US20070060530A1 - Administration of dipeptidyl peptidase inhibitors - Google Patents

Administration of dipeptidyl peptidase inhibitors Download PDF

Info

Publication number
US20070060530A1
US20070060530A1 US11/531,671 US53167106A US2007060530A1 US 20070060530 A1 US20070060530 A1 US 20070060530A1 US 53167106 A US53167106 A US 53167106A US 2007060530 A1 US2007060530 A1 US 2007060530A1
Authority
US
United States
Prior art keywords
compound
pharmaceutical composition
administering
single dose
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/531,671
Other languages
English (en)
Inventor
Ronald Christopher
Paul Covington
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DEVELOPMENT PARTNERS LLC
Takeda Pharmaceutical Co Ltd
Original Assignee
DEVELOPMENT PARTNERS LLC
Takeda Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37564046&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20070060530(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by DEVELOPMENT PARTNERS LLC, Takeda Pharmaceutical Co Ltd filed Critical DEVELOPMENT PARTNERS LLC
Priority to US11/531,671 priority Critical patent/US20070060530A1/en
Assigned to TAKEDA SAN DIEGO, INC. reassignment TAKEDA SAN DIEGO, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHRISTOPHER, RONALD J.
Assigned to TAKEDA SAN DIEGO, INC. reassignment TAKEDA SAN DIEGO, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEVELOPMENT PARTNERS, LLC
Assigned to DEVELOPMENT PARTNERS, LLC reassignment DEVELOPMENT PARTNERS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COVINGTON, PAUL
Assigned to TAKEDA PHARMACEUTICAL COMPANY LIMITED reassignment TAKEDA PHARMACEUTICAL COMPANY LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAKEDA SAN DIEGO, INC.
Publication of US20070060530A1 publication Critical patent/US20070060530A1/en
Priority to US13/091,460 priority patent/US20110192748A1/en
Priority to US13/773,282 priority patent/US8906901B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/4261,3-Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/26Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin

Definitions

  • the invention relates to the method of administering compounds used to inhibit dipeptidyl peptidase IV as well as treatment methods based on such administration.
  • Dipeptidyl Peptidase IV (IUBMB Enzyme Nomenclature EC.3.4.14.5) is a type II membrane protein that has been referred to in the literature by a wide a variety of names including DPP4, DP4, DAP-IV, FAP ⁇ , adenosine deaminase complexing protein 2, adenosine deaminase binding protein (ADAbp), dipeptidyl aminopeptidase IV; Xaa-Pro-dipeptidyl-aminopeptidase; Gly-Pro naphthylamidase; postproline dipeptidyl aminopeptidase IV; lymphocyte antigen CD26; glycoprotein GP110; dipeptidyl peptidase IV; glycylproline aminopeptidase; glycylproline aminopeptidase; X-prolyl dipeptidyl aminopeptidase; pep X; leukocyte antigen CD26; glycylproly
  • DPP-IV is a non-classical serine aminodipeptidase that removes Xaa-Pro dipeptides from the amino terminus (N-terminus) of polypeptides and proteins. DPP-IV dependent slow release of dipeptides of the type X-Gly or X-Ser has also been reported for some naturally occurring peptides.
  • DPP-IV is constitutively expressed on epithelial and endothelial cells of a variety of different tissues (intestine, liver, lung, kidney and placenta), and is also found in body fluids. DPP-IV is also expressed on circulating T-lymphocytes and has been shown to be synonymous with the cell-surface antigen, CD-26.
  • DPP-IV is responsible for the metabolic cleavage of certain endogenous peptides (GLP-1 (7-36), glucagon) in vivo and has demonstrated proteolytic activity against a variety of other peptides (GHRH, NPY, GLP-2, VIP) in vitro.
  • GLP-1 (7-36) is a 29 amino-acid peptide derived by post-translational processing of proglucagon in the small intestine.
  • DPP-IV has been shown to be the primary degrading enzyme of GLP-1 (7-36) in vivo.
  • GLP-1 (7-36) is degraded by DPP-IV efficiently to GLP-1 (9-36), which has been speculated to act as a physiological antagonist to GLP-1 (7-36).
  • Inhibiting DPP-IV in vivo is therefore believed to be useful for potentiating endogenous levels of GLP-1 (7-36) and attenuating the formation of its antagonist GLP-1 (9-36).
  • DPP-IV inhibitors are believed to be useful agents for the prevention, delay of progression, and/or treatment of conditions mediated by DPP-IV, in particular diabetes and more particularly, type 2 diabetes mellitus, diabetic dislipidemia, conditions of impaired glucose tolerance (IGT), conditions of impaired fasting plasma glucose (IFG), metabolic acidosis, ketosis, appetite regulation and obesity.
  • diabetes in particular diabetes and more particularly, type 2 diabetes mellitus, diabetic dislipidemia, conditions of impaired glucose tolerance (IGT), conditions of impaired fasting plasma glucose (IFG), metabolic acidosis, ketosis, appetite regulation and obesity.
  • ITT impaired glucose tolerance
  • IGF impaired fasting plasma glucose
  • metabolic acidosis ketosis
  • ketosis ketosis
  • appetite regulation and obesity are believed to be useful agents for the prevention, delay of progression, and/or treatment of conditions mediated by DPP-IV, in particular diabetes and more particularly, type 2 diabetes mellitus, diabetic dislipidemia, conditions of impaired glucose tolerance (IGT), conditions of impaired fasting plasma glucose
  • a method comprising: administering a daily dose of between 1 mg/day and 250 mg/day of Compound I to a patient, optionally between 2.5 mg and 200 mg of Compound I, optionally between 2.5 mg and 150 mg of Compound I, and optionally between 5 mg and 100 mg of Compound I.
  • a daily dose of 2.5 mg, 5 mg, 6.25 mg, 10 mg, 20 mg, 25 mg, 50 mg, 75 mg or 100 mg of Compound I is administered.
  • a once-per-week dose of 2.5 mg, 5 mg, 6.25 mg, 10 mg, 20 mg, 25 mg, 50 mg, 75 mg or 100 mg of Compound I is administered.
  • administering is performed 1 time per day and may optionally be performed 1 time per day as a single dosage.
  • administering is performed 1 time per day for a period of at least 30 days and optionally for a period of at least 60 days.
  • administering is performed 1 time per day in the morning and optionally is performed 1 time per day in the morning prior to a first meal of the day for the patient.
  • administering is performed 1 time per week and may optionally be performed 1 time per week as a single dosage.
  • administering is performed 1 time per week for a period of at least 30 days and optionally for a period of at least 60 days.
  • administering is performed 1 time per week in the morning and optionally is performed 1 time per week in the morning prior to a first meal of the day for the patient.
  • Administering may be performed by a wide range of routes of administration including, but not limited to a route selected from the group consisting of orally, parenterally, intraperitoneally, intravenously, intraarterially, transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraoccularly, via local delivery, subcutaneously, intraadiposally, intraarticularly, intraperitoneally and intrathecally. In one particular variation, administering is performed orally.
  • Compound I may be used to treat a range of diseases. In one variation, administering Compound I is performed to treat type I or type II diabetes disease state of the patient. In another variation, administering Compound I is performed to treat a pre-diabetic patient. In still another variation, administering Compound I is performed to treat an inflammatory bowel disease, Crohn's disease, chemotherapy-induced enteritis, oral mucositis or Shortened Bowel syndrome.
  • administering Compound I is performed to treat a patient suffering from conditions mediated by DPP-IV such as diabetes and more particularly, type 2 diabetes mellitus; diabetic dislipidemia; impaired glucose tolerance (IGT); impaired fasting plasma glucose (IFG); metabolic acidosis; ketosis; appetite regulation; obesity; complications associated with diabetes including diabetic neuropathy, diabetic retinopathy and kidney disease; hyperlipidemia including hypertriglyceridemia, hypercholesteremia, hypoHDLemia and postprandial hyperlipidemia; arteriosclerosis; hypertension; myocardial infarction, angina pectoris, cerebral infarction, cerebral apoplexy and metabolic syndrome.
  • diabetes and more particularly, type 2 diabetes mellitus; diabetic dislipidemia; impaired glucose tolerance (IGT); impaired fasting plasma glucose (IFG); metabolic acidosis; ketosis; appetite regulation; obesity; complications associated with diabetes including diabetic neuropathy, diabetic retinopathy and kidney disease; hyperlipidemia including hypertriglyceridemia, hypercholesteremia, hypoHDL
  • a method for administering Compound I in combination with one or more antidiabetic or incretin compounds other than Compound I is also provided.
  • such combination therapy method is performed where a daily dose of between 1 mg/day and 250 mg/day of Compound I, optionally between 2.5 mg and 200 mg of Compound I, optionally between 2.5 mg and 150 mg of Compound I, and optionally between 5 mg and 100 mg of Compound I, is administered to a patient.
  • a daily dose of 2.5 mg, 5 mg, 6.25 mg, 10 mg, 20 mg, 25 mg, 50 mg, 75 mg or 100 mg of Compound I is administered to a patient in combination with one or more antidiabetic compounds other than Compound I.
  • such combination therapy method is performed where a once-per-week dose of between 1 mg and 250 mg of Compound I, optionally between 2.5 mg and 200 mg of Compound I, optionally between 2.5 mg and 150 mg of Compound I, and optionally between 5 mg and 100 mg of Compound I, is administered to a patient.
  • a once-per-week dose of 2.5 mg, 5 mg, 6.25 mg, 10 mg, 20 mg, 25 mg, 50 mg, 75 mg or 100 mg, 150 mg or 200 mg of Compound I is administered to a patient in combination with one or more antidiabetic compounds other than Compound I.
  • Combination of Compound I with one or more antidiabetic compounds other than Compound I provides excellent effects such as 1) enhancement in therapeutic effects of Compound I and/or the antidiabetic compounds; 2) reduction in side effects of Compound I and/or the antidiabetic compounds; and 3) reduction in a dose of Compound I and/or the antidiabetic compounds.
  • the one or more antidiabetic or incretin compounds administered in combination with Compound I may optionally be selected from the group consisting of insulin signaling pathway modulators, compounds influencing a dysregulated hepatic glucose production, insulin sensitivity enhancers, and insulin secretion enhancers.
  • the one or more antidiabetic or incretin compounds administered in combination with Compound I may also optionally be selected from the group consisting of protein tyrosine phosphatase inhibitors, glutamine-fructose-6-phosphate amidotransferase inhibitors, glucose-6-phosphatase inhibitors, fructose-1,6-bisphosphatase inhibitors, glycogen phosphorylase inhibitors, glucagon receptor antagonists, phosphoenolpyruvate carboxykinase inhibitors, pyruvate dehydrogenase kinase inhibitors, alpha-glucosidase inhibitors, inhibitors of gastric emptying, glucokinase activators, GLP-1 receptor agonists, GLP-2 receptor agonists, UCP modulators, RXR modulators, GSK-3 inhibitors, PPAR modulators, metformin, insulin, and ⁇ 2 -adrenergic antagonists.
  • protein tyrosine phosphatase inhibitors glut
  • the one or more antidiabetic or incretin compounds administered in combination with Compound I may also optionally be selected from the group consisting of GSK-3 inhibitors, retinoid X receptor agonists, Beta-3 AR agonists, UCP modulators, antidiabetic thiazolidinediones, non-glitazone type PPAR gamma agonists, dual PPAR gamma/PPAR alpha agonists, antidiabetic vanadium containing compounds and biguanides.
  • the one or more antidiabetic or incretin compounds administered in combination with Compound I may also optionally be thiazolidinediones selected from the group consisting of (S)-((3,4-dihydro-2-(phenyl-methyl)-2H-1-benzopyran-6-yl)methyl-thiazolidine-2,4-dione, 5- ⁇ [4-(3-(5-methyl-2-phenyl-4-oxazolyl)-1-oxo-propyl)-phenyl]-methyl ⁇ -thiazolidine-2,4-dione, 5- ⁇ [4-(1-methyl-cyclohexyl)methoxy)-phenyl]methyl ⁇ -thiazolidine-2,4-dione, 5- ⁇ [4-(2-(1-indolyl)ethoxy)phenyl]methyl ⁇ -thiazolidine-2,4-dione, 5- ⁇ 4-[2-(5-methyl-2-phenyl-4-oxazoly)-ethoxy)
  • the one or more antidiabetic compounds administered in combination with Compound I includes metformin.
  • the metformin in this combination comprises one or more pharmaceutically acceptable salts thereof.
  • the metformin in this combination comprises a metformin HCl salt.
  • the metformin in this combination is administered in a daily dose of between 125 and 2550 mg.
  • the metformin in this combination is administered in a daily dose of between 250 and 2550 mg.
  • the one or more antidiabetic compounds administered in combination with Compound I includes one or more sulphonyl urea derivatives.
  • the one or more antidiabetic compounds administered in combination with Compound I may also optionally be selected from the group consisting of glisoxepid, glyburide, glibenclamide, acetohexamide, chloropropamide, glibornuride, tolbutamide, tolazamide, glipizide, carbutamide, gliquidone, glyhexamide, phenbutamide, tolcyclamide, glimepiride and gliclazide, including any pharmaceutically acceptable salts thereof.
  • the one or more antidiabetic compounds administered in combination with Compound I includes glimepiride.
  • the one or more antidiabetic compounds administered in combination with Compound I may also optionally be selected from the group consisting of incretin hormones or mimics thereof, beta-cell imidazoline receptor antagonists, and short-acting insulin secretagogues.
  • the one or more antidiabetic compounds administered in combination with Compound I includes insulin.
  • the one or more antidiabetic compounds administered in combination with Compound I may also optionally be one or more GLP-1 agonists including, for example, extendatide.
  • the one or more antidiabetic compounds administered in combination with Compound I may also optionally be one or more GLP-2 agonists including, for example, human recombinant GLP-2.
  • the one or more antidiabetic compounds administered in combination with Compound I may also optionally be one or more antidiabetic D-phenylalanine derivatives.
  • the one or more antidiabetic compounds administered in combination with Compound I may also optionally be selected from the group consisting of repaglinide, mitiglinide and nateglinide, including any pharmaceutically acceptable salts thereof.
  • the one or more antidiabetic compounds administered in combination with Compound I includes mitiglinide calcium salt hydrate.
  • the one or more antidiabetic compounds administered in combination with Compound I may also optionally be one or more alpha-Glucosidase inhibitors.
  • the one or more antidiabetic compounds administered in combination with Compound I may also optionally be selected from the group consisting of acarbose, voglibose and miglitol, including any pharmaceutically acceptable salts thereof.
  • the one or more antidiabetic compounds administered in combination with Compound I includes voglibose.
  • the voglibose in this combination is administered in a daily dose of between 0.1 and 1 mg.
  • the one or more antidiabetic compounds administered in combination with Compound I may also optionally be rosiglitazone, including any pharmaceutically acceptable salts thereof.
  • the rosiglitazone in this combination comprises a rosiglitazone maleate salt
  • the one or more antidiabetic compounds administered in combination with Compound I may also optionally be tesaglitazar, muraglitazar or naveglitazar, including any pharmaceutically acceptable salts thereof.
  • the one or more antidiabetic compounds administered in combination with Compound I may also optionally be pioglitazone, including any pharmaceutically acceptable salts thereof.
  • the pioglitazone in this combination comprises a pioglitazone HCl salt.
  • the pioglitazone in this combination is administered in a daily dose of between 7.5 and 60 mg.
  • the pioglitazone in this combination is administered in a daily dose of between 15 and 45 mg.
  • the one or more antidiabetic compounds administered in combination with Compound I may also optionally comprise metformin and pioglitazone.
  • the pioglitazone in this combination comprises one or more pharmaceutically acceptable salts thereof.
  • the pioglitazone in this combination comprises a pioglitazone HCl salt.
  • the pioglitazone in this combination is administered in a daily dose of between 7.5 and 60 mg.
  • the pioglitazone in this combination is administered in a daily dose of between 15 and 45 mg.
  • the metformin in this combination comprises one or more pharmaceutically acceptable salts thereof.
  • the metformin in this combination comprises a metformin HCl salt.
  • the metformin in this combination is administered in a daily dose of between 125 and 2550 mg.
  • the metformin in this combination is administered in a daily dose of between 250 and 2550 mg.
  • Compound I may be administered as a free base or as a pharmaceutically acceptable salt thereof.
  • Compound I is administered as a HCl, methanesulfonate, succinate, benzoate, toluenesulfonate, R-( ⁇ )mandelate or benzenesulfonate salt of Compound I.
  • compositions are also provided.
  • a pharmaceutical composition is provided that is formulated in a single dose form wherein such single dose form comprises between 1 mg/day and 250 mg/day of Compound I, optionally between 2.5 mg and 200 mg of Compound I, optionally between 2.5 mg and 150 mg of Compound I, and optionally between 5 mg and 100 mg of Compound I.
  • the pharmaceutical composition comprises 2.5 mg, 5 mg, 6.25 mg, 10 mg, 20 mg, 25 mg, 50 mg, 75 mg or 100 mg of Compound I.
  • a pharmaceutical composition is provided that is formulated in a single dose form wherein such single dose form comprises between 1 mg/week and 250 mg/week of Compound I, optionally between 2.5 mg and 200 mg of Compound I, optionally between 2.5 mg and 150 mg of Compound I, and optionally between 5 mg and 100 mg of Compound I.
  • the pharmaceutical composition comprises 2.5 mg, 5 mg, 6.25 mg, 10 mg, 20 mg, 25 mg, 50 mg, 75 mg or 100 mg of Compound I on a once per week basis.
  • a pharmaceutical composition that comprises Compound I and one or more antidiabetic or incretin compounds other than Compound I in a single dose form.
  • Compound I is present in the single dose form in a dosage amount between 1 mg/day and 250 mg/day of Compound I, optionally between 2.5 mg and 200 mg of Compound I, optionally between 2.5 mg and 150 mg of Compound I, and optionally between 5 mg and 100 mg of Compound I.
  • the pharmaceutical composition comprises 2.5 mg, 5 mg, 6.25 mg, 10 mg, 20 mg, 25 mg, 50 mg, 75 mg or 100 mg of Compound I.
  • Combination of Compound I with one or more antidiabetic compounds other than Compound I provides excellent effects such as 1) enhancement in therapeutic effects of Compound I and/or the antidiabetic compounds; 2) reduction in side effects of Compound I and/or the antidiabetic compounds; and 3) reduction in a dose of Compound I and/or the antidiabetic compounds.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition may optionally be selected from the group consisting of insulin signaling pathway modulators, compounds influencing a dysregulated hepatic glucose production, insulin sensitivity enhancers, incretins and insulin secretion enhancers.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition may optionally be selected from the group consisting of protein tyrosine phosphatase inhibitors, glutamine-fructose-6-phosphate amidotransferase inhibitors, glucose-6-phosphatase inhibitors, fructose-1,6-bisphosphatase inhibitors, glycogen phosphorylase inhibitors, glucagon receptor antagonists, phosphoenolpyruvate carboxykinase inhibitors, pyruvate dehydrogenase kinase inhibitors, alpha-glucosidase inhibitors, inhibitors of gastric emptying, glucokinase activators, GLP-1 receptor agonists, GLP-2 receptor agonists, UCP modulators, RXR modulators, GSK-3 inhibitors, PPAR modulators, metformin, insulin, and ⁇ 2 -adrenergic antagonists.
  • protein tyrosine phosphatase inhibitors glutamine-fructos
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition may optionally be selected from the group consisting of GSK-3 inhibitors, retinoid X receptor agonists, Beta-3 AR agonists, UCP modulators, antidiabetic thiazolidinediones, non-glitazone type PPAR gamma agonists, dual PPAR gamma/PPAR alpha agonists, antidiabetic vanadium containing compounds and biguanides.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition may optionally be thiazolidinediones selected from the group consisting of (S)-((3,4-dihydro-2-(phenyl-methyl)-2H-1-benzopyran-6-yl)methyl-thiazolidine-2,4-dione, 5- ⁇ [4-(3-(5-methyl-2-phenyl-4-oxazolyl)-1-oxo-propyl)-phenyl]-methyl ⁇ -thiazolidine-2,4-dione, 5- ⁇ [4-(1-methyl-cyclohexyl)methoxy)-phenyl]methyl]-thiazolidine-2,4-dione, 5- ⁇ [4-(2-(1-indolyl)ethoxy)phenyl]methyl ⁇ -thiazolidine-2,4-dione, 5- ⁇ 4-[2-(5-methyl-2-phenyl-4-oxazoly)-ethoxy)]]
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes metformin.
  • the metformin in this combination comprises one or more pharmaceutically acceptable salts thereof.
  • the metformin in this combination comprises a metformin HCl salt.
  • the metformin in this combination is administered in a daily dose of between 125 and 2550 mg.
  • the metformin in this combination is administered in a daily dose of between 250 and 2550 mg.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes one or more sulphonyl urea derivatives.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes an antidiabetic compound selected from the group consisting of glisoxepid, glyburide, glibenclamide, acetohexamide, chloropropamide, glibornuride, tolbutamide, tolazamide, glipizide, carbutamide, gliquidone, glyhexamide, phenbutamide, tolcyclamide, glimepiride and gliclazide, including any pharmaceutically acceptable salts thereof.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes glimepiride.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes an antidiabetic compound selected from the group consisting of incretin hormones or mimics thereof, beta-cell imidazoline receptor antagonists, and short-acting insulin secretagogues.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes insulin.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes one or more GLP-1 agonists.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes one or more GLP-2 agonists, including human recombinant forms of GLP-2.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes one or more antidiabetic D-phenylalanine derivatives.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes an antidiabetic compound selected from the group consisting of repaglinide and nateglinide, including any pharmaceutically acceptable salts thereof.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes mitiglinide calcium salt hydrate.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes one or more alpha-Glucosidase inhibitors.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes an antidiabetic compound selected from the group consisting of acarbose, voglibose and miglitol, including any pharmaceutically acceptable salts thereof.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes voglibose.
  • the voglibose in this combination is administered in a daily dose of between 0.1 and 1 mg.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes rosiglitazone, including any pharmaceutically acceptable salts thereof.
  • the rosiglitazone in this combination comprises a rosiglitazone maleate salt.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition may also optionally be tesaglitazar, muraglitazar or naveglitazar, including any pharmaceutically acceptable salts thereof.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes pioglitazone, including any pharmaceutically acceptable salts thereof.
  • the pioglitazone in this combination comprises a pioglitazone HCl salt.
  • the pioglitazone in this combination is administered in a daily dose of between 7.5 and 60 mg.
  • the pioglitazone in this combination is administered in a daily dose of between 15 and 45 mg.
  • the one or more antidiabetic compounds comprised in the pharmaceutical composition includes metformin and pioglitazone.
  • the pioglitazone in this combination comprises one or more pharmaceutically acceptable salts thereof.
  • the pioglitazone in this combination comprises a pioglitazone HCl salt.
  • the pioglitazone in this combination is administered in a daily dose of between 7.5 and 60 mg.
  • the pioglitazone in this combination is administered in a daily dose of between 15 and 45 mg.
  • the metformin in this combination comprises one or more pharmaceutically acceptable salts thereof.
  • the metformin in this combination comprises a metformin HCl salt.
  • the metformin in this combination is administered in a daily dose of between 125 and 2550 mg.
  • the metformin in this combination is administered in a daily dose of between 250 and 2550 mg.
  • Compound I may be administered as a free base or as a pharmaceutically acceptable salt thereof.
  • Compound I is administered as a HCl, methanesulfonate, succinate, benzoate, toluenesulfonate, R-( ⁇ )mandelate or benzenesulfonate salt of Compound I.
  • the pharmaceutical composition may optionally be a single dose form adapted for oral administration, optionally a solid formulation adapted for oral administration, and optionally a tablet or capsule adapted for oral administration.
  • the pharmaceutical formulation may also be an extended release formulation adapted for oral administration.
  • the pharmaceutical composition may be employed to prevent or treat conditions mediated by DPP-IV such as diabetes and more particularly, type 2 diabetes mellitus; diabetic dislipidemia; impaired glucose tolerance (IGT); impaired fasting plasma glucose (IFG); metabolic acidosis; ketosis; appetite regulation; obesity; complications associated with diabetes including diabetic neuropathy, diabetic retinopathy and kidney disease; hyperlipidemia including hypertriglyceridemia, hypercholesteremia, hypoHDLemia and postprandial hyperlipidemia; arteriosclerosis; hypertension; myocardial infarction, angina pectoris, cerebral infarction, cerebral apoplexy and metabolic syndrome.
  • the pharmaceutical composition may optionally be a single dose form adapted for parenteral (subcutaneous, intravenous, subdermal or intramuscular) administration, optionally a solution formulation adapted for parenteral administration, and optionally a suspension formulation adapted for parenteral administration.
  • the pharmaceutical formulation may also be an extended release formulation adapted for oral administration.
  • kits comprising multiple doses of pharmaceutical composition according to the present invention.
  • kits further comprise instructions which comprise one or more forms of information selected from the group consisting of indicating a disease state for which the pharmaceutical composition is to be administered, storage information for the pharmaceutical composition, dosing information and instructions regarding how to administer the pharmaceutical composition.
  • articles of manufacture comprising multiple doses of pharmaceutical composition according to the present invention.
  • the articles of manufacture further comprise packaging materials such as a container for housing the multiple doses of the pharmaceutical composition and or a label indicating one or more members of the group consisting of a disease state for which the compound is to be administered, storage information, dosing information and/or instructions regarding how to administer the composition.
  • the embodiments should be interpreted as being open ended in the sense that the methods may comprise further actions beyond those specified including the administration of other pharmaceutically active materials to a patient.
  • the pharmaceutical compositions, kits and articles of manufacture may further include other materials including other pharmaceutically active materials.
  • FIG. 1 illustrates DPP IV inhibition in plasma after a single oral administration of Compound I in monkey.
  • Disease specifically includes any unhealthy condition of an animal or part thereof and includes an unhealthy condition that may be caused by, or incident to, medical or veterinary therapy applied to that animal, i.e., the “side effects” of such therapy.
  • “Pharmaceutically acceptable” means that which is useful in preparing a pharmaceutical composition that is generally safe, non-toxic and neither biologically nor otherwise undesirable and includes that which is acceptable for veterinary use as well as human pharmaceutical use.
  • “Pharmaceutically acceptable salts” means salts which are pharmaceutically acceptable, as defined above, and which possess the desired pharmacological activity. Such salts include, but are not limited to, acid addition salts formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or with organic acids such as acetic acid, trifluoroacetic acid, propionic acid, hexanoic acid, heptanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, o-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, 2-hydroxyethane
  • Pharmaceutically acceptable salts also include, but are not limited to, base addition salts which may be formed when acidic protons present are capable of reacting with inorganic or organic bases.
  • Acceptable inorganic bases include, but are not limited to, sodium hydroxide, sodium carbonate, potassium hydroxide, aluminum hydroxide and calcium hydroxide.
  • Acceptable organic bases include, but are not limited to, ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine and the like.
  • “Therapeutically effective amount” means that amount of a compound which, when administered to an animal for treating a disease, is sufficient to effect such treatment for the disease.
  • Treatment or “treating” means any administration of a therapeutically effective amount of a compound and includes:
  • the present invention relates generally to the administration of 2-[6-(3-Amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-ylmethyl]-4-fluoro-benzonitrile (referred to herein as “Compound I”) whose structure is provided below.
  • Example 1 describes one method for synthesizing Compound I. It is noted that other methods for synthesizing Compound I may be used as would be appreciated to one of ordinary skill in the art.
  • Compound I may be administered in its free base form and may also be administered in the form of salts, hydrates and prodrugs that are converted in vivo into the free base form of Compound I.
  • Compound I is intended to encompass salts, hydrates and prodrugs of Compound I unless otherwise specified.
  • a pharmaceutically acceptable salt of Compound I preferably confers improved pharmacokinetic properties as compared to the free base form Compound I.
  • Pharmaceutically acceptable salts may also initially confer desirable pharmacokinetic properties on Compound I that it did not previously possess, and may even positively affect the pharmacodynamics of the compound with respect to its therapeutic activity in the body.
  • salts, hydrates and prodrugs of Compound I include, but are not limited to salt forms formed by inorganic or organic acids, e.g., hydrohalides such as hydrochloride, hydrobromide, hydroiodide; other mineral acids and their corresponding salts such as sulfate, nitrate, phosphate, etc.; alkyl and monoarylsulfonates such as ethanesulfonate, toluenesulfonate and benzenesulfonate; and other organic acids and their corresponding salts such as acetate, trifluoroacetate, tartrate, maleate, succinate, citrate, benzoate, salicylate and ascorbate.
  • hydrohalides such as hydrochloride, hydrobromide, hydroiodide
  • other mineral acids and their corresponding salts such as sulfate, nitrate, phosphate, etc.
  • alkyl and monoarylsulfonates such as ethanes
  • Further acid addition salts include, but are not limited to: adipate, alginate, arginate, aspartate, bisulfate, bisulfite, bromide, butyrate, camphorate, camphorsulfonate, caprylate, chloride, chlorobenzoate, cyclopentanepropionate, digluconate, dihydrogenphosphate, dinitrobenzoate, dodecylsulfate, fumarate, galacterate (from mucic acid), galacturonate, glucoheptaoate, gluconate, glutamate, glycerophosphate, hemisuccinate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, iodide, isethionate, iso-butyrate, lactate, lactobionate, malate, malonate, mandelate, meta
  • Compound I is administered as a HCl, methanesulfonate, succinate, benzoate, toluenesulfonate, R-( ⁇ )mandelate or benzenesulfonate salt of Compound I.
  • Example 1 describes the preparation of the succinate salt form of Compound I.
  • the present invention relates generally to a method comprising administering Compound I to a patient at a daily dose of between 1 mg/day and 250 mg/day of Compound I to a patient, optionally between 2.5 mg and 200 mg of Compound I, optionally between 2.5 mg and 150 mg of Compound I, and optionally between 5 mg and 100 mg of Compound I (in each instance based on the molecular weight of the free base form of Compound I).
  • Specific dosage amounts that may be used include, but are not limited to 2.5 mg, 5 mg, 6.25 mg, 10 mg, 20 mg, 25 mg, 50 mg, 75 mg and 100 mg of Compound I per day. It is noted that unless otherwise specifically specified, Compound I may be administered in its free base form or as a pharmaceutically acceptable salt. However, the dosage amounts and ranges provided herein are always based on the molecular weight of the free base form of Compound I.
  • the present invention also relates to a method comprising administering Compound I to a patient at a once per week dose of between 1 mg/day and 250 mg/day of Compound I, optionally between 10 mg and 200 mg of Compound I, optionally between 10 mg and 150 mg of Compound I, and optionally between 10 mg and 100 mg of Compound I (in each instance based on the molecular weight of the free base form of Compound I).
  • Specific dosage amounts that may be used include, but are not limited to 2.5 mg, 5 mg, 6.25 mg, 10 mg, 20 mg, 25 mg, 50 mg, 75 mg and 100 mg of Compound I per week on a once-per-week regimen. It is noted that unless otherwise specifically specified, Compound I may be administered in its free base form or as a pharmaceutically acceptable salt. However, the dosage amounts and ranges provided herein are always based on the molecular weight of the free base form of Compound I.
  • Compound I may be administered by any route of administration.
  • the method of the present invention is practiced by administering Compound I orally. This type of administration is advantageous in that it is easy and may be self-administered by the patient.
  • Compound I may be administered one or more times per day.
  • An advantage of the present invention is that Compound I can be effectively administered at the dosage levels specified herein one time per day and may also be administered as a single dosage form one time a day.
  • Compound I is suitable for prolonged continuous use and may be administered to patients for an extended period of time. Accordingly, the method may be performed where Compound I is administered to a patient each day (optionally 1 time daily) for a period of at least 1 month, optionally for at least 3 months, and, if necessary, optionally for the duration of the patients disease profile. Because of the long acting DPP-IV inhibitory affects of Compound I, it is envisioned that a dosing regiment less frequent than once per day may be employed.
  • Compound I may be administered at any time during the day.
  • Compound I is administered daily one time a day where administration occurs in the morning before meals. Because Compound I can stimulate insulin secretion when blood glucose level reaches levels above 100 mg/dl, it may be beneficial to have Compound I in systemic circulation before an elevation in blood glucose levels occurs postprandially.
  • Compound I may be administered to any patient who would benefit from a course of treatment leading to the reduction of in vivo DPP-IV activity.
  • FIG. 1 illustrates and Example 3 describes the observed effect that administering Compound I has on monkey plasma DPPIV activity after a single oral administration.
  • Compound I can be effectively used relative to disease states where it is desired to reduce plasma DPPIV activity.
  • the patient's plasma DPPIV activity may be reduced by greater than 60% relative to baseline for a period of at least at least 6 hours, 12 hours, 18 hours and even 24 hours following administration.
  • Examples of particular applications for administering Compound I include, but are not limited to the prevention, delay of progression, and/or treatment of conditions mediated by DPP-IV, in particular diabetes and more particularly, type 2 diabetes mellitus, diabetic dislipidemia, impaired glucose tolerance (IGT), impaired fasting plasma glucose (IFG), metabolic acidosis, ketosis, appetite regulation, obesity and complications associated with diabetes including diabetic neuropathy, diabetic retinopathy, inflammatory bowel disease, Crohn's disease, chemotherapy-induced enteritis, oral mucositis, Shorthened Bowel Syndrome and kidney disease.
  • type 2 diabetes mellitus diabetic dislipidemia
  • IIGT impaired glucose tolerance
  • IGF impaired fasting plasma glucose
  • ketosis ketosis
  • obesity obesity and complications associated with diabetes including diabetic neuropathy, diabetic retinopathy, inflammatory bowel disease, Crohn's disease, chemotherapy-induced enteritis, oral mucositis, Shorthened Bowel Syndrome and kidney disease.
  • the conditions mediated by DPP-IV further includes hyperlipidemia such as hypertriglyceridemia, hypercholesteremia, hypoHDLemia and postprandial hyperlipidemia; arteriosclerosis; hypertension; myocardial infarction, angina pectoris, cerebral infarction, cerebral apoplexy and metabolic syndrome.
  • hyperlipidemia such as hypertriglyceridemia, hypercholesteremia, hypoHDLemia and postprandial hyperlipidemia; arteriosclerosis; hypertension; myocardial infarction, angina pectoris, cerebral infarction, cerebral apoplexy and metabolic syndrome.
  • cardiac measurements that may be improved include, but are not limited to a decrease in mean systolic blood pressure, an increase in HDL cholesterol, improvement in LDL/HDL ratio and a reduction in triglycerides.
  • cardiovascular measurements examples include, but are not limited to a decrease in mean systolic blood pressure, an increase in HDL cholesterol, improvement in LDL/HDL ratio and a reduction in triglycerides.
  • Compound I in combination with one or more antidiabetic or incretin compounds to patients with gastrointestinal inflammatory disorders (including, but not be limited to inflammatory bowel disease, Crohn's disease, chemotherapy-induced enteritis, oral mucositis and Shortened Bowel Syndrome) following a minimum treatment of at least 30 days will improve the health of the mucosal lining of the gastrointestinal tract. Improvement in the health of the mucosal lining of the gastrointestinal tract may be demonstrated by, but is not limited to, an increase in the intestinal surface area, reduced inflammation, and/or increases in absorption of nutrients.
  • gastrointestinal inflammatory disorders including, but not be limited to inflammatory bowel disease, Crohn's disease, chemotherapy-induced enteritis, oral mucositis and Shortened Bowel Syndrome
  • Compound I is administered to a patient with type 2 diabetes. Patients receiving Compound I may also have a malfunction in insulin secretion from pancreatic islets rather than patients who have developed insulin resistance in peripheral insulin sensitive tissues/organs.
  • administering Compound I one time per day, or one time per week, at the dosage levels specified herein may also be used to treat patients who are prediabetic. It is believed that administering Compound I in a patient who is prediabetic serves to delay development of type II diabetes in that patient. Sustained increase in blood glucose desensitizes pancreatic islet function and impairs insulin secretion. By improving cyclic AMP levels and the calcium dynamics in beta cells, the cells activate genes repairing damaged cell components and are less vulnerable to glucose toxicity.
