WO2000047433A1 - Vehicule de chantier a roues - Google Patents

Vehicule de chantier a roues Download PDF

Info

Publication number
WO2000047433A1
WO2000047433A1 PCT/JP2000/000715 JP0000715W WO0047433A1 WO 2000047433 A1 WO2000047433 A1 WO 2000047433A1 JP 0000715 W JP0000715 W JP 0000715W WO 0047433 A1 WO0047433 A1 WO 0047433A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
wheel
hydraulic cylinder
vehicle according
type
Prior art date
Application number
PCT/JP2000/000715
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Ichimura
Hiroshi Tsukui
Yukihiro Tatsuno
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11031733A external-priority patent/JP2000229508A/ja
Priority claimed from JP11031732A external-priority patent/JP2000229509A/ja
Priority claimed from JP03604999A external-priority patent/JP3623385B2/ja
Priority claimed from JP11036047A external-priority patent/JP2000233623A/ja
Priority claimed from JP03604899A external-priority patent/JP3623384B2/ja
Priority claimed from JP11036050A external-priority patent/JP2000233622A/ja
Priority claimed from JP04016499A external-priority patent/JP3579282B2/ja
Priority to DE60039157T priority Critical patent/DE60039157D1/de
Priority to EP00902880A priority patent/EP1160107B1/en
Priority to US09/890,854 priority patent/US6820877B1/en
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to KR10-2001-7009977A priority patent/KR100444193B1/ko
Priority to KR10-2004-7006294A priority patent/KR100485993B1/ko
Publication of WO2000047433A1 publication Critical patent/WO2000047433A1/ja
Priority to US10/801,670 priority patent/US7104548B2/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2257Vehicle levelling or suspension systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/26Resilient suspensions characterised by arrangement, location or kind of springs having fluid springs only, e.g. hydropneumatic springs
    • B60G11/30Resilient suspensions characterised by arrangement, location or kind of springs having fluid springs only, e.g. hydropneumatic springs having pressure fluid accumulator therefor, e.g. accumulator arranged in vehicle frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/005Suspension locking arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/056Regulating distributors or valves for hydropneumatic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G9/00Resilient suspensions of a rigid axle or axle housing for two or more wheels
    • B60G9/02Resilient suspensions of a rigid axle or axle housing for two or more wheels the axle or housing being pivotally mounted on the vehicle, e.g. the pivotal axis being parallel to the longitudinal axis of the vehicle
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/30Rigid axle suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/30Rigid axle suspensions
    • B60G2200/32Rigid axle suspensions pivoted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/30Rigid axle suspensions
    • B60G2200/34Stabilising mechanisms, e.g. for lateral stability
    • B60G2200/341Panhard rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/46Means for locking the suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/06Cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical

Definitions

  • the present invention relates to a wheel-type work vehicle that moves on wheels with tires.
  • BACKGROUND ART work vehicles moving with wheels, such as wheel-type hydraulic excavators, have tended to run at high speeds.
  • work vehicles moving with wheels such as wheel-type hydraulic excavators
  • Japanese Patent Application Laid-Open No. 1105009 / Japanese Patent Application Laid-Open No. Hei 6-27 8 438, Japanese Patent Application Laid-open No. Hei 7-125255, Japanese Patent Laid-Open No.
  • a work vehicle provided with a suspension mechanism between the vehicle and an axle is disclosed.
  • two sets of hydraulic cylinders are provided on both left and right sides of the vehicle body, and the upper end of the vehicle body and the cylinder tube, and on the axle
  • the beam installed in the vehicle and the lower end of the cylinder rod are each connected with a pin, and an elongated hole in the vertical direction is provided in the center of the vehicle body, and the upper part of the center of the beam and the center of the vehicle are inserted with the pin inserted through the elongated hole.
  • the bottom chambers of the left and right hydraulic cylinders communicate with each other via the throttle, and are connected to the accumulator via the pressure adjustment valve, allowing the flow path between the pressure adjustment valve and the accumulator to flow toward the accumulator.
  • a backward-acting hydraulic The cylinders are mounted, the port chambers are connected to each other via piping, a throttle and an accumulator are provided in the piping, and the lower end of each cylinder rod of the hydraulic cylinder is pin-connected to the axle.
  • Prior Art 3 the center of the vehicle body, the upper end of the cylinder tube of one set of hydraulic cylinders, and the center of the The lower ends of the axles are connected with pins, respectively, and the center of the axle and either the left or right of the vehicle body are connected with links. Then, the pot chamber of the hydraulic cylinder is connected to the accumulator via the throttle.
  • the work vehicle described in the above publication has the following problems. That is, since the work vehicle of the prior art 1 has a configuration in which the vehicle body and the axle are connected by pins, the load in the front-rear direction acts on the vehicle body and the axle during excavation work, braking during traveling, and the like. In this case, the load is received by the pin, and it is necessary to use a large pin with a large diameter in consideration of the strength of the pin. In addition, since the pin is configured to restrict the movement of the axle with respect to the vehicle body, the pin slides up and down as the axle moves up and down, thereby promoting wear of the sliding portion.
  • the gap between the pin and the long hole becomes large, and the displacement of the axle with respect to the vehicle body is added not only in the upward and downward directions but also in the left and right directions, making it difficult to absorb the shock smoothly.
  • the hydraulic cylinder used is a single-acting type only on the contraction side, it cannot hydraulically absorb shocks when extended, so that impacts act on structural members.
  • the work vehicle of the prior art 2 uses the left and right hydraulic cylinders to The hydraulic cylinder is subjected to excessive loads not only in the vertical direction but also in the front-rear direction and the left-right direction during excavation work and when the vehicle swings.
  • the work vehicle of the prior art 3 connects the vehicle body and the axle by the central hydraulic cylinder and the link, there is no limitation on the swing of the vehicle body, and the shock to the swing cannot be absorbed. .
  • the work vehicle described in the above publication cannot smoothly move the frame up and down and swing while absorbing the shock from the axle, which is not practical.
  • a fixed throttle is interposed in the passage between the hydraulic cylinder and the accumulator, but the bottom chamber and the rod chamber of the hydraulic cylinder are not communicated.
  • the damping force of the suspension depends only on the cross-sectional area of the throttle, and there is a problem that it is difficult to match the occupant's preference.
  • the working vehicle of the prior art 2 is provided with a spool type three-port three-position solenoid control valve for adjusting the vehicle height.
  • the pressure of the hydraulic cylinder is controlled so that the distance between the axle and the vehicle body at the time of running or working becomes a predetermined value, and the vehicle height is adjusted.
  • the work vehicle of the prior art 2 since the suspension performance is exhibited while controlling the pressure of the hydraulic cylinder during traveling, it is difficult to set each part (such as the throttle) related to the suspension performance. Also, since the pressure of the hydraulic cylinder is controlled during work, the suspension becomes fluffy, which makes the operation uncomfortable. Furthermore, the work vehicle of the prior art 2 uses a spool-type solenoid control valve, When the vehicle height is not adjusted, such as when driving, the electromagnetic control valve is switched to the neutral position to shut off the hydraulic cylinder from the hydraulic source or tank. However, since the spool-type control valve has a large amount of leakage when neutral, the vehicle height may fluctuate during running or stopping.
  • the vehicle height adjustment is mainly performed to maintain the vehicle posture in a certain standard state when the weight balance before and after the vehicle changes due to replacement of the front attachment (for example, when the vehicle body turns forward). . Therefore, the vehicle height should be adjusted while operating outside the cabin while visually observing the change in the attitude of the vehicle. It is difficult to finely adjust the vehicle height by operating the vehicle interior.
  • the operation lever of the control valve for height adjustment is provided outside the cabin and the height is adjusted by operating the operation lever, when the height is not adjusted, such as when driving, the impact from the road surface etc.
  • the control lever may be operated and the control valve may be accidentally switched to a position other than the neutral position.
  • the vehicle height fluctuates undesirably.
  • an operation lever for a control valve for height adjustment is provided outside the cabin, not only the operability becomes difficult, but also the operation lever may be damaged by flying objects from the front.
  • the suspension circuit is formed by switching the vehicle height adjustment control valve to the neutral position, the distance from the control valve to the accumulator affects the suspension performance. It is necessary to consider the positional relationship between the control valve and the accumulator in order to achieve the best performance.
  • An object of the present invention is to provide a wheel-type work vehicle that can effectively absorb a shock during traveling.
  • a wheel-type working vehicle is provided with a link for connecting at least one of axles provided on the front and rear of the vehicle and the vehicle body, and disposed on the left and right sides of the vehicle body. And a accumulator that communicates with the oil chamber of the hydraulic cylinder via a throttle.
  • the hydraulic cylinder may further include a change unit that changes suspension performance in accordance with a passage area of a passage communicating the bottom chamber and the rod chamber of the hydraulic cylinder. This makes it possible to easily change the suspension performance, particularly the damping performance.
  • the apparatus may further include changing means for changing the suspension performance in accordance with the passage area of the passage communicating the hydraulic cylinder and the accumulator. This makes it possible to easily change the suspension performance, especially the damping performance.
  • the accumulator is of a diaphragm type in which gas and oil inside are separated by a diaphragm, and that the accumulator is disposed in a space formed by the frame without part of the accumulator protruding from the upper end surface and the lower end surface of the frame. As a result, the accumulator is efficiently placed in the confined space and is protected from flying objects.
  • the wheel-type work vehicle includes a hydraulic source for generating hydraulic oil, a supply and discharge device for supplying hydraulic oil to the hydraulic cylinder, discharging hydraulic oil from the hydraulic cylinder, and extending and retracting the hydraulic cylinder, A traveling detection device that detects a non-traveling state of the vehicle, and a non-traveling state detected by the traveling detection device allows the hydraulic cylinder to expand and contract by the supply / discharge device, and that the traveling detection device detects the traveling state.
  • a vehicle harmonic adjustment suspension switching device that prohibits expansion and contraction of the hydraulic cylinder by a supply / discharge device to exert a suspension function may be provided.
  • the wheel-type work vehicle according to the present invention further includes a hydraulic pressure source that generates pressurized oil, and a vehicle height adjustment valve that switches an oil supply / discharge path to a hydraulic cylinder when the vehicle height is adjusted by operating an operation lever. It is preferable that the first protruding portion be provided so as to protrude from the side surface of the vehicle body frame ahead of the axle.
  • the wheel-type work vehicle includes a hydraulic pressure source for generating hydraulic oil, a vehicle height adjusting valve for switching a supply / discharge path of oil to / from a hydraulic cylinder during vehicle height adjustment, A stop valve for shutting off the passage from the hydraulic cylinder.
  • the vehicle may further include a fixing member that operates the stop valve on the traveling body side and restricts the stop valve to the shutoff position.
  • FIG. 1 is a side view of a wheel hydraulic excavator to which the present invention is applied.
  • FIG. 2 is a bottom view of the wheel type hydraulic excavator to which the present invention is applied (a view taken along the arrow II-II in FIG. 1).
  • FIG. 3 is a front view of a wheel hydraulic excavator to which the present invention is applied.
  • Fig. 4 is a sectional view taken along the line IV-IV in Fig. 2.
  • FIG. 5 is a sectional view taken along line VV of FIG.
  • FIG. 6 is a VI view of FIG.
  • FIG. 7 is a VII diagram of FIG.
  • Figure 8 is an enlarged view of the VIII section of Figure 2.
  • Fig. 9 is an enlarged view of section IX in Fig. 3.
  • FIG. 10 is an X-view of FIG.
  • FIG. 11 is a hydraulic circuit diagram of a wheel type work vehicle according to the first embodiment of the present invention.
  • FIG. 12 is a sectional view of a pole-type three-position switching valve constituting a hydraulic circuit of the wheel-type work vehicle according to the first embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of a block with a built-in pilot check valve attached to a hydraulic cylinder constituting a hydraulic circuit of the wheel-type work vehicle according to the first embodiment of the present invention.
  • FIG. 14 is an electric circuit diagram of the wheel-type work vehicle according to the first embodiment of the present invention.
  • FIGS. 15A and 15B show a wheel-type working vehicle according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of the operation of the suspension of FIG.
  • FIG. 16A, FIG. 16B, and FIG. 16C are views showing a telescopic state of a cylinder of the wheel-type work vehicle according to the first embodiment of the present invention.
  • FIG. 17 is a diagram showing a modification of FIG.
  • FIG. 18 is a hydraulic circuit diagram of a wheel-type work vehicle according to a second embodiment of the present invention.
  • FIG. 19 is a flowchart illustrating an example of processing in a controller of a wheel-type work vehicle according to the second embodiment of the present invention.
  • FIG. 20 is a diagram showing another example of changing the passage area between the bottom chamber and the rod chamber of the hydraulic cylinder constituting the hydraulic circuit of the wheel-type work vehicle according to the embodiment of the present invention.
  • FIGS. 21A and 21B are diagrams showing another example of restricting the position of the vehicle height adjustment switching lever of the wheel type work vehicle according to the embodiment of the present invention.
  • FIG. 1 is a side view (partially sectional view) of a wheel hydraulic excavator to which the present invention is applied.
  • the wheel hydraulic excavator includes a lower traveling body 81 and an upper revolving body 83 pivotally connected to an upper portion of the lower traveling body 81 via a revolving device 82.
  • the upper revolving structure 83 is provided with a work front attachment 84 (hereinafter referred to as an attachment) comprising a boom 84 A, an arm 84 B, and a bucket 84 C, and an operator cab 85.
  • the gate 5 is provided with a gate lock lever 86 that is operated at the release position (position A) when the operator gets on the vehicle and at the lock position (position B) when getting off the vehicle.
  • the lower traveling body 81 is provided with a chassis frame 70 (hereinafter, referred to as a frame), a traveling hydraulic motor 88, a transmission 89, a propeller shaft 90, and tires 91.
  • the driving force from the shaft 90 is transmitted to the tire 91 via the axles 1, 1 '.
  • fenders 6 1 F and 6 1 R cover the top of tire 91, respectively.
  • a hydraulic cylinder 2 described later is installed inside the front fender 61F.
  • the frame 70 has a baguette holder 87 at the forefront.
  • Fig. 2 is a diagram of the wheel type hydraulic excavator to which the present invention is applied, as viewed from the bottom surface (the arrow II in Fig. 1).
  • Fig. 3 is a diagram of the lower traveling body 81 viewed from the front of the vehicle (Fig. 4 is a cross-sectional view taken along the line IV-IV of FIG. 2 mainly showing the mounting state of the accumulator 7, and
  • FIG. 5 is a cross-sectional view taken along the line V-V of FIG. 2 mainly showing the mounting state of the hydraulic cylinder 2.
  • Figures 2 to 5 show the state when the vehicle is stopped (initial state).
  • the axle 1 is located immediately below the hydraulic cylinder 2, but its illustration is omitted, and in FIG. 5, the frame 70 and the axle 1 are shown by two-dot chain lines.
  • the frame 70 is composed of left and right side plates 71, 72 arranged on the front side of the vehicle and front plates abutting on the front and rear end surfaces of the side plates 71, 72, respectively.
  • 73, a rear plate 74, and left and right side plates 75, 76 (which are substantially U-shaped in cross section as shown in FIG. 4) which are in contact with the rear plate 74 and arranged on the rear side of the vehicle.
  • An upper plate 77 is in contact with the upper surfaces of the plates 71 to 76.
  • the left and right end portions of the front plate 73 protrude beyond the side plates 71 and 72, and the protrusions 61s are provided with a fender 61F (see FIGS. 2 and 3).
  • Fig. 6 is a view taken in the direction of arrow VI in Fig. 5
  • Fig. 7 is a view taken in the direction of arrow VII in Fig. 5 (enlarged view of the main part in Fig. 2).
  • the frame 70 and the axle 1 are indicated by two-dot chain lines.
  • a pair of brackets 3 arranged front and rear apart from each other are fastened to the front left and right side plates 7 1 and 72 by bolts 51, respectively.
  • a circular opening 3a is provided at the top of each bracket 3.
  • Projections 2t provided on the front and rear sides of the cylinder tube of the hydraulic cylinder 2 are inserted through the opening 3a, whereby the cylinder tube is rotatably supported.
  • each bracket 3 with respect to the side plates 7 1, 7 2 is determined by the dowel pins 5 2, thereby preventing the protrusion 2 t of the hydraulic cylinder 2 from hitting the opening 3 a of the bracket 3. it can.
  • a method in which the pair of brackets 3 sandwich the hydraulic cylinder 2 is called a trunnion type.
  • the tip of the biston rod 2a is rotatably connected to the axle 1 via the pin 92.
  • the hydraulic cylinder 2 is mounted such that the axis 2 L of the pair of left and right hydraulic cylinders 2 has an eight-shape, that is, the tip of the piston rod 2 a faces outward in the vehicle width direction. As shown in Figs.
  • the link 4 has a main plate 4a spaced apart from the front and back, a reinforcing plate 4 welded to the outer surface of the main plate 4a on the axle side, and both ends welded to the inner surface of the main plate 4a. It consists of four side plates 4c to 4e and a pipe 4f welded to the end face of the main plate 4a on the body frame 70 side.A box-shaped closed space is formed by the side plates 4c to 4e and the pipe 4f.
  • Inner plates 73a and 74a are provided on the front plate 73 and the rear plate 74 of frame 70, respectively, separated by the axial length of the pipe 4f, between which the pipe 4f is inserted.
  • the frame 70 and the link 4 are rotatably connected via the pin 93 by inserting the pin 93 into the frame 70.
  • a mounting member 1a for the link 4 is provided on the axle 1, and the main plate 4a is disposed so as to sandwich the mounting member 1a, and the pin 94 is inserted, so that the axle 1 and the link 4 It is connected rotatably through the.
  • the link 4 rotates around the pin 93 as a fulcrum as shown by the arrow, and the piston rod Axle 1 mainly moves up and down with respect to frame 70 within the range of expansion and contraction of 2a.
  • the axle 1 swings around the pin 94 as a fulcrum within the range of expansion and contraction of the piston rod 2a.
  • the fitting tolerance between the axial length of the pipe 4 f and the interval between the pair of inner plates 73 a and 74 a of the frame 70 (gap at the fitting portion L 1 in FIG.
  • a notch 73 c having a projection 73 b on the inside is provided at the lower center of the front plate 73 so that the head of the pin 94 can be seen from the front of the vehicle. I'm wearing The center of the head of the pin 94 is provided with a nipple 94 a for grease injection, The vehicle height is adjusted as described later while visually checking the positional relationship (height relationship) between the nipple 94a and the projection 73b of the front plate 73.
  • the left and right cylinders 2 are connected via a pipe 5, and an accumulator 7 is connected via a pipe 6 in the middle (center) of the pipe 5.
  • the accumulator 7 is further connected via a pipe 9 to a directional switching valve 8 whose position is switched by manual operation of a switching lever 8a, and the directional switching valve 8 is connected to a center joint 11 via a pipe 10. It has been. Details of the hydraulic circuit will be described later with reference to FIG.
  • the hydraulic pump 13 and the tank, which will be described later, are installed on the upper revolving structure 83 (see Fig. 1).
  • the accumulator 7 is a so-called diaphragm type that separates internal gas and oil by a diaphragm.
  • the diaphragm type has a circular shape as a whole, and the height in the longitudinal direction is lower than that of the bladder type.
  • the diaphragm type has no restrictions on its posture due to its structure, and its longitudinal direction is arranged vertically (hereinafter, this is referred to as vertical installation), and its longitudinal direction is arranged horizontally (hereafter referred to as vertical). , This is called horizontal placement).
  • the bladder type is difficult to use horizontally because of its structure.
  • the diaphragm type accumulator 7 is mounted horizontally.
  • the left and right side plates 75, 76 on the rear side of the frame 70 are formed in a substantially U-shaped cross section, and a horizontally long space is provided between the upper plate 77 and the side plates 75, 76.
  • An L-shaped cross-section bracket 77a is welded to the lower surface of the upper plate 77 (see Fig. 2), and the bracket 77a is integrated with a band 40
  • the member 40a is fastened with the bolt 41.
  • the band 40 is formed in a substantially C-shape, and an accumulator 7 is attached inside the band 40.
  • Bolts 42 are inserted into both ends of the band 40, and nuts 4 3 are screwed into the bolts 42. When the bolts 42 are tightened, the band 4 0 contracts, and thereby the accumulator 7 is fixed.
  • the above-mentioned pipe 5 is suspended by left and right side plates 75, 76 via a pipe fixing member 44.
  • the accumulator 7 does not protrude at the upper end from the upper plate 77, and its lower end is at the lower end of the side plates 75, 7.6. It is arranged without protruding. That is, the entire accumulator 7 is accommodated inside the upper end face and the lower end face of the frame 70. By arranging the accumulator 7 in this manner, the accumulator 7 is stored inside the frame 70, is protected from flying objects, and the aesthetic appearance is improved. Also, since the accumulator 7 is mounted horizontally, it is possible to prevent the pipe 6 connected to the accumulator 7 from protruding downward.
  • the pipe 5 connecting the left and right hydraulic cylinders 2 protrudes downward from the lowermost surfaces of the side plates 75, 76, but is laterally suspended.However, since there is no protrusion of the pipe 6, the amount of protrusion is minimized. can do.
  • a diaphragm-type accumulator 7 is used, but when a bladder-type accumulator is mounted instead, the height is increased, and the left and right side plates 75, 76 and the upper plate are used. 7 It becomes difficult to store the accumule overnight in the space formed by 7.
  • Fig. 8 is an enlarged view (partial sectional view) of the VIII part in Fig. 2
  • Fig. 9 is an enlarged view (partial sectional view) of the IX part in Fig. 3.
  • the side plate 71 on the vehicle front side from the hydraulic cylinder 2 is provided with a slot hole 71a in the vertical direction, and the switching lever 8a penetrates this slot hole 71a. And protrudes outside the side plate 71.
  • the entire switching lever 8a When viewed from the front side of the vehicle, the entire switching lever 8a is hidden by the shadow of the fender 61F, and the upper part of the switching lever 8a is covered with the fender 61F.
  • the switching lever 8a can be operated along the slot hole 71a, and when the switching lever 8a is moved to the A position from the neutral position shown in FIG. 9, the direction switching valve 8 is switched as described later.
  • the directional control valve 8 is switched as described later, and the vehicle height decreases.
  • FIG. 10 is a view of FIG. 8 as viewed from the front (the X view in FIG. 8).
  • the fixed cover 45 is provided as shown in FIGS.
  • the fixed cover 45 is formed of a substantially rectangular thin plate so as to cover the slot hole 71 a, and is fixed to the side plate 71 by two butterfly nuts 46.
  • a portion of the fixing force bar 45 (a portion corresponding to the neutral position of the switching lever 8a) is provided with a cutout portion 45a, and the cutout portion 45a allows the switching lever 8 to be used when the vehicle height is not adjusted. The movement of a is restricted.
  • the butterfly nut 46 is loosened, the fixed cover 45 is removed, and the restraint of the switching lever 8a is released.
  • FIG. 11 is a hydraulic circuit diagram showing a configuration of a suspension of the wheel-type work vehicle according to the first embodiment.
  • the suspension according to the present embodiment has a vehicle height adjustment function and a suspension lock function in addition to a suspension function during traveling.
  • the accumulator 7 is connected to a main hydraulic power source 13 via a directional switching valve 8, a center joint 11, and a hydraulic pilot switching valve 12.
  • the pilot port 12 a of the hydraulic pilot switching valve 12 is connected to a pilot hydraulic source 16 via an electromagnetic switching valve 14 and a lock valve 15.
  • the position of the mouth valve 15 is switched by operating a gate lock lever 86 provided in the operator's cab 85.
  • the gate lock lever 86 when the gate lock lever 86 is operated to the release position, it is switched to the position (a), and when it is operated to the lock position, it is switched to the position (mouth).
  • the electromagnetic switching valve 14 is switched to the position (mouth) when its solenoid 14a is excited by an electric signal I described later, and is switched to the position (a) when the solenoid 14a is demagnetized.
  • the directional control valve 8 is communicated with the tank, and the adjustment to increase the vehicle height is prohibited, and the adjustment to decrease the vehicle height becomes possible.
  • the directional control valve 8 is a three-port, three-position directional control valve, for example, a ball valve as shown in FIG.
  • the directional switching valve 8 is switched to the position (port), and as shown in FIG. 12, the A port 8A is completely disconnected from the P port 8P and the T port 8T. The leakage from A port 8 A is almost zero.
  • the directional control valve 8 includes a body 8b provided with a P port (pump port) 8P, a T port (tank port) 8T and an A port (service port) 8A, and a body 8b.
  • the ball 8c is built in and can be switched to the above (a) position, (mouth) position and (c) position by an external operation. Therefore, the directional control valve 8 has both a function as a directional control valve for switching the flow of the pressurized oil and a function as a stop valve for shutting off the flow of the pressurized oil with almost zero leakage.
  • the opening area is determined according to the operation amount of the ball 8c, and a so-called metering-type stop valve is used. can do.
  • the pipe 6 connected to the accumulator 7 has a throttle 6a with an area A1
  • the pipe 5 that communicates the pair of cylinder blocks 3 has a throttle 6 with an area A2.
  • Each of the apertures 5a and 6a has a relationship of at least A1> A2.
  • the accumulator 7 mainly functions as a spring for absorbing vibration
  • the diaphragms 5a and 6a as resistors mainly function as dampers for attenuating vibration. The characteristics of these springs and dampers are determined by the gas pressure sealed in the accumulator 7 and the areas of the throttles 5a and 6a.
  • the pipe 5 is bifurcated in the cylinder block 3, while the pipe C 2 in FIG. 13 is connected to the bottom chamber 2 b of the cylinder 2 via a pilot check valve 17.
  • the passage C 1 in FIG. 13 is passed through a variable throttle 5 b having an area A 3 (the area A 3 is variable and smaller than the area A 1 as described later) and a pilot check valve 17.
  • the pilot port of the pilot check valve 17 is connected to the pilot hydraulic pressure source 16 via the electromagnetic switching valve 18, and the driving of the pilot check valve 17 is performed by switching the electromagnetic switching valve 18. Controlled.
  • the electromagnetic switching valve 18 is switched to a position (mouth) when its solenoid 18a is excited by an electric signal I described later, and is switched to a position (a) when the solenoid 18a is demagnetized. .
  • the electromagnetic switching valve 18 When the electromagnetic switching valve 18 is switched to the position (mouth), the pressure oil from the pilot hydraulic pressure source 16 is supplied to the pilot port of the pilot check valve 17. As a result, the pilot check valve 17 functions simply as an opening valve, and the movement of the pressure oil from the oil chambers 2b and 2c of each cylinder 2 becomes possible (an unlocked state). At this time, the flow of the pressure oil in the bottom chamber 2b and the rod chamber 2c is regulated by the throttle 5b, that is, the variable throttle 5b mainly functions as a damper for damping vibration.
  • the solenoid-operated directional control valve 18 When the solenoid-operated directional control valve 18 is switched to the position (a), the supply of the hydraulic oil from the pilot hydraulic source 16 is stopped, whereby the pilot check valve 17 functions as a normal check valve. However, the movement of the pressure oil from the oil chambers 2 b and 2 c of each cylinder 2 is prohibited (locked state).
  • the excavation work of the wheel-type hydraulic excavator is performed with the front attachment 84 facing the rear of the vehicle, and in many cases, the excavator travels in the work site in the same posture.
  • the vehicle center of gravity is on the rear axle 1 'side, and rod 2a tends to extend.
