウムイオン二次電池の性能を決定する重要な要素となりうる。正極合材の固形分の全体(溶剤を除く意味)を100質量%とした場合、一般のリチウム二次電池の正極と同様、それぞれ、正極活物質は60〜95質量%、導電材は1〜20質量%、結着剤は1〜20質量%とすることが望ましい。
たとえば、アルミニウムなどの金属箔集電体の表面に、充分に混練した上記の正極合材ペーストを塗布し、乾燥して溶剤を飛散させ、必要に応じて、その後に電極密度を高めるべくロールプレスなどにより圧縮することにより、正極をシート状に形成することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断などを行い、電池の作製に供することができる。
負極には、金属リチウム、リチウム合金など、また、リチウムイオンを吸蔵および脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅などの金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して、形成したものを使用する。このとき、負極活物質として、たとえば、天然黒鉛、人造黒鉛、フェノール樹脂などの有機化合物焼成体、コークスなどの炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極と同様に、ポリフッ化ビニリデンなどの含フッ素樹脂などを、これら負極活物質および結着剤を分散させる溶剤としてはN−メチル−2−ピロリドンなどの有機溶剤を用いることができる。
正極と負極の間にはセパレータを挟み装填する。セパレータは、正極と負極とを分離し電解質を保持するものであり、ポリエチレン、ポリプロピレンなどの薄い微多孔膜を用いることができる。
非水電解質は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタンなどのエーテル化合物、エチルメチルスルホン、ブタンスルトンなどの硫黄化合物、、リン酸トリエチル、リン酸トリオクチルなどのリン化合物などから選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。支持塩としては、LiPF6、LiBF4、LiClO4、LiASF6、LiN(CF3SO2)2など、およびそれらの複合塩を用いることができる。さらに、非水電解質は、ラジカル補足剤、界面活性剤や難燃剤などを含んでいてもよい。
ICP発光分析装置(VARIAN社、725ES)を用いて、ICP発光分析法により分析した。
粉末X線回折装置(PANALYTICAL社製、X‘Pert PRO MRD)を用いて、得られた正極活物質について、Cu−Kα線による粉末X線回折で測定した。
BET法測定機(ユアサアイオニックス株式会社製 カンタソーブQS−10)を用いて、窒素ガス吸着によるBET法で行った。
得られた正極活物質について、以下の手順でコイン型電池を作製し、電池の充放電容量を測定して評価した。正極活物質に導電材としてアセチレンブラック33質量%、結着材としてポリビニリデンフルオライド(PVDF)17質量%、N−メチルピロリドン(NMP)溶液を添加混合し、上記正極活物質50質量%−導電材33質量%−PVDF17質量%の混合物を得た。この混合物をアルミ箔上に塗布し、80℃で乾燥後、電極寸法の直径11mmに打ち抜き、プレス圧98MPa(1.0tonf/cm2)でプレスして電極を作製した。この電極を正極とし、グローブボックス内で負極として金属Li、電解液として電解質LiClO41モル/Lを含有するエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(容積比でEC/DMC=1/1)を用いてC2023コイン電池を作製した。電池の充放電を、充電0.2mA/cm2、4.5V、休止12時間、放電0 .2mA/cm2、1.5V、50℃の条件で実施し、2サイクル目の放電容量を評価値として用いた。
撹拌機付5Lのセパラブルフラスコに1Lの純水をいれ、内部を窒素で置換しながら、30分攪拌した。次に、pH調整溶液を、pHコントローラを用いてpHを8.9〜9.1に制御しながら、M塩溶液およびケイ酸塩溶液をそれぞれ毎分10mlの速度で添加した。滴下終了後、セパラブルフラスコ内を窒素で置換しながら、撹拌を30分間継続して晶析反応を完全に進行させた。この晶析によって生成した共沈殿物を吸引濾過で濾過して回収した。共沈殿物を水洗後、真空乾燥機中80℃で乾燥し、リチウム二次電池用正極活物質の前駆体を得た。得られた前駆体をX線回折測定した結果、回折ピークが得られず、前駆体は鉄とケイ素の非晶質であることが確認された。
得られた1次混合物30gとスクロース4.9gを、直径5mmジルコニアボールが350gの入った内容積250mlジルコニア製ポットに入れ、遊星ボールミルにより200rpmで10分間混合した。ジルコニアボールを篩い分けし、前駆体と炭酸リチウムおよびスクロースの混合物を作製した。
得られた正極活物質のリチウム:マンガン:ケイ素の組成比は、2.02:0.98:1.00であり、炭素含有量は4.5質量%であり、ナトリウム含有量は0.8質量%であった。また、X線回折によりケイ酸マンガンリチウムと同定された(図2)。前駆体についても実施例1同様にX線回折測定した結果、得られた前駆体はマンガンとケイ素の非晶質であることが確認された(図3)。
この正極活物質についてSEM観察を行ったところ、一次粒子径は50〜200nmであった。また、BET法により求めた比表面積は33.3m2/gであった。電池容量の評価結果を表1に示す。