  • Administering Compound I one time per day, or one time per week, at the dosage levels specified herein is expected to have a range of desirous biological effects in vivo. For example, administering Compound I one time per day, or one time per week, at the dosage levels specified herein reduces the patient's blood glucose level when compared with placebo control. Such a decrease in postprandial blood glucose levels helps diabetic patients to maintain lower glucose levels.
  • Administering Compound I one time per day, or one time per week, at the dosage levels specified herein is also expected to have the affect of increasing the patient's insulin level or insulin sensitivity.
  • Insulin facilitates entry of glucose into muscle, adipose and several other tissues. The mechanism by which cells can take up glucose is by facilitated diffusion through stimulation of insulin receptor.
  • C-peptide and insulin are protein chains created by the activation and division of proinsulin (an inactive precursor to insulin). C-peptide and insulin are created and stored in the beta cells of the pancreas. When insulin is released into the bloodstream, equal amounts of C-peptide also are released. This makes C-peptide useful as a marker of insulin production.
  • Administering Compound I according to the present invention is expected to increase the patient's C-peptide level.
  • Administering Compound I one time per day at the dosage levels specified herein is also expected to have the affect of decreasing the patient's hemoglobin A1c level by greater than 0.5% when compared to placebo control after extended treatment with Compound I. Further, administering Compound I one time per week at the dosage levels specified herein is also expected to have the affect of decreasing the patient's hemoglobin A1c level by greater than 0.2% when compared to placebo control after extended treatment with Compound I.
  • Hb-A1c values are known to be directly proportional to the concentration of glucose in the blood over the life span of the red blood cells. Hb-A1c thus gives an indication of a patient's blood glucose levels over the previous last 90 days, skewed to the most recent 30 days. The observed reduction in the patient's hemoglobin A1c level thus verifies the sustained reduction in the patient's blood glucose levels as a result of administering Compound I one time per day at the dosage levels specified herein.
  • the present invention also relates to the use of Compound I in combination with one or more other antidiabetic and/or incretin compounds.
  • other antidiabetic compounds include, but are not limited to insulin signaling pathway modulators, like protein tyrosine phosphatase (PTPase) inhibitors, and glutamine-fructose-6-phosphate amidotransferase (GFAT) inhibitors; compounds influencing a dysregulated hepatic glucose production, like glucose-6-phosphatase (G6 Pase) inhibitors, fructose-1,6-bisphosphatase (F-1,6-BPase) inhibitors, glycogen phosphorylase (GP) inhibitors, glucagon receptor antagonists and phosphoenolpyruvate carboxykinase (PEPCK) inhibitors; pyruvate dehydrogenase kinase (PDHK) inhibitors; insulin sensitivity enhancers (insulin sensitizers); insulin secretion enhancers (insulin secret
  • PTPase inhibitors that may be used in combination with Compound I include, but are not limited to those disclosed in U.S. Pat. Nos. 6,057,316, 6,001,867, and PCT Publication Nos. WO 99/58518, WO 99/58522, WO 99/46268, WO 99/46267, WO 99/46244, WO 99/46237, WO 99/46236, and WO 99/15529.
  • GFAT inhibitors examples include, but are not limited to those disclosed in Mol. Cell. Endocrinol. 1997, 135(1), 67-77.
  • G6 Pase inhibitors that may be used in combination with Compound I include, but are not limited to those disclosed in PCT Publication Nos. WO 00/14090, WO 99/40062 and WO 98/40385, European Patent Publication No. EP682024 and Diabetes 1998, 47, 1630-1636.
  • F-1,6-BPase inhibitors that may be used in combination with Compound I include, but are not limited to those disclosed in PCT Publication Nos. WO 00/14095, WO 99/47549, WO 98/39344, WO 98/39343 and WO 98/39342.
  • Examples of GP inhibitors that may be used in combination with Compound I include, but are not limited to those disclosed in U.S. Pat. No. 5,998,463, PCT Publication Nos. WO 99/26659, WO 97/31901, WO 96/39384 and WO 9639385 and European Patent Publication Nos. EP 978279 and EP 846464.
  • glucagon receptor antagonists that may be used in combination with Compound I include, but are not limited to those disclosed in U.S. Pat. Nos. 5,880,139 and 5,776,954, PCT Publication Nos. WO 99/01423, WO 98/22109, WO 98/22108, WO 98/21957, WO 97/16442 and WO 98/04528 and those described in Bioorg Med. Chem. Lett 1992, 2, 915-918, J. Med. Chem. 1998, 41, 5150-5157, and J. Biol. Chem. 1999, 274; 8694-8697.
  • PEPCK inhibitors that may be used in combination with Compound I include, but are not limited to those disclosed in U.S. Pat. No. 6,030,837 and Mol. Biol. Diabetes 1994, 2, 283-99.
  • PDHK inhibitors examples include, but are not limited to those disclosed in J. Med. Chem. 42 (1999) 2741-2746.
  • insulin sensitivity enhancers examples include, but are not limited to GSK-3 inhibitors, retinoid X receptor (RXR) agonists, Beta-3 AR agonists, UCP modulators, antidiabetic thiazolidinediones (glitazones), non-glitazone type PPAR gamma agonists, dual PPAR gamma/PPAR alpha agonists, antidiabetic vanadium containing compounds and biguanides such as metformin.
  • RXR retinoid X receptor
  • Beta-3 AR agonists beta-3 AR agonists
  • UCP modulators antidiabetic thiazolidinediones (glitazones), non-glitazone type PPAR gamma agonists, dual PPAR gamma/PPAR alpha agonists, antidiabetic vanadium containing compounds and biguanides such as metformin.
  • GSK-3 inhibitors include, but are not limited to those disclosed in PCT Publication Nos. WO 00/21927 and WO 97/41854.
  • RXR modulators include, but are not limited to those disclosed in U.S. Pat. Nos. 4,981,784, 5,071,773, 5,298,429 and 5,506,102 and PCT Publication Nos. WO89/05355, WO91/06677, WO92/05447, WO93/11235, WO95/18380, WO94/23068, and WO93/23431.
  • Beta-3 AR agonists include, but are not limited to CL-316,243 (Lederle Laboratories) and those disclosed in U.S. Pat. No. 5,705,515 and PCT Publication Nos. WO 99/29672, WO 98/32753, WO 98/20005, WO 98/09625, WO 97/46556, and WO 97/37646.
  • UCP modulators include agonists of UCP-1, UCP-2 and UCP-3.
  • UCP modulators include, but are not limited to those disclosed in Vidal-Puig et al., Biochem. Biophys. Res. Commun., Vol. 235(1) pp. 79-82 (1997).
  • Examples of antidiabetic, PPAR modulating thiazolidinediones include, but are not limited to, (S)-((3,4-dihydro-2-(phenyl-methyl)-2H-1-benzopyran-6-yl)methyl-thiazolidine-2,4-dione (englitazone), 5- ⁇ [4-(3-(5-methyl-2-phenyl-4-oxazolyl)-1-oxo-propyl)-phenyl]-methyl ⁇ -thiazolidine-2,4-dione (darglitazone), 5- ⁇ [4-(1-methyl-cyclohexyl)methoxy)-phenyl]methyl]-thiazolidine-2,4-dione (ciglitazone), 5- ⁇ [4-(2-(1-indolyl)ethoxy)phenyl]methyl ⁇ -thiazolidine-2,4-dione (DRF2189), 5- ⁇ 4-[2-(5-methyl
  • non-glitazone type PPAR gamma agonists include, but are not limited to N-(2-benzoylphenyl)-L-tyrosine analogues, such as GI-262570, reglixane (JTT501) and FK-614 and metaglidasen (MBX-102).
  • Examples of dual PPAR gamma/PPAR alpha agonists include, but are not limited to omega.-[(oxoquinazolinylalkoxy)phenyl]alkanoates and analogs thereof including those described in PCT Publication No. WO 99/08501 and Diabetes 2000, 49(5), 759-767; tesaglitazar, muraglitazar and naveglitazar.
  • Examples of antidiabetic vanadium containing compounds include, but are not limited to those disclosed in the U.S. Pat. No. 5,866,563.
  • Metformin dimethyldiguanide
  • GLUCOPHAGETM hydrochloride salt
  • insulin secretion enhancers include but are not limited to glucagon receptor antagonists (as described above), sulphonyl urea derivatives, incretin hormones or mimics thereof, especially glucagon-like peptide-1 (GLP-1) or GLP-1 agonists, beta-cell imidazoline receptor antagonists, and short-acting insulin secretagogues, like antidiabetic phenylacetic acid derivatives, antidiabetic D-phenylalanine derivatives, and mitiglinide and pharmaceutical acceptable salts thereof.
  • GLP-1 glucagon-like peptide-1
  • beta-cell imidazoline receptor antagonists beta-cell imidazoline receptor antagonists
  • short-acting insulin secretagogues like antidiabetic phenylacetic acid derivatives, antidiabetic D-phenylalanine derivatives, and mitiglinide and pharmaceutical acceptable salts thereof.
  • sulphonyl urea derivatives include, but are not limited to, glisoxepid, glyburide, glibenclamide, acetohexamide, chloropropamide, glibornuride, tolbutamide, tolazamide, glipizide, carbutamide, gliquidone, glyhexamide, phenbutamide, tolcyclamide; glimepiride and gliclazide.
  • Tolbutamide, glibenclamide, gliclazide, glibornuride, gliquidone, glisoxepid and glimepiride can be administered in the form that they are marketed under the trademarks RASTINON HOECHSTTM, AZUGLUCONTM, DIAMICRONTTM, GLUBORIDTM, GLURENORMTM, PRO-DIABANTM and AMARYLTM, respectively.
  • GLP-1 agonists include, but are not limited to those disclosed in U.S. Pat. Nos. 5,120,712, 5,118,666 and 5,512,549, and PCT Publication No. WO 91/11457.
  • GLP-1 agonists include those compounds like GLP-1 (7-37) in which compound the carboxy-terminal amide functionality of Arg 36 is displaced with Gly at the 37 th position of the GLP-1 (7-36)NH 2 molecule and variants and analogs thereof including GLN 9 -GLP-1 (7-37), D-GLN 9 -GLP-1 (7-37), acetyl LYS 9 -GLP-1 (7-37), LYS 18 -GLP-1 (7-37) and, in particular, GLP-1 (7-37)OH, VAL 8 -GLP-1 (7-37), GLY 8 -GLP-1(7-37), THR 8 -GLP-1 (7-37), GLP-1 (7-37) and 4-imidazopropionyl-G
  • GLP-1 agonist a 39-amino acid peptide amide, which is marketed under the trademark BYETTATM.
  • Exenatide has the empirical formula C 184 H 282 N 50 O 60 S and molecular weight of 4186.6 Daltons.
  • amino acid sequence for Exenatide is as follows: H-His-Gly-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-Glu-Glu-Glu-Ala-Val-Arg-Leu-Phe-Ile-Glu-Trp-Leu-Lys-Asn-Gly-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH 2
  • GLP-2 glucagon-like peptide-2
  • GLP-2 agonists include, but are not limited to those disclosed in U.S. Pat. No. 7,056,886 and PCT Publication Nos. WO 00/53208, WO 01/49314 and WO 03/099854.
  • a GLP-2 agonist is TEDUGLUTIDETM, a 39-amino acid peptide amide (NPS Pharmaceuticals, Inc.).
  • beta-cell imidazoline receptor antagonists include, but are not limited to those described in PCT Publication No. WO 00/78726 and J. Pharmacol. Exp. Ther. 1996; 278; 82-89.
  • An example of an antidiabetic phenylacetic acid derivative is repaglinide and pharmaceutically acceptable salts thereof.
  • Examples of antidiabetic D-phenylalanine derivatives include, but are not limited to nateglinide (N-[(trans4-isopropylcyclohexyl)-carbonyl]-D-phenylalanine, EP 196222 and EP 526171) and repaglinide ((S)-2-ethoxy-4- ⁇ 2-[[3-methy-1-1-[2-(1-piperidinyl)phenyl]butyl]-amino]-2-oxoethyl ⁇ benzoic acid, EP 0 147 850 A2 and EP 0 207 331 A1).
  • Nateglinide is intended to include the particular crystal forms (polymorphs) disclosed in U.S. Pat. No. 5,488,510 and European Patent Publication No. EP 0526171 B1.
  • Repaglinide and nateglinide may be administered in the form as they are marketed under the trademarks NOVONORMTM and STARLIXTM, respectively.
  • alpha-Glucosidase inhibitors include, but are not limited to, acarbose, N-(1,3-dihydroxy-2-propyl)valiolamine (voglibose) and the 1-deoxynojirimycin derivative miglitol.
  • Acarbose is 4′′,6′′-dideoxy-4′-[(1S)-(1,4,6/5)-4,5,6-trihydroxy-3-hydroxymethyl-2-cyclo-hexenylamino)maltotriose.
  • acarbose can as well be described as O-4,6-dideoxy-4- ⁇ [1S,4R,5S,6S]-4,5,6-trihydroxy-3-(hydroxymethyl)-2-cyclohexen-1-yl]-amino)-alpha-D-glucopyranosyl-(1-4)-O-alpha-D-glucopyranosyl-(1-4)-D-glucopyranose.
  • Acarbose and miglitol may be administered in the forms that they are marketed under the trademarks GLUCOBAYTM and DIASTABOL 50TM respectively.
  • inhibitors of gastric emptying other than GLP-1 include, but are not limited to those disclosed in J. Clin. Endocrinol. Metab. 2000, 85(3), 1043-1048, and Diabetes Care 1998; 21; 897-893, especially Amylin and analogs thereof such as pramlintide. Amylin is described in Diabetologia 39, 1996, 492-499.
  • ⁇ 2 -adrenergic antagonists include, but are not limited to midaglizole which is described in Diabetes 36, 1987, 216-220.
  • the insulin that may be used in combination with Compound I include, but are not limited to animal insulin preparations extracted from the pancreas of bovine and pig; human insulin preparations genetically synthesized using Escherichia coli or yeast; zinc insulin; protamine zinc insulin; fragment or derivative of insulin (e.g., INS-1) and an oral insulin preparation.
  • the antidiabetic compound administered in combination with Compound I is selected from the group consisting of nateglinide, mitiglinide, repaglinide, metformin, extendatide, rosiglitazone, tesaglitazar, pioglitazone, glisoxepid, glyburide, glibenclamide, acetohexamide, chloropropamide, glibornuride, tolbutamide, tolazamide, glipizide, carbutamide, gliquidone, glyhexamide, phenbutamide, tolcyclamide, glimepiride and gliclazide, including any pharmaceutically acceptable salts thereof.
  • PTPase inhibitors examples include GSK-3 inhibitors, non-small molecule mimetic compounds, GFAT inhibitors, G6 Pase inhibitors, glucagon receptor antagonists, PEPCK inhibitors, F-1,6-BPase inhibitors, GP inhibitors, RXR modulators, Beta-3 AR agonists, PDHK inhibitors, inhibitors of gastric emptying and UCP modulators are disclosed in the patents, applications and references provided herein.
  • the other antidiabetic compound may be administered (e.g., route and dosage form) in a manner known per se for such compound.
  • Compound I and the other antidiabetic compound may be administered sequentially (i.e., at separate times) or at the same time, either one after the other separately in two separate dose forms or in one combined, single dose form.
  • the other antidiabetic compound is administered with Compound I as a single, combined dosage form.
  • the dose of the antidiabetic compound may be selected from the range known to be clinically employed for such compound.
  • therapeutic compounds of diabetic complications can be used in combination with Compound I in the same manner as the above antidiabetic compounds.
  • therapeutic compounds of diabetic complications include, but are not limited to, aldose reductase inhibitors such as tolrestat, epalrestat, zenarestat, zopolrestat, minalrestat, fidarestat, CT-112 and ranirestat; neurotrophic factors and increasing compounds thereof such as NGF, NT-3, BDNF and neurotrophin production-secretion promoters described in WO01/14372 (e.g., 4-(4-chlorophenyl)-2-(2-methyl-1-imidazolyl)-5-[3-(2-methylphenoxy)propyl]oxazole); neuranagenesis stimulators such as Y-128; PKC inhibitors such as ruboxistaurin mesylate; AGE inhibitors such as ALT946, pimagedine
  • antihyperlipemic compounds include, but are not limited to, HMG-CoA reductase inhibitors such as pravastatin, simvastatin, lovastatin, atorvastatin, fluvastatin, rosuvastatin and pitavastatin; squalene synthase inhibitors such as compounds described in WO97/10224 (e.g., N-[[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-5-(2,3-dimethoxyphenyl)-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]acetyl]piperidine-4-acetic acid); fibrate compounds such as bezafibrate, clofibrate, simfibrate and clinofibrate; ACAT inhibitors such as avasimibe and eflucimibe; anion exchange resins such as colestyr
  • antiobestic compounds include, but are not limited to, dexfenfluramine, fenfluramine, phentermine, sibutramine, amfepramone, dexamphetamine, mazindol, phenylpropanolamine, clobenzorex; MCH receptor antagonists such as SB-568849 and SNAP-7941; neuropeptide Y antagonists such as CP-422935; cannabinoid receptor antagonists such as SR-141716 and SR-147778; ghrelin antagonist; 11 ⁇ -hydroxysteroid dehydrogenase inhibitors such as BVT-3498; pancreatic lipase inhibitors such as orlistat and ATL-962; Beta-3 AR agonists such as AJ-9677; peptidic anorexiants such as leptin and CNTF (Ciliary Neurotropic Factor); cholecystokinin agonists such as lintitript and FPL-15849; and feeding de
  • antihypertensive compounds examples include angiotensin converting enzyme inhibitors such as captopril, enalapril and delapril; angiotensin II antagonists such as candesartan cilexetil, losartan, eprosartan, valsartan, telmisartan, irbesartan, olmesartan medoxomil, tasosartan and 1-[[2′-(2,5-dihydro-5-oxo-4H-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl]-2-ethoxy-1H-benzimidazole-7-carboxylic acid; calcium channel blockers such as manidipine, nifedipine, nicardipine, amlodipine and efonidipine; potassium channel openers such as levcromakalim, L-27152, AL0671 and NIP-121; and clonidine.
  • Compound I may be comprised within a pharmaceutical composition adapted for a variety of routes of administration.
  • Compound I may be comprised within a pharmaceutical composition adapted to be administered by a route selected from the group consisting of orally, parenterally, intraperitoneally, intravenously, intraarterially, transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraoccularly, via local delivery (for example by catheter or stent), subcutaneously, intraadiposally, intraarticularly, intraperitoneally and intrathecally.
  • Compound I may be formulated in a variety of pharmaceutically acceptable compositions including injectable forms (e.g.
  • compositions can be manufactured by known techniques conventionally used in the pharmaceutical industry with a pharmaceutically acceptable carrier conventionally used in the pharmaceutical industry.
  • compositions comprising Compound I are intended to encompass the free base form of Compound I, salts, hydrates and prodrugs of Compound I, as well as other materials that may be included in such composition for its intended purpose, including other active ingredients, unless otherwise specified.
  • Particular salt forms of Compound I include, but are not limited to, the HCl, methanesulfonate, succinate, benzoate, toluenesulfonate, R-( ⁇ )mandelate or benzenesulfonate salt forms of Compound I.
  • Compound I may advantageously be used when administered to a patient at a daily dose of between 1 mg/day and 250 mg/day of Compound I to a patient, optionally between 2.5 mg and 200 mg of Compound I, optionally between 2.5 mg and 150 mg of Compound I, and optionally between 5 mg and 100 mg of Compound I (in each instance based on the molecular weight of the free base form of Compound I).
  • Specific dosage amounts that may be used include, but are not limited to 2.5 mg, 5 mg, 6.25 mg, 10 mg, 20 mg, 25 mg, 50 mg, 75 mg and 100 mg of Compound I per day.
  • compositions of the present invention may be in the form of a single dose form comprising between 1 mg/day and 250 mg/day of Compound I, optionally between 2.5 mg and 200 mg of Compound I, optionally between 2.5 mg and 150 mg of Compound I, and optionally between 5 mg and 100 mg of Compound I.
  • the pharmaceutical composition comprises 2.5 mg, 5 mg, 6.25 mg, 10 mg, 20 mg, 25 mg, 50 mg, 75 mg or 100 mg of Compound I.
  • compositions of the present invention may optionally be adapted for oral administration.
  • such pharmaceutical composition is a solid formulation adapted for oral administration.
  • the composition for example, may be in the form of a tablet or capsule.
  • Example 2 provides examples of solid formulations comprising Compound I adapted for oral administration.
  • such pharmaceutical composition is a liquid formulation adapted for oral administration.
  • compositions of the present invention may optionally be adapted for parenteral administration.
  • such pharmaceutical composition is a solution formulation adapted for parenteral administration.
  • such pharmaceutical composition is a suspension formulation adapted for parenteral administration.
  • compositions of the present invention may optionally comprises Compound I in combination with one or more other antidiabetic or incretin compounds in a combined, single dose form.
  • such combined, single dose form comprising Compound I in combination with one or more other antidiabetic and/or incretin compounds is adapted for oral administration and optionally is a solid oral dose form.
  • such combined, single dose form comprising Compound I in combination with one or more other antidiabetic and/or incretin compounds can be adapted for parenteral administration and optionally is a solution dose form.
  • such combined, single dose form comprising Compound I in combination with one or more other antidiabetic compounds comprises between 1 mg/day and 250 mg/day of Compound I to a patient, optionally between 2.5 mg and 200 mg of Compound I, optionally between 2.5 mg and 150 mg of Compound I, and optionally between 5 mg and 100 mg of Compound I (in each instance based on the molecular weight of the free base form of Compound I).
  • such combined, single dose form comprising Compound I in combination with one or more other antidiabetic compounds comprises 2.5 mg, 5 mg, 6.25 mg, 10 mg, 20 mg, 25 mg, 50 mg, 75 mg, and 100 mg of Compound I.
  • any antidiabetic compound, or set of antidiabetic compounds may be combined with Compound I to form such combined, single dose form.
  • such combined, single dose form includes Compound I and one or more members of the group consisting of insulin signaling pathway modulators, like protein tyrosine phosphatase (PTPase) inhibitors, and glutamine-fructose-6-phosphate amidotransferase (GFAT) inhibitors, compounds influencing a dysregulated hepatic glucose production, like glucose-6-phosphatase (G6 Pase) inhibitors, fructose-1,6-bisphosphatase (F-1,6-BPase) inhibitors, glycogen phosphorylase (GP) inhibitors, glucagon receptor antagonists and phosphoenolpyruvate carboxykinase (PEPCK) inhibitors, pyruvate dehydrogenase kinase (PDHK) inhibitors, insulin sensitivity enhancers (insulin sensitizers), insulin secret
  • such combined, single dose form comprises Compound I and an antidiabetic thiazolidinedione.
  • thiazolidinediones that may be used in this variation include, but are not limited to (S)-((3,4-dihydro-2-(phenyl-methyl)-2H-1-benzopyran-6-yl)methyl-thiazolidine-2,4-dione (englitazone), 5- ⁇ [4-(3-(5-methyl-2-phenyl-4-oxazolyl)-1-oxo-propyl)-phenyl]-methyl ⁇ -thiazolidine-2,4-dione (darglitazone), 5- ⁇ [4-(1-methyl-cyclohexyl)methoxy)-phenyl]methyl ⁇ -thiazolidine-2,4-dione (ciglitazone), 5- ⁇ [4-(2-(1-indolyl)ethoxy)phenyl]methyl ⁇ -thiazolidine-2,4-
  • the thiazolidinedione in such combined, single dose form is 5- ⁇ [4-(2-(5-ethyl-2-pyridyl)ethoxy)phenyl]-methyl ⁇ -thiazolidine-2,4-dione (pioglitazone) and its hydrochloride salt which is marketed under the trademark ACTOSTM.
  • the thiazolidinedione is 5- ⁇ [4-(2-(methyl-2-pyridinyl-amino)-ethoxy)phenyl]methyl ⁇ -thiazolidine-2,4-dione (rosiglitazone) and its maleate salt.
  • such combined, single dose form comprises Compound I and a non-glitazone type PPAR gamma agonist.
  • such combined, single dose form comprises Compound I and a biguanide.
  • a biguanide that may be used in this variation is Metformin (dimethyldiguanide) and its hydrochloride salt which is marketed under the trademark GLUCOPHAGETM.
  • such combined, single dose form comprises Compound I and a sulphonyl urea derivative.
  • sulphonyl urea derivatives that may be used in this variation include, but are not limited to glisoxepid, glyburide, glibenclamide, acetohexamide, chloropropamide, glibornuride, tolbutamide, tolazamide, glipizide, carbutamide, gliquidone, glyhexamide, phenbutamide, tolcyclamide; glimepiride and gliclazide.
  • Tolbutamide, glibenclamide, gliclazide, glibornuride, gliquidone, glisoxepid and glimepiride can be administered in the form as they are marketed under the trademarks RASTINON HOECHSTTM, AZUGLUCONTM, DIAMICRONTTM, GLUBORIDTM, GLURENORMTM, PRO-DIABANTM and AMARYLTM, respectively.
  • such combined, single dose form comprises Compound I and an antidiabetic D-phenylalanine derivative.
  • antidiabetic D-phenylalanine derivatives include, but are not limited to repaglinide and nateglinide which may be administered in the form as they are marketed under the trademarks NOVONORMTM and STARLIXTM, respectively.
  • such combined, single dose form comprises Compound I and an alpha-Glucosidase inhibitor.
  • alpha-Glucosidase inhibitors include, but are not limited to acarbose, miglitol and voglibose which may be administered in the form as they are marketed under the trademarks GLUCOBAYTM, DIASTABOL 50TM and BASENTM, respectively.
  • the antidiabetic compound administered in combination with Compound I in such combined, single dose form is selected from the group consisting of nateglinide, repaglinide, metformin, extendatide, rosiglitazone, pioglitazone, glisoxepid, glyburide, glibenclamide, acetohexamide, chloropropamide, glibornuride, tolbutamide, tolazamide, glipizide, carbutamide, gliquidone, glyhexamide, phenbutamide, tolcyclamide, glimepiride and gliclazide, including any pharmaceutically acceptable salts thereof.
  • the pharmaceutical composition may optionally be adapted for oral administration and in this regard may optionally be a solid formulation such as a tablet or capsule or may alternatively be in a liquid formulation adapted for oral administration.
  • the dose of the antidiabetic compound may be selected from the range known to be clinically employed for such compound. Any of therapeutic compounds of diabetic complications, antihyperlipemic compounds, antiobestic compounds or antihypertensive compounds can be used in combination with Compound I in the same manner as the above antidiabetic compounds.
  • Examples of therapeutic compounds of diabetic complications include, but are not limited to, aldose reductase inhibitors such as tolrestat, epalrestat, zenarestat, zopolrestat, minalrestat, fidarestat, CT-112 and ranirestat; neurotrophic factors and increasing compounds thereof such as NGF, NT-3, BDNF and neurotrophin production-secretion promoters described in WO01/14372 (e.g., 4-(4-chlorophenyl)-2-(2-methyl-1-imidazolyl)-5-[3-(2-methylphenoxy)propyl]oxazole); neuranagenesis stimulators such as Y-128; PKC inhibitors such as ruboxistaurin mesylate; AGE inhibitors such as ALT946, pimagedine, N-phenacylthiazolium bromide (ALT766), ALT-711, EXO-226, pyridorin and pyridoxamine; reactive oxygen scavengers such as
  • antihyperlipemic compounds include, but are not limited to, HMG-CoA reductase inhibitors such as pravastatin, simvastatin, lovastatin, atorvastatin, fluvastatin, rosuvastatin and pitavastatin; squalene synthase inhibitors such as compounds described in WO97/10224 (e.g., N-[[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-5-(2,3-dimethoxyphenyl)-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]acetyl]piperidine-4-acetic acid); fibrate compounds such as bezafibrate, clofibrate, simfibrate and clinofibrate; ACAT inhibitors such as avasimibe and eflucimibe; anion exchange resins such as colestyr
  • antiobestic compounds include, but are not limited to, dexfenfluramine, fenfluramine, phentermine, sibutramine, amfepramone, dexamphetamine, mazindol, phenylpropanolamine, clobenzorex; MCH receptor antagonists such as SB-568849 and SNAP-7941; neuropeptide Y antagonists such as CP-422935; cannabinoid receptor antagonists such as SR-141716 and SR-147778; ghrelin antagonist; 11 ⁇ -hydroxysteroid dehydrogenase inhibitors such as BVT-3498; pancreatic lipase inhibitors such as orlistat and ATL-962; Beta-3 AR agonists such as AJ-9677; peptidic anorexiants such as leptin and CNTF (Ciliary Neurotropic Factor); cholecystokinin agonists such as lintitript and FPL-15849; and feeding de
  • antihypertensive compounds examples include angiotensin converting enzyme inhibitors such as captopril, enalapril and delapril; angiotensin II antagonists such as candesartan cilexetil, losartan, eprosartan, valsartan, telmisartan, irbesartan, olmesartan medoxomil, tasosartan and 1-[[2′-(2,5-dihydro-5-oxo-4H-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl]-2-ethoxy-1H-benzimidazole-7-carboxylic acid; calcium channel blockers such as manidipine, nifedipine, nicardipine, amlodipine and efonidipine; potassium channel openers such as levcromakalim, L-27152, AL0671 and NIP-121; and clonidine.
  • kits comprising a pharmaceutical composition according to the present invention comprising Compound I (and optionally one or more other antidiabetic compounds) where such kit further comprises instructions that include one or more forms of information selected from the group consisting of indicating a disease state for which the pharmaceutical composition is to be administered, storage information for the pharmaceutical composition, dosing information and instructions regarding how to administer the pharmaceutical composition.
  • the kit may also comprise packaging materials.
  • the packaging material may also comprise a container for housing the pharmaceutical composition.
  • the container may optionally comprise a label indicating the disease state for which the pharmaceutical composition is to be administered, storage information, dosing information and/or instructions regarding how to administer the composition.
  • the kit may also comprise additional components for storage or administration of the composition.
  • the kit may also comprise the composition in single or multiple dose forms.
  • the pharmaceutical composition in the kit comprises multiple doses of a pharmaceutical composition according to the present invention wherein such pharmaceutical composition is a single dose form that comprises Compound I in one of the dosage ranges specified herein.
  • the pharmaceutical composition in the kit comprises multiple doses of a pharmaceutical composition according to the present invention wherein such pharmaceutical composition is a single dose form that comprises Compound I and one or more of the other antidiabetic compounds specified herein.
  • the present invention also relates to articles of manufacture comprising a pharmaceutical composition according to the present invention comprising Compound I (and optionally one or more other antidiabetic compounds) where such articles of manufacture further comprise packaging materials.
  • the packaging material comprises a container for housing the composition.
  • the invention provides an article of manufacture where the container comprises a label indicating one or more members of the group consisting of a disease state for which the composition is to be administered, storage information, dosing information and/or instructions regarding how to administer the composition.
  • the pharmaceutical composition in the article of manufacture comprises multiple doses of a pharmaceutical composition according to the present invention wherein such pharmaceutical composition is a single dose form that comprises Compound I in one of the dosage ranges specified herein.
  • the pharmaceutical composition in the article of manufacture comprises multiple doses of a pharmaceutical composition according to the present invention wherein such pharmaceutical composition is a single dose form that comprises Compound I and one or more of the other antidiabetic compounds specified herein.
  • the packaging material used in kits and articles of manufacture according to the present invention may form a plurality of divided containers such as a divided bottle or a divided foil packet.
  • the container can be in any conventional shape or form as known in the art which is made of a pharmaceutically acceptable material, for example a paper or cardboard box, a glass or plastic bottle or jar, a re-sealable bag (for example, to hold a “refill” of tablets for placement into a different container), or a blister pack with individual doses for pressing out of the pack according to a therapeutic schedule.
  • the container that is employed will depend on the exact dosage form involved. It is feasible that more than one container can be used together in a single package to market a single dosage form. For example, tablets may be contained in a bottle that is in turn contained within a box.
  • Blister packs are well known in the packaging industry and are being widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material (preferably stiff transparent plastic material) covered with a foil. During the packaging process recesses are formed in the stiff material. The recesses have the size and shape of individual tablets or capsules to be packed or may have the size and shape to accommodate multiple tablets and/or capsules to be packed. Next, the tablets or capsules are placed in the recesses accordingly and the sheet of relatively stiff material is sealed against the plastic foil at the face of the foil which is opposite from the direction in which the recesses were formed.
  • the tablets or capsules are individually sealed or collectively sealed, as desired, in the recesses between the foil and the sheet.
  • the strength of the sheet is preferably such that the tablets or capsules can be removed from the blister pack by manually applying pressure on the recesses whereby an opening is formed in the foil at the place of the recess. The tablet or capsule can then be removed via said opening.
  • the benzonitrile product may be isolated as the free base if desired, but preferably, the product may be further converted to a corresponding acid addition salt.
  • the benzonitrile product (approximately 10 mg) in a solution of MeOH (1 mL) was treated with various acids (1.05 equivalents). The solutions were allowed to stand for three days open to the air. If a precipitate formed, the mixture was filtered and the salt dried. If no solid formed, the mixture was concentrated in vacuo and the residue isolated.
  • salts of 34 were prepared from the following acids: benzoic, p-toluenesulfonic, succinic, R-( ⁇ )-Mandelic and benzenesulfonic.
  • isolation and/or purification steps of the intermediate compounds in the above described process may optionally be avoided if the intermediates from the reaction mixture are obtained as relatively pure compounds and the by-products or impurities of the reaction mixture do not interfere with the subsequent reaction steps.
  • one or more isolation steps may be eliminated to provide shorter processing times, and the elimination of further processing may also afford higher overall reaction yields.
  • tablet formulations that may be used to administer succinate salt of 2-[6-(3-Amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-ylmethyl]-4-fluoro-benzonitrile (Succinate salt of Compound I) according to the present invention. It is noted that the formulations provided herein may be varied as is known in the art.
  • the exemplary tablet formulations are as follows: 12.5 mg of Compound I (weight of free base form) per tablet Core Tablet Formulation (1) 2-[6-(3-Amino-piperidin-1-yl)-3-methyl-2,4- 17.0 mg dioxo-3,4-dihydro-2H-pyrimidin-1- ylmethyl]-4-fluoro-benzonitrile (succinate salt) (2) Lactose Monohydrate, NF, Ph, Eur 224.6 mg (FOREMOST 316 FAST FLO) (3) Microcrystalline Cellulose, NF, Ph, Eur 120.1 mg (AVICEL PH 102) (4) Croscarmellose Sodium, NF, Ph, Eur 32.0 mg (AC-DO-SOL) (5) Colloidal Silicon Dioxide, NF, Ph, Eur 3.2 mg (CAB-O-SIL M-5P) (6) Magnesium Stearate, NF, Ph, Eur 3.2 mg (MALLINCKRODT, Non-bovine Hyqual) TOTAL 400.0 mg
  • FIG. 1 illustrates the observed effect that administering Compound I has on the monkey's plasma DPPIV activity post dosing.
  • Compound I reduced DPP-IV activity in monkey's plasma by greater than 90% relative to baseline at 12 hours post dosing.
  • Compound I can be effectively used relative to disease states where it is desired to reduce plasma DPPIV activity.
  • the patient's plasma DPPIV activity may be reduced by greater than 60% relative to baseline for a period of at least at least 6 hours, 12 hours, 18 hours and even 24 hours following administration.
  • Group A had free access to CE-2 powder chow (CLEA Japan) for 21 days.
  • Group B had free access to CE-2 powder chow (CLEA Japan) containing 0.03% (w/w) of succinate salt of Compound I for 21 days.
  • the dose of Compound I in Group B was calculated to be 74.8 ⁇ 2.5 (mean ⁇ SD) mg/kg body weight/day.
  • Group C had free access to CE-2 powder chow (CLEA Japan) containing 0.0075% (w/w) of pioglitazone hydrochloride for 21 days.
  • the dose of pioglitazone in Group C was calculated to be 17.7 ⁇ 0.6 (mean ⁇ SD) mg/kg body weight/day.
  • Group D had free access to CE-2 powder chow (CLEA Japan) containing 0.03% (w/w) of succinate salt of Compound I in combination with 0.0075% (w/w) of pioglitazone hydrochloride for 21 days.
  • the doses of Compound I and pioglitazone in Group D were calculated to be 63.1 ⁇ 1.9 (mean ⁇ SD) mg/kg body weight/day and 15.8 ⁇ 0.5 (mean ⁇ SD) mg/kg body weight/day, respectively.
  • 21 days of administration of the powder chow there were not significant differences in the administration amount of the powder chow in the above 4 groups.
  • blood samples were taken from the orbital veins of the mice by capillary pipette under feeding condition, and plasma glucose levels were enzymatically measured by using Autoanalyzer 7080 (Hitachi, Japan).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Endocrinology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Emergency Medicine (AREA)
  • AIDS & HIV (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicinal Preparation (AREA)
US11/531,671 2005-09-14 2006-09-13 Administration of dipeptidyl peptidase inhibitors Abandoned US20070060530A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/531,671 US20070060530A1 (en) 2005-09-14 2006-09-13 Administration of dipeptidyl peptidase inhibitors
US13/091,460 US20110192748A1 (en) 2005-09-14 2011-04-21 Administration of Dipeptidyl Peptidase Inhibitors
US13/773,282 US8906901B2 (en) 2005-09-14 2013-02-21 Administration of dipeptidyl peptidase inhibitors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US71756005P 2005-09-14 2005-09-14
US74728006P 2006-05-15 2006-05-15
US11/531,671 US20070060530A1 (en) 2005-09-14 2006-09-13 Administration of dipeptidyl peptidase inhibitors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/091,460 Continuation US20110192748A1 (en) 2005-09-14 2011-04-21 Administration of Dipeptidyl Peptidase Inhibitors