  • the oil flowing out of the mouth 2a flows into the bottom chamber 2b as it is, and the rod 2a extends to the stroke end, and the impact at the time of the stroke end deteriorates the riding comfort. Therefore, a diaphragm 5b is provided to give a quasi-spring effect to achieve a stiff suspension performance. Therefore, the hardness in this case can be easily adjusted to an appropriate value by the variable aperture 5b.
  • Fig. 13 shows an example in which the pilot check valve 17 and the variable throttle 05b are built into the integrated block IB and mounted integrally with the suspension hydraulic cylinder 2.
  • a pair of pilot check valves are 17 A and 17 B, respectively.
  • Block IB has five external ports: a bottom chamber port P1, a rod chamber port P2, an accumulation port P3, a pilot port P4, and a drain port P5.
  • the pilot check valves 17A and 17B are each a movable valve element 17a, a spring 17b for urging the movable valve element 17a, and a plunger 1 for driving the movable valve element 17a. 7c and a return spring 17d of the plunger 17c.
  • the respective chambers 17e of the pair of pilot check valves 17A and 17B are communicated by a passage C1 provided with a variable throttle VD, and the passage C1 is connected to an accumulator port P3 by a passage C2. Communicating. Variable diaphragm The diaphragm area of the VD is changed externally to adjust the suspension damping performance.
  • the chambers 17f of the pair of pilot check valves 17A and 17B communicate with the pilot port P4, and the drain chamber 17g communicates with the drain port P5.
  • pilot pressure acts on the pilot port P4
  • the plunger 17c moves rightward to push the movable valve body 17a, and the pilot check valves 17A and 17B are moved.
  • the valve becomes an open valve, and the hydraulic cylinder 2 functions as a suspension.
  • Pilot pressure does not act on pilot port P4 in parking or working mode.
  • the movable valve element 17a is not pushed rightward, it functions as a check valve by the urging spring 17b, and the bottom chamber 2b and the rod chamber 2c of the suspension hydraulic cylinder 2 are both accumulator ports. It is shut off from P4, and the suspension hydraulic cylinder 2 is locked.
  • FIG. 14 is an electric circuit diagram of a suspension in the wheel-type work vehicle according to the first embodiment. As shown in Fig. 14, the electric circuit switches between T contact 21 T, ⁇ contact 21 P, and W contact 21 W according to the driving, parking and work modes.
  • a relay circuit is configured by a vehicle height adjustment switch 22 for instructing vehicle height adjustment by operation from the driver's cab 85, a power supply 23, and relays 24, 25, 26.
  • the electric circuit I is supplied to the solenoids 14 a and 18 a of the solenoid operated directional control valves 14 and 18, the solenoid 27 for releasing the parking brake and the solenoid 28 for operating the work brake by the relay circuit. Each is controlled.
  • the common contact 2 1 s of the brake switch 21 is connected to the power supply 23, T contact 2 1 T is a contact 24 a of relay 24, coil 25 c of relay 25 and solenoid 27 for releasing parking brake, and W contact 21 W is relay 26
  • the coil 26c and the solenoid 28 for operating the work brake are connected respectively, and the P contact 21P is open.
  • the solenoid 28 for operating the work brake is excited to activate the work brake, and the solenoid 27 for releasing the parking brake is demagnetized to park.
  • the brake operates.
  • the solenoid 27 for releasing the parking brake is demagnetized and the parking brake is activated.
  • the work brake and the parking brake are well-known and their illustration is omitted.
  • Solenoid 18 a of solenoid directional control valve 18 is connected to common contact 24 s of relay 24, b contact 24 s of relay 24 is connected to a contact 26 a of relay 26, relay 2
  • the 6 common contacts 26 s are respectively connected to the power supply 23, and the b contact 26 b of the relay 26 is open.
  • the solenoid 14a of the solenoid-operated directional control valve 14a is connected to the vehicle height adjustment switch 22 and the vehicle height adjustment switch 22 is connected to the a contact 25a of the relay 25 and the common contact 25 of the relay 25.
  • s is connected to the power supply 23, respectively, and the b contact 25b of the relay 25 is open.
  • the relay 25 is switched to the a contact 25 a, and in this state the vehicle height adjustment switch 2
  • the solenoid 14a of the electromagnetic switching valve 14 is connected to the power supply 23 and is excited.
  • the relay 24 and the relay 26 are connected to the b contact 24 b and the a contact, respectively.
  • the solenoid is switched to the 26a side, and the solenoid 18a of the electromagnetic switching valve 18 is connected to the power supply 23 to be excited.
  • the brake switch 21 is switched to the T contact 21 T as shown in FIG.
  • the solenoid 28 for operating the work brake is demagnetized to release the work brake, and the solenoid 27 for releasing the parking brake is excited to release the parking brake.
  • the coil 25c of the relay 25 is energized, and the relay 25 is switched to the b-contact 25b, whereby the circuit of the solenoid directional valve 14 to the solenoid 14a is formed.
  • the solenoid 14a is cut off and the solenoid 14a is demagnetized, and the solenoid-operated directional control valve 14 becomes the position (a).
  • the circuit to the coil 26c of the relay 26 is disconnected, the relay 26 is switched to the a contact 26a, and the circuit to the coil 24c of the relay 24 is disconnected.
  • the relay 24 is switched to the a contact 24 a side, the solenoid 18 a is excited, and the electromagnetic switching valve 18 is set to the position (mouth).
  • the demagnetization of the solenoid 14a and the excitation of the solenoid 18a in the running mode are irrelevant to the operation of the vehicle height adjustment switch 22.
  • the switching lever 8a In the traveling mode, the switching lever 8a is switched to the neutral position shown in FIG. 9, and a fixed cover 45 for restricting the switching lever 8a to the neutral position is attached. Therefore, even if impact is applied to the switching lever 8a due to flying objects or vibrations from the road surface during traveling, the switching lever 8a maintains the neutral position, and hydraulic oil flows out of the directional switching valve 8. Is blocked. In other words, the vehicle height during traveling due to external impact It will not go down.
  • the diaphragms 5a, 5b, and 6a function as dampers that regulate the transmission of vibration. As the diaphragm is smaller, the cylinder 2 is less likely to stroke and the damping property is increased. Due to the expansion and contraction of the cylinder 2 accompanying the movement of the pressurized oil, the axle 1 moves up and down or swings with respect to the frame 70, and even if the tire 91 receives an external force from the road surface during traveling, The external force is prevented from being directly transmitted to the frame 70.
  • the force F acting on the piston 2 p is represented by S 1 as the pressure receiving area of the biston 2 p in the pot chamber 2 and S as the pressure receiving area of the piston 2 p in the rod chamber 2 c. 2.
  • the pressure in cylinder 2 is P
  • F PX (S1-S2).
  • the brake switch 21 is switched to the P contact 21 P as shown in FIG.
  • the solenoid 27 for releasing the parking brake and the solenoid 28 for operating the work brake are both demagnetized, the parking brake is operated, and the work brake is released.
  • the solenoid 14 a of the electromagnetic switching valve 14 is demagnetized and the circuit to the coil 24 c of the relay 24 is cut off.
  • the relay 24 is switched to the a contact 24 a side, and the solenoid 18 a of the electromagnetic switching valve 18 is demagnetized.
  • both the solenoid directional control valves 14 and 18 are switched to the position (a).
  • the hydraulic pilot switching valve 12 is switched to the position (a)
  • the P port of the directional control valve 8 is communicated with the tank, and the pressure to the pilot port of the pilot check valve 17 is adjusted.
  • the supply of oil is stopped, and the pilot check valve 17 becomes a check valve to prohibit the movement of pressurized oil from the oil chambers 2 b and 2 c of each cylinder 2. That is, even if the fixed cover 45 is removed and the switching lever 8a is operated when the vehicle height adjustment switch 22 is turned off, the supply and discharge of the hydraulic oil to the hydraulic cylinder 2 is prohibited, and the vehicle The height does not fluctuate undesirably.
  • the vehicle height can be adjusted to a desired height position depending on the type of the attachment 84 used, but this adjustment is performed in the parking mode.
  • Initial condition is standard weight w Attachment 84 is attached, and as shown in Fig. 16A, the strokes L1 and L2 of the cylinder 2 in the contraction direction and the extension direction are equal (L1-L2), respectively.
  • Ston 2p is stationary.
  • Fig. 16B when replacing the attachment 84 'with a weight W'(> W), the cylinder 2 contracts, the front vehicle height decreases, and the possible stroke in the contraction direction is reduced.
  • the brake switch 21 is switched to the P contact 21P side, so that the coils 25c, 26c of the relays 25, 26 are not energized and are not energized. Rays 25 and 26 are switched to a contact 25a and 26a sides, respectively.
  • the vehicle height adjustment switch 22 is turned on (closed) to adjust the vehicle height, the solenoid 14 a of the electromagnetic switching valve 14 is excited and the coil 24 c of the relay 24 is energized. Is energized, and the relay 24 is switched to the b contact 24 b side, and the solenoid 18 a of the electromagnetic switching valve 18 is excited.
  • both the electromagnetic switching valves 14 and 18 are switched to the positions (ports).
  • the hydraulic oil from the pilot hydraulic source 16 is supplied to the pilot port 12a of the hydraulic pilot switching valve 12 and the hydraulic pilot switching valve 12 is moved to the position.
  • the cylinder 2 is in the state of FIG. 16B (L ⁇ ⁇ 2 ′), that is, the height of the projection 73 b provided on the front plate 73 of the frame 70 is
  • L ⁇ L 2 ′
  • the side plate 7 1 is located at the right front of the frame 70. Insert your hand between the wheel and the tire 91, loosen the butterfly nut 46 and remove the fixing cover 45.
  • the switching lever 8a is operated to the A side in FIG. 9 to switch the direction switching valve 8 to the position (a).
  • the pressure oil from the main hydraulic pressure source 13 is supplied to the oil chambers 2 b and 2 c of each cylinder 2 via the directional switching valve 8, whereby the force F acting on the piston 2 p is (Force in the extension direction) increases, the cylinder 2 extends, and the vehicle height increases.
  • the cylinder 2 is in the state shown in FIG. 16C (L 1 ′> L 2 ′), that is, the height of the projection 73 b provided on the front plate 73 of the frame 70 is set to the height of the axle.
  • the play switch 21 is switched to the W contact 21 W side.
  • the solenoid 28 for operating the work brake is excited, the solenoid 27 for releasing the parking brake is demagnetized, and both the work brake and the parking brake are operated.
  • the coil 25c of the relay 25 is not energized and the relay 25 is switched to the contact a 25a side, and the coil of the relay 26 is energized and the relay 26 is connected to the b contact Switch to 26 b side. Therefore, the height adjustment switch 2 2 Is turned on accidentally and the coil 24 c of the relay 24 is energized, the solenoid 18 a of the directional control valve 18 is not excited, and the directional control valve 18 is switched to the position (a).
  • the pilot check valve 17 functions as a check valve. Therefore, even if the vehicle height adjustment switch 22 is erroneously operated, the vehicle height fluctuation is prohibited.
  • the hydraulic oil from the pilot hydraulic source 16 is supplied to the work pilot valve (not shown) via the lock valve 15, so that, for example, the operation lever (not shown) is operated to drive the attachment 84.
  • the pilot pressure oil proportional to the operation amount of the operation lever is guided to the pilot type control valve, and the control valve is operated, thereby enabling work such as excavation.
  • the cylinder 2 is not stroked and the reaction force (digging reaction force) due to excavation is absorbed by the accumulator 7. It is possible to work stably in the suspension locked state without any trouble.
  • the link 4 has a box shape, and the reinforcing plate 4b is provided outside the main plate 4a, so that the bending rigidity and the torsional rigidity of the link 4 are increased, and the link 4 can sufficiently withstand the excavation load.
  • the overall length of the cylinder tube (TL in Fig. 6) can be shortened, and as a result, the space between the cylinder tube and the rotating body 83 as a luggage storage space An extra space can be secured.
  • the cylinder tube is provided with a projection 2t and the hydraulic cylinder 2 and the bracket 3 are connected via the projection 2t, for example, as shown in Fig. 17, the cylinder tube projection 2t
  • the width WL in the front-rear direction can be shortened compared to the type in which the pin 53 is inserted into the hydraulic cylinder 2 and the bracket 3 is connected via the pin 53.
  • bracket 3 is positioned by the dowel pins 52, it is possible to prevent the protrusion 2t of the cylinder 2 from hitting one side of the opening 3a of the bracket 3. Furthermore, since the axis 2 L of the hydraulic cylinder 2 is formed in an eight-shape, interference between the cylinder 2 and the frame 70 when the cylinder 2 expands and contracts can be prevented.
  • a switching valve for switching the supply and discharge of hydraulic oil and the function of a stop valve for shutting off the hydraulic cylinder 2 from the hydraulic pump 13 and the tank are realized by a ball type 3 position switching valve 8. If 8 is switched to the neutral position, leakage of pressure oil from the hydraulic cylinder 2 is reliably suppressed, and the vehicle height does not change undesirably. In addition, since the fixed cover 45 that restricts the switching lever 8a for switching the switching valve 8 to the neutral position is provided, the switching valve 8 is always held at the neutral position (functioning as a stop valve). Leakage of pressure oil from the cylinder and supply of pressure oil to the hydraulic cylinder 2 are reliably suppressed.
  • the size can be reduced. Also, metering (flow control characteristics) according to the operation amount of the ball 8c built into the body 8b can be obtained, so that the movement of the upper revolving body 83 at the time of adjusting the vehicle height becomes smooth. Furthermore, since the pole type 3 position switching valve 8 is arranged downstream of the center joint 11, that is, provided near the accumulator 7 and the hydraulic cylinder 2, the stop valve 8 and the accumulator 7 are connected. The length of the hydraulic piping (especially the length of pipeline 9) can be shortened, and the effect on suspension performance designed mainly based on the capacity of the accumulator can be reduced.
  • the pipe 9 is made of a rubber hose, it is expected that the suspension 9 will be elastically deformed at a high pressure and the suspension performance will deteriorate.
  • rubber hoses with a withstand pressure (for example, 34.3 MPa) that is sufficiently higher than the maximum pressure (for example, 8.8 MPa) of the suspension hydraulic circuit are used to reduce the amount of elastic deformation and reduce the suspension performance. Restrained.
  • the diaphragm type accumulator 7 Since the diaphragm type accumulator 7 is provided in the middle of the pipe line 5 communicating the cylinder 2, the height is lower than that of the bladder type having the same capacity, and accordingly, the left and right side plates 75, Efficiently within the space formed by 7 6 and the upper plate 7 7
  • Accumulator 7 can be placed (using space effectively). Further, since the accumulator 7 is arranged horizontally, it is not necessary to take out the pipe 6 connected to the accumulator 7 downward, and the height of the accumulator 7 including the pipe 6 can be reduced.
  • the check valves 17 are used to check the oil chambers 2 b, Since the transfer of pressurized oil from 2c has been prohibited, it is possible to work while feeling the excavation reaction force without feeling uncomfortable. Also, a relay circuit is provided by the brake switch 21 and the relays 24 to 26, etc., so that the vehicle height adjustment switch 22 may be accidentally turned on during driving or work, or the fixed cover 45 may be used. Even if the switching lever 8a is operated during mounting without mounting (operation is not possible during running), since the vehicle height adjustment is prohibited (so-called interlock), undesirable vehicle height adjustment can be prevented. . Furthermore, since the vehicle height adjustment during traveling and work is prohibited, the pressure of the cylinder 2 is not frequently controlled by using the pressure oil from the main hydraulic pressure source 13 to reduce fuel consumption. You.
  • a switching lever 8a for driving the ball type three-position switching valve 8 is provided so as to protrude from the side plate 71 of the frame 70 toward the vehicle side, and the fender 6 1F is provided in front of and above the vehicle of the switching lever 8a.
  • the switching lever 8a is protected from flying objects.
  • the switching lever 8a since the switching lever 8a is located in front of the hydraulic cylinder 2 located directly above the axle 1, there is no need to reach into a deep place, improving operability and improving the hydraulic cylinder from the front of the vehicle. Since the adjustment can be made while visually observing the position change of the link 2 and the link 4, the vehicle height can be easily and reliably adjusted.
  • the notch 73c having the projection 73b is provided on the front plate 73 of the frame 70, so that the positional relationship between the projection 73b and the pin 94 can be visually observed from the front of the vehicle, and it is subtle.
  • the vehicle height can be easily adjusted, and the assembling workability and maintainability when connecting the axle 1 and the frame 70 are improved. Furthermore, since there is no need to provide a control device for adjusting the vehicle height, the configuration is simplified and the cost is reduced.
  • FIG. 18 is a hydraulic circuit diagram showing a configuration of a vehicle height adjusting device according to the second embodiment of the present invention.
  • the vehicle harmonic control device according to the second embodiment includes the directional control valve 8, the hydraulic pilot changeover valve 12, the lock valve 15, and the electromagnetic changeover valve in FIG. 11.
  • the electromagnetic control valve 31 that controls the flow of hydraulic oil from the main hydraulic power source 13 to each cylinder 2 and the drive of the electromagnetic control valve 31 are controlled.
  • the gate lock lever 86 has a gate lock switch 86a which turns on and off in accordance with the lock operation.
  • a solenoid 27 for releasing the parking brake and a solenoid 28 for operating the work brake are connected to the brake switch 21 in the same manner as in FIG.
  • the controller 30 is connected to a stroke sensor 32, 33, a gate lock switch 86 a, a brake switch 21, and a vehicle height adjustment switch 22.
  • the controller 30 executes the processing described below based on these input signals, and performs the solenoids 31 a and 31 b of the solenoid control valve 31 and the solenoids 1 18 of the solenoid switching valve 18. 8 Output the control signal I to each of a.
  • FIG. 19 is a flowchart showing an example of the processing executed by the controller 30. This flowchart is started, for example, by turning on an engine key switch (not shown).
  • step S1 it is determined which of the brake switches 21 has been switched based on a signal from the brake switch 21.
  • step S2 it is determined whether the vehicle height adjustment switch 22 is on.
  • step S3 it is determined whether or not the gate lock switch 86a is ON, that is, whether or not the gate lock lever 86 has been locked.
  • step S3 When step S3 is affirmed, the process proceeds to step S4, and when denied, the process proceeds to step S11.
  • step S4 the control signal I is output to the solenoid 18a of the electromagnetic switching valve 18 to excite the solenoid 18a.
  • the electromagnetic switching valve 18 is switched to the position (port), and the pie port of the pie port check valve 17 is connected to the pie port hydraulic pressure source 16. Is supplied, and the pilot check valve 17 functions as an opening valve.
  • step S5 the detection values z1, z2 from the stroke sensors 32, 33 are read.
  • step S7 it is determined whether or not the deviation a is larger than a predetermined upper limit ⁇ 1 (for example, 1.01xa). If the result is affirmative, the process proceeds to step S8. If the result is negative, the process proceeds to step S9. .
  • a predetermined upper limit ⁇ 1 for example, 1.01xa
  • step S8 the control signal I is output to the solenoid 3 la of the electromagnetic control valve 31 to excite the solenoid 31a, and the process returns to step S5.
  • the electromagnetic control valve 31 is switched to the position (a), and the pressure oil from the main hydraulic pressure source 13 is supplied to the oil chambers 2 b and 2 c of each cylinder 2.
  • the cylinder 2 extends and the vehicle height increases.
  • step S9 it is determined whether or not the deviation a is smaller than a predetermined lower limit ⁇ 2 (for example, 0.99Xa), and if affirmed, the process proceeds to step S10.
  • a predetermined lower limit ⁇ 2 for example, 0.99Xa
  • step S10 the control signal I is output to the solenoid 31b of the electromagnetic control valve 31 to excite the solenoid 3lb, and the process returns to step S5.
  • the electromagnetic control valve 31 is switched to the position (c), and the pressure oil from each cylinder 2 is discharged to the tank.
  • step S11 the output of the control signal I to the solenoids 31a, 31b of the electromagnetic control valve 31 is stopped, the solenoids 3la, 31b are demagnetized, and the routine returns.
  • the electromagnetic control valve 31 is switched to the position (mouth), and the circuit on the cylinder 2 side is blocked from the main hydraulic pressure source 13 and the tank.
  • step S1 If it is determined in step S1 that the brake switch 21 has been switched to the T contact 21 T side, the process proceeds to step S12, and the control signal I is output to the solenoid 18a of the solenoid-operated switching valve 18. To excite solenoid 18a, and proceed to step S11.
  • the solenoid-operated directional control valve 18 is switched to the position (port), and the pilot port of the pilot check valve 17 is supplied with hydraulic oil from the pilot port hydraulic power source 16 to perform the pilot operation.
  • Check valve 17 functions as an opening valve.
  • the oil chambers 2b, 2c of each cylinder 2 communicate with the accumulator 7, and the suspension works (suspension unlocked), thereby absorbing and attenuating the vibration during traveling.
  • step SIT brake switch 21 determines that the step SIT brake switch 21 has been switched to the W contact 21 W side.
  • step S13 stop the output of the control signal I to the solenoid 18a of the electromagnetic switching valve 18, demagnetize the solenoid 18a, and proceed to step S11.
  • the solenoid-operated directional control valve 18 is switched to the position (A), the supply of pressure oil to the pilot port of the pilot check valve 17 is stopped, and the pilot check valve 17 is used as a check valve. Function.
  • the inflow and outflow of pressurized oil from the oil chambers 2b and 2c of each cylinder 2 are prohibited (suspension locked state), and it is possible to counteract excavation reaction force.
  • the specific operation of the second embodiment is that the suspension function provided by the accumulator 7 is exhibited in the driving mode, the parking brake operates in the parking mode, and the gate lock lever 18
  • the basic operation is the same as that of the first embodiment, such as that the vehicle height can be adjusted when the lock operation is performed, and that the oil chambers 2 b and 2 c of each cylinder 2 are blocked in the work mode. The explanation is omitted here.
  • the electromagnetic control valve 31 is turned off by a command from the controller 30 based on the detection values z 1 and z 2 from the stroke sensors 32 and 33. Since the vehicle height is automatically adjusted by switching, the trouble of manually operating the directional control valve 8 and the like are eliminated, and the efficiency of the vehicle height adjustment operation is improved.
  • a block IB with a variable throttle VD was used in the passage C1 between the potom chamber 2b and the rod chamber 2c, and this block IB was attached to the suspension hydraulic cylinder 2 to change the suspension performance. I did it.
  • the pilot check valves 17A and 17B attached to the hydraulic cylinder 2 are communicated with the rubber hose GH, and a restrictor 5b is provided in the rubber hose GH connection adapter AD.
  • the suspension performance may be changed by exchanging various adapters having different inner diameters.
  • the throttle 5a interposed between the bottom chamber 2b of the suspension hydraulic cylinder 2 and the accumulator 7 is a variable throttle, the suspension performance, particularly the hardness, can be easily changed. .
  • the bottom chamber 2b of the suspension hydraulic cylinder 2 and the accumulator 7 are connected by a rubber hose, the connection adapter is provided with a throttle 5a, and various adapters having different inner diameters are used.
  • the suspension performance may be changed by replacing the suspension.
  • the aperture 5b is a variable aperture, but the aperture 5b is a fixed aperture and the aperture 5a May be a variable aperture.
  • the diaphragms 5b and 5a are variable diaphragms, both the attenuation and the hardness can be easily changed.
  • all of the accumulator 7 is stored in the space formed by the upper plate 77 of the frame 70 and the side plates 75, 76, but if most of the accumulator 7 is stored, the scattered objects For example, the accumulator 7 is protected from the above, so it is not always necessary to store the entire accumulator 7.
  • the accumulator overnight 7 was mounted on the frame 70 in a horizontal position, it may be mounted vertically or mounted diagonally.
  • the top valve function is realized by one ball type 3 position switching valve 8.
  • a spool type as disclosed in Japanese Patent Application Laid-Open No. 7-132732 is disclosed.
  • a stop valve having a small leakage structure may be arranged in series with the spool-type three-position switching valve.
  • a ball-type open / close valve as shown in Fig. 12 or a pilot-type check valve that becomes an open valve or a check valve depending on the pressure acting on the pilot port is used. can do.
  • FIG. 21A a cable 47 that can rotate in the direction of arrow AB with the rotation axis AX as a fulcrum is provided, and a panel (not shown) is mounted inside the rotation member 47a. By this panel, the butterfly 47 is urged in the direction B, thereby restraining the position of the switching lever 8a.
  • a cable 47 that can rotate in the direction of arrow AB with the rotation axis AX as a fulcrum is provided, and a panel (not shown) is mounted inside the rotation member 47a. By this panel, the butterfly 47 is urged in the direction B, thereby restraining the position of the switching lever 8a.
  • a pair of curved guides 71b are fixed to the side plate 71, and a thin plate 48 that can slide in the direction of arrow AB is provided inside the guide 71b. Then, the thin plate 48 and the side plate 71 are connected by a spring 49. The plate 49 is urged in the direction B by the spring 49, thereby restricting the position of the switching lever 8a.
  • the front plate 73 of the frame 70 is used to facilitate the adjustment of the vehicle height.
  • the protrusion 73 b is provided at a predetermined position (a position corresponding to the nipple 94 a), a mark other than the protrusion (for example, marking) may be provided.
  • the accumulators 7 are provided so as to communicate with the left and right cylinders 2, the accumulators 7 may be provided separately for each cylinder 2.
  • the vehicle height adjusting device is provided only on the front wheels, but may be provided only on the rear wheels or on both the front wheels and the rear wheels.
  • the running, parking, and work states of the vehicle are detected in response to the operation of the brake switch 21, that is, based on the brake state.
  • a vehicle speed sensor (not shown) The vehicle state may be detected based on the detection value from.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Description