得られた正極活物質のリチウム:鉄:マンガン:ケイ素の組成比は、2.01:0.49:0.51:1.00であり、炭素含有量は4.6質量%であり、ナトリウム含有量は0.8質量%であった。また、X線回折により、ケイ酸鉄リチウムおよびケイ酸マンガンリチウムと同定された。前駆体についても実施例1同様にX線回折測定した結果、得られた前駆体は鉄およびマンガンとケイ素の非晶質であることが確認された。この正極活物質についてSEM観察を行ったところ、一次粒子径は50〜250nmであった。また、BET法により求めた比表面積は31.7m2/gであった。電池容量の評価結果を表1に示す。
炭酸リチウムの混合量を13.0gとした以外は、実施例1と同様の方法で正極活物質を得るとともに評価した。得られた正極活物質のリチウム:鉄:ケイ素の組成比は、1.86:0.99:1.00であり、炭素含有量は4.4質量%であり、ナトリウム含有量は0.8質量%であった。また、X線回折により、ケイ酸鉄リチウムと同定される微弱ピークが検出された。この正極活物質についてSEM観察を行ったところ、一次粒子径は50〜250nmであった。また、BET法により求めた比表面積は27.8m2/gであった。電池容量の評価結果を表1に示す。
炭酸リチウムの混合量を15.5gとした以外は、実施例1と同様の方法で正極活物質を得るとともに評価した。得られた正極活物質のリチウム:鉄:ケイ素の組成比は、2.19:0.98:1.00であり、炭素含有量は4.8質量%であり、ナトリウム含有量は0.9質量%であった。また、X線回折により、ケイ酸鉄リチウムと同定された。この正極活物質についてSEM観察を行ったところ、一次粒子径は50〜250nmの球状粒子と、数100nm板状粒子が観察された。また、BET法により求めた比表面積は21.8m2/gであった。電池容量の評価結果を表1に示す。
焼成温度を800℃とした以外は、実施例1と同様の方法で正極活物質を得るとともに評価した。得られた正極活物質のリチウム:鉄:ケイ素の組成比は、2.01:0.98:1.00であり、炭素含有量は1.6質量%であり、ナトリウム含有量は0.9質量%であった。また、X線回折により、ケイ酸鉄リチウムと同定された。この正極活物質についてSEM観察を行ったところ、一次粒子径は数μmであった。またBET法により求めた比表面積は12.3m2/gであった。電池容量の評価結果を表1に示す。
焼成温度を400℃とした以外は、実施例1と同様の方法で正極活物質を得るとともに評価した。得られた正極活物質のリチウム:鉄:ケイ素の組成比は、2.01:0.98:1.00であった。また、X線回折により酸化鉄とケイ酸リチウムと同定され、ケイ酸鉄リチウムは得られなかった。
晶析反応時のpHを6に制御した以外は、実施例1と同様の方法で正極活物質を得るとともに評価した。得られた正極活物質のリチウム:鉄:ケイ素の組成比は、2.01:0.85:1.00であった。鉄を十分に共沈殿させることができず、ケイ酸鉄リチウムが得られなかった。
晶析反応時のpHを12に制御した以外は、実施例1と同様の方法で正極活物質を得るとともに評価した。得られた正極活物質リチウム:鉄:ケイ素の組成比は、2.01:0.99:1.00であった。また、X線回折を行うとケイ酸鉄リチウムとケイ酸ナトリウムに由来するピークが検出された。正極活物質中のナトリウム含有量は4.5質量%と高く、異相としてケイ酸ナトリウムが検出された。
一方、リチウムの組成比が本発明の範囲となっていない比較例1および2、焼成温度が高い比較例3は、電池容量が大幅に低いことがわかる。さらに、焼成温度が低い比較例4、晶析時のpHが本発明の範囲となっていない比較例5および6では、ケイ酸金属リチウム塩が得られなかった。
Claims (8)
- 一般式LixMySiO4(1.90≦x≦2.15、0.90≦y≦1.10、MはMn、Fe、Ni、Coから選択される1種以上の元素)で表されるケイ酸金属リチウム塩からなるリチウム二次電池用正極活物質であって、
一次粒子および一次粒子が凝集した二次粒子からなるケイ酸金属リチウム塩粒子で構成され、
前記一次粒子径は、SEM観察による測定において10〜300nm、
前記正極活物質の比表面積が25〜35m2/g、炭素含有量が3〜7質量%であり、
前記ケイ酸金属リチウム塩粒子の電解液との接触面の少なくとも一部が、導電性を有する炭素質材料で被覆されていることを特徴とするリチウム二次電池用正極活物質。 - 前記炭素質材料が、炭水化物の加熱分解により生成されたものであることを特徴とする請求項2に記載のリチウム二次電池用正極活物質。
- 請求項1または2に記載のリチウム二次電池用正極活物質の製造方法であって、
一般式MySiO3(0.90≦y≦1.10、MはMn、Fe、Ni、Coから選択される1種以上の元素)で表されるケイ酸金属塩であって、前記一般式中M元素の2価イオンを含む溶液とケイ酸イオン(SiO3 2−)を含む溶液を混合して得たM元素とケイ酸の非晶質共沈殿物であるリチウム二次電池用正極活物質の前駆体と、リチウム化合物、および炭素源とを混合した後、非酸化性雰囲気中で450℃〜750℃で焼成することを特徴とするリチウム二次電池用正極活物質の製造方法。 - 前記炭素源が、250℃以下の融点の炭水化物を用いるとともに、混合後、焼成前に非酸化性雰囲気中において、前記炭水化物の融点以上、かつ300℃以下の温度で加熱処理することを特徴とする請求項3に記載のリチウム二次電池用正極活物質の製造方法。
- 前記炭水化物が、単糖類および二糖類の少なくとも一種であることを特徴とする請求項4に記載のリチウム二次電池用正極活物質の製造方法。
- 前記炭水化物が、スクロース、グルコースの少なくとも一種であることを特徴とする請求項5に記載のリチウム二次電池用正極活物質の製造方法。
- 前記焼成前に前記前駆体の粉砕を行うことを特徴とする請求項3〜6のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。
- 請求項1または2に記載のリチウム二次電池用正極活物質を用いた正極を備えることを特徴とするリチウム二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014015302A JP5769140B2 (ja) | 2014-01-30 | 2014-01-30 | リチウム二次電池用正極活物質の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014015302A JP5769140B2 (ja) | 2014-01-30 | 2014-01-30 | リチウム二次電池用正極活物質の製造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010155851A Division JP5505868B2 (ja) | 2010-07-08 | 2010-07-08 | リチウム二次電池用正極活物質の前駆体とその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014082219A true JP2014082219A (ja) | 2014-05-08 |
JP5769140B2 JP5769140B2 (ja) | 2015-08-26 |
Family
ID=50786184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014015302A Active JP5769140B2 (ja) | 2014-01-30 | 2014-01-30 | リチウム二次電池用正極活物質の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5769140B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019107033A1 (ja) * | 2017-11-29 | 2019-06-06 | パナソニックIpマネジメント株式会社 | リチウムイオン電池 |
WO2019130787A1 (ja) * | 2017-12-28 | 2019-07-04 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用負極活物質 |
CN114628655A (zh) * | 2022-02-28 | 2022-06-14 | 广东邦普循环科技有限公司 | 植物绒球硬碳复合负极材料及其制备方法和应用 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004509447A (ja) * | 2000-09-26 | 2004-03-25 | ハイドロ−ケベック | 制御されたサイズを持つ炭素によって被覆された、酸化還元物質の合成方法 |
WO2007034821A1 (ja) * | 2005-09-21 | 2007-03-29 | Kanto Denka Kogyo Co., Ltd. | 正極活物質及びその製造方法並びに正極活物質を含む正極を有する非水電解質電池 |
JP2008016232A (ja) * | 2006-07-03 | 2008-01-24 | Sony Corp | 正極活物質およびその製造方法、並びに非水電解質二次電池 |
JP2008053220A (ja) * | 2006-07-25 | 2008-03-06 | Gs Yuasa Corporation:Kk | 非水電解質電池及びその製造方法 |
JP2008293661A (ja) * | 2007-05-22 | 2008-12-04 | Nec Tokin Corp | リチウム二次電池用正極及びそれを用いたリチウム二次電池 |
JP2009263222A (ja) * | 2008-03-31 | 2009-11-12 | Toda Kogyo Corp | リン酸鉄リチウム粒子粉末の製造方法、オリビン型構造のリン酸鉄リチウム粒子粉末、該リン酸鉄リチウム粒子粉末を用いた正極材シート及び非水溶媒系二次電池 |
JP2010086777A (ja) * | 2008-09-30 | 2010-04-15 | Tdk Corp | 活物質及び活物質の製造方法 |
JP2010086657A (ja) * | 2008-09-29 | 2010-04-15 | Fdk Corp | 非水電解液二次電池 |
JP2010108676A (ja) * | 2008-10-29 | 2010-05-13 | Toyota Central R&D Labs Inc | 水系リチウム二次電池 |
US20100140540A1 (en) * | 2007-03-27 | 2010-06-10 | Atsuo Yamada | Method For Producing Positive Electrode Material For Secondary Battery |
WO2011108464A1 (ja) * | 2010-03-01 | 2011-09-09 | 古河電気工業株式会社 | 正極活物質材料、正極、2次電池及びこれらの製造方法 |
US20110269022A1 (en) * | 2010-04-28 | 2011-11-03 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage device |
WO2011162348A1 (ja) * | 2010-06-25 | 2011-12-29 | 旭硝子株式会社 | ケイ酸化合物、二次電池用正極、および二次電池の製造方法 |
-
2014
- 2014-01-30 JP JP2014015302A patent/JP5769140B2/ja active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004509447A (ja) * | 2000-09-26 | 2004-03-25 | ハイドロ−ケベック | 制御されたサイズを持つ炭素によって被覆された、酸化還元物質の合成方法 |
WO2007034821A1 (ja) * | 2005-09-21 | 2007-03-29 | Kanto Denka Kogyo Co., Ltd. | 正極活物質及びその製造方法並びに正極活物質を含む正極を有する非水電解質電池 |
JP2008016232A (ja) * | 2006-07-03 | 2008-01-24 | Sony Corp | 正極活物質およびその製造方法、並びに非水電解質二次電池 |
JP2008053220A (ja) * | 2006-07-25 | 2008-03-06 | Gs Yuasa Corporation:Kk | 非水電解質電池及びその製造方法 |
US20100140540A1 (en) * | 2007-03-27 | 2010-06-10 | Atsuo Yamada | Method For Producing Positive Electrode Material For Secondary Battery |
JP2008293661A (ja) * | 2007-05-22 | 2008-12-04 | Nec Tokin Corp | リチウム二次電池用正極及びそれを用いたリチウム二次電池 |
JP2009263222A (ja) * | 2008-03-31 | 2009-11-12 | Toda Kogyo Corp | リン酸鉄リチウム粒子粉末の製造方法、オリビン型構造のリン酸鉄リチウム粒子粉末、該リン酸鉄リチウム粒子粉末を用いた正極材シート及び非水溶媒系二次電池 |
JP2010086657A (ja) * | 2008-09-29 | 2010-04-15 | Fdk Corp | 非水電解液二次電池 |
JP2010086777A (ja) * | 2008-09-30 | 2010-04-15 | Tdk Corp | 活物質及び活物質の製造方法 |
JP2010108676A (ja) * | 2008-10-29 | 2010-05-13 | Toyota Central R&D Labs Inc | 水系リチウム二次電池 |
WO2011108464A1 (ja) * | 2010-03-01 | 2011-09-09 | 古河電気工業株式会社 | 正極活物質材料、正極、2次電池及びこれらの製造方法 |
US20110269022A1 (en) * | 2010-04-28 | 2011-11-03 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage device |
JP2011249324A (ja) * | 2010-04-28 | 2011-12-08 | Semiconductor Energy Lab Co Ltd | 蓄電装置用正極活物質、蓄電装置、及び電気推進車両、並びに蓄電装置の作製方法 |
WO2011162348A1 (ja) * | 2010-06-25 | 2011-12-29 | 旭硝子株式会社 | ケイ酸化合物、二次電池用正極、および二次電池の製造方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019107033A1 (ja) * | 2017-11-29 | 2019-06-06 | パナソニックIpマネジメント株式会社 | リチウムイオン電池 |
JPWO2019107033A1 (ja) * | 2017-11-29 | 2020-11-19 | パナソニックIpマネジメント株式会社 | リチウムイオン電池 |
JP7209265B2 (ja) | 2017-11-29 | 2023-01-20 | パナソニックIpマネジメント株式会社 | リチウムイオン電池 |
US11984604B2 (en) | 2017-11-29 | 2024-05-14 | Panasonic Intellectual Property Management Co., Ltd. | Lithium ion battery |
WO2019130787A1 (ja) * | 2017-12-28 | 2019-07-04 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用負極活物質 |
JPWO2019130787A1 (ja) * | 2017-12-28 | 2021-01-21 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用負極活物質 |
JP7209266B2 (ja) | 2017-12-28 | 2023-01-20 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用負極活物質 |
US11990606B2 (en) | 2017-12-28 | 2024-05-21 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode active material for non-aqueous electrolyte secondary batteries |
CN114628655A (zh) * | 2022-02-28 | 2022-06-14 | 广东邦普循环科技有限公司 | 植物绒球硬碳复合负极材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
JP5769140B2 (ja) | 2015-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5835334B2 (ja) | リン酸アンモニウムマンガン鉄とその製造方法、および該リン酸アンモニウムマンガン鉄を用いたリチウム二次電池用正極活物質の製造方法 | |
TWI469432B (zh) | 鋰蓄電池用正極活性物質及其製造方法 | |
EP2936590B1 (en) | Lmfp cathode materials with improved electrochemical performance | |
JP5120523B1 (ja) | リン酸アンモニウムマンガン鉄マグネシウムとその製造方法、および該リン酸アンモニウムマンガン鉄マグネシウムを用いたリチウム二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いたリチウム二次電池 | |
JP5165515B2 (ja) | リチウムイオン二次電池 | |
WO2009120019A1 (ko) | 리튬 전지용 올리빈형 양극 활물질 전구체, 리튬 전지용 올리빈형 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 전지 | |
JP5712959B2 (ja) | リチウム二次電池用正極活物質の前駆体とその製造方法および該前駆体を用いたリチウム二次電池用正極活物質の製造方法 | |
JP5888762B2 (ja) | 複合材料及びその製造方法、正極活物質、正極、並びに非水電解質二次電池 | |
JP5505868B2 (ja) | リチウム二次電池用正極活物質の前駆体とその製造方法 | |
JP2010232091A (ja) | リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池 | |
JP5901492B2 (ja) | リチウムシリケート化合物の製造方法、リチウムシリケート化合物凝集体の製造方法及びリチウムイオン電池の製造方法 | |
JP5364865B2 (ja) | リチウム二次電池用正極活物質の製造方法 | |
JP5370501B2 (ja) | 複合酸化物の製造方法、リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 | |
JP6362033B2 (ja) | 非水系電解液二次電池用正極活物質と非水系電解液二次電池 | |
JP5769140B2 (ja) | リチウム二次電池用正極活物質の製造方法 | |
JP2013012336A (ja) | 二次電池およびその充電方法 | |
JP5988095B2 (ja) | リチウム二次電池用正極活物質の前駆体とその製造方法、および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池 | |
JP6013125B2 (ja) | リチウムシリケート化合物の製造方法、及びリチウムイオン電池の製造方法 | |
CN116259755A (zh) | 二次电池用负极活性物质及其制备方法 | |
JP5387631B2 (ja) | 元素置換リチウムマンガン複合酸化物粒子状組成物とその製造方法とその二次電池への利用 | |
JP5860377B2 (ja) | リチウムシリケート化合物、および、それを用いたリチウムイオン電池 | |
JP6064309B2 (ja) | リチウム二次電池用正極活物質の前駆体とその製造方法、および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池 | |
JP6961955B2 (ja) | 非水系電解質二次電池用正極活物質 | |
JP7308586B2 (ja) | 非水系電解質二次電池用正極活物質 | |
JP2016186877A (ja) | オリビン型正極活物質とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150304 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150601 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5769140 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150614 |