WO2001048799A1 - Procédé permettant de produire un semi-conducteur à base de composé nitrure du groupe iii, et dispositif à semi-conducteurs à base de composé nitrure du groupe iii - Google Patents

Procédé permettant de produire un semi-conducteur à base de composé nitrure du groupe iii, et dispositif à semi-conducteurs à base de composé nitrure du groupe iii Download PDF

Info

Publication number
WO2001048799A1
WO2001048799A1 PCT/JP2000/009121 JP0009121W WO0148799A1 WO 2001048799 A1 WO2001048799 A1 WO 2001048799A1 JP 0009121 W JP0009121 W JP 0009121W WO 0148799 A1 WO0148799 A1 WO 0148799A1
Authority
WO
WIPO (PCT)
Prior art keywords
group iii
layer
iii nitride
compound semiconductor
based compound
Prior art date
Application number
PCT/JP2000/009121
Other languages
English (en)
French (fr)
Inventor
Masayoshi Koike
Akira Kojima
Toshio Hiramatsu
Yuta Tezen
Original Assignee
Toyoda Gosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co., Ltd. filed Critical Toyoda Gosei Co., Ltd.
Priority to AU24006/01A priority Critical patent/AU776768B2/en
Priority to EP00987700A priority patent/EP1263031A1/en
Priority to US10/168,629 priority patent/US6830948B2/en
Priority to CA002398525A priority patent/CA2398525A1/en
Publication of WO2001048799A1 publication Critical patent/WO2001048799A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02642Mask materials other than SiO2 or SiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/12Pendeo epitaxial lateral overgrowth [ELOG], e.g. for growing GaN based blue laser diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Definitions

  • the present invention relates to a method for producing a Group III nitride-based compound semiconductor.
  • the present invention relates to a method for producing a group III nitride-based compound semiconductor using lateral epitaxy growth (EL II) growth.
  • a group III nitride compound semiconductor is a binary system such as A 1N, GaN, InN, Al x Ga i- X , A 1 x In ,-N, and the like.
  • Do ternary, Al x Ga, I ni - y (0 ⁇ ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1) is a general formula that encompasses the quaternary system Gay lri i— x — y N (0 ⁇ x ⁇ l, 0 ⁇ y ⁇ 1, 0 ⁇ ⁇ + y ⁇ 1) Some are represented by.
  • the conductivity type is referred to as p-type when only a group III nitride-based compound semiconductor is referred to.
  • the expression shall also include a group III nitride-based compound semiconductor doped with impurities for n-type conversion.
  • Group III nitride-based compound semiconductors for example, when used as photoelements, have a direct emission spectrum over a wide range from ultraviolet to red. It is a transition type semiconductor, and is applied to light emitting devices such as light emitting diodes (LEDs) and laser diodes (LDs). In addition, because of its wide gap, it can be expected to operate more stably at higher temperatures than devices using other semiconductors. For this reason, application to transistors such as FETs is also being actively pursued. It is. In addition, since arsenic (A s) is not the main component, the development of various semiconductor elements in general from the environment is also expected. Yes. In this group III nitride-based compound semiconductor, a sapphire is usually used as a substrate, and is formed on the sapphire. Disclosure of the invention
  • FIG. 11 shows a substrate 91, a knob layer 92 formed thereon, and a group III nitride-based compound half formed thereon.
  • the substrate 91 is made of sapphire and the like
  • the knock-off layer 92 is made of aluminum nitride (A1N).
  • A1N aluminum nitride
  • Knife of aluminum (A1N) The sapphire layer 92 is provided to alleviate the misfit between the sapphire substrate 91 and the group III nitride-based compound semiconductor layer 93. However, it is not possible to reduce the occurrence of dislocations to zero.
  • a threading dislocation 90 1 propagates in the vertical direction (on the substrate surface and in the vertical direction), and the threading dislocation 90 1 propagates through the buffer layer 92, It also penetrates the group III nitride-based compound semiconductor layer 93.
  • various desired Group III nitride-based compound semiconductors are stacked on the upper layer of the group III nitride-based compound semiconductor layer 93 to form a semiconductor.
  • the semiconductor element is displaced from the dislocation 902 that reaches the surface of the group III nitride-based compound semiconductor layer 93.
  • the threading dislocation is further propagated in the vertical direction.
  • the present invention has been made to solve the above problems, and its purpose is to suppress the generation of threading dislocations by using a group III nitride nitride. This is to produce a compound semiconductor.
  • the first means is to obtain a group III nitride compound semiconductor by epitaxy growth.
  • a mask is used, and at least one layer of a group III nitride-based compound semiconductor is used.
  • the top layer is the first group III nitride-based compound semiconductor, and the base layer is in the form of dots, stripes, or lattices.
  • the process of the cutting and the base layer in the form of islands such as dots, stripes or grids formed by the above-mentioned etching The upper surface of the upper part of the step has the mask described above, and the side surface is used as a nucleus, and the epitaxial growth is performed on the mask described above.
  • the term "base layer” refers to a single layer of a group III nitride-based compound semiconductor layer and a small number of group III nitride-based compound semiconductor layers. It is used to express multiple layers including at least one layer collectively.
  • the second group III nitrides which do not grow on the mask, are almost non-epitaxial.
  • the compound compound semiconductors hardly grow. In other words, it is sufficient if it can be observed that it is actually covered with lateral epitaxy growth (EL0).
  • EL0 lateral epitaxy growth
  • the island state here is a concept of the upper stage of the step formed by the etching, and is not necessarily required. Rather than referring to the separated areas, they are very much like forming the whole of the wafer in a stripe or grid. It is acceptable that the upper part of the step is continuous over a wide range ⁇ .
  • the side surface of the step is necessarily perpendicular to the substrate surface and the surface of the Group III nitride-based compound semiconductor. Also, it is good on the oblique side. In this case, the bottom of the step does not have a bottom surface, and the cross section may be V-shaped. The same shall apply to the following claims unless otherwise stated.
  • the base layer is formed on the base plate, and the etching is performed until the base plate is exposed. It is characterized by
  • the third means relates to the relationship between the depth and width of the step in the method for producing a Group III nitride-based compound semiconductor described in claim 1. It is better for the step to be closed by the lateral growth from the side surface than by the vertical growth from the bottom to fill the step. It is characterized by the fact that it is formed as follows. In addition, here In the case of a step with no V-shaped bottom surface during etching, the bottom (bottom surface) formed during epitaxy growth. 9.
  • the fourth method is characterized in that substantially the entire side surface of the step is a ⁇ 111-200 ⁇ surface.
  • the fifth means is that the first group III nitride-based compound semiconductor and the second group III nitride-based compound semiconductor have the same composition. And are characterized.
  • the same composition means that the difference of the doping degree (the difference of less than 1-millimeter in the mole ratio) is ignored.
  • the base layer is formed of a buffer layer formed on the substrate and a web layer formed on the buffer layer. It is characterized by the fact that the multi-period formed layer is formed with the cycle of the semi-grown group III nitride compound semiconductor layer as one cycle.
  • the seventh means is that the group III nitride compound semiconductor layer adjacent to the buffer layer in the base layer is It is characterized in that the forming or forming temperatures are different.
  • the eighth means is that, in the first group III nitride-based compound semiconductor layer described above, the element having a diameter larger than that of the main constituent element is larger than that of the main constituent element. It is characterized in that it has been partially replaced or dropped by
  • the main constituent elements are nitrogen and III group elements. Elements with a large atomic radius are, for example, phosphorus (P), arsenic (A s), and bismuth (B i) for nitrogen, and are group III.
  • the elements are arranged in the order of smaller diameter to larger diameter of aluminum (Al), gallium (Ga), dynam (In), and evening. It is a realm (T1).
  • the ninth means is any of claims 1 to 8.
  • the second Group III nitride-based compound semiconductor is referred to as an epoxy compound. It is characterized in that it includes a step of forming a second mask so as to cover the lower step surface of the step before the cell growth.
  • the tenth means is a group III nitride compound produced by the production method described in any one of claims 1 to 9.
  • This is a group III nitride-based compound semiconductor element obtained by forming an element layer composed of a nitride-based compound semiconductor layer.
  • the first means is a method for producing a Group III nitride compound semiconductor described in any one of claims 1 to 9. As a result, by removing almost all except for the upper layer of the part where the laterally epitaxially grown part has grown, half of the Group III nitride compound is removed. This is a method for producing a Group III nitride-based compound semiconductor, which is characterized by obtaining a conductor layer.
  • the outline of the method for producing the Group III nitride-based compound semiconductor of the present invention will be described with reference to FIG.
  • the dependent billed claim because board 1 the description ⁇ beauty understanding was that only aid in ⁇ beauty Roh Tsu force you are shown Figure you have a full ⁇ layer 2 s
  • the present invention has a region in which a vertical threading dislocation is reduced from a group III nitride compound semiconductor having a vertical threading dislocation.
  • the purpose of the present invention is to obtain a group III nitride-based compound semiconductor layer, and the substrate 1 and the nitride layer 2 are not essential elements of the present invention.
  • Nitride compounds An example in which the present invention is applied using the semiconductor layer 31 will be described, and the main effect of the present invention will be described.
  • a mask 4 is used to form a first group III nitride-based compound semiconductor layer 31 as a base layer into a dot-shaped layer.
  • ⁇ ⁇ Tune into islands such as drive or grid, and provide a step.
  • the epitaxy is grown on the mask 4 with the side surface as the nucleus.
  • the step is filled.
  • And can be grown upwards as well.
  • the second group III nitride-based compound semiconductor 32 is oriented in the lateral direction.
  • the propagation of threading dislocations in the compound semiconductor layer 31 is suppressed, and an area where the threading dislocations are reduced is formed in the buried step. (Claim 1).
  • FIG. 1 (b) when the second group III nitride-based compound semiconductor 32 is grown vertically and horizontally, a step is formed.
  • the present invention is to grow the epitaxy so that the part growing with the side surface of the step as the nucleus is clearly present.
  • the group III nitride-based compound semiconductor layer 31 and the second group III nitride-based compound semiconductor 32 are discontinuous due to epitaxy growth. Since there are few surfaces, it can be structurally stable. Then, the second group III nitride compound half is formed so as to cover the mask 4 by continuing the vertical and horizontal epitaxy growth.
  • the conductor layer 32 can be formed ((D), (e) in Figure 1).
  • the second group III nitride compound semiconductor layer 32 on the mask 4 may have been epitaxially grown from the upper surface of the mask 4. Therefore, no new dislocations occur.
  • the etching should be such that the base layer is etched and the substrate surface is exposed, or even a part of the substrate itself is etched. If this is the case, the upper lateral epitaxy growth is assured. This is because it is difficult for the second group III nitride-based compound semiconductor to grow with the substrate surface as a nucleus. As a result, the effects of threading dislocations remaining in the basement layer are ideally eliminated, and the second group III is grown laterally. It is possible to reliably improve the crystallinity of the nitride-based compound semiconductor (claim 2). In this case, the second step of filling the step portion The group III nitride-based compound semiconductor 32 grows vertically from the lower part (bottom) of the step to the upper part of the original step.
  • the upper part of the group III nitride-based compound semiconductor 32 in the part where the step is buried is placed on the upper part.
  • the tribe nitridation The threading dislocations propagated from the semiconductor layer 31 of the compound-based compound are remarkably suppressed, and can be extremely high-quality crystal domains ( Claim 3).
  • the part grown with the bottom of the step as the nucleus should remain as a cavity without leaving the surface. It becomes.
  • the upper part is formed by the union of the growth surfaces of the group III nitride-based compound semiconductors 32 that have grown with the side surfaces of the steps on both sides as nuclei. In this case, the threading dislocations propagating from the first group III nitride-based compound semiconductor layer are stopped at this cavity.
  • the expansion distortion of the crystal due to the removal of the nitrogen element can be reduced.
  • the distortion is compensated for and the crystallinity is improved.
  • p-type crystals can also be obtained with azgrone because the impurities are easily located at the position of the group III atom. .
  • the threading dislocation can be further reduced to about 1 ° to 1 ° to about 100 minutes.
  • each Group III nitride-based compound It is even better to drop an element with a larger semi-diameter than the main constituent element in the semiconductor layer.
  • Section 9 This is shown, for example, in FIGS. 6 (c) and (d).
  • the semiconductor element is formed in the upper layer of the portion of the group III nitride compound semiconductor layer obtained in the above-mentioned process, which is laterally epitaxially grown.
  • the light emitting element has an improved element lifetime, mobility, or threshold value in the case of LD. (Claim 10).
  • the upper layer of the laterally epitaxially grown portion of the group III nitride-based compound semiconductor layer obtained in the above-described process Separation from the other layers, the formation of dislocations and other crystal defects is suppressed and the crystallinity of the group III nitride compound semiconductor with good crystallinity is excellent.
  • the body can be obtained (claim 11).
  • substantially all removed means that the present invention includes even a part of a threading dislocation that is left for the sake of manufacturing simplicity. It is an indication that this is the case. Brief explanation of the drawing
  • FIG. 1 is a cross-sectional view showing a manufacturing process of a group II nitride semiconductor according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of a group III nitride compound semiconductor photodetector according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the structure of a light emitting element of a group II nitride semiconductor compound according to a third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing the structure of a group III nitride-based compound semiconductor photodetector according to a fourth embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing the structure of a light emitting device of a group II nitride-based compound semiconductor according to a fifth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a manufacturing process of an III-nitride compound semiconductor according to a sixth to ninth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing the structure of a light emitting element of a group II nitride semiconductor compound semiconductor according to a sixth to ninth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a manufacturing process of a III nitride semiconductor according to a tenth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing the structure of a III nitride semiconductor light emitting device according to a tenth embodiment of the present invention.
  • FIG. 10 shows the first group III nitride-based compound semiconductor.
  • FIG. 4 is a schematic view showing another example of the switching.
  • FIG. 11 is a cross-sectional view showing a threading dislocation which propagates a group II nitride-based compound semiconductor. Best form to carry out the invention
  • Fig. 1 shows an outline of an example of an embodiment of a method for producing a group III nitride-based compound semiconductor of the present invention.
  • a mask 1 is formed by forming a substrate 1, a buffer layer 2, and a first group III nitride-based compound semiconductor layer 31, and forming a mask 4.
  • the part where the is not formed is punched in a trench shape ((a) in Fig. 1).
  • a step is generated due to the etching.
  • the part that has not been etched is the upper part, and the side surface and the bottom part (lower part) of the step are formed.
  • the side surface is, for example, the ⁇ 1 1 — 20 ⁇ surface.
  • the second group III nitride-based compound semiconductor 32 with the side surface of the step as a nucleus. Performs tax growth.
  • the mask 4 uses a material in which the second group III nitride-based compound semiconductor 32 does not grow in advance. If that have use the organic metals growth method, the growth plane ⁇ 1 1 - 2 0 ⁇ possible during or sideways direction E peak data key sheet catcher Le growth potential s easy and Tsu coercive the surface It is. In this way, if lateral growth of the side surface of the step occurs, the part of the second group III nitride-based compound semiconductor 32 is considered.
  • the substrate is made of sapphire or silicon (Si). ), charcoal i spoon Ke i containing (S i C), sp e, channel (M g a 1 2 0 4 ), Z n 0, M g 0 other free machine crystal board of that, Li down arsenide III _ V ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ III III III III Other III
  • a group nitride-based compound semiconductor or the like can be used.
  • an organic metal vapor phase growth method (M0CVD or M0VPE) is preferable.
  • M0CVD organic metal vapor phase growth method
  • M0VPE Molecular vapor phase growth
  • Haide VPE halide gas phase growth
  • LPE liquid phase growth
  • the sapphire substrate when a group III nitride-based compound semiconductor is laminated on a sapphire substrate, the sapphire substrate should be formed with good crystallinity. It is preferable to form a buffer layer to correct the lattice mismatch with. When using other substrates, it is also desirable to set up a buffer layer.
  • the nitride layer is made of a group III nitride-based compound semiconductor A formed at a low temperature and G a y I ⁇ , — x — y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1), more preferably A1 X G a, -x N (0 ⁇ x ⁇ l) is used.
  • This buffer layer may be a single layer or may be a multi-layer having a different composition or the like.
  • the formation method of the knocker layer may be formed at a low temperature of 380 to 420 ° C, and may be formed by MOCVD at a temperature of 1000 to 1180 ° C. May be good. Still, using a DC magnetron notter device, high purity metal aluminum and nitrogen gas as raw materials, and A bus layer can be used to form a knob layer made of A1N. Similarly, a generalized Al x Ga y In- y N (0 ⁇ ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ ⁇ composition ratio is arbitrary) forms a knocker layer You can do it.
  • a vapor deposition method an ion plating method, a laser abrasion method, and a CR method can be used. It is desirable to operate the buffer layer by physical vapor deposition at 200 to 600 ° C. It is more preferably between 300 and 500 ° C, and even more preferably between 400 and 500 ° C.
  • the thickness of the knob layer is preferably 100 to 3000 A. More preferably, 100-400A is desired, and most preferably, 100-300A.
  • the multilayer is composed of three or more kinds of group III nitride-based compound semiconductors Al xGay ln, — y N (0 ⁇ x ⁇ l , 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the nitrogen layer is amorphous, and forms a single crystal layer as an intermediate layer. Multiple cycles may be formed as one cycle for the knocker layer and the middle layer, and the repetition may be an arbitrary cycle. The more repetitions, the more Crystallinity is improved.
  • the group III nitride compound semiconductors in the buffer layer and upper layer are composed of boron (B) and thallium (T1) in part of the composition of the group III element. Even if it is replaced with nitrogen, part of the nitrogen (N) is also replaced with phosphorus (P), arsenic (As), antimony (Sb), bismuth (Bi ) Can be applied practically. It is also good to dope these elements so that they cannot be displayed in the composition.
  • AlxGa which is a semiconductor that does not have indium (In) or arsenic (As) in its composition, is a group III nitride semiconductor, or a compound semiconductor.
  • the diameter ( 0 ⁇ 1 ⁇ 1) is higher than that of the aluminum (A 1) and gallium (G a).
  • p-type crystals can also be obtained with azgrone because the impurities are easily located at the position of the group III atom. .
  • the threading dislocation can be further reduced to about 100 to 100 minutes.
  • each group III nitride-based compound It is even better to dope the element semiconductor with a larger semi-diameter of the element than the main constituent elements in the semiconductor layer, or the light-emitting layer of the light-emitting element.
  • the active layer is formed as an active layer, it is desirable to use a binary or ternary system of a Group III nitride-based compound semiconductor. Yes.
  • the n-type impurities may be selected from the group IV elements such as Si, Ge, Se, Te, and C. Alternatively, a VI group element can be added. Also, the p-type As a pure substance, a group II element or a group IV element such as Zn, Mg, Be, Ca, Sr, and Ba can be added. These are considered to be lateral or epitaxial growths in which multiple or n-type impurities and p-type impurities can be doped in the same layer. It is desirable that the long side be perpendicular to the base plate, but it is also possible to have the facet face beveled with respect to the base plate.
  • the bottom surface is not formed at the bottom of the step, and the cross section may be V-shaped.
  • the cross section may be V-shaped.
  • steps should be provided so that they are blocked by the lateral epitaxy due to the relationship between depth and width.
  • steps should be provided so that they are blocked by the lateral epitaxy due to the relationship between depth and width.
  • the buffer layer of the base layer is a layer consisting of A1N, Al x Ga! —XN or Al x Ga y In i- x - y N (x ⁇ 0), and is the top layer.
  • the first group III nitrides based of compound semi-conductors such shall be the G a N et, a 1 N, a and Ga, N or Al xGay ln t y N (x ⁇ 0) power et ne
  • This different layer is advantageous because it acts as a Stono layer during plasma etching containing chlorine such as C 1 and BC 1. Of course, depending on the etching conditions, it is possible to etch these layers as well.
  • the group III nitride-based compound semiconductor layer is used.
  • the above-mentioned stripes and masks may be arbitrarily designed for birds, grids, etc.
  • the lateral epitaxy growth surface may be not only a surface perpendicular to the substrate surface but also a growth surface having an oblique angle with respect to the substrate surface.
  • the lateral epitaxy growth plane for example, The long direction of the stripe is -perpendicular to the (1-100) plane of the m-plane of the semiconductor layer of the group III nitride compound.
  • the substrate is the a-plane or the c-plane of the sapphire, in either case, the m-plane of the sapphire will have the m-plane formed on it. Since it usually coincides with the a-side of the semiconductor layer of the compound-based compound, etching should be performed in accordance with this. Even in the case of a point-like, grid-like or other island-like shape, it is desirable that each surface forming the contour (side wall) be a ⁇ 11-1-20 ⁇ surface. Les,.
  • the etching mask is made of polycrystalline semiconductors such as polycrystalline silicon and polycrystalline nitride semiconductor, silicon oxide (Si (), silicon nitride). (Sin), oxidized titanium (Ti0), oxidized zirconium (Zr0) and other oxides, nitrides, titanium (Ti), High melting point metals, such as tungsten (W), or these multi-layer films can be used. Gas phase growth methods such as arrival, snow, CVD, etc., are optional.
  • etching reactive ion beam etching (RIBE) is preferred, but any other etching method can be used. be able to .
  • the step having a side surface perpendicular to the substrate surface is not formed, but the step is formed by anisotropic etching, for example, at the bottom of the step.
  • the bottom surface is not formed and the cross section is V-shaped You can also form a shape.
  • a semiconductor device such as a FET or a light emitting device can be formed on the upper portion of the semiconductor device.
  • the light emitting layer is composed of a multi-molecule Ido structure (MQW), a single monomer Ido structure (SQW), a homo structure, a hetero structure, Although a double terror structure is conceivable, it may be formed by pin connection or pn connection.
  • the above-described group III nitride-based compound semiconductor having a region in which a threading dislocation is suppressed is used, for example, as a base plate 1, a kneaded layer 2 ′ and the like.
  • the group III nitride-based compound semiconductor substrate is removed. It can be done. On this, it is possible to form a group III nitride-based compound semiconductor element, or a larger group III nitride-based compound semiconductor. It can be used as a substrate for forming a conductor crystal.
  • the removal method is not limited to mechanochemical polishing, but is optional.
  • the description will be made based on concrete embodiments of the present invention.
  • a light emitting element is used as an example, the present invention is not limited to the following example, but can be applied to any element. It discloses a method for manufacturing group nitride-based compound semiconductors.
  • the Group III nitride-based compound semiconductor of the present invention has a gas phase growth rate based on an organic metal compound gas phase growth method (hereinafter referred to as “M0VPE”). More manufactured.
  • the gases used were ammonia (NH 3 ), carrier gas (H or N 2 ) and trimethyl gallium (Ga (CH 3 ), (Hereinafter referred to as “TMG”) and trimethyl aluminum (A 1 (CH 3 ), hereinafter referred to as “TMA”), trimethylimide (In (CH, hereinafter referred to as “TMI”), viscyclopen evening di E double Le Mas grayed roots U-time (Mg (c s H 5) 2, to the serial with the following "Cp 2 Mg”) Oh Ru in.
  • the temperature is lowered to 400 ° C on the single-crystal sapphire substrate 1 with the a-side cleaned by organic cleaning and heat treatment as the main surface. allowed by the H 2 10L / mi n, the NH 3 5L / mi n, TMA the 20 ⁇ mo l / a mi n at about 3 minutes between test sheet to A1 n Roh Tsu off ⁇ layer 2 of about 40nm Formed to thickness.
  • FIG. 2 is a cross-sectional view showing the structure of a laser diode (LD) 100 according to a second embodiment of the present invention.
  • a laser diode (LD) was formed on a wafer formed in the same manner as in the first embodiment as follows.
  • silane (SiH 4 ) is introduced, and the GaN layer 33 is made of a silicon (Si) doped n-type GaN layer.
  • the GaN layer 31 including the mask 4 and the GaN layer 31 and the GaN layer 32 will be simply referred to as the GaN layer 103.
  • shea Li co down (S i) of de one-flop G a N force Naru Luo Ru n GUIDE layer 1 0 5
  • the p-layer 108 consisting of a N 2 N force and the p-layer 109 consisting of a G aN force of magnesium (Mg) doping It was formed.
  • an electrode 11 OA made of gold (Au) is exposed on the p-contact layer 109, and a two-stage GaN layer 103 of a GaN layer and an n-type GaN layer is exposed.
  • An electrode 11B made of aluminum (Al) was formed by etching the part (Fig. 2).
  • the laser diode (LD) formed in this way has improved element lifetime and luminous efficiency.
  • FIG. 3 is a sectional view showing the structure of a light emitting diode (LED) 200 according to a third embodiment of the present invention.
  • a light emitting diode (LED) was formed on a wafer formed in the same manner as in the first embodiment as follows. However, when forming the GaN layer 32, silane (SiH 4 ) is introduced and the GaN layer 32 is made of a silicon-doped n-type GaN. And. For the sake of simplicity, the GaN layer 31 including the mask 4 and the GaN layer 32 will be simply referred to as a GaN layer 203.
  • a sapphire substrate 201, a GaN layer 203 composed of A1N, and a two-stage GaN layer 203 composed of a GaN layer and an n-type GaN layer are formed on a wafer.
  • a cladding layer 206 composed of 21 ⁇ and a p-contact layer 207 composed of magnesium (Mg) -doped GaN were formed. .
  • an electrode 208 made of gold (Au) is exposed on the p-contact layer 207, and a two-stage GaN layer 203 of a GaN layer and an n-type GaN layer is exposed.
  • the electrode 208B which is made of aluminum (A1), was partially etched until complete (Fig. 3).
  • the light emitting diode (LED) formed in this way has improved element life and light emitting efficiency.
  • FIG. 4 is a sectional view showing the structure of a laser diode (LD) 300 according to a fourth embodiment of the present invention.
  • LD laser diode
  • Si n-type silicon
  • C H 2 to 10 L / min, NH the 10L / mi n, TMG the 100 ⁇ mo 1 / min, TMA the 10 ⁇ mo l / in in, H 2 O Ri dilution of the 0.86 ppm to gas
  • the obtained silane (SiH.,) was supplied at 0.2 ⁇ mo 1 / min, and the silicon (Si) -doped A1 with a film thickness of 3 ⁇ m.
  • a mask 4 was formed by forming a tungsten (W) with a snnotter. A 1m wide, 1m long, 2m deep strut is selected by selective drying using reactive ion etching (RIE). Etching in the shape of a pipe.
  • RIE reactive ion etching
  • n-A 1 covered by mask 4.
  • the side surface forming the step having a depth of 2 m is nA1. . 1 5 Ga.
  • the ⁇ 11 1-20 ⁇ plane of the s 5 N layer 30 21 was used.
  • n-type sheet re co down board 3 0 1 temperature was retained to 1150 ° C, H a a 20L / min, the NH 3 10 L / min, 5 ⁇ the TMG mo 1 / min, TMA a 0.5 // mo l / niin, H 2 sheet run-in which Ri has been diluted by the gas the (S iH 4) were subjected supply in 0.01 ⁇ mo l / in in, n_Al. . 1 5 Ga. . 8 5 N layer 3 0 2 stage difference of one depth 2 m Ru Oh the side surfaces you shape forming the ⁇ 1 1 - 2 0 ⁇ plane as the core n-Al. . 1 5 Ga.
  • .8 SN layer 3022 was formed by lateral epitaxy growth. At this time, epitaxal growth also occurred from the top and bottom of the step. In this way, the steps are buried mainly by the lateral growth with the ⁇ 11-20 ⁇ plane as the growth surface, and the surface becomes flat.
  • Chi was Tsu name, H 2 a 10L / mi n, NH: i the 10L / ini n, 100 j mo 1 / min for TMG, TMA the 10 mo l / iai n, by Ri diluted in H 2 gas Done Silane (SiH 4 ) was supplied at 0.2 mol / min to obtain n-Al. ls Ga. .
  • n-Al. . 1 5 Ga. . 8 5 N layer 3 0 2 1 11 - 1. . 1 5 6 &. 8 5 layers 3 0 2 2 were made a total thickness of 3 ⁇ .
  • N-Al formed on the n-type silicon substrate 301 as described above. . 1 5 Ga. . "5 N layer 3 0 to over 2 Li co-down (Si) of de-loop GaN? Ru Naru Luo n GUIDE layer 3 0 3, MQW structure of the light emission layer 3 0 4, Ma grayed roots
  • a p-type layer 305 consisting of GaN (Mg) doped GaN, and A1 of magnesium (Mg) doped. .
  • P-layer 30 6 composed of n 2 N force and p-layer 30 7 composed of GaN with magnesium (Mg) dope was formed.
  • an electrode made of gold (Au) is placed on the p-connector layer.
  • An electrode made of gold (Au) is placed on the back of the n-type silicon substrate.
  • the electrode (308B) composed of the electrode (A1) was formed (Fig. 4).
  • the laser diode (LD) formed in this way has improved element lifetime and luminous efficiency.
  • FIG. 5 is a cross-sectional view showing the structure of a light emitting diode (LED) 400 according to the fifth embodiment.
  • an n-type silicon (Si) substrate was used as the substrate.
  • the 8 5 N or Ru Naru Luo p-click La head layer 4 0 4 was the shape formed.
  • An electrode made of gold (Au) is attached to the electrode 405 A, and an electrode made of aluminum (A1) is placed on the back of the n-type silicon substrate 401.
  • the light emitting diode (LED) formed in this way has improved element lifetime and light efficiency.
  • a base layer composed of multiple layers as shown in FIG. 6 was used.
  • the temperature is lowered to 400 ° C on the single-crystal sapphire substrate 1 with the a-side cleaned by organic cleaning and heat treatment as the main surface. allowed to, Eta 2 to 10L / min, the NH 3 5L / min, first A1N layer was about 3 minutes between test sheet in the TMA 20 / mol / min (the first slow shock layer) 2 1 about It was formed to a thickness of 40 nm.
  • the temperature of the needlessly A b ⁇ board 1 and hold the 1000 ° C, H 2 to 20 L / min, the NH 3 10L / min, the TMG 300 mol / min at City introduction, film A GaN layer 31 with a thickness of about 1 mil was formed.
  • the first A1N layer (intermediate layer) 22 having a film thickness of about 40 nm are formed.
  • An A1N layer (second buffer layer) 23 of 2 and a base layer 20 of a GaN layer 31 having a thickness of about 2 ⁇ m were formed.
  • the buffer layer is amorphous and the middle layer is single crystal. Multiple cycles may be formed with the buffer layer and the middle layer as one cycle, and the repetition may be an arbitrary cycle. Many repetitions The crystallinity becomes better.
  • the GaN layer 31 was etched in a strip shape with a width of 1 m and a space of 1 ⁇ , exposing one surface of the substrate.
  • the upper layer having a width lm of the base layer 20 and a step of about 2.3 zm, and one surface of the substrate (the lower part of the lower layer) were formed alternately (see FIG. 6).
  • the side surface forming the step having a depth of 2 ⁇ m of the GaN layer 31 was the ⁇ 11-20 ⁇ plane.
  • H 2 was introduced at 20 L / min
  • NH : ⁇ was introduced at 10 L / min
  • TMG was introduced at 300 zniol / min
  • the GaN layer 32 was grown, and the GaN layer 31 and the GaN layer 31 were grown.
  • the thickness of the layer 32 was 3 m in total.
  • the portion of the GaN layer 32 formed above the bottom of the step having a depth I ⁇ m of the GaN layer 31 is defined as the portion formed above the step. In contrast, threading dislocations were significantly suppressed.
  • the GaN layer 32 is formed, silane (SiH ,,) is introduced and the GaN layer 32 is formed into a silicon (Si) doped n-type GaN.
  • the layer was composed of:
  • the n-type GaN layer 32 above the mask 4 is simply referred to as a GaN layer 503.
  • the base layer 20, which is etched in the form of a stripe, the mask 4, and the n-type GaN layer 32 in a portion where the step is buried are combined to form the base layer 5.
  • a sapphire substrate 501 which is referred to as 02, a base layer 502, which is etched in a stripe shape, and a GaN layer 503 A, on top of the silicon (Si) dope. . 8 G a. . 2 N-layer 504 composed of N-force, n-layer 505 composed of silicon (Si) -doped GaN, light-emitting layer 5 of MQW structure 06, p-type layer 507 consisting of magnesium (Mg) -doped GaN, A1 of magnesium (Mg) -doped. . 8 G a. . A p-layer 508 consisting of 2 N. A p-layer 509 consisting of magnesium (Mg) doped GaN is formed.
  • an electrode 51 OA made of gold (Au) is exposed on the p-contact layer 509, and a two-stage GaN layer 503 of a GaN layer and an n-type GaN layer is exposed.
  • the electrode 510B composed of aluminum (A1) was formed by partially etching the electrode.
  • the laser diode (LD) formed in this way has improved element lifetime and luminous efficiency.
  • the first film having a film thickness of about 40 nm is formed on the single crystal sapphire substrate 1.
  • second A1 N layer (second buffer layer) with a film thickness of about 40 nm Layer) 23 GaN layer 31 with a film thickness of about 2 / m was formed.
  • a mask 4 composed of evening stainless steel (W) is formed, and the second .A1 N layer (second buffer layer) 23 is left. Ching was done.
  • the GaN layer 32 was grown laterally in the lateral direction to obtain a lumino.
  • the laser diode (LD) 500 is the same as the laser diode (LD) 500 of the sixth embodiment shown in FIG. Was formed.
  • the element characteristics were almost the same as those of the laser diode of the sixth embodiment.
  • the first film having a film thickness of about 40 nm is formed on the single crystal sapphire substrate 1.
  • a mask 4 made of tungsten (W) is formed. Etching was performed until one surface of the substrate was exposed. After that, a mask 5 made of tungsten (W) was formed on one surface of the exposed substrate.
  • the GaN layer 32 was laterally epitaxially grown to obtain a wafer. Using this wafer, the laser diode of the sixth embodiment shown in Fig. 7 is used.
  • a laser diode (LD) was formed in the same way as (LD) 500.
  • the element characteristics were almost the same as those of the laser diode of the sixth embodiment.
  • the film thickness of about 40 nm is formed on the single crystal sapphire substrate 1.
  • An aN layer (intermediate layer) 22, a second A1N layer (second buffer layer) 23 with a film thickness of about 40 ⁇ , and a GaN layer 31 with a film thickness of about 2 ⁇ m are formed.
  • a mask 4 made of tungsten (W) is formed, and the second A1N layer (second buffer layer) 23 is left. Ching was done.
  • a mask 5 composed of tungsten (W) was formed on the exposed second A1N layer (second buffer layer) 23 surface.
  • the GaN layer 32 was laterally epitaxially grown to obtain a wafer.
  • the laser diode (LD) 500 is the same as the laser diode (LD) 500 of the sixth embodiment shown in FIG. Was formed.
  • the element characteristics were almost the same as those of the laser diode of the sixth embodiment.
  • the first group III nitride-based compound semiconductor used in the first embodiment shown in FIG. Use the (Ni) Dodge Garim (Gan: In)
  • the crystallinity of the base layer can be improved by doping indium (In) into the base layer. If the crystallinity of the base layer is improved, the crystallinity of the layer formed thereon by the lateral growth is further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Description

明 細 書
I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 及 び I I I 族 窒 化 物 系 化 合 物 半 導 体 素 子 技 術 分 野
本 発 明 は 、 I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 に 関 す る 。 特 に 、 横 方 向 ェ ピ タ キ シ ャ ル 成 長 ( E L 〇 ) 成 長 を 用 い る 、 I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 に 関 す る 。 尚 、 I I I 族 窒 化 物 系 化 合 物 半 導 体 と は 、 例 え ば A 1N、 GaN、 InN の よ う な 2 元 系 、 Al xGa i -X , A 1 x I n , - N , G ax In ,— XN ( レ、 ず れ も 0< χ< 1 ) の よ う な 3 元 系 、 Al xGa , I n i -y ( 0 < χ< 1 , 0 < y < 1 , 0 < x + y < 1 ) の 4 元 系 を 包 括 し た 一 般 式 Aし Gay lri i— xyN ( 0≤ x≤ l , 0≤ y≤ 1 , 0≤ χ + y≤ 1 ) で 表 さ れ る も の が あ る 。 な お 、 本 明 細 書 に お い て は 、 特 に 断 ら な い 限 り 、 単 に I I I 族 窒 化 物 系 化 合 物 半 導 体 と 言 う 場 合 は 、 伝 導 型 を p 型 あ る い は n 型 に す る た め の 不 純 物 が ド ー プ さ れ た I I I 族 窒 化 物 系 化 合 物 半 導 体 を も 含 ん だ 表 現 と す る 。
背 景 技 術.
I I I 族 窒 化 物 系 化 合 物 半 導 体 は 、 例 え ば ¾ 光 素 子 と し た 場 合 、 発 光 ス ぺ ク ト ル が 紫 外 か ら 赤 色 の 広 範 囲 に 渡 る 直 接 遷 移 型 の 半 導 体 で あ り 、 発 光 ダ イ ォ ー ド ( LED )や レ — ザ ダ イ ォ 一 ド ( L D )等 の 発 光 素 子 に 応 用 さ れ て い る 。 ま た 、 そ の ノ ン ド ギ ャ ッ プ が 広 い た め 、 他 の 半 導 体 を 用 い た 素 子 よ り も 高 温 に お い て 安 定 し た 動 作 を 期 待 で き る こ と か ら 、 F E T 等 ト ラ ン ジ ス タ へ の 応 用 も 盛 ん に 閧 発 さ れ て い る 。 ま た 、 ヒ 素 ( A s ) を 主 成 分 と し て レ、 な い こ と で 、 環 境 面 か ら も 様 々 な 半 導 体 素 子 一 般 へ の 開 発 が 期 待 さ れ て い る 。 こ の I I I 族 窒 化 物 系 化 合 物 半 導 体 で は 、 通 常 、 サ フ ァ イ ア を 基 板 と し て 用 い 、 そ の 上 に 形 成 し て レ、 る 。 発 明 の 開 示
し か し な が ら 、 サ フ ァ イ ア 基 板 上 に I I I 族 窒 化 物 系 化 合 物 半 導 体 を 形 成 す る と 、 サ フ ァ イ ア と I I I 族 窒 化 物 系 化 合 物 半 導 体 と の 格 子 定 数 の ミ ス フ ィ ッ ト に よ り 転 位 が 発 生 し 、 こ の た め 素 子 特 性 が 良 く な い と い う 問 題 が あ る 。 こ の ミ ス フ ィ ッ ト に よ る 転 位 は 半 導 体 層 を 縦 方 向 ( 基 板 面 に 垂 直 方 向 ) に 貫 通 す る 貫 通 転 位 で あ り 、 I I I 族 窒 化 物 系 化 合 物 半 導 体 中 に 1 0 9 c m 2 程 度 の 転 位 が 伝 搬 し て し ま う と い う 問 題 が あ る 。 こ れ は 組 成 の 異 な る I I I 族 窒 化 物 系 化 合 物 半 導 体 各 層 を 最 上 層 ま で 伝 搬 す る 。 こ れ に よ り 例 え ば 発 光 素 子 の 場 合 、 L D の 閾 値 電 流 、 L D 及 び L E D の 素 子 寿 命 な ど の 素 子 特 性 が 良 く な ら な い と レゝ う 問 題 が あ っ た 。 ま た 、 他 の 半 導 体 素 子 と し て も 、 欠 陥 に よ り 電 子 が 散 乱 す る こ と か ら 、 移 動 度 ( モ ピ リ テ ィ ) の 低 い 半 導 体 素 子 と な る に と ど ま っ て い た 。 こ れ ら は 、 他 の 基 板 を 用 い る 場 合 も 同 様 で あ っ た 。
こ れ に つ い て 、 図 1 1 の 模 式 図 で 説 明 す る 。 図 1 1 は 、 基 板 9 1 と 、 そ の 上 に 形 成 さ れ た ノ ッ フ ァ 層 9 2 と 、 更 に そ の 上 に 形 成 さ れ た I I I 族 窒 化 物 系 化 合 物 半 導 体 層 9 3 を 示 し た も の で あ る 。 基 板 9 1 と し て は サ フ ァ イ ア な ど 、 ノ ッ フ ァ 層 9 2 と し て は 窒 ィ匕 ア ル ミ ニ ウ ム ( A 1 N )な ど が 従 来 用 い ら れ て い る 。 窒 ィ匕 ア ル ミ ニ ゥ ム ( A 1 N ) の ノ ッ フ ァ 層 9 2 は 、 サ フ ァ イ ア 基 板 9 1 と I I I 族 窒 化 物 系 化 合 物 半 導 体 層 9 3 と の ミ ス フ ィ ッ ト を 緩 和 さ せ る 目 的 で 設 け ら れ て い る も の で あ る が 、 そ れ で も 転 位 の 発 生 を 0 と す る こ と は で き な い 。 こ の 転 位 発 生 点 9 0 0 か ら 、 縦 方 向 ( 基 板 面 に · 直 方 向 ) に 貫 通 転 位 9 0 1 が 伝 播 し 、 そ れ は バ ッ フ ァ 層 9 2 、 I I I 族 窒 化 物 系 化 合 物 半 導 体 層 9 3 を も 貫 い て い く 。 こ う し て 、 I I I 族 窒 化 物 系 化 合 物 半 導 体 層 9 3 の 上 層 に 、 所 望 の 様 々 な I I I 族 窒 化 物 系 化 合 物 半 導 体 を 積 層 し て 半 導 体 素 子 を 形 成 し ょ う と す る と 、 I I I 族 窒 化 物 系 化 合 物 半 導 体 層 9 3 の 表 面 に 達 し た 転 位 9 0 2 か ら 、 半 導 体 素 子 を 貫 通 転 位 が 更 に 縦 方 向 に 伝 搬 し て い く こ と と な る 。 こ の よ う に 、 従 来 の 技 術 で は 、 I I I 族 窒 化 物 系 化 合 物 半 導 体 層 を 形 成 す る 際 、 転 位 の 伝 搬 を 阻 止 で き な い と い う 問 題 が あ っ た 。
本 発 明 は 上 記 の 課 题 を 解 決 す る た め に な さ れ た も の で あ り 、 そ の 目 的 は 、 貫 通 転 位 の 発 生 を 抑 制 し た I I I 族 窒 ィ匕 物 系 化 合 物 半 導 体 を 製 造 す る こ と で あ る 。
上 記 の 課 題 を 解 決 す る た め 、 第 1 の 手 段 は 、 I I I 族 窒 ィ匕 物 系 ィ匕 合 物 半 導 体 を ェ ピ タ キ シ ャ ル 成 長 に よ り 得 る I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 に お い て 、 マ ス ク を 用 い 、 少 な く と も 1 層 の I I I 族 窒 化 物 系 化 合 物 半 導 体 か ら 成 り 、 最 上 層 を 第 1 の I I I 族 窒 化 物 系 化 合 物 半 導 体 と す る 基 底 層 を 点 状 、 ス ト ラ イ プ 状 又 は 格 子 状 等 の 島 状 態 に エ ッ チ ン グ す る 工 程 と 、 前 記 エ ツ チ ン グ に よ り 形 成 さ れ た 点 状 、 ス ト ラ イ プ 状 又 は 格 子 状 等 の 島 状 態 の 前 記 基 底 層 の 段 差 の 上 段 の 上 面 の 前 記 マ ス ク を 有 し た ま ま 、 側 面 を 核 と し て 、 前 記 マ ス ク 上 に は ェ ピ タ キ シ ャ ル 成 長 し な い 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 を 縦 及 び 横 方 向 ェ ピ タ キ シ ャ ル 成 長 さ せ る 工 程 と を 有 す る こ と を 特 徴 と す る 。 尚 、 本 明 細 書 で 基 底 層 と は 、 単 層 の I I I 族 窒 化 物 系 化 合 物 半 導 体 層 の 場 合 と 、 I I I 族 窒 化 物 系 化 合 物 半 導 体 層 を 少 な く と も 1 層 含 む 多 重 層 を 一 括 し て 表 現 す る た め に 用 い る 。 ま た 、 マ ス ク 上 に は ェ ピ タ キ シ ャ ル 成 長 し な レヽ 第 2 の I I I 族 窒 ィ匕.物 系 化 合 物 半 導 体 と は 、 ほ と ん ど 成 長 し な い の 意 味 で あ り 、 実 質 的 に 横 方 向 ェ ピ タ キ シ ャ ル 成 長 ( E L 0 ) で 覆 わ れ る と 観 測 で き れ ば 充 分 で あ る 。 尚 、 こ こ で 島 状 態 と は 、 エ ッ チ ン グ に よ り 形 成 さ れ た 段 差 の 上 段 の 様 子 を 概 念 的 に 言 う も の で あ っ て 、 必 ず し も 各 々 が 分 離 し た 領 域 を 言 う も の で な く 、 ウ ェ ハ 上 全 体 を ス ト ラ イ プ 状 又 は 格 子 状 に 形 成 す る な ど の よ う に 極 め て 広 い 範 ω に お い て 段 差 の 上 段 が 連 続 し て い て も 良 い も の と す る 。 ま た 、 段 差 の 側 面 と は 必 ず し も 基 板 面 及 び I I I 族 窒 化 物 系 化 合 物 半 導 体 表 面 に 対 し て 垂 直 と な る も の を 言 う も の で な く 、 斜 め の 面 で も 良 い 。 こ の 際 、 段 差 の 底 部 に 底 面 の 無 い 、 断 面 が V 字 状 の も の で も 良 い 。 こ れ ら は 特 に 言 及 さ れ な い 限 り 以 下 の 請 求 項 で も 同 様 と す る 。
ま た 、 第 2 の 手 段 は 、 前 記 基 底 層 は 基 板 上 に 形 成 さ れ て お り 、 前 記 エ ッ チ ン グ は 前 記 基 板 が 露 出 す る ま で 行 わ れ る こ と を 特 徴 と す る 。
ま た 、 第 3 の 手 段 は 、 請 求 項 1 に 記 載 の I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 に お い て 、 段 差 の 深 さ と 幅 と の 関 係 は 、 底 部 か ら の 縦 方 向 成 長 に よ り 段 差 が 埋 め ら れ る よ り も 、 側 面 か ら の 横 方 向 成 長 に よ り 段 差 が 塞 が れ る 方 が 早 レ、 よ う 形 成 さ れ る こ と を 特 徴 と す る 。 尚 、 こ こ で エ ッ チ ン グ の 際 断 面 が V 字 状 の 底 面 の 無 い 段 差 の 場 合 は ェ ピ タ キ シ ャ ル 成 長 の 際 に 形 成 さ れ る 底 部 ( 底 面 ) を 言 9 。
ま た 、 第 4 の 手 段 は 、 段 差 の 側 面 は 、 略 全 部 が { 1 1 一 2 0 } 面 で あ る こ と を 特 徴 と す る 。
ま た 、 第 5 の 手 段 は 、 第 1 の I I I 族 窒 化 物 系 化 合 物 半 導 体 と 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 と が 同 組 成 で あ る こ と を 特 徴 と す る 。 尚 、 こ こ で 同 組 成 と は 、 ド 一 プ 程 度 の 差 ( モ ル 比 1 ノ 一 セ ン ト 未 満 の 差 ) は 無 視 す る も の と す る 。
ま た 、 第 6 の 手 段 は 、 前 記 基 底 層 は 、 前 記 基 板 上 に 形 成 さ れ た ノ ッ フ ァ 層 、 及 び こ の ノ ヅ フ ァ 層 上 に ェ ビ タ キ シ ャ ル 成 長 し た I I I 族 窒 化 物 系 化 合 物 半 導 体 層 を 1 周 期 と し て 、 複 数 周 期 形 成 さ れ た 層 で あ る こ と を 特 徴 と す る 。
ま た 、 第 7 の 手 段 は 、 前 記 基 底 層 に お い て 、 前 記 バ ッ フ ァ 層 と 隣 り 合 う 前 記 I I I 族 窒 化 系 化 合 物 半 導 体 層 と は 、 組 成 又 は 形 成 温 度 が 異 な る こ と を 特 徴 と す る 。
ま た 、 第 8 の 手 段 は 、 前 記 第 1 の I I I 族 窒 化 物 系 化 合 物 半 導 体 層 に は 、 主 た る 構 成 元 素 よ り 原 子 半 径 の 大 き な 元 素 に よ り 一 部 置 換 さ れ て い る 又 は ド 一 プ さ れ て い る こ と を 特 徴 と す る 。 こ こ で 主 た る 構 成 元 素 と は 、 窒 素 と 、 I I I 族 元 素 を 言 う 。 原 子 半 径 が 大 き い 元 素 と は 、 例 え ば 窒 素 に 対 し て は リ ン ( P )、 ヒ 素 ( A s )、 ビ ス マ ス ( B i )で あ り 、 I I I 族 元 素 は 原 子 半 径 の 小 さ い 方 か ら 大 き い 方 に ア ル ミ ニ ゥ ム ( A l )、 ガ リ ゥ ム ( G a )、 ィ ン ジ ゥ ム ( I n )、 夕 リ ゥ ム ( T 1 )で あ る 。
ま た 、 第 9 の 手 段 は 、 請 求 項 1 乃 至 請 求 項 8 の い ず れ か 1 項 に 記 載 の I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 に お い て 、 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 を ェ ピ 夕 キ シ ャ ル 成 長 さ せ る 前 に 、 段 差 の 下 段 面 を 覆 う よ う 、 第 2 の マ ス ク を 形 成 す る 工 程 を 含 む こ と を 特 徴 と す る 。
ま た 、 第 1 0 の 手 段 は 、 請 求 項 1 乃 至 請 求 項 9 の い ず れ か 1 項 に 記 載 の 製 造 方 法 に よ り 製 造 し た I I I 族 窒 化 物 系 化 合 物 半 導 体 層 の 、 横 方 向 ェ ピ タ キ シ ャ ル 成 長 し た 部 分 の 上 層 に 、 半 導 体 素 子 と し て 機 能 す る 単 層 又 は 複 数 の I I I 族 窒 化 物 系 化 合 物 半 導 体 層 か ら 成 る 素 子 層 を 形 成 す る こ と に よ り 得 ら れ た I I I 族 窒 化 物 系 化 合 物 半 導 体 素 子 で あ る 。
ま た 、 第 1 1 の 手 段 は 、 請 求 項 1 乃 至 請 求 項 9 の い ず れ か 1 項 に 記 載 の I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 に 力 Π え て 、 横 方 向 ェ ピ 夕 キ シ ャ ル 成 長 し た 部 分 の 上 層 以 外 を 略 全 部 除 去 す る こ と に よ り 、 I I I 族 窒 化 物 系 化 合 物 半 導 体 層 を 得 る こ と を 特 徴 と す る I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 で あ る 。
本 発 明 の I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 の 概 略 を 図 1 を 参 照 し な が ら 説 明 す る 。 尚 、 図 1 で は 、 従 属 請 求 項 の 説 明 及 び 理 解 を 助 け る た め 基 板 1 及 び ノ ッ フ ァ 層 2 を 有 す る 図 を 示 し て い る 力 s 、 本 発 明 は 、 縦 方 向 に 貫 通 転 位 を 有 す る I I I 族 窒 化 物 系 化 合 物 半 導 体 か ら 、 縦 方 向 の 貫 通 転 位 の 軽 減 さ れ た 領 域 を 有 す る I I I 族 窒 化 物 系 化 合 物 半 導 体 層 を 得 る も の で あ り 、 基 板 1 及 び ノ ヅ フ ァ 層 2 は 本 発 明 に 必 須 の 要 素 で は な い 。 以 下 、 基 板 1 面 上 に 、 ノ ッ フ ァ 層 2 を 介 し て 形 成 さ れ た 、 縦 方 向 ( 基 板 面 に 垂 直 方 向 ) に 貫 通 転 位 を 有 す る I I I 族 窒 化 物 系 化 合 物 半 導 体 層 3 1 を 用 い て 本 発 明 を 適 用 す る 例 で 、 本 発 明 の 作 用 効 果 の 要 部 を 説 明 す る 。
図 1 の ( a ) の よ う に 、 マ ス ク 4 を 用 レ、 て 、 基 底 層 と し て の 第 1 の I I I 族 窒 化 物 系 化 合 物 半 導 体 層 3 1 を 点 状 ス ドラ イ ブ 状 又 は 格 子 状 等 の 島 状 態 に ±· ツ チ ン グ し 、 段 差 を 設 け る 。 こ う し て 、 段 差 の 上 段 の 上 面 の マ ス ク 4 を 除 か ず に 、 側 面 を 核 と. し て 、 マ ス ク 4 上 に は ェ ピ タ キ シ ャ ル 成 長 し な い 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 3 2 を 縦 及 び 横 方 向 ェ ピ タ キ シ ャ ル 成 長 さ せ る こ と で 段 差 部 分 を 埋 め つ つ 、 上 方 に も 成 長 さ せ る こ と が で き る 。 こ の と き 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 3 2 が 横 方 向 ェ . ピ 夕 キ シ ャ ル 成 長 し た 部 分 の 上 部 は 、 I I I 族 窒 化 物 系 化 合 物 半 導 体 層 3 1 が 有 す る 貫 通 転 位 の 伝 搬 が 抑 制 さ れ 、 埋 め ら れ た 段 差 部 分 に 貫 通 転 位 の 軽 減 さ れ た 領 域 を 作 る こ と が で き る ( 請 求 項 1 )。 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 3 2 を 縦 及 び 横 方 向 ェ ピ タ キ シ ャ ル 成 長 さ せ る 際 図 1 の ( b ) の よ う に 、 段 差 の 側 面 を 核 と し て 成 長 す る 部 分 の 他 、 段 差 の 下 段 ( 底 部 ) を 核 と し て 成 長 す る 部 分 が 存 在 す る 。 縦 方 向 と 横 方 向 の 成 長 速 度 は ほ ぼ 等 し い 。 よ っ て 本 発 明 は 段 差 の 側 面 を 核 と し て 成 長 す る 部 分 が 明 か に 存 在 す る よ う に ェ ピ タ キ シ ャ ル 成 長 す る こ と で あ る I I I 族 窒 化 物 系 化 合 物 半 導 体 層 3 1 と 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 3 2 と は ェ ピ タ キ シ ャ ル 成 長 に よ り 不 連 続 面 が ほ と ん ど 無 い の で 構 造 的 に も 安 定 し た も の と す る こ と が で き る 。 こ の の ち 縦 及 び 横 方 向 ェ ピ タ キ シ ャ ル 成 長 を 続 け る こ と で マ ス ク 4 を も 覆 う よ う に 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 層 3 2 を 形 成 す る こ と が で き る ( 図 1 の ( d )、 ( e ) )。 マ ス ク 4 上 の 第 2 の I I I 族 窒 ィ匕 物 系 化 合 物 半 導 体 層 3 2 は マ ス ク 4 の 上 面 か ら ェ ピ タ キ シ ャ ル 成 長 し た の で は な い の で 、 新 た な 転 位 が 生 じ る こ と は 無 い 。
エ ッ チ ン グ は 基 底 層 を エ ッ チ ン グ し 、 基 板 面 を 露 出 さ せ る か 、 更 に は 一 部 基 板 自 体 を も エ ッ チ ン グ す る 深 さ と す れ ば 、 上 部 の 横 方 向 ェ ピ タ キ シ ャ ル 成 長 が 確 実 で あ る 。 こ れ は 基 板 面 を 核 と し て は 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 が 成 長 し に く い か ら で あ る 。 こ れ に よ り 基 底 層 に 残 っ て い る 貫 通 転 位 の 影 響 を 理 想 的 に 排 除 し 、 横 方 向 ェ ピ 夕 キ シ ャ ル 成 長 さ れ る 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 の 結 晶 性 を 確 実 に 良 く す る こ と が で き る ( 請 求 項 2 ) こ の と き 、 段 差 部 分 を 埋 め る 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 3 2 が 、 段 差 の 下 段 ( 底 部 ) か ら 縦 方 向 に ェ ビ タ キ シ ャ ル 成 長 し て 元 の 段 差 の 上 段 ま で 成 長 す る よ り も 、 段 差 の 側 面 か ら 横 方 向 に ェ ピ タ キ シ ャ ル 成 長 し て 向 ' か い 合 う 段 差 の 側 面 か ら の 横 方 向 ェ ピ タ キ シ ャ ル 成 長 面 と 合 体 す る 方 が 早 い な ら ば 、 段 差 を 埋 め た 部 分 の I I I 族 窒 化 物 系 化 合 物 半 導 体 3 2 上 部 に は 第 1 の I I I 族 窒 化 物 系 化 合 物 半 導 体 層 3 1 か ら 伝 搬 す る 貫 通 転 位 は 著 し く 抑 制 さ れ 、 極 め て 良 質 な 結 晶 領 域 と す る こ と が で き る ( 請 求 項 3 )。 こ の 場 合 、 図 1 の ( c ) の よ う に 段 差 の 底 部 を 核 と し て 成 長 し た 部 分 が 表 面 に 出 る こ と な く 空 洞 と し て 残 る こ と と な る 。 そ の 上 部 は 両 側 の 段 差 の 側 面 を 核 と し て 成 長 し て き た I I I 族 窒 化 物 系 化 合 物 半 導 体 3 2 の 成 長 面 の 合 体 が 生 じ て お り 、 第 1 の I I I 族 窒 化 物 系 化 合 物 半 導 体 層 か ら 伝 搬 す る 貫 通 転 位 は こ の 空 洞 で 止 め ら れ る こ ^ t t G) - m \ ^ ^ ^ ^ ^ m in
° ( v ) ω 9 m Ύ ^ - 。( a本 籠 ) ¾ ¾;
¾ π ¾ ¥5 X If ¥5 ^ ϋ ¾ ft ^ (¾ ^ q ¾ (¾ q s ¾ I I 9Z
I ii 乙 , 、 ¾ι ω r ° ( 9 a * isg ) ^ ^ m ^
m m Q T » 乙 ^ ^ ^ -2 ^ Έ m M M- ^ ^ m ネ ¾ 古 呦 ^ ^ 呦 ¾ ¾ I I I w $ ¾ ^ 4 ^ 3 ェ
Figure imgf000011_0001
° ¾r ¾ i (Ml i Kl ? ® 止 « ¾ w
Γ ° ^ 0 09 5^ Λ 據 ¾ i If: ^ ¾ 5Qi ω m ^ ^ o ^ 、 ¾ ® コ 。 、 ^ ^ 西 © Q? 博 : n 画 m ω ¾ 、 ^ w 翊 W 油 ¾ * 、 つ φ § 4
¾i ¾ ¾ C- ¾ ¾ Iffi ¾ 扉 羅- ® S « ^ τ I ^ 。 ?
^ ^ ¾ -. ¾ z ε * * (¾ q> ¾ (¾ q ¾ ¾ 111
i ¾; q ¾ ¾ ]f ¾ ¾ T 1 ffi ¾ ik ¾ -- ^ ω ^
¾ ¾ ¾ n i¾ » η fi$ djf ¾ ¾ ? ® M <§- ¾t ¾ ^ T ε 匾
* % ^ q> ^ f q> ¾ ¾ 111 ¾ ^ ø T ^
。( s
Mr f m ) ¾ ¾ a- ¾| Ik SE ¾ r) ^ § W ^ ^ 4^ ^ ^ l"J 01
¾ ¾ ¾ ¾ i ¾ Ol ^ ^ ¾ ft c# ^ q ¾ 呦 q> ¾ ¾
111 ø ε ¾ ^ *} ¾ * <¾ ^ ^> ^ i¾ q ii ¾ i i i ω T ¾ ¾ ^
° ' ^ コ ¾ ¥ ^ 厘 { 0 2 - ΐ ΐ } ¾ ilS T ^
> ¾ ø m ¾ ø Φ ¾ く、 ^ ェ igj 骈 Ϊ) Ύ \ §
^ ω - 。( gr 本 廳 ) ¾ ¾ 1Μ lE li ¾ 玆 ^ ^ ¾ '2· 面
{ o z - ΐ ΐ } S » ω ¾ ΐ ε ΐί t> ft c# ^ q> ¾ t¾
^ m in 、 : 蒼 ^ ^ 3 工 ^ ^ 褂 ¾ τ
° § ^
TZl60/00df/X3d 66.817/Ϊ0 OAV 結 晶 の 拡 張 歪 み が 生 じ て い る の で 、 主 た る 構 成 元 素 よ り も 原 子 半 径 の 大 き な 元 素 を ド ー プ す る と 圧 縮 歪 み が 生 じ 結 晶 性 が 良 く な る ( 請 求 項 8 )。 例 え ば 組 成 に ィ ン ジ ゥ ム ( I n ) , ヒ 素 ( A s )を 有 し な い I I I 族 窒 化 物 系 化 合 物 半 導 体 で あ る Al xGa ^ - χ Ν ( 0 ≤ χ≤ 1 ) に 、 ア ル ミ ニ ウ ム (Al )、 ガ リ ゥ ム ( G a )よ り も 原 子 半 径 の 大 き な ィ ン ジ ゥ ム (' I n )、 又 は 窒 素 ( N )よ り も 原 子 半 径 の 大 き な ヒ 素 ( A s )を ド ー ブ す る こ と で 、 窒 素 原 子 の 抜 け に よ る 結 晶 の 拡 張 歪 み を 圧 縮 歪 み で 補 償 し 結 晶 性 が を 良 く な る 。 こ の 場 合 は ァ ク セ プ 夕 不 純 物 が I I I 族 原 子 の 位 置 に 容 易 に 入 る た め 、 p 型 結 晶 を ァ ズ グ ロ ー ン で 得 る こ と も で き る 。 こ の よ う に し て 結 晶 性 を 良 く す る こ と で 本 願 発 明 と 合 わ せ て 更 に 貫 通 転 位 を 1 ◦ 0 乃 至 1 0 0 0 分 の 1 程 度 に ま で 下 げ る こ と も で き る 。 基 底 層 が ノ ッ フ ァ 層 と I I I 族 窒 化 物 系 化 合 物 半 導 体 層 と が 2 周 期 以 上 で 形 成 さ れ て い る 場 合 、 各 I I I 族 窒 化 物 系 化 合 物 半 導 体 層 に 主 た る 構 成 元 素 よ り も 原 子 半 径 の 大 き な 元 素 を ド 一 プ す る と 更 に 良 い 。
ま た 、 段 差 の 下 段 面 を 第 2 の マ ス ク で 覆 え ば 、 基 板 面 か ら の 縦 方 向 成 長 を も 確 実 に 排 除 す る こ と が で き る ( 請 求 項 9 )。 こ れ を 例 え ば 図 6 の ( c ) 及 び ( d ) に 示 す 。
上 記 の 工 程 で 得 ら れ た I I I 族 窒 化 物 系 化 合 物 半 導 体 層 の 、 横 方 向 ェ ピ タ キ シ ャ ル 成 長 し た 部 分 の 上 層 に 半 導 体 素 子 、 例 え ば 発 光 素 子 、 F E T を 形 成 す る こ と で 、 素 子 寿 命 、 移 動 度 、 或 い は L D で あ れ ば 閾 値 の 改 善 さ れ た 発 光 素 子 と す る こ と が で き る ( 請 求 項 1 0 )。
ま た 、 上 記 の 工 程 で 得 ら れ た I I I 族 窒 化 物 系 化 合 物 半 導 体 層 の 、 横 方 向 ェ ピ タ キ シ ャ ル 成 長 し た 部 分 の 上 層 の み を そ の 他 の 層 か ら 分 離 す る こ と で 、 転 位 等 結 晶 欠 陥 の 著 し く 抑 制 さ れ た 結 晶 性 の 良 い I I I 族 窒 化 物 系 化 合 物 半 導 体 を 得 る こ と が で き る ( 請 求 項 1 1 )。 尚 「 略 全 部 除 去 」 と は 、 製 造 上 の 簡 便 さ か ら 、 一 部 貫 通 転 位 の 残 っ た 部 分 を 含 ん で い た と し て も 本 発 明 に 包 含 さ れ る こ と を 示 す も の で あ る 。 . 図 面 の 簡 単 な 説 明
第 1 図 は 、 本 発 明 の 第 1 の 実 施 例 に 係 る I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 工 程 を 示 す 断 面 図 。
第 2 図 は 、 本 究 明 の 第 2 の 実 施 例 に 係 る I I I 族 窒 化 物 系 化 合 物 半 導 体 究 光 素 子 の 構 造 を 示 す 断 面 図 。
第 3 図 は 、 本 究 明 の 第 3 の 実 施 例 に 係 る I I I 族 窒 化 物 系 化 合 物 半 導 体 発 光 素 子 の 構 造 を 示 す 断 面 図 。
第 4 図 は 、 本 発 明 の 第 4 の 実 施 例 に 係 る I I I 族 窒 化 物 系 化 合 物 半 導 体 究 光 素 子 の 構 造 を 示 す 断 面 図 。
第 5 図 は 、 本 究 明 の 第 5 の 実 施 例 に 係 る I I I 族 窒 化 物. 系 化 合 物 半 導 体 発 光 素 子 の 構 造 を 示 す 断 面 図 。
第 6 図 は 、 本 発 明 の 第 6 乃 至 第 9 の 実 施 例 に 係 る I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 工 程 を 示 す 断 面 図 。
第 7 図 は 、 本 発 明 の 第 6 乃 至 第 9 の 実 施 例 に 係 る I I I 族 窒 化 物 系 化 合 物 半 導 体 発 光 素 子 の 構 造 を 示 す 断 面 図 。
第 8 図 は 、 本 発 明 の 第 1 0 の 実 施 例 に 係 る I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 工 程 を 示 す 断 面 図 。
第 9 図 は 、 本 発 明 の 第 1 0 の 実 施 例 に 係 る I I I 族 窒 化 物 系 化 合 物 半 導 体 発 光 素 子 の 構 造 を 示 す 断 面 図 。
第 1 0 図 は 、 第 1 の I I I 族 窒 化 物 系 化 合 物 半 導 体 の ェ ッ チ ン グ の 別 の 例 を 示 す 模 式 図 。
第 1 1 図 は 、 I I I 族 窒 化 物 系 化 合 物 半 導 体 .を 伝 搬 す る 貫 通 転 位 を 示 す 断 面 図 。 発 明 を 実 施 す る た め の 最 良 の 形 態
図 1 に 本 究 明 の I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 の 実 施 の 形 態 の 一 例 の 概 略 を 示 す 。 基 板 1 と 、 バ ッ フ ァ 層 2 と 、 第 1 の I I I 族 窒 化 物 系 化 合 物 半 導 体 層 3 1 と を 形 成 し 、 マ ス ク 4 を 形 成 し て 、 マ ス ク が 形 成 さ れ て い な い 部 分 を ト レ ン チ 状 に ェ ヅ チ ン グ を す る ( 図 1 の ( a ) ) こ の 際 、 エ ッ チ ン グ に よ り 段 差 が 生 じ 、 エ ッ チ ン グ さ れ な か っ た 部 分 を 上 段 と し て 、 側 面 及 び 段 差 の 底 部 ( 下 段 ) が 形 成 さ れ る 。 側 面 は 例 え ば. { 1 1 — 2 0 } 面 で あ る 。 次 に 横 方 向 ェ ピ タ キ シ ャ ル 成 長 す る 条 件 で 、 段 差 の 側 面 を 核 と し て 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 3 2 の ェ ビ タ キ シ ャ ル 成 長 を 行 う 。 マ ス ク 4 は 予 め 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 3 2 が ェ ピ タ キ シ ャ ル 成 長 し な,レ、 も の を 用 い る 。 有 機 金 属 成 長 法 を 用 い れ ば 、 成 長 面 を { 1 1 - 2 0 } 面 に 保 っ た ま ま 横 方 向 ェ ピ タ キ シ ャ ル 成 長 力 s 容 易 に 可 能 で あ る 。 こ う し て 、 段 差 の 側 面 の 横 方 向 成 長 が 生 じ る な ら ば 、 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 3 2 の そ の 部 分 に つ い て は 、 第 1 の I I I 族 窒 化 物 系 化 合 物 半 導 体 層 か ら の 貫 通 転 位 が 伝 搬 し な い ( 図 1 の ( b ) )。 こ う し て 、 段 差 の 底 部 の 縦 方 向 の 成 長 に よ り エ ッ チ ン グ さ れ た 部 分 が 埋 ま る 前 に 、 段 差 の 両 側 面 の 横 方 向 成 長 が エ ッ チ ン グ さ れ た 部 分 の 上 方 で 合 体 す る よ う 、 エ ツ チ ン グ 形 状 と 横 方 向 ェ ピ タ キ シ ャ ル 成 長 条 件 と を 設 定 す る こ と で 、 エ ッ チ ン グ さ れ た 上 部 の 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 3 2 に は 貫 通 転 位 が 抑 制 さ れ た 領 域 を 形 成 す る こ と が で き る ( 図 1 の ( c ) )。 こ の の ち 縦 及 び 横 方 向 ェ ピ タ キ シ ャ ル 成 長 を 続 け れ ば 、 マ ス ク 4 を も 覆 う よ う に 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 層 3 2 が 形 成 さ れ る 。
上 記 の 発 明 の 実 施 の 形 態 と し て は 、 次 の 中 か ら そ れ そ れ 選 択 す る こ と が で き る 。
基 板 上 に I I I 族 窒 化 物 系 化.合 物 半 導 体 を 順 次 積 層 を 形 成 す る 場 合 は 、 基 板 と し て は サ フ ァ イ ア 、 シ リ コ ン ( S i )、 炭 ィ匕 ケ ィ 素 ( S i C )、 ス ピ ネ ル ( M g A 1204 )、 Z n 0、 M g 0 そ の 他 の 無 機 結 晶 基 板 、 リ ン ィヒ ガ リ ウ ム 又 は 砒 ィ匕 ガ リ ウ ム の よ う な I I I _ V 族 ィ匕 合 物 半 導 体 あ る レ、 は 窒 ィ匕 ガ リ ウ ム ( G a N ) そ の 他 の I I I 族 窒 化 物 系 化 合 物 半 導 体 等 を 用 い る こ と が で き る 。
I I I 族 窒 化 物 系 化 合 物 半 導 体 層 を 形 成 す る 方 法 と し て は 有 機 金 属 気 相 成 長 法 ( M 0 C V D 又 は M 0 V P E ) が 好 ま し い が 、 分 子 線 気 相 成 長 法 ( M B E )、 ハ ラ イ ド 気 相 成 長 法 ( H a 1 i d e VPE)、 液 相 成 長 法 ( LPE) 等 を 用 い て も 良 く 、 各 層 を 各 々 異 な る 成 長 方 法 で 形 成 し て も 良 い 。
例 え ば サ フ ア イ ァ 基 板 上 に I I I 族 窒 化 物 系 化 合 物 半 導 体 積 層 す る 際 、 結 晶 性 良 く 形 成 さ せ る た め 、 サ フ ァ イ ア 基 板 と の 格 子 不 整 合 を 是 正 す べ く バ ッ フ ァ 層 を 形 成 す る こ と が 好 ま し い 。 他 の 基 板 を 使 用 す る 場 合 も バ ッ フ ァ 層 を 設 け る こ と が 望 ま し い 。 ノ ッ フ ァ 層 と し て は 、 低 温 で 形 成 さ せ た I I I 族 窒 化 物 系 化 合 物 半 導 体 Aし G a y I η ,— xy N ( 0≤ x≤ 1 , 0≤ y≤ 1 , 0≤ x + y≤ 1 ) , よ り 好 ま し く は A1 XG a , -xN ( 0≤ x≤ l ) が 用 レ、 ら れ る 。 こ の バ ッ フ ァ 層 は 単 層 で も 良 く 、 組 成 等 の 異 な る 多 重 層 と し て も 良 い 。 ノ ッ フ ァ 層 の 形 成 方 法 は 、 380〜 420 °C の 低 温 で 形 成 す る も の で も 良 く 、 逆 に 1000〜 1180 °C の 範 囲 で 、 M O C V D 法 で 形 成 し て も 良 い 。 ま だ 、 D C マ グ ネ ト ロ ン ス ノ ッ タ 装 置 を 用 い て 、 高 純 度 金 属 ア ル ミ ニ ウ ム と 窒 素 ガ ス を 原 材 料 と し て 、 リ ア ク テ ィ ブ ス ノ ッ タ 法 に よ り A 1 N か ら 成 る ノ ッ フ ァ 層 を 形 成 す る こ と も で き る 。 同 様 に 一 般 式 Al xGay In - y N ( 0≤ ≤ 1 , 0≤ y≤ 1 , 0≤ x + y≤ Κ 組 成 比 は 任 意 ) の ノ ッ フ ァ 層 を 形 成 す る こ と が で き る 。 更 に は 蒸 着 法 、 イ オ ン プ レ ー テ ィ ン グ 法 、 レ ー ザ ア ブ レ ー シ ヨ ン 法 、 Ε C R 法 を 用 レ、 る こ と が で き る 。 物 理 蒸 着 法 に よ る ノ ' ッ フ ァ 層 は 、 200〜 600 °C で 行 う の 力 望 ま し い 。 さ ら に 望 ま し く は 300〜 500 °C で あ り 、 さ ら に 望 ま し く は 400〜 500 °C で あ る 。 こ れ ら の ス ノ ッ 夕 リ ン グ 法 等 の 物 理 蒸 着 法 を 用 い た 場 合 に は 、 ノ ッ フ ァ 層 の 厚 さ は 、 100〜 3000 A が 望 ま し レヽ 。 さ ら に 望 ま し く は 、 100〜 400A が 望 ま し く 、 最 も 望 ま し く は 、 100〜 300 A で あ る 。 多 重 層 と し て は 、 例 え ば A 1 x G a! - x N ( 0≤ x≤ 1 ) か ら 成 る 層 と GaN 層 と を 交 互 に 形 成 す る 、 組 成 の 同 じ 層 を 形 成 温 度 を 例 え ば 600 °C 以 下 と 1 000 °C 以 上 と し て 交 互 に 形 成 す る な ど の 方 法 が あ る 。 勿 論 こ れ ら を 組 み 合 わ せ て も 良 く 、 多 重 層 は 3 種 以 上 の I I I 族 窒 化 物 系 化 合 物 半 導 体 Al xGay ln ,— yN( 0≤ x≤ l , 0≤ y ≤ 1 , 0≤ x + y≤ 1 ) を 積 層 し て も 良 い 。 一 般 的 に は ノ ヅ フ ァ 層 は 非 晶 質 で あ り 、 中 間 層 と し て 単 結 晶 層 を 形 成 す る 。 ノ ッ フ ァ 層 と 中 間 層 を 1 周 期 と し て 複 数 周 期 形 成 し て も 良 く 、 繰 り 返 し は 任 意 周 期 で 良 い 。 繰 り 返 し は 多 い ほ ど 結 晶 性 が 良 く な る 。
バ ッ フ ァ 層 及 び 上 層 の I I I 族 窒 化 物 系 化 合 物 半 導 体 は I I I 族 元 素 の 組 成 の 一 部 は 、 ボ ロ ン ( B )、 タ リ ウ ム ( T 1 )で 置 き 換 え て も 、 ま た 、 窒 素 ( N )の 組 成 一 部 を リ ン ( P )、 ヒ 素 (As )、 ア ン チ モ ン ( Sb )、 ビ ス マ ス ( B i )で 置 き 換 え て も 本 発 明 を 実 質 的 に 適 用 で き る 。 ま た 、 こ れ ら 元 素 を 組 成 に 表 示 で き な い 程 度 の ド 一 プ を し た も の で も 良 い 。 例 え ば 組 成 に イ ン ジ ウ ム ( I n )、 ヒ 素 ( A s )を 有 し な レ、 I I I 族 窒 ィ匕 物 系 ィ匕 合 物 半 導 体 で あ る A l x Ga ,— χ Ν ( 0≤ χ≤ 1 ) に 、 ァ ル ミ ニ ゥ ム ( A 1 )、 ガ リ ウ ム ( G a )よ り も 原 子 半 径 の 大 き な ィ ン ジ ゥ ム ( I n )、 又 は 窒 素 ( N )よ り も 原 子 半 径 の 大 き な ( A s )を ド ー プ す る こ と で 、 窒 素 原 子 の 抜 け に よ る 結 晶 の 拡 張 歪 み を 圧 縮 歪 み で 補 償 し 結 晶 性 を 良 く し て も 良 い 。 こ の 場 合 は ァ ク セ プ 夕 不 純 物 が I I I 族 原 子 の 位 置 に 容 易 に 入 る た め 、 p 型 結 晶 を ァ ズ グ ロ ー ン で 得 る こ と も で き る 。 こ の よ う に し て 結 晶 性 を 良 く す る こ と で 本 願 発 明 と 合 わ せ て 更 に 貫 通 転 位 を 1 0 0 乃 至 1 0 0 0 分 の 1 程 度 に ま で 下 げ る こ と も で き る 。 ノ ッ フ ァ 層 と I I I 族 窒 化 物 系 化 合 物 半 導 体 層 と が 2 周 期 以 上 で 形 成 さ れ て い る 基 底 層 の 場 合 、 各 I I I 族 窒 化 物 系 化 合 物 半 導 体 層 に 主 た る 構 成 元 素 よ り も 原 子 半 径 の 大 き な 元 素 を ド ー プ す る と 更 に 良 い な お 、 発 光 素 子 の 発 光 層 或 い は 活 性 層 と し て 構 成 す る 場 合 は 、 本 来 I I I 族 窒 化 物 系 化 合 物 半 導 体 の 2 元 系 、 若 し く は 3 元 系 を 用 レヽ る こ と が 望 ま し い 。
n 型 の I I I 族 窒 化 物 系 化 合 物 半 導 体 層 を 形 成 す る 場 合 に は 、 n 型 不 純 物 と し て 、 S i、 Ge、 Se、 Te、 C 等 IV 族 元 素 又 は V I 族 元 素 を 添 加 す る こ と が で き る 。 ま た 、 p 型 不 純 物 と し て は 、 Zn、 Mg、 Be、 Ca、 Sr、 Ba 等 I I 族 元 素 又 は I V 族 元 素 を 添 加 す る こ と が で き る 。 こ れ ら を 複 数 或 い は n 型 不 純 物 と p 型 不 純 物 を 同 一 層 に ド ー プ し て も 良 い 横 方 向 ェ ビ タ キ シ ャ ル 成 長 と し て は 成 長 面 が 基 板 に 垂 直 と な る も の が 望 ま し い が 、 基 板 に 対 し て 斜 め の フ ァ セ ッ ト 面 の ま ま 成 長 す る も の で も 良 い 。 こ の 際 、 段 差 の 底 部 に 底 面 の 形 成 さ れ な い 、 断 面 が V 字 状 の も の で も 良 い < 横 方 向 ェ ビ タ キ シ ャ ル 成 長 と し て は 、 横 方 向 ェ ピ タ キ シ ャ ル 成 長 面 の 少 な く と も 上 部 と 基 板 面 と は 垂 直 で あ る こ と が よ り 望 ま し く 、 更 に は い ず れ も I I I 族 窒 化 物 系 化 合 物 半 導 体 の { 1 1 - 2 0 } 面 で あ る こ と が よ り 望 ま し い
エ ッ チ ン グ す る 際 は 、 深 さ と 幅 の 関 係 か ら 、 横 方 向 ェ ピ タ キ シ ャ ル 成 長 に よ り 塞 が れ る よ う に 段 差 を 設 け る 。 基 板 面 を 露 出 さ せ る 場 合 は 、 基 板 面 か ら の 縦 方 向 成 長 が 少 な く と も 初 期 段 階 に お い て 遅 い こ と も 利 用 す る 。
基 底 層 の バ ッ フ ァ 層 を A1N、 Al xGa!— xN 又 は Al xGay In i - x - y N ( x≠ 0 ) か ら な る 層 と し 、 最 上 層 で あ る 第 1 の I I I 族 窒 化 物 系 化 合 物 半 導 体 を G a N と す る な ら ば 、 A 1 N、 Aし Ga , N 又 は Al xGay ln t yN( x≠ 0 )力 ら な る 異 な る 層 は 、 C 1 、 BC 1 な ど の 塩 素 を 含 む プ ラ ズ マ ェ ヅ チ ン グ の 際 ス ト ッ ノ 層 と し て 働 く の で 好 都 合 で あ る 。 勿 論 、 エ ツ チ ン グ 条 件 に よ り 、 こ れ ら の 層 を も エ ッ チ ン グ す る こ と も 可 能 で あ る 。
基 板 上 に 積 層 す る I I I 族 窒 化 物 系 化 合 物 半 導 体 層 の 結 晶 軸 方 向 が 予 想 で き る 場 合 は 、 I I I 族 窒 化 物 系 化 合 物 半 導 体 層 の a 面 ({ 1 1 — 2 0 } 面 ) 又 は m 面 ({ 1 — 1 0 0 } 面 ) に 垂 直 と な る よ う ス ト ラ イ プ 状 に マ ス ク 或 い は エ ッ チ ン グ を 施 す こ と が 有 用 で あ る 。 な お 、 鳥 状 、 格 子 状 等 に 、 上 記 ス ト ラ イ プ 及 び マ ス ク を 任 意 に 設 計 し て 良 い 。 横 方 向 ェ ピ タ キ シ ャ ル 成 長 面 は 、 基 板 面 に 垂 直 な も の の 他 、 基 板 面 に 対 し 斜 め の 角 度 の 成 長 面 で も 良 い 。 I I I 族 窒 化 物 系 化 合 物 半 導 体 層 の a 面 ど し て ( 1 1 一 2 0 ) 面 を 横 方 向 ェ ピ タ キ シ ャ ル 成 長 面 と す る に は 例.え ば ス ト ラ イ プ の 長 手 方 向 は I I I 族 窒 化 物 系 化 合 物 半 導 体 層 の m 面 で あ る ( 1 — 1 0 0 ) 面 に -垂 直 と す る 。 例 え ば 基 板 を サ フ ァ イ ア の a 面 又 は c 面 と す る 場 合 は 、 ど ち ら も サ フ ア イ ァ の m 面 が そ の 上 に 形 成 さ れ る I I I 族 窒.ィヒ 物 系 化 合 物 半 導 体 層 の a 面 と 通 常 一 致 す る の で 、 こ れ に 合 わ せ て エ ッ チ ン グ を 施 す 。 点 状 、 格 子 状 そ の 他 の 島 状 と す る 場 合 も 、 輪 郭 ( 側 壁 ) を 形 成 す る 各 面 が { 1 1 — 2 0 } 面 と す る こ と が 望 ま し レ、 。
エ ッ チ ン グ マ ス ク は 、 多 結 晶 シ リ コ ン 、 多 結 晶 窒 化 物 半 導 体 等 の 多 結 晶 半 導 体 、 酸 化 珪 素 ( S i ( )、 窒 化 珪 素 ( S i N ) , 酸 化 チ タ ン ( T i 0 )、 酸 ィ匕 ジ ル コ ニ ウ ム ( Z r 0 )等 の 酸 化 物 、 窒 化 物 、 チ タ ン ( T i )、 タ ン グ ス テ ン ( W )の よ う な 高 融 点 金 属 、 或 い は こ れ ら の 多 層 膜 を も ち い る こ と が で き る 。 こ れ ら の 成 膜 方 法 は 蒸 着 、 ス ノ ッ 夕 、 C V D 等 の 気 相 成 長 法 の 他 、 任 意 で あ る 。
エ ッ チ ン グ を す る 場 合 は 反 応 性 イ オ ン ビ ー ム エ ツ チ ン グ ( R I B E ) が 望 ま し レ、 が 、 任 意 の エ ッ チ ン グ 方 法 を 用 い る こ と が で き る 。 基 板 面 に 垂 直 な 側 面 を 有 す る 段 差 を 形 成 す る の で な い も の と し て 、 異 方 性 エ ッ チ ン グ に よ り 例 え ば 段 差 の 底 部 に 底 面 が 形 成 さ れ な い 、 断 面 が V 字 状 の も の を 形 成 し て も 良 い 。
上 記 の 貫 通 転 位 の 抑 制 さ れ た 領 域 を 宥 す る I I I 族 窒 化 物 系 化 合 物 半 導 体 の 、 全 体 或 い は 貫 通 転 位 の 抑 制 さ れ た 領 域 を 中 心 と し て そ の 上 部 に F E T 、 発 光 素 子 等 の 半 導 休 素 子 を 形 成 す る こ と が で き る 。 発 光 素 子 の 場 合 は 、 発 光 層 は 多 重 量 子 井 戸 構 造( M Q W )、 単 一 量 子 井 戸 構 造( S Q W ) の 他 、 ホ モ 構 造 、 ヘ テ ロ 構 造 、 ダ ブ ル へ テ ロ 構 造 の も の が 考 え ら れ る が 、 p i n 接 合 或 い は p n 接 合 等 に よ り 形 成 し て も 良 い 。
上 述 の 、 貫 通 転 位 の 抑 制 さ れ た 領 域 を 有 す る I I I 族 窒 ィ匕 物 系 化 合 物 半 導 体 を 、 例 え ば 基 板 1 、 ノ ッ フ ァ 層 2 '及 び エ ッ チ ン グ に よ り 段 差 を 設 け た 貫 通 転 位 の 抑 制 さ れ て い な い 部 分 を 除 去 し て 、 I I I 族 窒 化 物 系 化 合 物 半 導 体 基 板 と す る こ と が で き る 。 こ の 上 に I I I 族 窒 化 物 系 化 合 物 半 導 体 素 子 を 形 成 す る こ と が 可 能 で あ り 、 或 い は よ り 大 き な I I I 族 窒 化 物 系 化 合 物 半 導 体 結 晶 を 形 成 す る た め の 基 板 と し て 用 レ、 る こ と が で き る 。 除 去 方 法 と し て は 、 メ カ ノ ケ ミ カ ル ポ リ ヅ シ ン グ の 他 、 任 意 で あ る 。
以 下 、 発 明 の 具 体 的 な 実 施 例 に 基 づ い て 説 明 す る 。 実 施 例 と し て 発 光 素 子 を あ げ る が 、 本 発 明 は 下 記 実 施 例 に 限 定 さ れ る も の で は な く 、 任 意 の 素 子 に 適 用 で き る I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 を 開 示 し て い る 。
本 発 明 の I I I 族 窒 化 物 系 化 合 物 半 導 体 は 、 有 機 金 属 化 合 物 気 相 成 長 法 ( 以 下 「 M 0 V P E」 と 示 す ) に よ る 気 相 成 長 に よ り 製 造 さ れ た 。 用 い ら れ た ガ ス は 、 ア ン モ ニ ア ( N H 3 ) と キ ヤ リ ァ ガ ス ( H 又 は N 2 ) と ト リ メ チ ル ガ リ ゥ ム ( G a ( C H 3 ) , 以 下 「 T M G」 と 記 す ) と ト リ メ チ ル ア ル ミ ニ ウ ム ( A 1 ( CH 3 ) , 以 下 「 TMA」 と 記 す )、 ト リ メ チ ル イ ン ジ ゥ ム ( I n ( CH , 以 下 「 TM I」 と 記 す )、 ビ ス シ ク ロ ペ ン 夕 ジ ェ ニ ル マ グ ネ シ ウ ム ( Mg( C sH5 ) 2、 以 下 「 Cp 2Mg」 と 記 す ) で あ る 。
〔 第 1 実 施 例 〕
有 機 洗 浄 及 び 熱 処 理 に よ り 洗 浄 し た a 面 を 主 面 と し 、 単 結 晶 の サ フ ァ イ ア 基 板 1 上 に 、 温 度 を 400 °C ま で 低 下 さ せ て 、 H2 を 10L/mi n、 NH3 を 5L/mi n、 TMA を 20〃 mo l / mi n で 約 3 分 間 供 給 し て A1 N の ノ ッ フ ァ 層 2 を 約 40nm の 厚 さ に 形 成 し た 。次 に 、 サ フ ァ イ ア 基 板 1 の 温 度 を 1000 °C に 保 持 し 、 H2 を 20L/mi n、 1^3 を 10L/m i n、 TMG を 300〃 m 0 mi n で 導 入 し 、膜 厚 約 3〃 皿 の GaN 層 3 1 を 形 成 し た 。
夕 ン グ ス テ ン ( W )を ス ノ ヅ 夕 に よ り 形 成 し マ ス ク 4 を 形 成 し た 。 反 応 性 イ オ ン ビ ー ム エ ッ チ ン グ ( R I B E ) を 用 い た 選 択 ド ラ イ エ ッ チ ン グ に よ り 、 幅 1〃 m、 間 隔 1 〃 m、 深 さ 2〃 m の ス ト ラ イ ブ 状 に エ ッ チ ン グ し た 。 こ れ に よ り 、 マ ス ク 4 で 覆 わ れ た GaN 層 3 1 の 幅 l m、 段 差 2〃 m の 上 段 と 、 幅 の 下 段 ( 底 部 ) と が 交 互 に 形 成 さ れ た ( 図 1 の ( a ) )。 こ の 時 、 深 さ 2〃 m の 段 差 を 形 成 す る 側 面 は 、 GaN 層 3 1 の { 1 1 — 2 0 } 面 と し た 。
次 に 、 サ フ ァ イ ア 基 板 1 の 温 度 を 1150 °C に 保 持 し 、 H 2 を 20L/mi n、 NH3 を 10L/m in、 TMG を 5〃 mo l /ni i n で 導 入 し 、 GaN 層 3 1 の 深 さ 2 z m の 段 差 を 形 成 す る 側 面 で あ る { 1 1 - 2 0 } 面 を 核 と し て GaN 層 3 2 を 横 方 向 ェ ピ タ キ シ ャ ル 成 長 に よ り 形 成 し た 。 こ の 時 、 段 差 の 底 部 か ら も ェ ピ 夕 キ シ ャ ル 成 長 が 生 じ た ( 図 1 の ( b ) )。 こ う し て 主 に { 1 1 - 2 0 } 面 を 成 長 面 と す る 横 方 向 ェ ピ タ キ シ ャ ル 成 長 に よ り 段 差 が 埋 め ら れ 、 表 面 が 平 坦 と な っ た ( 図 1 の ( c ) )。 こ の の ち 、 H2 を 20L/mi n、 NH:i を 10L/mi n、 TMG を 300〃 mo l /niin で 導 入 し 、 GaN 層 3 2 を 成 長 さ せ 、 G aN 層 3 1 と GaN 層 3 2 と を 合 計 4 m の 厚 さ と し た 。 GaN 層 3 2 の 、 G a N 層 3 1 の 深 さ 2〃 m の 段 差 の 底 部 上 方 に 形 成 さ れ た 部 分 は 、 段 差 の 上 段 の 上 方 に 形 成 さ れ た 部 分 に 比 し て 貫 通 転 位 が 著 し く 抑 え ら れ た 。
〔 第 2 実 施 例 〕
図 2 は 、 本 発 明 の 第 2 の 実 施 例 に 係 る レ ー ザ ダ イ ォ ー ド ( L D ) 1 0 0 の .構 造 を 示 す 断 面 図 で あ る 。 第 1· 実 施 例 と 同 様 に 形 成 し た ウ エ ノヽ 上 に 、 次 の よ う に し て レ ー ザ ダ イ オ ー ド ( L D ) を 形 成 し た 。 但 し 、 GaN 層 3 2 の 形 成 の 際 、 シ ラ ン ( SiH4 ) を 導 入 し て 、 GaN 層 3 3 を シ リ コ ン ( Si ) ド 一 プ の n 型 GaN か ら 成 る 層 と し た 。 尚 、 図 .を 簡 略 と す る た め 、 マ ス ク 4 を 含 む 、 GaN 層 3 1 と GaN 層 3 2 を 合 わ せ て 単 に GaN 層 1 0 3 と 記 載 す る 。
サ フ ァ イ ア 基 板 1 0 1 、 A 1 N か ら 成 る ノ ッ フ ァ 層 1 0 2 、 GaN 層 と n 型 GaN 層 の 2 段 の GaN 層 1 0 3 か ら 成 る ウ エ ノヽ 上 に 、 シ リ コ ン ( S i ) ド 一 プ の A 1。 . 。 8 G a。 . 9 2 N 力 ら 成 る n ク ラ ッ ド 層 1 0 4 、 シ リ コ ン ( S i ) ド 一 プ の G a N 力 ら 成 る n ガ イ ド 層 1 0 5 、 M Q W 構 造 の 発 光 層 1 0 6 、 マ グ ネ シ ウ ム ( M g ) ド ー プ の G a N か ら 成 る p ガ イ ド 層 1 0 7 、 マ グ ネ シ ウ ム (Mg) ド ー ブ の Al。. 。 aGa。 . 9 2N 力 ら 成 る p ク ラ ッ ド 層 1 0 8 、 マ グ ネ シ ウ ム ( M g ) ド 一 プ の G a N 力 ら 成 る p コ ン タ ク ト 層 1 0 9 を 形 成 し た 。 次 に p コ ン タ ク ト 層 1 0 9 上 に 金 (Au)か ら 成 る 電 極 1 1 O A を 、 GaN 層 と n 型 GaN 層 の 2 段 の GaN 層 1 0 3 が 露 出 す る ま で 一 部 エ ッ チ ン グ し て ア ル ミ ニ ウ ム (Al )か ら 成 る 電 極 1 1 0 B を 形 成 し た ( 図 2 )。 こ の よ う に し て 形 成 し た レ ー ザ ダ ィ オ ー ド ( L D ) は 素 子 寿 命 及 び 発 光 効 率 が 向 上 し た 。 〔 第 3 実 施 例 〕
図 3 は 、 本 発 明 の 第 3 の 実 施 例 に 係 る 発 光 ダ イ オ ー ド ( L E D ) 2 0 0 の 構 造 を 示 す 断 面 図 で あ る, 。 第 1 実 施 例 と 同 様 に 形 成 し た ウ エ ノヽ 上 に 、 次 の よ う に し て 発 光 ダ ィ オ ー ド ( L E D ) を 形 成 し た 。 但 し 、 GaN 層 3 2 の 形 成 の 際 、 シ ラ ン ( SiH4 ) を 導 入 し て 、 GaN 層 3 2 を シ リ コ ン ( Si ) ド ー プ の n 型 GaN か ら 成 る 層 と し た 。 尚 、 図 を 簡 略 と す る た め 、 マ ス ク 4 を 含 む GaN 層 3 1 と GaN 層 3 2 を 合 わ せ て 単 に GaN 層 2 0 3 と 記 載 す る 。
サ フ ァ イ ア 基 板 2 0 1 、 A1N か ら 成 る ノ ヅ フ ァ 層 2 0 2 、 GaN 層 と n 型 GaN 層 の 2 段 の GaN 層 2 0 3 か ら 成 る ウ エ ノヽ 上 に 、 シ リ コ ン ( S i ) ド 一 ブ の A 1。 . 。 8 G a。 . 2 N カ ら 成 る n ク ラ ッ ド 層 2 0 4 、 発 光 層 2 0 5 、 マ グ ネ シ ウ ム (M ) ド 一 プ の 八1。 . 。 80&。. !) 2 1^ か ら 成 る ク ラ ヅ ド 層 2 0 6 、 マ グ ネ シ ウ ム ( Mg ) ド 一 プ の GaN か ら 成 る p コ ン タ ク ト 層 2 0 7 を 形 成 し た 。 次 に p コ ン タ ク ト 層 2 0 7 上 に 金 (A u)か ら 成 る 電 極 2 0 8 A を 、 GaN 層 と n 型 GaN 層 の 2 段 の GaN 層 2 0 3 が 露 出 す る ま で 一 部 エ ッ チ ン グ し て ア ル ミ ニ ゥ ム ( A 1 )か ら 成 る 電 極 2 0 8 B を 形 成 し た ( 図 3 )。 こ の よ う に し て 形 成 し た 発 光 ダ イ オ ー ド ( L E D ) は 素 子 寿 命 及 び 発 光 効 率 が 向 上 し た 。
〔 第 4 実 施 例 〕
図 4 は 、 本 発 明 の 第 4 の 実 施 例 に 係 る レ ー ザ ダ イ ォ 一 ド ( L D ) 3 0 0 の 構 造 を 示 す 断 面 図 で あ る 。 本 実 施 例 で は 基 板 と し て n 型 シ リ コ ン ( S i )基 板 を 用 レ、 た 。 n 型 シ リ コ ン ( S i )基 板 3 0 1 上 に 温 度 1150。C で 、 H 2 を 10 L / m i n、 NH を 10L/mi n、 TMG を 100〃 m o 1 / m i n、 TMA を 10〃 mo l /in i n, H 2 ガ ス に よ り 0.86 p p m に 希 釈 さ れ た た シ ラ ン ( S i H ., ) を 0.2〃 m o 1 / m i n で 供 給 し 、 膜 厚 3〃 m の シ リ コ ン ( S i ) ド — プ の A 1。 . , 5 G a。 . 8 5 N か ら 成 る 層 3 0 2 1 を 形 成 し た 。 次 に 、 タ ン グ ス テ ン ( W )を ス ノ ッ タ に よ り 形 成 し マ ス ク 4 を 形 成 し た 。 反 応 性 イ オ ン エ ッ チ ン グ ( R I E ) を 用 い た 選 択 ド ラ イ エ ッ チ ン グ に よ り 、 幅 1 m、 間 隔 1〃 m、 深 さ 2 m の ス ト ラ イ プ 状 に エ ッ チ ン グ し た 。 こ れ に よ り 、 マ ス ク 4 に 覆 わ れ た n - A 1。 . ! 5 G a。 . 8 5 N 層 3 0 2 1 の 幅 1 m, 段 差 2〃 πι の 上 段 と 、 幅 l〃 m の 下 段 ( 底 部 ) と が 交 互 に 形 成 さ れ た 。 こ の 時 、 深 さ 2 m の 段 差 を 形 成 す る 側 面 は 、 n-A l。 . 1 5 Ga。 . s 5N 層 3 0 2 1 の { 1 1 - 2 0 } 面 と し た 。
次 に 、 n 型 シ リ コ ン 基 板 3 0 1 の 温 度 を 1150°C に 保 持 し 、 H a を 20L/m i n、 NH 3 を 10 L / m i n、 TMG を 5〃 m o 1 / m i n、 TMA を 0.5 // mo l /niin、 H2 ガ ス に よ り 希 釈 さ れ た た シ ラ ン ( S iH4 ) を 0.01〃 mo l /in i n で 供 給 し 、 n_Al。 . 1 5 Ga。 . 8 5N 層 3 0 2 1 の 深 さ 2 m の 段 差 を 形 成 す る 側 面 で あ る { 1 1 - 2 0 } 面 を 核 と し て n- Al。 . 1 5 Ga。 . 8 S N 層 3 0 2 2 を 横 方 向 ェ ピ タ キ シ ャ ル 成 長 に よ り 形 成 し た 。 こ の 時 、 段 差 の 上 段 の 上 面 と 底 部 か ら も ェ ピ タ キ シ ャ ル 成 長 が 生 じ た 。 こ う し て 主 に { 1 1 - 2 0 } 面 を 成 長 面 と す る 横 方 向 ェ ビ タ キ シ ャ ル 成 長 に よ り 段 差 が 埋 め ら れ 、 表 面 が 平 坦 と な っ た の ち 、 H2 を 10L/mi n、 NH:i を 10L/ini n、 TMG を 100 j mo 1 /m i n, TMA を 10 mo l /iai n、 H2 ガ ス に よ り 希 釈 さ れ た た シ ラ ン ( SiH4 )を 0.2〃 mol /min で 供 給 し 、 n-Al。 . l sGa 。 . B 5N 層 3 0 2 2 を 成 長 さ せ 、 n-Al。. 1 5Ga。. 8 5N 層 3 0 2 1 と 11 - 1。 . 1 56&。 . 8 5 層 3 0 2 2 を 合 計 3〃 πι の 厚 さ と し た 。 以 下 、 4〃 m の 厚 さ の 、 n-Al。 . 1 5Ga。. 《 sN 層 3 0 2 1 と n- Al。 . 1 5Ga。. 8 5N 層 3 0 2 2 及 び マ ス ク 4 と を 合 わ せ て n_Al。. , sGa。. 8 5N 層 3 0 2 と 記 載 す る 。 …
上 記 の よ う に n 型 シ リ コ ン 基 板 3 0 1 に 形 成 さ れ た n - Al。 . 1 5Ga。 . 》 5N層 3 0 2 上 に シ リ コ ン ( Si ) ド ー プ の GaN ? ら 成 る n ガ イ ド 層 3 0 3 、 M Q W 構 造 の 発 光 層 3 0 4 、 マ グ ネ シ ウ ム ( M g ) ド ー プ の G a N か ら 成 る p ガ イ ド 層 3 0 5 、 マ グ ネ シ ウ ム ( M g ) ド 一 プ の A 1。 . 。 》 G a。 . n 2 N 力 ら 成 る P ク ラ ッ ド 層 3 0 6 、 マ グ ネ シ ウ ム ( M g ) ド ー プ の G a N か- ら 成 る p コ ン タ ク ト 層 3 0 7 を 形 成 し た 。 次 に p コ ン 夕 ク ト 層. 3 0 7 上 に 金 (Au)か ら 成 る 電 極 3 0 8 A を 、 n 型 シ リ コ ン 基 板 3 0 1 裏 面 に ア ル ミ ニ ウ ム ( A 1 )か ち 成 る 電 極 3 0 8 B を 形 成 し た ( 図 4 )。 こ の よ う に し て 形 成 し た レ ー ザ ダ イ オ ー ド ( L D ) は 素 子 寿 命 及 び 発 光 効 率 が 向 上 し た 。
〔 第 5 実 施 例 〕
図 5 は 、 第 5 の 実 施 例 に 係 る 発 光 ダ イ オ ー ド ( L E D ) 4 0 0 の 構 造 を 示 す 断 面 図 で あ る 。 本 実 施 例 で も 基 板 と し て n 型 シ リ コ ン ( Si )基 板 を 用 い た 。 第 5 実 施 例 の n 型 シ リ コ ン 基 板 3 0 1 に 形 成 さ れ た n - A 1。 . , 5 G a。 . 8 s N 層 3 0 2 と 同 様 に 、 n 型 シ リ コ ン 基 板 4 0 1 に 形 成 さ れ た n - Al。 . 1 5Ga。 . 8 5N 層 4 0 2 の ウ ェ ハ を 用 意 し 、 発 光 層 4 0 3 、 マ グ ネ シ ウ ム ( M g ) ド ー プ の A 1。 . i 5 G a。 . 8 5 N か ら 成 る p ク ラ ッ ド 層 4 0 4 を 形 成 し た 。 次 に p ク ラ ッ ド 層 4 0 4 上 に 金 (Au )か ら 成 る 電 極 4 0 5 A を 、 n 型 シ リ コ ン 基 板 4 0 1 裏 面 に ア ル ミ ニ ウ ム (A1 )か ら 成 る 電 極 4 0 5 B を 形 成 し た 。 こ の よ う に し て 形 成 し た 発 光 ダ イ オ ー ド ( L E D ) は 素 子 寿 命 及 び 究 光 効 率 が 向 上 し た 。
〔 第 6 実 施 例 〕
本 実 施 例 で は 、 図 6 の よ う な 多 重 層 か ら 成 る 基 底 層 を 用 い た 。 有 機 洗 浄 及 び 熱 処 理 に よ り 洗 浄 し た a 面 を 主 面 と し 、 単 結 晶 の サ フ ァ イ ア 基 板 1 上 に 、 温 度 を 400 °C ま で 低 下 さ せ て 、 Η2 を 10L/min、 NH3 を 5L/min、 TMA を 20 / mol/min で 約 3 分 間 供 給 し て 第 1 の A1N 層 ( 第 1 の 緩 衝 層 ) 2 1 を 約 40 n m の 厚 さ に 形 成 し た 。 次 に 、 サ フ ア イ ァ 基 板 1 の 温 度 を 1000 °C に 保 持 し 、 H2 を 20L/min、 NH 3 を 10L/min、 TMG を 300〃 mol/min で 導 入 し 、 膜 厚 約 0.3 / m の GaN 層 ( 中 問 層 ) 2 2 を 形 成 し た 。 次 に 温 度 を 40 0°C ま で 低 下 さ せ て 、 H を 10L/min、 NH3 を 5L/min、 TMA を 20 m o 1 / m i n で 約 3 分 間 供 給 し て 第 2 の A 1 N .層 ( 第 2 の 緩 衝 層 ) 2 3 を 約 40 n m の 厚 さ に 形 成 し た 。 次 に 、 サ フ ア イ ァ 基 板 1 の 温 度 を 1000 °C に 保 持 し 、 H 2 を 20 L / m i n、 NH3 を 10L/min、 TMG を 300 mol/min で 導 入 し 、 膜 厚 約 1 〃 瓜 の GaN 層 3 1 を 形 成 し た 。 こ う し て 、 膜 厚 約 40nm の 第 1 の A1N 層 ( 第 1 の 緩 衝 層 ) 2 1 、 膜 厚 約 0.3〃 m の G aN 層 ( 中 間 層 ) 2 2 、 膜 厚 約 40nm の 第 2 の A1N 層 ( 第 2 の 緩 衝 層 ) 2 3 、 膜 厚 約 2〃 m の GaN 層 3 1 か ら 成 る 基 底 層 2 0 を 形 成 し た 。
一 般 的 に は 緩 衝 層 は 非 晶 質 で あ り 、 中 間 層 は 単 結 晶 で あ る 。 緩 衝 層 と 中 間 層 を 1 周 期 と し て 複 数 周 期 形 成 し て も 良 く 、 繰 り 返 し は 任 意 周 期 で 良 い 。 繰 り 返 し は 多 い ほ ど 結 晶 性 が 良 く な る 。
次 に タ ン グ ス テ ン ( W )力 ら 成 る 層 を 形 成 し 、 ゥ エ ツ ト ェ ツ チ ン グ に よ り ス ト ラ イ ブ 状 に ノ 夕 一 ニ ン グ し 、 マ ス ク 4 を 形 成 し た 。 夕 ン グ ス テ ン ( W )マ ス ク 4 を 用 い て 反 応 性 イ オ ン ビ ー ム エ ッ チ ン グ ( R I B E ) を 用 い た 選 択 ド ラ ィ エ ッ チ ン グ に よ り 、 G a N 層 3 1 基 底 層 を 幅 1〃 m、 間 隔 1〃 πι の ス ト ラ イ プ 状 に エ ッ チ ン グ し 、 基 板 1 面 を 露 出 さ せ た 。 こ れ に よ り 、 基 底 層 2 0 の 幅 l m、 段 差 約 2.3 z m の 上 段 と 、 基 板 1 面 ( 下 段 の 底 部 ) と が 交 互 に 形 成 さ れ た ( 図 6 の ( a ) )。 こ の 時 、 GaN 層 3 1 の 深 さ 2〃 m の 段 差 を 形 成 す る 側 面 は 、 { 1 1 - 2 0 } 面 と し た 。
次 に 、 サ フ ァ イ ア 基 板 1 の 温 度 を 1150 °C に 保 持 し 、 H 2 を ZOL/mi ru NH を 10L/min、 TMG を 5 mol /mi n で 導 入 し 、 GaN 層 3 1 の 深 さ 2 m の 段 差 を 形 成 す る 側 面 で あ る { 1 1 — 2 0 } 面 を 核 と し て GaN 層 3 2 を 横 方 向 ェ ピ 夕 キ シ ャ ル 成 長 に よ り 形 成 し た 。 こ の 時 、 基 板 1 面 、 基 底 層 2 0 の 最 側 面 か ら も 一 部 ェ ビ タ キ シ ャ ル 成 長 が 生 じ た 。 こ う し て 主 に GaN 層 3 1 か ら の { 1 1 — 2 0 } 面 を 成 長 面 と す る GaN 層 3 2 の 横 方 向 ェ ピ タ キ シ ャ ル 成 長 に よ り 段 差 が 埋 め ら れ 、 表 面 が 平 坦 と な っ た 。 こ の の ち 、 H2 を 2 0L/mi n、 N H を 10L/min、 TMG を 300 z niol/min で 導 入 し 、 GaN 層 3 2 を 成 長 さ せ 、 GaN 層 3 1 と GaN 層 3 2 と を 合 計 3〃 m の 厚 さ と し た 。 GaN 層 3 2 の 、 GaN 層 3 1 の 深 さ I 〃 m の 段 差 の 底 部 上 方 に 形 成 さ れ た 部 分 は 、 段 差 の 上 段 上 方 に 形 成 さ れ た 部 分 に 比 し て 貫 通 転 位 が 著 し く 抑 え ら れ た 。
こ の よ う に し て 形 成 さ れ た ウ エ ノヽ を 用 い て 、 図 7 の よ う な レ ー ザ ダ イ オ ー ド 5 ◦ 0 を 形 成 し た 。 但 し 、 GaN 層 3 2 の 形 成 の 際 、 シ ラ ン ( S iH,, ) を 導 入 し て 、 GaN 層 3 2 を シ リ コ ン ( S i ) ド 一 プ の n 型 G a N か ら 成 る 層 と し た 。 尚 、 図 を 簡 略 と す る た め 、 マ ス ク 4 よ り も 上 層 の n 型 Ga N 層 3 2 を 単 に GaN 層 5 0 3 と 記 載 す る 。 ス ト ラ イ ブ 状 に エ ッ チ ン グ さ れ た 基 底 層 2 0 と マ ス ク 4 と 段 差 を 埋 め た 部 分 の n 型 GaN 層 3 2 を 合 わ せ て 基 底 層 5 0 2 と す る サ フ ァ イ ア 基 板 5 0 1 、 ス ト ラ イ プ 状 に エ ッ チ ン グ さ れ た 基 底 層 5 0 2 、 GaN 層 5 0 3 カゝ ら 成 る ウ エ ノ、 上 に 、 シ リ コ ン ( S i ) ド ー プ の A 1。 . 。 8 G a。 . 。 2 N 力 ら 成 る n ク ラ ッ ド 層 5 0 4 、 シ リ コ ン ( S i ) ド 一 プ の GaN か ら 成 る n ガ イ ド 層 5 0 5 、 M Q W 構 造 の 発 光 層 5 0 6 、 マ グ ネ シ ウ ム ( M g ) ド 一 プ の G a N か ら 成 る p ガ イ ド 層 5 0 7 、 マ グ ネ シ ゥ ム ( M g ) ド 一 プ の A 1。 . 。 8 G a。 . 。 2 N か ら .成 る p ク ラ ッ ド 層 5 0 8 、 マ グ ネ シ ウ ム ( M g ) ド 一 プ の G a N か ら 成 る p コ ン 夕 ク ト 層 5 0 9 を 形 成 し た 。 次 に p コ ン タ ク 卜 層 5 0 9 上 に 金 ( Au )か ら 成 る 電 極 5 1 O A を 、 GaN 層 と n 型 GaN 層 の 2 段 の GaN 層 5 0 3 が 露 出 す る ま で 一 部 エ ッ チ ン グ し て ア ル ミ ニ ウ ム ( A 1 )か ら 成 る 電 極 5 1 0 B を 形 成 し た 。 こ の よ う に し て 形 成 し た レ ー ザ ダ イ オ ー ド ( L D ) は 素 子 寿 命 及 び 発 光 効 率 が 向 上 し た 。
〔 第 7 実 施 例 〕
本 実 施 例 で は 図 6 の ( b ) に 示 す よ う に 、 第 6 実 施 例 と 同 様 に 単 結 晶 の サ フ ア イ ァ 基 板 1 上 に 、 膜 厚 約 40nm の 第 1 の A1 N 層 ( 第 1 の 緩 衝 層 ) 2 1 、 膜 厚 約 0.3〃 m の G aN 層 ( 中 間 層 ) 2 2 、 膜 厚 約 40nm の 第 2 の A1 N 層 ( 第 2 の 緩 衝 層 ) 2 3 、 膜 厚 約 2 / m の GaN 層 3 1 を 形 成 し た の ち 、 夕 ン グ ス テ ン ( W )か ら 成 る マ ス ク 4 を 形 成 し 、 第 2 の. A1 N 層 ( 第 2 の 緩 衝 層 ) 2 3 を 残 す よ う 、 エ ッ チ ン グ を し た 。 こ の の ち 、 第 6 実 施 例 と 同 様 に し て GaN 層 3 2 を 横 方 向 ェ ビ タ キ シ ャ ル 成 長 さ せ 、 ウ エ ノ、 を 得 た 。 こ の ウ エ ノヽ を 用 い て 、 図 7 に 示 す 第 6 実 施 例 の レ ー ザ ダ イ ォ — ド ( L D ) 5 0 0 と 同 様 に レ 一 ザ ダ イ オ ー ド ( L D ) を 形 成 し た 。 素 子 特 性 は 第 6 実 施 例 の レ ー ザ ダ イ ォ 一 ド と ほ ぼ 同 等 で あ っ た 。
〔 第 8 実 施 例 〕
本 実 施 例 で は 図 6 の ( c ) に 示 す よ う に 、 第 6 実 施 例 と 同 様 に 単 結 晶 の サ フ ア イ ァ 基 板 1 上 に 、 膜 厚 約 40nm の 第 1 の A 1 N 層 ( 第 1 の 緩 衝 層 ) 2 .1 、 膜 厚 約 0.3〃 m の G aN 層 ( 中 間 層 ) 2 2 、 膜 厚 約 40nm の 第 2 の A 1 N 層 ( 第 2 の 緩 衝 層 ) 2 3 、 膜 厚 約 2〃 m の G a N 層 3 1 を 形 成 し た の ち 、 タ ン グ ス テ ン ( W )か ら 成 る マ ス ク 4 を 形 成 し 、 基 板 1 面 が 露 出 す る 迄 エ ッ チ ン グ を し た 。 こ の の ち 、 露 出 し た 基 板 1 面 に タ ン グ ス テ ン ( W )か ら 成 る マ ス ク 5 を 形 成 し た 。 こ の の ち 第 6 実 施 例 と 同 様 に し て GaN 層 3 2 を 横 方 向 ェ ピ タ キ シ ャ ル 成 長 さ せ 、 ウ エ ノヽ を 得 た 。 こ の ゥ ェ ハ を 用 い て 、 図 7 に 示 す 第 6 実 施 例 の レ ー ザ ダ イ オ ー ド
( L D ) 5 0 0 と 同 様 に レ ー ザ ダ イ オ ー ド ( L D ) を 形 成 し た 。 素 子 特 性 は 第 6 実 施 例 の レ ー ザ ダ イ オ ー ド と ほ ぼ 同 等 で あ っ た 。
〔 第 9 実 施 例 〕
本 実 施 例 で は 図 6 の ( d ) に 示 す よ う に 、 第 6 実 施 例 と 同 様 に 単 結 晶 の サ フ ア イ ァ 基 板 1 上 に 、 膜 厚 約 40 n m の 第 1 の A1 N 層 ( 第 1 の 緩 衝 層 ) 2 1 、 膜 厚 約 0.3〃 m の G a N 層 ( 中 間 層 ) 2 2 、 膜 厚 約 40ηπι の 第 2 の A1 N 層 ( 第 2 の 緩 衝 層 ) 2 3 、 膜 厚 約 2〃 m の G a N 層 3 1 を 形 成 し た の ち 、 タ ン グ ス テ ン ( W )か ら 成 る マ ス ク 4 を 形 成 し 、 第 2 の A1 N 層 ( 第 2 の 緩 衝 層 ) 2 3 を 残 す よ う 、 エ ッ チ ン グ を し た 。 こ の の ち 、 露 出 し た 第 2 の A1 N 層 ( 第 2 の 緩 衝 層 ) 2 3 面 に タ ン グ ス テ ン ( W )か ら 成 る マ ス ク 5 を 形 成 し た 。 こ の の ち 第 6 実 施 例 と 同 様 に し て GaN 層 3 2 を 横 方 向 ェ ピ タ キ シ ャ ル 成 長 さ せ 、 ウ ェ ハ を 得 た 。 こ の ウ ェ ハ を 用 い て 、 図 7 に 示 す 第 6 実 施 例 の レ ー ザ ダ イ ォ 一 ド ( L D ) 5 0 0 と 同 様 に レ ー ザ ダ イ オ ー ド ( L D ) を 形 成 し た 。 素 子 特 性 は 第 6 実 施 例 の レ ー ザ ダ イ オ ー ド と ほ ぼ 同 等 で あ っ た 。
〔 第 1 0 実 施 例 〕
本 実 施 例 で は 図 1 に 示 す 第 1 実 施 例 の ウ エ ノ、 形 成.の 際 第 1 の I I I 族 窒 化 物 系 化 合 物 半 導 体 と し て 、 イ ン ジ ウ ム ( I n )の ド ー プ さ れ た 窒 ィ匕 ガ リ ゥ ム ( G a N: I n )を 用
レヽ た ( 図 8 ( a ) )。 イ ン ジ ウ ム ( I n )の ド 一 プ 量 は 約 1 X 1 0 1 6 / c m 3 と し た 。 こ の の ち 、 シ リ コ ン ド 一 プ の 窒 化 ガ リ ゥ ム を 横 方 向 ェ ピ タ キ シ ャ ル 成 長 さ せ て 、 第 1 実 施 例 同 様 に ウ エ ノヽ を 得 て 、 図 9 に 示 す レ ー ザ ダ イ オ ー ド 6 0 0 を 形 成 し た 。 レ ー ザ ダ イ ォ 一 ド 6 0 0 の 素 子 特 性 は 第 6 実 施 例 の レ ー ザ ダ イ ォ 一 ド と ほ ぼ 同 等 で あ っ た 。
全 実 施 例 の 基 底 層 に イ ン ジ ウ ム ( In )を ド 一 プ し て 、 基 底 層 の 結 晶 性 を 改 善 す る こ と が で き る 。 基 底 層 の 結 晶 性 が 良 く な れ ば 、 そ の 上 に 横 方 向 成 長 に よ り 形 成 さ れ る 層 の 結 晶 性 は 更 に 良 く な る 。
〔 エ ッ チ ン グ の 変 形 〕
υτ
° 9r 4 * ¾ ¾ 魔 ω ¾ 8 3 ® ¾ η ½ 2ΐ ® - ω ¾ ¾ ω ¾ ¾ 、 Ώ ςι ( q ) ø 0 ΐ I 雛 胆 ¾ ε « 3 ¾ ^ί ^ ¾
、 つ ::) ¾ τ ω ^ ¾ © 暂 ¥1 . ( -Β ) ω ο ι H 。 、 草 っ ^ ¾ ^ ^ 去 « Q ¾ EJE tc 4 ·¾ 丁 ω著 ¾ί ^ 暂 《 D
、 ¾ '2- in 嶎 つ q>剁 靱 《 ¾ S « W v s<? ¾ i z n ^ ^ ¾ ^i i^ 9r ^ ^ ¥i¾ i a { o 2 - I T } ω if ε
、 ( B ) o ΐ 図 。 S W 4 ¾ί ¾ ¾ T © ¾ ¥k
W q i ffl { o s - ΐ I } ω ¾ ε v o ΐ in ¾ ^
lZT60/00df/X3d 66ん8謂 OAV

Claims

請 求 の 範 囲
1 . I I I 族 窒 化 物 系 化 合 物 半 導 体 を ェ ピ 夕 キ シ ャ ル 成 長 に よ り 得 る I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 に お い て 、 マ ス ク を 用 い 、 少 な く と も 1 層 の I I I 族 窒 化 物 系 化 合 物 半 導 体 か ら 成 り 、 最 上 層 を 第 1 の I I I 族 窒 化 物 系 化 合 物 半 導 体 と す る 基 底 層 を 点 状 、 ス ド ラ イ ブ 状 又 は 格 子 状 等 の 島 状 態 に エ ッ チ ン グ す る 工 程 と 、 前 記 エ ッ チ ン グ に よ り 形 成 さ れ た 点 状 、 ス ト ラ イ ブ 状 又 は 格 子 状 等 の 島 状 態 の 前 記 基 底 層 の 段 差 の 上 段 の 上 面 の 前 記 マ ス ク を 有 し た ま ま 、 側 面 を 核 と し て 、 前 記 マ ス ク 上 に は ェ ピ タ キ シ ャ ル 成 長 し な い 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 を 縦 及 び 横 方 向 ェ ピ タ キ シ ャ ル 成 長 さ せ る 工 程 と を 有 す る こ と を 特 徴 と す る I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 。
2 . 前 記 基 底 層 は 基 板 上 に 形 成 さ れ て お り 、 前 記 エ ツ チ ン''グ は 前 記 基 板 が 露 出 す る ま で 行 わ れ る こ と を 特 徴 と す る 請 求 項 1 に 記 載 の I I I 族 窒 化 物 系 ィヒ 合 物 半 導 体 の 製 造 方 法 。
3 . 前 記 段 差 の 深 さ と 幅 と の 関 係 は 、 段 差 の 底 部 か ら の 縦 方 向 成 長 に よ り 段 差 が 埋 め ら れ る よ り も 、 側 面 か ら の 横 方 向 成 長 に よ り 段 差 が 塞 が れ る 方 が早 い よ う 形 成 さ れ る こ と を 特 徴 と す る 請 求 項 1 又 は 請 求 項 2 に 記 載 の I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 。
4 . 前 記 段 差 の 側 面 は 、 略 全 部 が { 1 1 一 2 0 } 面 で あ る こ と を 特 徴 と す る 請 求 項 1 乃 至 請 求 項 3 の い ず れ か 1 項 に 記 載 の I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法
5 . 前 記 第 1 の I I I 族 窒 化 物 系 化 合 物 半 導 体 と 前 記 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 と が 同 組 成 で あ る こ と を 特 徴 と す る 請 求 項 1 乃 至 請 求 項 4 の い ず れ か 1 項 に 記 載 の I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 。
6 . 前 記 基 底 層 は 、 前 記 基 板 上 に 形 成 さ れ た バ ッ フ ァ 層 、 及 び こ の ノ ヅ フ ァ 層 上 に ェ ピ タ キ シ ャ ル 成 長 し た I I I 族 窒 化 物 系 化 合 物 半 導 体 層 を 1 周 期 と し て 、 複 数 周 期 形 成 さ れ た 層 で あ る こ と を 特 徴 と す る 請 求 項 2 乃 至 請 求 項 5 の い ず れ か 1 項 に 記 載 の I I I 族窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 。
7 . 前 記 基 底 層 に お い て 、 前 記 ノ ッ フ ァ 層 と 隣 り 合 う 前 記 I I I 族 窒 化 物 系 化 合 物 半 導 体 層 と は 、 組 成 又 は 形 成 温 度 が 異 な る こ と を 特 徴 と す る 請 求 項 6 に 記 載 の I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 。
8 . 前 記 第 1 の I I I 族 窒 化 物 系 化 合 物 半 導 体 層 に は 主 た る 構 成 元 素 よ り 原 子 半 径 の 大 き な 元 素 に よ り 一 部 置 換 さ れ て い る 又 は ド 一 プ さ れ て い る こ と を 特 徴 と す る 請 求 項 1 乃 至 請 求 項 7 の い ず れ か 1 項 に 記 載 の I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 。
9 . 請 求 項 1 乃 至 請 求 項 8 の い ず れ か 1 項 に 記 載 の
I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 に お い て 、 第 2 の I I I 族 窒 化 物 系 化 合 物 半 導 体 を ェ ピ タ キ シ ャ ル 成 長 さ せ る 前 に 、 段 差 の 底 部 を 覆 う よ う 、 第 2 の マ ス ク を 形 成 す る 工 程 を 含 む こ と を 特 徴 と す る I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 。
1 0 . 請 求 項 1 乃 至 請 求 項 9 の い ず れ か 1 項 に 記 載 の I I I 族 窒 化 物 系 化 合 物 半 導 体 の 製 造 方 法 に よ り 製 造 し
° m.
ø tl 6# ^ q> ^ (¾ q ^ in § ; 襯 ¾ ¾ ^ ¾ ¾ 01
^ ^ ^ ^ m i in HI q i ^ 2 ' ¾ - 剁 ^ 剁 W li T ® ^ つ ¥ K ^ エ ^ ^
Ύ 7 ^ ω ^ ^ ^ ^ ^ m wi 111 m si i¾ ΐ 1: j- ^ G9 6 a * 11 s i a * 11 - τ τ
。 丄 - 案 ¾ ¾ 古 (¾ ¾ 呦 ¾ I I I ?- 4- s » 章 ¾ 余 呦 ^ q 呦 ¾ 111 © ¾ ¾ x » ¾
繳 っ 士 案 ^ ホ - 71 m τ ω ^ ¾ ¾ n w- · ^ ^ ェ ! ^ 褂 o ii ^ q> ¾ f# q ¾ M ill 01 m
TZl60/00df/X3d 66.817/Ϊ0 OAV
PCT/JP2000/009121 1999-12-24 2000-12-21 Procédé permettant de produire un semi-conducteur à base de composé nitrure du groupe iii, et dispositif à semi-conducteurs à base de composé nitrure du groupe iii WO2001048799A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU24006/01A AU776768B2 (en) 1999-12-24 2000-12-21 Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
EP00987700A EP1263031A1 (en) 1999-12-24 2000-12-21 Method for producing group iii nitride compound semiconductor and group iii nitride compound semiconductor device
US10/168,629 US6830948B2 (en) 1999-12-24 2000-12-21 Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
CA002398525A CA2398525A1 (en) 1999-12-24 2000-12-21 Method for fabricating group iii nitride compound semiconductors and group iii nitride compound semiconductor devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11-367613 1999-12-24
JP36761399A JP2001185493A (ja) 1999-12-24 1999-12-24 Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子

Publications (1)

Publication Number Publication Date
WO2001048799A1 true WO2001048799A1 (fr) 2001-07-05

Family

ID=18489757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/009121 WO2001048799A1 (fr) 1999-12-24 2000-12-21 Procédé permettant de produire un semi-conducteur à base de composé nitrure du groupe iii, et dispositif à semi-conducteurs à base de composé nitrure du groupe iii

Country Status (8)

Country Link
US (1) US6830948B2 (ja)
EP (1) EP1263031A1 (ja)
JP (1) JP2001185493A (ja)
KR (1) KR100500863B1 (ja)
CN (1) CN1189920C (ja)
AU (1) AU776768B2 (ja)
CA (1) CA2398525A1 (ja)
WO (1) WO2001048799A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7579263B2 (en) * 2003-09-09 2009-08-25 Stc.Unm Threading-dislocation-free nanoheteroepitaxy of Ge on Si using self-directed touch-down of Ge through a thin SiO2 layer

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265289B1 (en) * 1998-06-10 2001-07-24 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
JP2001267242A (ja) * 2000-03-14 2001-09-28 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体及びその製造方法
JP2003092426A (ja) * 2001-09-18 2003-03-28 Nichia Chem Ind Ltd 窒化物系化合物半導体発光素子およびその製造方法
KR100504180B1 (ko) * 2003-01-29 2005-07-28 엘지전자 주식회사 질화물 화합물 반도체의 결정성장 방법
DE10320160A1 (de) * 2003-02-14 2004-08-26 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen einer Mehrzahl von Halbleiterkörper und elektronischer Halbleiterkörper
TWI255052B (en) * 2003-02-14 2006-05-11 Osram Opto Semiconductors Gmbh Method to produce a number of semiconductor-bodies and electronic semiconductor-bodies
US20050006635A1 (en) * 2003-03-26 2005-01-13 Kyocera Corporation Semiconductor apparatus, method for growing nitride semiconductor and method for producing semiconductor apparatus
KR100525545B1 (ko) * 2003-06-25 2005-10-31 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
US8562738B2 (en) 2004-03-11 2013-10-22 Epistar Corporation Nitride-based light-emitting device
US7928424B2 (en) * 2004-03-11 2011-04-19 Epistar Corporation Nitride-based light-emitting device
US9524869B2 (en) 2004-03-11 2016-12-20 Epistar Corporation Nitride-based semiconductor light-emitting device
KR100580751B1 (ko) * 2004-12-23 2006-05-15 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
TW200703463A (en) * 2005-05-31 2007-01-16 Univ California Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO)
JP5128075B2 (ja) * 2006-01-30 2013-01-23 浜松ホトニクス株式会社 化合物半導体基板、その製造方法及び半導体デバイス
KR20070079528A (ko) * 2006-02-02 2007-08-07 서울옵토디바이스주식회사 질화물 반도체 발광 다이오드 및 이의 제조 방법
WO2008073414A1 (en) * 2006-12-12 2008-06-19 The Regents Of The University Of California Crystal growth of m-plane and semipolar planes of(ai, in, ga, b)n on various substrates
JP2008177525A (ja) * 2006-12-20 2008-07-31 Showa Denko Kk Iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
US7663148B2 (en) * 2006-12-22 2010-02-16 Philips Lumileds Lighting Company, Llc III-nitride light emitting device with reduced strain light emitting layer
TW200828624A (en) * 2006-12-27 2008-07-01 Epistar Corp Light-emitting diode and method for manufacturing the same
EP2126963A4 (en) * 2007-03-16 2011-03-16 Sebastian Lourdudoss SEMICONDUCTOR HETEROSTRUCTURES AND MANUFACTURE THEREOF
JP4714712B2 (ja) * 2007-07-04 2011-06-29 昭和電工株式会社 Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
CN100530726C (zh) * 2007-11-30 2009-08-19 华南师范大学 Ⅲ-ⅴ族金属氧化物半导体发光场效应晶体管及其制备方法
JP2009277882A (ja) * 2008-05-14 2009-11-26 Showa Denko Kk Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子、並びにランプ
US8803189B2 (en) * 2008-08-11 2014-08-12 Taiwan Semiconductor Manufacturing Company, Ltd. III-V compound semiconductor epitaxy using lateral overgrowth
CN101853808B (zh) * 2008-08-11 2014-01-29 台湾积体电路制造股份有限公司 形成电路结构的方法
GB0911134D0 (en) * 2009-06-26 2009-08-12 Univ Surrey Optoelectronic devices
CN102484047A (zh) * 2009-08-21 2012-05-30 加利福尼亚大学董事会 在异质界面处具有错配位错的部分或完全驰豫合金上的基于半极性氮化物的装置
US8481991B2 (en) 2009-08-21 2013-07-09 The Regents Of The University Of California Anisotropic strain control in semipolar nitride quantum wells by partially or fully relaxed aluminum indium gallium nitride layers with misfit dislocations
GB2488587B (en) * 2011-03-03 2015-07-29 Seren Photonics Ltd Semiconductor devices and fabrication methods
US8946788B2 (en) 2011-08-04 2015-02-03 Avogy, Inc. Method and system for doping control in gallium nitride based devices
TWI617045B (zh) * 2012-07-06 2018-03-01 晶元光電股份有限公司 具有奈米柱之發光元件及其製造方法
US10153394B2 (en) 2012-11-19 2018-12-11 Genesis Photonics Inc. Semiconductor structure
TWI524551B (zh) 2012-11-19 2016-03-01 新世紀光電股份有限公司 氮化物半導體結構及半導體發光元件
TWI535055B (zh) 2012-11-19 2016-05-21 新世紀光電股份有限公司 氮化物半導體結構及半導體發光元件
CN108565319B (zh) * 2013-01-25 2020-10-02 新世纪光电股份有限公司 氮化物半导体结构及半导体发光元件
US9064699B2 (en) * 2013-09-30 2015-06-23 Samsung Electronics Co., Ltd. Methods of forming semiconductor patterns including reduced dislocation defects and devices formed using such methods
US9640422B2 (en) 2014-01-23 2017-05-02 Intel Corporation III-N devices in Si trenches
WO2015163908A1 (en) 2014-04-25 2015-10-29 The Texas State University-San Marcos Material selective regrowth structure and method
CN107170666A (zh) * 2017-05-25 2017-09-15 东南大学 一种非极性ⅲ族氮化物外延薄膜
CN109360875A (zh) * 2018-12-04 2019-02-19 西安赛富乐斯半导体科技有限公司 半导体构件及其制造方法
CN113964043A (zh) * 2020-07-20 2022-01-21 长鑫存储技术有限公司 半导体结构的制备方法及半导体结构
CN113964252A (zh) * 2020-07-21 2022-01-21 苏州晶湛半导体有限公司 半导体结构及其制备方法
CN113380603B (zh) * 2021-05-18 2022-05-17 厦门大学 高硼组分二维iii族多元氮化物混合晶体及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249830A (ja) * 1994-03-10 1995-09-26 Hitachi Ltd 半導体発光素子の製造方法
JPH1131864A (ja) * 1997-07-11 1999-02-02 Nec Corp 低転位窒化ガリウムの結晶成長方法
JPH11191659A (ja) * 1997-10-09 1999-07-13 Nichia Chem Ind Ltd 窒化物半導体の成長方法及び窒化物半導体素子
JPH11219910A (ja) * 1997-11-26 1999-08-10 Nichia Chem Ind Ltd 窒化物半導体の成長方法及び窒化物半導体素子
JPH11312825A (ja) * 1998-04-28 1999-11-09 Nichia Chem Ind Ltd 窒化物半導体の成長方法及び窒化物半導体素子
JPH11329971A (ja) * 1998-05-18 1999-11-30 Sharp Corp 結晶基板およびGaN系結晶膜の製造方法
JPH11340508A (ja) * 1998-05-28 1999-12-10 Nichia Chem Ind Ltd 窒化物半導体の成長方法及び窒化物半導体素子
JP2000021789A (ja) * 1997-08-29 2000-01-21 Toshiba Corp 窒化物系半導体素子、発光素子及びその製造方法
JP2000124500A (ja) * 1998-10-15 2000-04-28 Toshiba Corp 窒化ガリウム系半導体装置
JP2000232239A (ja) * 1998-12-08 2000-08-22 Nichia Chem Ind Ltd 窒化物半導体の成長方法及び窒化物半導体素子
JP2000244061A (ja) * 1998-12-21 2000-09-08 Nichia Chem Ind Ltd 窒化物半導体の成長方法及び窒化物半導体素子
JP2000277437A (ja) * 1999-03-24 2000-10-06 Nichia Chem Ind Ltd 窒化物半導体の成長方法及び窒化物半導体素子
JP2000299497A (ja) * 1999-02-09 2000-10-24 Nichia Chem Ind Ltd 窒化物半導体素子

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143944B2 (ja) 1972-03-15 1976-11-25
JPS51137393A (en) 1975-05-22 1976-11-27 Mitsubishi Electric Corp Manufacturing method for semiconductor light emitting device
JPS5534646A (en) 1978-08-30 1980-03-11 Sumitomo Metal Ind Ltd Heating method for furnace body in blowing-in of shaft furnace
JPS57115849A (en) 1981-01-12 1982-07-19 Fujitsu Ltd Manufacture of substrate for semiconductor device
JPS5833882A (ja) 1981-08-21 1983-02-28 Mitsubishi Electric Corp 発光ダイオ−ドの製造方法
JPH01316459A (ja) 1988-06-15 1989-12-21 Murata Mfg Co Ltd インラインスパッタリング装置およびその方法
JP2768988B2 (ja) * 1989-08-17 1998-06-25 三菱電機株式会社 端面部分コーティング方法
JPH06105797B2 (ja) 1989-10-19 1994-12-21 昭和電工株式会社 半導体基板及びその製造方法
JP2623464B2 (ja) 1990-04-27 1997-06-25 豊田合成株式会社 窒化ガリウム系化合物半導体発光素子
JPH0484418A (ja) 1990-07-27 1992-03-17 Nec Corp 異種基板上への3―v族化合物半導体のヘテロエピタキシャル成長法
JPH04303920A (ja) 1991-03-29 1992-10-27 Nec Corp Iv族基板上の絶縁膜/iii −v族化合物半導体積層構造
JP2954743B2 (ja) 1991-05-30 1999-09-27 京セラ株式会社 半導体発光装置の製造方法
JPH05110206A (ja) 1991-10-16 1993-04-30 Kubota Corp 半導体発光素子の製造方法及びその製造装置
JP3352712B2 (ja) 1991-12-18 2002-12-03 浩 天野 窒化ガリウム系半導体素子及びその製造方法
JPH05283744A (ja) 1991-12-20 1993-10-29 Toshiba Corp 半導体素子
JP2751963B2 (ja) 1992-06-10 1998-05-18 日亜化学工業株式会社 窒化インジウムガリウム半導体の成長方法
JPH07273367A (ja) 1994-04-01 1995-10-20 Mitsubishi Cable Ind Ltd 半導体基板の製造方法および発光素子の製造方法
JP3974667B2 (ja) 1994-08-22 2007-09-12 ローム株式会社 半導体発光素子の製法
JPH0864791A (ja) 1994-08-23 1996-03-08 Matsushita Electric Ind Co Ltd エピタキシャル成長方法
JP3326545B2 (ja) 1994-09-30 2002-09-24 ローム株式会社 半導体発光素子
JPH08222812A (ja) 1995-02-17 1996-08-30 Matsushita Electric Ind Co Ltd 窒化ガリウム系化合物半導体の結晶成長方法
JPH08274411A (ja) 1995-03-31 1996-10-18 Hitachi Ltd 半導体レーザ素子
US6377596B1 (en) 1995-09-18 2002-04-23 Hitachi, Ltd. Semiconductor materials, methods for fabricating semiconductor materials, and semiconductor devices
JP3396356B2 (ja) 1995-12-11 2003-04-14 三菱電機株式会社 半導体装置,及びその製造方法
US5798536A (en) * 1996-01-25 1998-08-25 Rohm Co., Ltd. Light-emitting semiconductor device and method for manufacturing the same
FR2747064B1 (fr) 1996-04-03 1998-05-15 Air Liquide Procede et dispositif de reduction des emissions d'ozone produites lors d'une operation de soudage a l'arc sous gaz de protection
JP3139445B2 (ja) 1997-03-13 2001-02-26 日本電気株式会社 GaN系半導体の成長方法およびGaN系半導体膜
EP0942459B1 (en) 1997-04-11 2012-03-21 Nichia Corporation Method of growing nitride semiconductors
JPH11191657A (ja) 1997-04-11 1999-07-13 Nichia Chem Ind Ltd 窒化物半導体の成長方法及び窒化物半導体素子
DE19715572A1 (de) * 1997-04-15 1998-10-22 Telefunken Microelectron Verfahren zum Herstellen von epitaktischen Schichten eines Verbindungshalbleiters auf einkristallinem Silizium und daraus hergestellte Leuchtdiode
JPH10321954A (ja) 1997-05-15 1998-12-04 Fuji Electric Co Ltd Iii 族窒化物半導体素子およびその製造方法
JP3551751B2 (ja) 1997-05-16 2004-08-11 日亜化学工業株式会社 窒化物半導体の成長方法
KR20010021494A (ko) 1997-07-03 2001-03-15 추후제출 에피택셜 증착에 의한 프리 스탠딩 기판의 제조를 위한열적 부정합 보정
JPH1143398A (ja) 1997-07-22 1999-02-16 Mitsubishi Cable Ind Ltd GaN系結晶成長用基板およびその用途
JPH11135770A (ja) 1997-09-01 1999-05-21 Sumitomo Chem Co Ltd 3−5族化合物半導体とその製造方法および半導体素子
JPH11145519A (ja) 1997-09-02 1999-05-28 Toshiba Corp 半導体発光素子、半導体発光装置および画像表示装置
JPH11135832A (ja) 1997-10-26 1999-05-21 Toyoda Gosei Co Ltd 窒化ガリウム系化合物半導体及びその製造方法
JP3036495B2 (ja) * 1997-11-07 2000-04-24 豊田合成株式会社 窒化ガリウム系化合物半導体の製造方法
JP3620269B2 (ja) 1998-02-27 2005-02-16 豊田合成株式会社 GaN系半導体素子の製造方法
US6051849A (en) * 1998-02-27 2000-04-18 North Carolina State University Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer
JP3839580B2 (ja) 1998-03-09 2006-11-01 株式会社リコー 半導体基板の製造方法
JPH11274082A (ja) 1998-03-24 1999-10-08 Fuji Electric Co Ltd Iii 族窒化物半導体およびその製造方法、およびiii 族窒化物半導体装置
US6500257B1 (en) * 1998-04-17 2002-12-31 Agilent Technologies, Inc. Epitaxial material grown laterally within a trench and method for producing same
JPH11330546A (ja) 1998-05-12 1999-11-30 Fuji Electric Co Ltd Iii族窒化物半導体およびその製造方法
WO2000004615A1 (en) 1998-07-14 2000-01-27 Fujitsu Limited Semiconductor laser, semiconductor device, and method for manufacturing the same
JP3316479B2 (ja) 1998-07-29 2002-08-19 三洋電機株式会社 半導体素子、半導体発光素子および半導体素子の製造方法
US6319742B1 (en) * 1998-07-29 2001-11-20 Sanyo Electric Co., Ltd. Method of forming nitride based semiconductor layer
JP3987660B2 (ja) 1998-07-31 2007-10-10 シャープ株式会社 窒化物半導体構造とその製法および発光素子
JP2000044121A (ja) 1998-08-03 2000-02-15 Murata Mach Ltd 紡績機のスライバ案内クリール
JP3201475B2 (ja) 1998-09-14 2001-08-20 松下電器産業株式会社 半導体装置およびその製造方法
JP2000150959A (ja) 1998-11-18 2000-05-30 Hitachi Ltd 窒化ガリウム系化合物半導体発光素子
JP2000174393A (ja) 1998-12-04 2000-06-23 Fuji Electric Co Ltd Iii族窒化物半導体およびその製造方法、およびiii族窒化物半導体装置
JP2000261106A (ja) 1999-01-07 2000-09-22 Matsushita Electric Ind Co Ltd 半導体発光素子、その製造方法及び光ディスク装置
JP3594826B2 (ja) * 1999-02-09 2004-12-02 パイオニア株式会社 窒化物半導体発光素子及びその製造方法
KR100677683B1 (ko) 1999-03-17 2007-02-05 미츠비시 덴센 고교 가부시키가이샤 반도체 기재와 그 제조 방법 및 반도체 결정의 제조 방법
JP4231189B2 (ja) 1999-04-14 2009-02-25 パナソニック株式会社 Iii族窒化物系化合物半導体基板の製造方法
TW464953B (en) 1999-04-14 2001-11-21 Matsushita Electronics Corp Method of manufacturing III nitride base compound semiconductor substrate
JP2001044121A (ja) 1999-06-07 2001-02-16 Agilent Technol Inc エピタキシャル層構造及びその製造方法
JP3786544B2 (ja) 1999-06-10 2006-06-14 パイオニア株式会社 窒化物半導体素子の製造方法及びかかる方法により製造された素子
JP3791246B2 (ja) 1999-06-15 2006-06-28 日亜化学工業株式会社 窒化物半導体の成長方法、及びそれを用いた窒化物半導体素子の製造方法、窒化物半導体レーザ素子の製造方法
JP2000357820A (ja) * 1999-06-15 2000-12-26 Pioneer Electronic Corp 窒化ガリウム系半導体発光素子及びその製造方法
JP4005275B2 (ja) 1999-08-19 2007-11-07 日亜化学工業株式会社 窒化物半導体素子
JP4274504B2 (ja) 1999-09-20 2009-06-10 キヤノン株式会社 半導体薄膜構造体
JP2001111174A (ja) 1999-10-06 2001-04-20 Fuji Photo Film Co Ltd 半導体素子用基板およびその製造方法およびその半導体素子用基板を用いた半導体素子
JP4055304B2 (ja) 1999-10-12 2008-03-05 豊田合成株式会社 窒化ガリウム系化合物半導体の製造方法
JP2001122693A (ja) 1999-10-22 2001-05-08 Nec Corp 結晶成長用下地基板およびこれを用いた基板の製造方法
JP3518455B2 (ja) 1999-12-15 2004-04-12 日亜化学工業株式会社 窒化物半導体基板の作製方法
US6380108B1 (en) * 1999-12-21 2002-04-30 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on weak posts, and gallium nitride semiconductor structures fabricated thereby
US6355497B1 (en) 2000-01-18 2002-03-12 Xerox Corporation Removable large area, low defect density films for led and laser diode growth
JP3988018B2 (ja) 2001-01-18 2007-10-10 ソニー株式会社 結晶膜、結晶基板および半導体装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249830A (ja) * 1994-03-10 1995-09-26 Hitachi Ltd 半導体発光素子の製造方法
JPH1131864A (ja) * 1997-07-11 1999-02-02 Nec Corp 低転位窒化ガリウムの結晶成長方法
JP2000021789A (ja) * 1997-08-29 2000-01-21 Toshiba Corp 窒化物系半導体素子、発光素子及びその製造方法
JPH11191659A (ja) * 1997-10-09 1999-07-13 Nichia Chem Ind Ltd 窒化物半導体の成長方法及び窒化物半導体素子
JPH11219910A (ja) * 1997-11-26 1999-08-10 Nichia Chem Ind Ltd 窒化物半導体の成長方法及び窒化物半導体素子
JPH11312825A (ja) * 1998-04-28 1999-11-09 Nichia Chem Ind Ltd 窒化物半導体の成長方法及び窒化物半導体素子
JPH11329971A (ja) * 1998-05-18 1999-11-30 Sharp Corp 結晶基板およびGaN系結晶膜の製造方法
JPH11340508A (ja) * 1998-05-28 1999-12-10 Nichia Chem Ind Ltd 窒化物半導体の成長方法及び窒化物半導体素子
JP2000124500A (ja) * 1998-10-15 2000-04-28 Toshiba Corp 窒化ガリウム系半導体装置
JP2000232239A (ja) * 1998-12-08 2000-08-22 Nichia Chem Ind Ltd 窒化物半導体の成長方法及び窒化物半導体素子
JP2000244061A (ja) * 1998-12-21 2000-09-08 Nichia Chem Ind Ltd 窒化物半導体の成長方法及び窒化物半導体素子
JP2000299497A (ja) * 1999-02-09 2000-10-24 Nichia Chem Ind Ltd 窒化物半導体素子
JP2000277437A (ja) * 1999-03-24 2000-10-06 Nichia Chem Ind Ltd 窒化物半導体の成長方法及び窒化物半導体素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7579263B2 (en) * 2003-09-09 2009-08-25 Stc.Unm Threading-dislocation-free nanoheteroepitaxy of Ge on Si using self-directed touch-down of Ge through a thin SiO2 layer
US7888244B2 (en) 2003-09-09 2011-02-15 Stc.Unm Threading-dislocation-free nanoheteroepitaxy of Ge on Si using self-directed touch-down of Ge through a thin SiO2 layer

Also Published As

Publication number Publication date
KR100500863B1 (ko) 2005-07-14
US6830948B2 (en) 2004-12-14
US20030092230A1 (en) 2003-05-15
AU2400601A (en) 2001-07-09
CN1413358A (zh) 2003-04-23
EP1263031A1 (en) 2002-12-04
JP2001185493A (ja) 2001-07-06
CA2398525A1 (en) 2001-07-05
KR20020073484A (ko) 2002-09-26
AU776768B2 (en) 2004-09-23
CN1189920C (zh) 2005-02-16

Similar Documents

Publication Publication Date Title
WO2001048799A1 (fr) Procédé permettant de produire un semi-conducteur à base de composé nitrure du groupe iii, et dispositif à semi-conducteurs à base de composé nitrure du groupe iii
US6489636B1 (en) Indium gallium nitride smoothing structures for III-nitride devices
JP4432180B2 (ja) Iii族窒化物系化合物半導体の製造方法、iii族窒化物系化合物半導体素子及びiii族窒化物系化合物半導体
US6841808B2 (en) Group III nitride compound semiconductor device and method for producing the same
US6635904B2 (en) Indium gallium nitride smoothing structures for III-nitride devices
US6635901B2 (en) Semiconductor device including an InGaAIN layer
JP4332720B2 (ja) 半導体素子形成用板状基体の製造方法
JP2001313259A (ja) Iii族窒化物系化合物半導体基板の製造方法及び半導体素子
WO2001069663A1 (fr) Procede de production de semiconducteur a base de compose de nitrure iii et element en semiconducteur a base de compose de nitrure iii
EP1052684A1 (en) A method for manufacturing group III nitride compound semiconductor and a light-emitting device using group III nitride compound semiconductor
WO2001069662A1 (fr) Semi-conducteur a base d&#39;un compose nitrure du groupe iii et procede de fabrication correspondant
JP2011084469A (ja) GaN単結晶基板の製造方法及びインゴット
WO2002080242A1 (en) Method for manufacturing group-iii nitride compound semiconductor, and group-iii nitride compound semiconductor device
JP2010232464A (ja) Iii族窒化物半導体発光素子及びその製造方法、並びにレーザダイオード
US20080296626A1 (en) Nitride substrates, thin films, heterostructures and devices for enhanced performance, and methods of making the same
JP4406999B2 (ja) Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子
JPWO2018051772A1 (ja) Iii族窒化物積層体、及び該積層体を有する半導体デバイス
WO2002080243A1 (fr) Methode de production d&#39;un semi-conducteur a base d&#39;un compose de nitriture iii, et element de semi-conducteur a base d&#39;un compose de nitriture iii obtenu par cette methode
JP5065625B2 (ja) GaN単結晶基板の製造方法
WO2002099859A1 (fr) Procede de production d&#39;un semiconducteur au nitrure iii
JP3884969B2 (ja) 半導体発光素子およびその製造方法
JP3634255B2 (ja) 窒化物半導体素子のエピタキシャル成長
TW538460B (en) Production method for group III nitride compound semiconductor, group III nitride compound semiconductor device and group III nitride compound semiconductor light-emitting device
JP4051892B2 (ja) Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子
JP4016566B2 (ja) Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000987700

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2398525

Country of ref document: CA

Ref document number: 1020027008100

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 008177147

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 24006/01

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10168629

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027008100

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000987700

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 24006/01

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020027008100

Country of ref document: KR