明細書 ホイール式作業車両 本出願は日本国特許出願平成 1 1年第 0 3 1 7 3 2号、 平成 1 1年第 0 3 6 0 4 7号、 平成 1 1年第 0 3 6 0 4 8号、 平成 1 1年第 0 3 6 0 4 9号、 平成 1 1 年第 0 3 6 0 5 0号、 平成 1 1年第 0 3 1 7 3 3号、 および平成 1 1年第 0 0 4 0 1 6 4号を基礎とし、 その内容は引用文としてここに含まれる。 技術分野
本発明は、 タイヤ付き車輪で移動するホイール式作業車両に関する。 背景技術 近年、 ホイール式油圧ショベル等、 タイヤ付き車輪で移動する作業車両は高速 走行化の傾向にあり、 高速走行時のオペレータの乗り心地性をより向上させるた め、 例えば特開昭 6 2— 1 1 0 5 0 9号公報ゃ特開平 6— 2 7 8 4 3 8号公報、 特開平 7— 1 2 5 5 2 3号公報、 特開平 7— 1 3 2 7 2 3号公報には車体とァク スルとの間にサスペンション機構を備えた作業車両が開示されている。
特開昭 6 2— 1 1 0 5 0 9号公報記載の作業車両 (以下、 従来技術 1 ) では、 車体の左右両側に 2組の油圧シリンダを設け、 車体とシリンダチューブの上端、 およびアクスル上に設置されたビームとシリンダロッ ドの下端をそれぞれピン結 合するとともに、 車体の中央部に上下方向の長穴を設け、 ビームの中央上部と車 体の中央をその長穴に挿通されたピンで結合する。 そして、 左右の油圧シリンダ のボトム室を絞りを介して連通するとともに、 圧力調整弁を介してアキュムレ一 夕に接続し、 圧力調整弁とアキュムレータの間の管路をアキュムレータ側への流 れを許容する逆止め弁を介し油圧ポンプに接続する。 これによつて、 走行時に車 輪が大きな衝撃を受けた場合には、 油圧シリンダの収縮により車体が上下動する が、 圧力調整弁が開通して油圧シリ ンダはアキュムレータに通じているので負荷 が減衰される。 左右一方の車輪が衝撃を受けた場合には、 一方の油圧シリンダか らの圧油は他方の油圧シリンダへと流れ込み車体は揺動する。
また、 特開平 6— 2 7 8 4 3 8号公報ゃ特開平 7 — 1 3 2 7 2 3号公報記載の 作業車両 (以下、 従来技術 2 ) では、 車体の左右側面に復動式の油圧シリンダを 装着してそのポ卜ム室同士を配管を介して接続し、 その配管の途中に絞りとアキ ュムレー夕を設け、 油圧シリンダの各シリ ンダロッ ドの下端をそれぞれアクスル にピン結合する。 これによつて、 走行時のアクスルの振動を吸収、 減衰し、 走行 時の乗り心地が向上する。
さらに、 特開平 7— 1 2 5 5 2 3号公報記載の作業車両 (以下、 従来技術 3 ) では、 車体の中央と 1組の油圧シリンダのシリンダチューブの上端、 およびァク スルの中央とシリンダロッ ドの下端をそれぞれピン結合するとともに、 アクスル の中央と車体の左右いずれかをリンクで結合する。 そして、 油圧シリンダのポト ム室を絞りを介してアキュムレータに接続する。 これによつて、 走行時に車輪が 大きな衝撃を受けた場合には、 油圧シリンダの収縮により車体は上下動するが、 油圧シリンダはアキュムレータに通じているので負荷が減衰される。 発明の開示
上記公報記載の作業車両には次のような問題がある。 すなわち、 従来技術 1の 作業車両は、 車体とァクスルとをピンによって連結する構成となっているため、 掘削作業時や走行のブレーキング時等において、 車体とアクスルに前後方向の荷 重が作用した場合には、 ピンによってその荷重を受けることになり、 ピンの強度 を考慮してピン径の太い大型のピンを用いる必要がある。 また、 ピンによってァ クスルの車体に対する移動を制限する構成となっているため、 アクスルの上下動 に伴ってピンが上下方向に摺動し、 摺動部の摩耗が助長されることになる。 その 結果、 ピンと長穴とのガ夕は大きくなり、 アクスルの車体に対する変位が上下方 向のみならず左右方向も加わり、 スムーズな衝撃吸収を行うことが難しくなる。 さらに、 用いられる油圧シリンダが収縮側のみの単動式であるため、 伸長時には 油圧的に衝撃を吸収できないので、 構造部材に衝撃が作用する。
また、 従来技術 2の作業車両は、 左右の油圧シリンダによって車体とアクスル を連結しているため、 掘削作業時や車両が揺動した際に、 油圧シリンダには上下 方向のみならず前後方向、 左右方向の無理な荷重が作用する。
さらに、 従来技術 3の作業車両は、 中央の油圧シリンダとリンクとによって車 体とアクスルを連結しているため、 車体の揺動に対しての制限がなく、 揺動に対 するショックを吸収できない。 このように上記公報記載の作業車両では、 アクス ルからの衝撃を吸収しながらスムーズにフレームを上下動、 揺動させることがで きず、 実用的とはいえない。
さらにまた、 従来技術 2 、 3の作業車両では、 油圧シリンダとアキュムレータ との間の通路に固定絞りが介装されているが、 油圧シリンダのボトム室とロッ ド 室とを連通していないので、 サスペンショ ンの減衰力は上記絞りの断面積のみに 依存し、 乗員の好みに合わせることが難しいという問題がある。
また、 従来技術 1 〜 3の作業車両では、 左右の油圧シリンダの動きは 1つのァ キュムレー夕によって調整されるため、 アキュムレータの容量は大きくなり、 ァ キュムレー夕が大型化する。 このようにアキュムレータが大型化すると、 制約さ れた車体内部のスペースを有効に使って、 そのスペース内にアキュムレータを配 置するのが困難となり、 ホイール式油圧ショベルの設計の自由度が制限される。 とくに、 アキュムレータとしてブラダ型を使用する場合には、 その構造上、 縦置 きにせざるを得ず、 配置が一層困難となる。 その結果、 アキュムレータの一部は 車体から外に突出して配置される場合があり、 この場合にはその突出部へ飛散物 などが衝突し、 アキュムレータは損傷を受けるおそれがある。
ところで、 従来技術 2の作業車両には、 車高調整用のスプール式の 3ポート 3 位置の電磁制御弁が設けられている。 この電磁制御弁の切り換えにより、 走行時 や作業時におけるアクスルと車体との間隔が予め設定された所定値となるように 油圧シリンダの圧力を制御し、 車高調整を行うようにしている。
しかしながら、 従来技術 2の作業車両では、 走行時に油圧シリンダの圧力を制 御しながらサスペンション性能が発揮されるので、 サスペンショ ン性能に係わる 各部 (絞りなど) の設定が難しい。 また、 作業時にも油圧シリンダの圧力を制御 するので、 サスペンションはフワフワしたものとなりオペレ一夕に違和感がある。 さらに、 従来技術 2の作業車両では、 スプール式電磁制御弁を用いており、 走 行時など車高調整をしないときは、 油圧シリンダを油圧源もしくはタンクから遮 断するために電磁制御弁を中立位置に切り換えている。 しかしながら、 スプール 式制御弁は中立時のリークが多いので、 走行中もしくは停車中に車高が変動する おそれがある。
ところで、 車高調整はフロントアタッチメン卜の交換に伴い車両前後の重量バ ランスが変化した場合 (例えば車体が前のめりになった場合) に、 車両姿勢を一 定の標準状態に保っために主として行われる。 したがって、 車高調整は車室外で の操作により車両の姿勢変化を目視しながら行うべきであり、 車室内での操作に よって車高を微調整することは困難である。
しかしながら、 車室外に車高調整用制御弁の操作レバ一を設け、 操作レバーの 操作によつて車高調整を行うようにすると、 走行時など車高調整をしないときに 路面からの衝撃等により操作レバーが操作され、 制御弁が誤って中立位置以外に 切り換えられるおそれがある。 その結果、 車高が不所望に変動することになる。 また、 車室外に車高調整用制御弁の操作レバーを設ける場合には、 その操作性 が困難となるばかりか、 前方からの飛散物などにより操作レバーが損傷するおそ れがある。 さらに、 車高調整用制御弁を中立位置に切り換えてサスペンション回 路を形成した場合、 制御弁からアキュムレータまでの距離はサスペンショ ン性能 に影響を及ぼすので、 サスペンション性能 (とくにアキュムレータの性能) を十 分に発揮させるためには制御弁とアキュムレータとの位置関係を考慮する必要が ある。
本発明の目的は、 走行時の衝撃を有効に吸収することができるホイール式作業 車両を提供することにある。
上記目的を達成するために、 本発明によるホイール式作業車両は、 車両前後に 設けられたアクスルの少なく とも一方と車体とを連結するリンクと、 車体の左右 側に配置され、 リンクとともにアクスルと車体とを連結するサスペンション油圧 シリ ンダと、 油圧シリ ンダの油室に絞りを介して連通されるアキュムレータとを 備える。
これにより、 フレームに対しアクスルはスムーズに上下動および揺動し、 油圧 シリンダの伸縮時のショ ックを有効に吸収することができ、 実用的である。 油圧シリ ンダのボトム室とロッ ド室とを連通する通路の通路面積に応じてサス ペンショ ン性能を変更する変更手段をさらに備えてもよい。 これにより、 サスぺ ンシヨ ン性能、 とくに減衰性能を簡単に変更することができる。
油圧シリンダとアキュムレータとを連通する通路の通路面積に応じてサスペン シヨ ン性能を変更する変更手段をさらに備えてもよい。 これにより、 サスペンシ ヨン性能、 とくに減衰性能を簡単に変更することができる。
アキュムレータをダイヤフラムによって内部のガスと油とを分離するダイヤフ ラム式とし、 その一部がフレームの上端面および下端面から突出することなくフ レームによって形成された空間にアキュムレータを配置のが好ましい。 これによ り、 制約されたスペース内にアキュムレータは効率よく配置され、 飛散物などか ら保護される。
また、 本発明によるホイール式作業車両には、 圧油を発生する油圧源と、 油圧 シリ ンダに圧油を供給、 および油圧シリンダから圧油を排出し、 油圧シリンダを 伸縮する給排装置と、 車両の走行 非走行状態を検出する走行検出装置と、 走行 検出装置により非走行状態が検出されると、 給排装置による油圧シリンダの伸縮 を許容し、 走行検出装置により走行状態が検出されると、 給排装置による前記油 圧シリ ンダの伸縮を禁止してサスペンショ ン機能を発揮させるようにする車高調 整ノサスペンション切換装置とを設けることもできる。
これにより、 走行時のサスペンショ ン性能に係わる設計に際して車高調整機能 を考慮する必要がなく、 サスペンショ ン性能に係わる各部の設定が容易になる。 さらに、 本発明によるホイール式作業車両は、 圧油を発生する油圧源と、 操作 レバーの操作によって車高調整時に油圧シリンダへの油の給排経路を切り換える 車高調整弁とを備え、 操作レバ一を、 アクスルより車両前方の車体フレームの側 面から突出して設けるようにするのが好ましい。
これにより、 奥まった所に手を入れる必要がなく車高調整時の操作性が向上す るとともに、 車体とアクスルとを接続する油圧シリンダやりンクなどの位置変化 を目視できるので、 車高調整を容易にかつ確実に行うことができる。
さらにまた、 本発明によるホイール式作業車両には、 圧油を発生する油圧源と、 車高調整時に油圧シリンダへの油の給排経路を切り換える車高調整弁と、 給排経 路を油圧シリ ンダから遮断するス トップ弁とを備えることができる。 これにより、 油圧シリンダからリークする油量が抑制され、 上部旋回体の車高 が不所望に下がるおそれが防止される。
ス 卜ップ弁を走行体側で操作し、 ス 卜ップ弁を遮断位置に拘束する固定部材を さらに備えてもよい。 これにより、 ス トップ弁を遮断位置に切り換えた際に外部 から衝撃が加えられた場合であってもス 卜ップ弁は遮断位置で保持され、 油圧シ リンダからのリークが確実に抑制される。 図面の簡単な説明
図 1 は、 本発明が適用されるホイール式油圧ショベルの側面図。
図 2は、 本発明が適用されるホイール式油圧ショベルを底面から見た図 (図 1 の矢視 I I- I I図) 。
図 3は、 本発明が適用されるホイ一ル式油圧ショベルの正面図。
図 4は、 図 2の IV- IV線断面図。
図 5は、 図 2の V- V線断面図。
図 6は、 図 5の矢視 VI図。
図 7は、 図 5の矢視 VI I図。
図 8は、 図 2の VI I I部拡大図。
図 9は、 図 3の IX部拡大図。
図 1 0は、 図 8の矢視 X図。
図 1 1は、 本発明の第 1の実施の形態に係わるホイ一ル式作業車両の油圧回路 図。
図 1 2は、 本発明の第 1の実施の形態に係わるホイール式作業車両の油圧回路 を構成するポール式 3位置切換弁の断面図。
図 1 3は、 本発明の第 1の実施の形態に係わるホイール式作業車両の油圧回路 を構成する油圧シリンダに付設するパイロッ トチェック弁内蔵ブロックの断面図。 図 1 4は、 本発明の第 1の実施の形態に係わるホイール式作業車両の電気回路 図。
図 1 5 A ,図 1 5 Bは、 本発明の第 1の実施の形態に係わるホイール式作業車両 のサスペンションの動作の一例を示す図。
図 1 6 A ,図 1 6 B、 図 1 6 Cは、 本発明の第 1 の実施の形態に係わるホイール 式作業車両のシリンダの伸縮状態を示す図。
図 1 7は、 図 6の変形例を示す図。
図 1 8は、 本発明の第 2の実施の形態に係わるホイール式作業車両の油圧回路 図。
図 1 9は、 本発明の第 2の実施の形態に係わるホイール式作業車両のコント口 ーラにおける処理の一例を示すフローチャート。
図 2 0は、 本発明の実施の形態に係わるホイール式作業車両の油圧回路を構成 する油圧シリンダのボトム室とロッ ド室との間の通路面積を変更する他の例を示 す図。
図 2 1 A ,図 2 1 Bは、 本発明の実施の形態に係わるホイール式作業車両の車高 調整用切換レバーの位置を拘束する他の例を示す図。 発明を実施するための最良の形態
以下、 図面を参照して本発明の実施の形態について説明する。
一第 1の実施の形態一
図 1は、 本発明が適用されるホイール式油圧ショベルの側面図 (一部断面図) である。 図 1 に示すように、 ホイール式油圧ショベルは、 下部走行体 8 1 と、 旋 回装置 8 2を介して下部走行体 8 1の上部に旋回可能に連結された上部旋回体 8 3とを有する。 上部旋回体 8 3にはブーム 8 4 A、 アーム 8 4 B、 バケツ ト 8 4 Cからなる作業用フロントアタッチメント 8 4 (以下、 アタッチメントと呼ぶ) と運転室 8 5とが設けられ、 運転室 8 5の入口にはオペレータが搭乗した際に解 除位置 (A位置) に、 降車する際にロック位置 (B位置) にそれぞれ操作される ゲートロックレバー 8 6が設けられている。 下部走行体 8 1 には、 シャシフレー ム 7 0 (以下、 フレームと呼ぶ) と、 走行用の油圧モータ 8 8、 トランスミツシ ヨ ン 8 9、 プロペラシャフ ト 9 0およびタイヤ 9 1が設けられ、 プロペラシャフ 卜 9 0からの駆動力はアクスル 1, 1 'を介してタイヤ 9 1 に伝達される。 フレー ム 7 0の前後にはタイヤ 9 1の上部を覆うようにフェンダ 6 1 F , 6 1 Rがそれぞ れ設けられ、 前側のフェンダ 6 1 Fの内側には後述する油圧シリ ンダ 2が設置さ れている。 なお、 フレーム 7 0は最前部にバゲッ ト置き台 8 7を有している。 本 実施の形態では、 後側のアクスル 1 'はフレーム 7 0に直接固定され、 前側のァク スル 1は以下のようなサスペンショ ン機構を介してフレーム 7 0に連結される。 図 2は本発明が適用されるホイール式油圧ショベルを底面からみた図 (図 1の 矢視 I I図) であり、 図 3は下部走行体 8 1 を車両前方から見た図 (図 1の正面 図) 、 図 4は主にアキュムレータ 7の取り付け状態を示す図 2の IV- IV線断面図、 図 5は主に油圧シリンダ 2の取り付け状態を示す図 2の V- V線断面図である。 なお 図 2〜 5は車体停止時の状態 (初期状態) を示す。 また、 図 2において、 アクス ル 1 は油圧シリンダ 2の真下に位置するが、 その図示は省略し、 図 5において、 フレーム 7 0およびアクスル 1は 2点鎖線で示す。 図 2〜 5に示すように、 フレ —ム 7 0は、 車両前側に配置された左右の側板 7 1 , 7 2 と、 その側板 7 1 , 7 2 の前後端面にそれぞれ当接された前板 7 3および後板 7 4と、 後板 7 4に当接さ れ車両後側に配置された左右の側板 7 5 , 7 6 (図 4に示すように断面略 U字形 状) と、 これら各板 7 1〜 7 6の上面に当接された上板 7 7 とを有している。 前 板 7 3の左右端部は側板 7 1 , 7 2よりも出っ張つており、 その張出部 7 3 s にフ ェンダ 6 1 Fが取り付けられている (図 2、 3参照) 。
図 6は図 5の矢視 VI図であり、 図 7は図 5の矢視 V I I図 (図 2の要部拡大図) で ある。 なお、 図 6 , 7においてフレーム 7 0およびアクスル 1は 2点鎖線で示す。 図 5 ~ 7に示すように、 前側の左右側板 7 1 , 7 2には、 前後に離間して配置され た一対のブラケッ ト 3がボル卜 5 1 によりそれぞれ締結されている。 各ブラケッ ト 3の上部には円形の開口部 3 aが設けられている。 この開口部 3 aには油圧シ リンダ 2のシリンダチューブの上部側面に前後に設けられた突起部 2 tが挿通さ れ、 これによつて、 シリンダチューブは回動自在に支持される。 各ブラケッ ト 3 はノックピン 5 2によって側板 7 1 , 7 2に対する取り付け位置が決定され、 これ によって、 ブラケッ ト 3の開口部 3 aにおける油圧シリンダ 2の突起部 2 tの片 当たりを防止することができる。 なお、 このように一対のブラケッ ト 3で油圧シ リンダ 2を挟持する方式をトラニオン式と呼ぶ。 ビス トンロッ ド 2 aの先端はピ ン 9 2を介してアクスル 1 に回動可能に連結されている。 この場合、 初期状態に おいて左右一対の油圧シリ ンダ 2の軸線 2 Lが八の字形状、 すなわち、 ピストン ロッ ド 2 aの先端が車幅方向外側を向くように油圧シリンダ 2は取り付けられる。 図 5、 7に示すように、 前板 7 3および後板 7 4の左右一方 (図では左側) と アクスル 1 の中央部 (セン夕一ライン 1 L上) とは、 フレ一ム 7 0の底部の開口 部を介して配置されたリンク 4により連結されている。 リンク 4は、 前後に離間 して配置された主板 4 aと、 その主板 4 aのアクスル側の外側面にそれぞれ溶接 された補強板 4 と、 主板 4 aの内側面に両端が溶接された 3枚の側板 4 c〜 4 e と、 主板 4 aの車体フレーム 7 0側の端面に溶接されたパイプ 4 f からなり、 側板 4 c〜 4 eとパイプ 4 f により、 ボックス状の閉空間を形成している。 フレ ーム 7 0の前板 7 3と後板 7 4には内板 7 3 a , 7 4 aがパイプ 4 f の軸長だけ離 間されてそれぞれ設けられ、 その間にパイプ 4 f を挿入してピン 9 3を挿通する ことにより、 フレーム 7 0 とリ ンク 4はピン 9 3を介して回動可能に連結されて いる。 一方、 アクスル 1上にはリンク 4の取り付け部材 1 aが設けられ、 それを 挟むように主板 4 aを配置してピン 9 4を挿通することにより、 アクスル 1 とリ ンク 4はピン 9 4を介して回動可能に連結されている。
このようにフレーム 7 0とリンク 4およびアクスル 1 とリンク 4をそれぞれピ ン結合することで、 図 3に示すように、 ピン 9 3を支点にしてリンク 4は矢印の 如く回動し、 ピストンロッ ド 2 aの伸縮の範囲内でフレーム 7 0に対してアクス ル 1 は主に上下動する。 また、 場合によってはピス トンロッ ド 2 aの伸縮の範囲 内でピン 9 4を支点にしてアクスル 1は揺動する。 この場合、 パイプ 4 f の軸長 とフレーム 7 0の一対の内板 7 3 a , 7 4 aの間隔との間のはめあい公差 (図 7の 嵌合部 L 1における隙間) 、 および一対の主板 4 aの間隔とアクスル 1の取り付け 部材 1 aの軸長との間のはめあい公差 (図 7の嵌合部 L 2における隙間) が油圧シ リンダ 2の取り付け部のガ夕より小さくなるよう、 リ ンク 4の取り付け公差を出 来るだけ厳しく設定する。 これによつて、 フレーム 7 0からの車体の前後方向の 荷重は油圧シリンダ 2ではなく リンク 4を介してアクスル 1 に伝達される。
ところで、 図 3に示すように、 前板 7 3の下部中央には内側に突起部 7 3 bを 有する切欠部 7 3 cが設けられ、 車両前方からピン 9 4の頭部が見えるようにな つている。 ピン 9 4の頭部の中心にはグリス注入用のニップル 9 4 aが設けられ、 このニップル 9 4 aと前板 7 3の突起部 7 3 bとの位置関係 (高さ関係) を目視 しながら後述するように車高が調整される。
次に、 油圧配管の配置について説明する。 図 2に示すように、 左右のシリンダ 2は配管 5を介して接続され、 その配管 5の途中 (中央) には配管 6を介してァ キュムレー夕 7が接続されている。 アキュムレータ 7にはさらに、 切換レバー 8 aの手動操作によってその位置が切り換えられる方向切換弁 8が配管 9を介して 接続され、 方向切換弁 8は配管 1 0を介してセンタ一ジョイント 1 1 に接続され ている。 油圧回路の詳細は図 1 1 により後述する。 なお、 後述する油圧ポンプ 1 3とタンクは上部旋回体 8 3 (図 1参照) に設置され、 車高調整時には、 センタ 一ジョイント 1 1 を介して油圧ポンプ 1 3からの圧油が下部走行体 8 1 に設置さ れている油圧シリンダ 2やアキュムレータ 7などに供給されたり、 油圧シリンダ 2から油が方向切換弁 8とセンタジョイント 1 1 を介してタンクへ排出される。 アキュムレータ 7は、 ダイヤフラムによって内部のガスと油とを分離するいわ ゆるダイヤフラム式であり、 ブラダによって内部のガスと油とを分離するいわゆ るブラダ式アキュムレータと比較すると、 およそ次のような特徴を有している。 すなわち、 ダイヤフラム式は全体が円形状を有しており、 長手方向の高さはブラ ダ式に比べ低くなつている。 また、 ダイヤフラム式はその構造上、 姿勢に制約が なく、 長手方向を鉛直方向に向けて配置する (以降、 これを縦置きと呼ぶ) こと も、 長手方向を水平方向に向けて配置する (以降、 これを横置きと呼ぶ) ことも 可能である。 これに対してブラダ式はその構造上、 横置きにして用いることは困 難である。 図 4に示すように、 本実施の形態ではダイヤフラム式のアキュムレ一 夕 7を横置きにして搭載している。
図 4に示すように、 フレーム 7 0の後側の左右側板 7 5 , 7 6は断面略 U字形状 に形成され、 上板 7 7 と側板 7 5 , 7 6の間には横長のスペースが設けられている, 上板 7 7の下面には断面 L字状のブラケッ ト 7 7 aが溶接され (図 2参照) 、 そ のブラケッ ト 7 7 aにはバンド 4 0 と一体化された脚部材 4 0 aがボル卜 4 1で 締結されている。 バンド 4 0は略 C字状に形成され、 その内側にはアキュムレ一 夕 7が取り付けられている。 バンド 4 0の両端部にはボルト 4 2が挿通され、 ボ ルト 4 2にはナツ ト 4 3が螺合されており、 ボルト 4 2を締め付けるとバンド 4 0が収縮し、 これによつてアキュムレータ 7が固定される。 なお、 前述した配管 5は配管固定部材 4 4を介して左右の側板 7 5 , 7 6に吊持されている。
左右の側板 7 5 , 7 6の間に形成されたスペース内において、 アキュムレータ 7 は、 その上端部が上板 7 7から突出せず、 かつその下端部が側板 7 5 , 7 6の下端 面から突出することなく配置されている。 すなわち、 アキュムレータ 7はその全 部がフレーム 7 0の上端面および下端面の内側に収まっている。 このようにアキ ュムレ一夕 7を配置することで、 アキュムレータ 7はフレーム 7 0の内部に格納 され、 飛散物などから保護されるとともに、 美観が向上する。 また、 アキュムレ 一夕 7は横置きで装着されているため、 アキュムレータ 7に接続された配管 6の 下方への出っ張りを防止することができる。 なお、 この場合、 左右の油圧シリン ダ 2を接続する配管 5は側板 7 5 , 7 6の最下面より下方に突出して横架されるが、 配管 6の出っ張りがないためその突出量は最小化することができる。 本実施の形 態ではダイヤフラム式のアキュムレータ 7を用いるが、 これに代えてブラダ式の アキュムレ一夕を搭載する場合にはその高さが高くなって、 左右の側板 7 5 , 7 6 と上板 7 7によって形成されるスペース内にアキュムレ一夕を格納することが困 難となる。
次に、 方向切換弁 8を切換操作する切換レバー 8 aの取り付け位置について説 明する。 図 8は図 2の VI I I部拡大図 (一部断面図) である、 図 9は図 3の IX部拡 大図 (一部断面図) である。 図 8 , 9に示すように、 油圧シリンダ 2より車両前側 の側板 7 1 には、 上下方向にスロッ ト穴 7 1 aが設けられ、 切換レバー 8 aはこ のスロッ ト穴 7 1 aを貫通して側板 7 1の外側に突出している。 車両前側から見 ると切換レバ一 8 aの全体がフェンダ 6 1 Fの影に隠れており、 また切換レバ一 8 aの上方はフェンダ 6 1 Fで覆われている。 切換レバ一 8 aはスロッ ト穴 7 1 aに沿って操作可能であり、 図 9に示す中立位置から切換レバー 8 aを A位置側 に操作すると方向切換弁 8は後述するように切り換えられて車高が高くなり、 B 位置側に操作すると方向切換弁 8は後述するように切り換えられて車高が低くな る。
図 1 0は図 8を前から見た図 (図 8の矢視 X図) である。 例えば前方からの飛散 物や振動等によって切換レバー 8 aが衝撃を受けた際に、 切換レバ一 8 aが誤つ て切り換えられることを防止するため、 図 8〜 1 0に示すように固定カバ一 4 5 が設けられる。 固定カバ一 4 5はスロッ ト穴 7 1 aを覆うように略矩形状の薄板 からなり、 2本のチョウナッ ト 4 6によって側板 7 1 に固定されている。 固定力 バー 4 5の一部 (切換レバー 8 aの中立位置に対応した箇所) には切り欠き部 4 5 aが設けられ、 この切り欠き部 4 5 aにより車高調整時以外の切換レバー 8 a の動きが拘束される。 車高調整時にはチョウナツ ト 4 6を緩めて固定カバ一 4 5 が取り外され、 切換レバ一 8 aの拘束が解除される。
図 1 1は、 第 1の実施の形態に係わるホイール式作業車両のサスペンショ ンの 構成を示す油圧回路図である。 本実施の形態に係わるサスペンショ ンは、 走行時 のサスペンション機能に加えて車高調整機能とサスペンションロック機能とを有 している。 図 1 1 に示すように、 アキュムレータ 7は方向切換弁 8 とセンタージ ョイント 1 1、 および油圧パイロッ ト切換弁 1 2を介してメイン油圧源 1 3に接 続されている。 油圧パイロッ ト切換弁 1 2のパイロッ トポート 1 2 aは電磁切換 弁 1 4とロックバルブ 1 5を介してパイロッ ト油圧源 1 6に接続されている。 口 ックバルブ 1 5は運転室 8 5に設けられたゲートロックレバ一 8 6の操作によつ てその位置が切り換えられる。 すなわち、 ゲートロックレバ一 8 6が解除位置に 操作されると位置 (ィ) に切り換えられ、 ロック位置に操作されると位置 (口) に切り換えられる。 電磁切換弁 1 4は、 後述する電気信号 I によってそのソレノ イ ド 1 4 aが励磁されると位置 (口) に、 ソレノイ ド 1 4 aが消磁されると位置 (ィ) にそれぞれ切り換えられる。
ロックバルブ 1 5と電磁切換弁 1 4がともに位置 (口) に切り換えられると、 油圧パイ口ッ ト切換弁 1 2のパイ口ッ トポート 1 2 aにはパイ口ッ ト油圧源 1 6 からのパイロッ ト圧が供給され、 油圧パイロッ ト切換弁 1 2は位置 (口) に切り 換えられる。 これによつて、 メイン油圧源 1 3からの圧油が方向切換弁 8に供給 され、 車高を高くする調整が可能となる。 また、 ロックバルブ 1 5 と電磁切換弁 1 4の少なく とも一方が位置 (ィ) に切り換えられると、 油圧パイロッ ト切換弁 1 2のパイ口ッ トポ一ト 1 2 aは夕ンクに連通され、 油圧パイ口ッ ト切換弁 1 2 は位置 (ィ) に切り換えられる。 これによつて、 方向切換弁 8はタンクと連通さ れ、 車高を高くする調整が禁止されて車高を低くする調整が可能となる。 方向切換弁 8は 3ポート 3位置切換弁であり、 例えば図 1 2に示すようなボ一 ルバルブで構成される。 切換レバ一 8 aが図 9の位置 A側に操作されると、 方向 切換弁 8は図 1 1の位置 (ィ) に切り換えられ、 Aポート 8 Aは Pポー ト 8 Pに 連通する。 また、 切換レバー 8 aが図 9の位置 B側に操作されると方向切換弁 8 は位置 (ハ) に切り換えられ、 Aポート 8 Aは Tポート 8 Tに連通する。 さらに 切換レバ一 8 aが中立位置に操作されると方向切換弁 8は位置 (口) に切り換え られ、 図 1 2に示すように Aポート 8 Aは Pポート 8 P 、 Tポート 8 Tから完全 にブロックされ、 つまり Aポート 8 Aからの漏れ量はほぼゼロとなる。
この方向切換弁 8は、 Pポ一卜 (ポンプポート) 8 P、 Tポート (タンクポ一 ト) 8 Tおよび Aポート (サービスポート) 8 Aが設けられたボディ 8 bと、 ボ ディ 8 bに内蔵され、 上記 (ィ) 位置、 (口) 位置および (ハ) 位置に外部操作 により切り換えられるボール 8 c とから構成される。 したがって、 方向切換弁 8 は、 圧油の流れを切り換える方向切換弁としての機能と、 圧油の流れを遮断する 漏れ量がほぼゼロのス トップ弁としても機能を兼ね備える。 そして、 (ィ) 位置 と (口) 位置との間でボール 8 cが操作される場合には、 ボール 8 cの操作量に 応じた開口面積となり、 いわゆるメータリング性を持ったス トップ弁とすること ができる。
図 1 1 に示すように、 アキュムレータ 7に接続される管路 6には面積 A 1の絞 り 6 aが、 一対のシリンダブ口ック 3をそれぞれ連通する管路 5には面積 A 2の 絞り 5 aがそれぞれ設けられ、 これらの絞り 5 a , 6 aには少なく とも A 1〉A 2 の関係が成立している。 シリンダ 2が収縮して管路 5内に高圧油が供給されると、 その圧油は絞り 5 a , 6 aを介してアキュムレータ 7に蓄圧され、 蓄圧された圧油 は車体を中立位置へ復帰するように各々のシリンダ 2に供給される。 この場合、 アキュムレータ 7は主に振動を吸収するばねとして機能し、 抵抗体としての絞り 5 a , 6 aは主に振動を減衰するダンバとして機能する。 これらのばねやダンバの 特性は、 アキュムレータ 7に封入されたガス圧や絞り 5 a , 6 aの面積によって決 定される。
管路 5はシリンダブロック 3内で二手に分岐され、 一方 (図 1 3の通路 C 2 ) はパイロッ 卜チェック弁 1 7を介してシリンダ 2のボトム室 2 bに接続され、 他 方 (図 1 3の通路 C 1 ) は面積 A 3 (後述するように面積 A 3は可変であり、 面 積 A 1よりも小さい) の可変絞り 5 bとパイロッ トチェック弁 1 7を介してシリ ンダ 2のロッ ド室 2 cに接続されている。 パイロッ トチェック弁 1 7のパイロッ トポ一トは電磁切換弁 1 8を介してパイロッ 卜油圧源 1 6に接続されており、 電 磁切換弁 1 8の切換によってパイロッ トチェック弁 1 7の駆動が制御される。 電 磁切換弁 1 8は、 後述する電気信号 I によってそのソレノィ ド 1 8 aが励磁され ると位置 (口) に、 ソレノイ ド 1 8 aが消磁されると位置 (ィ) にそれぞれ切り 換えられる。
電磁切換弁 1 8が位置 (口) に切り換えられると、 パイロッ ト油圧源 1 6から の圧油がパイロッ トチェック弁 1 7のパイロッ トポートへ供給される。 これによ つて、 パイロッ トチェック弁 1 7は単なる開放弁として機能し、 各シリンダ 2の 油室 2 b , 2 cからの圧油の移動が可能となる (アンロック状態) 。 なお、 このと きボトム室 2 bとロッ ド室 2 cの圧油の流れは絞り 5 bによって規制され、 すな わち、 可変絞り 5 bは主に振動を減衰するダンバとして機能する。 電磁切換弁 1 8が位置 (ィ) に切り換えられると、 パイロッ ト油圧源 1 6からの圧油の供給は 停止され、 これによつて、 パイロッ トチェック弁 1 7は通常のチェック弁として 機能し、 各シリンダ 2の油室 2 b , 2 cからの圧油の移動が禁止される (ロック状 態) 。
ところで、 ホイール式油圧ショベルの掘削作業はフロン トアタッチメント 8 4 を車両後方に向けて行い、 作業現場内ではそのままの姿勢で走行する場合が多い。 この場合、 車体重心が後アクスル 1 ' 側になり、 ロッ ド 2 aが伸びようとするか ら、 ロッ ド室 2 c とボトム室 2 bとの間の連通通路に可変絞り 5 bがないと、 口 ッ ド 2 aから流出する油はボトム室 2 bにそのまま流入し、 ロッ ド 2 aはス トロ 一クェンドまで伸長し、 ストロークェンドになるときの衝撃が乗り心地を悪化さ せる。 そこで、 絞り 5 bを設け、 擬似的にばね作用を持たせて堅いサスペンショ ン性能にしている。 したがって、 可変絞り 5 bにより、 この場合の硬さを適正値 に簡単に調整することもできる。
図 1 3は、 パイロッ トチェック弁 1 7と可変絞 0 5 bを一体ブロック I Bに内 蔵してサスペンション油圧シリンダ 2に一体的に取り付けた場合の一例を示して いる。 なお、 図 1 3において、 一対のパイロッ トチエツク弁をそれぞれ 1 7 A, 1 7 Bとする。 ブロック I Bは、 ボトム室ポー卜 P l、 ロッ ド室ポート P 2、 アキ ュムレ一夕ポート P 3、 パイロッ トポート P 4、 ドレンポート P 5の 5つの外部 ポートを有している。 パイロッ トチェック弁 1 7 A, 1 7 Bはそれぞれ、 可動弁 体 1 7 aと、 可動弁体 1 7 aを付勢するばね 1 7 bと、 可動弁体 1 7 aを駆動す るプランジャ 1 7 c と、 プランジャ 1 7 cの戻しばね 1 7 dとを有する。 一対の パイロッ トチェック弁 1 7 A, 1 7 Bのそれぞれの室 1 7 eは可変絞り V Dが介 装された通路 C 1 により連通され、 通路 C 1 は、 通路 C 2によりアキュムレータ ポート P 3に連通している。 可変絞り VDの絞り面積を外部操作で変更してサス ペンションの減衰性能が調整される。 一対のパイロッ トチェック弁 1 7 A, 1 7 Bのそれぞれの室 1 7 f はパイ口ッ トポ一卜 P 4に、 ドレン室 1 7 gはドレンポ —ト P 5にそれぞれ連通している。
走行モードでは、 パイロッ トポート P 4にパイロッ ト圧力が作用するとブラン ジャ 1 7 cが右方向に移動して可動弁体 1 7 aを押動してパイロッ トチェック弁 1 7 A, 1 7 Bは開放弁となり、 油圧シリンダ 2がサスペンシヨンとして機能す る。 駐車モードや作業モードでは、 パイロッ トポート P 4にパイロッ ト圧力が作 用しない。 この場合、 可動弁体 1 7 aは右方向に押動されないから付勢ばね 1 7 bによりチェック弁として機能し、 サスペンション油圧シリンダ 2のボトム室 2 bとロッ ド室 2 c とはともにアキュムレータポート P 4から遮断され、 サスペン シヨン油圧シリンダ 2はロック状態となる。
図 1 4は、 第 1の実施の形態に係わるホイール式作業車両におけるサスペンシ ヨ ンの電気回路図である。 図 1 4に示すように、 電気回路は走行、 駐車、 作業の 各モ一ドに対応して T接点 2 1 T、 Ρ接点 2 1 P、 W接点 2 1 Wに切り換えられ るブレーキスィッチ 2 1 と、 運転室 8 5からの操作によって車高調整を指令する 車高調整スィッチ 2 2と、 電源 2 3と、 リ レー 2 4, 2 5, 2 6 とによってリ レー 回路を構成し、 このリ レー回路によって電磁切換弁 1 4, 1 8のソレノイ ド 1 4 a, 1 8 a , 駐車ブレーキ解除用のソレノイ ド 2 7および作業ブレーキ作動用のソレ ノイ ド 2 8への電気信号 I の供給がそれぞれ制御される。
図 1 4を詳述すると、 ブレーキスィッチ 2 1の共通接点 2 1 s は電源 2 3に、 T接点 2 1 Tはリ レー 2 4の a接点 2 4 aとリ レー 2 5のコイル 2 5 c と駐車ブ レーキ解除用のソレノイ ド 2 7に、 W接点 2 1 Wはリ レー 2 6のコイル 2 6 c と 作業ブレーキ作動用のソレノィ ド 2 8にそれぞれ接続され、 P接点 2 1 Pは開放 されている。 ブレーキスィッチ 2 1が W接点 2 1 W側へ切り換えられると、 作業 ブレーキ作動用のソレノィ ド 2 8が励磁されて作業ブレーキが作動するとともに、 駐車ブレーキ解除用のソレノィ ド 2 7が消磁されて駐車ブレーキが作動する。 ブ レーキスィッチ 2 1が P接点 2 1 P側へ切り換えられると、 駐車ブレーキ解除用 のソレノイ ド 2 7が消磁されて駐車ブレーキが作動する。 なお、 作業ブレーキ、 駐車ブレーキは周知のものであり、 その図示は省略する。
電磁切換弁 1 8のソレノイ ド 1 8 aはリ レー 2 4の共通接点 2 4 s に、 リ レー 2 4の b接点 2 4 bはリ レー 2 6の a接点 2 6 aに、 リ レー 2 6の共通接点 2 6 sは電源 2 3にそれぞれ接続され、 リ レ一 2 6の b接点 2 6 bは開放されている。 また、 電磁切換弁 1 4のソレノイ ド 1 4 aは車高調整スィッチ 2 2に、 車高調整 スィッチ 2 2はリ レー 2 5の a接点 2 5 aに、 リ レー 2 5の共通接点 2 5 sは電 源 2 3にそれぞれ接続され、 リ レー 2 5の b接点 2 5 bは開放されている。 した がって、 ブレーキスィッチ 2 1が P接点 2 1 P側あるいは W接点 2 1 W側へ切り 換えられるとリレー 2 5が a接点 2 5 a側へ切り換えられ、 この状態で車高調整 スィッチ 2 2がオンされると、 電磁切換弁 1 4のソレノイ ド 1 4 aは電源 2 3 と 接続されて励磁される。 また、 プレーキスイッチ 2 1が P接点 2 1 P側に切り換 えられ、 車高調整スィッチ 2 2がオンされると、 リ レー 2 4およびリレー 2 6が それぞれ b接点 2 4 b側および a接点 2 6 a側に切り換えられ、 電磁切換弁 1 8 のソレノイ ド 1 8 aは電源 2 3と接続されて励磁される。 すなわち、 駐車モード で車高調整スィツチ 2 2をオン操作することにより、 パイロッ トチェック弁 1 7 が開放状態となり、 他の車高調整条件が成立していれば切換レバー 8 aの操作に より車高調整が可能となる。 さらに、 ブレーキスィッチ 2 1が T接点 2 1 T側に 切り換えられると、 リ レー 2 4は a接点 2 4 a側へ切り換えられ、 電磁切換弁 1 8のソレノイ ド 1 8 aは電源 2 3 と接続されて励磁される。 これにより、 走行時 にパイ口ッ トチエツク弁 1 7は開放されて、 油圧シリ ンダ 2をサスペンシヨ ンと して利用することができる。 続いて、 本実施の形態に係わるサスペンションの動作をより具体的に説明する ( 1 ) 走行モード
走行モードにおいては、 図 1 4に示すようにブレーキスィッチ 2 1が T接点 2 1 T側へ切り換えられる。 これによつて、 作業ブレーキ作動用のソレノイ ド 2 8 が消磁されて作業ブレーキが解除されるとともに、 駐車ブレーキ解除用のソレノ イ ド 2 7が励磁されて駐車ブレーキが解除される。 また、 リ レー 2 5のコイル 2 5 cが通電されてリ レー 2 5は b接点 2 5 b側へ切り換えられ、 これによつて、 電磁切換弁 1 4のソレノイ ド 1 4 aへの回路が切断されてソレノイ ド 1 4 aは消 磁され、 電磁切換弁 1 4は位置 (ィ) となる。 さらに、 リ レー 2 6のコイル 2 6 cへの回路が切断されてリ レー 2 6は a接点 2 6 a側へ切り換えられるとともに, リ レ一 2 4のコイル 2 4 cへの回路が切断されてリ レー 2 4は a接点 2 4 a側へ 切り換えられ、 ソレノイ ド 1 8 aは励磁されて電磁切換弁 1 8は位置 (口) とな る。 なお、 走行モードにおけるソレノイ ド 1 4 aの消磁、 およびソレノイ ド 1 8 aの励磁は、 車高調整スィッチ 2 2の操作とは無関係である。
図 1 1の油圧回路において、 前述したようにソレノィ ド 1 4 aが消磁されると 電磁切換弁 1 4は位置 (ィ) に切り換えられ、 油圧パイロッ ト切換弁 1 2のパイ ロッ トポート 1 2 aはタンクに連通される。 これによつて、 油圧パイロッ ト切換 弁 1 2は位置 (ィ) に切り換えられ、 方向切換弁 8の Pポートはタンクに連通さ れる。 また、 前述したようにソレノイ ド 1 8 aが励磁されると電磁切換弁 1 8は 位置 (口) に切り換えられ、 パイロッ ト油圧源 1 6からの圧油がパイロッ トチェ ック弁 1 7のパイロッ トポートに供給される。 これによつて、 パイロッ トチエツ ク弁 1 7は単なる開放弁として機能し、 各シリンダ 2のポトム室 2 bとロッ ド室 2 c、 およびアキュムレータ 7間での圧油の移動が可能となってサスペンショ ン 機能が発揮される。
また、 走行モードにおいては、 切換レバ一 8 aは図 9に示す中立位置に切り換 えられ、 さらに切換レバー 8 aを中立位置に拘束する固定カバ一 4 5が取り付け られる。 したがって、 走行中に路面からの飛散物や振動等により切換レバ一 8 a に衝撃が加えられても、 切換レバ一 8 aは中立位置状態を保持し、 方向切換弁 8 からの圧油の流出は阻止される。 つまり、 外部からの衝撃により走行時に車高が 下がることはない。
このような走行モードにおいて、 例えば作業車両の高速走行時、 路面の凹凸に より高サイクルの振動がタイヤ 9 1 ,アクスル 1 を介してピス トンロッ ド 2 aに入 力されると、 高圧側のシリ ンダ 2 (収縮している方のシリ ンダ) からの圧油 (動 的な圧油) の一部は絞り 5 a , 6 aを介してアキュムレータ 7へと移動し、 アキュ ムレー夕 7に蓄圧された後、 車体を中立位置に復帰させるように各々のシリンダ 2へ供給される。 このとき、 アキュムレータ 7はピス トンロッ ド 2 aの振動を吸 収するパネとして機能し、 アキュムレータ 7のガス圧が高いほど堅いサスペンシ ヨンとなる。 また、 絞り 5 a , 5 b , 6 aは振動の伝達を規制するダンパとして機 能し、 絞りが小さいほどシリ ンダ 2がス トロークしにく くなつて減衰性が増加す る。 このような圧油の移動を伴うシリンダ 2の伸縮により、 フレーム 7 0に対し てアクスル 1が上下動または揺動し、 走行中にタイヤ 9 1が路面から外力を受け た場合であっても、 その外力がフレーム 7 0へと直接伝達されるのを防止する。 なお、 この場合、 左右のタイヤ 9 1の双方が同一方向の外力を受けた場合等で左 右のシリンダ 2が同方向に伸縮するとアクスル 1が上下動し、 また、 左右のタイ ャの一方のみが外力を受けた場合等で左右のシリ ンダ 2が互いに逆方向に伸縮す るとアクスル 1が揺動する。
また、 作業車両の低速走行時、 路面の凹凸により低サイクルの振動がピス トン ロッ ド 2 aに入力されると、 高圧側のシリンダ 2から低圧側のシリンダ 2へと圧 油 (静的な圧油) が供給され、 各シリンダ 2の圧力は等しくなる。 これによつて、 路面に凹凸があってもタイヤ 9 1の接地圧を等しく保持することができ、 作業車 両の安定性を高めることができる。 一方、 作業車両の停止時においては、 各シリ ンダ 2の圧力は等しくなって圧油の流れは停止し、 アタッチメント 8 4からの重 力 Wとシリンダ 2内のピス トン 2 pに作用する力 Fとが均衡 (W = F ) した位置 でシリンダ 2は静止する。 なお、 この場合、 ピス トン 2 pに作用する力 Fは、 ポ トム室 2側のビス トン 2 pの受圧面積を S 1、 ロッ ド室 2 c側のピス トン 2 pの受 圧面積を S 2、 シリンダ 2内の圧力を Pとすると、 F = P X ( S 1 - S 2) となる。 ここで、 アクスル 1に対するフレーム 7 0の変位の一例を説明する。 初期状態 において、 図 5に示すように、 フレ一ム 7 0の中心線 7 0 Lとアクスル 1の中心 線 1 Lを一致させるように車高を調整したとする。 この状態から左右の車輪が同 時に衝撃を受け油圧シリンダ 2が収縮すると、 図 1 5 Aに示すように、 ピン 9 3 を支点にしてリンク 4は回動し、 フレーム 7 0の中心線 7 0 Lはアクスル 1の中 心線 1 Lより左側にずれる。 逆に、 油圧シリンダ 2が伸長すると、 図 1 5 Bに示 すように、 フレーム 7 0の中心線 7 0 Lはアクスル 1 の中心線 1 Lより右側にず れる。 このようにフレーム 7 0の中心線 7 0 Lとアクスル 1の中心線 1 Lがずれ た場合、 フレーム 7 0の側面と油圧シリンダ 2 とが接近するが、 図 5に示すよう に、 初期状態で油圧シリンダ 2はその軸線 2 Lが八の字形状となるように取り付 けられているので、 フレーム 7 0の側面と油圧シリ ンダ 2との干渉は防止される。 ( 2 ) 駐車モード
駐車モードにおいては、 図 1 4に示すようにブレーキスィツチ 2 1が P接点 2 1 P側へ切り換えられる。 これによつて、 駐車ブレーキ解除用のソレノイ ド 2 7 と作業ブレーキ作動用のソレノイ ド 2 8はともに消磁され、 駐車ブレーキは作動 されて作業ブレーキは解除される。 ここで、 車高調整スィッチ 2 2がオフ (開) されると、 電磁切換弁 1 4のソレノイ ド 1 4 aが消磁されるとともに、 リ レー 2 4のコイル 2 4 cへの回路が切断されてリ レー 2 4が a接点 2 4 a側へ切り換え られ、 電磁切換弁 1 8のソレノイ ド 1 8 aが消磁される。
図 1 1 に示すように、 ソレノイ ド 1 4 a, 1 8 aが消磁されると電磁切換弁 1 4 , 1 8はともに位置 (ィ) に切り換えられる。 これによつて、 油圧パイ口ッ ト切換 弁 1 2は位置 (ィ) に切り換えられ、 方向制御弁 8の Pポートはタンクと連通さ れるとともに、 パイロッ トチェック弁 1 7のパイロッ トポートへの圧油の供給は 停止され、 パイロッ トチェック弁 1 7はチェック弁となって各シリンダ 2の油室 2 b , 2 cからの圧油の移動は禁止される。 すなわち、 車高調整スィッチ 2 2がォ フされているときに固定カバー 4 5が取り外されて切換レバ一 8 aが操作された としても、 油圧シリンダ 2に対する圧油の給排が禁止され、 車高が不所望に変動 することがない。
この実施の形態では、 使用するアタッチメント 8 4の種類によって車高を所望 の高さ位置に調整することができるが、 この調整は駐車モードで行う。 以下、 高 さ位置の調整 (車高調整) について説明する。 初期条件として、 標準的な重量 w のアタッチメント 8 4が装着され、 図 1 6 Aに示すように、 シリ ンダ 2の収縮方 向と伸張方向のス トローク可能量 L 1, L 2がそれぞれ等しい (L 1- L 2) 位置でピ ストン 2 pが静止しているとする。 ここで、 図 1 6 Bに示すように、 重量 W' (> W) のアタッチメント 8 4 'に交換すると、 シリンダ 2が収縮して前側の車高が低 くなり、 収縮方向のス トローク可能量 L 1'が小さくなる (L 1' < L 1) 。 また、 図 1 6 Cに示すように、 重量 W' ' (<W) のアタッチメント 8 4 に交換すると、 シリンダ 2が伸張して前側の車高が高くなり、 伸張方向のス トローク可能量 L 2' 'が小さくなる (L 2' ' < L 2 ) 。 このようにアタッチメント 8 4を交換すると、 車高が低くまたは高くなり、 収縮方向または伸張方向のス トローク可能量 L 1' ' , L V 'が小さくなってサスペンショ ン機能を十分に発揮できず乗り心地が悪化する c これを防ぐため、 車高調整を行い、 アタッチメント 8 4を交換した場合に適正な 車高 (例えば L Γ = L 2', L Γ ' = L 2' ' ) に保つ。 本実施の形態では、 この適正な 車高状態において、 フレーム 7 0の前板 7 3に設けられた突起部 7 3 bの高さと、 アクスル 1のピン 9 4頭部に設けられたニップル 9 4 aの高さとが等しくなつて いる (図 3参照) 。
図 1 4に示すように、 駐車モードにおいてはブレ一キスィツチ 2 1が P接点 2 1 P側へ切り換えられるので、 リ レー 2 5 , 2 6のコイル 2 5 c , 2 6 cは通電さ れずリ レー 2 5 , 2 6はそれぞれ a接点 2 5 a , 2 6 a側へ切り換えられる。 ここ で、 車高調整を行おうとして車高調整スィッチ 2 2がオン (閉) されると電磁切 換弁 1 4のソレノィ ド 1 4 aが励磁されるとともに、 リ レー 2 4のコイル 2 4 c が通電されてリレー 2 4が b接点 2 4 b側へ切り換えられ、 電磁切換弁 1 8のソ レノイ ド 1 8 aが励磁される。
図 1 1 に示すように、 ソレノィ ド 1 4 a , 1 8 aが励磁されると電磁切換弁 1 4 , 1 8はともに位置 (口) に切り換えられる。 また、 車高調整を行う場合にはゲー トロックレバ一 8 6をロック操作し、 ロックバルブ 1 5を位置 (口) に切り換え る。 これによつて、 パイロッ ト油圧源 1 6からの圧油は油圧パイロッ ト切換弁 1 2のパイ口ッ トポ一ト 1 2 aへ供給され、 油圧パイ口ッ ト切換弁 1 2は位置
(口) に切り換えられるとともに、 パイロッ ト油圧源 1 6からの圧油はパイロッ トチェック弁 1 7のパイロッ トポートへ供給され、 パイロッ トチェック弁 1 7は 開放弁とされる。
ここで、 例えばシリ ンダ 2が図 1 6 Bの状態 (L Γ < 2 ' ) にあり、 すなわちフ レーム 7 0の前板 7 3に設けられた突起部 7 3 bの高さがアクスル 1 のピン 9 4 先端に設けられたニップル 9 4 aの高さより低くなつており、 L Γ = L 2 'の状態 とするためシリンダ 2を伸張させる場合には、 フレーム 7 0の右前方から側板 7 1 とタイヤ 9 1の間に手を挿入し、 チョウナッ ト 4 6を緩めて固定カバー 4 5を 取り外す。 次いで、 切換レバ一 8 aを図 9の A側に操作し、 方向切換弁 8を位置 (ィ) に切り換える。 すると、 メイン油圧源 1 3からの圧油が方向切換弁 8を介 して各シリンダ 2の油室 2 b , 2 cにそれぞれ供給され、 これによつて、 ピス トン 2 pに作用する力 F (伸張方向の力) は大きくなつてシリンダ 2は伸張し、 車高 が高くなる。
また、 シリ ンダ 2が図 1 6 Cの状態 (L 1 ' '〉L 2 ' ' ) にあり、 すなわちフレー ム 7 0の前板 7 3に設けられた突起部 7 3 bの高さがアクスル 1のピン 9 4先端 に設けられたニップル 9 4 aの高さより高くなつており、 L ' = L 2 ' 'の状態と するためシリ ンダ 2を収縮させる場合には、 切換レバ一 8 aを図 9の B側に操作 し、 方向切換弁 8を位置 (ハ) に切り換える。 すると、 各シリンダ 2の油室 2 b , 2 cからの圧油が方向切換弁 8を介してタンクに排出され、 これによつて、 ビス トン 2 pに作用する力 Fが小さくなつてシリ ンダ 2が収縮し、 車高が低くなる。 このようにして車高を高くまたは低く し、 突起部 7 3 bの高さがニップル 9 4 a の高さに等しくなると、 つまり L 1 ' = L 2 ' , L Γ '二 L 2 ' 'になると、 切換レバ一 8 aを中立位置に操作して方向切換弁 8を位置 (口) に切り換える。 次いで、 切 換レバ一 8 aが誤って操作されることがないよう、 固定カバ一 4 5を取り付ける。
( 3 ) 作業モード
作業モ一ドにおいては、 プレーキスィツチ 2 1が W接点 2 1 W側に切り換えら れる。 これによつて、 作業ブレーキ作動用のソレノイ ド 2 8が励磁され、 駐車ブ レーキ解除用のソレノイ ド 2 7が消磁されて、 作業ブレーキと駐車ブレーキがと もに作動される。 また、 リ レ一 2 5のコイル 2 5 cが通電されずリ レー 2 5は a 接点 2 5 a側へ切り換えられるとともに、 リ レー 2 6のコイルが通電されてリ レ 一 2 6は b接点 2 6 b側へ切り換えられる。 したがって、 車高調整スィッチ 2 2 が誤ってオン操作され、 リ レー 2 4のコイル 2 4 cが通電されても電磁切換弁 1 8のソレノイ ド 1 8 aは励磁されず、 電磁切換弁 1 8は位置 (ィ) に切り換えら れてパイロッ トチェック弁 1 7はチェック弁として機能する。 したがって、 車高 調整スィツチ 2 2が誤操作されても車高変動が禁止される。
さらにこの実施の形態では次のようなィン夕一ロックを用いてさらなる安全性 を図っている。 車高調整スィッチ 2 2が誤ってオン操作されると電磁切換弁 1 4 のソレノイ ド 1 4 aは励磁され、 電磁切換弁 1 4は位置 (口) に切り換えられる が、 作業モードにおいてはゲートロックレバ一 8 6がロック操作されるので、 口 ックバルブ 1 5は位置 (ィ) に切り換えられ、 したがって、 油圧パイロッ ト 1 2 のパイロッ トポ一ト 1 2 aには圧油が供給されず、 方向切換弁 8の Pポートは夕 ンクに連通される。 作業モードにおいては固定カバー 4 5を取り付けて切換レバ 一 8 aの中立位置からの移動を阻止するが、 仮に切換レバー 8 aが中立位置から 操作されたとしても、 上述したようにパイロッ トチェック弁 1 7がチェック弁と して機能し、 かつ方向切換弁 8 aの Pポートがタンクと連通されることで、 各シ リンダ 2の油室 2 b , 2 cからの圧油の移動が確実に禁止される。
作業モードではパイロッ ト油圧源 1 6からの圧油はロックバルブ 1 5を介して 不図示の作業用パイロッ トバルブへと供給されるので、 例えばアタッチメント 8 4を駆動しょうとして不図示の操作レバーが操作されると、 操作レバ一の操作量 に比例したパイ口ッ ト圧油がパイ口ッ ト式コントロール弁に導かれてコントロー ル弁が操作され、 これによつて掘削などの作業が可能となる。 このとき、 各シリ ンダ 2の油室 2 b , 2 cからの圧油の移動は禁止されているので、 シリンダ 2はス トロークされず掘削による反力 (掘削反力) はアキュムレータ 7に吸収されるこ となく、 サスペンションロック状態で安定して作業を行うことができる。
また、 リンク 4の前後方向の取り付け公差 (前後方向の隙間) を油圧シリンダ 2の前後方向の取り付け公差 (前後方向のガ夕) より小さく設定したので、 ァ夕 ツチメント 8 4からの前後方向の荷重はリ ンク 4に伝達され、 油圧シリンダ 2に は前後方向の荷重は作用しない。 その結果、 油圧シリ ンダ 2は保護される。 この 場合、 リンク 4をボックス形状とし、 さらに主板 4 aの外側に補強板 4 bを備え たので、 リンク 4の曲げ剛性やねじり剛性は高くなり、 掘削荷重にも十分耐えう ることができる。
このように構成した本実施の形態による効果を説明する。
( 1 ) 左右一対の油圧シリンダ 2 と一つのリ ンク 4によってフレーム 7 0 とァク スル 1 を連結したので、 走行時のアクスル 1からの衝撃を吸収し、 フレーム 7 0 に対しアクスル 1はスムーズに上下動および揺動することができる。 また、 油圧 シリンダ 2のロッ ド室 2 c とボトム室 2 bを絞り 5 a, 5 b, 6 aを介してアキュ ムレ一タ 7に連通したので、 油圧シリンダ 2の伸縮時のショ ックを有効に吸収す ることができる。
( 2 ) 油圧シリンダ 2をトラニオン式によって支持したので、 シリンダチューブ の全長 (図 6の T L ) を短くすることができ、 その結果、 シリンダチューブと旋 回体 8 3との間に荷物置き場としての余剰スペースを確保することができる。 ま た、 シリンダチューブに突起部 2 t を設け、 その突起部 2 t を介して油圧シリン ダ 2 とブラケッ ト 3を連結したので、 例えば図 1 7に示すようにシリンダチュー ブの突起部 2 t にピン 5 3を挿入し、 そのピン 5 3を介して油圧シリンダ 2とブ ラケッ ト 3を連結するタイプに比べ、 前後方向の幅 WLを短くすることができる
(WL <WL ' ) 。 さらに、 ノックピン 5 2によってブラケッ ト 3の位置決めをし たので、 ブラケッ ト 3の開口部 3 aにおけるシリンダ 2の突起部 2 t の片当たり を防止することができる。 さらにまた、 油圧シリンダ 2の軸線 2 Lを八の字形状 としたので、 シリンダ 2の伸縮時におけるシリンダ 2 とフレーム 7 0との干渉を 防止することができる。
( 3 ) サスペンション油圧シリンダ 2のボトム室 2 bとロッ ド室 2 c とを連通す る通路 C 1 に設けた絞り 5 bを可変絞りとしたので、 サスペンション性能、 とく に減衰性能を簡単に変更することができる。 また、 上述したように後方作業姿勢 による走行時のサスペンシヨンの硬さも簡単に変更することができる。 さらに、 一対のパイ口ッ トチェック弁 1 7 A, 1 7 Bと可変絞り V Dを内蔵したブロック I Bをサスペンション油圧シリンダ 2にそれぞれ一対設けられるパイロッ トチェ ック弁 1 7 A, 1 7 Bのドレン油を、 ブロック I Bに設けた 1つのドレンポート P 5からタンクへ戻すことができ、 ドレン管路の引回しが容易になる。
( 4 ) 油圧シリンダ 2への圧油の給排を制御して車高調整する油圧回路において、 圧油の給排を切り換える切換弁の機能と、 油圧シリ ンダ 2を油圧ポンプ 1 3およ びタンクから遮断するス トップ弁の機能をボール式 3位置切換弁 8により実現し たので、 切換弁 8を中立位置に切り換えておけば、 油圧シリンダ 2からの圧油の 漏れ (リーク) を確実に抑制して車高が不所望に変化することがない。 また、 切 換弁 8を切換操作する切換レバ一 8 aを中立位置に拘束する固定カバー 4 5を設 けたので、 切換弁 8は常に中立位置に保持され (ス トップ弁として機能) 、 油圧 シリンダ 2からの圧油の漏れ (リーク) や油圧シリンダ 2への圧油の供給が確実 に抑制される。
( 5 ) 切換弁とストップ弁を一体化したので小型化が図れる。 また、 ボディ 8 b に内蔵したボール 8 cの操作量に応じたメータリ ング (流量制御特性) が得られ るので、 車高調整時の上部旋回体 8 3の動きが円滑になる。 さらにまた、 ポール 式 3位置切換弁 8をセンタージョイン ト 1 1の下流に配置したので、 すなわち、 アキュムレータ 7や油圧シリンダ 2に近接させて設けたので、 ス トツプ弁 8 とァ キュムレ一夕 7との油圧配管長 (とくに管路 9の管路長) を短くでき、 主にアキ ュムレー夕 7の容量に基づいて設計されたサスペンシヨン性能に与える影響を小 さくできる。 さらにこの実施の形態では、 管路 9をゴムホースとしているので高 圧で弾性変形してサスペンション性能が悪化することが予想される。 そこで、 サ スペンション用油圧回路の最高圧力 (例えば 8 . 8 MPa) よりも十分高い耐圧 (例 えば 3 4 . 3 MPa) のゴムホースを用い、 弹性変形量を小さく してサスペンショ ン 性能の悪化を抑制している。
( 5 ) シリンダ 2を連通する管路 5の途中にダイヤフラム式のアキュムレータ 7 を設けたので、 同一容量のブラダ式と比較するとその高さは低くなり、 したがつ て、 左右の側板 7 5 , 7 6 と上板 7 7によって形成されたスペース内に、 効率よく
(スペースを有効に使って) アキュムレータ 7を配置することができる。 また、 アキュムレータ 7を横向きに配置したので、 アキュムレータ 7に接続された配管 6を下向きに取り出す必要はなく、 配管 6 も含めたアキュムレータ 7の高さを低 くすることができる。
( 6 ) ブレーキスィツチ 2 1ゃゲー卜ロックレバ一 8 6の操作に連動して切り換 えられる切換弁 1 2 , 1 4 , 1 5を設け、 駐車ブレーキを作動し、 かつ、 ゲート口 ックレバ一 8 6をロック位置 (作業禁止状態) へ操作した状態でのみ、 つまり駐 車モード選択時にのみ方向切換弁 8の Pポー トへ圧油を供給し、 切換レバー 8 a の操作による車高調整を可能としたので、 走行時および作業時に車高調整される ことはない。 その結果、 走行時に車高調整機能を考慮する必要がないので、 サス ペンション性能に係わる各部の設定が容易になるとともに、 作業時においてはチ エック弁 1 7によって各シリンダ 2の油室 2 b , 2 cからの圧油の移動を禁止した ので、 掘削反力を感じながら違和感なく作業することができる。 また、 ブレーキ スィッチ 2 1 とリレー 2 4〜 2 6等によってリ レ一回路を設け、 走行時および作 業時に誤って車高調整スィッチ 2 2がオン操作されても、 あるいは固定カバ一 4 5を装着せずに作業時に切換レバー 8 aが操作されても (走行中は操作不可能) 、 車高調整を禁止したので (いわゆるインタ一ロック) 、 不所望な車高調整を防止 することができる。 さらに、 走行時および作業時の車高調整を禁止したので、 メ ィン油圧源 1 3からの圧油を利用してシリ ンダ 2の圧力が頻繁に制御されること がなく、 燃費が低減される。
( 7 ) ボール式 3位置切換弁 8を駆動する切換レバ一 8 aをフレーム 7 0の側板 7 1から車両側方へ突出して設け、 切換レバー 8 aの車両前方および車両上方を フェンダ 6 1 Fで覆うようにしたので、 切換レバ一 8 aは飛散物等から保護され る。 また、 切換レバ一 8 aをアクスル 1 の真上に位置する油圧シリンダ 2より車 両前方に配置したので、 奥まった所に手を入れる必要がなく操作性が向上すると ともに、 車両前方から油圧シリンダ 2やリンク 4の位置変化を目視しながら調整 できるので、 車高調整を容易にかつ確実に行うことができる。 さらに、 フレーム 7 0の前板 7 3に突起部 7 3 bを有する切欠部 7 3 cを設けたので、 車両前方か ら突起部 7 3 bとピン 9 4との位置関係を目視でき、 微妙な車高の調整も容易と なるとともに、 アクスル 1 とフレーム 7 0を連結する際の組立作業性ゃメンテナ ンス性も向上する。 さらにまた、 車高調整用の制御装置等を設ける必要がないの で、 構成が容易となりコス トが低減される。
一第 2の実施の形態一
図 1 8は、 本発明の第 2の実施の形態に係わる車高調整装置の構成を示す油圧 回路図である。 なお、 図 1 1 と同一の箇所には同一の符号を付し、 以下ではその 相違点を主に説明する。 図 1 8に示すように、 第 2の実施の形態に係わる車高調 整装置は、 図 1 1の方向切換弁 8、 油圧パイ口ッ ト切換弁 1 2、 口ックバルブ 1 5、 および電磁切換弁 1 4と図 1 4のリ レ一回路の代わりに、 メイン油圧源 1 3 から各シリンダ 2への圧油の流れを制御する電磁制御弁 3 1 と、 電磁制御弁 3 1 の駆動を制御するコントローラ 3 0と、 基準位置 ζ θ (本実施の形態では図 1 6 A の状態とする) からの各シリ ンダ 2のス トローク量 z l, z 2を検出するス トローク センサ 3 2 , 3 3と、 ゲ一トロックレバ一 8 6の解除 ロック操作に伴いオンノォ フするゲ一卜ロックスィッチ 8 6 aとを有している。 なお、 図示は省略するがブ レ一キスィツチ 2 1 には図 1 1 と同様、 駐車ブレーキ解除用のソレノィ ド 2 7 と 作業ブレーキ作動用のソレノィ ド 2 8がそれぞれ接続される。
コントローラ 3 0には、 ストロークセンサ 3 2, 3 3と、 ゲートロックスィッチ 8 6 aと、 ブレーキスィッチ 2 1 と、 車高調整スィッチ 2 2 とが接続される。 コ ントロ一ラ 3 0では、 これらの入力信号に基づいて後述するような処理を実行し、 電磁制御弁 3 1のソレノイ ド 3 1 a, 3 1 bと、 電磁切換弁 1 8のソレノイ ド 1 8 aにそれぞれ制御信号 I を出力する。
図 1 9は、 コントローラ 3 0で実行される処理の一例を示すフローチャートで ある。 このフローチャートは例えばエンジンキースィッチ (不図示) のオンによ つてスタートする。 まず、 ステップ S 1でブレーキスィッチ 2 1からの信号によ りブレーキスィッチ 2 1がいずれに切り換えられているかを判定する。 ブレーキ スィッチ 2 1が P接点 2 1 P側へ切り換えられたと判定されるとステップ S 2に 進み、 車高調整スィッチ 2 2がオンか否かを判定する。 ステップ S 2が肯定され るとステップ S 3に進み、 否定されるとステップ S 1 3に進む。 ステップ S 3で はゲートロックスィッチ 8 6 aがオンか否か、 すなわちゲ一トロックレバー 8 6 がロック操作されているか否かを判定する。 ステップ S 3が肯定されるとステツ プ S 4に進み、 否定されるとステップ S 1 1 に進む。 ステップ S 4では、 電磁切 換弁 1 8のソレノイ ド 1 8 aに制御信号 I を出力してソレノィ ド 1 8 aを励磁す る。 これによつて、 図 1 8に示すように電磁切換弁 1 8は位置 (口) に切り換え られ、 パイ口ッ トチェック弁 1 7のパイ口ッ トポートにはパイ口ッ ト油圧源 1 6 からの圧油が供給されてパイロッ トチェック弁 1 7は開放弁として機能する。 次いで、 ステップ S 5で各ス トロ一クセンサ 3 2 , 3 3からの検出値 z 1, z 2を 読み込む。 ステップ S 6ではその各検出値 z l, z 2の平均値 ( (z l+ z 2) / 2 ) を求め、 それを予め設定された目標値 z a (例えば 0すなわち L 1= L 2の状態) か ら減算して偏差 a (= z a— ( z 1+ z 2) / 2 ) を演算する。 次いで、 ステップ S 7で偏差 aが所定の上限値 α 1 (例えば 1. 0 1 x a ) より大きいか否かを判定し, 肯定されるとステップ S 8に、 否定されるとステップ S 9に進む。 ステップ S 8 では電磁制御弁 3 1のソレノイ ド 3 l aに制御信号 I を出力してソレノイ ド 3 1 aを励磁し、 ステップ S 5に戻る。 これによつて、 電磁制御弁 3 1 は位置 (ィ) に切り換えられ、 メイン油圧源 1 3からの圧油が各シリンダ 2の油室 2 b , 2 cに 供給される。 その結果、 シリンダ 2が伸張して車高が高くなる。 一方、 ステップ S 9では偏差 aが所定の下限値 α 2 (例えば 0. 9 9 X a ) より小さいか否かを判 定し、 肯定されるとステップ S 1 0に、 否定されるとステップ S 1 1 に進む。 ス テツプ S 1 0では電磁制御弁 3 1のソレノイ ド 3 1 bに制御信号 I を出力してソ レノイ ド 3 l bを励磁し、 ステップ S 5に戻る。 これによつて、 電磁制御弁 3 1 は位置 (ハ) に切り換えられ、 各シリ ンダ 2からの圧油はタンクに排出される。 その結果、 シリンダ 2が収縮して車高が低くなる。 ステップ S 1 1では電磁制御 弁 3 1 のソレノィ ド 3 1 a , 3 1 bへの制御信号 I の出力を停止してソレノィ ド 3 l a, 3 1 bを消磁し、 リターンする。 これによつて、 電磁制御弁 3 1 は位置 (口) に切り換えられ、 シリンダ 2側の回路はメイン油圧源 1 3およびタンクか らブロックされる。
また、 ステップ S 1でブレーキスィツチ 2 1が T接点 2 1 T側へ切り換えられ たと判定されるとステップ S 1 2に進み、 電磁切換弁 1 8のソレノイ ド 1 8 aに 制御信号 I を出力してソレノイ ド 1 8 aを励磁し、 ステップ S 1 1 に進む。 これ によって、 電磁切換弁 1 8は位置 (口) に切り換えられ、 パイロッ トチェック弁 1 7のパイ口ッ トポー卜にはパイ口ッ ト油圧源 1 6からの圧油が供給されてパイ ロッ トチェック弁 1 7は開放弁として機能する。 その結果、 各シリ ンダ 2の油室 2 b, 2 c とアキュムレータ 7 とが連通してサスペンショ ンが働き (サスペンショ ンアンロック状態) 、 走行時の振動を吸収、 減衰する。 さらに、 ステップ S I T ブレーキスィッチ 2 1が W接点 2 1 W側へ切り換えられたと判定されるとステツ プ S 1 3に進み、 電磁切換弁 1 8のソレノイ ド 1 8 aへの制御信号 I の出力を停 止してソレノイ ド 1 8 aを消磁し、 ステップ S 1 1 に進む。 これによつて、 電磁 切換弁 1 8は位置 (ィ) に切り換えられ、 パイロッ トチェック弁 1 7のパイロッ トポートへの圧油の供給は停止されてパイロッ トチェック弁 1 7はチェック弁と して機能する。 その結果、 各シリ ンダ 2の油室 2 b , 2 cからの圧油の出入りが禁 止され (サスペンションロック状態) 、 掘削反力などに対抗することができる。 なお、 第 2の実施の形態の具体的な動作については、 走行モードにおいてアキ ュムレー夕 7によるサスペンション機能を発揮させる点、 駐車モードにおいて駐 車ブレーキが作動し、 かつ、 ゲートロックレバ一 8 6がロック操作されたときに 車高調整を可能とする点、 および作業モードにおいて各シリンダ 2の油室 2 b , 2 cをブロックする点等、 基本的な動作は第 1の実施の形態と同様であるのでその 説明を省略する。
このように、 第 2の実施の形態によると、 ス トロークセンサ 3 2 , 3 3からの検 出値 z 1 , z 2に基づき、 コントローラ 3 0からの指令によつて電磁制御弁 3 1 を切 り換えることで、 自動的に車高を調整するようにしたので、 方向切換弁 8を手動 で操作する等の手間が省け、 車高調整作業の効率が向上する。
以上では、 ポトム室 2 bとロッ ド室 2 c との間の通路 C 1 に可変絞り V Dを設 けたブロック I Bを使用し、 このブロック I Bをサスペンション油圧シリ ンダ 2 に付設してサスペンション性能を変更するようにした。 しかし、 図 2 0に示すよ うに、 油圧シリンダ 2に付設したパイロッ トチェック弁 1 7 A, 1 7 Bをゴムホ ース G Hで連通し、 ゴムホース G Hの接続用アダプタ A Dに絞り 5 bを設け、 内 径の異なる種々のアダプタを交換することにより、 サスペンション性能を変更す るようにしてもよい。 また、 サスペンショ ン油圧シリンダ 2のボトム室 2 bとァ キュムレ一夕 7 との間に介装される絞り 5 aを可変絞りとしても、 サスペンショ ン性能、 とくに硬さを簡単に変更することができる。 この場合、 上述したと同様 に、 サスペンショ ン油圧シリ ンダ 2のボトム室 2 bとアキュムレータ 7 とをゴム ホースで接続し、 接続用アダプタに絞り 5 aを設け、 内径の異なる種々のァダプ 夕 5 aを交換することにより、 サスペンショ ン性能を変更するようにしてもよい。 実施の形態では絞り 5 bを可変絞りとしたが、 絞り 5 bは固定絞りとし絞り 5 a を可変絞りとしてもよい。 あるいは絞り 5 bと絞り 5 aを可変絞りとすれば、 減 衰性と硬さの双方を容易に変更することができる。
また、 以上では、 フレーム 7 0の上板 7 7 と側板 7 5, 7 6によって形成された スペース内にアキュムレータ 7の全てを格納するようにしたが、 アキュムレータ 7の大部分を格納すれば飛散物などからアキュムレータ 7は保護されることとな るので、 必ずしもアキュムレータ 7の全てを格納する必要はない。 また、 アキュ ムレ一夕 7を横置きにしてフレーム 7 0に取り付けたが、 立置きにして取り付け ても、 斜めにして取り付けてもよい。
さらに、 以上では、 車高調整用兼サスペンション用油圧シリンダ 2を油圧ボン プ 1 3またはタンクに接続する切換弁機能と、 油圧シリンダ 2を油圧ポンプ 1 3 およびタンクから遮断してリークを少なくするス トツプ弁機能を 1つのボール式 3位置切換弁 8により実現した。 しかしながら、 車高調整用兼サスペンショ ン用 油圧シリンダのリークを確実に防止して車高変動を抑制するために、 特開平 7— 1 3 2 7 2 3号公報に開示されているようなスプール式の 3位置切換弁を用いる 場合において、 リークの少ない構造のス トツプ弁をスプール式の 3位置切換弁と 直列に配置してもよい。 この場合のス トップ弁としては、 図 1 2のようなボール 式の開閉弁や、 パイロッ トポートに作用する圧力に応じて開放弁となったりチェ ック弁となるパイロッ ト式チェック弁などを使用することができる。
また、 以上では、 固定カバー 4 5をチョウナッ ト 4 6で固定して切換レバー 8 aの位置を拘束するようにしたが、 他の方式で切換レバ一 8 aの位置を拘束する ようにしてもよい。 図 2 1 A,図 2 I Bにその一例を示す。 図 2 1 Aの方式では、 回動軸 A Xを支点にして矢印 A B方向に回動可能なチヨゥバン 4 7を設け、 その 回動部材 4 7 aの内部にパネ (不図示) を装着する。 このパネによってチョウバ ン 4 7は B方向に付勢され、 これによつて、 切換レバ一 8 aの位置を拘束する。 また、 図 2 1 Bの方式では、 側板 7 1 に湾曲状の一対のガイ ド 7 1 bを固設し、 そのガイ ド 7 1 bの内側に矢印 A B方向にスライ ド可能な薄板 4 8を挿入し、 薄 板 4 8 と側板 7 1 をバネ 4 9で連結する。 このバネ 4 9によってプレート 4 9は B方向に付勢され、 これによつて切換レバー 8 aの位置を拘束する。
さらにまた、 以上では、 車高調整を容易にするためフレーム 7 0の前板 7 3の 所定位置 (ニップル 9 4 aに対応する位置) に突起部 7 3 bを設けるようにした が、 突起以外の目印 (例えばけがき) などを設けるようにしてもよい。 また、 左 右のシリンダ 2に連通してァキュムレータ 7を設けるようにしたが、 各シリンダ 2 ごとに別々にアキュムレータ 7を設けるようにしてもよい。 さらに、 上記実施 の形態においては、 前輪のみに車高調整装置を設けるようにしたが、 後輪のみあ るいは前輪と後輪の両方に設けてもよい。 さらにまた、 上記実施の形態において はブレーキスィッチ 2 1の操作に応じ、 つまりブレーキ状態に基づいて車両の走 行,駐車,作業の各状態を検出するようにしたが、 車速センサ (不図示) などから の検出値によって車両状態を検出するようにしてもよい。 産業上の利用の可能性
以上では、 ホイール式油圧ショベルについて説明したが、 他のホイール式作業 車両にも同様に本発明を適用することができる。

Claims

請求の範囲
1 . 車両前後に設けられたアクスルの少なくとも一方と車体とを連結するリン クと、
前記車体の左右側に配置され、 前記リンクとともに前記アクスルと車体とを連 結するサスペンション用油圧シリンダと、
前記油圧シリンダの油室に絞りを介して連通されるアキュムレータとを備える ホイール式作業車両。
2 . 請求の範囲第 1項に記載のホイール式作業車両において、
少なくとも前記車体および前記アクスルに対する前記リンクの車両前後方向の 取り付け公差は、 前記車体および前記アクスルに対する前記油圧シリ ンダの車両 前後方向の取り付け公差より小さい。
3 . 請求の範囲第 1項または第 2項に記載のホイール式作業車両において、 前記油圧シリンダは、 シリンダチューブの側面を車両前後方向から回動可能に 挟みこむ一対の取り付け部材を介して前記車体に連結される。
4 . 請求の範囲第 3項に記載のホイール式作業車両において、
前記シリンダチューブは車両前後の側面にそれぞれ突起部を有し、 各突起部は 前記取り付け部材の開口部に回動可能に挿通される。
5 . 請求の範囲第 3第または第 4項に記載のホイール式作業車両において、 前記取り付け部材は、 ノックピンを介してそれぞれ前記車体に位置決めして装 着される。
6 . 請求の範囲第 1項〜第 5項のいずれか 1項に記載のホイール式作業車両に おいて、
前記一対の油圧シリンダの長手方向の各軸線が前記アクスルの車幅方向外側に 向くように、 前記油圧シリ ンダが前記車体および前記アクスルに連結される。
7 . 請求の範囲第 1項〜第 6項のいずれか 1項に記載のホイール式作業車両に おいて、
前記リンクは複数の板状部材からなり、 これらの板状部材はボックス状の閉空 間を形成する。
8 . 請求の範囲第 1項〜第 7項のいずれか 1項に記載のホイール式作業車両に おいて、
前記油圧シリンダのボトム室とロッ ド室とを連通する通路の通路面積に応じて サスペンショ ン性能を変更する変更手段をさらに備える。
9 . 請求の範囲第 8項に記載のホイール式作業車両において、
前記変更手段は、 可変絞りである。
1 0 . 請求の範囲第 8項に記載のホイール式作業車両において、
前記変更手段は、 前記油圧シリ ンダのボトム室とロッ ド室とを接続する外付け 管路に着脱自在に設けられる固定絞りであり、 絞り径の異なる固定絞りに変更す ることで通路面積を変更する。
1 1 . 請求の範囲第 1項〜第 7項のいずれか 1項に記載のホイール式作業車両 において、
前記油圧シリンダと前記アキュムレータとを連通する通路の通路面積に応じて サスペンション性能を変更する変更手段をさらに備える。
1 2 . 請求の範囲第 1 1項に記載のホイール式作業車両において、
前記変更手段は、 可変絞りである。
1 3 . 請求の範囲第 1 1項に記載のホイール式作業車両において、
前記変更手段は、 前記油圧シリ ンダのボトム室と口ッ ド室とを接続する外付け 管路に着脱自在に設けられる固定絞りであり、 絞り径の異なる固定絞りに変更す ることで通路面積を変更する。
1 4 . 請求の範囲第 1項〜第 1 3項のいずれか 1項に記載のホイール式作業車 両において、
前記アキュムレータは、 ダイヤフラムによって内部のガスと油とを分離するダ ィャフラム式であって、 その一部が前記フレームの上端面および下端面から突出 することなく前記フレームによって形成された空間に配置される。
1 5 . 請求の範囲第 1 4項に記載のホイール式作業車両において、
前記アキュムレータは、 その一部が前記左右の側板から突出することなく前記 フレームによって形成された空間に配置される。
1 6 . 請求の範囲第 1 4項または第 1 5項に記載のホイール式作業車両におい て、
前記アキュムレータは、 横置きに配置される。
1 7 . 請求の範囲第 1項〜第 1 6項のいずれか 1項に記載のホイール式作業車 両において、
圧油を発生する油圧源と、
前記油圧シリンダに圧油を供給、 および前記油圧シリンダから圧油を排出し、 前記油圧シリンダを伸縮して車高調整する給排装置と、
前記車両の走行ノ非走行状態を検出する走行検出装置と、
前記走行検出装置により非走行状態が検出されると、 前記給排装置による前記 油圧シリンダの伸縮を許容し、 走行検出装置により走行状態が検出されると、 前 記給排装置による前記油圧シリンダの伸縮を禁止してサスペンショ ン機能を発揮 させるようにする車高調整 Zサスペンショ ン切換装置とをさらに備える。
1 8 . 請求の範囲第 1 7項に記載のホイール式作業車両において、 前記車両の作業 Z非作業状態を検出する作業検出装置をさらに備え、 前記車高調整ノサスペンション切換装置は、 前記作業検出装置により非作業状 態が検出されると、 前記給排装置による前記油圧シリ ンダの伸縮を許容し、 前記 作業検出装置により作業状態が検出されると、 前記給排装置による前記油圧シリ ンダの伸縮を禁止してサスペンショ ン機能をロックする。
1 9 . 請求の範囲第 1 7項に記載のホイール式作業車両において、
前記走行検出装置は、 車速またはブレーキ状態に基づいて走行ノ非走行状態を 検出する。
2 0 . 請求の範囲第 1 8項に記載のホイール式作業車両において、
運転室へ乗員が乗降する経路にあって乗員の乗降を妨げる解除位置と、 乗員の 乗降を許容する口ック位置に操作されるゲートロックレバーと、
前記ゲ一トロックレバ一が解除位置にあるときは作業を許容し、 口ック位置に あるときは作業を禁止する作業 Z非作業切換装置とをさらに備え、
前記作業検出装置は、 前記ゲートロックレバーが解除位置にあるときに作業、 口ック位置にあるときは非作業を検出する。
2 1 . 請求の範囲第 1項〜第 1 6項のいずれか 1項に記載のホイール式作業車 両において、
圧油を発生する油圧源と、
操作レバーの操作によって車高調整時に前記油圧シリンダへの油の給排経路を 切り換える車高調整弁とをさらに備え、
前記操作レバーは、 前記アクスルより車両前方の前記車体フレームの側面から 突出して設けられる。
2 2 . 請求の範囲第 2 1項に記載のホイール式作業車両において、
前記操作レバーの車両前方および車両上方はフェンダーによって覆われる。
2 3 . 請求の範囲第 2 1項または 2 2項に記載のホイール式作業車両において. 車両前方に面した前記車体フレームに、 車高調整時の指標となる目印を設ける,
2 4 . 請求の範囲第 1項〜第 1 6項のいずれか 1項に記載のホイール式作業車 両において、
圧油を発生する油圧源と、
車高調整時に前記油圧シリンダへの油の給排経路を切り換える車高調整弁と、 前記給排経路を前記油圧シリンダから遮断するス トップ弁とをさらに備える。
2 5 . 請求の範囲第 2 4項に記載のホイール式作業車両において、
前記アキュムレータと前記ス トップ弁を前記走行体に設置し、 前記油圧源を前 記旋回体に備える。
2 6 . 請求の範囲第 2 4項に記載のホイール式作業車両において、
前記車高調整弁と前記ス 卜ップ弁を一体化弁とする。
2 7 . 請求の範囲第 2 6項に記載のホイール式作業車両において、
前記一体化弁をポール式 3位置切換弁とし、 このボール式 3位置切換弁を、 ポンプポート、 タンクポー卜、 およびサービスポートを設けたボディ と、 このボディ に内蔵され、 外部操作によりポンプポートとサービスポートを接続 する第 1の位置と、 サービスポートとタンクポートを接続する第 2の位置と、 3 つのポー卜のいずれも接続しない第 3の位置とに操作されるボールとで構成する。
2 8 . 請求の範囲第 2 7項に記載のホイール式作業車両において、
前記アキュムレータとボール式式 3位置切換弁を前記走行体に設置し、 前記油 圧源を前記旋回体に備える。
2 9 . 請求の範囲第 2 5項〜第 2 8項のいずれか 1項に記載のホイール式作業 車両において、 前記ス トップ弁は、 前記走行体側で操作され、 前記ス トップ弁を遮断位置に拘束する固定部材をさらに備える。
PCT/JP2000/000715 1999-02-09 2000-02-09 Vehicule de chantier a roues WO2000047433A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR10-2004-7006294A KR100485993B1 (ko) 1999-02-09 2000-02-09 휠식 작업차량
KR10-2001-7009977A KR100444193B1 (ko) 1999-02-09 2000-02-09 휠식 작업차량
DE60039157T DE60039157D1 (de) 1999-02-09 2000-02-09 Baufahrzeug mit rädern
US09/890,854 US6820877B1 (en) 1999-02-09 2000-02-09 Wheeled type working vehicle
EP00902880A EP1160107B1 (en) 1999-02-09 2000-02-09 Wheel type working vehicle
US10/801,670 US7104548B2 (en) 1999-02-09 2004-03-17 Wheeled type working vehicle

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP11031733A JP2000229508A (ja) 1999-02-09 1999-02-09 ホイールショベルのサスペンション
JP11/31732 1999-02-09
JP11031732A JP2000229509A (ja) 1999-02-09 1999-02-09 ホイールショベルの車高調整装置
JP11/31733 1999-02-09
JP11036050A JP2000233622A (ja) 1999-02-15 1999-02-15 車高調整装置を有するホイールショベル
JP11/36048 1999-02-15
JP03604899A JP3623384B2 (ja) 1999-02-15 1999-02-15 サスペンション装置を有するホイールショベル
JP11/36047 1999-02-15
JP11036047A JP2000233623A (ja) 1999-02-15 1999-02-15 車高調整装置を有するホイールショベル
JP11/36050 1999-02-15
JP11/36049 1999-02-15
JP03604999A JP3623385B2 (ja) 1999-02-15 1999-02-15 ホイールショベルのサスペンション
JP04016499A JP3579282B2 (ja) 1999-02-18 1999-02-18 車高調整装置を有するホイールショベル
JP11/40164 1999-02-18

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09890854 A-371-Of-International 2000-02-09
US09/890,854 A-371-Of-International US6820877B1 (en) 1999-02-09 2000-02-09 Wheeled type working vehicle
US10/801,670 Continuation US7104548B2 (en) 1999-02-09 2004-03-17 Wheeled type working vehicle

Publications (1)

Publication Number Publication Date
WO2000047433A1 true WO2000047433A1 (fr) 2000-08-17

Family

ID=27564293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000715 WO2000047433A1 (fr) 1999-02-09 2000-02-09 Vehicule de chantier a roues

Country Status (5)

Country Link
US (2) US6820877B1 (ja)
EP (1) EP1160107B1 (ja)
KR (2) KR100444193B1 (ja)
DE (1) DE60039157D1 (ja)
WO (1) WO2000047433A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1123894B1 (en) * 2000-02-01 2014-09-24 J.C. Bamford Excavators Limited Load handling apparatus

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10106706A1 (de) * 2001-02-14 2002-09-26 Hydac Technology Gmbh Federungssystem, insbesondere für eine Arbeitsmaschine
GB0226843D0 (en) * 2002-11-16 2002-12-24 Cnh Uk Ltd cab support system for an agricultural vehicle
ITTO20021067A1 (it) * 2002-12-06 2004-06-07 Fiat Kobelco Construction Machinery S P A Veicolo su ruote provvisto di un assale oscillante e di una coppia di cilindri per il bloccaggio dell'assale
DE10330516B3 (de) * 2003-07-05 2004-10-21 Hydac Technology Gmbh Hydrospeicher, insbesondere Kolbenspeicher
JP4456360B2 (ja) * 2003-12-04 2010-04-28 日立建機株式会社 作業車両の操作回路
CN100519287C (zh) * 2004-06-10 2009-07-29 日立建机株式会社 工作车辆的控制装置
US7475895B2 (en) * 2004-06-15 2009-01-13 Delphi Technologies, Inc. Hydraulic circuit for a stabilizer bar
FR2883804B1 (fr) * 2005-04-04 2010-03-12 Manitou Bf Dispositif formant pont oscillant de chariot de manutention
KR100702188B1 (ko) * 2006-04-18 2007-04-02 유제우 3륜 이상의 차에 적용되는 무게중심 이동장치
DE102006051894A1 (de) * 2006-10-31 2008-05-08 Deere & Company, Moline Federungssystem
US7721832B2 (en) * 2007-08-01 2010-05-25 Deere & Company Walking beam suspension
US7959165B2 (en) * 2008-12-02 2011-06-14 Watson & Chalin Manufacturing, Inc. Suspension system run height adjustment
DE202009006299U1 (de) * 2009-04-29 2010-09-09 Liebherr-France Sas, Colmar Hydrauliksystem sowie mobile Baumaschine
US8262101B2 (en) * 2009-10-13 2012-09-11 Herman Madler Modular rough terrain vehicle
ITPR20090081A1 (it) * 2009-10-20 2011-04-21 Macro S R L Sospensione idropneumatica e veicolo equipaggiato con tale sospensione
CN102039791B (zh) * 2010-06-13 2012-07-25 中联重科股份有限公司 车身倾角调整单元、油气悬架机构以及流动式起重机
GB201015301D0 (en) * 2010-09-14 2010-10-27 Agco Int Gmbh Axle arrangement
WO2012115877A1 (en) * 2011-02-22 2012-08-30 Charles Lemme Multi-function damper system
KR101342394B1 (ko) * 2012-04-30 2013-12-17 대호 (주) 트랙터의 차체 승강 장치
US9101519B2 (en) 2013-02-07 2015-08-11 Dallas Smith Corporation Leveling ramp for a wheelchair
US9296273B2 (en) 2013-10-14 2016-03-29 Agco Corporation Machine suspension and height adjustment
US9079470B2 (en) * 2013-10-14 2015-07-14 Agco Corporation Vehicle with chassis height adjustment
JP6560640B2 (ja) * 2016-04-20 2019-08-14 株式会社日立建機ティエラ 小型油圧ショベル
JP6754630B2 (ja) * 2016-06-27 2020-09-16 株式会社クボタ 車軸装置
DE202016004580U1 (de) * 2016-07-25 2016-10-27 Liebherr-Werk Ehingen Gmbh Achsaufhängung
US10099530B2 (en) * 2016-08-23 2018-10-16 Matthew Ethan Grimes Vehicle suspension pan hard bar (track bar) tensioning and damping technique
US10730359B2 (en) 2017-12-11 2020-08-04 Cnh Industrial America Llc Suspension control system providing suspension height corrections for an agricultural machine
US10569612B2 (en) 2017-12-11 2020-02-25 Cnh Industrial America Llc Suspension control system providing tire height corrections for an agricultural machine
US10436622B2 (en) 2017-12-11 2019-10-08 Cnh Industrial America Llc Suspension control system providing closed loop control of hydraulic fluid volumes for an agricultural machine
US10183542B1 (en) 2017-12-11 2019-01-22 Cnh Industrial America Llc Suspension control system providing orientation control for an agricultural machine
IT202200005456A1 (it) * 2022-03-21 2023-09-21 Cnh Ind Italia Spa Pala o scavatore

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110509A (ja) 1985-11-08 1987-05-21 Hitachi Constr Mach Co Ltd 建設機械のサスペンシヨン装置
JPS62174908U (ja) * 1986-04-28 1987-11-06
WO1993004881A1 (en) * 1991-09-09 1993-03-18 Hitachi Construction Machinery Co., Ltd. Suspension system for work vehicle
JPH06278438A (ja) 1993-01-26 1994-10-04 Hitachi Constr Mach Co Ltd 作業車両の懸架装置
JPH0752630A (ja) * 1993-08-19 1995-02-28 Hitachi Constr Mach Co Ltd 作業車両の懸架装置
JPH07125523A (ja) 1993-11-02 1995-05-16 Hitachi Constr Mach Co Ltd 作業車両の懸架装置
JPH07223419A (ja) * 1994-02-08 1995-08-22 Komatsu Ltd ホイール式建設車両のサスペンション装置
JPH08142629A (ja) * 1994-11-28 1996-06-04 Hitachi Constr Mach Co Ltd 作業車両の懸架装置
JPH1131732A (ja) 1997-05-15 1999-02-02 Tokyo Electron Ltd 基板搬送装置及び基板搬送方法
JPH1131733A (ja) 1997-07-10 1999-02-02 Kokusai Electric Co Ltd 半導体製造装置
JPH1136049A (ja) 1997-07-18 1999-02-09 Nkk Corp 缶用冷間圧延鋼板を製造するための鋳片
JPH1136050A (ja) 1997-07-15 1999-02-09 Kawasaki Steel Corp スケール密着性および化成処理性に優れた熱延鋼板
JPH1136047A (ja) 1997-07-18 1999-02-09 Nkk Corp 缶用冷間圧延鋼板
JPH1136048A (ja) 1997-07-18 1999-02-09 Nkk Corp 缶用冷間圧延鋼板
JPH1140164A (ja) 1997-07-25 1999-02-12 Daikin Ind Ltd 正極活物質添加剤、それを配合してなる正極活物質、及びそれを用いる電池

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177718U (ja) 1974-12-13 1976-06-19
JPS5770104U (ja) 1980-10-15 1982-04-27
JPS5770103U (ja) 1980-10-15 1982-04-27
JPS57123870U (ja) 1981-01-24 1982-08-02
JPS599984U (ja) 1982-07-13 1984-01-21 日野車体工業株式会社 輸送用車両の支持装置
JPS60113709A (ja) * 1983-11-24 1985-06-20 Hitachi Constr Mach Co Ltd サスペンシヨン機構用油圧装置
JPS60139605U (ja) 1984-02-29 1985-09-14 日野自動車株式会社 エアサスペンションの制御装置
SU1243964A1 (ru) * 1985-01-14 1986-07-15 Рижское Высшее Военно-Политическое Краснознаменное Училище Им.Бирюзова С.С. Активна пневмогидравлическа подвеска транспортного средства
JPS6332908U (ja) 1986-08-20 1988-03-03
US4746133A (en) * 1987-02-19 1988-05-24 Hwh Corporation Automatic leveling system
JPH0546553Y2 (ja) 1987-06-29 1993-12-06
JP2702512B2 (ja) 1988-07-25 1998-01-21 マツダ株式会社 車両のサスペンション装置
JPH0452087Y2 (ja) 1988-11-14 1992-12-08
JP2603000B2 (ja) 1991-01-24 1997-04-23 日立建機株式会社 車両系建設機械の安全装置
JPH04122760U (ja) 1991-04-22 1992-11-05 株式会社小松製作所 パワシヨベル
JPH0552390U (ja) 1991-12-25 1993-07-13 日産ディーゼル工業株式会社 油圧サスペンション装置
JPH05221212A (ja) 1992-02-10 1993-08-31 Kayaba Ind Co Ltd 大型特殊車両の懸架装置
JP2723416B2 (ja) 1992-02-13 1998-03-09 株式会社神戸製鋼所 ホイール式クレーンの油圧サスペンション制御方法および同装置
JP3195663B2 (ja) 1992-08-03 2001-08-06 日本トレクス株式会社 エヤーサスペンションを備えたトレーラの車高制御装置
US5388857A (en) * 1992-08-27 1995-02-14 Badger Equipment Company Operator controlled vehicle stabilizer
JP3155621B2 (ja) 1992-09-03 2001-04-16 日立建機株式会社 作業車両の制御器
JP3182922B2 (ja) 1992-09-16 2001-07-03 カヤバ工業株式会社 油圧緩衝器
JPH0732843A (ja) 1993-07-14 1995-02-03 Hitachi Constr Mach Co Ltd 作業車両の姿勢制御装置
JPH07132723A (ja) 1993-11-05 1995-05-23 Hitachi Constr Mach Co Ltd 作業車両の姿勢制御装置
JPH07266833A (ja) 1994-03-30 1995-10-17 Komatsu Mec Corp 車両のサスペンション制御装置
JP3060848B2 (ja) 1994-09-12 2000-07-10 株式会社新潟鉄工所 車両の懸架装置
JPH0920122A (ja) 1995-07-06 1997-01-21 Nissan Diesel Motor Co Ltd 油圧サスペンション装置
JPH0930229A (ja) 1995-07-20 1997-02-04 Hitachi Constr Mach Co Ltd 作業車両の懸架装置
JPH0971388A (ja) 1995-09-05 1997-03-18 Hitachi Constr Mach Co Ltd 作業機械の操作装置
JP3642356B2 (ja) 1995-09-29 2005-04-27 カヤバ工業株式会社 ロータリダンパ
JP3687871B2 (ja) 1996-06-07 2005-08-24 株式会社小松製作所 車両のサスペンション装置
JPH1044735A (ja) * 1996-08-01 1998-02-17 Komatsu Ltd 掘削作業車両のサスペンション装置及びその制御方法
JP3175645B2 (ja) 1997-06-27 2001-06-11 株式会社豊田自動織機製作所 回転変位検出器の組み付け構造
JP2000229509A (ja) 1999-02-09 2000-08-22 Hitachi Constr Mach Co Ltd ホイールショベルの車高調整装置
JP3623384B2 (ja) 1999-02-15 2005-02-23 日立建機株式会社 サスペンション装置を有するホイールショベル
JP2000233622A (ja) 1999-02-15 2000-08-29 Hitachi Constr Mach Co Ltd 車高調整装置を有するホイールショベル
JP2000229508A (ja) 1999-02-09 2000-08-22 Hitachi Constr Mach Co Ltd ホイールショベルのサスペンション
JP3623385B2 (ja) 1999-02-15 2005-02-23 日立建機株式会社 ホイールショベルのサスペンション
JP2000233623A (ja) 1999-02-15 2000-08-29 Hitachi Constr Mach Co Ltd 車高調整装置を有するホイールショベル
JP3579282B2 (ja) 1999-02-18 2004-10-20 日立建機株式会社 車高調整装置を有するホイールショベル

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110509A (ja) 1985-11-08 1987-05-21 Hitachi Constr Mach Co Ltd 建設機械のサスペンシヨン装置
JPS62174908U (ja) * 1986-04-28 1987-11-06
WO1993004881A1 (en) * 1991-09-09 1993-03-18 Hitachi Construction Machinery Co., Ltd. Suspension system for work vehicle
JPH06278438A (ja) 1993-01-26 1994-10-04 Hitachi Constr Mach Co Ltd 作業車両の懸架装置
JPH0752630A (ja) * 1993-08-19 1995-02-28 Hitachi Constr Mach Co Ltd 作業車両の懸架装置
JPH07125523A (ja) 1993-11-02 1995-05-16 Hitachi Constr Mach Co Ltd 作業車両の懸架装置
JPH07223419A (ja) * 1994-02-08 1995-08-22 Komatsu Ltd ホイール式建設車両のサスペンション装置
JPH08142629A (ja) * 1994-11-28 1996-06-04 Hitachi Constr Mach Co Ltd 作業車両の懸架装置
JPH1131732A (ja) 1997-05-15 1999-02-02 Tokyo Electron Ltd 基板搬送装置及び基板搬送方法
JPH1131733A (ja) 1997-07-10 1999-02-02 Kokusai Electric Co Ltd 半導体製造装置
JPH1136050A (ja) 1997-07-15 1999-02-09 Kawasaki Steel Corp スケール密着性および化成処理性に優れた熱延鋼板
JPH1136049A (ja) 1997-07-18 1999-02-09 Nkk Corp 缶用冷間圧延鋼板を製造するための鋳片
JPH1136047A (ja) 1997-07-18 1999-02-09 Nkk Corp 缶用冷間圧延鋼板
JPH1136048A (ja) 1997-07-18 1999-02-09 Nkk Corp 缶用冷間圧延鋼板
JPH1140164A (ja) 1997-07-25 1999-02-12 Daikin Ind Ltd 正極活物質添加剤、それを配合してなる正極活物質、及びそれを用いる電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1160107A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1123894B1 (en) * 2000-02-01 2014-09-24 J.C. Bamford Excavators Limited Load handling apparatus

Also Published As

Publication number Publication date
EP1160107B1 (en) 2008-06-11
DE60039157D1 (de) 2008-07-24
EP1160107A4 (en) 2006-09-20
US7104548B2 (en) 2006-09-12
KR20010108180A (ko) 2001-12-07
EP1160107A1 (en) 2001-12-05
KR20040045935A (ko) 2004-06-02
US6820877B1 (en) 2004-11-23
KR100444193B1 (ko) 2004-08-21
KR100485993B1 (ko) 2005-05-03
US20040173979A1 (en) 2004-09-09

Similar Documents

Publication Publication Date Title
WO2000047433A1 (fr) Vehicule de chantier a roues
US7637103B2 (en) Hydraulic control arrangement
JP4972479B2 (ja) 作業車両用アクティブサスペンション装置
JP2014172475A (ja) サスペンション装置及びホイール式作業車両
JP4866338B2 (ja) 作業車のサスペンション装置
JP4875579B2 (ja) 作業車のサスペンション構造
JP2001287529A (ja) 作業車両の車高調整装置
JP3623385B2 (ja) ホイールショベルのサスペンション
JP3579282B2 (ja) 車高調整装置を有するホイールショベル
JP3623384B2 (ja) サスペンション装置を有するホイールショベル
JP2009179095A (ja) 走行車両のサスペンション装置
JP2001097017A (ja) 作業車両の車高調整装置
JP2000229509A (ja) ホイールショベルの車高調整装置
JP2000233623A (ja) 車高調整装置を有するホイールショベル
JP2000229508A (ja) ホイールショベルのサスペンション
JP2004249993A (ja) サスペンション装置を有するホイールショベル
JP4073889B2 (ja) ホイールショベルの車高調整装置
JP2000233622A (ja) 車高調整装置を有するホイールショベル
JP5032917B2 (ja) 作業車両用独立型サスペンション機構
JP2001287530A (ja) 作業車両の車高調整装置
JP5914370B2 (ja) ホイール式作業車両
JPH0513816Y2 (ja)
JP4866337B2 (ja) 作業車のサスペンション装置
JPH08142629A (ja) 作業車両の懸架装置
JPH0752630A (ja) 作業車両の懸架装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE GB IT NL

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09890854

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020017009977

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2000902880

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000902880

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017009977

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020017009977

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2000902880

Country of ref document: EP