JP4104234B2 - 半導体発光素子およびその製造方法 - Google Patents

半導体発光素子およびその製造方法 Download PDF

Info

Publication number
JP4104234B2
JP4104234B2 JP37089998A JP37089998A JP4104234B2 JP 4104234 B2 JP4104234 B2 JP 4104234B2 JP 37089998 A JP37089998 A JP 37089998A JP 37089998 A JP37089998 A JP 37089998A JP 4104234 B2 JP4104234 B2 JP 4104234B2
Authority
JP
Japan
Prior art keywords
layer
nitride
based semiconductor
semiconductor layer
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37089998A
Other languages
English (en)
Other versions
JP2000196195A (ja
Inventor
伸彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP37089998A priority Critical patent/JP4104234B2/ja
Publication of JP2000196195A publication Critical patent/JP2000196195A/ja
Application granted granted Critical
Publication of JP4104234B2 publication Critical patent/JP4104234B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、BN(窒化ホウ素)、GaN(窒化ガリウム)、AlN(窒化アルミニウム)もしくはInN(窒化インジウム)またはこれらの混晶等のIII −V族窒化物系半導体(以下、窒化物系半導体と呼ぶ)からなる半導体発光素子およびその製造方法に関する。
【0002】
【従来の技術】
近年、青色または紫色の光を発する発光ダイオード、半導体レーザ素子等の半導体発光素子として、GaN系半導体発光素子の実用化が進んできている。GaN系半導体発光素子の製造の際には、GaNからなる基板が存在しないため、サファイア(Al2 3 )等の絶縁性基板上に各層をエピタキシャル成長させている。
【0003】
しかしながら、GaN系半導体発光素子では、格子不整合の生じる基板上に結晶成長を行うため、格子欠陥が生じる。例えば、GaNとサファイア基板とでは格子定数が違うことから、サファイア基板上に成長したGaN系半導体結晶に、通常、109 〜1010個/cm2 程度の格子欠陥が存在する。このような格子欠陥は、サファイア基板の表面からGaN系半導体層へ伝播する。この格子欠陥により、サファイア基板上のGaN系半導体層からなる半導体発光素子では、素子特性および信頼性の劣化が生じるとともに、素子の寿命を短くしている。
【0004】
格子欠陥による素子特性および信頼性の劣化の問題を解決する方法として、半導体層を横方向に成長させるラテラル成長法が提案されている。図6(a)〜(d)は従来のラテラル成長法を説明するための模式的工程断面図である。
【0005】
図6(a)に示すように、サファイア基板11上にアンドープのAlGaNバッファ層12およびアンドープのGaN層13を順に連続的に成長させる。GaN層13には上下方向に延びる格子欠陥15が存在する。このGaN層13上に、ストライプ状のSiO2 膜14を形成する。
【0006】
次に、図6(b)に示すように、ストライプ状のSiO2 膜14間に露出したGaN層13上にアンドープのGaN層16を再成長させる。この場合、GaN層16は図中の矢印Yの方向へ再成長し、これに伴い、格子欠陥15もY方向へ延びる。
【0007】
GaN層16をさらに再成長させると、GaN層16が図中の矢印Xの方向にも成長し、SiO2 膜14上にもGaN層16が形成される。このようにして、図6(c)に示すように、SiO2 膜14上およびSiO2 膜14間のGaN13上に、GaN層16が形成される。
【0008】
このようなラテラル成長法を用いると、SiO2 膜14上に、格子欠陥の少ない高品質なGaN結晶を形成することができる。
【0009】
【発明が解決しようとする課題】
しかしながら、GaN層16の再成長において、矢印Yの方向へは成長しやすいが、矢印Xの方向へは成長しにくい。したがって、矢印Xの方向と矢印Yの方向とではGaN層16の成長速度に差が生じる。このため、GaN層16の表面を図6(d)に示すように平坦にするには、基板温度を調節することにより、所定の方向における成長速度を調整するとともに、GaN層16の厚みd4 を15μm以上と厚くする必要があった。それゆえ、GaN層16の形成には時間が長くかかっていた。
【0010】
また、サファイア基板11とGaN層16とでは熱膨張係数が異なるため、サファイアのウエハを成長時の基板温度から常温に戻した場合、ウエハに反りが生じる。特に、厚みの大きなGaN層16が形成されたウエハにおいては、大きな反りが生じる。このため、ウエハに結晶成長後のプロセスを行いにくい。
【0011】
一方、GaN系半導体発光素子においては、図6(d)に示すGaN層16をダブルヘテロ構造の下地として用い、GaN層16上に、さらに発光部を含むGaN系半導体層を形成する。例えば、図7および図8は、図6(d)に示すGaN層16上に構成される半導体レーザ素子の断面図である。なお、図7は、リッジ導波型構造を有する半導体レーザ素子であり、図8は、セルフアライン構造を有する半導体レーザ素子である。このような構造により、図7および図8に示す半導体レーザ素子では、横モード制御が行われる。
【0012】
図7に示す半導体レーザ素子の製造の際は、サファイア基板11上にバッファ層12およびアンドープのGaN層13を含む半導体層100を成長させ、GaN層13上の所定領域にSiO2 膜14を形成する。次に、アンドープの再成長GaN層16から、n−GaN層17、n−クラッド層18、発光層19およびp−クラッド層20を含む半導体層110を成長させる。続いて、エッチングにより、p−クラッド層20にリッジ部を形成した後、リッジ部の両側の平坦部上に電流ブロック層120を成長させる。さらに、リッジ部上および電流ブロック層120上にp−GaNコンタクト層130を成長させる。その後、p−コンタクト層130からn−GaN層17までの一部領域をエッチングにより除去し、露出したn−GaN層17上にn電極25を形成する。また、p−GaN層コンタクト層130上にp電極を形成する。
【0013】
このように、リッジ導波型構造を有する半導体レーザ素子の製造の際には、半導体層100,110,電流ブロック層120およびp−GaNコンタクト層130を形成するために4回の結晶成長が必要である。
【0014】
図8に示す半導体レーザ素子の製造の際は、サファイア基板11上にバッファ層12およびアンドープのGaN層13を含む半導体層100を成長させ、GaN層13上の所定領域にSiO2 膜14を形成する。次に、アンドープの再成長GaN層16、n−GaN層17、n−クラッド層18、発光層19、p−クラッド層20および電流ブロック層21を含む半導体層111を成長させる。続いて、エッチングにより、電流ブロック層21の所定領域を除去した後、p−第3クラッド層22およびp−コンタクト層23を含む半導体層121をさらに成長させる。その後、p−コンタクト層130からn−GaN層17までの一部領域をエッチングにより除去し、露出したn−GaN層17上にn電極25を形成する。また、p−GaN層コンタクト層23上にp電極26を形成する。
【0015】
このように、セルフアライン構造を有する半導体レーザ素子の製造の際には、半導体層100,111,121を形成するために3回の結晶成長が必要である。
【0016】
以上のように、図7および図8に示す半導体レーザ素子の製造の際には、4回および3回の結晶成長が必要となる。したがって、製造工程が多くなり、製造効率を低下させる。
【0017】
本発明の目的は、製造効率が高くかつ格子欠陥の少ない高品質な半導体発光素子およびその製造方法を提供することである。
【0018】
【課題を解決するための手段および発明の効果】
第1の発明に係る半導体発光素子は、基板上にガリウム、アルミニウム、インジウムおよびホウ素の少なくとも1つを含む第1の窒化物系半導体層が形成され、第1の窒化物系半導体層上の所定領域に絶縁膜が形成され、第1の窒化物系半導体層上の前記絶縁膜を除く領域にガリウム、アルミニウム、インジウムおよびホウ素の少なくとも1つを含む第2の窒化物系半導体層が形成され、絶縁膜上に第2の窒化物系半導体層から横方向に延びかつ発光層を含むガリウム、アルミニウム、インジウムおよびホウ素の少なくとも1つを含む第3の窒化物系半導体層が形成されており、発光層は横方向の成長により絶縁膜上に延びた領域に発光部を有しているものである。
【0019】
本発明に係る半導体発光素子において、発光層を含む第3の窒化物系半導体層は、第2の窒化物系半導体層の横方向の成長により絶縁膜上に形成される。このような半導体層の横方向の成長においては、基板から上下方向の格子欠陥が伝播しないため、格子欠陥の少ない高品質な発光層を有する半導体発光素子が実現される。
【0020】
第3の窒化物系半導体層は第2の窒化物系半導体層の成長に伴って形成されることから、上記の半導体発光素子は、第1および第2の窒化物系半導体層を形成するための2回の結晶成長により作製される。また、第3の窒化物系半導体層は、発光に必要な厚さを有していればよく、厚さを薄くすることが可能となる。したがって、製造効率が高くなる。
【0021】
第1の窒化物系半導体層に上面、底面および側面を有する段差部が形成され、段差部の上面に第1の電流阻止層が形成されるとともに、第1の電流阻止層上に第2の窒化物系半導体層が形成され、段差部の底面上に絶縁膜が形成されてもよい。
【0022】
これにより、第1の電流阻止層と絶縁膜とにより十分な電流狭窄が行われる。したがって、半導体発光素子として、しきい値電流が低く、高性能かつ信頼性の高い半導体レーザ素子が得られる。
【0023】
第3の窒化物系半導体層上に第1の電極が形成され、第1の窒化物系半導体層に接触する第2の電極が形成されてもよい。
【0024】
この場合、発光層を含む第3の窒化物系半導体層に電流経路が形成され、第3の窒化物系半導体層の発光層に発光部が形成される。第3の窒化物系半導体層は格子欠陥が少ないため、半導体発光素子の発光部が高品質となる。したがって、高性能かつ信頼性の高い半導体発光素子が実現される。
【0025】
第2の窒化物系半導体層上に第2の電流阻止層が形成され、第3の窒化物系半導体層上および第2の電流阻止層上に第1の電極が形成されてもよい。
【0026】
この場合、第2の窒化物系半導体層上の第2の電流阻止層および第1の窒化物系半導体層上の絶縁膜により電流狭窄が行われる。これにより、電流は発光層を含みかつ格子欠陥の少ない第3の窒化物系半導体層内を選択的に流れる。
【0027】
第2の発明に係る半導体発光素子の製造方法は、基板上にガリウム、アルミニウム、インジウムおよびホウ素の少なくとも1つを含む第1の窒化物系半導体層を形成する工程と、第1の窒化物系半導体層上の所定領域に絶縁膜を形成する工程と、第1の窒化物系半導体層上の絶縁膜を除く領域にガリウム、アルミニウム、インジウムおよびホウ素の少なくとも1つを含む第2の窒化物系半導体層を形成するとともに、第2の窒化物系半導体層の横方向の成長により第2の窒化物系半導体層から絶縁膜上に延びかつ発光層を含む第3の窒化物系半導体層を形成する工程とを備え、発光層は横方向の成長により絶縁膜上に延びた領域に発光部を有しているものである。
【0028】
本発明に係る半導体発光素子の製造方法においては、基板上に第1の窒化物系半導体層を形成し、この第1の窒化物系半導体層への所定領域に絶縁膜を形成するとともに、露出した第1の窒化物系半導体層の領域に第2の窒化物系半導体層を形成する。同時に、この第2の窒化物系半導体層の横方向の成長により、発光層を含む第3の窒化物系半導体層を絶縁膜上に形成する。
【0029】
上記の半導体発光素子の製造方法によれば、格子欠陥の少ない第3の窒化物系半導体層を形成することが可能となる。したがって、格子欠陥の少ない高品質な発光層を有する半導体発光素子を製造することが可能となる。
【0030】
また、第3の窒化物系半導体層を第2の窒化物系半導体層の横方向により形成するため、半導体発光素子は第1および第2の窒化物系半導体層を形成する2回の結晶成長で作製することが可能となる。さらに、第3の窒化物系半導体層は、発光に必要な厚さまで成長させればよく、厚く成長させる必要がない。したがって、製造に係る時間の短縮化が図られるとともに、製造効率が向上する。
【0031】
第1の窒化物系半導体層に上面、底面および側面を有する段差部を形成する工程と、段差部の上面に第1の電流阻止層を形成する工程とをさらに備え、第1の電流阻止層上に第2の窒化物系半導体層を形成し、段差部の底面上に絶縁膜を形成してもよい。
【0032】
これにより、第1の電流阻止層と絶縁膜により十分な電流狭窄を行うことが可能となる。したがって、半導体発光素子として、しきい値電流が低く、高性能かつ高信頼性の半導体レーザ素子が得られる。
【0033】
第3の窒化物系半導体層上に第1の電極を形成するとともに第1の窒化物系半導体層に接触する第2の電極を形成する工程をさらに備えてもよい。
【0034】
この場合、第3の窒化物系半導体層内に電流経路が形成される。これにより、格子欠陥の少ない第3の窒化物系半導体層の発光層内に発光部を形成することが可能となるため、高品質で信頼性の高い半導体発光素子を作製することが可能となる。
【0035】
また、第2の窒化物系半導体層上に第2の電流阻止層を形成する工程をさらに備え、第3の窒化物系半導体層上および第2の電流阻止層上に第1の電極を形成してもよい。
【0036】
これにより、第2の窒化物系半導体層上の第2の電流阻止層と第1の窒化物系半導体層上の絶縁膜とにより電流狭窄を行うことが可能となる。これにより、発光層を含みかつ格子欠陥の少ない第3の窒化物系半導体層に選択的に電流を流すことができる。
【0037】
【発明の実施の形態】
図1は本発明の一実施例におけるGaN系半導体レーザ素子の断面図である。
【0038】
図1に示すように、サファイア基板1上にアンドープのAl0.5 Ga0.5 Nからなる厚さ200〜300Åのバッファ層2、厚さ3μmのアンドープのGaN層3および厚さ5μmのn−GaN層4が順に形成されている。n−GaN層4には、上面、底面および側面からなる段差部40が形成されている。
【0039】
段差部40の上面にはZnドープのGaNからなる厚さ1〜2μmの電流ブロック層5が形成されている。また、段差部40の底面上の一部領域には厚さ数100ÅのSiO2 膜6が形成されている。
【0040】
以下、バッファ層2、GaN層3およびn−GaN層4を第1のGaN系半導体層200と呼ぶ。この第1のGaN系半導体層200には、サファイア基板1の表面から上下方向に格子欠陥15が延びている。
【0041】
電流ブロック層5上には、厚さ数100Åのn−GaN再成長バッファ層7、n−Al0.07Ga0.93Nからなるn−第1クラッド層8、InGaNからなる多重量子井戸発光層(以下、MQW発光層と呼ぶ)9、p−Al0.07Ga0.93Nからなるp−第2クラッド層10および厚さ0.05〜0.1μmのp−GaNコンタクト層11が順に形成されている。p−コンタクト層11の上には厚さ約5000ÅのSiO2 膜12が形成されている。
【0042】
以下、n−再成長バッファ層7、n−第1クラッド層8、MQW発光層9、p−第2クラッド層10およびp−コンタクト層11を第2のGaN系半導体層300と呼ぶ。この第2のGaN系半導体層300には、第1のGaN系半導体層200から上下方向に格子欠陥15が延びている。
【0043】
MQW発光層9は、図2のエネルギーバンド図に示すように、厚さ60Åの6つのIn0.08Ga0.92N量子障壁層91と厚さ30Åの5つのIn0.18Ga0.82N量子井戸層92とが交互に積層されてなる多重量子井戸構造を有する。その多重量子井戸構造の両面は厚さ0.1μmのGaN光ガイド層93で挟まれている。
【0044】
第2のGaN系半導体層300のn−再成長バッファ層7、n−第1クラッド層8、MQW発光層9、p−第2クラッド層10およびp−コンタクト層11からSiO2 膜6上に、横方向に成長したn−再成長バッファ層7a、n−第1クラッド層8a、MQW発光層9a、p−第2クラッド層10aおよびp−コンタクト層11aが順に延びている。
【0045】
以下、n−再成長バッファ層7a、n−第1クラッド層8a、MQW発光層9a、p−第2クラッド層10aおよびp−コンタクト層11aを第3のGaN系半導体層400と呼ぶ。この第3のGaN系半導体層400は、第2のGaN系半導体層300の横方向の結晶成長により形成されるため、第3のGaN系半導体層400には上下方向の格子欠陥15が存在しない。この第3のGaN系半導体層400のMQW発光層9aに、発光部30が形成される。
【0046】
第1のGaN系半導体層200のn−GaN層4上の所定領域に厚さ500ÅのTiおよび厚さ5000ÅのAlからなるn電極25が形成されている。また、第2のGaN系半導体層300のSiO2 膜12上および第3のGaN系半導体層400のp−コンタクト層11a上に、厚さ5000ÅのNiからなるp電極26が形成されている。
【0047】
なお、n型ドーパントとしてはSiが用いられており、p型ドーパントとしてはMgが用いられている。また、電流ブロック層5のドーパントとしてはZnが用いられており、これにより電流ブロック層5が高抵抗となる。
【0048】
この半導体レーザ素子においては、SiO2 膜6とSiO2 膜12とにより電流狭窄が行われるとともに、SiO2 膜6と電流ブロック層5とにより電流狭窄が行われる。したがって、電流はp電極26から第3の半導体層400および段差部40の側面を順に経て、第1の半導体層200内をn電極25に向かって流れる。このようにして十分な電流狭窄が行われるため、しきい値電流が低くなる。
【0049】
なお、段差部40の高さd3 により、電流の狭窄幅を制御し、発光部30の幅を制御することができる。このような段差部40の高さd3 は1μm程度であることが好ましい。
【0050】
また、発光部30を含む第3のGaN系半導体層400が、格子欠陥15の少ない高品質な層であるため、高性能で信頼性が高くかつ寿命が長くなるとともに、しきい値電流がさらに低くなる。
【0051】
第3のGaN系半導体層400におけるMQW発光層9aは、横方向(層界面に平行なる方向)においてSiO2 膜6とp−第2クラッド層10とに挟まれた構造となる。この場合、SiO2 膜6の屈折率およびp−第2クラッド層10の屈折率はMQW発光層9aの屈折率よりも低い。これにより、MQW発光層9aの横方向において屈折率に差が生じ、横方向の光の閉じ込めが行われる。したがって、半導体レーザ素子の横モード制御が行われる。
【0052】
第3のGaN系半導体層400におけるn−第1クラッド層8aの厚みd1 およびp−第2クラッド層10aの厚みd2 は、発光に必要な厚みがあればよく、結晶成長における時間を短縮する点から0.7〜1μmであることが好ましい。
【0053】
第2のGaN系半導体層300におけるn−第1クラッド層8およびp−第2クラッド層10を構成するAl0.07Ga0.93NのAl組成0.07は、通常のクラッド層を構成するAl0.15Ga0.85NのAl組成0.15よりも低い。このようにAl組成が低くなるように、n−第1クラッド層8およびp−第2クラッド層10を減圧下で形成することが好ましい。
【0054】
次に、図1に示す半導体レーザ素子の製造方法について説明する。
図3は、図1の半導体レーザ素子の製造工程を示す断面図である。
【0055】
図3(a)に示すように、常圧下でMOCVD法(有機金属化学的気相成長法)により、サファイア基板1のc面上にアンドープのAl0.5 Ga0.5 Nバッファ層2を基板温度550〜650℃で成長させる。さらに、基板温度1000〜1100℃で、アンドープのGaN層3、n−GaN層4およびZnドープのGaN電流ブロック層5を順に成長させる。
【0056】
次に、電流ブロック層5およびn−GaN層4の所定領域をエッチングにより除去し、n−GaN層4を露出させる。このようにして、図3(b)に示すように、n−GaN層4に、上面、底面および側面からなる段差部40を形成する。さらに、段差部40の底面部に、CVD法(化学的気相成長法)またはEB蒸着法(電子ビーム蒸着法)等により、SiO2 膜6を形成する。
【0057】
以上のようにして、第1のGaN系半導体層200を形成する。なお、エッチングに際しては、電流ブロック層5からSiO2 膜6の表面までの段差部40の高さd3 が1μm程度となるようにエッチングの深さを設定することが好ましい。
【0058】
続いて、減圧下(数10Torr)でMOCVD法により、図3(c)に示すように、電流ブロック層5上にn−GaN再成長バッファ層7、n−第1クラッド層8、MQW発光層9、p−第2クラッド層10およびp−コンタクト層11を成長させる。この場合、成長時の基板温度を950〜1050℃とする。このようにして、第2のGaN系半導体層300を形成する。
【0059】
第2のGaN系半導体層300の、各層7〜11が図中の矢印Yの方向に成長するに伴い、格子欠陥15も矢印Yの方向に延びる。したがって、第2のGaN系半導体層300には格子欠陥15が存在する。
【0060】
第2のGaN系半導体層300の各層7〜11は矢印Yの方向へ成長するとともに、図中の矢印Xの方向、すなわち横方向へも成長する。なお、本実施例においては基板温度950〜1050℃で各層7〜11を成長させるため、横方向の成長が速い。このような横方向の成長により、n−GaN再成長バッファ層7a、n−第1クラッド層8a、MQW発光層9a、p−第2クラッド層10aおよびp−コンタクト層11aをSiO2 膜6上に順に成長させる。このようにして、第3のGaN系半導体層400を形成する。なお、第2のGaN系半導体層300の各層7〜11の横方向の成長においては格子欠陥15が伝播しないため、横方向の成長により形成された第3のGaN系半導体層400には格子欠陥15が少ない。
【0061】
なお、通常、SiO2 膜上には半導体はエピタキシャル成長しないが、Alを多く含む半導体は、Al組成の低い半導体に比べると常圧でSiO2 膜上に僅かながら成長しやすい。本実施例では、第2および第3の半導体層300,400において、Al組成を低くしたn−第1クラッド層8,8aおよびp−第2クラッド層10,10aを減圧下で成長させることにより、SiO2 膜6上において、横方向の成長による第3のGaN系半導体層400以外の半導体層が成長するのを防ぐことができる。
【0062】
最後に、図3(d)に示すように、第2のGaN系半導体層300のp−コンタクト層11上にSiO2 膜12を形成し、このSiO2 膜12上および第3のGaN系半導体層400のp−コンタクト層11a上にp電極26を形成する。また、SiO2 膜6の所定領域を除去し、露出したn−GaN層4上にn電極25を形成する。
【0063】
以上のような半導体レーザ素子の製造方法によれば、格子欠陥15が少なく高品質な発光部30を形成することが可能となる。また、この半導体レーザ素子を製造する際に必要となる結晶成長は、第1のGaN系半導体層200の結晶成長と、第2のGaN系半導体層300のの結晶成長の計2回である。したがって、半導体レーザ素子の製造効率が向上する。
【0064】
さらに、この半導体レーザ素子においては、従来のラテラル成長法による半導体レーザ素子の製造方法のように再成長層(本実施例では第3のGaN系半導体層400)の厚さを厚くする必要がない。したがって、結晶成長にかかる時間の短縮が図られるとともに、サファイア基板とGaN系半導体層との熱膨張係数の違いによるサファイア基板の反りを防止することができる。
【0065】
なお、本実施例においては、絶縁膜としてSiO2 膜6,12を用いたが、Al2 3 、SiN等の他の絶縁膜を用いてもよい。また、サファイア基板以外に、SiC基板、スピネル基板等を用いてもよい。また、SiO2 膜6,12の代わりに高抵抗の半導体層を用いてもよい。
【0066】
さらに、上記実施例の半導体レーザ素子は、In、AlまたはGaを含む窒化物系半導体層により構成されるが、これ以外に、さらにBを含む窒化物系半導体層を含んでもよい。
【0067】
図4は本発明の他の実施例におけるGaN系半導体レーザ素子の断面図である。
【0068】
図4に示す半導体レーザ素子は、以下の点を除いて、図1に示す半導体レーザ素子と同様の構造を有する。
【0069】
図4の半導体レーザ素子は、サファイア基板1上にアンドープのAl0.5 Ga0.5 Nからなるバッファ層2、アンドープのGaN層3およびn−GaN層4が順に形成されてなる第1のGaN系半導体層210を有する。
【0070】
第1のGaN系半導体層210のn−GaN層4の所定領域上に、図1の半導体レーザ素子100と同様の構成を有する第2のGaN系半導体層300が形成されている。n−GaN層4上の第2のGaN系半導体層300のn−再成長バッファ層7に隣接する領域に、SiO2 膜6が形成されている。
【0071】
第2のGaN系半導体層300の各層8〜11の横方向の成長により、SiO2 膜6上にn−第1クラッド層8a、MQW発光層9a、p−第2クラッド層10aおよびp−コンタクト層11aから構成される第3のGaN系半導体層410が形成されている。
【0072】
また、n−GaN層4の厚みは均一であり、4〜5μmである。したがって図4の半導体レーザ素子には、図1の半導体レーザ素子のような段差部40が存在しない。図4の半導体レーザ素子においては、第1のGaN系半導体層210のn−GaN層4上に形成されたSiO2 膜6および第2のGaN系半導体層300のp−コンタクト層11上に形成されたSiO2 膜12により電流狭窄が行われる。
【0073】
上記のような半導体レーザ素子において、発光部30を含む第3のGaN系半導体層400の各層8a〜11aは格子欠陥15が少なく高品質であるため、しきい値電流が低くなるとともに、高性能で信頼性が高くかつ寿命が長くなる。
【0074】
さらに、図4の半導体レーザ素子では、図1の半導体レーザ素子と同様、横方向における屈折率の違いにより光の閉じ込めが行われるため、横モード制御を行うことが可能となる。
【0075】
次に、図4の半導体レーザ素子の製造方法について説明する。
図5は、図4の半導体レーザ素子の製造工程を示す断面図である。
【0076】
図5(a)に示すように、常圧下でMOCVD法により、サファイア基板1のc面上にアンドープのAl0.5 Ga0.5 Nバッファ層2を基板温度550〜650℃で成長させる。さらに、基板温度1000〜1100℃で、アンドープのGaN層3およびn−GaN層4を順に成長させる。
【0077】
次に、図5(b)に示すように、n−GaN層4上の所定領域にSiO2 膜6を形成する。なお、SiO2 膜6の形成方法については、図3において前述したとおりである。
【0078】
以上のようにして、第1のGaN系半導体層210を形成する。
続いて、図5(c)に示すように、露出したn−GaN層4上に、減圧下、基板温度950〜1050℃で、MOCVD法により、n−GaN再成長バッファ層7、n−第1クラッド層8、MQW発光層9、p−第2クラッド層10およびp−コンタクト層11を成長させる。このようにして第2のGaN系半導体層300を形成する。
【0079】
第2のGaN系半導体層300の各層7〜11が図中の矢印Yの方向に成長するに伴い、格子欠陥15も矢印Yの方向に延びる。したがって、第2のGaN系半導体層300には格子欠陥15が存在する。
【0080】
第2のGaN系半導体層300の各層8〜11は矢印Yの方向に成長するとともに、図中の矢印Xの方向、すなわち横方向へも成長する。このような横方向の成長により、SiO2 膜6上にn−第1クラッド層8a、MQW発光層9a、p−第2クラッド層10aおよびp−コンタクト層11aが形成される。このようにして、第3のGaN系半導体層410が形成される。なお、第2のGaN系半導体層300の各層8〜11の横方向の成長においては格子欠陥15が伝播しないため、第3のGaN系半導体層410には格子欠陥15が少ない。
【0081】
最後に、図5(d)に示すように、第2のGaN系半導体層300のp−コンタクト層11上にSiO2 膜12を形成した後、このSiO2 膜12上および第3のGaN系半導体層410のp−コンタクト層11上にp電極26を形成する。また、SiO2 膜6の所定領域を除去し、露出したn−GaN層4上にn電極25を形成する。
【0082】
以上のような半導体レーザ素子の製造方法によれば、格子欠陥15が少なく高品質な発光部30を形成することが可能となる。また、この半導体レーザ素子を製造する際に必要となる結晶成長は、第1のGaN系半導体層210の結晶成長と、第2のGaN系半導体層の結晶成長の計2回である。したがって、半導体レーザ素子の製造効率が向上する。
【0083】
さらに、この半導体レーザ素子においては、従来のラテラル成長法による半導体レーザ素子の製造方法のように再成長層(本実施例では第3のGaN系半導体層400)を厚くする必要がないため、結晶成長にかかる時間の短縮が図られるとともに、サファイア基板とGaN系半導体層との熱膨張係数の違いによるサファイア基板の反りを防止することができる。
【0084】
なお、上記2つの実施例においては、本発明に係る半導体発光素子およびその製造方法を半導体レーザ素子に適用した場合について説明したが、本発明は、発光ダイオード等の他の窒化物系半導体発光素子においても適用可能である。
【図面の簡単な説明】
【図1】本発明の一実施例におけるGaN系半導体レーザ素子の構造を示す断面図である。
【図2】図1の半導体レーザ素子におけるMQW発光層のエネルギーバンド構造図である。
【図3】図1の半導体レーザ素子の製造工程を示す断面図である。
【図4】本発明の他の実施例におけるGaN系半導体レーザ素子の構造を示す断面図である。
【図5】図4の半導体レーザ素子の製造工程を示す断面図である。
【図6】従来のラテラル成長法を用いたGaN系半導体層の形成方法を示す模式的断面図である。
【図7】リッジ導波型構造を有する半導体レーザ素子の構造を示す断面図である。
【図8】セルフアライン構造を有する半導体レーザ素子の構造を示す断面図である。
【符号の説明】
1,11 サファイア基板
2,12 AlGaNバッファ層
3,13 GaN層
4,16 n−GaN層
5 電流ブロック層
6,12,14 SiO2
7,7a,7b n−GaN再成長バッファ層
8,8a,8b n−第1クラッド層
9 MQW発光層
10 p−第2クラッド層
11 p−コンタクト層
15 格子欠陥
30 発光部

Claims (8)

  1. 基板上にガリウム、アルミニウム、インジウムおよびホウ素の少なくとも1つを含む第1の窒化物系半導体層が形成され、前記第1の窒化物系半導体層上の所定領域に絶縁膜が形成され、前記第1の窒化物系半導体層上の前記絶縁膜を除く領域にガリウム、アルミニウム、インジウムおよびホウ素の少なくとも1つを含む第2の窒化物系半導体層が形成され、前記絶縁膜上に前記第2の窒化物系半導体層から横方向に延びかつ発光層を含むガリウム、アルミニウム、インジウムおよびホウ素の少なくとも1つを含む第3の窒化物系半導体層が形成されており、前記発光層は前記横方向の成長により前記絶縁膜上に延びた領域に発光部を有していることを特徴とする半導体発光素子。
  2. 前記第1の窒化物系半導体層に上面、底面および側面を有する段差部が形成され、前記段差部の前記上面に第1の電流阻止層が形成されるとともに、前記第1の電流阻止層上に前記第2の窒化物系半導体層が形成され、前記段差部の底面上に前記絶縁膜が形成されたことを特徴とする請求項1記載の半導体発光素子。
  3. 前記第3の窒化物系半導体層上に第1の電極が形成され、前記第1の窒化物系半導体層に接触する第2の電極が形成されたことを特徴とする請求項1または2記載の半導体発光素子。
  4. 前記第2の窒化物系半導体層上に第の電流阻止層が形成され、前記第3の窒化物系半導体層上および前記第1の電流阻止層上に前記第1の電極が形成されたことを特徴とする請求項3記載の半導体発光素子。
  5. 基板上にガリウム、アルミニウム、インジウムおよびホウ素の少なくとも1つを含む第1の窒化物系半導体層を形成する工程と、
    前記第1の窒化物系半導体層上の所定領域に絶縁膜を形成する工程と、
    前記第1の窒化物系半導体層上の前記絶縁膜を除く領域にガリウム、アルミニウム、インジウムおよびホウ素の少なくとも1つを含む第2の窒化物系半導体層を形成するとともに、前記第2の窒化物系半導体層の横方向の成長により前記第2の窒化物系半導体層から前記絶縁膜上に延びかつ発光層を含む第3の窒化物系半導体層を形成する工程とを備え
    前記発光層は前記横方向の成長により前記絶縁膜上に延びた領域に発光部を有していることを特徴とする半導体発光素子の製造方法。
  6. 前記第1の窒化物系半導体層に上面、底面および側面を有する段差部を形成する工程と、
    前記段差部の前記上面に第1の電流阻止層を形成する工程とをさらに備え、
    前記第1の電流阻止層上に前記第2の窒化物系半導体層を形成し、前記段差部の前記底面上に前記絶縁膜を形成することを特徴とする請求項5記載の半導体発光素子の製造方法。
  7. 前記第3の窒化物系半導体層上に第1の電極を形成するとともに、前記第1の窒化物系半導体層に接触する第2の電極を形成する工程をさらに備えたことを特徴とする請求項5または6記載の半導体発光素子の製造方法。
  8. 前記第2の窒化物系半導体層上に第2の電流阻止層を形成する工程をさらに備え、
    前記第3の窒化物系半導体層上および前記第2の電流阻止層上に前記第1の電極を形成することを特徴とする請求項7記載の半導体発光素子の製造方法。
JP37089998A 1998-12-25 1998-12-25 半導体発光素子およびその製造方法 Expired - Fee Related JP4104234B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37089998A JP4104234B2 (ja) 1998-12-25 1998-12-25 半導体発光素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37089998A JP4104234B2 (ja) 1998-12-25 1998-12-25 半導体発光素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP2000196195A JP2000196195A (ja) 2000-07-14
JP4104234B2 true JP4104234B2 (ja) 2008-06-18

Family

ID=18497792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37089998A Expired - Fee Related JP4104234B2 (ja) 1998-12-25 1998-12-25 半導体発光素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP4104234B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164623A (ja) * 2000-11-24 2002-06-07 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体レーザ及びその製造方法
JP3790677B2 (ja) * 2001-03-19 2006-06-28 株式会社東芝 半導体発光装置及びその製造方法
JP2003031844A (ja) * 2001-07-11 2003-01-31 Sony Corp 半導体発光素子の製造方法
KR100862453B1 (ko) 2004-11-23 2008-10-08 삼성전기주식회사 GaN 계 화합물 반도체 발광소자
CN105070799B (zh) * 2015-09-01 2017-05-24 湘能华磊光电股份有限公司 一种led芯片的制作方法

Also Published As

Publication number Publication date
JP2000196195A (ja) 2000-07-14

Similar Documents

Publication Publication Date Title
JP3594826B2 (ja) 窒化物半導体発光素子及びその製造方法
JP5036617B2 (ja) 窒化物系半導体発光素子
JP5146481B2 (ja) ナイトライド系iii−v族化合物半導体装置、及び半導体装置の製造方法
JP3864735B2 (ja) 半導体発光素子およびその製造方法
JP4005275B2 (ja) 窒化物半導体素子
US20040041156A1 (en) Nitride semiconductor light emitting element and production thereof
JP2000223743A (ja) 窒化物系半導体発光素子及び窒化物半導体層の成長方法
JPWO2008153130A1 (ja) 窒化物半導体発光素子及び窒化物半導体の製造方法
JP5076656B2 (ja) 窒化物半導体レーザ素子
JP4822608B2 (ja) 窒化物系半導体発光素子およびその製造方法
JP3460581B2 (ja) 窒化物半導体の成長方法及び窒化物半導体素子
JP2007036174A (ja) 窒化ガリウム系発光ダイオード
JP3896718B2 (ja) 窒化物半導体
JP4162560B2 (ja) 窒化物系半導体発光素子
JP4277283B2 (ja) 窒化物半導体発光素子
JP3595276B2 (ja) 紫外線発光素子
JP4178807B2 (ja) 半導体発光素子およびその製造方法
JP4104234B2 (ja) 半導体発光素子およびその製造方法
JP3819398B2 (ja) 半導体発光素子およびその製造方法
JP2008028375A (ja) 窒化物半導体レーザ素子
JP4255168B2 (ja) 窒化物半導体の製造方法及び発光素子
JP3562478B2 (ja) 窒化物半導体の成長方法及びそれを用いた素子
JP5023567B2 (ja) 窒化物半導体レーザ素子
JP4285968B2 (ja) 窒化ガリウム系半導体発光素子
JP3963233B2 (ja) 窒化ガリウム系化合物半導体発光素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees