JP3594826B2 - 窒化物半導体発光素子及びその製造方法 - Google Patents

窒化物半導体発光素子及びその製造方法 Download PDF

Info

Publication number
JP3594826B2
JP3594826B2 JP3112299A JP3112299A JP3594826B2 JP 3594826 B2 JP3594826 B2 JP 3594826B2 JP 3112299 A JP3112299 A JP 3112299A JP 3112299 A JP3112299 A JP 3112299A JP 3594826 B2 JP3594826 B2 JP 3594826B2
Authority
JP
Japan
Prior art keywords
layer
active layer
nitride semiconductor
barrier layer
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3112299A
Other languages
English (en)
Other versions
JP2000232238A (ja
Inventor
啓之 太田
満 西塚
宏和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP3112299A priority Critical patent/JP3594826B2/ja
Priority to US09/497,695 priority patent/US6329667B1/en
Publication of JP2000232238A publication Critical patent/JP2000232238A/ja
Priority to US09/987,948 priority patent/US6537839B2/en
Application granted granted Critical
Publication of JP3594826B2 publication Critical patent/JP3594826B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Description

【0001】
【発明の属する技術分野】
本発明は、3族窒化物半導体素子(以下、単に素子とも記述する)に関し、特に、発光素子に用いられる窒化物半導体発光素子及びその製造方法に関する。
【0002】
【従来の技術】
短波長光半導体素子、特に短波長半導体レーザ素子用の材料として窒化ガリウム(GaN)系化合物を用いた研究が多く行われている。GaN系半導体レーザ素子は、基板結晶上に3族窒化物半導体(AlGa1−x1−yInN(0≦x≦1,0≦y≦1)のような半導体単結晶膜を順次積層して作製される。この単結晶膜の作製には、一般に有機金属気相成長法(以下、MOCVD法と称する。)が用いられる。該方法において、3族原料のトリメチルガリウム(以下、TMGと称する。)や5族原料のアンモニア(NH)等の原料ガスを反応炉内に導き、900〜1000℃の温度で反応させて基板上に化合物結晶を堆積させるのである。原料ガスの成分比を変化させて順次積層することで、異なった化合物からなる多層膜構造が達成される。
【0003】
このとき、積層された単結晶膜中を貫通するような欠陥が多く存在すると、発光素子としての発光特性が大きく劣化してしまう。この欠陥は、いわゆる貫通転位と呼ばれているもので、結晶膜の成長方向へ膜中を貫通して延在する線状の結晶欠陥である。こうした貫通転位部分は、キャリアの非発光性再結合中心として働くため、貫通転位を多く含む膜からなる半導体発光素子の発光効率は低い。このような欠陥は、基板とその上に成膜される層との界面における結晶のミスフィット歪みを起因として発生する。そこで、界面ミスフィットの影響を減少させるべく、基板材料にはその上に成膜されるGaN系結晶に近い結晶構造、格子定数及び熱膨張率を有する材料を選択することが行われている。
【0004】
上記要件を満たす材料であってその基板として最も適合性の良いのは、その半導体結晶そのものである。しかしながら、3族窒化物半導体(AlGal−x1−yInN(0≦x≦1,0≦y≦1)の場合、基板として最適である窒化物半導体バルク結晶が存在しないため、サファイアなどの異種材料を基板として使用せざるを得ない。サファイアの場合、GaNとの間に14%程度の格子不整合がある。
【0005】
サファイアの上に成膜されるGaN系単結晶膜とサファイア基板との界面ミスフィットを緩和し、該GaN系単結晶膜中の結晶欠陥を抑制する手法として、サファイア基板上に低温(400〜600℃)で窒化アルミニウム(AlN)等からなるバッファ層を形成し、該低温バッファ層の上に所定のGaN単結晶膜を成膜する如き2段階成膜法が提案されている。しかしながら、該方法によってもGaN単結晶膜中を貫通するような欠陥を充分に抑制するまでには至っていない。
【0006】
一般的に、半導体結晶中の転位は非発光性再結合中心として働き、発光ダイオードや半導体レーザなどの発光素子の発光特性を劣化させる大きな原因となるため、これらの素子を構成する結晶中には存在しないことが望ましく、貫通転位の減少に向け開発が行われている。
【0007】
【発明が解決しようとする課題】
そこで本発明は、基板上に成膜される単結晶膜中を貫通するような欠陥の発生を許容し、良好な発光特性を有する窒化物半導体発光素子及びその製造方法を与えることを目的とする。
【0008】
【課題を解決するための手段】
本発明の窒化物半導体発光素子は、3族窒化物半導体を積層して得られる活性層と、前記活性層に隣接し前記活性層のバンドギャップより大なるバンドギャップを有する障壁層と、からなる窒化物半導体発光素子であって、前記活性層において貫通転位を囲みその周囲に拡がる界面により画定される前記障壁層と同一材料からなる埋め込み部を有することを特徴とする。
【0009】
本発明の窒化物半導体発光素子においては、前記活性層は単一又は多重量子井戸構造を有することを特徴とする。
本発明の窒化物半導体発光素子においては、前記障壁層は前記界面からなる前記活性層の凹部を埋めその表面を平坦化する材料からなることを特徴とする。
本発明の窒化物半導体発光素子においては、前記埋め込み部は、錐体形状若しくは切頭錐体形状又はこれらが連結した形状を有することを特徴とする。
【0010】
本発明の窒化物半導体発光素子においては、前記3族窒化物半導体は(AlGa1−x1−yInN(0≦x≦1,0≦y≦1)であることを特徴とする。
本発明の窒化物半導体発光素子においては、前記障壁層と前記活性層との間に、前記障壁層と略同一材料からなりかつ前記活性層の成膜時の温度と略同一の温度の下で成膜された低温障壁層を有することを特徴とする。
【0011】
本発明の窒化物半導体発光素子においては、前記低温障壁層のAlN組成比は、前記障壁層のAlN組成比より小さいことを特徴とする。
本発明の方法は、3族窒化物半導体(AlGa1−x1−yInN(0≦x≦1,0≦y≦1)を積層して得られる活性層と、前記活性層に隣接し前記活性層のバンドギャップより大なるバンドギャップを有する障壁層と、からなる窒化物半導体発光素子の製造方法であって、
基板上に成膜された半導体層上に形成された3族窒化物半導体の活性層において、前記半導体層の貫通転位に起因する凹部を形成するピット形成工程と、
前記活性層上に前記障壁層の材料を積層し、前記凹部の側面を界面とする前記貫通転位の周囲に拡がる埋め込み部を形成する埋込部形成工程と、からなることを特徴とする。
【0012】
本発明の方法においては、前記ピット形成工程は、前記活性層を形成した後に、前記活性層をエッチングする工程を含むことを特徴とする。
本発明の方法においては、前記活性層をエッチングする工程において、貫通転位に沿って食刻の一部が前記半導体層に到達する時点でエッチングを終了することを特徴とする。
【0013】
本発明の方法においては、前記ピット形成工程は、前記活性層を形成する前に、600〜850℃の温度で前記半導体層を形成する工程を含むことを特徴とする。
本発明の方法においては、前記埋込部形成工程と前記ピット形成工程との間に、前記障壁層と略同一材料からなりかつ前記活性層の成膜時の温度と略同一の温度の下で成膜された低温障壁層を形成する工程を有することを特徴とする。
【0014】
本発明の方法においては、前記低温障壁層のAlN組成比は、前記障壁層のAlN組成比より小さいことを特徴とする。
【0015】
【作用】
本発明によれば、発光素子の作製においてウエハ上の各層をエピタキシャル成長させるに当り、活性層すなわち発光層までの成膜を完了した時点で活性層をエッチングして、あるいは、活性層下部の半導体層であるガイド層を予め低温成長させ、その後、活性層を成膜して、かかる埋め込み部のための凹部を活性層に形成した後に、活性層内に伸びる貫通転位を囲みその周囲に拡がる界面により画定される活性層のものより大なるバンドギャップの埋め込み部を形成してから、素子の上部構造部を成膜した素子用ウエハを完成させる。
【0016】
【発明の実施の形態】
以下に、本発明による実施例の3族窒化物半導体レーザについて実施例を図面を用いて説明する。本発明の第1の実施例として、成長途中のウエハをエピタキシャル成長装置の外部に取り出して上記のエッチングを行なう場合を詳述する。図1は実施例の3族窒化物半導体レーザ示す。この半導体レーザ素子は、単結晶サファイア基板1上に順に積層された、低温成膜されたGaN(又はAlN)層2、n型GaN層3、n型Al0.1Ga0.9N層4、n型GaN層5、InGaNを主たる構成要素とする多重量子井戸構造の活性層6、p型Al0.2Ga0.8N層7、p型GaN層8、p型Al0.1Ga0.9N層9、及びp型GaN層10からなり、n側電極14並びにp側電極13はn型GaN層3並びp型GaN層10に接続されている。p型Al0.1Ga0.9N層9にはリッジストライプ部18が形成されており、素子は電極を除きSiOの絶縁膜11で被覆保護されている。このように、本実施例の窒化物半導体発光素子においては、3族窒化物半導体を順次積層して得られる多層構造の活性層からなる。この半導体レーザ素子では、活性層6において電子と正孔を再結合させることによって発光する。n型GaN層5及びp型GaN層8はガイド層であり、活性層6で発生した光をガイド層5及び8に導波するとともに活性層6よりバンドギャップが大きく設定することによって電子及び正孔を活性層6内に効果的に閉じ込めるようになっている。p型Al0.2Ga0.8N層7は注入されたキャリア(特に電子)の閉じ込めを更に強化する障壁層であり、n型Al0.1Ga0.9N層4及びp型Al0.1Ga0.9N層9はガイド層5,8より低屈折率で作製されているクラッド層であり、ガイド層との屈折率差によって膜厚方向の導波が行なわれる。リッジストライプ部18はクラッド層9の厚さを変化させることで実効屈折率に横方向の段差を生じさせて、発生した光を横方向に閉じ込めるために設けてある。n型GaN層3は電流の流路として設けられている下地層であり、基板であるサファイアに全く導電性がないために設けられている。また、低温成長層のGaN(又はAlN)層2はいわゆるバッファ層であり、GaNにとっての異種物質であるサファイア基板上に平滑膜を作製するために形成されている。
【0017】
さらに、かかる素子は、図2に示すように、井戸層62とバリア層61とからなる活性層6において、下部ガイド層5から上部ガイド層8へ伸びる貫通転位15を囲みその周囲に拡がる界面50により画定される障壁層7と同一材料からなる埋め込み部51を有する。
かかる素子に電流を注入した場合、図2に示すように、n型GaNガイド層5から注入された電子16はInGaNからなる活性層6に注入されるが、活性層はIn組成の高い(すなわちバンドギャップの小さい)井戸層62とIn組成の小さい(すなわちバンドギャップの大きな)バリア層61とからなっているため、注入された電子16は主として井戸層62に集められる。また、p型GaNガイド層8から注入される正孔17も、同様の理由により井戸層62に集められる。この時、貫通転位15の周囲が、InGaNからなるIn組成の高い井戸層62と比較してもバンドギャップが大きいAlGaN埋め込み部51に被われているため、電子16も正孔17もこのAlGaN埋め込み部51に防止されて貫通転位15に到達することができない。よって、埋め込み部51によって非発光性再結合中心として働く貫通転位部分にキャリアが達しないために、素子の発光効率は埋め込み部51がないものに比して高くなる。
【0018】
図1に示した素子構造は、サファイアA面基板上にレーザ素子用の層構造をMOCVDにより成膜する以下の作製工程にて、製造される。
まず、サファイア基板1を成膜用MOCVD成長炉に装填し、1050℃の温度において300Torrの圧力の水素気流中で10分間保持し、サファイア基板1の表面の熱クリーニングを行なう。この後、サファイア基板1をその温度が600℃になるまで降温し、窒素原料であるアンモニア(NH)と、Al原料であるトリメチルアルミニウム(TMA)を成長炉内に導入し、AlNからなるバッファ層2を20nmの厚さに堆積させる。
【0019】
続いてTMAの供給を止め、NHのみを流したまま、バッファ層2が成膜されたサファイア基板1の温度を再び1050℃に昇温し、トリメチルガリウム(TMG)を導入してn型GaN下地層3を積層する。この時、n型不純物であるSiの原料としてメチルシラン(Me−SiH)を成長雰囲気ガスに添加する。
【0020】
n型GaN下地層3が4μm程度成長した時点で、TMGの供給のみを停止する。一方、メチルシランはその供給量を増加してそのまま供給し続ける。5分間この状態を保持した後、メチルシラン供給量をn型層として必要な量まで減らすと共に、TMGを再度導入し、同時にTMAを導入してn型AlGaNクラッド層4の成膜を行なう。
【0021】
n型AlGaNクラッド層4が0.5μm程度成長した時点でTMA供給を停止し、n型GaNの下部ガイド層5を0.1μm成長する。
n型GaNガイド層5の成長が完了した時点でTMG及びMe−SiHの供給を停止して降温を開始し、基板温度を750℃とする。基板温度が750℃となった時点でキャリアガスを水素から窒素に切換え、ガス流の状態が安定した時点でTMG、トリメチルインジウム(TMI)及びMe−SiHを導入してバリア層(障壁層)61の成長を行なう。
【0022】
次に、Me−SiHの供給を停止するとともにTMIの流量を増加して、バリア層よりIn組成の高い井戸層62を成長する。
バリア層61と井戸層62の成長は、多重量子井戸の設計繰返し数に合わせて繰り返す。このようにして、多重量子井戸構造の活性層6を形成する。
最後の井戸層62上にバリア層61を成膜した時点でTMG,TMI,Me−SiHの供給を停止するとともに降温を開始し、基板温度が400℃以下になった時点でNHの供給も停止し、基板温度が室温になった時点でウエハを反応炉より取り出す。
【0023】
このp型層成長前のウエハにおいて成長途中で成膜装置から取り出した状態の膜の構造は図3に示すようになっている。貫通転位15は膜中に多数存在し、上記実施例の成膜条件の場合、別途の測定で2E9(1/cm)程度の転位密度であることが分かっている。
こうして得られた膜を200℃に加熱したHPO(リン酸)に浸漬し、エッチングを行う。このように、活性層6において、下部ガイド層5の貫通転位15に起因する凹部すなわちピットを形成する。
【0024】
図4は上記の膜を熱リン酸中でエッチングした後の状態を示している。GaNは化学的に安定であるため、熱リン酸中でもほとんどエッチングされないが、転位の存在する部分のみはわずかにエッチングされ、ピット49が生じる。転位の部分のエッチングされたピット深さがn型GaN層に到達したところが適切なエッチング深さである。よって、エッチングは、貫通転位15に沿って食刻の一部が下部ガイド層5に到達する時点でエッチングを終了する。ピット49は複数存在し、各々は錐体形状若しくは切頭錐体形状であるが、これらが近接したときは連結した形状の凹部となる。
【0025】
エッチング工程後、ウエハを純水で充分洗浄し、更に有機溶剤で超音波洗浄してから再度成膜用MOCVD成長炉に装填する。
次に、キャリアガスとしての水素とNHを流しつつ、基板温度を再び1050℃に昇温し、TMG,TMAとp型不純物であるMgの原料としてエチル−シクロペンタジエニルマグネシウム(Et−CpMg)を導入してp型AlGaN層7の障壁層を0.02μm積層する。
【0026】
図1に示すように、p型AlGaNの障壁層7を成膜した時点の断面では、1050℃という高温であることと、表面が平坦化し易いというAlGaNの性質のため、エッチングによりピット(凹部)となったところがp型AlGaNで埋められる。よって、一旦平滑化がなされた後は、障壁層7上の成膜すべき各層は平坦に成膜され得る。このように、埋め込み部51が錐体形状若しくは切頭錐体形状の形成されるが、図1では1つの埋め込み部51であるが、これは複数でもよく、ピット形状に応じてこれらが連結した形状ともなる。
【0027】
続いてTMAの供給を停止し、障壁層7上にp型GaNの上部ガイド層8を0.1μm成長し、再びTMAを導入してp型AlGaNクラッド層9を0.5μm成長する。更にこの上にp型GaNコンタクト層10を0.1μm成長する。その後、TMG,Et−CpMgの供給を停止し、降温を開始し、基板温度が400℃になった時点でNHの供給も停止し、基板温度が室温になった時点でウエハを反応炉より取り出す。この第1実施例のウエハを以降、ウエハ1と呼ぶことにする。
【0028】
比較対象用として、エッチング工程を行わない以外上記成長方法と同様に行うことにより作製したウエハを作製する。この比較対象用ウエハを以降、ウエハ2呼ぶことにする。すなわち、ウエハ2は最終のバリア層61の成長後、成長炉から基板を出すことなく成長炉内で、750℃の温度でキャリアガスを窒素から水素に切り換えるとともに、基板温度を1050℃に昇温し、p型AlGaN層7及び以降の各層の成長を連続して行なったものである。
【0029】
ウエハ1及びウエハ2を熱処理炉に設置し、処理温度は800℃、時間は20分、雰囲気は大気圧の窒素でp型発現処理を行なった。
得られたウエハ1及び2の各々に対し、p側電極用テラスとn側電極用の電流経路構造並びにp側電極用テラス上に電流狭窄用の屈折率導波構造としてリッジ構造の導波路を形成する。
【0030】
ウエハにおいて、一般的なフォトリソグラフィ、反応性イオンエッチング(RIE)を用いて、5μm幅のリッジ部以外の部分をp型AlGaNクラッド層9を約0.1μm残して除去し、狭リッジ構造を形成する。次に、同様にRIEを用いて、p型膜を含む不要な部分を除去し、部分的にn型GaN下地膜3を露出させる。
【0031】
エッチングマスクを除去後、SiO保護膜をスパッタリングなどの方法によって堆積させ、このSiO膜に対し、p型リッジ部に3μm幅の窓部を、n層露出部分に型電極用窓部を形成する。
n型GaN層3が露出している部分に、Ti(チタン)を50nm、続いてAl(アルミニウム)を200nm蒸着し、n側電極14を形成する。p型GaN層が露出している部分には、Ni(ニッケル)を50nm、Au(金)を200nm蒸着してp側電極13を形成する。
【0032】
このようにして作製された素子ウエハを劈開し、図1に示す素子を作製した。その後、各素子の特性の測定を行なった。測定は、0.5μsecのパルス駆動、デューティ比0.02%で行なった。
図5のaで示す●は、本発明の実施例であるウエハ1から作製された素子の電流/光出力特性である。この素子は閾値電流約430mA、波長405nmで発振した。図5のbで示す○は、上記のウエハ2、すなわち比較例の成膜方法で作製された素子の電流/光出力特性である。この素子は閾値電流約800mA、波長410nmで発振した。
【0033】
両者を比較すると、本発明の実施例では閾値電流値が約1/2に低減されており、大幅に特性が改善されているのが分かる。
このように実施例では、活性層においてはバンドギャップの小さい井戸層62に、注入された電子及び正孔は主として井戸層62に集められ、これらキャリアは、貫通転位の周囲のバンドギャップが大きい障壁層7と同一材料の埋め込み部51に阻止されて貫通転位15に到達することができないので、貫通転位が非発光性再結合中心として働かない。一方、比較例の素子の内部では、キャリアは貫通転位に自由に到達できるため、非発光性再結合中心として働き、発光特性を劣化させることとなる。
【0034】
他の実施例として、エッチング工程を成膜装置内で行なうことも可能であり、この場合はいわゆる気相エッチングとなる。エッチング用のガスとしてはHCl(塩化水素)を用いることができる。また、通常の成長時よりNHの流量を減少させた上で、キャリアガス中の水素の割合を増大させることによりInGaN層の蒸発を促す方法も用いるが、その効果は前述のものほど十分ではない。
【0035】
上記実施例では活性層にエッチングにより貫通転位部周囲にに穴を開ける方法を用いたが、第2の実施例としては活性層に自然位(in−situ)で貫通転位部に穴を開ける方法を採用する。すなわち、特定の成膜条件下で、結晶成長すると貫通転位上での成長が抑制されることを利用するのである。
まず、第1の実施例と同様にサファイア基板上にn型GaNのガイド層5までを成長する。
【0036】
次に、ウエハを600〜850℃の温度範囲で例えば770℃に温度を下げる。キャリアガスを水素から窒素に変更し、TMI、TMG、アンモニア、メチルシランを原料とし770℃の低温を維持したままで成長し、図6に示すように、Siをドープしたn型InGaNのピット発生層5aを400Å成長する。この工程で、結晶成長をしない部分60の初期段階を作り込む。なお、ピット発生層5aはInGaNに限らず、GaN、AlGaNなど活性層を構成する材料のバンドギャップ以上の大きさを持つ材料でもよい。また、アンドープのものでもよい。成長温度を下げることによってピットの発生が促されるが、成長温度を850℃程度以下で成長させないと十分に促進できない。また、成長温度600℃以下ではピットは発生するが、基本的な膜質が悪化するため好ましくない。また、貫通転位の部分に結晶成長をしない部分60を確実に発生させるためには、ピット発生層5aの膜厚は、100Å以上必要であり、さらに、望ましくは、200Å程度まであるほうがよい。ただし、成長温度が低いために通常の1050℃成膜の結晶層と比較して膜質が多少悪化する。また、ピット発生層5aの膜厚を必要以上に厚くすると、導波損失が増加してしまう。
【0037】
次に、ピット発生層5a上に770℃で活性層6を形成する。まず、バリア層61を、TMI、TMG、アンモニア、メチルシランを原料として成膜し、井戸層62を、メチルシランの供給停止するとともにTMIの流量を増加して成膜し、これらを所定回数繰り返して、図7に示すように、MQW活性層6を成長する。このように、活性層6を形成する前に、600〜850℃の温度範囲でピット発生層5aを形成して、活性層6を形成する時にピット49を形成する。なお、活性層はMQWに限らない。
【0038】
図8は活性層の成長したウエハを45度に傾けて撮影した電子顕微鏡像である。凹部は約5×10個/cmあり、膜の貫通転位数とほぼ同等である。
比較例として低温成膜したピット発生層5aを形成しない以外、上記第2実施例と同様に作製したウエハをも作製した。
第2実施例と比較例の発光特性を比較するために、ウエハのMQW活性層6における発光強度の励起強度依存性を測定した。図9は第2実施例と比較例のウエハに関する発光強度の励起強度依存性の測定結果のグラフある。励起レーザは337.1nmの窒素レーザである。横軸はレーザ全出力を100%とした時の値である。この測定範囲において第2実施例(■)の方が比較例(□)より5倍から10倍程度、発光強度が強いことが分かる。
【0039】
上記第1及び第2実施例においては、活性層の下の半導体層の貫通転位に起因する凹部を形成するピット形成工程を主に特徴としているが、本発明を発光素子に適用するにあたり重要である点のもう1つは、AlGa1−xNからなる障壁層7を成膜する際に、図4及び図7におけるピット部49をAlGaNが埋めて平坦化することである。よって、この埋め込み部を形成する工程にかかる上記第1及び第2実施例に適用される第3実施例を説明する。
【0040】
この埋め込み部を形成する工程でAlGaNの平坦化を良好に進行させるためには、1000℃以上の成膜温度が必要になる。この成膜温度への昇温過程の間に、すでに成長が完了しているInGaNからなる活性層6(すなわち井戸層62、バリア層61)の成分の蒸発が生じ、特に多重量子井戸の内の最表層側のバリア層61が劣化してしまう傾向がある。
【0041】
そこで、InGaNからなる活性層6(すなわち井戸層62、バリア層61)の成膜が完了した時点で、低温AlGaN障壁層71の成長を行う。この低温AlGaN障壁層71はAlGaN障壁層7の一部をなす膜であり、低温AlGaN障壁層71の成膜は雰囲気ガス内のGaNと比較してAlNの方がはるかに高温安定性が高い性質を利用するものである。AlN組成比0.2程度の低温AlGaN障壁層71を極くわずかの膜厚で積層しておくことで、上記のGaN成分の蒸発現象を有効に阻止できる。低温AlGaN障壁層71の膜厚は、数分子の層程度すなわち20Å程度以上であることが望ましい。この膜厚を厚くしすぎると、P型層からの正孔の注入を阻害するため100Å未満であることが望ましい。
【0042】
第3実施例を第1の実施例に適用して発光素子を作製する場合には、一旦成膜装置からウェハを取り出し、エッチング作業を行い、活性層6にピット部49を形成して、低温AlGaN障壁層71を成膜する。
第3実施例を第2の実施例に適用して発光素子を作製する場合には、活性層6の成膜後に続いて、基板温度を変更せずに、ただちに低温AlGaN障壁層71を成長させる。その後、キャリアガスを窒素から水素に変更し、1050℃に昇温し、以降の成膜を行う。
【0043】
上記のどちらの場合も、1050℃に昇温後水素キャリア中で、AlGaN障壁層7の成長を行うことになる。
この第3実施例の場合、低温AlGaN障壁層71は低温で成長するため、ピット部49はほとんど埋め込まれない。この様子を図10に示す。
第3実施例の発光素子において、低温AlGaN障壁層71のAlN組成比は、AlGaN障壁層7のAlN組成比より小さい。すなわち、低温AlGaN障壁層71のAlN組成比が、AlGaN障壁層7のAlN組成比より大きくなると、図11に示すように、p型ガイド層側から注入される正孔17(破線で示す)が、よりAlN組成比の小さい(すなわちパンドキャップの小さい)AlGaN障壁層7からなる埋め込み部51に注入され易くなってしまうからである。
【0044】
低温AlGaN障壁層71のAlN組成比をAlGaN障壁層7のものより小さくすることで、n型ガイド層から注入された電子16と同様に、p型ガイド層側から注入される正孔17(実線で示す)は埋め込み部51に阻止されて貫通転位15に到達できなくなる。
したがって、第3実施例を第2の実施例に適用して発光素子を作製する場合には、活性層成長後、活性層の成長温度と略同一の温度で低温AlGaN障壁層71を形成し、昇温後に第2のAlGaN障壁層7を形成する。また、第3実施例をいすれの実施例に適用する場合にも低温AlGaN障壁層71のAlN組成比より、第2のAlGaN障壁層7のAlN組成比を大きくする。
【0045】
また、第1〜3実施例もレーザ素子の場合について述べたが、本発明はLED(発光ダイオード)の作製に本発明を用いても同様の効果を上げることができる。
【0046】
【発明の効果】
本発明によれば、活性層のバンドギャップより大なるバンドギャップを有する埋め込み部が貫通転位を囲み貫通転位近傍にキャリアが拡散しないので、素子の発光特性が向上する。
【図面の簡単な説明】
【図1】本発明の3族窒化物半導体レーザ素子の概略断面図。
【図2】本発明の3族窒化物半導体レーザ素子の活性層を示す概略部分切欠斜視図。
【図3】本発明による実施例の半導体レーザの製造工程中における基板の概略部分切欠斜視図。
【図4】本発明による実施例の半導体レーザの製造工程中における基板の概略部分切欠斜視図。
【図5】本発明による実施例の半導体レーザの電流/光出力特性を示すグラフ。
【図6】本発明による第2の実施例の半導体レーザの製造工程中における基板の概略断面図。
【図7】本発明による第2の実施例の半導体レーザの製造工程中における基板の概略断面図。
【図8】本発明による第2実施例の半導体レーザの製造工程中におけるウエハ基板の結晶表面を撮影した図面代用の電子顕微鏡写真。
【図9】本発明による他の実施例の半導体レーザの製造工程中におけるウエハに関する発光強度の励起強度依存性を示すグラフ。
【図10】本発明による第3の実施例の3族窒化物半導体レーザ素子の活性層を示す概略部分断面図。
【図11】本発明による第3の実施例の半導体レーザの製造工程中における基板の概略断面図。
【符号の説明】
1 単結晶サファイア基板
2 低温成膜GaN(又はAlN)層
3 n型GaN層
4 n型Al0.1Ga0.9Nクラッド層
5 n型GaNガイド層
5a ピット発生層
6 nGaN活性層
7 p型Al0.2Ga0.8N障壁層
8 p型GaNガイド層
9 p型Al0.1Ga0.9Nクラッド層
10 p型GaNコンタクト層
14 n側電極
13 p側電極
11 SiO絶縁膜
15 貫通転位
71 低温AlGaN障壁層

Claims (13)

  1. 3族窒化物半導体を積層して得られる活性層と、前記活性層に隣接し前記活性層のバンドギャップより大なるバンドギャップを有する障壁層と、からなる窒化物半導体発光素子であって、前記活性層において貫通転位を囲みその周囲に拡がる界面により画定される前記障壁層と同一材料からなる埋め込み部を有することを特徴とする窒化物半導体発光素子。
  2. 前記活性層は単一又は多重量子井戸構造を有することを特徴とする請求項1記載の窒化物半導体発光素子。
  3. 前記障壁層は前記界面からなる前記活性層の凹部を埋めその表面を平坦化する材料からなることを特徴とする請求項1又は2記載の窒化物半導体発光素子。
  4. 前記埋め込み部は、錐体形状若しくは切頭錐体形状又はこれらが連結した形状を有することを特徴とする請求項1、2又は3記載の窒化物半導体発光素子。
  5. 前記3族窒化物半導体は(AlGa1−x1−yInN(0≦x≦1,0≦y≦1)であることを特徴とする請求項1〜4のいずれか1記載の窒化物半導体発光素子。
  6. 前記障壁層と前記活性層との間に、前記障壁層と略同一材料からなりかつ前記活性層の成膜時の温度と略同一の温度の下で成膜された低温障壁層を有することを特徴とする請求項5記載の窒化物半導体発光素子。
  7. 前記低温障壁層のAlN組成比は、前記障壁層のAlN組成比より小さいことを特徴とする請求項6記載の窒化物半導体発光素子。
  8. 3族窒化物半導体(AlGa1−x1−yInN(0≦x≦1,0≦y≦1)を積層して得られる活性層と、前記活性層に隣接し前記活性層のバンドギャップより大なるバンドギャップを有する障壁層と、からなる窒化物半導体発光素子の製造方法であって、
    基板上に成膜された半導体層上に形成された3族窒化物半導体の活性層において、前記半導体層の貫通転位に起因する凹部を形成するピット形成工程と、
    前記活性層上に前記障壁層の材料を積層し、前記凹部の側面を界面とする前記貫通転位の周囲に拡がる埋め込み部を形成する埋込部形成工程と、からなることを特徴とする窒化物半導体発光素子の製造方法。
  9. 前記ピット形成工程は、前記活性層を形成した後に、前記活性層をエッチングする工程を含むことを特徴とする請求項8記載の窒化物半導体発光素子の製造方法。
  10. 前記活性層をエッチングする工程において、貫通転位に沿って食刻の一部が前記半導体層に到達する時点でエッチングを終了することを特徴とする請求項9記載の窒化物半導体発光素子の製造方法。
  11. 前記ピット形成工程は、前記活性層を形成する前に、600〜850℃の温度で前記半導体層を形成する工程を含むことを特徴とする請求項8記載の窒化物半導体発光素子の製造方法。
  12. 前記埋込部形成工程と前記ピット形成工程との間に、前記障壁層と略同一材料からなりかつ前記活性層の成膜時の温度と略同一の温度の下で成膜された低温障壁層を形成する工程を有することを特徴とする請求項8〜11のいずれか1記載の窒化物半導体発光素子の製造方法。
  13. 前記低温障壁層のAlN組成比は、前記障壁層のAlN組成比より小さいことを特徴とする請求項12記載の窒化物半導体発光素子の製造方法。
JP3112299A 1999-02-09 1999-02-09 窒化物半導体発光素子及びその製造方法 Expired - Lifetime JP3594826B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3112299A JP3594826B2 (ja) 1999-02-09 1999-02-09 窒化物半導体発光素子及びその製造方法
US09/497,695 US6329667B1 (en) 1999-02-09 2000-02-08 Nitride semiconductor light emitting device and manufacturing method thereof
US09/987,948 US6537839B2 (en) 1999-02-09 2001-11-16 Nitride semiconductor light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3112299A JP3594826B2 (ja) 1999-02-09 1999-02-09 窒化物半導体発光素子及びその製造方法

Publications (2)

Publication Number Publication Date
JP2000232238A JP2000232238A (ja) 2000-08-22
JP3594826B2 true JP3594826B2 (ja) 2004-12-02

Family

ID=12322625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3112299A Expired - Lifetime JP3594826B2 (ja) 1999-02-09 1999-02-09 窒化物半導体発光素子及びその製造方法

Country Status (2)

Country Link
US (2) US6329667B1 (ja)
JP (1) JP3594826B2 (ja)

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466597B1 (en) * 1998-06-17 2002-10-15 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device
JP3587081B2 (ja) 1999-05-10 2004-11-10 豊田合成株式会社 Iii族窒化物半導体の製造方法及びiii族窒化物半導体発光素子
JP3555500B2 (ja) * 1999-05-21 2004-08-18 豊田合成株式会社 Iii族窒化物半導体及びその製造方法
US6580098B1 (en) 1999-07-27 2003-06-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
JP3455512B2 (ja) * 1999-11-17 2003-10-14 日本碍子株式会社 エピタキシャル成長用基板およびその製造方法
JP2001185493A (ja) * 1999-12-24 2001-07-06 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子
JP4432180B2 (ja) * 1999-12-24 2010-03-17 豊田合成株式会社 Iii族窒化物系化合物半導体の製造方法、iii族窒化物系化合物半導体素子及びiii族窒化物系化合物半導体
US6403451B1 (en) * 2000-02-09 2002-06-11 Noerh Carolina State University Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts
JP2001267242A (ja) * 2000-03-14 2001-09-28 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体及びその製造方法
AU2001241108A1 (en) * 2000-03-14 2001-09-24 Toyoda Gosei Co. Ltd. Production method of iii nitride compound semiconductor and iii nitride compoundsemiconductor element
TW518767B (en) * 2000-03-31 2003-01-21 Toyoda Gosei Kk Production method of III nitride compound semiconductor and III nitride compound semiconductor element
JP2001308460A (ja) * 2000-04-27 2001-11-02 Sharp Corp 窒化物半導体レーザ素子とその光ピックアップ装置
JP2001313259A (ja) * 2000-04-28 2001-11-09 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体基板の製造方法及び半導体素子
US6469320B2 (en) * 2000-05-25 2002-10-22 Rohm, Co., Ltd. Semiconductor light emitting device
US7619261B2 (en) * 2000-08-07 2009-11-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
JP2002151796A (ja) * 2000-11-13 2002-05-24 Sharp Corp 窒化物半導体発光素子とこれを含む装置
JP3988018B2 (ja) 2001-01-18 2007-10-10 ソニー株式会社 結晶膜、結晶基板および半導体装置
US7052979B2 (en) * 2001-02-14 2006-05-30 Toyoda Gosei Co., Ltd. Production method for semiconductor crystal and semiconductor luminous element
JP2002280314A (ja) * 2001-03-22 2002-09-27 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体の製造方法、及びそれに基づくiii族窒化物系化合物半導体素子
JP3912043B2 (ja) * 2001-04-25 2007-05-09 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子
US20040169192A1 (en) 2001-06-04 2004-09-02 Hisaki Kato Method for producing group III nitride compounds semiconductor
JP3909811B2 (ja) * 2001-06-12 2007-04-25 パイオニア株式会社 窒化物半導体素子及びその製造方法
DE10135189A1 (de) * 2001-07-19 2003-02-20 Osram Opto Semiconductors Gmbh Lichtemittierende Vorrichtung auf Basis eines Galliumnitrid-basierten Verbindungshalbleiters und Verfahren zu deren Herstellung
US7105865B2 (en) 2001-09-19 2006-09-12 Sumitomo Electric Industries, Ltd. AlxInyGa1−x−yN mixture crystal substrate
US20070280872A1 (en) * 2001-09-19 2007-12-06 Sumitomo Electric Industries, Ltd. Method of growing gallium nitride crystal and gallium nitride substrate
JP3864870B2 (ja) * 2001-09-19 2007-01-10 住友電気工業株式会社 単結晶窒化ガリウム基板およびその成長方法並びにその製造方法
US20080006201A1 (en) * 2001-09-19 2008-01-10 Sumitomo Electric Industries, Ltd. Method of growing gallium nitride crystal
US7303630B2 (en) * 2003-11-05 2007-12-04 Sumitomo Electric Industries, Ltd. Method of growing GaN crystal, method of producing single crystal GaN substrate, and single crystal GaN substrate
JP3690326B2 (ja) * 2001-10-12 2005-08-31 豊田合成株式会社 Iii族窒化物系化合物半導体の製造方法
JP2003289176A (ja) * 2002-01-24 2003-10-10 Sony Corp 半導体発光素子およびその製造方法
US6879532B1 (en) 2002-04-10 2005-04-12 Integrated Device Technology, Inc. Content addressable and random access memory devices having high-speed sense amplifiers therein with low power consumption requirements
SG115549A1 (en) * 2002-07-08 2005-10-28 Sumitomo Chemical Co Epitaxial substrate for compound semiconductor light emitting device, method for producing the same and light emitting device
US7936338B2 (en) 2002-10-01 2011-05-03 Sony Corporation Display unit and its manufacturing method
US20040187092A1 (en) * 2003-03-20 2004-09-23 Toshiba Tec Kabushiki Kaisha Apparatus and method for performing the management of devices
TW587346B (en) * 2003-03-28 2004-05-11 United Epitaxy Co Ltd Optoelectronic device made by semiconductor compound
US7446345B2 (en) * 2005-04-29 2008-11-04 Cree, Inc. Light emitting devices with active layers that extend into opened pits
JP2006339534A (ja) * 2005-06-03 2006-12-14 Sony Corp 発光ダイオード、発光ダイオードの製造方法、発光ダイオードバックライト、発光ダイオード照明装置、発光ダイオードディスプレイおよび電子機器
JP2007012729A (ja) * 2005-06-29 2007-01-18 Toshiba Corp 窒化ガリウム系半導体レーザ装置
US7535031B2 (en) 2005-09-13 2009-05-19 Philips Lumiled Lighting, Co. Llc Semiconductor light emitting device with lateral current injection in the light emitting region
JP4895587B2 (ja) * 2005-11-29 2012-03-14 ローム株式会社 窒化物半導体発光素子
JP2007165409A (ja) * 2005-12-09 2007-06-28 Rohm Co Ltd 半導体発光素子及び半導体発光素子の製造方法
JP5018037B2 (ja) * 2005-12-28 2012-09-05 三菱化学株式会社 GaN系発光ダイオードの製造方法
JP2008010818A (ja) * 2006-06-01 2008-01-17 Sumitomo Electric Ind Ltd 基板、基板検査方法、素子および基板の製造方法
CN102037575B (zh) * 2008-03-27 2013-04-10 宋俊午 发光元件及其制造方法
TWI482214B (zh) * 2009-01-21 2015-04-21 Univ Nat Chunghsing Method for manufacturing epitaxial substrate with low surface defect density
TW201032350A (en) * 2009-02-20 2010-09-01 Univ Nat Central A manufacturing method of LED
JP2011060900A (ja) * 2009-09-08 2011-03-24 Showa Denko Kk 半導体発光素子の製造方法およびランプ、電子機器、機械装置
US8525221B2 (en) * 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
DE102009060750A1 (de) * 2009-12-30 2011-07-07 OSRAM Opto Semiconductors GmbH, 93055 Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
KR101683898B1 (ko) * 2010-06-21 2016-12-20 엘지이노텍 주식회사 발광 소자
KR101838016B1 (ko) * 2010-07-09 2018-03-13 엘지이노텍 주식회사 발광 소자
US9287452B2 (en) * 2010-08-09 2016-03-15 Micron Technology, Inc. Solid state lighting devices with dielectric insulation and methods of manufacturing
US9620670B2 (en) * 2010-09-02 2017-04-11 Micron Technology, Inc. Solid state lighting dies with quantum emitters and associated methods of manufacturing
GB2483689A (en) * 2010-09-16 2012-03-21 Sharp Kk A method of reducing the density of threading dislocations in light emitting devices, by the selective creation of cavities
CN102487111B (zh) * 2010-12-04 2014-08-27 展晶科技(深圳)有限公司 半导体发光芯片制造方法
FR2969815B1 (fr) * 2010-12-27 2013-11-22 Soitec Silicon On Insulator Tech Procédé de fabrication d'un dispositif semi-conducteur
CN102117873A (zh) * 2011-01-19 2011-07-06 武汉迪源光电科技有限公司 提高发光二极管发光效率的方法及其外延结构
US8748867B2 (en) * 2011-01-26 2014-06-10 Lg Innotek Co., Ltd. Light emitting device
JP5162016B1 (ja) * 2011-09-15 2013-03-13 株式会社東芝 半導体素子、ウェーハ、半導体素子の製造方法及びウェーハの製造方法
CN102420276A (zh) * 2011-09-16 2012-04-18 协鑫光电科技(张家港)有限公司 一种发光二极管及其制造方法
US9178114B2 (en) * 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US8698163B2 (en) * 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8853668B2 (en) * 2011-09-29 2014-10-07 Kabushiki Kaisha Toshiba Light emitting regions for use with light emitting devices
CN103078019A (zh) * 2011-10-25 2013-05-01 武汉迪源光电科技有限公司 一种发光二极管外延结构
US9184344B2 (en) 2012-01-25 2015-11-10 Invenlux Limited Lighting-emitting device with nanostructured layer and method for fabricating the same
CN104364917B (zh) * 2012-06-13 2017-03-15 夏普株式会社 氮化物半导体发光元件及其制造方法
JP5787851B2 (ja) * 2012-09-05 2015-09-30 株式会社東芝 半導体素子、ウェーハ、半導体素子の製造方法及びウェーハの製造方法
DE102013103602A1 (de) * 2013-04-10 2014-10-16 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zu seiner Herstellung
US20150325741A1 (en) * 2013-08-21 2015-11-12 Sharp Kabushiki Kaisha Nitride semiconductor light emitting device
KR20150025264A (ko) * 2013-08-28 2015-03-10 삼성전자주식회사 정공주입층을 구비하는 반도체 발광 소자 및 그 제조 방법
DE102014115599A1 (de) * 2013-10-28 2015-04-30 Seoul Viosys Co., Ltd. Halbleitervorrichtung und Verfahren zu deren Herstellung
KR102131697B1 (ko) * 2013-10-28 2020-07-08 서울바이오시스 주식회사 정전기 방전 특성이 향상된 반도체 소자 및 그 제조 방법
JP2015177025A (ja) * 2014-03-14 2015-10-05 株式会社東芝 光半導体素子
JP6227134B2 (ja) * 2014-06-03 2017-11-08 シャープ株式会社 窒化物半導体発光素子
CN105449061B (zh) * 2014-09-02 2017-12-05 展晶科技(深圳)有限公司 发光二极管晶粒及其制造方法
JP2016063176A (ja) 2014-09-22 2016-04-25 スタンレー電気株式会社 半導体発光素子
JP2016063175A (ja) 2014-09-22 2016-04-25 スタンレー電気株式会社 半導体発光素子
CN105226149B (zh) * 2015-11-02 2018-12-25 厦门市三安光电科技有限公司 一种led外延结构及制作方法
JP6500239B2 (ja) * 2016-01-26 2019-04-17 豊田合成株式会社 Iii族窒化物半導体発光素子
DE102016103346A1 (de) 2016-02-25 2017-08-31 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips und strahlungsemittierender Halbleiterchip
JP6188866B2 (ja) * 2016-05-19 2017-08-30 シャープ株式会社 窒化物半導体発光素子の製造方法
JP6905498B2 (ja) * 2017-09-15 2021-07-21 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
JP6405430B1 (ja) 2017-09-15 2018-10-17 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
DE102017124596A1 (de) 2017-10-20 2019-04-25 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
CN108550674A (zh) * 2018-03-27 2018-09-18 南昌大学 一种可增强空穴注入的发光二极管及其制备方法
DE102019131422A1 (de) * 2019-11-21 2021-05-27 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauelement und Verfahren zu dessen Herstellung

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US4885211A (en) 1987-02-11 1989-12-05 Eastman Kodak Company Electroluminescent device with improved cathode
GB8907304D0 (en) 1989-03-31 1989-05-17 British Telecomm Distributed feedback lasers
US5059861A (en) 1990-07-26 1991-10-22 Eastman Kodak Company Organic electroluminescent device with stabilizing cathode capping layer
US5047687A (en) 1990-07-26 1991-09-10 Eastman Kodak Company Organic electroluminescent device with stabilized cathode
US5073446A (en) 1990-07-26 1991-12-17 Eastman Kodak Company Organic electroluminescent device with stabilizing fused metal particle cathode
US5158907A (en) * 1990-08-02 1992-10-27 At&T Bell Laboratories Method for making semiconductor devices with low dislocation defects
US5224115A (en) 1991-07-17 1993-06-29 The United States Of America As Represented By The Secretary Of The Air Force Distributed feedback laser implemented using an active lateral grating
US5294870A (en) 1991-12-30 1994-03-15 Eastman Kodak Company Organic electroluminescent multicolor image display device
US5334539A (en) 1993-01-29 1994-08-02 Iowa State University Research Foundation, Inc. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes
US5424560A (en) 1994-05-31 1995-06-13 Motorola, Inc. Integrated multicolor organic led array
US5707745A (en) 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
US5787104A (en) * 1995-01-19 1998-07-28 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element and method for fabricating the same
JP3714984B2 (ja) 1995-03-06 2005-11-09 シャープ株式会社 分布帰還型半導体レーザ装置
JPH08307003A (ja) 1995-04-28 1996-11-22 Mitsubishi Electric Corp 半導体レーザ装置
US6015979A (en) * 1997-08-29 2000-01-18 Kabushiki Kaisha Toshiba Nitride-based semiconductor element and method for manufacturing the same
JP3925753B2 (ja) * 1997-10-24 2007-06-06 ソニー株式会社 半導体素子およびその製造方法ならびに半導体発光素子
US6051849A (en) * 1998-02-27 2000-04-18 North Carolina State University Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer
US6335546B1 (en) * 1998-07-31 2002-01-01 Sharp Kabushiki Kaisha Nitride semiconductor structure, method for producing a nitride semiconductor structure, and light emitting device
US6255198B1 (en) * 1998-11-24 2001-07-03 North Carolina State University Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby

Also Published As

Publication number Publication date
US6537839B2 (en) 2003-03-25
US20020084452A1 (en) 2002-07-04
US6329667B1 (en) 2001-12-11
JP2000232238A (ja) 2000-08-22

Similar Documents

Publication Publication Date Title
JP3594826B2 (ja) 窒化物半導体発光素子及びその製造方法
JP3909811B2 (ja) 窒化物半導体素子及びその製造方法
JP3785970B2 (ja) Iii族窒化物半導体素子の製造方法
JP4246242B2 (ja) 半導体発光素子
JP3898537B2 (ja) 窒化物半導体の薄膜形成方法および窒化物半導体発光素子
JP3930161B2 (ja) 窒化物系半導体素子、発光素子及びその製造方法
JP3770014B2 (ja) 窒化物半導体素子
US20100133506A1 (en) Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
JP2001160627A5 (ja)
JP3269344B2 (ja) 結晶成長方法および半導体発光素子
US7221690B2 (en) Semiconductor laser and process for manufacturing the same
JP2009021638A (ja) 窒化ガリウム系化合物半導体発光素子
JP2004288893A (ja) 3族窒化物半導体の積層構造、その製造方法、及び3族窒化物半導体装置
JP2006339427A (ja) 窒化物半導体発光ダイオード用エピタキシャルウエハの製造方法、窒化物半導体発光ダイオード用エピタキシャルウエハ、及び窒化物半導体発光ダイオード
JP2010272593A (ja) 窒化物半導体発光素子及びその製造方法
JP4646359B2 (ja) 窒化物半導体発光素子の製造方法
US20060081860A1 (en) Group III nitride semiconductor light-emitting element and method of manufacturing the same
JP4631214B2 (ja) 窒化物半導体膜の製造方法
JP4211358B2 (ja) 窒化物半導体、窒化物半導体素子及びそれらの製造方法
JP4255168B2 (ja) 窒化物半導体の製造方法及び発光素子
JP2009038408A (ja) 半導体発光素子
JP3763701B2 (ja) 窒化ガリウム系半導体発光素子
JP2007134741A (ja) 窒化物半導体構造とその製造方法および発光素子
JP4104234B2 (ja) 半導体発光素子およびその製造方法
JP2002094113A (ja) Iii−v族窒化物系半導体発光素子の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

EXPY Cancellation because of completion of term