Publications (1)

Publication Number Publication Date
US20070060530A1 true US20070060530A1 (en) 2007-03-15

Family

ID=37564046

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/531,671 Abandoned US20070060530A1 (en) 2005-09-14 2006-09-13 Administration of dipeptidyl peptidase inhibitors
US13/091,460 Abandoned US20110192748A1 (en) 2005-09-14 2011-04-21 Administration of Dipeptidyl Peptidase Inhibitors
US13/773,282 Active US8906901B2 (en) 2005-09-14 2013-02-21 Administration of dipeptidyl peptidase inhibitors

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/091,460 Abandoned US20110192748A1 (en) 2005-09-14 2011-04-21 Administration of Dipeptidyl Peptidase Inhibitors
US13/773,282 Active US8906901B2 (en) 2005-09-14 2013-02-21 Administration of dipeptidyl peptidase inhibitors

Country Status (31)

Country Link
US (3) US20070060530A1 (de)
EP (1) EP1942898B2 (de)
JP (1) JP5027137B2 (de)
KR (1) KR101345316B1 (de)
CN (1) CN101374523B (de)
AR (1) AR055435A1 (de)
AT (1) ATE532518T1 (de)
AU (1) AU2006290205B2 (de)
CA (1) CA2622472C (de)
CR (1) CR9874A (de)
CY (1) CY1112281T1 (de)
DK (1) DK1942898T4 (de)
EA (1) EA015169B1 (de)
ES (1) ES2376351T5 (de)
GE (1) GEP20135838B (de)
HK (1) HK1119086A1 (de)
HR (1) HRP20120004T4 (de)
IL (1) IL190131A (de)
MA (1) MA29795B1 (de)
ME (2) ME02005B (de)
MY (1) MY147393A (de)
NO (1) NO340910B1 (de)
NZ (1) NZ566799A (de)
PE (1) PE20070522A1 (de)
PL (1) PL1942898T5 (de)
PT (1) PT1942898E (de)
RS (1) RS52110B2 (de)
SI (1) SI1942898T2 (de)
TW (1) TWI432200B (de)
WO (1) WO2007033350A1 (de)
ZA (2) ZA200802857B (de)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065144A1 (en) * 2003-09-08 2005-03-24 Syrrx, Inc. Dipeptidyl peptidase inhibitors
US20050065145A1 (en) * 2003-09-08 2005-03-24 Syrrx, Inc. Dipeptidyl peptidase inhibitors
US20050070531A1 (en) * 2003-08-13 2005-03-31 Syrrx, Inc. Dipeptidyl peptidase inhibitors
US20050277945A1 (en) * 2004-06-14 2005-12-15 Usgi Medical Inc. Apparatus and methods for performing transluminal gastrointestinal procedures
US20070066635A1 (en) * 2005-09-16 2007-03-22 Mark Andres Polymorphs of benzoate salt of 2-[[6-[(3r)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2h)-pyrimidinyl]methyl]-benzonitrile and methods of use therefor
US20080227798A1 (en) * 2006-11-29 2008-09-18 Kelly Ron C Polymorphs of succinate salt of 2-[6-(3-amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2h-pyrimidin-1-ylmethy]-4-fluor-benzonitrile and methods of use therefor
US20080249089A1 (en) * 2002-08-21 2008-10-09 Boehringer Ingelheim Pharma Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
WO2008134425A1 (en) * 2007-04-27 2008-11-06 Cedars-Sinai Medical Center Use of glp-1 receptor agonists for the treatment of gastrointestinal disorders
US20090012059A1 (en) * 2004-03-15 2009-01-08 Jun Feng Dipeptidyl peptidase inhibitors
WO2009022007A1 (en) * 2007-08-16 2009-02-19 Boehringer Ingelheim International Gmbh Pharmaceutical composition comprising a glucopyranosyl-substituted benzene derivative
WO2009022009A1 (en) * 2007-08-16 2009-02-19 Boehringer Ingelheim International Gmbh Pharmaceutical composition comprising a pyrazole-o-glucoside derivative
US20090275750A1 (en) * 2005-09-16 2009-11-05 Jun Feng Dipeptidyl peptidase inhibitors
US20100029941A1 (en) * 2006-03-28 2010-02-04 Takeda Pharmaceutical Company Limited Preparation of (r)-3-aminopiperidine dihydrochloride
WO2010018217A2 (en) * 2008-08-15 2010-02-18 Boehringer Ingelheim International Gmbh Organic compounds for wound healing
US20100105710A1 (en) * 2007-03-13 2010-04-29 Takeda Pharmaceutical Company Limited Solid preparation comprising 2-[[6-[(3r)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2h)-pyrimidinyl]methyl]-4-fluorobenzonitrile
WO2010079197A1 (en) 2009-01-07 2010-07-15 Boehringer Ingelheim International Gmbh Treatment of diabetes in patients with inadequate glycemic control despite metformin therapy comprising a dpp-iv inhibitor
WO2010086411A1 (en) 2009-01-29 2010-08-05 Boehringer Ingelheim International Gmbh Dpp-iv inhibitors for treatment of diabetes in paediatric patients
WO2010092163A2 (en) 2009-02-13 2010-08-19 Boehringer Ingelheim International Gmbh Antidiabetic medications
US7820815B2 (en) 2004-11-05 2010-10-26 Boehringer Ingelheim International Gmbh Process for the preparation of chiral 8-(-3-aminopiperidin-1-yl) xanthines
US7872124B2 (en) 2004-12-21 2011-01-18 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
WO2011064352A1 (en) 2009-11-27 2011-06-03 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with dpp-iv inhibitors such as linagliptin
WO2011113947A1 (en) 2010-03-18 2011-09-22 Boehringer Ingelheim International Gmbh Combination of a gpr119 agonist and the dpp-iv inhibitor linagliptin for use in the treatment of diabetes and related conditions
WO2011138421A1 (en) 2010-05-05 2011-11-10 Boehringer Ingelheim International Gmbh Combination therapy
WO2011161161A1 (en) 2010-06-24 2011-12-29 Boehringer Ingelheim International Gmbh Diabetes therapy
US8093236B2 (en) 2007-03-13 2012-01-10 Takeda Pharmaceuticals Company Limited Weekly administration of dipeptidyl peptidase inhibitors
US8106060B2 (en) 2005-07-30 2012-01-31 Boehringer Ingelheim International Gmbh 8-(3-amino-piperidin-1-yl)-xanthines, their preparation, and their use as pharmaceuticals
US8232281B2 (en) 2006-05-04 2012-07-31 Boehringer Ingelheim International Gmbh Uses of DPP-IV inhibitors
US20120219623A1 (en) * 2009-10-02 2012-08-30 Boehringer Ingelheim International Gmbh Pharmaceutical compositions comprising bi-1356 and metformin
US8324383B2 (en) 2006-09-13 2012-12-04 Takeda Pharmaceutical Company Limited Methods of making polymorphs of benzoate salt of 2-[[6-[(3R)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2H)-pyrimidinyl]methyl]-benzonitrile
US8513264B2 (en) 2008-09-10 2013-08-20 Boehringer Ingelheim International Gmbh Combination therapy for the treatment of diabetes and related conditions
WO2013174767A1 (en) 2012-05-24 2013-11-28 Boehringer Ingelheim International Gmbh A xanthine derivative as dpp -4 inhibitor for use in modifying food intake and regulating food preference
WO2013183784A1 (en) 2012-06-05 2013-12-12 Takeda Pharmaceutical Company Limited Solid preparation
US8697868B2 (en) 2004-02-18 2014-04-15 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, their preparation and their use as pharmaceutical compositions
US8853156B2 (en) 2008-08-06 2014-10-07 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
US8865729B2 (en) 2008-12-23 2014-10-21 Boehringer Ingelheim International Gmbh Salt forms of a xanthine compound
US8883800B2 (en) 2011-07-15 2014-11-11 Boehringer Ingelheim International Gmbh Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions
US8906901B2 (en) 2005-09-14 2014-12-09 Takeda Pharmaceutical Company Limited Administration of dipeptidyl peptidase inhibitors
US8907086B2 (en) 2011-03-03 2014-12-09 Merck Sharp & Dohme Corp. Fused bicyclic heterocycles useful as dipeptidyl peptidase-IV inhibitors
US9034883B2 (en) 2010-11-15 2015-05-19 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
US9155705B2 (en) 2008-04-03 2015-10-13 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US9266888B2 (en) 2006-05-04 2016-02-23 Boehringer Ingelheim International Gmbh Polymorphs
US9486526B2 (en) 2008-08-06 2016-11-08 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
US9526728B2 (en) 2014-02-28 2016-12-27 Boehringer Ingelheim International Gmbh Medical use of a DPP-4 inhibitor
US9526730B2 (en) 2012-05-14 2016-12-27 Boehringer Ingelheim International Gmbh Use of a DPP-4 inhibitor in podocytes related disorders and/or nephrotic syndrome
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
US20180185291A1 (en) 2011-03-07 2018-07-05 Boehringer Ingelheim International Gmbh Pharmaceutical compositions
US10155000B2 (en) 2016-06-10 2018-12-18 Boehringer Ingelheim International Gmbh Medical use of pharmaceutical combination or composition
US10406172B2 (en) 2009-02-13 2019-09-10 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
US11033552B2 (en) 2006-05-04 2021-06-15 Boehringer Ingelheim International Gmbh DPP IV inhibitor formulations
US11911388B2 (en) 2008-10-16 2024-02-27 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral or non-oral antidiabetic drug

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR062760A1 (es) * 2006-09-13 2008-12-03 Takeda Pharmaceutical Administracion de inhibidores de dipeptidilpetidasa
WO2009099171A1 (ja) * 2008-02-07 2009-08-13 Takeda Pharmaceutical Company Limited 医薬
WO2009099172A1 (ja) * 2008-02-07 2009-08-13 Takeda Pharmaceutical Company Limited 医薬
WO2009128360A1 (ja) * 2008-04-18 2009-10-22 大日本住友製薬株式会社 糖尿病治療剤
PE20100156A1 (es) * 2008-06-03 2010-02-23 Boehringer Ingelheim Int Tratamiento de nafld
US8648073B2 (en) 2009-12-30 2014-02-11 Fochon Pharma, Inc. Certain dipeptidyl peptidase inhibitors
US11813275B2 (en) 2013-04-05 2023-11-14 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
HUE041709T2 (hu) 2013-04-05 2019-05-28 Boehringer Ingelheim Int Az empagliflozin terápiás alkalmazásai
US20140303097A1 (en) 2013-04-05 2014-10-09 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
HRP20220365T1 (hr) 2013-04-18 2022-05-13 Boehringer Ingelheim International Gmbh Farmaceutski pripravak, postupci za liječenje i njegove uporabe
CN104402832A (zh) * 2014-11-04 2015-03-11 广东东阳光药业有限公司 一种二氢嘧啶衍生物的制备方法
CN106474128A (zh) * 2016-11-15 2017-03-08 河南大学 琥珀酸曲格列汀的新应用
CN108836973B (zh) * 2018-08-28 2022-12-02 常州市阳光药业有限公司 二甲双胍格列本脲胶囊及其制备方法
CN110156750A (zh) * 2019-05-13 2019-08-23 无锡贝塔医药科技有限公司 嘧啶环14c标记的琥珀酸曲格列汀的制备方法
CN114983958A (zh) * 2022-07-13 2022-09-02 青海夏都医药有限公司 一种琥珀酸曲格列汀片及其制备方法

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960949A (en) * 1971-04-02 1976-06-01 Schering Aktiengesellschaft 1,2-Biguanides
US4494978A (en) * 1976-12-30 1985-01-22 Chevron Research Company Herbicidal N-(N'-hydrocarbyloxycarbamylalkyl)-2,6-dialkyl-alpha-haloacetanilides
US4935493A (en) * 1987-10-06 1990-06-19 E. I. Du Pont De Nemours And Company Protease inhibitors
US5002953A (en) * 1987-09-04 1991-03-26 Beecham Group P.L.C. Novel compounds
US5387512A (en) * 1991-06-07 1995-02-07 Merck & Co. Inc. Preparation of 3-[z-benzoxazol-2-yl)ethyl]-5-(1-hydroxyethyl)-6-methyl-2-(1H)-pyridinone by biotransformation
US5512549A (en) * 1994-10-18 1996-04-30 Eli Lilly And Company Glucagon-like insulinotropic peptide analogs, compositions, and methods of use
US5601986A (en) * 1994-07-14 1997-02-11 Amgen Inc. Assays and devices for the detection of extrahepatic biliary atresia
US5614379A (en) * 1995-04-26 1997-03-25 Eli Lilly And Company Process for preparing anti-obesity protein
US5614492A (en) * 1986-05-05 1997-03-25 The General Hospital Corporation Insulinotropic hormone GLP-1 (7-36) and uses thereof
US5624894A (en) * 1992-09-17 1997-04-29 University Of Florida Brain-enhanced delivery of neuroactive peptides by sequential metabolism
US5885997A (en) * 1996-07-01 1999-03-23 Dr. Reddy's Research Foundation Heterocyclic compounds, process for their preparation and pharmaceutical compositions containing them and their use in the treatment of diabetes and related diseases
US6011155A (en) * 1996-11-07 2000-01-04 Novartis Ag N-(substituted glycyl)-2-cyanopyrrolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV
US6172081B1 (en) * 1999-06-24 2001-01-09 Novartis Ag Tetrahydroisoquinoline 3-carboxamide derivatives
US6184020B1 (en) * 1997-12-16 2001-02-06 Novo Nordisk Biotech, Inc. Polypeptides having aminopeptidase activity and nucleic acids encoding same
US6201132B1 (en) * 1993-12-03 2001-03-13 Ferring B.V. Inhibitors of DP-mediated processes, compositions, and therapeutic methods thereof
US6214340B1 (en) * 1997-11-18 2001-04-10 Zaidan Hojin Biseibutsu Kagaku Kenkyu Kai Physiologically active substance sulphostin, process for producing the same, and use thereof
US6235493B1 (en) * 1997-08-06 2001-05-22 The Regents Of The University Of California Amino acid substituted-cresyl violet, synthetic fluorogenic substrates for the analysis of agents in individual in vivo cells or tissue
US6251391B1 (en) * 1999-10-01 2001-06-26 Klaire Laboratories, Inc. Compositions containing dipepitidyl peptidase IV and tyrosinase or phenylalaninase for reducing opioid-related symptons
US6335429B1 (en) * 1997-10-10 2002-01-01 Cytovia, Inc. Fluorogenic or fluorescent reporter molecules and their applications for whole-cell fluorescence screening assays for caspases and other enzymes and the use thereof
US6337069B1 (en) * 2001-02-28 2002-01-08 B.M.R.A. Corporation B.V. Method of treating rhinitis or sinusitis by intranasally administering a peptidase
US20020006899A1 (en) * 1998-10-06 2002-01-17 Pospisilik Andrew J. Use of dipeptidyl peptidase IV effectors for lowering blood pressure in mammals
US20020016100A1 (en) * 2000-07-25 2002-02-07 Yazaki Coroporation Connector supporting structure
US20020019411A1 (en) * 2000-03-10 2002-02-14 Robl Jeffrey A. Cyclopropyl-fused pyrrolidine-based inhibitors of dipeptidyl peptidase IV and method
US6355614B1 (en) * 1998-06-05 2002-03-12 Point Therapeutics Cyclic boroproline compounds
US20020037829A1 (en) * 2000-08-23 2002-03-28 Aronson Peter S. Use of DPPIV inhibitors as diuretic and anti-hypertensive agents
US20020041871A1 (en) * 2000-06-01 2002-04-11 Brudnak Mark A. Genomeceutical and/or enzymatic composition and method for treating autism
US20020049164A1 (en) * 1998-06-24 2002-04-25 Hans-Ulrich Demuth Prodrugs of DP IV-inhibitors
US20020049153A1 (en) * 1999-05-17 2002-04-25 BRIDON Dominique P. Long lasting insulinoptropic peptides
US6380398B2 (en) * 2000-01-04 2002-04-30 Novo Nordisk A/S Therapeutically active and selective heterocyclic compounds that are inhibitors of the enzyme DPP-IV
US20020061839A1 (en) * 1998-03-09 2002-05-23 Scharpe Simon Lodewijk Serine peptidase modulators
US20020071838A1 (en) * 1998-07-31 2002-06-13 Hans-Ulrich Demuth Method for raising the blood glucose level in mammals
US20020077340A1 (en) * 2000-11-20 2002-06-20 Richard Sulsky Pyridone inhibitors of fatty acid binding protein and method
US20030008925A1 (en) * 1997-11-19 2003-01-09 Marc Esteve Treatment of drug-induced sleepiness
US20030008905A1 (en) * 2000-03-31 2003-01-09 Hans-Ulrich Demuth Method for the improvement of islet signaling in diabetes mellitus and for its prevention
US20030023946A1 (en) * 2001-07-24 2003-01-30 Ming-Te Lin Standard cell library generation using merged power method
US20030027282A1 (en) * 1997-10-06 2003-02-06 Huber Brigitte T. Quiescent cell dipeptidyl peptidase: a novel cytoplasmic serine protease
US6521644B1 (en) * 1999-03-23 2003-02-18 Ferring Bv Compositions for promoting growth
US20030040478A1 (en) * 1999-12-08 2003-02-27 Drucker Daniel J Chemotherapy treatment
US6528486B1 (en) * 1999-07-12 2003-03-04 Zealand Pharma A/S Peptide agonists of GLP-1 activity
US20030045464A1 (en) * 1997-12-16 2003-03-06 Hermeling Ronald Norbert Glucagon-like peptide-1 crystals
US20030055052A1 (en) * 2000-11-10 2003-03-20 Stefan Peters FAP-activated anti-tumor compounds
US20030060412A1 (en) * 2000-01-27 2003-03-27 Prouty Walter Francis Process for solubilizing glucagon-like peptide 1compounds
US20030060434A1 (en) * 1997-02-18 2003-03-27 Loretta Nielsen Combined tumor suppressor gene therapy and chemotherapy in the treatment of neoplasms
US6545170B2 (en) * 2000-04-13 2003-04-08 Pharmacia Corporation 2-amino-5, 6 heptenoic acid derivatives useful as nitric oxide synthase inhibitors
US20030069234A1 (en) * 2001-06-06 2003-04-10 Medina Julio C. CXCR3 antagonists
US6548529B1 (en) * 1999-04-05 2003-04-15 Bristol-Myers Squibb Company Heterocyclic containing biphenyl aP2 inhibitors and method
US6548481B1 (en) * 1998-05-28 2003-04-15 Probiodrug Ag Effectors of dipeptidyl peptidase IV
US6555519B2 (en) * 2000-03-30 2003-04-29 Bristol-Myers Squibb Company O-glucosylated benzamide SGLT2 inhibitors and method
US6559188B1 (en) * 1999-09-17 2003-05-06 Novartis Ag Method of treating metabolic disorders especially diabetes, or a disease or condition associated with diabetes
US20030087935A1 (en) * 1999-09-22 2003-05-08 Cheng Peter T. Substituted acid derivatives useful as antidiabetic and antiobesity agents and method
US20030087950A1 (en) * 2001-03-28 2003-05-08 Denanteuil Guillaume New alpha-amino acid sulphonyl compounds
US20030089935A1 (en) * 2001-11-13 2003-05-15 Macronix International Co., Ltd. Non-volatile semiconductor memory device with multi-layer gate insulating structure
US20030092697A1 (en) * 2001-05-30 2003-05-15 Cheng Peter T. Conformationally constrained analogs useful as antidiabetic and antiobesity agents and method
US20030092630A2 (en) * 1999-08-24 2003-05-15 Probiodrug Ag New effectors of dipeptidyl peptidase iv for topical use
US20030096857A1 (en) * 1999-11-30 2003-05-22 Evans David Michael Novel antidiabetic agents
US20030100563A1 (en) * 2001-07-06 2003-05-29 Edmondson Scott D. Beta-amino heterocyclic dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
US20040002609A1 (en) * 2002-06-04 2004-01-01 Pfizer Inc. Synthesis of 3,3,4,4-tetrafluoropyrrolidine and novel dipeptidyl peptidase-IV inhibitor compounds
US20040002495A1 (en) * 2002-05-20 2004-01-01 Philip Sher Lactam glycogen phosphorylase inhibitors and method of use
US6673815B2 (en) * 2001-11-06 2004-01-06 Bristol-Myers Squibb Company Substituted acid derivatives useful as antidiabetic and antiobesity agents and method
US6673829B2 (en) * 2001-09-14 2004-01-06 Novo Nordisk A/S Aminoazetidine,-pyrrolidine and -piperidine derivatives
US20040006062A1 (en) * 2002-05-06 2004-01-08 Smallheer Joanne M. Sulfonylaminovalerolactams and derivatives thereof as factor Xa inhibitors
US20040009998A1 (en) * 2001-10-01 2004-01-15 Dhar T. G. Murali Spiro-hydantoin compounds useful as anti-inflammatory agents
US20040009972A1 (en) * 2002-06-17 2004-01-15 Ding Charles Z. Benzodiazepine inhibitors of mitochondial F1F0 ATP hydrolase and methods of inhibiting F1F0 ATP hydrolase
US6686337B2 (en) * 2000-10-30 2004-02-03 Ortho-Mcneil Pharmaceutical, Inc. Combination therapy comprising anti-diabetic and anticonvulsant agents
US20040034014A1 (en) * 2000-07-04 2004-02-19 Kanstrup Anders Bendtz Heterocyclic compounds, which are inhibitors of the enzyme DPP-IV
US6703238B2 (en) * 1997-09-29 2004-03-09 Point Therapeutics, Inc. Methods for expanding antigen-specific T cells
US6706742B2 (en) * 2001-05-15 2004-03-16 Les Laboratories Servier Alpha-amino-acid compounds
US20040054171A1 (en) * 2002-07-04 2004-03-18 Jensen Anette Frost Polymorphic forms of a 4H-thieno[3,2-E]-1,2,4-thiadiazine 1,1-dioxide derivative
US20040053369A1 (en) * 2000-10-27 2004-03-18 Abbott Catherine Anne Dipeptidyl peptidases
US6710040B1 (en) * 2002-06-04 2004-03-23 Pfizer Inc. Fluorinated cyclic amides as dipeptidyl peptidase IV inhibitors
US20040058876A1 (en) * 2002-09-18 2004-03-25 Torsten Hoffmann Secondary binding site of dipeptidyl peptidase IV (DP IV)
US20040063935A1 (en) * 2000-10-06 2004-04-01 Kosuke Yasuda Aliphatic nitrogenous five-membered ring compounds
US20040072892A1 (en) * 2000-11-10 2004-04-15 Hiroshi Fukushima Cyanopyrrolidine derivatives
US20040072874A1 (en) * 2002-09-30 2004-04-15 Nagaaki Sato N-substituted-2-oxodihydropyridine derivatives
US20040077645A1 (en) * 2001-02-24 2004-04-22 Frank Himmelsbach Xanthine derivatives,production and use thereof as medicament
US6727261B2 (en) * 2001-12-27 2004-04-27 Hoffman-La Roche Inc. Pyrido[2,1-A]Isoquinoline derivatives
US20040082497A1 (en) * 2000-04-26 2004-04-29 Evans David Michael Inhibitors of dipeptidyl peptidase IV
US20040082607A1 (en) * 2001-02-02 2004-04-29 Satoru Oi Fused heterocyclic compounds
US20040092478A1 (en) * 2001-03-19 2004-05-13 Rothermel John D. Combinations comprising an antidiarrheal agent and an epothilone or an epothilone derivative
US20040097510A1 (en) * 2002-08-21 2004-05-20 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US20050014732A1 (en) * 2003-03-14 2005-01-20 Pharmacia Corporation Combination of an aldosterone receptor antagonist and an anti-diabetic agent
US20050014946A1 (en) * 2001-11-09 2005-01-20 Hans-Ulrich Demuth Substituted amino ketone compounds
US20050020574A1 (en) * 2002-12-03 2005-01-27 Boehringer Ingelheim Pharma Gmbh Co. Kg New substituted imidazo-pyridinones and imidazo-pyridazinones, the preparation thereof and their use as pharmaceutical compositions
US20050026921A1 (en) * 2003-06-18 2005-02-03 Boehringer Ingelheim International Gmbh New imidazopyridazinone and imidazopyridone derivatives, the preparation thereof and their use as pharmaceutical compositions
US20050032804A1 (en) * 2003-06-24 2005-02-10 Cypes Stephen Howard Phosphoric acid salt of a dipeptidyl peptidase-IV inhibitor
US20050038020A1 (en) * 2003-08-01 2005-02-17 Hamann Lawrence G. Adamantylglycine-based inhibitors of dipeptidyl peptidase IV and methods
US20050043292A1 (en) * 2003-08-20 2005-02-24 Pfizer Inc Fluorinated lysine derivatives as dipeptidyl peptidase IV inhibitors
US20050043299A1 (en) * 2001-10-23 2005-02-24 Ferring B. V. Inhibitors of dipeptidyl peptidase iv
US6861440B2 (en) * 2001-10-26 2005-03-01 Hoffmann-La Roche Inc. DPP IV inhibitors
US6867205B2 (en) * 2002-02-13 2005-03-15 Hoffman-La Roche Inc. Pyridine and pyrimidine derivatives
US20050058635A1 (en) * 2003-05-05 2005-03-17 Hans-Ulrich Demuth Use of effectors of glutaminyl and glutamate cyclases

Family Cites Families (327)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB699812A (en) 1950-11-29 1953-11-18 British Ind Solvents Ltd Manufacture of substituted pyrimidones
GB1053063A (de) 1963-05-18
DE1670912C3 (de) 1967-08-18 1981-06-11 Bayer Ag, 5090 Leverkusen Herbizide Mittel auf Basis von 1,2,4-Triazin-5-onen
GB1377642A (en) 1971-01-14 1974-12-18 Koninklijke Gist Spiritus Penicillanic and cephalosporanic acid derivatives
DE2150686A1 (de) 1971-10-12 1973-04-19 Basf Ag 6-amino-uracil-5-carbonsaeurethioamide
BE792206A (de) 1971-12-02 1973-06-01 Byk Gulden Lomberg Chem Fab
AU5996573A (en) 1972-09-11 1975-03-06 Commonwealth Scientific And Industrial Research Organisation Pyridinium salts
US3823135A (en) 1972-12-26 1974-07-09 Shell Oil Co Pyrimidone herbicides
GB1464248A (en) 1973-11-01 1977-02-09 Ici Ltd Substituted triazinediones their preparation and use as herbicides
DE2361551A1 (de) 1973-12-11 1975-06-19 Basf Ag Wasserloesliche azofarbstoffe
DE2500024A1 (de) 1975-01-02 1976-07-08 Basf Ag Wasserloesliche azofarbstoffe
JPS535180A (en) 1976-07-01 1978-01-18 Sumitomo Chem Co Ltd Preparation of 3,4-dihydro-2 (1h) quinazoline derivatives
DE2720085A1 (de) 1977-05-05 1978-11-16 Hoechst Ag Pyrimido(6,1-a)isochinolin-2-on- derivate
CH657851A5 (de) 1983-06-28 1986-09-30 Ciba Geigy Ag Chromogene chinazolonverbindungen.
AR240698A1 (es) * 1985-01-19 1990-09-28 Takeda Chemical Industries Ltd Procedimiento para preparar compuestos de 5-(4-(2-(5-etil-2-piridil)-etoxi)benzil)-2,4-tiazolidindiona y sus sales
WO1989010701A1 (en) 1988-05-05 1989-11-16 Basf Aktiengesellschaft Substances based on uracil-derivates for stimulating growth and reducing fat in animals
GB8900382D0 (en) 1989-01-09 1989-03-08 Janssen Pharmaceutica Nv 2-aminopyrimidinone derivatives
US5433955A (en) 1989-01-23 1995-07-18 Akzo N.V. Site specific in vivo activation of therapeutic drugs
IE63502B1 (en) 1989-04-21 1995-05-03 Zeneca Ltd Aminopyrimidine derivatives useful for treating cardiovascular disorders
DE69129226T2 (de) 1990-01-24 1998-07-30 Douglas I Buckley Glp-1-analoga verwendbar in der diabetesbehandlung
WO1991012001A1 (en) 1990-02-13 1991-08-22 Merck & Co., Inc. Angiotensin ii antagonists incorporating a substituted benzyl element
US5366862A (en) 1990-02-14 1994-11-22 Receptor Laboratories, Inc. Method for generating and screening useful peptides
US5814460A (en) 1990-02-14 1998-09-29 Diatide, Inc. Method for generating and screening useful peptides
EP0442473B1 (de) 1990-02-15 1998-08-19 Takeda Chemical Industries, Ltd. Pyrimidindionderivate, deren Herstellung und Verwendung
US5462928A (en) 1990-04-14 1995-10-31 New England Medical Center Hospitals, Inc. Inhibitors of dipeptidyl-aminopeptidase type IV
DE4110019C2 (de) 1991-03-27 2000-04-13 Merck Patent Gmbh Imidazopyridine, Verfahren zu ihrer Herstellung und diese enthaltende pharmazeutische Zubereitungen
CA2121369C (en) 1991-10-22 2003-04-29 William W. Bachovchin Inhibitors of dipeptidyl-aminopeptidase type iv
US6825169B1 (en) 1991-10-22 2004-11-30 Trustees Of Tufts College Inhibitors of dipeptidyl-aminopeptidase type IV
US5350752A (en) 1991-12-16 1994-09-27 E. R. Squibb & Sons, Inc. Dihydropyrimidine derivatives
DE4141788A1 (de) 1991-12-18 1993-06-24 Merck Patent Gmbh Imidazopyridine
TW229142B (de) 1992-04-15 1994-09-01 Nissan Detrochem Corp
US5602102A (en) 1992-05-29 1997-02-11 Board Of Regents, The Univ. Of Tx System Dipeptidyl peptidase-I inhibitors and uses thereof
DE4305602A1 (de) 1992-06-17 1993-12-23 Merck Patent Gmbh Imidazopyridine
AU4794393A (en) 1992-07-31 1994-03-03 Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The Producing increased numbers of hematopoietic cells by administering inhibitors of dipeptidyl peptidase iv
IL106877A (en) 1992-09-10 1998-03-10 Lilly Co Eli Rodinin derivatives for use as drugs for the treatment of Alzheimer's disease
US5811281A (en) 1993-07-12 1998-09-22 Cornell Research Foundation, Inc. Immortalized intestinal epithelial cell lines
DE4341453A1 (de) 1993-12-06 1995-06-08 Merck Patent Gmbh Imidazopyridine
DE69521500T2 (de) 1994-03-08 2001-12-13 Otsuka Pharma Co Ltd Phosphorsäurediester-derivate
US5580979A (en) 1994-03-15 1996-12-03 Trustees Of Tufts University Phosphotyrosine peptidomimetics for inhibiting SH2 domain interactions
US5543396A (en) 1994-04-28 1996-08-06 Georgia Tech Research Corp. Proline phosphonate derivatives
WO1995034538A2 (en) 1994-06-10 1995-12-21 Universitaire Instelling Antwerpen Purification of serine proteases and synthetic inhibitors thereof
CN1074900C (zh) 1994-06-17 2001-11-21 拉·特罗比大学 昆虫的生物控制
DE4432860A1 (de) 1994-09-15 1996-03-21 Merck Patent Gmbh Imidazopyridine
AU692090B2 (en) 1995-04-13 1998-05-28 Taiho Pharmaceutical Co., Ltd. Novel 4,6-diarylpyrimidine derivatives and salts thereof
US6325989B1 (en) 1995-06-01 2001-12-04 Dana-Farber Cancer Institute, Inc. Form of dipeptidylpeptidase IV (CD26) found in human serum
JP2002515724A (ja) 1995-06-01 2002-05-28 ダナ−ファーバー キャンサー インスティテュート インコーポレイテッド ヒト血清中に見出されたジペプチジルペプチダーゼiv(cd26)の新規形態、その抗体および利用法
DK0748800T3 (da) 1995-06-09 2001-08-27 Hoffmann La Roche Pyrimidindion-, pyrimidintrion- og triazindionderivater som alfa-1-adrenergiske receptorantagonister
JPH0928376A (ja) 1995-07-21 1997-02-04 Ajinomoto Co Inc 新規ジペプチジルペプチダーゼivとその製造方法
DE122010000020I1 (de) 1996-04-25 2010-07-08 Prosidion Ltd Verfahren zur Senkung des Blutglukosespiegels in Säugern
JPH09295977A (ja) 1996-04-30 1997-11-18 Terumo Corp ピリドピリミジン誘導体及びそれを含有する医薬組成物
US5965532A (en) 1996-06-28 1999-10-12 Trustees Of Tufts College Multivalent compounds for crosslinking receptors and uses thereof
CA2258949C (en) 1996-07-01 2008-05-06 Dr. Reddy's Research Foundation Novel heterocyclic compounds process for their preparation and pharmaceutical compositions containing them and their use in the treatment of diabetes and related diseases
US6458924B2 (en) 1996-08-30 2002-10-01 Novo Nordisk A/S Derivatives of GLP-1 analogs
US7235627B2 (en) 1996-08-30 2007-06-26 Novo Nordisk A/S Derivatives of GLP-1 analogs
US6006753A (en) 1996-08-30 1999-12-28 Eli Lilly And Company Use of GLP-1 or analogs to abolish catabolic changes after surgery
AU4721897A (en) 1996-10-25 1998-05-22 Tanabe Seiyaku Co., Ltd. Tetrahydroisoquinoline derivatives
TW492957B (en) 1996-11-07 2002-07-01 Novartis Ag N-substituted 2-cyanopyrrolidnes
HUP0001140A3 (en) 1996-12-05 2002-05-28 Amgen Inc Thousand Oaks Substituted pyrimidinone and pyridone compounds and methods of use
GB9702701D0 (en) 1997-02-01 1997-04-02 Univ Newcastle Ventures Ltd Quinazolinone compounds
US6100234A (en) 1997-05-07 2000-08-08 Tufts University Treatment of HIV
DK0981630T3 (da) 1997-05-16 2009-03-09 Novozymes Inc Polypeptider med prolyldipeptidylaminopeptidaseaktivitet og nukleinsyrer, der koder for samme
EP0897012A1 (de) 1997-07-05 1999-02-17 Societe Des Produits Nestle S.A. Klonierung der Prolyl-Dipeptidyl-Peptidase von Aspergillus oryzae
IL125950A0 (en) 1997-09-05 1999-04-11 Pfizer Prod Inc Methods of administering ampa receptor antagonists to treat dyskinesias associated with dopamine agonist therapy
AU9602198A (en) 1997-10-06 1999-04-27 Trustees Of Tufts College Cytoplasmic dipeptidylpeptidase iv from human t-cells
WO1999018856A1 (en) 1997-10-10 1999-04-22 Cytovia, Inc. Novel fluorescent reporter molecules and their applications including assays for caspases
US6534626B1 (en) 1997-12-01 2003-03-18 The United States Of America As Represented By The Department Of Health & Human Services Chemokine variants
DE04029691T1 (de) 1998-02-02 2007-11-08 Trustees Of Tufts College, Medford Verwendung von Dipetidylpeptidasehemmer zur Regulierung des Glukosemetabolismus
JP2002506075A (ja) 1998-03-09 2002-02-26 フォンダテッヒ・ベネルクス・ナムローゼ・フェンノートシャップ セリンペプチダーゼ調節剤
AU3357299A (en) 1998-03-20 1999-10-11 Sloan-Kettering Institute For Cancer Research Use of dipeptidyl peptidase (dpp4) for suppressing the malignant phenotype of cancer cells
EP1054871A2 (de) 1998-04-01 2000-11-29 Du Pont Pharmaceuticals Company Pyrimidine und triazine als integrinantagonisten
WO1999052893A1 (en) 1998-04-08 1999-10-21 Novartis Ag N-pyridonyl herbicides
FR2777283B1 (fr) 1998-04-10 2000-11-24 Adir Nouveaux composes peptidiques analogues du glucagon-peptide- 1 (7-37), leur procede de preparation et les compositions pharmaceutiques qui les contiennent
DE19828114A1 (de) 1998-06-24 2000-01-27 Probiodrug Ges Fuer Arzneim Produgs instabiler Inhibitoren der Dipeptidyl Peptidase IV
US6129911A (en) 1998-07-10 2000-10-10 Rhode Island Hospital, A Lifespan Partner Liver stem cell
WO2000007617A1 (en) 1998-07-31 2000-02-17 Novo Nordisk A/S Use of glp-1 and analogues for preventing type ii diabetes
DK1105460T3 (da) 1998-08-10 2010-02-08 Us Gov Health & Human Serv Differentiering af ikke-insulinproducerende celler til insulinproducerende celler med GLP-1 eller Exendin-4 og anvendelser deraf
EP1104293A1 (de) 1998-08-21 2001-06-06 Point Therapeutics, Inc. Regulierung von substrat aktivität
CA2344246A1 (en) 1998-09-17 2000-03-23 Akesis Pharmaceuticals, Inc. Combinations of chromium or vanadium with antidiabetics for glucose metabolism disorders
DE19845153A1 (de) 1998-10-01 2000-04-06 Merck Patent Gmbh Imidazo[4,5]-pyridin-4-on-derivate
US20030176357A1 (en) 1998-10-06 2003-09-18 Pospisilik Andrew J. Dipeptidyl peptidase IV inhibitors and their uses for lowering blood pressure levels
CO5150173A1 (es) 1998-12-10 2002-04-29 Novartis Ag Compuestos n-(glicilo sustituido)-2-cianopirrolidinas inhibidores de peptidasa de dipeptidilo-iv (dpp-iv) los cuales son efectivos en el tratamiento de condiciones mediadas por la inhibicion de dpp-iv
DE19900471A1 (de) 1999-01-08 2000-07-13 Merck Patent Gmbh Imidazo[4,5c]-pyridin-4-on-derivate
CN1183114C (zh) 1999-01-22 2005-01-05 麒麟麦酒株式会社 喹啉衍生物及喹唑啉衍生物
ES2353728T3 (es) 1999-02-10 2011-03-04 Curis, Inc. Péptido yy (pyy) para tratar trastornos metabólicos de la glucosa.
WO2000053171A1 (en) 1999-03-05 2000-09-14 Molteni L. E C. Dei Fratelli Alitti Societa' Di Esercizio S.P.A. Use of metformin in the preparation of pharmaceutical compositions capable of inhibiting the enzyme dipeptidyl peptidase iv
GB9906714D0 (en) 1999-03-23 1999-05-19 Ferring Bv Compositions for improving fertility
AU4031500A (en) 1999-03-26 2000-10-16 Akesis Pharmaceuticals, Inc. Edible solids for treatment of glucose metabolism disorders
WO2000063209A1 (en) 1999-04-20 2000-10-26 Novo Nordisk A/S New compounds, their preparation and use
DE19926233C1 (de) 1999-06-10 2000-10-19 Probiodrug Ges Fuer Arzneim Verfahren zur Herstellung von Thiazolidin
US6110949A (en) 1999-06-24 2000-08-29 Novartis Ag N-(substituted glycyl)-4-cyanothiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV
US6107317A (en) 1999-06-24 2000-08-22 Novartis Ag N-(substituted glycyl)-thiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV
US6617340B1 (en) 1999-07-29 2003-09-09 Novartis Ag N-(substituted glycyl)-pyrrolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV
ATE332366T1 (de) 1999-09-10 2006-07-15 Univ Sydney Dipeptidyl-peptidasen
AU7419300A (en) 1999-09-28 2001-04-30 Merck Patent Gmbh Quinazolinones
US6447772B1 (en) 1999-10-01 2002-09-10 Klaire Laboratories, Inc. Compositions and methods relating to reduction of symptoms of autism
WO2001027090A1 (en) 1999-10-08 2001-04-19 Meiji Seika Kaisha, Ltd. m-SUBSTITUTED BENZOIC ACID DERIVATIVES EXHIBITING INTEGRINαvβ3 ANTAGONISM
US6261794B1 (en) 1999-10-14 2001-07-17 Saint Louis University Methods for identifying inhibitors of methionine aminopeptidases
US7230000B1 (en) 1999-10-27 2007-06-12 Cytokinetics, Incorporated Methods and compositions utilizing quinazolinones
WO2001034594A1 (en) 1999-11-12 2001-05-17 Guilford Pharmaceuticals, Inc. Dipeptidyl peptidase iv inhibitors and methods of making and using dipeptidyl peptidase iv inhibitors
US20040152745A1 (en) 1999-11-12 2004-08-05 Guilford Pharmaceuticals, Inc. Dipeptidyl peptidase IV inhibitors and methods of making and using dipeptidyl peptidase IV inhibitors
CN1977842A (zh) 2000-01-21 2007-06-13 诺瓦提斯公司 含有二肽基肽酶-iv抑制剂和抗糖尿病药物的联合形式
JP2003520849A (ja) 2000-01-24 2003-07-08 ノボ ノルディスク アクティーゼルスカブ 酵素dpp−ivの阻害剤であるn−置換2−シアノピロールおよび−ピロリン
DK1255738T3 (da) 2000-01-25 2012-06-25 Neurocrine Biosciences Inc Gonadotropin-frigivende hormonreceptor-antagonister og fremgangsmåder relateret dertil
US6569901B2 (en) 2000-01-28 2003-05-27 Novo Nordisk A/S Alkynyl-substituted propionic acid derivatives, their preparation and use
US7217722B2 (en) 2000-02-01 2007-05-15 Kirin Beer Kabushiki Kaisha Nitrogen-containing compounds having kinase inhibitory activity and drugs containing the same
WO2001062266A2 (en) 2000-02-25 2001-08-30 Novo Nordisk A/S Use of dpp-iv inhibitors for the treatment of diabetes
US6448045B1 (en) 2000-03-10 2002-09-10 The Regents Of The University Of California Inducing insulin gene expression in pancreas cells expressing recombinant PDX-1
US6608038B2 (en) 2000-03-15 2003-08-19 Novartis Ag Methods and compositions for treatment of diabetes and related conditions via gene therapy
EP1136482A1 (de) 2000-03-23 2001-09-26 Sanofi-Synthelabo 2-Amino-3-(alkyl)-pyrimidonderivate als GSK3beta-Hemmer
US6573096B1 (en) 2000-04-01 2003-06-03 The Research Foundation At State University Of New York Compositions and methods for inhibition of cancer invasion and angiogenesis
WO2001079206A1 (fr) 2000-04-18 2001-10-25 Sumitomo Pharmaceuticals Company, Limited Quinazolinediones tricycliques
ES2527754T3 (es) 2000-04-25 2015-01-29 Icos Corporation Inhibidores de la isoforma delta de la fosfatidilinositol 3-quinasa humana
GB0010183D0 (en) 2000-04-26 2000-06-14 Ferring Bv Inhibitors of dipeptidyl peptidase IV
DE10025464A1 (de) 2000-05-23 2001-12-06 Inst Medizintechnologie Magdeb Kombinierte Verwendung von Enzyminhibitoren zur Therapie von Autoimmunerkrankungen, bei Transplantationen und Tumorerkrankungen sowie Kombinationen von Enzyminhibitoren umfassende pharmazeutische Zubereitungen
AU2001263786A1 (en) 2000-06-09 2001-12-17 Prozymex A/S Purified proenzyme of dipeptidyl peptidase i (pro-dppi)
TW583185B (en) 2000-06-13 2004-04-11 Novartis Ag N-(substituted glycyl)-2-cyanopyrrolidines and pharmaceutical composition for inhibiting dipeptidyl peptidase-IV (DPP-IV) or for the prevention or treatment of diseases or conditions associated with elevated levels of DPP-IV comprising the same
US6432969B1 (en) 2000-06-13 2002-08-13 Novartis Ag N-(substituted glycyl)-2 cyanopyrrolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV
US6620821B2 (en) 2000-06-15 2003-09-16 Bristol-Myers Squibb Company HMG-CoA reductase inhibitors and method
US6627636B2 (en) 2000-06-15 2003-09-30 Bristol-Myers Squibb Company HMG-CoA reductase inhibitors and method
US7078397B2 (en) 2000-06-19 2006-07-18 Smithkline Beecham Corporation Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus
GB0014969D0 (en) 2000-06-19 2000-08-09 Smithkline Beecham Plc Novel method of treatment
WO2002004610A2 (en) 2000-07-10 2002-01-17 Bayer Aktiengesellschaft Regulation of human dipeptidyl-peptidase iv-like enzyme
TW535080B (en) 2000-07-24 2003-06-01 Ten Square Co Ltd Method and apparatus for optimal fitting activities into customer idle time
EP1305293A1 (de) 2000-08-01 2003-05-02 Pharmacia Corporation Hexahydro-7-imino-1h-azepin-2-yl-hexansäure-derivate als inhibitoren der induzierbaren stickstoffmonoxid-synthase
BR0112857A (pt) 2000-08-04 2005-02-09 Warner Lambert Co Compostos 2-(4-piridil)amino-6-dialcoxifenil-pirido-[2,3-d]pirimidin- 7-onas
WO2002014271A1 (fr) 2000-08-10 2002-02-21 Mitsubishi Pharma Corporation Dérivés de proline et leur utilisation comme médicaments
US20020165237A1 (en) 2000-08-11 2002-11-07 Fryburg David Albert Treatment of the insulin resistance syndrome
US6900226B2 (en) 2000-09-06 2005-05-31 Hoffman-La Roche Inc. Neuropeptide Y antagonists
EP1317555B1 (de) 2000-09-08 2007-11-14 Prozymex A/S Ratten-spezifische cathepsin, dipeptidyl peptidase i (dppi): kristallstruktur, hemmstoffe und deren anwendungen
US20020064736A1 (en) 2000-09-27 2002-05-30 Fuji Photo Film Co., Ltd. Dye-forming coupler, silver halide photographic light-sensitive material, and method for producing an azomethine dye
EP1324995A2 (de) 2000-09-27 2003-07-09 Merck & Co., Inc. Benzopyrancarbonsäure derivate für die behandlung von diabetes und fettstörungen
GB0023983D0 (en) 2000-09-29 2000-11-15 Prolifix Ltd Therapeutic compounds
SE0003599D0 (sv) 2000-10-05 2000-10-05 Thomas Johansson Anordning för fuktabsorption
RU2305133C2 (ru) 2000-10-12 2007-08-27 Ферринг Бв Ген новой сериновой протеазы, родственной dppiv
KR20040025875A (ko) 2000-10-27 2004-03-26 프로비오드룩 아게 신경 장애 및 신경정신 장애의 치료 방법
AU2002246568A1 (en) 2000-10-31 2002-08-06 Vanderbilt University Biological markers and diagnostic tests for angiotensin converting enzyme inhibitor- and vasopeptidase inhibitor-associated angioedema
EP1347755A2 (de) 2000-10-31 2003-10-01 Merck & Co., Inc. Benzopyrancarbonsäuren-derivate zur behandlung von diabetes und fettstörungen
WO2002038742A2 (en) 2000-11-08 2002-05-16 The University Of Georgia Research Foundation, Inc. Dipeptidylpeptidases and methods of use
US20020155565A1 (en) 2000-11-10 2002-10-24 Pilar Garin-Chesa FAP-activated anti-tumor compounds
US20030203946A1 (en) 2000-11-17 2003-10-30 Carsten Behrens Glucagon antagonists/inverse agonists
US6964967B2 (en) 2000-12-11 2005-11-15 Amgen, Inc. Substituted pyrido[2,3-d]pyrimidines and methods for their use
WO2002051836A1 (fr) 2000-12-27 2002-07-04 Kyowa Hakko Kogyo Co., Ltd. Inhibiteur de dipeptidyl peptidase iv
DE10100053A1 (de) 2001-01-02 2002-08-22 Keyneurotek Ag I G Verwendung von Enzyminhibitoren der Dipeptidylpeptidase IV sowie der Aminopeptidase N und pharmazeutischen Zubereitungen daraus zur Prävention und/oder Therapie Ischämie-bedingter akuter und chronischer neurodegenerativer Prozesse und Erkrankungen
CN100579582C (zh) 2001-01-02 2010-01-13 Imtm股份有限公司 联合应用酶抑制剂及其药学组合物在制备治疗和预防动脉硬化、预防和治疗根据杰尔-库姆斯分类法分类的ⅰ型过敏反应以及治疗和预防与毛囊和表皮角化过度和角质细胞的过度增殖相关的皮肤疾病的药物中的用途
WO2002059301A1 (en) 2001-01-27 2002-08-01 K.U. Leuven Research And Development Chemokines
TWI255817B (en) 2001-02-14 2006-06-01 Kissei Pharmaceutical Glucopyranosyloxybenzylbenzene derivatives and medicinal use thereof
WO2002066627A1 (en) 2001-02-16 2002-08-29 Bayer Aktiengesellschaft Regulation of human dipeptidyl peptidase 8
JP4178816B2 (ja) 2001-03-15 2008-11-12 田辺三菱製薬株式会社 医薬組成物
EP1385508B1 (de) 2001-03-27 2008-05-21 Merck & Co., Inc. Dipeptidylpeptidase-hemmer für die behandlung oder prävention von diabetes
DE10115921A1 (de) 2001-03-30 2002-10-02 Boehringer Ingelheim Pharma Verfahren zur Herstellung von 4,6-Diaminopyrimido[5,4-d]pyrimidinen
US6890905B2 (en) 2001-04-02 2005-05-10 Prosidion Limited Methods for improving islet signaling in diabetes mellitus and for its prevention
GB0109146D0 (en) 2001-04-11 2001-05-30 Ferring Bv Treatment of type 2 diabetes
PE20021080A1 (es) 2001-04-12 2003-02-12 Boehringer Ingelheim Int Un anticuerpo especifico fapo bibh1 en el tratamiento del cancer
US6573287B2 (en) 2001-04-12 2003-06-03 Bristo-Myers Squibb Company 2,1-oxazoline and 1,2-pyrazoline-based inhibitors of dipeptidyl peptidase IV and method
JP2004533449A (ja) 2001-05-11 2004-11-04 ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システム Cd26を発現している細胞に関連する疾患の治療としての抗cd26モノクローナル抗体
US20030060494A1 (en) 2001-05-18 2003-03-27 Nobuyuki Yasuda Pharmaceutical use of N-carbamoylazole derivatives
IL143366A0 (en) 2001-05-24 2002-04-21 Harasit Medical Res Services & Treatment of renal fibrosis
US7098239B2 (en) 2001-06-20 2006-08-29 Merck & Co., Inc Dipeptidyl peptidase inhibitors for the treatment of diabetes
JP2005500308A (ja) 2001-06-20 2005-01-06 メルク エンド カムパニー インコーポレーテッド 糖尿病を治療するためのジペプチジルペプチダーゼ阻害剤
GB0115517D0 (en) 2001-06-25 2001-08-15 Ferring Bv Novel antidiabetic agents
US7368421B2 (en) 2001-06-27 2008-05-06 Probiodrug Ag Use of dipeptidyl peptidase IV inhibitors in the treatment of multiple sclerosis
DE60235212D1 (de) 2001-06-27 2010-03-11 Smithkline Beecham Corp Fluoropyrrolidine als Dipeptidylpeptidasehemmer
WO2003072556A1 (en) 2001-06-27 2003-09-04 Prosidion Ltd. Glutaminyl based dpiv inhibitors
US20030130199A1 (en) 2001-06-27 2003-07-10 Von Hoersten Stephan Dipeptidyl peptidase IV inhibitors and their uses as anti-cancer agents
DE10150203A1 (de) 2001-10-12 2003-04-17 Probiodrug Ag Peptidylketone als Inhibitoren der DPIV
DE60221983T2 (de) 2001-06-27 2008-05-15 Smithkline Beecham Corp. Fluorpyrrolidine als dipeptidyl-peptidase inhibitoren
DE10154689A1 (de) 2001-11-09 2003-05-22 Probiodrug Ag Substituierte Aminoketonverbindungen
DE60223920T2 (de) 2001-06-27 2008-11-13 Smithkline Beecham Corp. Pyrrolidine als dipeptidyl-peptidase-inhibitoren
US20030135023A1 (en) 2001-06-27 2003-07-17 Hans-Ulrich Demuth Peptide structures useful for competitive modulation of dipeptidyl peptidase IV catalysis
US6869947B2 (en) 2001-07-03 2005-03-22 Novo Nordisk A/S Heterocyclic compounds that are inhibitors of the enzyme DPP-IV
EP1404675B1 (de) 2001-07-03 2008-03-12 Novo Nordisk A/S Dpp-iv-inhibierende purin-derivative zur behandlung von diabetes
WO2003007888A2 (en) 2001-07-20 2003-01-30 Adipogenix, Inc. Fat accumulation-modulating compounds
WO2003010197A2 (en) 2001-07-25 2003-02-06 Genset S.A. Gmg-1 polynucleotides and polypeptides and uses thereof
WO2003010314A2 (en) 2001-07-26 2003-02-06 Genset S.A. Gmg-2 polynucleotides and polypeptides and uses thereof
EP1414785A1 (de) 2001-07-30 2004-05-06 Novo Nordisk A/S Neue vinyl-n-(2-benzoylphenyl)-l-tyrosinderivate und deren verwendung als antidiabetika usw.
CZ2004133A3 (cs) 2001-07-30 2004-06-16 Novo Nordisk A/S Deriváty vinylkarboxylové kyseliny, farmaceutický prostředek ho obsahující a jeho použití
AU2002317599B2 (en) 2001-07-31 2008-04-03 The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services GLP-1 exendin-4 peptide analogs and uses thereof
WO2003014318A2 (en) 2001-08-08 2003-02-20 Genzyme Corporation Methods for treating diabetes and other blood sugar disorders
JP2005508891A (ja) 2001-08-13 2005-04-07 プロバイオドラッグ アーゲー レグマインの不可逆性システインプロテアーゼ阻害剤
EP1285922A1 (de) 2001-08-13 2003-02-26 Warner-Lambert Company 1-alkyl oder 1-cycloalkyltriazolo[4,3-a]chinazolin-5-one als phosphodiesterase Inhibitoren
JP2003128551A (ja) 2001-08-15 2003-05-08 Sankyo Co Ltd 新規抗糖尿病医薬組成物
US6844316B2 (en) 2001-09-06 2005-01-18 Probiodrug Ag Inhibitors of dipeptidyl peptidase I
DE10143840A1 (de) 2001-09-06 2003-03-27 Probiodrug Ag Neue Inhibitoren der Dipeptidylpeptidase I
US20030186963A1 (en) 2001-09-14 2003-10-02 Dorwald Florencio Zaragoza Substituted piperidines
CA2460512A1 (en) 2001-09-14 2003-03-27 Mitsubishi Pharma Corporation Thiazolidine derivatives and medicinal use thereof
WO2003024965A2 (en) 2001-09-19 2003-03-27 Novo Nordisk A/S Heterocyclic compounds that are inhibitors of the enzyme dpp-iv
US7572793B2 (en) 2001-09-21 2009-08-11 Mitsubishi Tanabe Pharma Corporation 3-Substituted-4-pyrimidone derivatives
MXPA04002526A (es) 2001-09-21 2004-05-31 Bristol Myers Squibb Co Compuestos que contienen lactama y sus derivados como inhibidores del factor xa.
EA007576B1 (ru) 2001-09-21 2006-12-29 Мицубиси Фарма Корпорейшн Производные 3-замещенных 4-пиримидонов
US7019010B2 (en) 2001-09-27 2006-03-28 Novertis Ag Combinations
WO2003030946A1 (en) 2001-10-09 2003-04-17 Novartis Ag Regulation of insulin production
US7064135B2 (en) 2001-10-12 2006-06-20 Novo Nordisk Inc. Substituted piperidines
NZ531788A (en) 2001-10-18 2008-01-31 Bristol Myers Squibb Co Human glucagon-like-peptide-1 mimics and their use in the treatment of diabetes and related conditions
TWI301834B (en) 2001-10-22 2008-10-11 Eisai R&D Man Co Ltd Pyrimidone compound and pharmaceutical composition including the same
GB0125446D0 (en) 2001-10-23 2001-12-12 Ferring Bv Novel anti-diabetic agents
WO2003038123A2 (en) 2001-10-31 2003-05-08 Novartis Ag Methods to treat diabetes and related conditions based on polymorphisms in the tcf1 gene
EP1469873A4 (de) 2001-11-26 2007-10-03 Tufts College Peptidomimetische inhibitoren von hinter prolin spaltenden enzymen
DE60234116D1 (de) 2001-11-26 2009-12-03 Schering Corp Piperidin mch antagonisten und ihre verwendung in der behandlung von obesität und störungen des zentralnervensystems
CA2466870A1 (en) 2001-11-26 2003-06-05 Trustees Of Tufts College Methods for treating autoimmune disorders, and reagents related thereto
WO2003048081A2 (en) 2001-12-04 2003-06-12 Bristol-Myers Squibb Company Glycinamides as factor xa inhibitors
GB0129988D0 (en) 2001-12-14 2002-02-06 Ferring Bv Imidazolidineacetic acid derivatives
CZ2004714A3 (cs) 2001-12-14 2004-10-13 Novoánordiskáa@S Sloučeniny a jejich použití ke snížení aktivity lipázy citlivé vůči hormonu
SE0104340D0 (sv) 2001-12-20 2001-12-20 Astrazeneca Ab New compounds
EP1458382A1 (de) 2001-12-21 2004-09-22 Novo Nordisk A/S Amidderivate als gk-aktivatoren
TW200301698A (en) 2001-12-21 2003-07-16 Bristol Myers Squibb Co Acridone inhibitors of IMPDH enzyme
WO2003057144A2 (en) 2001-12-26 2003-07-17 Guilford Pharmaceuticals Change inhibitors of dipeptidyl peptidase iv
JP2005516968A (ja) 2001-12-29 2005-06-09 ノボ ノルディスク アクティーゼルスカブ Glp−1化合物と糖尿病後期合併症モジュレーターの組み合わせ使用
EP1496877B1 (de) 2002-01-11 2008-10-01 Novo Nordisk A/S Verfahren und zusammensetzung zur behandlung von diabetes, hypertonie, chronischer herzinsuffizienz und mit flüssigkeitsretention einhergehenden zuständen
WO2003063903A2 (en) 2002-02-01 2003-08-07 Probiodrug Ag Modulation of t lymphocytes using dp iv inhibitors
CA2474168A1 (en) 2002-02-01 2003-08-14 Merck & Co., Inc. 11-beta-hydroxysteroid dehydrogenase 1 inhibitors useful for the treatment of diabetes, obesity and dyslipidemia
US7101898B2 (en) 2002-02-01 2006-09-05 Novo Nordisk A/S Amides of aminoalkyl-substituted azetidines, pyrrolidines, piperidines and azepanes
CA2474460C (en) 2002-02-13 2009-12-22 F. Hoffmann-La Roche Ag Pyridine- and quinoline-derivatives
IL163659A0 (en) 2002-02-27 2005-12-18 Pfizer Prod Inc Acc inhibitors
SI1480961T1 (sl) 2002-02-28 2007-06-30 Prosidion Ltd Inhibitorji dpiv na osnovi glutaminila
HUP0200849A2 (hu) 2002-03-06 2004-08-30 Sanofi-Synthelabo N-aminoacetil-2-ciano-pirrolidin-származékok, e vegyületeket tartalmazó gyógyszerkészítmények és eljárás előállításukra
ES2361403T3 (es) 2002-03-07 2011-06-16 X-Ceptor Therapeutics, Inc. Moduladores de quinazolinona de receptores nucleares.
TW200304813A (en) 2002-03-11 2003-10-16 Novartis Ag Salts of organic acid
US7229993B2 (en) 2002-03-13 2007-06-12 Euro-Celtique S.A. Aryl substituted pyrimidines and the use thereof
DE10211555A1 (de) 2002-03-15 2003-10-02 Imtm Inst Fuer Medizintechnolo Verwendung der Inhibitoren von Enzymen mit Aktivitäten der Aminopeptidase N und/oder der Dipeptidylpeptidase IV und pharmazeutischen Zubereitungen daraus zur Therapie und Prävention dermatologischer Erkrankungen mit sebozytärer Hyperproliferation und veränderten Differenzierungszuständen
TW200810743A (en) 2002-03-22 2008-03-01 Novartis Ag Combination of organic compounds
WO2003080633A1 (en) 2002-03-25 2003-10-02 Nippon Kayaku Kabushiki Kaisha Novel $g(a)-amino-n-(diaminophosphinyl)lactam derivative
DE60316416T2 (de) 2002-03-25 2008-06-26 Merck & Co., Inc. Heterocyclische beta-aminoverbindungen als inhibitoren der dipeptidylpeptidase zur behandlung bzw. prävention von diabetes
US20030232761A1 (en) 2002-03-28 2003-12-18 Hinke Simon A. Novel analogues of glucose-dependent insulinotropic polypeptide
AR039209A1 (es) 2002-04-03 2005-02-09 Novartis Ag Derivados de indolilmaleimida
US20040106802A1 (en) 2002-04-08 2004-06-03 Torrent Pharmaceuticals Ltd. Novel compounds and therapeutic uses thereof
WO2003084940A1 (en) 2002-04-08 2003-10-16 Alangudi Sankaranarayanan Thiazolidine-4-carbonitriles and analogues and their use as dipeptidyl-peptidas inhibitors
AU2003228793B2 (en) 2002-04-30 2008-01-03 Trustees Of Tufts College Smart Pro-Drugs of Serine Protease Inhibitors
TW200407143A (en) 2002-05-21 2004-05-16 Bristol Myers Squibb Co Pyrrolotriazinone compounds and their use to treat diseases
ATE478867T1 (de) 2002-05-23 2010-09-15 Novartis Vaccines & Diagnostic Substituierte quinazolinone verbindungen
GB0212412D0 (en) 2002-05-29 2002-07-10 Novartis Ag Combination of organic compounds
CA2487636A1 (en) 2002-06-04 2003-12-11 Janice Catherine Parker Flourinated cyclic amides as dipeptidyl peptidase iv inhibitors
RU2297418C9 (ru) 2002-06-06 2009-01-27 Эйсай Ко., Лтд. Новые конденсированные производные имидазола, ингибитор дипептидилпептидазы iv, фармацевтическая композиция, способ лечения и применение на их основе
AR040241A1 (es) 2002-06-10 2005-03-23 Merck & Co Inc Inhibidores de la 11-beta-hidroxiesteroide deshidrogrenasa 1 para el tratamiento de la diabetes obesidad y dislipidemia
HUP0202001A2 (hu) 2002-06-14 2005-08-29 Sanofi-Aventis DDP-IV gátló hatású azabiciklooktán- és nonánszármazékok
EP1515955A4 (de) 2002-06-17 2006-05-03 Smithkline Beecham Corp Chemisches verfahren
SE0201976D0 (sv) 2002-06-24 2002-06-24 Astrazeneca Ab Novel compounds
US20040006004A1 (en) 2002-06-27 2004-01-08 Markku Koulu Method for prevention and treatment of diseases or disorders related to excessive formation of vascular tissue or blood vessels
US7105526B2 (en) 2002-06-28 2006-09-12 Banyu Pharmaceuticals Co., Ltd. Benzimidazole derivatives
GEP20084475B (en) 2002-07-09 2008-09-10 Bristol Myers Squibb Co Substituted heterocyclic derivatives useful as antidiabetic and antiobesity agents and method for their production
EP1656368A4 (de) 2002-07-09 2009-08-26 Bristol Myers Squibb Co Als antidiabetika und mittel gegen obesitas geeignete substituierte heterocyclische derivate und verfahren
EP1578434A2 (de) 2002-07-09 2005-09-28 Point Therapeutics, Inc. Verfahren und zusammensetzung in bezug auf isoleucin-boroprolin-verbindungen
WO2004007446A1 (ja) 2002-07-10 2004-01-22 Yamanouchi Pharmaceutical Co., Ltd. 新規なアゼチジン誘導体又はその塩
DE60330485D1 (de) 2002-07-15 2010-01-21 Merck & Co Inc Zur behandlung von diabetes
JP2004099600A (ja) 2002-07-19 2004-04-02 Sankyo Co Ltd 二環性アミノ基置換化合物を含有する医薬組成物
JP4153911B2 (ja) 2002-07-29 2008-09-24 田辺三菱製薬株式会社 ジペプチジルペプチダーゼivの立体構造
WO2004014860A2 (en) 2002-08-08 2004-02-19 Takeda Pharmaceutical Company Limited Fused heterocyclic compounds as peptidase inhibitors
WO2004017989A1 (en) 2002-08-09 2004-03-04 Prosidion Ltd. Methods for improving islet signaling in diabetes mellitus and for its prevention
PL403104A1 (pl) 2002-08-21 2013-05-13 Boehringer Ingelheim Pharma Gmbh & Co. Kg Sposób otrzymywania kompozycji farmaceutycznej zawierajacej pochodne 8-[3-aminopiperydyn-1-ylo]ksantyny
DE10238470A1 (de) 2002-08-22 2004-03-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue Xanthinderivate, deren Herstellung und deren Verwendung als Arzneimittel
DE10238477A1 (de) 2002-08-22 2004-03-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue Purinderivate, deren Herstellung und deren Verwendung als Arzneimittel
US7495005B2 (en) 2002-08-22 2009-02-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg Xanthine derivatives, their preparation and their use in pharmaceutical compositions
KR100582141B1 (ko) 2002-08-29 2006-05-22 다이쇼 세이야꾸 가부시끼가이샤 4-플루오로-2-시아노피롤리딘 유도체 벤젠술폰산염
US6998502B1 (en) 2002-09-05 2006-02-14 Sabinsa Corporation Convenient process of manufacture for difluoromethylornithine and related compounds
EP1398032A1 (de) 2002-09-10 2004-03-17 PheneX Pharmaceuticals AG 4-Oxochinazoline, die an den LXR Kernrezeptor binden
JP2004123738A (ja) 2002-09-11 2004-04-22 Takeda Chem Ind Ltd 徐放性製剤
EP1537880A4 (de) 2002-09-11 2009-07-01 Takeda Pharmaceutical PRûPARAT MIT VERZ GERTER FREISETZUNG
DE60331747D1 (de) 2002-09-18 2010-04-29 Prosidion Ltd Sekundäre bindungsstelle von dipeptidylpeptidase iv (dp iv)
EP1560811B9 (de) 2002-09-19 2008-03-05 Abbott Laboratories Pharmazeutische zusammensetzung und ihre verwendung als inhibitoren von der dipeptidyl peptidase iv (dpp-iv)
US7262207B2 (en) 2002-09-19 2007-08-28 Abbott Laboratories Pharmaceutical compositions as inhibitors of dipeptidyl peptidase-IV (DPP-IV)
JPWO2004028524A1 (ja) 2002-09-26 2006-01-19 エーザイ株式会社 併用医薬
CA2499586A1 (en) 2002-10-07 2004-04-22 Merck & Co., Inc. Antidiabetic beta-amino heterocyclic dipeptidyl peptidase inhibitors
WO2004033455A2 (en) 2002-10-08 2004-04-22 Novo Nordisk A/S Hemisuccinate salts of heterocyclic dpp-iv inhibitors
AU2003282510A1 (en) 2002-10-11 2004-05-04 Bristol-Myers Squibb Company Hexahydro-benzimidazolone compounds useful as anti-inflammatory agents
PT1556362E (pt) 2002-10-18 2008-06-16 Merck & Co Inc Compostos beta-amino heterocíclicos inibidores da dipeptidil peptidase para o tratamento ou prevenção da diabetes
WO2004037176A2 (en) 2002-10-21 2004-05-06 Bristol-Myers Squibb Company Quinazolinones and derivatives thereof as factor xa inhibitors
US6995180B2 (en) 2002-10-23 2006-02-07 Bristol Myers Squibb Company Glycinenitrile-based inhibitors of dipeptidyl peptidase IV and methods
WO2004041795A1 (en) 2002-10-30 2004-05-21 Guilford Pharmaceuticals Inc. Novel inhibitors of dipeptidyl peptidase iv
US7157490B2 (en) 2002-11-07 2007-01-02 Merck & Co., Inc. Phenylalanine derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
US7482337B2 (en) 2002-11-08 2009-01-27 Boehringer Ingelheim Pharma Gmbh & Co. Kg Xanthine derivatives, the preparation thereof and their use as pharmaceutical compositions
WO2004046106A1 (en) 2002-11-18 2004-06-03 Pfizer Products Inc. Dipeptidyl peptidase iv inhibiting fluorinated cyclic amides
DE10254304A1 (de) 2002-11-21 2004-06-03 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue Xanthinderivate, deren Herstellung und deren Verwendung als Arzneimittel
AU2002952946A0 (en) 2002-11-27 2002-12-12 Fujisawa Pharmaceutical Co., Ltd. Dpp-iv inhibitor
UY28103A1 (es) 2002-12-03 2004-06-30 Boehringer Ingelheim Pharma Nuevas imidazo-piridinonas sustituidas, su preparación y su empleo como medicacmentos
DE10256264A1 (de) 2002-12-03 2004-06-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue substituierte Imidazo-pyridinone und Imidazo-pyridazinone, ihre Herstellung und ihre Verwendung als Arzneimittel
JP2006510630A (ja) 2002-12-04 2006-03-30 メルク エンド カムパニー インコーポレーテッド 糖尿病を治療又は予防するためのジペプチジルペプチダーゼ阻害剤としてのフェニルアラニン誘導体
JP4279784B2 (ja) 2002-12-04 2009-06-17 エーザイ・アール・アンド・ディー・マネジメント株式会社 1,3−ジヒドロ−イミダゾール縮合環化合物
US7420079B2 (en) 2002-12-09 2008-09-02 Bristol-Myers Squibb Company Methods and compounds for producing dipeptidyl peptidase IV inhibitors and intermediates thereof
US20060052382A1 (en) 2002-12-20 2006-03-09 Duffy Joseph L 3-Amino-4-phenylbutanoic acid derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
WO2004062613A2 (en) 2003-01-13 2004-07-29 Bristol-Myers Squibb Company Hiv integrase inhibitors
US7265128B2 (en) 2003-01-17 2007-09-04 Merck & Co., Inc. 3-amino-4-phenylbutanoic acid derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
AU2004207731B2 (en) 2003-01-31 2009-08-13 Sanwa Kagaku Kenkyusho Co., Ltd. Compound inhibiting dipeptidyl peptidase iv
AU2004210149A1 (en) 2003-01-31 2004-08-19 Merck & Co., Inc. 3-amino-4-phenylbutanoic acid derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
WO2004071454A2 (en) 2003-02-13 2004-08-26 Guilford Pharmaceuticals Inc. Substituted azetidine compounds as inhibitors of dipeptidyl peptidase iv
DE10308351A1 (de) 2003-02-27 2004-11-25 Aventis Pharma Deutschland Gmbh 1,3-substituierte Cycloalkylderivate mit sauren, meist heterocyclischen Gruppen, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
US7148246B2 (en) 2003-02-27 2006-12-12 Sanofi-Aventis Deutschland Gmbh Cycloalkyl derivatives having bioisosteric carboxylic acid groups, processes for their preparation and their use as pharmaceuticals
DE10308353A1 (de) 2003-02-27 2004-12-02 Aventis Pharma Deutschland Gmbh Diarylcycloalkylderivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
DE10308356A1 (de) 2003-02-27 2004-09-09 Aventis Pharma Deutschland Gmbh Cycloalkyl substituierte Alkansäurederivate, Verfahren zu ihrer Herstellung und ihre Anwendung als Arzneimittel
WO2004076433A1 (en) 2003-02-28 2004-09-10 Aic Dipeptidyl peptidase inhibitors
WO2004076434A1 (en) 2003-02-28 2004-09-10 Aic Dipeptidyl peptidase inhibitors
WO2004078777A2 (en) 2003-03-04 2004-09-16 Biorexis Pharmaceutical Corporation Dipeptidyl-peptidase protected proteins
AR043443A1 (es) 2003-03-07 2005-07-27 Merck & Co Inc Procedimiento de preparacion de tetrahidrotriazolopirazinas y productos intermedios
AR043505A1 (es) 2003-03-18 2005-08-03 Merck & Co Inc Preparacion de beta-cetoamidas e intermediarios de reaccion
WO2004085661A2 (en) 2003-03-24 2004-10-07 Merck & Co., Inc Process to chiral beta-amino acid derivatives
US7550590B2 (en) 2003-03-25 2009-06-23 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
EP1613318A4 (de) 2003-03-26 2009-03-11 Bayer Pharmaceuticals Corp Verbindungen und ihre verwendung zur behandlung von diabetes und verwandten erkrankungen
TWI357408B (en) 2003-03-26 2012-02-01 Mitsubishi Tanabe Pharma Corp 3-substituted-4-pyrimidone derivatives
WO2004087650A2 (en) 2003-03-27 2004-10-14 Merck & Co. Inc. Process and intermediates for the preparation of beta-amino acid amide dipeptidyl peptidase-iv inhibitors
WO2004089362A1 (en) 2003-04-11 2004-10-21 Novo Nordisk A/S 2-cyanopyrroles and their analogues as ddp-iv inhibitors
JPWO2004096806A1 (ja) 2003-04-30 2006-07-13 大日本住友製薬株式会社 縮合イミダゾール誘導体
EP1620091B1 (de) 2003-05-05 2010-03-31 Probiodrug AG Glutaminylcyclase-hemmer
PL1620082T3 (pl) 2003-05-05 2010-10-29 Probiodrug Ag Medyczne zastosowanie inhibitorów cyklazy glutaminylowej i glutaminianowej do leczenia choroby Alzheimera i zespołu Downa
US20040229848A1 (en) 2003-05-05 2004-11-18 Hans-Ulrich Demuth Glutaminyl based DP IV-inhibitors
AU2003902260A0 (en) 2003-05-09 2003-05-29 Fujisawa Pharmaceutical Co., Ltd. Dpp-iv inhibitor
EP1625122A1 (de) 2003-05-14 2006-02-15 Takeda San Diego, Inc. Dipeptidylpeptidase-hemmer
CN1787823A (zh) 2003-05-14 2006-06-14 麦克公司 作为二肽基肽酶抑制剂用于治疗或预防糖尿病的3-氨基-4-苯基丁酸衍生物
JPWO2004101514A1 (ja) 2003-05-15 2006-07-13 大正製薬株式会社 シアノフルオロピロリジン誘導体
WO2004104215A2 (en) 2003-05-21 2004-12-02 Bayer Healthcare Ag Diagnostics and therapeutics for diseases associated with dipeptidylpeptidase 7 (dpp7)
WO2004104216A2 (en) 2003-05-21 2004-12-02 Bayer Healthcare Ag Diagnostics and therapeutics for diseases associated with dipeptidylpeptidase iv (dpp4)
EP1635818B1 (de) 2003-06-06 2010-04-07 Merck Sharp & Dohme Corp. Kondensierte indole als dipeptidyl-peptidase-hemmer zur behandlung oder prävention von diabetes
AU2003902946A0 (en) 2003-06-12 2003-06-26 Fujisawa Pharmaceutical Co., Ltd. Dpp-iv inhibitor
WO2004112701A2 (en) 2003-06-17 2004-12-29 Merck & Co., Inc. Cyclohexylglycine derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
DE10327439A1 (de) 2003-06-18 2005-01-05 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue Imidazopyridazinon- und Imidazopyridonderivate, deren Herstellung und deren Verwendung als Arzneimittel
CA2529443C (en) 2003-06-20 2012-06-05 F. Hoffmann-La Roche Ag Pyrido[2,1-a]-isoquinoline derivatives as dpp-iv inhibitors
BRPI0411509A (pt) 2003-06-20 2006-07-25 Hoffmann La Roche compostos, processo para a sua manufatura, composições farmacêuticas que compreendem os mesmos, método para tratamento e/ou profilaxia de enfermidades que estão associadas com dpp-iv e sua utilização
DE10330842A1 (de) 2003-07-08 2005-02-10 Institut für Medizintechnologie Magdeburg GmbH, IMTM Verwendung der Inhibitoren von Enzymen mit Aktivitäten der Aminopeptidase N und/oder der Dipeptidylpeptidase IV und pharmazeutischen Zubereitungen daraus zur Therapie und Prävention dermatologischer Erkrankungen mit Hyperproliferation und veränderten Differenzierungszuständen von Fibroblasten
WO2005011581A2 (en) 2003-07-31 2005-02-10 Merck & Co., Inc. Hexahydrodiazepinones as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
BRPI0413452A (pt) 2003-08-13 2006-10-17 Takeda Pharmaceutical composto, composição farmacêutica, kit, artigo de fabricação, e, métodos de inibir dpp-iv, terapêutico e de tratar um estado de doença, cáncer, distúrbios autoimunes, uma condição einfecção por hiv
JP2007505121A (ja) 2003-09-08 2007-03-08 武田薬品工業株式会社 ジペプチジルぺプチダーゼ阻害剤
US20050065144A1 (en) 2003-09-08 2005-03-24 Syrrx, Inc. Dipeptidyl peptidase inhibitors
AU2005210004B2 (en) 2004-02-05 2010-10-28 Probiodrug Ag Novel inhibitors of glutaminyl cyclase
AU2004318013B8 (en) 2004-03-15 2011-10-06 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
NZ552984A (en) 2004-07-02 2010-06-25 Corcept Therapeutics Inc Modified pyrimidine glucocorticoid receptor modulators
EP2805953B1 (de) 2004-12-21 2016-03-09 Takeda Pharmaceutical Company Limited Dipeptidyl-Peptidase-Hemmer
CA2622608C (en) 2005-09-14 2014-08-19 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors for treating diabetes
US20070060529A1 (en) 2005-09-14 2007-03-15 Christopher Ronald J Administration of dipeptidyl peptidase inhibitors
WO2007033350A1 (en) 2005-09-14 2007-03-22 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors for treating diabetes
TW200745079A (en) 2005-09-16 2007-12-16 Takeda Pharmaceuticals Co Polymorphs of benzoate salt of 2-[[6-[(3R)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2H)-pyrimidinyl]methyl]-benzonitrile and methods of use therefor

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960949A (en) * 1971-04-02 1976-06-01 Schering Aktiengesellschaft 1,2-Biguanides
US4494978A (en) * 1976-12-30 1985-01-22 Chevron Research Company Herbicidal N-(N'-hydrocarbyloxycarbamylalkyl)-2,6-dialkyl-alpha-haloacetanilides
US5614492A (en) * 1986-05-05 1997-03-25 The General Hospital Corporation Insulinotropic hormone GLP-1 (7-36) and uses thereof
US5002953A (en) * 1987-09-04 1991-03-26 Beecham Group P.L.C. Novel compounds
US4935493A (en) * 1987-10-06 1990-06-19 E. I. Du Pont De Nemours And Company Protease inhibitors
US5387512A (en) * 1991-06-07 1995-02-07 Merck & Co. Inc. Preparation of 3-[z-benzoxazol-2-yl)ethyl]-5-(1-hydroxyethyl)-6-methyl-2-(1H)-pyridinone by biotransformation
US5624894A (en) * 1992-09-17 1997-04-29 University Of Florida Brain-enhanced delivery of neuroactive peptides by sequential metabolism
US6201132B1 (en) * 1993-12-03 2001-03-13 Ferring B.V. Inhibitors of DP-mediated processes, compositions, and therapeutic methods thereof
US5601986A (en) * 1994-07-14 1997-02-11 Amgen Inc. Assays and devices for the detection of extrahepatic biliary atresia
US5512549A (en) * 1994-10-18 1996-04-30 Eli Lilly And Company Glucagon-like insulinotropic peptide analogs, compositions, and methods of use
US5614379A (en) * 1995-04-26 1997-03-25 Eli Lilly And Company Process for preparing anti-obesity protein
US5885997A (en) * 1996-07-01 1999-03-23 Dr. Reddy's Research Foundation Heterocyclic compounds, process for their preparation and pharmaceutical compositions containing them and their use in the treatment of diabetes and related diseases
US6011155A (en) * 1996-11-07 2000-01-04 Novartis Ag N-(substituted glycyl)-2-cyanopyrrolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV
US20030060434A1 (en) * 1997-02-18 2003-03-27 Loretta Nielsen Combined tumor suppressor gene therapy and chemotherapy in the treatment of neoplasms
US6235493B1 (en) * 1997-08-06 2001-05-22 The Regents Of The University Of California Amino acid substituted-cresyl violet, synthetic fluorogenic substrates for the analysis of agents in individual in vivo cells or tissue
US6703238B2 (en) * 1997-09-29 2004-03-09 Point Therapeutics, Inc. Methods for expanding antigen-specific T cells
US20030027282A1 (en) * 1997-10-06 2003-02-06 Huber Brigitte T. Quiescent cell dipeptidyl peptidase: a novel cytoplasmic serine protease
US6342611B1 (en) * 1997-10-10 2002-01-29 Cytovia, Inc. Fluorogenic or fluorescent reporter molecules and their applications for whole-cell fluorescence screening assays for capsases and other enzymes and the use thereof
US6335429B1 (en) * 1997-10-10 2002-01-01 Cytovia, Inc. Fluorogenic or fluorescent reporter molecules and their applications for whole-cell fluorescence screening assays for caspases and other enzymes and the use thereof
US6214340B1 (en) * 1997-11-18 2001-04-10 Zaidan Hojin Biseibutsu Kagaku Kenkyu Kai Physiologically active substance sulphostin, process for producing the same, and use thereof
US20030008925A1 (en) * 1997-11-19 2003-01-09 Marc Esteve Treatment of drug-induced sleepiness
US6184020B1 (en) * 1997-12-16 2001-02-06 Novo Nordisk Biotech, Inc. Polypeptides having aminopeptidase activity and nucleic acids encoding same
US20030045464A1 (en) * 1997-12-16 2003-03-06 Hermeling Ronald Norbert Glucagon-like peptide-1 crystals
US6555521B2 (en) * 1997-12-16 2003-04-29 Eli Lilly And Company Glucagon-like peptide-1 crystals
US20020061839A1 (en) * 1998-03-09 2002-05-23 Scharpe Simon Lodewijk Serine peptidase modulators
US6548481B1 (en) * 1998-05-28 2003-04-15 Probiodrug Ag Effectors of dipeptidyl peptidase IV
US6355614B1 (en) * 1998-06-05 2002-03-12 Point Therapeutics Cyclic boroproline compounds
US20020049164A1 (en) * 1998-06-24 2002-04-25 Hans-Ulrich Demuth Prodrugs of DP IV-inhibitors
US20020071838A1 (en) * 1998-07-31 2002-06-13 Hans-Ulrich Demuth Method for raising the blood glucose level in mammals
US20020006899A1 (en) * 1998-10-06 2002-01-17 Pospisilik Andrew J. Use of dipeptidyl peptidase IV effectors for lowering blood pressure in mammals
US6521644B1 (en) * 1999-03-23 2003-02-18 Ferring Bv Compositions for promoting growth
US6548529B1 (en) * 1999-04-05 2003-04-15 Bristol-Myers Squibb Company Heterocyclic containing biphenyl aP2 inhibitors and method
US20020049153A1 (en) * 1999-05-17 2002-04-25 BRIDON Dominique P. Long lasting insulinoptropic peptides
US6172081B1 (en) * 1999-06-24 2001-01-09 Novartis Ag Tetrahydroisoquinoline 3-carboxamide derivatives
US6528486B1 (en) * 1999-07-12 2003-03-04 Zealand Pharma A/S Peptide agonists of GLP-1 activity
US20030092630A2 (en) * 1999-08-24 2003-05-15 Probiodrug Ag New effectors of dipeptidyl peptidase iv for topical use
US6559188B1 (en) * 1999-09-17 2003-05-06 Novartis Ag Method of treating metabolic disorders especially diabetes, or a disease or condition associated with diabetes
US20030096846A1 (en) * 1999-09-22 2003-05-22 Cheng Peter T. Substituted acid derivatives useful as antidiabetic and antiobesity agents and method
US6727271B2 (en) * 1999-09-22 2004-04-27 Bristol-Myers Squibb Company Substituted acid derivatives useful as antidiabetic and antiobesity agents and method
US20030087935A1 (en) * 1999-09-22 2003-05-08 Cheng Peter T. Substituted acid derivatives useful as antidiabetic and antiobesity agents and method
US6251391B1 (en) * 1999-10-01 2001-06-26 Klaire Laboratories, Inc. Compositions containing dipepitidyl peptidase IV and tyrosinase or phenylalaninase for reducing opioid-related symptons
US20030096857A1 (en) * 1999-11-30 2003-05-22 Evans David Michael Novel antidiabetic agents
US20030040478A1 (en) * 1999-12-08 2003-02-27 Drucker Daniel J Chemotherapy treatment
US6380398B2 (en) * 2000-01-04 2002-04-30 Novo Nordisk A/S Therapeutically active and selective heterocyclic compounds that are inhibitors of the enzyme DPP-IV
US20030060412A1 (en) * 2000-01-27 2003-03-27 Prouty Walter Francis Process for solubilizing glucagon-like peptide 1compounds
US20020019411A1 (en) * 2000-03-10 2002-02-14 Robl Jeffrey A. Cyclopropyl-fused pyrrolidine-based inhibitors of dipeptidyl peptidase IV and method
US6395767B2 (en) * 2000-03-10 2002-05-28 Bristol-Myers Squibb Company Cyclopropyl-fused pyrrolidine-based inhibitors of dipeptidyl peptidase IV and method
US6555519B2 (en) * 2000-03-30 2003-04-29 Bristol-Myers Squibb Company O-glucosylated benzamide SGLT2 inhibitors and method
US20030008905A1 (en) * 2000-03-31 2003-01-09 Hans-Ulrich Demuth Method for the improvement of islet signaling in diabetes mellitus and for its prevention
US6545170B2 (en) * 2000-04-13 2003-04-08 Pharmacia Corporation 2-amino-5, 6 heptenoic acid derivatives useful as nitric oxide synthase inhibitors
US20040082497A1 (en) * 2000-04-26 2004-04-29 Evans David Michael Inhibitors of dipeptidyl peptidase IV
US20020041871A1 (en) * 2000-06-01 2002-04-11 Brudnak Mark A. Genomeceutical and/or enzymatic composition and method for treating autism
US20040034014A1 (en) * 2000-07-04 2004-02-19 Kanstrup Anders Bendtz Heterocyclic compounds, which are inhibitors of the enzyme DPP-IV
US20020016100A1 (en) * 2000-07-25 2002-02-07 Yazaki Coroporation Connector supporting structure
US20020037829A1 (en) * 2000-08-23 2002-03-28 Aronson Peter S. Use of DPPIV inhibitors as diuretic and anti-hypertensive agents
US20040063935A1 (en) * 2000-10-06 2004-04-01 Kosuke Yasuda Aliphatic nitrogenous five-membered ring compounds
US20040053369A1 (en) * 2000-10-27 2004-03-18 Abbott Catherine Anne Dipeptidyl peptidases
US6686337B2 (en) * 2000-10-30 2004-02-03 Ortho-Mcneil Pharmaceutical, Inc. Combination therapy comprising anti-diabetic and anticonvulsant agents
US20040072892A1 (en) * 2000-11-10 2004-04-15 Hiroshi Fukushima Cyanopyrrolidine derivatives
US20030055052A1 (en) * 2000-11-10 2003-03-20 Stefan Peters FAP-activated anti-tumor compounds
US20020077340A1 (en) * 2000-11-20 2002-06-20 Richard Sulsky Pyridone inhibitors of fatty acid binding protein and method
US20040082607A1 (en) * 2001-02-02 2004-04-29 Satoru Oi Fused heterocyclic compounds
US20040077645A1 (en) * 2001-02-24 2004-04-22 Frank Himmelsbach Xanthine derivatives,production and use thereof as medicament
US20040087587A1 (en) * 2001-02-24 2004-05-06 Boehringer Ingelheim Pharma Gmbh & Co. Kg Xanthine derivatives, the preparation thereof and their use as pharmaceutical compositions
US6337069B1 (en) * 2001-02-28 2002-01-08 B.M.R.A. Corporation B.V. Method of treating rhinitis or sinusitis by intranasally administering a peptidase
US20040092478A1 (en) * 2001-03-19 2004-05-13 Rothermel John D. Combinations comprising an antidiarrheal agent and an epothilone or an epothilone derivative
US6716843B2 (en) * 2001-03-28 2004-04-06 Les Laboratoires Servier Alpha-amino acid sulphonyl compounds
US20030087950A1 (en) * 2001-03-28 2003-05-08 Denanteuil Guillaume New alpha-amino acid sulphonyl compounds
US6706742B2 (en) * 2001-05-15 2004-03-16 Les Laboratories Servier Alpha-amino-acid compounds
US20030092697A1 (en) * 2001-05-30 2003-05-15 Cheng Peter T. Conformationally constrained analogs useful as antidiabetic and antiobesity agents and method
US20030069234A1 (en) * 2001-06-06 2003-04-10 Medina Julio C. CXCR3 antagonists
US20030100563A1 (en) * 2001-07-06 2003-05-29 Edmondson Scott D. Beta-amino heterocyclic dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
US6699871B2 (en) * 2001-07-06 2004-03-02 Merck & Co., Inc. Beta-amino heterocyclic dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
US20030023946A1 (en) * 2001-07-24 2003-01-30 Ming-Te Lin Standard cell library generation using merged power method
US6673829B2 (en) * 2001-09-14 2004-01-06 Novo Nordisk A/S Aminoazetidine,-pyrrolidine and -piperidine derivatives
US20040009998A1 (en) * 2001-10-01 2004-01-15 Dhar T. G. Murali Spiro-hydantoin compounds useful as anti-inflammatory agents
US20050043299A1 (en) * 2001-10-23 2005-02-24 Ferring B. V. Inhibitors of dipeptidyl peptidase iv
US6861440B2 (en) * 2001-10-26 2005-03-01 Hoffmann-La Roche Inc. DPP IV inhibitors
US6673815B2 (en) * 2001-11-06 2004-01-06 Bristol-Myers Squibb Company Substituted acid derivatives useful as antidiabetic and antiobesity agents and method
US20050014946A1 (en) * 2001-11-09 2005-01-20 Hans-Ulrich Demuth Substituted amino ketone compounds
US20030089935A1 (en) * 2001-11-13 2003-05-15 Macronix International Co., Ltd. Non-volatile semiconductor memory device with multi-layer gate insulating structure
US6727261B2 (en) * 2001-12-27 2004-04-27 Hoffman-La Roche Inc. Pyrido[2,1-A]Isoquinoline derivatives
US6867205B2 (en) * 2002-02-13 2005-03-15 Hoffman-La Roche Inc. Pyridine and pyrimidine derivatives
US20040006062A1 (en) * 2002-05-06 2004-01-08 Smallheer Joanne M. Sulfonylaminovalerolactams and derivatives thereof as factor Xa inhibitors
US20040002495A1 (en) * 2002-05-20 2004-01-01 Philip Sher Lactam glycogen phosphorylase inhibitors and method of use
US6710040B1 (en) * 2002-06-04 2004-03-23 Pfizer Inc. Fluorinated cyclic amides as dipeptidyl peptidase IV inhibitors
US20040002609A1 (en) * 2002-06-04 2004-01-01 Pfizer Inc. Synthesis of 3,3,4,4-tetrafluoropyrrolidine and novel dipeptidyl peptidase-IV inhibitor compounds
US20040009972A1 (en) * 2002-06-17 2004-01-15 Ding Charles Z. Benzodiazepine inhibitors of mitochondial F1F0 ATP hydrolase and methods of inhibiting F1F0 ATP hydrolase
US20040054171A1 (en) * 2002-07-04 2004-03-18 Jensen Anette Frost Polymorphic forms of a 4H-thieno[3,2-E]-1,2,4-thiadiazine 1,1-dioxide derivative
US20040097510A1 (en) * 2002-08-21 2004-05-20 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US20040058876A1 (en) * 2002-09-18 2004-03-25 Torsten Hoffmann Secondary binding site of dipeptidyl peptidase IV (DP IV)
US20040072874A1 (en) * 2002-09-30 2004-04-15 Nagaaki Sato N-substituted-2-oxodihydropyridine derivatives
US20050020574A1 (en) * 2002-12-03 2005-01-27 Boehringer Ingelheim Pharma Gmbh Co. Kg New substituted imidazo-pyridinones and imidazo-pyridazinones, the preparation thereof and their use as pharmaceutical compositions
US20050014732A1 (en) * 2003-03-14 2005-01-20 Pharmacia Corporation Combination of an aldosterone receptor antagonist and an anti-diabetic agent
US20050058635A1 (en) * 2003-05-05 2005-03-17 Hans-Ulrich Demuth Use of effectors of glutaminyl and glutamate cyclases
US20050026921A1 (en) * 2003-06-18 2005-02-03 Boehringer Ingelheim International Gmbh New imidazopyridazinone and imidazopyridone derivatives, the preparation thereof and their use as pharmaceutical compositions
US20050032804A1 (en) * 2003-06-24 2005-02-10 Cypes Stephen Howard Phosphoric acid salt of a dipeptidyl peptidase-IV inhibitor
US20050038020A1 (en) * 2003-08-01 2005-02-17 Hamann Lawrence G. Adamantylglycine-based inhibitors of dipeptidyl peptidase IV and methods
US20050043292A1 (en) * 2003-08-20 2005-02-24 Pfizer Inc Fluorinated lysine derivatives as dipeptidyl peptidase IV inhibitors

Cited By (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9556175B2 (en) 2002-08-21 2017-01-31 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and thier use as pharmaceutical compositions
US8178541B2 (en) 2002-08-21 2012-05-15 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US8119648B2 (en) 2002-08-21 2012-02-21 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US8664232B2 (en) 2002-08-21 2014-03-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US10202383B2 (en) 2002-08-21 2019-02-12 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US20080249089A1 (en) * 2002-08-21 2008-10-09 Boehringer Ingelheim Pharma Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US10023574B2 (en) 2002-08-21 2018-07-17 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US9108964B2 (en) 2002-08-21 2015-08-18 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US9321791B2 (en) 2002-08-21 2016-04-26 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US20050070531A1 (en) * 2003-08-13 2005-03-31 Syrrx, Inc. Dipeptidyl peptidase inhibitors
US7790736B2 (en) 2003-08-13 2010-09-07 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7723344B2 (en) 2003-08-13 2010-05-25 Takeda San Diego, Inc. Dipeptidyl peptidase inhibitors
US20050065144A1 (en) * 2003-09-08 2005-03-24 Syrrx, Inc. Dipeptidyl peptidase inhibitors
US7790734B2 (en) 2003-09-08 2010-09-07 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US20050065145A1 (en) * 2003-09-08 2005-03-24 Syrrx, Inc. Dipeptidyl peptidase inhibitors
US8697868B2 (en) 2004-02-18 2014-04-15 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, their preparation and their use as pharmaceutical compositions
US8288539B2 (en) 2004-03-15 2012-10-16 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7906523B2 (en) 2004-03-15 2011-03-15 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US8329900B2 (en) 2004-03-15 2012-12-11 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7781584B2 (en) 2004-03-15 2010-08-24 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US8188275B2 (en) 2004-03-15 2012-05-29 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US20090012059A1 (en) * 2004-03-15 2009-01-08 Jun Feng Dipeptidyl peptidase inhibitors
US8173663B2 (en) 2004-03-15 2012-05-08 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US20050277945A1 (en) * 2004-06-14 2005-12-15 Usgi Medical Inc. Apparatus and methods for performing transluminal gastrointestinal procedures
US9751855B2 (en) 2004-11-05 2017-09-05 Boehringer Ingelheim International Gmbh Process for the preparation of chiral 8-(3-aminopiperidin-1-yl)-xanthines
US9499546B2 (en) 2004-11-05 2016-11-22 Boehringer Ingelheim International Gmbh Process for the preparation of chiral 8-(3-aminopiperidin-1-yl)-xanthines
US7820815B2 (en) 2004-11-05 2010-10-26 Boehringer Ingelheim International Gmbh Process for the preparation of chiral 8-(-3-aminopiperidin-1-yl) xanthines
US8541450B2 (en) 2004-11-05 2013-09-24 Boehringer Ingelheim International Gmbh Process for the preparation of chiral 8-(3-aminopiperidin-1yl)-xanthines
US8883805B2 (en) 2004-11-05 2014-11-11 Boehringer Ingelheim International Gmbh Process for the preparation of chiral 8-(3-aminopiperidin-1-yl)-xanthines
US7872124B2 (en) 2004-12-21 2011-01-18 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US8637530B2 (en) 2005-07-30 2014-01-28 Boehringer Ingelheim International Gmbh 8-(3-amino-piperidin-1-yl)-xanthines, their preparation, and their use as pharmaceuticals
US8106060B2 (en) 2005-07-30 2012-01-31 Boehringer Ingelheim International Gmbh 8-(3-amino-piperidin-1-yl)-xanthines, their preparation, and their use as pharmaceuticals
US8906901B2 (en) 2005-09-14 2014-12-09 Takeda Pharmaceutical Company Limited Administration of dipeptidyl peptidase inhibitors
US20070066635A1 (en) * 2005-09-16 2007-03-22 Mark Andres Polymorphs of benzoate salt of 2-[[6-[(3r)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2h)-pyrimidinyl]methyl]-benzonitrile and methods of use therefor
US8222411B2 (en) 2005-09-16 2012-07-17 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US20090275750A1 (en) * 2005-09-16 2009-11-05 Jun Feng Dipeptidyl peptidase inhibitors
US20100029941A1 (en) * 2006-03-28 2010-02-04 Takeda Pharmaceutical Company Limited Preparation of (r)-3-aminopiperidine dihydrochloride
US9815837B2 (en) 2006-05-04 2017-11-14 Boehringer Ingelheim International Gmbh Polymorphs
US9266888B2 (en) 2006-05-04 2016-02-23 Boehringer Ingelheim International Gmbh Polymorphs
US10301313B2 (en) 2006-05-04 2019-05-28 Boehringer Ingelheim International Gmbh Polymorphs
US11919903B2 (en) 2006-05-04 2024-03-05 Boehringer Ingelheim International Gmbh Polymorphs
US9493462B2 (en) 2006-05-04 2016-11-15 Boehringer Ingelheim International Gmbh Polymorphs
US8232281B2 (en) 2006-05-04 2012-07-31 Boehringer Ingelheim International Gmbh Uses of DPP-IV inhibitors
US11291668B2 (en) 2006-05-04 2022-04-05 Boehringer Ingelheim International Gmbh Uses of DPP IV inhibitors
US10080754B2 (en) 2006-05-04 2018-09-25 Boehringer Ingelheim International Gmbh Uses of DPP IV inhibitors
US11033552B2 (en) 2006-05-04 2021-06-15 Boehringer Ingelheim International Gmbh DPP IV inhibitor formulations
US8673927B2 (en) 2006-05-04 2014-03-18 Boehringer Ingelheim International Gmbh Uses of DPP-IV inhibitors
US9173859B2 (en) 2006-05-04 2015-11-03 Boehringer Ingelheim International Gmbh Uses of DPP IV inhibitors
US11084819B2 (en) 2006-05-04 2021-08-10 Boehringer Ingelheim International Gmbh Polymorphs
US8324383B2 (en) 2006-09-13 2012-12-04 Takeda Pharmaceutical Company Limited Methods of making polymorphs of benzoate salt of 2-[[6-[(3R)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2H)-pyrimidinyl]methyl]-benzonitrile
US8084605B2 (en) 2006-11-29 2011-12-27 Kelly Ron C Polymorphs of succinate salt of 2-[6-(3-amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-ylmethy]-4-fluor-benzonitrile and methods of use therefor
US20080227798A1 (en) * 2006-11-29 2008-09-18 Kelly Ron C Polymorphs of succinate salt of 2-[6-(3-amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2h-pyrimidin-1-ylmethy]-4-fluor-benzonitrile and methods of use therefor
US20100105710A1 (en) * 2007-03-13 2010-04-29 Takeda Pharmaceutical Company Limited Solid preparation comprising 2-[[6-[(3r)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2h)-pyrimidinyl]methyl]-4-fluorobenzonitrile
US8093236B2 (en) 2007-03-13 2012-01-10 Takeda Pharmaceuticals Company Limited Weekly administration of dipeptidyl peptidase inhibitors
US7994183B2 (en) 2007-03-13 2011-08-09 Takeda Pharmaceutical Company Limited Solid preparation comprising 2-[[6-[(3R)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2H)-pyrimidinyl]methyl]-4-fluorobenzonitrile
WO2008134425A1 (en) * 2007-04-27 2008-11-06 Cedars-Sinai Medical Center Use of glp-1 receptor agonists for the treatment of gastrointestinal disorders
WO2009022007A1 (en) * 2007-08-16 2009-02-19 Boehringer Ingelheim International Gmbh Pharmaceutical composition comprising a glucopyranosyl-substituted benzene derivative
EP3939577A1 (de) 2007-08-16 2022-01-19 Boehringer Ingelheim International GmbH Pharmazeutische zusammensetzung mit einem glucopyranosyl-substituierten benzolderivat
EP2187879B1 (de) 2007-08-16 2016-10-12 Boehringer Ingelheim International GmbH Pharmazeutische zusammensetzung mit einem glucopyranosyl-substituierten benzolderivat
EP3106156A1 (de) * 2007-08-16 2016-12-21 Boehringer Ingelheim International GmbH Pharmazeutische zusammensetzung mit einem glucopyranosyl-substituierten benzolderivat
AU2008288407B2 (en) * 2007-08-16 2012-04-05 Boehringer Ingelheim International Gmbh Pharmaceutical composition comprising a glucopyranosyl-substituted benzene derivative
EP2698152A1 (de) 2007-08-16 2014-02-19 Boehringer Ingelheim International GmbH Pharmazeutische Zusammensetzung mit einem glucopyranosyl-substituierten Benzolderivat
US20110195917A1 (en) * 2007-08-16 2011-08-11 Boehringer Ingelheim International Gmbh Pharmaceutical composition comprising a glucopyranosyl-substituted benzene derivate
EA018608B1 (ru) * 2007-08-16 2013-09-30 Бёрингер Ингельхайм Интернациональ Гмбх Фармацевтическая композиция, содержащая глюкопиранозилзамещенное производное бензола и ингибитор dpp iv
WO2009022009A1 (en) * 2007-08-16 2009-02-19 Boehringer Ingelheim International Gmbh Pharmaceutical composition comprising a pyrazole-o-glucoside derivative
US8551957B2 (en) 2007-08-16 2013-10-08 Boehringer Ingelheim International Gmbh Pharmaceutical composition comprising a glucopyranosyl-substituted benzene derivate
US10022379B2 (en) 2008-04-03 2018-07-17 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US10973827B2 (en) 2008-04-03 2021-04-13 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US9155705B2 (en) 2008-04-03 2015-10-13 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US9415016B2 (en) 2008-04-03 2016-08-16 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
EP2990037A1 (de) 2008-08-06 2016-03-02 Boehringer Ingelheim International GmbH Diabetesbehandlung bei patienten, die nicht für die metformintherapie geeignet sind
US9486526B2 (en) 2008-08-06 2016-11-08 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
EP3598974A1 (de) 2008-08-06 2020-01-29 Boehringer Ingelheim International GmbH Diabetesbehandlung bei patienten, die nicht für die metformintherapie geeignet sind
US10034877B2 (en) 2008-08-06 2018-07-31 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
US8853156B2 (en) 2008-08-06 2014-10-07 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
WO2010018217A2 (en) * 2008-08-15 2010-02-18 Boehringer Ingelheim International Gmbh Organic compounds for wound healing
EP3626238A1 (de) 2008-08-15 2020-03-25 Boehringer Ingelheim International GmbH Dpp-4-inhibitoren zur verwendung bei der behandlung von wundheilung bei diabetischen patienten
WO2010018217A3 (en) * 2008-08-15 2010-05-20 Boehringer Ingelheim International Gmbh Purin derivatives for use in the treatment of fab-related diseases
EA031225B1 (ru) * 2008-08-15 2018-12-28 Бёрингер Ингельхайм Интернациональ Гмбх Ингибиторы дпп-4 для заживления ран
US8513264B2 (en) 2008-09-10 2013-08-20 Boehringer Ingelheim International Gmbh Combination therapy for the treatment of diabetes and related conditions
US11911388B2 (en) 2008-10-16 2024-02-27 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral or non-oral antidiabetic drug
US8865729B2 (en) 2008-12-23 2014-10-21 Boehringer Ingelheim International Gmbh Salt forms of a xanthine compound
US9212183B2 (en) 2008-12-23 2015-12-15 Boehringer Ingelheim International Gmbh Salt forms of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine
WO2010079197A1 (en) 2009-01-07 2010-07-15 Boehringer Ingelheim International Gmbh Treatment of diabetes in patients with inadequate glycemic control despite metformin therapy comprising a dpp-iv inhibitor
US8846695B2 (en) 2009-01-07 2014-09-30 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with inadequate glycemic control despite metformin therapy comprising a DPP-IV inhibitor
WO2010086411A1 (en) 2009-01-29 2010-08-05 Boehringer Ingelheim International Gmbh Dpp-iv inhibitors for treatment of diabetes in paediatric patients
US10406172B2 (en) 2009-02-13 2019-09-10 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
WO2010092163A2 (en) 2009-02-13 2010-08-19 Boehringer Ingelheim International Gmbh Antidiabetic medications
US20120219623A1 (en) * 2009-10-02 2012-08-30 Boehringer Ingelheim International Gmbh Pharmaceutical compositions comprising bi-1356 and metformin
US9457029B2 (en) 2009-11-27 2016-10-04 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin
WO2011064352A1 (en) 2009-11-27 2011-06-03 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with dpp-iv inhibitors such as linagliptin
EP3646859A1 (de) 2009-11-27 2020-05-06 Boehringer Ingelheim International GmbH Behandlung von genotypisierten diabetes-patienten mit dpp-iv-hemmern wie etwa linagliptin
US10092571B2 (en) 2009-11-27 2018-10-09 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin
WO2011113947A1 (en) 2010-03-18 2011-09-22 Boehringer Ingelheim International Gmbh Combination of a gpr119 agonist and the dpp-iv inhibitor linagliptin for use in the treatment of diabetes and related conditions
US10004747B2 (en) 2010-05-05 2018-06-26 Boehringer Ingelheim International Gmbh Combination therapy
US9186392B2 (en) 2010-05-05 2015-11-17 Boehringer Ingelheim International Gmbh Combination therapy
WO2011138421A1 (en) 2010-05-05 2011-11-10 Boehringer Ingelheim International Gmbh Combination therapy
EA033415B1 (ru) * 2010-05-05 2019-10-31 Boehringer Ingelheim Int Способы лечения ожирения, применение ингибитора dpp-4 в этих способах и способ лечения пациентов, страдающих диабетом типа 2
EP2566469B1 (de) 2010-05-05 2022-12-21 Boehringer Ingelheim International GmbH Kombinationstherapie
KR101819609B1 (ko) * 2010-05-05 2018-01-17 베링거 인겔하임 인터내셔날 게엠베하 체중 감소 치료에 후속하는 dpp-4 억제제에 의한 순차적 병용 요법
US9603851B2 (en) 2010-05-05 2017-03-28 Boehringer Ingelheim International Gmbh Combination therapy
KR101927068B1 (ko) * 2010-05-05 2018-12-10 베링거 인겔하임 인터내셔날 게엠베하 체중 감소 치료에 후속하는 dpp-4 억제제에 의한 순차적 병용 요법
US9149478B2 (en) * 2010-06-24 2015-10-06 Boehringer Ingelheim International Gmbh Diabetes therapy
EP3366304B1 (de) * 2010-06-24 2020-05-13 Boehringer Ingelheim International GmbH Diabetestherapie
WO2011161161A1 (en) 2010-06-24 2011-12-29 Boehringer Ingelheim International Gmbh Diabetes therapy
US20120165251A1 (en) * 2010-06-24 2012-06-28 Boehringer Ingelheim International Gmbh Diabetes therapy
US11911387B2 (en) 2010-11-15 2024-02-27 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
US9034883B2 (en) 2010-11-15 2015-05-19 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
US8907086B2 (en) 2011-03-03 2014-12-09 Merck Sharp & Dohme Corp. Fused bicyclic heterocycles useful as dipeptidyl peptidase-IV inhibitors
US11564886B2 (en) 2011-03-07 2023-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical compositions
US20180185291A1 (en) 2011-03-07 2018-07-05 Boehringer Ingelheim International Gmbh Pharmaceutical compositions
US10596120B2 (en) 2011-03-07 2020-03-24 Boehringer Ingelheim International Gmbh Pharmaceutical compositions
US8962636B2 (en) 2011-07-15 2015-02-24 Boehringer Ingelheim International Gmbh Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions
US8883800B2 (en) 2011-07-15 2014-11-11 Boehringer Ingelheim International Gmbh Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions
US9199998B2 (en) 2011-07-15 2015-12-01 Boehringer Ingelheim Internatioal Gmbh Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
US10195203B2 (en) 2012-05-14 2019-02-05 Boehringr Ingelheim International GmbH Use of a DPP-4 inhibitor in podocytes related disorders and/or nephrotic syndrome
US9526730B2 (en) 2012-05-14 2016-12-27 Boehringer Ingelheim International Gmbh Use of a DPP-4 inhibitor in podocytes related disorders and/or nephrotic syndrome
US9713618B2 (en) 2012-05-24 2017-07-25 Boehringer Ingelheim International Gmbh Method for modifying food intake and regulating food preference with a DPP-4 inhibitor
WO2013174767A1 (en) 2012-05-24 2013-11-28 Boehringer Ingelheim International Gmbh A xanthine derivative as dpp -4 inhibitor for use in modifying food intake and regulating food preference
US9757377B2 (en) 2012-06-05 2017-09-12 Takeda Pharmaceutical Company Limited Solid preparation
WO2013183784A1 (en) 2012-06-05 2013-12-12 Takeda Pharmaceutical Company Limited Solid preparation
KR20150021544A (ko) 2012-06-05 2015-03-02 다케다 야쿠힌 고교 가부시키가이샤 고형 제제
US9486411B2 (en) 2012-06-05 2016-11-08 Takeda Pharmaceutical Company Limited Solid preparation
US9526728B2 (en) 2014-02-28 2016-12-27 Boehringer Ingelheim International Gmbh Medical use of a DPP-4 inhibitor
US10155000B2 (en) 2016-06-10 2018-12-18 Boehringer Ingelheim International Gmbh Medical use of pharmaceutical combination or composition

Also Published As

Publication number Publication date
EP1942898B1 (de) 2011-11-09
CR9874A (es) 2008-08-01
EA200800726A1 (ru) 2008-08-29
MY147393A (en) 2012-11-30
SI1942898T1 (sl) 2012-03-30
ME01960B (me) 2015-05-20
GEP20135838B (en) 2013-06-10
PT1942898E (pt) 2011-12-20
KR101345316B1 (ko) 2013-12-27
AU2006290205A1 (en) 2007-03-22
EP1942898A1 (de) 2008-07-16
ES2376351T3 (es) 2012-03-13
MA29795B1 (fr) 2008-09-01
US20130172377A1 (en) 2013-07-04
US20110192748A1 (en) 2011-08-11
JP2009507930A (ja) 2009-02-26
SI1942898T2 (sl) 2014-08-29
JP5027137B2 (ja) 2012-09-19
NO20081592L (no) 2008-05-23
HRP20120004T1 (en) 2012-03-31
CA2622472C (en) 2013-11-19
AU2006290205B2 (en) 2012-12-13
ZA200802857B (en) 2009-09-30
KR20080055875A (ko) 2008-06-19
TW200744602A (en) 2007-12-16
EA015169B1 (ru) 2011-06-30
CA2622472A1 (en) 2007-03-22
DK1942898T4 (da) 2014-06-02
RS52110B (en) 2012-08-31
BRPI0616055A2 (pt) 2011-06-07
EP1942898B2 (de) 2014-05-14
TWI432200B (zh) 2014-04-01
CN101374523A (zh) 2009-02-25
HRP20120004T4 (hr) 2014-06-06
CY1112281T1 (el) 2015-12-09
CN101374523B (zh) 2012-04-11
ZA200901814B (en) 2010-06-30
NZ566799A (en) 2011-04-29
IL190131A0 (en) 2008-11-03
PE20070522A1 (es) 2007-07-11
US8906901B2 (en) 2014-12-09
AR055435A1 (es) 2007-08-22
IL190131A (en) 2013-08-29
HK1119086A1 (en) 2009-02-27
WO2007033350A1 (en) 2007-03-22
PL1942898T3 (pl) 2012-04-30
ES2376351T5 (es) 2014-07-15
NO340910B1 (no) 2017-07-10
ATE532518T1 (de) 2011-11-15
DK1942898T3 (da) 2012-01-09
PL1942898T5 (pl) 2014-10-31
ME02005B (me) 2012-08-31
RS52110B2 (sr) 2018-05-31

Similar Documents

Publication Publication Date Title
US8906901B2 (en) Administration of dipeptidyl peptidase inhibitors
US20190314352A1 (en) Administration of dipeptidyl peptidase inhibitors
EP2073810B1 (de) Verwendung von 2-6-(3-amin-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2h-pyrimidin-1-ylmethyl-4-fluor-benzonitril zur behandlung von diabetes, krebs, autoimmunerkrankungen und hiv-infektionen
US8093236B2 (en) Weekly administration of dipeptidyl peptidase inhibitors
US20070060529A1 (en) Administration of dipeptidyl peptidase inhibitors

Legal Events

Date Code Title Description
AS Assignment

Owner name: TAKEDA SAN DIEGO, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHRISTOPHER, RONALD J.;REEL/FRAME:018503/0554

Effective date: 20061101

Owner name: TAKEDA PHARMACEUTICAL COMPANY LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAKEDA SAN DIEGO, INC.;REEL/FRAME:018503/0597

Effective date: 20061109

Owner name: TAKEDA SAN DIEGO, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEVELOPMENT PARTNERS, LLC;REEL/FRAME:018503/0578

Effective date: 20061101

Owner name: DEVELOPMENT PARTNERS, LLC, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COVINGTON, PAUL;REEL/FRAME:018503/0352

Effective date: 20061102

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION