WO2003063274A1 - Negative electrode material for lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary battery Download PDF

Info

Publication number
WO2003063274A1
WO2003063274A1 PCT/JP2003/000631 JP0300631W WO03063274A1 WO 2003063274 A1 WO2003063274 A1 WO 2003063274A1 JP 0300631 W JP0300631 W JP 0300631W WO 03063274 A1 WO03063274 A1 WO 03063274A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
graphite powder
electrode material
lithium ion
secondary battery
Prior art date
Application number
PCT/JP2003/000631
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
Naoto Ohta
Katsuhide Nagaoka
Kazuhito Hoshi
Hidehiko Nozaki
Tetsuro Tojo
Toshiaki Sogabe
Original Assignee
Toyo Tanso Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co., Ltd. filed Critical Toyo Tanso Co., Ltd.
Priority to KR1020047011101A priority Critical patent/KR100722646B1/ko
Priority to JP2003563027A priority patent/JP4064351B2/ja
Priority to EP03731830A priority patent/EP1478038B1/de
Priority to US10/501,333 priority patent/US7816037B2/en
Publication of WO2003063274A1 publication Critical patent/WO2003063274A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • a lithium ion secondary battery includes a positive electrode capable of inserting and extracting lithium ions, a negative electrode, and an electrolytic solution containing a non-aqueous electrolyte.
  • a positive electrode capable of inserting and extracting lithium ions
  • a negative electrode for the negative electrode material, artificial graphite obtained by shaping mesophase small spheres / coke from a low-crystalline carbon material such as resin charcoal, or a material having a high degree of graphitization such as natural graphite is used. Further, a material having a high degree of graphitization that satisfies the demand for a high energy density is desired.
  • the discharge capacity is close to the theoretical value for materials that have been graphitized, including natural graphite.
  • the irreversible capacity associated with the decomposition of the electrolytic solution on the negative electrode in the initial stage of charging is generally as large as several tens mAh Z g or more. Therefore, this has been a major obstacle in improving the performance of the lithium ion secondary battery.
  • propylene carbonate is used for the electrolyte, significant decomposition of the electrolyte occurs on the negative electrode. As a result, propylene carbonate Has been greatly limited in use as an electrolyte.
  • JP-A-4-370662 and JP-A-5-335016 disclose, as a negative electrode material, the surface of the black sharp particles with an organic carbonized material. Coated materials are disclosed. Further, a method of coating a carbonaceous powder with a carbonized powder of petroleum pitch or coal tar pitch is disclosed in JP-A-10-59703. Also, a material in which the surface of graphite particles is coated as a carbon layer by a chemical vapor deposition method is disclosed in Japanese Patent Application Laid-Open No. 11-204109.
  • the present invention can achieve high efficiency without lowering the reversible capacity, reduce irreversible capacity, remarkably decompose the electrolytic solution at the beginning of charging, and restrict the use of propylene carbonate.
  • An object of the present invention is to provide a negative electrode material for a lithium ion secondary battery that can be used even in a system electrolyte. Disclosure of the invention
  • the irreversible capacity accompanying the decomposition of the electrolyte can be reduced. If the amount of mesopores is larger than 0.01 c cZg, the irreversible capacity is not improved.
  • Peak intensity ratio of 1360 cm- 1 to 1580 cm- 1 in Raman spectrum analysis at a wavelength of 532 nm, R I 1360 / I 158 . However, since it is 0.4 or less, preferably 0.37 or less, and more preferably 0.35 or less, the irreversible capacity can be reduced.
  • the coated graphite powder has an acid consumption rate of 2 wt% or more when oxidized for 1 hour in an atmosphere of 400 ° C. and an air flow rate of 31 min. Is preferred.
  • the irreversible capacity can be greatly reduced, and the resistance to propylene carbonate can be improved.
  • the coated graphite powder has a BET specific surface area of 0.5 to 4 m 2 Zg using a nitrogen atom as an adsorbate.
  • a preferable range of the specific surface area is 0.5 to 4 m 2 / g, more preferably 0.5 to 3 m 2 / "g.
  • the coated graphite powder has an HZC value of 0.01 or less in elemental analysis.
  • H represents a hydrogen atom
  • C represents a carbon atom
  • the HZC value represents the HZC atomic ratio in the entire carbonaceous material contained in the multiphase structure including the surface layer and the nucleus. Is given as the average of
  • a mixture of two types of graphite powders having different average particle diameters each having an average particle diameter of 10 to 50 m and a standard deviation ratio (crZD) to the average particle diameter of 0.02 or less.
  • the average particle size is as small as 8 jiim to 15 / m, more preferably 10 ⁇ m to 13; xm, and as large as 15 ⁇ ! 25 ⁇ , more preferably 18 ⁇ to 22 m.
  • the graphite powder has an average plane distance d using a Gakushin method. . 2 value is 0. 3380 nm or less and a L (1 12) is 5 nm or more.
  • the binary value is preferably 0.3380 nm or less, and L (1 12) is preferably 5 nm or more.
  • the good preferable range, (1.02 value 0. 3370 nm or less, L (1 1 2) is preferably not less than 10 nm, more preferably, £ 1. 02 value 0. 3360 nm or less, L ( 1 1 2) is 15 nm or more.
  • the coating of the carbonized thermoplastic resin causes the surface of the coated graphite powder to have a larger amount of pores or inter-particle voids than the mesopores while decreasing the amount of the mesopores. Increasing the amount of pores larger than the mesopores makes it easier for the electrolyte to penetrate into the particles. On the other hand, since the amount of mesopores is reduced, the irreversible capacity associated with the decomposition of the electrolyte can be reduced. That is, it can be said that the coating in the present invention is not the particle surface but the coating inside the pores. Further, in the negative electrode material for a lithium ion secondary battery of the present invention, the coated graphite powder has a carbonization yield of 20 wt. % Or less of carbonized thermoplastic resin is preferably coated at a ratio of 100 parts by weight or less to 100 parts by weight of the black bell powder.
  • thermoplastic resin is any one of polychlorinated vinyl, polyvinyl alcohol, and polyvinylpyrrolidone, or a mixture thereof.
  • the particle shape is not particularly limited, but a spherical shape is preferable from the viewpoint of coating properties on a copper plate and lithium ion diffusibility. Natural graphite and the like are often in the form of flakes.
  • a particle complexing device such as a hybridization system manufactured by Nara Machinery Co., Ltd. or a mechanofusion system manufactured by Hosokawa Micron Corporation is used. Can be spherical.
  • the mixing of the graphite powder and the thermoplastic resin may be performed in a dry manner using a known mixing device such as a V-type mixer. Uniform mixing is preferred, but a pole mill or hammer mill can be used as long as the graphite particles are not destroyed by shearing force. It is also possible to use a device such as a file.
  • a known mixing device such as a V-type mixer. Uniform mixing is preferred, but a pole mill or hammer mill can be used as long as the graphite particles are not destroyed by shearing force. It is also possible to use a device such as a file.
  • the firing of the mixture is usually performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the firing temperature may be a temperature at which carbonization is completed, but is usually 700 ° C or higher, preferably 750 ° C or higher, preferably 1100 ° C or lower, more preferably 1000 ° C or lower, and particularly preferably. Is below 950 ° C. If the temperature is too low, carbonization is insufficient and sufficient performance as an electrode active material cannot be obtained.If the temperature is too high, the crystallinity is so high that the electrolyte can be easily decomposed and the irreversible capacity decreases. Not preferred for purpose.
  • the heating rate is not particularly limited, but ⁇ ⁇ ⁇ ⁇ Preferably from 20 : L 00 ° C / h.
  • V 1 2 is when the relative pressure is changed from X to X 2 ( ⁇ ,
  • ⁇ X 2 increase in the amount of adsorption
  • r ⁇ is the average value of the pore radius to be determined
  • ⁇ 1: is the change in the thickness of the molecular adsorption layer
  • r is the average value of the pore radius
  • VJ 2 is the pore radius r ⁇ From! ⁇
  • C x is a variable (chosen from 0.75, 0.80, 0.85, 0.90)
  • S is the pore surface area.
  • the obtained coated black powder coated with the carbonized thermoplastic resin does not undergo a crushing step after firing, and after a particle size adjustment by simple sieving, using a binder and a solvent capable of dissolving the binder. Dispersed paint can be used.
  • the binder it is necessary to be stable with respect to the electrolytic solution and the like, and various materials are used from the viewpoints of weather resistance, chemical resistance, heat resistance, flame retardancy, and the like.
  • inorganic compounds such as silicate and glass, alkane polymers such as polyethylene, polypropylene, poly (1,1-dimethylethylene), unsaturated polymers such as polybutadiene and polyisoprene, polystyrene, and poly Examples thereof include polymers having a ring structure in a polymer chain, such as methylstyrene, volibulpyridine, and poly-N-vininolepyrrolidone.
  • binder examples include acryl derivative polymers such as polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, polyacrylic acid, polymethacrylic acid, polyacrylamide, and the like, and polyolefin.
  • Fluorinated resins such as vinyl chloride, polyvinylidene fluoride, and polytetrafluoroethylene; CN group-containing polymers such as polyacrylonitrile and polyvinylidene cyanide; polyvinyl alcohol-based polymers such as polyvinyl acetate and polyvinyl alcohol; polyvinyl chloride; and polyvinyl chloride Halogen-containing polymers such as viurydene, polyanily
  • a conductive polymer such as a polymer can be used.
  • binders include a fluororesin and a CN group-containing polymer, and more preferably polyvinylidene fluoride.
  • the amount of the binder used is usually at least 0.1 part by weight, preferably at least 1 part by weight, and usually at most 30 parts by weight based on 100 parts by weight of the coated graphite powder coated with the carbonized thermoplastic resin. And preferably not more than 20 parts by weight. If the amount of the binder is too small, the strength of the electrode tends to decrease, and if the amount of the binder is too large, the ion conductivity tends to decrease.
  • a solvent that can dissolve the binder to be used may be appropriately selected, and examples thereof include N-methylpyrrolidone and dimethylformamide, and N-methylpyrrolidone is preferable.
  • Example 1 Mean spacing d by Gakushin method. . 2 is 0.353 54 nm, L (1 1 2) showing the three-dimensional size of crystallites is 27 nm, average particle diameter 20 ⁇ m
  • Natural graphite powder 100 parts by weight of polybutyl alcohol powder 50 The parts by weight were dry-mixed at room temperature for 10 minutes using a mixer. The mixed graphite powder is transferred to a graphite crucible, covered, heated in a nitrogen stream to 900 ° C at 300 ° C / h, held at 900 ° C for 1 hour, and cooled. did.
  • Example 2 The same formulation as in Example 1 was used except that the blending amount of the polyvinyl alcohol powder was 75 parts by weight, the standard deviation ratio ( ⁇ / D) to the average particle diameter of 24 ⁇ m ( ⁇ / D) was 0.0085, and the mesopore volume was 0.005. [0060] A coated black bell powder coated with a carbonized material of cc / g was obtained. Using this, the same electrochemical measurement as in Example 1 was performed.
  • Example 1 Electrochemical measurement was performed in the same manner as in the above.
  • Mean spacing d by Gakushin method. . 2 is 0.3354 nm
  • L (1 1 2) showing the three-dimensional size of crystallites is 27 nm
  • 50 parts by weight of natural graphite powder with an average particle diameter of 12 ⁇ m is the average plane distance by the Gakushin method d. . 2
  • L (1 1 2), which indicates the three-dimensional size of crystallites was 27 nm
  • a mixed powder of 50 parts by weight of natural graphite powder with an average particle diameter of 24 ⁇ m was used.
  • Example 2 It was coated with a carbonized material having a standard deviation ratio ( ⁇ / D) of 0.011 and a mesopore volume of 0.0083 cc / g with the same formulation as in Example 1 except for the average particle diameter of 19 ⁇ m. A coated graphite powder was obtained. Using this, the same electrochemical measurement as in Example 1 was performed.
  • Mean spacing d by Gakushin method. . 2 is 0.3355 ⁇
  • L (1 1 2) indicating the three-dimensional size of crystallites is 27 nni
  • average particle diameter is 19, and 100 parts by weight of natural graphite powder is subjected to the same treatment as in Example 1;
  • the standard deviation ratio ( ⁇ / D) for a particle size of 23 m is 0.008, and the mesopore volume is 0.0
  • a coated graphite powder coated with a carbonized material of 055 cc / g was obtained. Using this, the same electrochemical measurement as in Example 1 was performed.
  • the battery was charged and discharged at a current density of 3.12 mA cm- 2 .
  • the ambient temperature was 25 ° C
  • a discharge capacity of 363.6 mAhZg was obtained.
  • the ambient temperature was 15 ° C.
  • it was 311.2 mAh Zg
  • the capacity retention ratio at 25 ° C. was 85.6%.
  • Example 1 Except that the blending amount of the polyvinyl alcohol powder was changed to 10 parts by weight, the ratio ( ⁇ / D) of the standard deviation to the average particle diameter of 24 / xm ( ⁇ / D) was 0.018, and the mesopore volume was 0.018, with the same formulation as in Example 1. A coated graphite powder coated with a cc / g of carbonized material was obtained. Using this, the same electrochemical measurement as in Example 1 was performed.
  • Example 1 Except that the blending amount of the polyvinyl alcohol powder was 200 parts by weight, the ratio of the standard deviation to the average particle diameter of 24 ⁇ (and ZD) was 0.007, and the mesopore volume was 0.0055 cc, with the same formulation as in Example 1. / g, and a coated graphite powder coated with a carbonized material having an R value of 0.51 was obtained. Using this, the same electrochemical measurement as in Example 1 was performed.
  • Example 2 Except that the heat treatment after dry mixing was performed at 600 ° C lower than that of Example 1, the standard deviation ratio ( ⁇ / D) to the average particle diameter of 24 ⁇ m ( ⁇ / D) was 0.012, A coated graphite powder coated with a carbide having a pore volume of 0.0050 cc / g, an R value of 0.47, and an HZC of 0.02 was prepared. Obtained. Using this, the same electrochemical measurement as in Example 1 was performed.
  • Example 2 Except that the heat treatment after dry mixing was performed at 1300 ° C higher than that of Example 1, the standard deviation ratio ( ⁇ / D) to the average particle diameter of 24 ⁇ m ( ⁇ / D) was 0.012 with the same formulation as in Example 1. Coated with carbonaceous material having a mesopore volume of 0.0063 cc / g and oxidation consumption of 0.13 wt% when oxidized for 1 hour in an atmosphere of 400 ° C and an air flow rate of 31 / min. A coated black powder was obtained. Using this, the same electric physics measurement as in Example 1 was performed.
  • Der 1 mu m by Gakushin method Except that natural graphite powder was used, the same formula as in Example 1 was used to obtain a standard deviation ratio ( ⁇ / D) of 0.032 to an average particle size of 8.2 ⁇ and a mesopore volume of 0.0202 cc / g.
  • a coated graphite powder coated with a carbide was obtained, and the same electrochemical measurement as in Example 1 was performed.
  • the natural graphite powder used in Example 1 was used without being coated with a carbonized material, and the graphite powder was used as a solvent with N-methinolepyrrolidone so that the amount of a binder composed of polyvinylidene fluoride resin was 1% by weight.
  • the slurry was adjusted. After applying this slurry to the copper foil, the solvent is sufficiently volatilized and pressed using a roll press so that the approximate density becomes 1.0 g / cm 3. This was extended to obtain a negative electrode. Using this negative electrode, a three-electrode cell was produced. Counter,.
  • Fig. 1 shows a list of various measurement data.
  • the negative electrode material for a lithium ion secondary battery according to the present invention is configured as described above, and can achieve high efficiency without lowering the reversible capacity.
  • the use of propylene carbonate-based electrolytes, in which the decomposition of the electrolyte is remarkable and its use is restricted, can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
PCT/JP2003/000631 2002-01-25 2003-01-24 Negative electrode material for lithium ion secondary battery WO2003063274A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020047011101A KR100722646B1 (ko) 2002-01-25 2003-01-24 리튬이온 이차전지용 음극재
JP2003563027A JP4064351B2 (ja) 2002-01-25 2003-01-24 リチウムイオン二次電池用負極材
EP03731830A EP1478038B1 (de) 2002-01-25 2003-01-24 Negativ-elektrodenmaterial für eine lithiumionen-sekundärbatterie
US10/501,333 US7816037B2 (en) 2002-01-25 2003-01-24 Anode material for lithium ion secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-17270 2002-01-25
JP2002017270 2002-01-25
JP2002319227 2002-11-01
JP2002-319227 2002-11-01

Publications (1)

Publication Number Publication Date
WO2003063274A1 true WO2003063274A1 (en) 2003-07-31

Family

ID=27615704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000631 WO2003063274A1 (en) 2002-01-25 2003-01-24 Negative electrode material for lithium ion secondary battery

Country Status (7)

Country Link
US (1) US7816037B2 (de)
EP (1) EP1478038B1 (de)
JP (1) JP4064351B2 (de)
KR (1) KR100722646B1 (de)
CN (1) CN100477344C (de)
TW (1) TW574764B (de)
WO (1) WO2003063274A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039290A (ja) * 2005-08-04 2007-02-15 Sumitomo Metal Ind Ltd 非水系二次電池用負極材料に適した炭素粉末
JP2008059903A (ja) * 2006-08-31 2008-03-13 Toyo Tanso Kk リチウムイオン二次電池負極用炭素材料、低結晶性炭素含浸リチウムイオン二次電池負極用炭素材料、負極電極板、及び、リチウムイオン二次電池
JP2009266800A (ja) * 2008-04-23 2009-11-12 Ls Mtron Ltd 二次電池用負極活物質、これを含む二次電池及びその製造方法
JP2010016005A (ja) * 2003-08-21 2010-01-21 Samsung Sdi Co Ltd 非水系電解質二次電池用負極活物質及びその製造方法並びにそれを含む非水系電解質二次電池
JP2012533498A (ja) * 2009-07-17 2012-12-27 エボニック デグサ ゲーエムベーハー バッテリ電極のためのナノ構造化ケイ素−炭素複合材料
WO2014007035A1 (ja) * 2012-07-02 2014-01-09 株式会社 日立製作所 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法
WO2018087928A1 (ja) * 2016-11-14 2018-05-17 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
US10361430B2 (en) 2015-09-16 2019-07-23 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and vehicle
WO2021019727A1 (ja) * 2019-07-31 2021-02-04 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
CN115485237A (zh) * 2020-04-28 2022-12-16 浦项产业科学研究院 锂二次电池负极材料及其制备方法和锂二次电池

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431204C (zh) * 2005-09-22 2008-11-05 松下电器产业株式会社 负极和使用该负极制备的锂离子二次电池
KR100686783B1 (ko) * 2006-01-16 2007-02-26 엘에스전선 주식회사 2차 전지용 음극재, 그 제조방법 및 이를 이용한 2차 전지
TW200746523A (en) * 2006-01-30 2007-12-16 Tokai Carbon Kk Negative electrode material for lithium ion secondary battery and process for producing the same
JP2008066053A (ja) * 2006-09-06 2008-03-21 Fuji Heavy Ind Ltd 蓄電デバイス用負極活物質およびその製造方法
EP2123616A4 (de) * 2006-12-22 2013-09-11 Toyo Tanso Co Graphitmaterial und herstellungsverfahren dafür
FR2912036B1 (fr) * 2007-02-01 2009-10-02 Nutritis Sirops de sucres de fruits a haute teneur en fructose,et procede de preparation.
KR100938058B1 (ko) * 2007-10-23 2010-01-21 삼성에스디아이 주식회사 리튬 이차전지용 음극 및 이를 이용한 리튬 이차 전지
JP4979817B2 (ja) * 2008-12-02 2012-07-18 日清紡ホールディングス株式会社 炭素触媒及びその製造方法、これを用いた電極及び電池
US9059471B2 (en) 2008-12-02 2015-06-16 Nisshinbo Holdings Inc. Carbon catalyst, method for manufacturing the carbon catalyst, and electrode and battery using the carbon catalyst
WO2010113783A1 (ja) * 2009-03-30 2010-10-07 住友金属工業株式会社 混合炭素材料および非水系二次電池用負極
KR101203277B1 (ko) * 2009-09-28 2012-11-21 도요타지도샤가부시키가이샤 리튬 2차 전지 및 그 제조 방법
US9450246B2 (en) * 2009-10-27 2016-09-20 Hitachi Chemical Company, Ltd. Carbon particles for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN202977600U (zh) * 2009-12-21 2013-06-05 A123系统公司 阳极材料
WO2011145178A1 (ja) * 2010-05-18 2011-11-24 トヨタ自動車株式会社 負極活物質
CN101863467B (zh) * 2010-06-23 2012-01-04 长沙格翎电池材料有限公司 包覆石墨的方法
WO2012017537A1 (ja) * 2010-08-05 2012-02-09 トヨタ自動車株式会社 リチウムイオン二次電池
KR101155915B1 (ko) 2010-09-13 2012-06-20 삼성에스디아이 주식회사 리튬 이차 전지
US8524113B2 (en) * 2010-09-27 2013-09-03 Long Time Technology Corp., LTD. Anode material of lithium-ion secondary battery and preparation method thereof
CN102420317B (zh) * 2010-09-28 2014-01-15 荣炭科技股份有限公司 锂离子二次电池负极材料及其制备方法
DE102012202968A1 (de) * 2012-02-28 2013-08-29 Sgl Carbon Se Verfahren zur Herstellung von beschichteten Aktivmaterialien und deren Verwendung für Batterien
JP5987439B2 (ja) * 2012-04-19 2016-09-07 日立化成株式会社 リチウムイオン二次電池用負極活物質及びリチウムイオン二次電池
CN108502877A (zh) * 2013-02-04 2018-09-07 昭和电工株式会社 石墨粉及其制造方法、以及电池电极用石墨材料、锂电池用电极和锂离子二次电池
CN108666568A (zh) * 2017-04-01 2018-10-16 清华大学 锂离子电池阳极
CN107256952A (zh) * 2017-06-12 2017-10-17 百川化工(如皋)有限公司 一种锂离子电池负极改性材料的制备方法
ES2969376T3 (es) * 2019-07-31 2024-05-17 Resonac Corp Método de fabricación de material de electrodo negativo para batería secundaria de iones de litio y método de fabricación de batería secundaria de iones de litio
WO2021019726A1 (ja) * 2019-07-31 2021-02-04 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
CN113809324A (zh) * 2020-06-26 2021-12-17 杰富意化学株式会社 碳质包覆石墨粒子、锂离子二次电池的负极及锂离子二次电池
CN114975966B (zh) * 2022-06-29 2024-05-31 宜春瑞富特新能源材料技术有限公司 一种锂离子电池用铝碳包覆石墨负极材料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370662A (ja) 1991-06-20 1992-12-24 Mitsubishi Petrochem Co Ltd 二次電池用電極
JPH05335016A (ja) 1992-06-02 1993-12-17 Mitsubishi Petrochem Co Ltd 非水溶媒二次電池およびその電極材料
DE19547376A1 (de) 1994-12-16 1996-06-20 Moli Energy 1990 Ltd Praegraphitische kohlenstoffhaltige Einsatzverbindungen und Verwendung derselben als Anoden in wiederaufladbaren Batterien
EP0847098A1 (de) * 1996-11-27 1998-06-10 Denso Corporation Sekundärzelle mit nichtwässrigem Elektrolyt
EP0861804A1 (de) 1995-11-14 1998-09-02 Osaka Gas Co., Ltd. Kathodenmateriaal für lithium-sekundärbatterie, verfahren zu seiner herstellung und dieses verwendende sekundärbatterie
EP0917228A1 (de) 1997-05-30 1999-05-19 Matsushita Electric Industrial Co., Ltd. Nichtwässrige elektrolytische sekundärbatterie
JP2000251895A (ja) 1999-02-24 2000-09-14 Samsung Sdi Co Ltd リチウム二次電池用負極活物質及びその製造方法
JP2001196097A (ja) * 2000-12-13 2001-07-19 Mitsubishi Electric Corp リチウム二次電池
JP2001229917A (ja) * 2000-02-10 2001-08-24 Toyo Tanso Kk 負極の製造方法
US6355377B1 (en) 2000-03-07 2002-03-12 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3452537B2 (ja) 1991-06-20 2003-09-29 三菱化学株式会社 二次電池用電極用担持体の製造方法
JP3139790B2 (ja) 1991-10-02 2001-03-05 三菱化学株式会社 二次電池
JP3004789B2 (ja) 1991-12-03 2000-01-31 三菱化学株式会社 二次電池
JP3212662B2 (ja) 1992-02-07 2001-09-25 三菱化学株式会社 非水溶媒二次電池
JPH05275076A (ja) 1992-03-24 1993-10-22 Agency Of Ind Science & Technol リチウム二次電池用負極
JP3142166B2 (ja) 1992-04-07 2001-03-07 三菱化学株式会社 非水溶媒二次電池
JP3581631B2 (ja) 1992-04-07 2004-10-27 三菱化学株式会社 非水溶媒二次電池用負極材料
JP3291756B2 (ja) 1992-04-28 2002-06-10 三菱化学株式会社 非水溶媒二次電池およびその電極材料
JP3291755B2 (ja) 1992-04-28 2002-06-10 三菱化学株式会社 非水溶媒二次電池およびその電極材料
JP2976300B1 (ja) 1995-11-14 1999-11-10 大阪瓦斯株式会社 リチウム二次電池用負極材料の製造方法
JP3803866B2 (ja) 1995-11-14 2006-08-02 大阪瓦斯株式会社 二次電池用の二層炭素材料及びそれを用いたリチウム二次電池
JP2976299B2 (ja) 1995-11-14 1999-11-10 大阪瓦斯株式会社 リチウム二次電池用負極材料
JP3712288B2 (ja) 1996-02-02 2005-11-02 三菱化学株式会社 非水溶媒二次電池電極材料及びその製造方法
CA2176452C (en) 1996-05-13 2008-12-02 Qiming Zhong Method for reducing the surface area of carbonaceous powders
JPH09326254A (ja) 1996-06-05 1997-12-16 Mitsui Mining Co Ltd リチウムイオン二次電池用負極材料、及びその製造方法
JPH1012241A (ja) 1996-06-21 1998-01-16 Mitsui Mining Co Ltd リチウムイオン二次電池用負極材料
JP3873325B2 (ja) 1996-07-25 2007-01-24 大阪瓦斯株式会社 リチウム二次電池負極用炭素材及びその製造方法
JP3633257B2 (ja) 1997-02-04 2005-03-30 三菱化学株式会社 リチウムイオン二次電池
JP3054379B2 (ja) 1997-04-18 2000-06-19 日本カーボン株式会社 リチウム二次電池負極材用黒鉛を被覆した黒鉛質粉末とその製法
JP3193342B2 (ja) 1997-05-30 2001-07-30 松下電器産業株式会社 非水電解質二次電池
JPH11204109A (ja) 1998-01-09 1999-07-30 Mitsui Mining Co Ltd リチウムイオン二次電池用負極材料の製造方法
JP3711726B2 (ja) 1998-01-20 2005-11-02 日立化成工業株式会社 黒鉛粒子、その製造法、リチウム二次電池及びその負極
JP4081621B2 (ja) 1998-03-05 2008-04-30 大阪瓦斯株式会社 リチウム二次電池用負極炭素材およびリチウム二次電池
JP4187347B2 (ja) * 1998-04-02 2008-11-26 三星エスディアイ株式会社 リチウムイオン電池用負極活物質の製造方法
JP3241321B2 (ja) 1998-04-21 2001-12-25 三菱化学株式会社 二次電池用電極
JP3139991B2 (ja) 1998-04-21 2001-03-05 三菱化学株式会社 二次電池
JP2000003708A (ja) 1998-06-12 2000-01-07 Osaka Gas Co Ltd 被覆炭素材料、その製造方法、ならびにそれを用いたリチウム二次電池
JP3106129B2 (ja) 1998-07-31 2000-11-06 三井鉱山株式会社 リチウム二次電池用負極材料、その製造方法、及びリチウム二次電池
JP2000058052A (ja) 1998-08-05 2000-02-25 Osaka Gas Co Ltd リチウム二次電池用負極炭素材、その製造方法および負極炭素材を使用するリチウム二次電池
JP2000123826A (ja) 1998-10-19 2000-04-28 Osaka Gas Co Ltd 非水電解液二次電池用負極およびこれを用いた二次電池
JP3654790B2 (ja) 1999-04-22 2005-06-02 三菱化学株式会社 電極用黒鉛材料およびそれを用いたリチウムイオン二次電池
JP2000348720A (ja) 1999-06-03 2000-12-15 Nippon Carbon Co Ltd 内部黒鉛よりも黒鉛化性が高い黒鉛を表層に持つリチウムイオン二次電池負極材用黒鉛質炭素材とその製法
JP2000357506A (ja) 1999-06-15 2000-12-26 Nippon Carbon Co Ltd 熱分解黒鉛を炭素材に沈積させたリチウム電池負極材料
JP2001126726A (ja) 1999-10-25 2001-05-11 Mitsui Chemicals Inc 非水電解液二次電池
JP2001143691A (ja) 1999-11-12 2001-05-25 Osaka Gas Co Ltd 黒鉛系炭素材料、その製造方法、リチウム二次電池用負極材料およびリチウム二次電池
JP2000357516A (ja) 2000-01-01 2000-12-26 Mitsubishi Chemicals Corp 多相構造炭素電極材料
JP2001202961A (ja) 2000-01-21 2001-07-27 Mitsui Mining Co Ltd リチウム二次電池用負極材料、その製造方法、及びリチウム二次電池
JP3640856B2 (ja) 2000-02-10 2005-04-20 三菱化学株式会社 リチウムイオン二次電池
US20030049535A1 (en) * 2000-03-29 2003-03-13 Naoto Ohta Lithium ion secondary battery cathode, binder for lithium ion secondary battery cathode and lithium ion secondary battery using them
JP4052810B2 (ja) 2000-04-26 2008-02-27 三菱化学株式会社 リチウム二次電池
JP3712343B2 (ja) 2000-04-27 2005-11-02 三菱化学株式会社 非水系二次電池用負極活物質及びその製造方法並びに非水系二次電池
JP2001313032A (ja) 2000-04-27 2001-11-09 Mitsubishi Chemicals Corp 非水系二次電池
JP2002008656A (ja) 2000-06-23 2002-01-11 Hitachi Maxell Ltd リチウム二次電池
JP3406583B2 (ja) 2000-11-02 2003-05-12 三井鉱山株式会社 リチウム二次電池負極用黒鉛−炭素複合材料、その製造方法及びリチウム二次電池
JP4195179B2 (ja) 2000-11-06 2008-12-10 関西熱化学株式会社 リチウムイオン二次電池用負極材料の製造法、およびリチウムイオン二次電池
JP2002241117A (ja) 2001-02-13 2002-08-28 Osaka Gas Co Ltd 黒鉛系炭素材料、その製造方法、リチウム二次電池用負極材料およびリチウム二次電池
JP4051953B2 (ja) 2001-02-23 2008-02-27 三菱化学株式会社 非水系電解液二次電池
JP3635044B2 (ja) 2001-06-08 2005-03-30 三井鉱山株式会社 リチウム二次電池用負極材料、その製造方法、及びリチウム二次電池
JP2003151551A (ja) 2001-11-15 2003-05-23 Nippon Carbon Co Ltd 高性能リチウムイオン二次電池用負極材の製造方法
JP3709987B2 (ja) 2001-12-04 2005-10-26 日本カーボン株式会社 リチウムイオン系二次電池用負極材およびその製造方法、および該負極材を用いたリチウムイオン系二次電池
JP4085243B2 (ja) 2002-03-26 2008-05-14 大阪瓦斯株式会社 非水系二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370662A (ja) 1991-06-20 1992-12-24 Mitsubishi Petrochem Co Ltd 二次電池用電極
JPH05335016A (ja) 1992-06-02 1993-12-17 Mitsubishi Petrochem Co Ltd 非水溶媒二次電池およびその電極材料
DE19547376A1 (de) 1994-12-16 1996-06-20 Moli Energy 1990 Ltd Praegraphitische kohlenstoffhaltige Einsatzverbindungen und Verwendung derselben als Anoden in wiederaufladbaren Batterien
EP0861804A1 (de) 1995-11-14 1998-09-02 Osaka Gas Co., Ltd. Kathodenmateriaal für lithium-sekundärbatterie, verfahren zu seiner herstellung und dieses verwendende sekundärbatterie
EP0847098A1 (de) * 1996-11-27 1998-06-10 Denso Corporation Sekundärzelle mit nichtwässrigem Elektrolyt
EP0917228A1 (de) 1997-05-30 1999-05-19 Matsushita Electric Industrial Co., Ltd. Nichtwässrige elektrolytische sekundärbatterie
JP2000251895A (ja) 1999-02-24 2000-09-14 Samsung Sdi Co Ltd リチウム二次電池用負極活物質及びその製造方法
JP2001229917A (ja) * 2000-02-10 2001-08-24 Toyo Tanso Kk 負極の製造方法
US6355377B1 (en) 2000-03-07 2002-03-12 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
JP2001196097A (ja) * 2000-12-13 2001-07-19 Mitsubishi Electric Corp リチウム二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAKI YOSHIO ET AL.: "Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium-Ion Battery Anode Material", JOURNAL OF ELECTROCHEMICAL SOCIETY, vol. 147, April 2000 (2000-04-01), pages 1245 - 1250
See also references of EP1478038A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016005A (ja) * 2003-08-21 2010-01-21 Samsung Sdi Co Ltd 非水系電解質二次電池用負極活物質及びその製造方法並びにそれを含む非水系電解質二次電池
JP2007039290A (ja) * 2005-08-04 2007-02-15 Sumitomo Metal Ind Ltd 非水系二次電池用負極材料に適した炭素粉末
JP2008059903A (ja) * 2006-08-31 2008-03-13 Toyo Tanso Kk リチウムイオン二次電池負極用炭素材料、低結晶性炭素含浸リチウムイオン二次電池負極用炭素材料、負極電極板、及び、リチウムイオン二次電池
JP2009266800A (ja) * 2008-04-23 2009-11-12 Ls Mtron Ltd 二次電池用負極活物質、これを含む二次電池及びその製造方法
JP2012533498A (ja) * 2009-07-17 2012-12-27 エボニック デグサ ゲーエムベーハー バッテリ電極のためのナノ構造化ケイ素−炭素複合材料
JP2014011093A (ja) * 2012-07-02 2014-01-20 Hitachi Ltd 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法
WO2014007035A1 (ja) * 2012-07-02 2014-01-09 株式会社 日立製作所 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法
US10361430B2 (en) 2015-09-16 2019-07-23 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and vehicle
WO2018087928A1 (ja) * 2016-11-14 2018-05-17 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JPWO2018087928A1 (ja) * 2016-11-14 2019-09-26 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2021019727A1 (ja) * 2019-07-31 2021-02-04 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JPWO2021019727A1 (de) * 2019-07-31 2021-02-04
JP7371689B2 (ja) 2019-07-31 2023-10-31 株式会社レゾナック リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
CN115485237A (zh) * 2020-04-28 2022-12-16 浦项产业科学研究院 锂二次电池负极材料及其制备方法和锂二次电池

Also Published As

Publication number Publication date
TW574764B (en) 2004-02-01
US20050158550A1 (en) 2005-07-21
JP4064351B2 (ja) 2008-03-19
TW200302591A (en) 2003-08-01
KR100722646B1 (ko) 2007-05-28
US7816037B2 (en) 2010-10-19
EP1478038A4 (de) 2010-02-03
EP1478038B1 (de) 2012-03-14
CN1623242A (zh) 2005-06-01
KR20040081132A (ko) 2004-09-20
EP1478038A1 (de) 2004-11-17
JPWO2003063274A1 (ja) 2005-05-26
CN100477344C (zh) 2009-04-08

Similar Documents

Publication Publication Date Title
WO2003063274A1 (en) Negative electrode material for lithium ion secondary battery
JP2022506882A (ja) 金属イオン電池用電気活性材料
US20230327078A1 (en) Electroactive materials for metal-ion batteries
Ikonen et al. Electrochemically anodized porous silicon: Towards simple and affordable anode material for Li-ion batteries
Park et al. Enhancing the rate performance of graphite anodes through addition of natural graphite/carbon nanofibers in lithium-ion batteries
JP5245592B2 (ja) 非水電解質二次電池用負極材、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP4802595B2 (ja) 非水系二次電池用負極材料に適した炭素粉末
AU2008279196B2 (en) Porous network negative electrodes for non-aqueous electrolyte secondary battery
JP2022506881A (ja) 金属イオン電池用電気活性材料
KR102281564B1 (ko) 리튬 이온 배터리용 코어-쉘 복합 입자
TWI636610B (zh) 粉末、包含此種粉末之電極及電池組
EP3021385A1 (de) Anodenaktives material für eine lithiumsekundärbatterie, zusammensetzung für anode damit und lithiumsekundärbatterie
JP6615431B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6167561B2 (ja) カーボン硫黄複合体およびそれを用いた電気化学素子ならびにリチウムイオン電池
JP5061718B2 (ja) 炭素材料粉末およびその製造方法
KR102176590B1 (ko) 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지
Fey et al. Particle size effects of carbon sources on electrochemical properties of LiFePO 4/C composites
CN107230778B (zh) 用于可控地合成碳基电池电极材料的方法
CN113942991A (zh) 硅碳-石墨复合负极材料及其制备方法
US11349120B2 (en) Nanocomposite silicon electrode and method
Sun et al. Performance and Applications of Lithium Ion Capacitors
WO2024094995A1 (en) Electroactive composite particles
WO2024094990A2 (en) Process for the preparation of electroactive composite particles
KR20240078312A (ko) 리튬-황 전지용 양극 및 고에너지 밀도 특성을 갖는 리튬-황 전지

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003563027

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047011101

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10501333

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038027607

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003731830

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003731830

Country of ref document: EP