US20030203448A1 - Medium for the protein-free and serum-free cultivation of cells - Google Patents
Medium for the protein-free and serum-free cultivation of cells Download PDFInfo
- Publication number
- US20030203448A1 US20030203448A1 US10/405,794 US40579403A US2003203448A1 US 20030203448 A1 US20030203448 A1 US 20030203448A1 US 40579403 A US40579403 A US 40579403A US 2003203448 A1 US2003203448 A1 US 2003203448A1
- Authority
- US
- United States
- Prior art keywords
- medium
- cells
- protein
- free
- accordance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000004027 cell Anatomy 0.000 claims abstract description 174
- 239000000413 hydrolysate Substances 0.000 claims abstract description 49
- 210000004962 mammalian cell Anatomy 0.000 claims abstract description 10
- 239000002609 medium Substances 0.000 claims description 112
- 239000000203 mixture Substances 0.000 claims description 29
- 108090000623 proteins and genes Proteins 0.000 claims description 25
- 238000004113 cell culture Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 24
- 102000004169 proteins and genes Human genes 0.000 claims description 24
- 229940024606 amino acid Drugs 0.000 claims description 20
- 150000001413 amino acids Chemical class 0.000 claims description 20
- 108010054218 Factor VIII Proteins 0.000 claims description 16
- 102000001690 Factor VIII Human genes 0.000 claims description 16
- 229960000301 factor viii Drugs 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 13
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 claims description 8
- 108010094028 Prothrombin Proteins 0.000 claims description 8
- 239000012679 serum free medium Substances 0.000 claims description 8
- 108010047303 von Willebrand Factor Proteins 0.000 claims description 8
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 claims description 7
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 claims description 7
- 210000004978 chinese hamster ovary cell Anatomy 0.000 claims description 7
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 claims description 7
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 claims description 6
- 229930182816 L-glutamine Natural products 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 102100022641 Coagulation factor IX Human genes 0.000 claims description 4
- 108010076282 Factor IX Proteins 0.000 claims description 4
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 claims description 4
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 claims description 4
- 239000004158 L-cystine Substances 0.000 claims description 4
- 235000019393 L-cystine Nutrition 0.000 claims description 4
- 229930182821 L-proline Natural products 0.000 claims description 4
- 229960001230 asparagine Drugs 0.000 claims description 4
- 229960003067 cystine Drugs 0.000 claims description 4
- 229960004222 factor ix Drugs 0.000 claims description 4
- 229960002429 proline Drugs 0.000 claims description 4
- 239000003381 stabilizer Substances 0.000 claims description 4
- 238000000108 ultra-filtration Methods 0.000 claims description 4
- 102100023804 Coagulation factor VII Human genes 0.000 claims description 3
- 108010014172 Factor V Proteins 0.000 claims description 3
- 108010023321 Factor VII Proteins 0.000 claims description 3
- 108010014173 Factor X Proteins 0.000 claims description 3
- 108010074864 Factor XI Proteins 0.000 claims description 3
- 101800004937 Protein C Proteins 0.000 claims description 3
- 102000017975 Protein C Human genes 0.000 claims description 3
- 108010066124 Protein S Proteins 0.000 claims description 3
- 229940096437 Protein S Drugs 0.000 claims description 3
- 102000029301 Protein S Human genes 0.000 claims description 3
- 101800001700 Saposin-D Proteins 0.000 claims description 3
- 229940012413 factor vii Drugs 0.000 claims description 3
- 229940012426 factor x Drugs 0.000 claims description 3
- 239000000137 peptide hydrolase inhibitor Substances 0.000 claims description 3
- 229960000856 protein c Drugs 0.000 claims description 3
- 238000001542 size-exclusion chromatography Methods 0.000 claims description 3
- PWKSKIMOESPYIA-UHFFFAOYSA-N 2-acetamido-3-sulfanylpropanoic acid Chemical compound CC(=O)NC(CS)C(O)=O PWKSKIMOESPYIA-UHFFFAOYSA-N 0.000 claims description 2
- 239000000872 buffer Substances 0.000 claims description 2
- 239000006143 cell culture medium Substances 0.000 claims description 2
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 claims description 2
- 239000002158 endotoxin Substances 0.000 claims description 2
- 229960002743 glutamine Drugs 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- IFGCUJZIWBUILZ-UHFFFAOYSA-N sodium 2-[[2-[[hydroxy-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyphosphoryl]amino]-4-methylpentanoyl]amino]-3-(1H-indol-3-yl)propanoic acid Chemical compound [Na+].C=1NC2=CC=CC=C2C=1CC(C(O)=O)NC(=O)C(CC(C)C)NP(O)(=O)OC1OC(C)C(O)C(O)C1O IFGCUJZIWBUILZ-UHFFFAOYSA-N 0.000 claims description 2
- 235000010469 Glycine max Nutrition 0.000 description 40
- AIUDWMLXCFRVDR-UHFFFAOYSA-N dimethyl 2-(3-ethyl-3-methylpentyl)propanedioate Chemical compound CCC(C)(CC)CCC(C(=O)OC)C(=O)OC AIUDWMLXCFRVDR-UHFFFAOYSA-N 0.000 description 24
- 210000002966 serum Anatomy 0.000 description 22
- 238000007792 addition Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 11
- 230000012010 growth Effects 0.000 description 10
- 239000004017 serum-free culture medium Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 230000010412 perfusion Effects 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 102100026735 Coagulation factor VIII Human genes 0.000 description 7
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 7
- 108010009736 Protein Hydrolysates Proteins 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000010166 immunofluorescence Methods 0.000 description 7
- 102100036537 von Willebrand factor Human genes 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 241000209140 Triticum Species 0.000 description 6
- 235000021307 Triticum Nutrition 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 5
- 238000013411 master cell bank Methods 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- 241000209094 Oryza Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 238000010923 batch production Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 229920001983 poloxamer Polymers 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 3
- 229920005654 Sephadex Polymers 0.000 description 3
- 239000012507 Sephadex™ Substances 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000000306 component Substances 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000004114 suspension culture Methods 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960000182 blood factors Drugs 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 229940066779 peptones Drugs 0.000 description 2
- 229940082569 selenite Drugs 0.000 description 2
- MCAHWIHFGHIESP-UHFFFAOYSA-L selenite(2-) Chemical compound [O-][Se]([O-])=O MCAHWIHFGHIESP-UHFFFAOYSA-L 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- WFIYPADYPQQLNN-UHFFFAOYSA-N 2-[2-(4-bromopyrazol-1-yl)ethyl]isoindole-1,3-dione Chemical compound C1=C(Br)C=NN1CCN1C(=O)C2=CC=CC=C2C1=O WFIYPADYPQQLNN-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102100037362 Fibronectin Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 108010070716 Intercellular Signaling Peptides and Proteins Proteins 0.000 description 1
- 102000005755 Intercellular Signaling Peptides and Proteins Human genes 0.000 description 1
- 239000004201 L-cysteine Substances 0.000 description 1
- 235000013878 L-cysteine Nutrition 0.000 description 1
- IFQSXNOEEPCSLW-DKWTVANSSA-N L-cysteine hydrochloride Chemical compound Cl.SC[C@H](N)C(O)=O IFQSXNOEEPCSLW-DKWTVANSSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 102100027378 Prothrombin Human genes 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 1
- 238000010266 Sephadex chromatography Methods 0.000 description 1
- 229940122055 Serine protease inhibitor Drugs 0.000 description 1
- 101710102218 Serine protease inhibitor Proteins 0.000 description 1
- 241000710771 Tick-borne encephalitis virus Species 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000035 biogenic effect Effects 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 210000001728 clone cell Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 239000003630 growth substance Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012007 large scale cell culture Methods 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012533 medium component Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229940039716 prothrombin Drugs 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 239000003001 serine protease inhibitor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 229960004799 tryptophan Drugs 0.000 description 1
- 210000003501 vero cell Anatomy 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0018—Culture media for cell or tissue culture
- C12N5/0043—Medium free of human- or animal-derived components
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/745—Blood coagulation or fibrinolysis factors
- C07K14/755—Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0018—Culture media for cell or tissue culture
- C12N5/0037—Serum-free medium, which may still contain naturally-sourced components
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0018—Culture media for cell or tissue culture
- C12N5/005—Protein-free medium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0681—Cells of the genital tract; Non-germinal cells from gonads
- C12N5/0682—Cells of the female genital tract, e.g. endometrium; Non-germinal cells from ovaries, e.g. ovarian follicle cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/05—Inorganic components
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/32—Amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/38—Vitamins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/46—Amines, e.g. putrescine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/60—Buffer, e.g. pH regulation, osmotic pressure
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/70—Undefined extracts
- C12N2500/76—Undefined extracts from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/90—Serum-free medium, which may still contain naturally-sourced components
- C12N2500/92—Medium free of human- or animal-derived components
Definitions
- the present invention pertains to a medium for the protein-free and serum-free cultivation of cells.
- such complex preparations contain a plurality of proteins that can act in a disruptive manner, especially within the context of the purification process for the recombinant protein that is to be recovered from the cell culture. This applies particularly to those proteins that are homologous with or similar to the protein that is to be recovered.
- these problems are especially acute in the case of the recombinant recovery of serum proteins because the biogenic pendant in the medium that is used (e.g., bovine protein) can be removed reliably within the context of purification only via quite specific differential purification (e.g., with antibodies that are directed specifically only against the recombinant protein but not against the bovine protein (Björck, L., J. Immunol., 1988, Vol. 140, pp. 1194-1197; Nilson et al., J. Immunol Meth., 1993, 164, pp. 33-40).
- the cells that are used preeminently for a recombinant preparation are capable of adhering only to a limited extent.
- CHO cells that have been bred by conventional methods bind to both smooth and porous microcarriers only under serum-containing conditions (see U.S. Pat. No. 4,973,616; Cytotechnology 9 (1992), 247-253).
- other adhesion-promoting additions such as e.g., fibronectin, insulin or transferrin, have not been provided in the medium.
- the cells can be bred using the suspension culture technique as well as e.g., using the batch process or using a continuous culture technique.
- Cultivation preferably takes place using the chemostat process (Ozturk S. S. et al., 1996, Abstr. Pap. Am. Chem. Soc., BIOT 164, Payne G. F. et al., in “Large Scale Cell Culture Technology,” 1987, ed. Lydersen B. K., Hauser publishers; pp. 206-212).
- Kattinger H. et al Advanced Mol. Cell.
- the present invention has therefore an objective of improving the possibilities for the protein-free and serum-free cultivation of recombinant cells and of making agents and processes available with which recombinant cells can be cultivated efficiently in a serum-free or protein-free manner. Moreover, it should then be possible not only to culture surface-dependent cells, but also to use the suspension culture technique, whereby instability in the productivity of the cells is required to be repressed as much as possible.
- a further objective of the present invention additionally is to efficiently increase the production of recombinant cells.
- these tasks are accomplished by means of a medium for the protein-free and serum-free cultivation of cells, especially mammalian cells, characterized by the feature that the medium contains a proportion of soy hydrolysate.
- FIG. 1 shows the results of the cultivation of a rFVIII-CHO cell clone in a 10-L perfusion bioreactor:
- FIG. 2 shows a comparison of the Factor VIII productivity (mU/mL) in the case of cultivation, using the batch process, of CHO cells which express rFactor VIII, in various media.
- Mix 1 consists of serum-free and protein-free medium without soy hydrolysate, but containing an amino acid mixture as listed in table 4;
- Mix 2 consists of serum-free and protein-free medium containing soy hydrolysate;
- Mix 3 consists of serum-free and protein-free medium containing soy hydrolysate and an amino acid mixture as listed in table 4 and
- Mix 4 consists of serum-free and protein-free medium containing 2.5 g/l purified, ultrafiltrated soy hydrolysate and an amino acid mixture as listed in table 4.
- a Sephadex® column was used for the purification of the ultrafiltrated soy hydrolysate.
- FIG. 3 shows the Factor VIII productivity (U/L) in the case of the continuous growth of CHO cells, which express rFactor VIII, in a serum-free and protein-free medium after the start of the addition of purified, ultrafiltered soy peptone, namely on the 6th day of cultivation;
- FIG. 4 shows BHK cells expressing recombinant Factor II that have been bred in a protein-free and serum-free medium that contains soy hydrolysate.
- the medium in accordance with the invention preferably contains soy hydrolysate in a quantity of more than 10 wt % based on the total dry weight of the medium.
- the soy hydrolysate in the medium is provided in a quantity of 4-40%.
- soy hydrolysate is not critical in accordance with the invention.
- a plurality of soy preparations which are to be found on the market, can be used in accordance with the invention, e.g., peptones from soy flour, digested enzymatically (e.g., by papain), with a pH value between 6.5 and 7.5 and a total nitrogen content between 9% and 9.7% and an ash content between 8 and 15%.
- Ultrafiltration can take place in accordance with the process as described comprehensively in the prior art, e.g., with use being made of membrane filters with a defined cut-off limit.
- the purification of the ultrafiltered soy peptone can take place by means of gel chromatography, e.g., by means of Sephadex chromatography, for example, with Sephadex G25 or Sephadex G10 or equivalent materials, ion-exchange chromatography, affinity chromatography, size exclusion chromatography or “reversed-phase” chromatography.
- gel chromatography e.g., by means of Sephadex chromatography, for example, with Sephadex G25 or Sephadex G10 or equivalent materials, ion-exchange chromatography, affinity chromatography, size exclusion chromatography or “reversed-phase” chromatography.
- those fractions can be selected which contain soy hydrolysate of defined molecular weight, i.e. ⁇ 1000 Dalton, preferably ⁇ 500 Dalton, more preferably ⁇ 350 Dalton.
- the invention also comprises a process for producing a serum-free and protein-free cell culture medium, comprising obtaining a soy hydrolysate, ultrafiltering said soy hydrolysate using an ultrafiltration process, purifying said soy hydrolysate fraction using size exclusion chromatography and selecting the soy hydrolysate fractions consisting of soy hydrolysate having a molecular weight ⁇ 1000 Dalton, preferably ⁇ 500 Dalton, more preferably ⁇ 350 Dalton.
- An especially advantageous soy hydrolysate is characterized by the feature that it has a free amino acids content of between 10.3 and 15.6% or, preferably, between 12 and 13.5%, a total nitrogen content of between 7.6 and 11.4% or, preferably, between 8.7 and 9.5% and an endotoxin content of ⁇ 500 U/g and whereby at least 40% or, preferably, at least 50% or, especially preferably, at least 55% thereof has a molecular weight of 200-500 daltons and at least 10% or, preferably, 15% thereof has a molecular weight of 500-1000 daltons. Most preferably, at least 90% of the soy hydrolysate is of a molecular weight of ⁇ 500 Daltons.
- a soy hydrolysate is especially well suited to the industrial production of recombinant proteins since, because of its special features, it can be standardized especially easily and it is usable in routine processes.
- the medium in accordance with the invention can also contain synthetic media in a way that is known as such, such as e.g., DMEM/HAM's F12, Medium 199 or RPMI, that are adequately known from the literature.
- the medium in accordance with the invention also preferably contains amino acids, preferably those selected from the group comprising L-asparagine, L-cysteine, L-cystine, L-proline, L-tryptophan, L-glutamine, or mixtures thereof.
- L-asparagine in a quantity of 0.001-1 g/L of medium, preferably 0.1-0.05 g/L, especially preferably 0.015-0.03 g/L
- L-cysteine (0.001-1 g/L, preferably 0.005-0.05 g/L, especially preferably 0.01-0.03 g/L)
- L-cystine (0.001-1 g/L, preferably 0.01-0.05 g/L, especially preferably 0.015-0.03 g/L)
- L-proline 0.001-1.5 g/L, preferably 0.01-0.07 g/L, especially preferably 0.02-0.05 g/L
- L-tryptophan (0.001-1 g/L, preferably 0.01-0.05 g/L, especially preferably 0.015-0.03 g/L)
- L-glutamine (0.05-1 g/L, preferably 0.1-1 g/L).
- amino acids designated above can be added to the medium in accordance with the invention either individually or in combination.
- the combined addition of an amino acid mixture, which contains all of the above-mentioned amino acids, is especially preferred.
- a serum-free and protein-free medium is used in a special form of embodiment, whereby this medium additionally contains a combination of the above-mentioned amino acid mixture and purified ultrafiltered soy peptone.
- the medium in order to inactivate viruses or other pathogens, can be heated, without negative effects, for approximately 5-20 min or, preferably, 15 min at 70-95° C. or, preferably, 85-95° C.
- a known synthetic medium can be used in combination with the soy hydrolysate.
- Conventional synthetic media can contain inorganic salts, amino acids, vitamins, a source of carbohydrates and water.
- concentration of soy extract in the medium can preferably be between 0.1 and 100 g/L, especially preferably, 1 and 5 g/L.
- soy peptone can be used which has been standardized in regard to its molecular weight.
- the molecular weight of the soy peptone preferably is less than 50 kD, especially preferably less than 10 kD, most preferably, less than 1 kD.
- ultrafiltered soy peptone has proven to be especially advantageous for the productivity of the recombinant cell lines, whereby the average molecular weight of the soy peptone is 350 daltons (Quest Company). This is a soy isolate with a total nitrogen content of approximately 9.5% and a free amino acid content of approximately 13%.
- the medium in accordance with the invention also preferably contains auxiliary substances, such as e.g., buffer substances, oxidation stabilizers, stabilizers to counteract mechanical stress, or protease inhibitors.
- auxiliary substances such as e.g., buffer substances, oxidation stabilizers, stabilizers to counteract mechanical stress, or protease inhibitors.
- Use is especially made of a medium with the following composition: synthetic minimal medium (1-25 g/L), soy peptone (0.5-50 g/L), L-glutamine (0.05-1 g/L), NaHCO 3 (0.1-10 g/L), ascorbic acid (0.0005-0.05 g/L), ethanolamine (0.0005-0.05 g/L) and Na selenite (1-15 ⁇ g/L).
- a nonionic surfactant such as, e.g., polypropylene glycol (PLURONIC F-61, PLURONIC F-68, SYNPERONIC F-68, PLURONIC F-71 or PLURONIC F-108) can be added to the medium as a defoaming agent in accordance with the invention.
- a nonionic surfactant such as, e.g., polypropylene glycol (PLURONIC F-61, PLURONIC F-68, SYNPERONIC F-68, PLURONIC F-71 or PLURONIC F-108) can be added to the medium as a defoaming agent in accordance with the invention.
- This agent is generally used in order to protect the cells from the negative effects of aeration since, without an addition of a surfactant, ascending and bursting air bubbles can lead to damage of those cells that are located on the surface of these air bubbles (“sparging”) (Murhammer and Goochee, 1990, Biotechnol. Prog. 6:142-148).
- the quantity of nonionic surfactant can be between 0.05 and 10 g/L. Preferably, the smallest possible amount is between 0.1 and 5 g/L.
- the medium in accordance with the invention can also contain cyclodextrin or a derivative thereof.
- the serum-free and protein-free medium of the present invention preferably contains a protease inhibitor, such as a serine protease inhibitor, which is suitable for tissue culture and is of synthetic or plant origin.
- a protease inhibitor such as a serine protease inhibitor
- Cells that have already been adapted are preferably used as the cells for cultivation in the medium in accordance with the invention, i.e., cells that have already adapted to growth in the protein-free and serum-free media. It has been found that not only can increased yields be achieved with such preadapted cells, but their stability for serum-free and protein-free cultivation is also clearly improved by the use of the medium in accordance with the invention.
- recombinant cell clones have proven to be especially valuable in accordance with the invention, whereby these are stable from the outset for at least 40 generations and, preferably, at least 50 generations in serum-free and protein-free media, and express recombinant products.
- Such cell clones are obtainable from a cell culture that is obtained following the cultivation of a recombinant original cell clone on a serum-containing medium and readaptation of the cells to a serum-free and protein-free medium.
- original cell clone can be understood to mean a recombinant cell clone transfectant that, after transfection of the host cells with a recombinant nucleotide sequence, expresses a recombinant product in a stable manner under laboratory conditions.
- the original clone is bred in a serum-containing medium in order to optimize its growth.
- the original clone is bred, optionally in the presence of a selection agent, with selection on the selection marker and/or amplification marker.
- the original cell clone is bred, under serum-containing conditions of cultivation, to a high cell density and then it is readapted to a serum-free or protein-free medium just prior to the production phase. Cultivation preferably takes place without selection pressure in this case.
- the cultivation of the recombinant original cell clone can take place from the beginning in a serum-free and protein-free medium; as a result, readaptation is no longer necessary. If required, use can also be made of a selection agent in this case and selection can take place on the selection marker and/or the amplification marker. A process for this is described in EP 0 711 835, for example.
- the cell culture that is obtained after readaptation to a serum-free and protein-free medium is tested for those cell clones of the cell population which produce products in a stable manner under serum-free and protein-free conditions, optionally in the absence of selection pressure. This can take place, for example, by means of immunofluorescence with marked specific antibodies which are directed against the recombinant polypeptide or protein.
- the cells that are identified as product producers are isolated from the cell culture and are re-bred under serum-free and protein-free conditions that are preferably equivalent to production conditions. The isolation of the cells can thereby take place by isolating the cells and testing them for product producers.
- the cell culture, containing the stable cells can be tested again for stable recombinant clones, and these are isolated from the cell culture and subcloned.
- the stable recombinant cell clones that are obtained under serum-free and protein-free conditions can then be bred further under serum-free and protein-free conditions.
- the cell culture which is to be cultivated in accordance with the invention, is preferably derived from a recombinant mammalian cell.
- Recombinant mammalian cells can hereby be all those cells that contain sequences which code for a recombinant polypeptide or protein. All continuously growing cells, which grow either adherently or nonadherently, are encompassed in this regard.
- Recombinant CHO cells or BHK cells are especially preferred.
- Recombinant polypeptides or proteins can be blood factors, growth factors or other biomedically relevant products.
- cell clones which contain the coding sequence for a recombinant blood factor, such as Factor II, Factor V, Factor VII, Factor VIII, Factor IX, Factor X, Factor XI, Protein S, Protein C, an activated form of one of these factors, or vWF, and that are capable of expressing these in a stable manner over several generations.
- a recombinant blood factor such as Factor II, Factor V, Factor VII, Factor VIII, Factor IX, Factor X, Factor XI, Protein S, Protein C, an activated form of one of these factors, or vWF
- Recombinant CHO cells that express vWF or a polypeptide with vWF activity, Factor VIII or a polypeptide with VIII activity, vWF and Factor VIII, Factor IX or Factor II, are especially preferred in this regard.
- ⁇ 30 generations are required in order to start a master cell bank. At least approximately 40 generations are required in order to carry out an average batch culture on the 1000-L scale.
- MCB master cell bank
- WB working cell bank
- a cell culture with up to 20-25 generations under protein-free and serum-free conditions on the production scale (production biomass) whereas, by contrast, some generations become unstable after growth on a serum-free or protein-free medium with previous cell clones and media and, as a result, a) a uniform cell culture with product producers is not possible and b) stable product productivity over an extended period of time is not possible.
- the present invention also pertains to a process for the cultivation of cells, especially mammalian cells, that is characterized by the feature that these cells are introduced into a medium in accordance with the invention and then are cultured in this medium.
- the present invention also pertains to the use of the medium in accordance with the invention for the cultivation of recombinant cells, preferably eukaryotic cells and, especially, mammalian cells.
- the subject of the present invention accordingly, is also a cell culture that comprises the medium in accordance with the invention and cells, preferably eukaryotic cells, and especially mammalian cells.
- the present invention further includes a process for the production of a desired protein (especially a recombinant protein) from cell culture comprising introducing cells which express such desired protein into a medium of the present invention; growing said cells in said medium and expressing said protein, thereby producing a mixture of said cells and said protein in the medium; and purifiying said protein from said mixture.
- a desired protein especially a recombinant protein
- recombinant proteins such as Factor II, Factor V, Factor VII, Factor VIII, Factor IX, Factor X, Factor XI, Protein S, Protein C, activated forms of these factors, and vWF can be produced.
- CHO-dhfr cells were plasmid phAct-rvWF and pSV-dhfr co-transfected, and vWF-expressing clones were subcloned as described by Fischer et al. (1994, FEBS Letters 351:345-348).
- a working cell bank (WCB) was started from the subclones, which expressed rvWF in a stable manner, under serum-containing conditions but in the absence of MTX, and the cells were immobilized on a porous microcarrier (Cytopore) under serum-containing conditions. Switching the cells to a serum-free and protein-free medium took place after a cell density of 2 ⁇ 10 7 cells/mL of the matrix had been reached.
- the cells were cultured further for several generations under serum-free and protein-free conditions.
- the cells were tested in a serum-free and protein-free medium at various points in time by means of immunofluorescence with labelled anti-vWF antibodies.
- the evaluation of the stability of the cells took place using the working cell bank prior to switching the medium, after 10 generations and after 60 generations in the serum-free and protein-free medium. Whereas the working cell bank still exhibited 100% rvWF producers, the proportion of rvWF producers declined to approximately 50% after 10 generations in the serum-free and protein-free medium. After 60 generations, more than 95% of the cells were identified as nonproducers.
- a dilution series was prepared from the cell culture containing rvWF-CHO cells in accordance with Example 1 (this stable cell clone that was designated r-vWF-CHO F7 was filed, in accordance with the Budapest convention, with the ECACC (European Collection of Cell Cultures), Salisbury, Wiltshire SP4 OJG, UK, on Jan. 22, 1998, and acquired the deposition number 98012206) which had been cultured for 60 generations in a serum-free and protein-free medium and 0.1 cells were seeded out in each well of a microtiter plate.
- the cells were cultivated for approximately 3 weeks in DMEM/HAM's F12 without serum additions or protein additions and without selection pressure, and the cells were tested via immunofluorescence with labelled anti-vWF antibodies.
- a cell clone which had been identified as positive, was used as the starting clone for the preparation of a seed cell bank.
- a master cell bank (MCB) was started from the seed cell bank in a serum-free and protein-free medium and individual ampules were put away and frozen for the further preparation of a working cell bank.
- a working cell bank was prepared in a serum-free and protein-free medium from an individual ampule.
- the cells were immobilized on porous microcarriers and cultivated further for several generations under serum-free and protein-free conditions.
- the cells were tested for productivity at various points in time in a serum-free and protein-free medium by means of immunofluorescence with labelled anti-vWF antibodies.
- the evaluation of the stability of the cells took place at the working cell bank stage and after 10 and 60 generations in a serum-free and protein-free medium. Approximately 100% of the cells were identified as positive stable clones, which express rvWF, at the working cell bank stage, after 10 generations, and 60 generations.
- a cell culture containing rFVIII-CHO cells was cultivated in a 10-L stirred tank with perfusion.
- a medium in accordance with Example 4 was used in this case.
- the cells were thereby immobilized on a porous microcarrier (Cytopore, Pharmacia) and then cultivated for at least 6 weeks.
- the perfusion rate was 4 volume changes per day; the pH was 6.9-7.2; the O 2 concentration was approximately 20-50% and the temperature was 37° C.
- FIG. 1 shows the results of the cultivation of a rFVIII-CHO cell clone in a 10 L perfusion bioreactor.
- Table 3 shows the stability and specific productivity of the rFVIII-expressing cells.
- samples were taken after 15, 21, 28, 35 and 42 days and then centrifuged at 300 g and resuspended in fresh serum-free and protein-free medium.
- the Factor VIII concentration in the supernatant liquors of the cell cultures and the cell count was determined after a further 24 h.
- the specific FVIII productivity was calculated from these data.
- a stable average productivity of 888 milliunits/10 6 cells/day was achieved. This stable productivity was also confirmed by immunofluorescence with labelled anti-FVIII antibodies after 15, 21, 28, 35 and 42 days in a serum-free and protein-free medium.
- a cell culture containing rFVIII-CHO cells was cultivated batchwise.
- the cells were bred at 37° C. and pH 6.9-7.2. The cells were bred using the batch process over periods of 24-72 h.
- Mix 1 comprising a serum-free and protein-free medium without soy peptone and additionally containing an amino acid mixture in accordance with the table designated above.
- Mix 2 comprising a serum-free and protein-free medium containing soy peptone.
- Mix 3 comprising a serum-free and protein-free medium containing soy peptone and additionally containing an amino acid mixture in accordance with the table designated above.
- Mix 4 comprising a serum-free and protein-free medium, and additionally containing an amino acid mixture in accordance with the table designated above and 2.5 g/L of purified, ultrafiltered soy peptone. The purification of the ultrafiltered soy peptone took place chromatographically over a Sephadex column.
- a cell culture containing rFVIII-CHO cells was cultivated in a 10-L stirred bioreactor tank.
- the cells were bred at 37° C. and pH 6.9-7.2; the oxygen concentration was 20-50% air saturation. Samples were taken every 24 h in order to determine the Factor VIII titer and the cell concentration in the supernatant liquor of the culture. The total cell concentration was constant from the 2nd day to the 14th day. Ultrafiltered soy peptone was added to the medium starting from the 6th day.
- the Factor VIII productivity is illustrated in 3; the measurements took place by means of a CHROMOGENIX CoA FVIII:C/4 system. Immunofluorescence was carried out with labelled anti-FVIII antibodies. It can be seen from the data that a distinct increase in Factor VIII productivity and hence an increase in the volumetric productivity of the bioreactor system, occurred as a result of the addition of soy peptone, whereby this did not lead to a distinct increase in cell growth.
- the absence of soy peptone in the continuous culture leads to a distinct decline in Factor VIII productivity after a few days, whereas the addition of soy peptone leads, as a consequence, to an almost 10-fold increase in productivity.
- this addition does not increase the cell count, it is hereby clearly shown that ultrafiltered soy peptone leads, as a consequence, to a distinct increase in productivity which is independent of cell growth.
- a rFVIII-CHO cell culture was cultivated batchwise. In this case, use was made of a serum-free and protein-free medium as described in Example 4 to which different hydrolysates (from soy, yeast, rice and wheat) had been added. A serum-free and protein-free medium, to which no hydrolysate had been added, was used as the control.
- the initial cell density was 0.6 ⁇ 10 5 and 0.4 ⁇ 10 6 , respectively.
- the cells were cultured at 37° C. using the batch process at pH 6.9-7.2.
- Table 5 shows the results of the cultivation experiments with rFVIII-CHO cells in a serum-free and protein-free medium to which soy hydrolysate (ultrafiltered) and yeast hydrolysate had been added.
- the initial cell density was 0.6 ⁇ 10 5 cells.
- a serum-free and protein-free medium without hydrolysate additions was used as the control.
- Table 6 shows the results of the cultivation experiments with rFVIII-CHO cells in a serum-free and protein-free medium to which soy hydrolysate (ultrafiltered), rice hydrolysate and wheat hydrolysate had been added.
- the initial cell density was 0.6 ⁇ 10 5 cells.
- a serum-free and protein-free medium without hydrolysate additions was used as the control.
- TABLE 6 Final cell density FVIII titer vWF - Antigen Hydroysate ( ⁇ 10 6 /mL) (mU/mL) ( ⁇ g/L) Soy 3.1 1142 6.7 Rice 3.0 419 3.2 Wheat 3.4 522 3.9 Control 3.0 406 3.1
- Table 7 shows the results of the cultivation experiments with rFVIII-CHO cells in a serum-free and protein-free medium to which soy hydrolysate (ultrafiltered) and wheat hydrolysate had been added.
- the initial cell density amounted to 0.4 ⁇ 10 6 cells.
- TABLE 7 Final cell FVIII FVIII VWF- density titer Antigen Antigen Hydrolysate ( ⁇ 10 6 /mL) (mU/mL) ( ⁇ g/mL) ( ⁇ g/mL) Soy 1.6 1427 166 17.2 Wheat 1.0 1120 92 1.9
- BHK-21 (ATCC CCL 10) cells were co-transfected three times with the following plasmids by means of a CaPO 4 procedure: 25 ⁇ g of the plasmid pSV-FII (Fischer, B. et al., J. Biol. Chem., 1996, Vol. 271, pp. 23737-23742) which contains the human Factor II (prothrombin)-cDNA under the control of a SV40 promotor (SV40 early gene promoter); 4 ⁇ g of the plasmid pSV-DHFR for methotrexate resistance and 1 ⁇ g of the plasmid pUCSV-neo (Schlokat, U. et al., Biotech. Appl.
- Stable cell clones were selected by means of cultivation in a medium, which contained 500 ⁇ g/mL of G418, by increasing the methotrexate concentration in a stepwise manner up to a concentration of 3 ⁇ M.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Reproductive Health (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Peptides Or Proteins (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/405,794 US20030203448A1 (en) | 1999-09-28 | 2003-04-01 | Medium for the protein-free and serum-free cultivation of cells |
US11/841,915 US8021881B2 (en) | 1999-09-28 | 2007-08-20 | Medium for the protein-free and serum-free cultivation of cells |
US13/198,476 US8722406B2 (en) | 1999-09-28 | 2011-08-04 | Medium for the protein-free and serum-free cultivation of cells |
US14/231,221 US9441203B2 (en) | 1999-09-28 | 2014-03-31 | Medium for the protein-free and serum-free cultivation of cells |
US15/235,453 US9982286B2 (en) | 1999-09-28 | 2016-08-12 | Medium for the protein-free and serum-free cultivation of cells |
US15/244,302 US20170002392A1 (en) | 1999-09-28 | 2016-08-23 | Medium for the protein-free and serum-free cultivation of cells |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA1659/99 | 1999-09-28 | ||
AT0165999A AT409379B (de) | 1999-06-02 | 1999-09-28 | Medium zur protein- und serumfreien kultivierung von zellen |
US67224000A | 2000-09-28 | 2000-09-28 | |
US10/405,794 US20030203448A1 (en) | 1999-09-28 | 2003-04-01 | Medium for the protein-free and serum-free cultivation of cells |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US67224000A Continuation | 1999-09-28 | 2000-09-28 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/841,915 Continuation US8021881B2 (en) | 1999-09-28 | 2007-08-20 | Medium for the protein-free and serum-free cultivation of cells |
US11/844,915 Continuation US7826339B2 (en) | 2007-08-24 | 2007-08-24 | Hierarchical modulation reverse link interface node |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030203448A1 true US20030203448A1 (en) | 2003-10-30 |
Family
ID=3518214
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/405,794 Abandoned US20030203448A1 (en) | 1999-09-28 | 2003-04-01 | Medium for the protein-free and serum-free cultivation of cells |
US11/841,915 Expired - Fee Related US8021881B2 (en) | 1999-09-28 | 2007-08-20 | Medium for the protein-free and serum-free cultivation of cells |
US13/198,476 Expired - Fee Related US8722406B2 (en) | 1999-09-28 | 2011-08-04 | Medium for the protein-free and serum-free cultivation of cells |
US14/231,221 Expired - Fee Related US9441203B2 (en) | 1999-09-28 | 2014-03-31 | Medium for the protein-free and serum-free cultivation of cells |
US15/235,453 Expired - Fee Related US9982286B2 (en) | 1999-09-28 | 2016-08-12 | Medium for the protein-free and serum-free cultivation of cells |
US15/244,302 Abandoned US20170002392A1 (en) | 1999-09-28 | 2016-08-23 | Medium for the protein-free and serum-free cultivation of cells |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/841,915 Expired - Fee Related US8021881B2 (en) | 1999-09-28 | 2007-08-20 | Medium for the protein-free and serum-free cultivation of cells |
US13/198,476 Expired - Fee Related US8722406B2 (en) | 1999-09-28 | 2011-08-04 | Medium for the protein-free and serum-free cultivation of cells |
US14/231,221 Expired - Fee Related US9441203B2 (en) | 1999-09-28 | 2014-03-31 | Medium for the protein-free and serum-free cultivation of cells |
US15/235,453 Expired - Fee Related US9982286B2 (en) | 1999-09-28 | 2016-08-12 | Medium for the protein-free and serum-free cultivation of cells |
US15/244,302 Abandoned US20170002392A1 (en) | 1999-09-28 | 2016-08-23 | Medium for the protein-free and serum-free cultivation of cells |
Country Status (21)
Country | Link |
---|---|
US (6) | US20030203448A1 (xx) |
EP (1) | EP1220893B2 (xx) |
JP (6) | JP5441288B2 (xx) |
CN (2) | CN1318577C (xx) |
AT (2) | AT409379B (xx) |
AU (1) | AU780791B2 (xx) |
CA (1) | CA2385299A1 (xx) |
CY (1) | CY1106135T1 (xx) |
CZ (1) | CZ305307B6 (xx) |
DE (1) | DE60028989T3 (xx) |
DK (1) | DK1220893T4 (xx) |
ES (1) | ES2265991T5 (xx) |
HU (1) | HU228210B1 (xx) |
IL (4) | IL148642A0 (xx) |
PL (1) | PL215234B1 (xx) |
PT (1) | PT1220893E (xx) |
RU (3) | RU2266325C2 (xx) |
SI (1) | SI1220893T1 (xx) |
SK (1) | SK288059B6 (xx) |
TR (1) | TR200200757T2 (xx) |
WO (1) | WO2001023527A1 (xx) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040077086A1 (en) * | 2002-07-09 | 2004-04-22 | Manfred Reiter | Animal protein free media for cultivation of cells |
US20060094113A1 (en) * | 2004-10-29 | 2006-05-04 | David Epstein | Chemically defined media compositions |
US20060094104A1 (en) * | 2004-10-29 | 2006-05-04 | Leopold Grillberger | Animal protein-free media for cultivation of cells |
US20060165663A1 (en) * | 2002-06-10 | 2006-07-27 | Japan Science And Technology Agency | Scaffold material for regeneration of hard tissue/soft tissue interface |
KR100670105B1 (ko) | 2005-06-29 | 2007-01-17 | 주식회사 셀트리온 | 콩가수분해물의 저분자량 분획을 이용하여 시알산 함량이증가된 에리스로포이에틴을 생산하는 방법 및 그에 의하여생산된 시알산 함량이 증가된 에리스로포이에틴 |
US20070161079A1 (en) * | 1997-06-20 | 2007-07-12 | Baxter Aktiengesellschaft | Recombinant cell clones having increased stability and methods of making and using the same |
US20080254514A1 (en) * | 2005-02-11 | 2008-10-16 | Novo Nordisk Health Care Ag | Production of a Polypeptide in a Serum-Free Cell Culture Liquid Containing Plant Protein Hydrolysate |
US20100120094A1 (en) * | 2007-05-04 | 2010-05-13 | Novo Nordisk A/S | Factor viii polypeptide titers in cell cultures |
US20100120093A1 (en) * | 2008-11-12 | 2010-05-13 | Baxter International Inc. | Method of Producing Serum-Free Insulin-Free Factor VII |
US20110151512A1 (en) * | 2006-01-04 | 2011-06-23 | Baxter International Inc. | Oligopeptide-free cell culture media |
US8021881B2 (en) | 1999-09-28 | 2011-09-20 | Baxter Innovations Gmbh | Medium for the protein-free and serum-free cultivation of cells |
WO2012030217A2 (en) | 2010-08-31 | 2012-03-08 | Friesland Brands B.V. | Culture medium for eukaryotic cells |
WO2013133714A1 (en) | 2012-03-08 | 2013-09-12 | Friesland Brands B.V. | Culture medium for eukaryotic cells |
US9441207B2 (en) | 2008-06-16 | 2016-09-13 | Intervet Inc. | Method of replicating viruses in suspension cultures of dog kidney cells |
US9499616B2 (en) | 2013-10-18 | 2016-11-22 | Abbvie Inc. | Modulated lysine variant species compositions and methods for producing and using the same |
US9499614B2 (en) | 2013-03-14 | 2016-11-22 | Abbvie Inc. | Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosaccharides |
US9505834B2 (en) | 2011-04-27 | 2016-11-29 | Abbvie Inc. | Methods for controlling the galactosylation profile of recombinantly-expressed proteins |
US9505833B2 (en) | 2012-04-20 | 2016-11-29 | Abbvie Inc. | Human antibodies that bind human TNF-alpha and methods of preparing the same |
US9512214B2 (en) | 2012-09-02 | 2016-12-06 | Abbvie, Inc. | Methods to control protein heterogeneity |
US9522953B2 (en) | 2013-10-18 | 2016-12-20 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same |
US9550826B2 (en) | 2013-11-15 | 2017-01-24 | Abbvie Inc. | Glycoengineered binding protein compositions |
US9598667B2 (en) | 2013-10-04 | 2017-03-21 | Abbvie Inc. | Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins |
US9683033B2 (en) | 2012-04-20 | 2017-06-20 | Abbvie, Inc. | Cell culture methods to reduce acidic species |
US9688752B2 (en) | 2013-10-18 | 2017-06-27 | Abbvie Inc. | Low acidic species compositions and methods for producing and using the same using displacement chromatography |
US9708399B2 (en) | 2013-03-14 | 2017-07-18 | Abbvie, Inc. | Protein purification using displacement chromatography |
US9708400B2 (en) | 2012-04-20 | 2017-07-18 | Abbvie, Inc. | Methods to modulate lysine variant distribution |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003045995A2 (en) * | 2001-11-28 | 2003-06-05 | Sandoz Gmbh | Cell culture process |
US7195905B2 (en) | 2001-12-10 | 2007-03-27 | Baxter Healthcare S.A. | Enveloped virus vaccine and method for production |
BRPI0417775A (pt) * | 2003-12-19 | 2007-03-20 | Wyeth Corp | meio de congelamento de células livre de soro; processo para gerar um banco de células vero estável livre de soro; e banco de célula vero estável livre de soro |
PT1720979E (pt) | 2004-03-01 | 2007-10-25 | Ares Trading Sa | Utilização de um meio de cultura de células sem soro para a produção de il-18bp em células de mamífero |
AU2011221414B2 (en) * | 2004-10-29 | 2012-09-20 | Takeda Pharmaceutical Company Limited | Animal Protein-Free Media for Cultivation of Cells |
FR2879214A1 (fr) * | 2004-12-14 | 2006-06-16 | Pierre Fabre Medicament Sa | Fractions peptidiques favorisant la croissance et la synthese de produit(s) d'interet en culture de cellules et/ou de tissus |
JP4693839B2 (ja) | 2005-03-10 | 2011-06-01 | 共立製薬株式会社 | 動物由来の成分なしで培養可能である細胞株及びその作出方法、これを用いたウイルスの生産方法、及びワクチンの生産方法 |
EP1707634A1 (en) | 2005-03-29 | 2006-10-04 | Octapharma AG | Method for isolation of recombinantly produced proteins |
US7375188B2 (en) * | 2005-07-29 | 2008-05-20 | Mallinckrodt Baker, Inc. | Vegetarian protein a preparation and methods thereof |
WO2007103447A2 (en) * | 2006-03-06 | 2007-09-13 | Humagene, Inc. | A method for the preparation of recombinant human thrombin |
EP2500414A1 (en) | 2006-09-13 | 2012-09-19 | Abbott Laboratories | Cell culture improvements |
SG10201510384UA (en) | 2006-09-13 | 2016-01-28 | Abbvie Inc | Cell culture improvements |
US20100075415A1 (en) * | 2006-11-13 | 2010-03-25 | Schering Corporation | Method for reducing protease activity in plant hydrolysate |
WO2008073425A2 (en) | 2006-12-11 | 2008-06-19 | Schering Corporation | High-sensitivity proteolysis assay |
WO2008153366A2 (en) | 2007-06-15 | 2008-12-18 | Mogam Biotechnology Research Institute | Method for manufacturing active recombinant blood coagulation factor ix |
US8563303B2 (en) * | 2008-03-19 | 2013-10-22 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Method for increasing recloning efficiency |
JP2011516086A (ja) | 2008-04-18 | 2011-05-26 | 上海中信国健薬業股▲ふん▼有限公司 | 濃縮培養液及びその使用方法 |
JP5458536B2 (ja) * | 2008-09-17 | 2014-04-02 | 不二製油株式会社 | 乳酸の製造方法及び乳酸発酵用添加剤 |
CN102224239A (zh) * | 2008-09-26 | 2011-10-19 | 先灵公司 | 高效价抗体生产 |
KR101737645B1 (ko) | 2008-12-30 | 2017-05-18 | 박스알타 인코퍼레이티드 | 알킬-아민-n-옥시드 (aanox)를 사용하는 세포 성장 증진 방법 |
CN101603026B (zh) * | 2009-06-19 | 2011-01-19 | 华东理工大学 | 适于动物细胞产品生产的无动物来源低蛋白培养基 |
BR122021005965B1 (pt) | 2009-07-31 | 2022-01-25 | Baxalta Incorporated | Método para produzir uma composição de desintegrina e metaloproteinase com motivo trombospondina (adamts) |
CN102115728B (zh) * | 2009-12-31 | 2012-09-26 | 北京清大天一科技有限公司 | 无血清动物细胞培养基干粉、液体培养基及其制备方法 |
PL2563904T3 (pl) * | 2010-04-26 | 2015-06-30 | Novartis Ag | Udoskonalona pożywka do hodowli komórkowej |
CN107254499B (zh) | 2010-04-26 | 2021-09-17 | 诺华股份有限公司 | 改进的细胞培养方法 |
IL286298B (en) | 2010-07-08 | 2022-08-01 | Baxalta Inc | A method to generate high molecular weight substituted vwf in cell culture |
CN101914485A (zh) * | 2010-08-05 | 2010-12-15 | 乐能生物工程股份有限公司 | 一种无血清大豆蛋白肽动物细胞培养基的配制方法 |
ES2556454T3 (es) * | 2010-10-05 | 2016-01-18 | Novo Nordisk Health Care Ag | Proceso para producción de proteínas |
CN103160458A (zh) * | 2011-12-15 | 2013-06-19 | 西南民族大学 | 一种适合Vero细胞生长的低血清培养基 |
AR095196A1 (es) | 2013-03-15 | 2015-09-30 | Regeneron Pharma | Medio de cultivo celular libre de suero |
CN104593317B (zh) * | 2013-10-31 | 2018-05-04 | 中国食品发酵工业研究院 | 一种用于细胞培养基的大豆活性肽添加剂 |
SG11201605146VA (en) | 2013-12-30 | 2016-07-28 | Baxalta GmbH | A method of predicting a performance characteristic of a plant or yeast hydrolysate and its use |
RU2558253C1 (ru) * | 2014-02-10 | 2015-07-27 | Федеральное Казенное Предприятие " Щелковский Биокомбинат" | Питательная среда для суспензионного культивирования клеток млекопитающих |
US11384378B2 (en) | 2014-06-04 | 2022-07-12 | Amgen Inc. | Methods for harvesting mammalian cell cultures |
TW202204596A (zh) | 2014-06-06 | 2022-02-01 | 美商健臻公司 | 灌注培養方法及其用途 |
CN104560893B (zh) * | 2015-01-30 | 2017-11-14 | 肇庆大华农生物药品有限公司 | 一种用于培养病毒的培养基及其制备方法 |
RU2588666C1 (ru) * | 2015-03-23 | 2016-07-10 | Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский и технологический институт биологической промышленности" | Компонент питательной среды для культивирования клеток млекопитающих |
CN105002242A (zh) * | 2015-07-23 | 2015-10-28 | 苏州康聚生物科技有限公司 | 用于cho细胞中高效表达重组人促甲状腺激素的无血清培养基及其应用 |
PL3328397T3 (pl) * | 2015-07-31 | 2023-10-16 | Exotropin, Llc | Kompozycje egzosomów oraz sposoby ich wytwarzania i stosowania do regulowania i kondycjonowania skóry i włosów |
TW202330904A (zh) | 2015-08-04 | 2023-08-01 | 美商再生元醫藥公司 | 補充牛磺酸之細胞培養基及用法 |
US11070703B2 (en) * | 2016-07-29 | 2021-07-20 | Robert Bosch Tool Corporation | 3D printer touchscreen interface lockout |
JP6258536B1 (ja) | 2017-03-03 | 2018-01-10 | 協和発酵キリン株式会社 | ダルベポエチン組成物の製造方法およびダルべポエチン産生細胞の培養方法 |
CN114075269A (zh) * | 2017-07-06 | 2022-02-22 | 菲仕兰坎皮纳荷兰私人有限公司 | 用于制备糖蛋白的细胞培养工艺 |
CN113151183A (zh) * | 2021-04-21 | 2021-07-23 | 赵峻岭 | 一种促进蛋白表达的培养基添加物及其应用 |
WO2024024671A1 (ja) * | 2022-07-27 | 2024-02-01 | 不二製油グループ本社株式会社 | 動物細胞増殖促進剤 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4431629A (en) * | 1980-05-13 | 1984-02-14 | Novo Industri A/S | Method of producing an egg white substitute material |
US4767704A (en) * | 1983-10-07 | 1988-08-30 | Columbia University In The City Of New York | Protein-free culture medium |
US4978616A (en) * | 1985-02-28 | 1990-12-18 | Verax Corporation | Fluidized cell cultivation process |
US5122469A (en) * | 1990-10-03 | 1992-06-16 | Genentech, Inc. | Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins |
US5393668A (en) * | 1991-09-11 | 1995-02-28 | Hans-Wilhelm Doerr | Cultivation of mammalian cells in a protein-free medium on a polyvinylformal and/or polyvinyl butyral surface |
US5633162A (en) * | 1990-10-17 | 1997-05-27 | Glaxo Wellcome Inc. | Method for culturing Chinese hamster ovary cells |
US5851800A (en) * | 1996-05-14 | 1998-12-22 | Pharmacia & Upjohn Ab | Process for producing a protein |
US6048728A (en) * | 1988-09-23 | 2000-04-11 | Chiron Corporation | Cell culture medium for enhanced cell growth, culture longevity, and product expression |
US6100061A (en) * | 1997-06-20 | 2000-08-08 | Immuno Aktiengesellschaft | Recombinant cell clone having increased stability in serum- and protein-free medium and a method of recovering the stable cell clone and the production of recombinant proteins by using a stable cell clone |
US6475725B1 (en) * | 1997-06-20 | 2002-11-05 | Baxter Aktiengesellschaft | Recombinant cell clones having increased stability and methods of making and using the same |
Family Cites Families (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT165999B (de) | 1947-06-26 | 1950-05-25 | Delle Atel Const Electr | Einirchtung zum Schutz von Drehstrommotoren gegen Überstrom |
FR2196386A1 (en) | 1972-08-17 | 1974-03-15 | Cudennec Alain | Culture media selection - for identification of unknown bacteria |
US4443540A (en) | 1980-05-09 | 1984-04-17 | University Of Illinois Foundation | Protein hydrolysis |
NZ210501A (en) | 1983-12-13 | 1991-08-27 | Kirin Amgen Inc | Erythropoietin produced by procaryotic or eucaryotic expression of an exogenous dna sequence |
IL74909A (en) | 1984-04-20 | 1992-01-15 | Genentech Inc | Preparation of functional human factor viii and dna sequences,expression vectors,transformed microorganisms and cell lines used therein |
ATE89314T1 (de) | 1985-02-13 | 1993-05-15 | Scios Nova Inc | Menschlicher metallothionein ii-promotor in saeugetierexpressionssystemen. |
ZA862768B (en) | 1985-04-17 | 1986-12-30 | Zymogenetics Inc | Expression of factor vii and ix activities in mammalian cells |
GB8608020D0 (en) | 1986-04-02 | 1986-05-08 | Beecham Group Plc | Compounds |
DE3787805T2 (de) | 1986-08-04 | 1994-02-10 | Garvan Inst Med Res | Serumfreies gewebekulturmedium, das ein polymerzellenschutzmittel enthält. |
WO1989000192A1 (en) | 1987-06-30 | 1989-01-12 | Amgen Inc. | Production of kallikrein |
US5024947A (en) * | 1987-07-24 | 1991-06-18 | Cetus Corporation | Serum free media for the growth on insect cells and expression of products thereby |
JP2507882B2 (ja) | 1988-02-17 | 1996-06-19 | 工業技術院長 | 外部増殖因子非依存性増殖良好細胞株の製造法 |
JP2815613B2 (ja) | 1989-03-24 | 1998-10-27 | 株式会社リコー | 静電荷像現像用トナー |
US5573937A (en) | 1989-12-07 | 1996-11-12 | Snow Brand Milk Products Co., Ltd. | Serum free culture medium |
SE465222C5 (sv) | 1989-12-15 | 1998-02-10 | Pharmacia & Upjohn Ab | Ett rekombinant, humant faktor VIII-derivat och förfarande för dess framställning |
AT393356B (de) | 1989-12-22 | 1991-10-10 | Immuno Ag | Verfahren zur herstellung von fsme-virus-antigen |
CA2074363C (en) * | 1990-01-22 | 2004-11-09 | David Thomas Vistica | Co2-independent growth medium for maintenance and propagation of cells |
JP2844484B2 (ja) * | 1990-02-22 | 1999-01-06 | 味の素株式会社 | 組換え蛋白質の生産方法 |
JP2859679B2 (ja) | 1990-03-01 | 1999-02-17 | 協和醗酵工業株式会社 | 新規細胞株 |
JP2696001B2 (ja) | 1991-04-15 | 1998-01-14 | 財団法人化学及血清療法研究所 | 組換え蛋白質産生用培地 |
US5378612A (en) | 1990-05-11 | 1995-01-03 | Juridical Foundation The Chemo-Sero-Therapeutic Research Institute | Culture medium for production of recombinant protein |
JPH04228066A (ja) | 1990-10-23 | 1992-08-18 | Rikagaku Kenkyusho | 外来遺伝子発現用培養細胞 |
JPH05123178A (ja) * | 1991-11-01 | 1993-05-21 | Ajinomoto Co Inc | L−フエニルアラニンの製造法 |
DK53792D0 (da) | 1992-04-24 | 1992-04-24 | Novo Nordisk As | Fremgangsmaade til fremstilling af proteiner |
RU2057176C1 (ru) | 1992-05-20 | 1996-03-27 | Институт генетики АН Республики Молдова | Питательная среда для культивирования клеток человека и животных |
AU7895898A (en) | 1993-04-26 | 1998-10-08 | Hans Wolf | Mammal cell lines and method of obtaining glycoproteins |
DE4313620A1 (de) | 1993-04-26 | 1994-10-27 | Biotechnolog Forschung Gmbh | Hamsterzellinien und Verfahren zur Glykoproteingewinnung |
US5405637A (en) | 1993-06-30 | 1995-04-11 | Bristol-Myers Squibb Company | Milk protein partial hydrolysate and infant formula containing same |
JP2766165B2 (ja) * | 1993-08-02 | 1998-06-18 | 株式会社バイオポリマー・リサーチ | バクテリアセルロースの製造方法 |
CN1088984A (zh) * | 1993-11-11 | 1994-07-06 | 江西省医学科学研究所 | 一种用于造血祖细胞培养的无血清培养基 |
US5719050A (en) | 1993-12-24 | 1998-02-17 | Eiken Chemical Co., Ltd. | Animal cell culturing media containing N-acetyl-L-glutamic acid |
EP0666312A1 (en) | 1994-02-08 | 1995-08-09 | Wolfgang A. Renner | Process for the improvement of mammalian cell growth |
US5789247A (en) | 1994-04-01 | 1998-08-04 | Ballay; Annick | Expression in non-tumoral human lymphoblastoid lines with an integrative vector |
JP2684521B2 (ja) | 1994-08-19 | 1997-12-03 | ハムス株式会社 | ベルトループ縫付けミシンにおけるテープ折り曲げ端の形成維持方法及びその装置 |
EP0733100A1 (de) | 1994-09-09 | 1996-09-25 | Wolfgang A. Renner | Chemisches verfahren zur förderung der proliferation von tierischen zellen |
DE69535940D1 (de) | 1994-11-10 | 2009-06-04 | Baxter Healthcare Sa | Verfahren zur Herstellung von biologischen Produkten in Protein-freiem Kultur |
AT403167B (de) | 1994-11-14 | 1997-11-25 | Immuno Ag | Selektion und expression von fremdproteinen mittels eines selektions-amplifikations-systems |
JP3244391B2 (ja) | 1994-12-08 | 2002-01-07 | 財団法人国際超電導産業技術研究センター | 複合基板及びそれを用いた単結晶基板の製造方法 |
WO1996018734A1 (en) | 1994-12-16 | 1996-06-20 | Novartis Ag | Production of recombinant secretory component |
AU703484B2 (en) * | 1995-02-23 | 1999-03-25 | Quest International Services B.V. | Peptides for tissue and cell culture media |
US5741705A (en) | 1995-02-23 | 1998-04-21 | Quest International Flavors & Food Ingredients Company, Division Of Indopco, Inc. | Method for in vitro cell growth of eucaryotic cells using low molecular weight peptides |
WO1996040866A1 (en) | 1995-06-07 | 1996-12-19 | Novartis Ag | Serum-free media for primitive hematopoietic cells and methods of use thereof |
AUPN442295A0 (en) | 1995-07-26 | 1995-08-17 | Commonwealth Scientific And Industrial Research Organisation | Regulated autocrine growth of mammalian cells |
JPH09107955A (ja) * | 1995-10-24 | 1997-04-28 | Kyowa Hakko Kogyo Co Ltd | 動物細胞培養用培地 |
PT906029E (pt) * | 1996-04-09 | 2002-11-29 | Du Pont | Produto de proteina de soja enriquecido em isoflavona e metodo para o seu fabrico |
WO1998008934A1 (en) * | 1996-08-30 | 1998-03-05 | Life Technologies, Inc. | Serum-free mammalian cell culture medium, and uses thereof |
AU4751697A (en) * | 1996-10-10 | 1998-05-05 | Douglas Danner | Animal cell culture media comprising plant-derived nutrients |
JPH10211488A (ja) | 1997-01-28 | 1998-08-11 | Akai Electric Co Ltd | 紫外線殺菌装置 |
US6383810B2 (en) * | 1997-02-14 | 2002-05-07 | Invitrogen Corporation | Dry powder cells and cell culture reagents and methods of production thereof |
US5804420A (en) | 1997-04-18 | 1998-09-08 | Bayer Corporation | Preparation of recombinant Factor VIII in a protein free medium |
WO1998054296A1 (en) | 1997-05-28 | 1998-12-03 | Chiron S.P.A. | Culture medium with yeast or soy bean extract as aminoacid source and no protein complexes of animal origin |
EP0986644B1 (de) | 1997-07-23 | 2006-10-04 | Boehringer Mannheim GmbH | Herstellung von erythropoietin durch endogene genaktivierung mit viralen promotoren |
JPH11211488A (ja) | 1998-01-21 | 1999-08-06 | Matsushita Electric Ind Co Ltd | 携帯情報端末を用いたデータ転送システム |
FR2775983B1 (fr) * | 1998-03-13 | 2000-11-10 | Pasteur Merieux Serums Vacc | Milieu et procede de propagation et de multiplication virales |
WO1999057246A1 (en) | 1998-05-01 | 1999-11-11 | Life Technologies, Inc. | Animal cell culture media comprising non-animal or plant-derived nutrients |
US6406909B1 (en) * | 1998-07-10 | 2002-06-18 | Chugai Seiyaku Kabushiki Kaisha | Serum-free medium for culturing animal cells |
AT409379B (de) | 1999-06-02 | 2002-07-25 | Baxter Ag | Medium zur protein- und serumfreien kultivierung von zellen |
DE59913565D1 (de) | 1999-08-05 | 2006-07-27 | Baxter Ag | Rekombinanter stabiler zellklon, seine herstellung und verwendung |
PT1210411E (pt) | 1999-08-25 | 2006-12-29 | Immunex Corp | Composições e métodos para cultura celular melhorada |
AU2356002A (en) | 2000-09-25 | 2002-04-02 | Polymun Scient Immunbio Forsch | Live vaccine and method of manufacture |
EP1208966A1 (en) | 2000-11-27 | 2002-05-29 | Cheng-Kun Liao | Manufacturing process of patio tabletop glass with broken protection |
CN101058800B (zh) | 2002-07-09 | 2013-03-13 | 巴克斯特国际有限公司 | 用于细胞培养的无动物蛋白质培养基 |
JP4316484B2 (ja) | 2004-12-10 | 2009-08-19 | シャープ株式会社 | 画像形成装置、トナー濃度制御方法、トナー濃度制御プログラムおよびその記録媒体 |
-
1999
- 1999-09-28 AT AT0165999A patent/AT409379B/de not_active IP Right Cessation
-
2000
- 2000-09-27 RU RU2002111335A patent/RU2266325C2/ru active
- 2000-09-27 CN CNB008160201A patent/CN1318577C/zh not_active Expired - Lifetime
- 2000-09-27 PT PT00969319T patent/PT1220893E/pt unknown
- 2000-09-27 SK SK400-2002A patent/SK288059B6/sk not_active IP Right Cessation
- 2000-09-27 CZ CZ2002-1096A patent/CZ305307B6/cs not_active IP Right Cessation
- 2000-09-27 DE DE60028989.3T patent/DE60028989T3/de not_active Expired - Lifetime
- 2000-09-27 HU HU0202759A patent/HU228210B1/hu unknown
- 2000-09-27 ES ES00969319.3T patent/ES2265991T5/es not_active Expired - Lifetime
- 2000-09-27 EP EP00969319.3A patent/EP1220893B2/en not_active Expired - Lifetime
- 2000-09-27 DK DK00969319.3T patent/DK1220893T4/en active
- 2000-09-27 SI SI200030887T patent/SI1220893T1/sl unknown
- 2000-09-27 WO PCT/EP2000/009453 patent/WO2001023527A1/en active Application Filing
- 2000-09-27 TR TR200200757T patent/TR200200757T2/xx unknown
- 2000-09-27 CA CA002385299A patent/CA2385299A1/en not_active Abandoned
- 2000-09-27 CN CN2007100968436A patent/CN101173246B/zh not_active Expired - Lifetime
- 2000-09-27 IL IL14864200A patent/IL148642A0/xx unknown
- 2000-09-27 RU RU2005123274A patent/RU2380412C2/ru active
- 2000-09-27 PL PL355233A patent/PL215234B1/pl unknown
- 2000-09-27 AU AU79083/00A patent/AU780791B2/en not_active Expired
- 2000-09-27 JP JP2001526911A patent/JP5441288B2/ja not_active Expired - Lifetime
- 2000-09-27 AT AT00969319T patent/ATE331025T2/de active
-
2002
- 2002-03-12 IL IL148642A patent/IL148642A/en active IP Right Grant
-
2003
- 2003-04-01 US US10/405,794 patent/US20030203448A1/en not_active Abandoned
-
2006
- 2006-07-31 CY CY20061101076T patent/CY1106135T1/el unknown
-
2007
- 2007-08-20 US US11/841,915 patent/US8021881B2/en not_active Expired - Fee Related
-
2009
- 2009-08-20 RU RU2009131610/10A patent/RU2536244C2/ru active
-
2011
- 2011-01-31 JP JP2011018089A patent/JP2011135880A/ja not_active Withdrawn
- 2011-08-04 US US13/198,476 patent/US8722406B2/en not_active Expired - Fee Related
-
2012
- 2012-05-24 IL IL219969A patent/IL219969A/en active IP Right Grant
-
2013
- 2013-03-08 JP JP2013047095A patent/JP5777653B2/ja not_active Expired - Lifetime
-
2014
- 2014-03-31 US US14/231,221 patent/US9441203B2/en not_active Expired - Fee Related
-
2016
- 2016-01-13 JP JP2016004545A patent/JP6348521B2/ja not_active Expired - Lifetime
- 2016-08-12 US US15/235,453 patent/US9982286B2/en not_active Expired - Fee Related
- 2016-08-23 US US15/244,302 patent/US20170002392A1/en not_active Abandoned
-
2017
- 2017-02-15 IL IL250619A patent/IL250619B/en active IP Right Grant
- 2017-05-22 JP JP2017100754A patent/JP6467459B2/ja not_active Expired - Lifetime
-
2018
- 2018-09-21 JP JP2018177305A patent/JP2019030306A/ja active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4431629A (en) * | 1980-05-13 | 1984-02-14 | Novo Industri A/S | Method of producing an egg white substitute material |
US4767704A (en) * | 1983-10-07 | 1988-08-30 | Columbia University In The City Of New York | Protein-free culture medium |
US4978616A (en) * | 1985-02-28 | 1990-12-18 | Verax Corporation | Fluidized cell cultivation process |
US6048728A (en) * | 1988-09-23 | 2000-04-11 | Chiron Corporation | Cell culture medium for enhanced cell growth, culture longevity, and product expression |
US5122469A (en) * | 1990-10-03 | 1992-06-16 | Genentech, Inc. | Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins |
US5633162A (en) * | 1990-10-17 | 1997-05-27 | Glaxo Wellcome Inc. | Method for culturing Chinese hamster ovary cells |
US5393668A (en) * | 1991-09-11 | 1995-02-28 | Hans-Wilhelm Doerr | Cultivation of mammalian cells in a protein-free medium on a polyvinylformal and/or polyvinyl butyral surface |
US5851800A (en) * | 1996-05-14 | 1998-12-22 | Pharmacia & Upjohn Ab | Process for producing a protein |
US6100061A (en) * | 1997-06-20 | 2000-08-08 | Immuno Aktiengesellschaft | Recombinant cell clone having increased stability in serum- and protein-free medium and a method of recovering the stable cell clone and the production of recombinant proteins by using a stable cell clone |
US6475725B1 (en) * | 1997-06-20 | 2002-11-05 | Baxter Aktiengesellschaft | Recombinant cell clones having increased stability and methods of making and using the same |
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8080414B2 (en) | 1997-06-20 | 2011-12-20 | Baxter Innovations Gmbh | Recombinant cell clones having increased stability and methods of making and using the same |
US20090258391A1 (en) * | 1997-06-20 | 2009-10-15 | Baxter Aktiengesellschaft | Recombinant cell clones having increased stability and methods of making and using same |
US20100317055A1 (en) * | 1997-06-20 | 2010-12-16 | Baxter Aktiengesellschaft | Recombinant Cell Clones Having Increased Stability and Methods of Making and Using the Same |
US20100221828A1 (en) * | 1997-06-20 | 2010-09-02 | Baxter Aktiengesellschaft | Recombinant cell clones having increased stability and methods of making and using the same |
US20090253178A1 (en) * | 1997-06-20 | 2009-10-08 | Baxter Aktiengesellschaft | Recombinant cell clones having increased stability and methods of making and using the same |
US20070161079A1 (en) * | 1997-06-20 | 2007-07-12 | Baxter Aktiengesellschaft | Recombinant cell clones having increased stability and methods of making and using the same |
USRE46860E1 (en) | 1997-06-20 | 2018-05-22 | Baxalta Incorporated | Recombinant cell clones having increased stability and methods of making and using the same |
US8329465B2 (en) | 1997-06-20 | 2012-12-11 | Baxter Innovations Gmbh | Recombinant cell clones having increased stability and methods of making and using the same |
US8084252B2 (en) | 1997-06-20 | 2011-12-27 | Baxter Innovations Gmbh | Recombinant cell clones having increased stability and methods of making and using the same |
US20110104758A1 (en) * | 1997-06-20 | 2011-05-05 | Baxter Aktiengesellschaft | Recombinant cell clones having increased stability and methods of making and using the same |
USRE46897E1 (en) | 1997-06-20 | 2018-06-19 | Baxalta Incorporated | Recombinant cell clones having increased stability and methods of making and using the same |
USRE46745E1 (en) | 1997-06-20 | 2018-03-06 | Baxalta Incorporated | Recombinant cell clones having increased stability and methods of making and using the same |
US8084251B2 (en) | 1997-06-20 | 2011-12-27 | Baxter Innovations Gmbh | Recombinant cell clones having increased stability and methods of making and using the same |
US9441203B2 (en) | 1999-09-28 | 2016-09-13 | Baxalta Innovations Gmbh | Medium for the protein-free and serum-free cultivation of cells |
US9982286B2 (en) | 1999-09-28 | 2018-05-29 | Baxalta Incorporated | Medium for the protein-free and serum-free cultivation of cells |
US8722406B2 (en) | 1999-09-28 | 2014-05-13 | Baxter Innovations Gmbh | Medium for the protein-free and serum-free cultivation of cells |
US8021881B2 (en) | 1999-09-28 | 2011-09-20 | Baxter Innovations Gmbh | Medium for the protein-free and serum-free cultivation of cells |
US20060165663A1 (en) * | 2002-06-10 | 2006-07-27 | Japan Science And Technology Agency | Scaffold material for regeneration of hard tissue/soft tissue interface |
US8524497B2 (en) | 2002-07-09 | 2013-09-03 | Baxter International Inc. | Animal protein free media for cultivation of cells |
US9163211B2 (en) | 2002-07-09 | 2015-10-20 | Baxter International Inc. | Animal protein free media for cultivation of cells |
US7955833B2 (en) | 2002-07-09 | 2011-06-07 | Baxter International Inc. | Animal protein free media for cultivation of cells |
US20110217772A1 (en) * | 2002-07-09 | 2011-09-08 | Baxter International Inc. | Animal protein free media for cultivation of cells |
US20040077086A1 (en) * | 2002-07-09 | 2004-04-22 | Manfred Reiter | Animal protein free media for cultivation of cells |
US20110081680A1 (en) * | 2004-10-29 | 2011-04-07 | Baxter International Inc. | Animal Protein-Free Media For Cultivation of Cells |
US7598083B2 (en) | 2004-10-29 | 2009-10-06 | Centocor, Inc. | Chemically defined media compositions |
US10138461B2 (en) | 2004-10-29 | 2018-11-27 | Baxalta GmbH | Animal protein-free media for cultivation of cells |
US20080064105A1 (en) * | 2004-10-29 | 2008-03-13 | Baxter Healthcare Corporation | Animal protein-free media for cultivation of cells |
US9809796B2 (en) | 2004-10-29 | 2017-11-07 | Baxalta GmbH | Animal protein-free media for cultivation of cells |
US9714411B2 (en) | 2004-10-29 | 2017-07-25 | Baxalta GmbH | Animal protein-free media for cultivation of cells |
US20080064080A1 (en) * | 2004-10-29 | 2008-03-13 | Baxter Healthcare Corporation | Animal protein-free media for cultivation of cells |
US8440408B2 (en) | 2004-10-29 | 2013-05-14 | Baxter International Inc. | Animal protein-free media for cultivation of cells |
US20080009040A1 (en) * | 2004-10-29 | 2008-01-10 | Baxter Healthcare Corporation | Animal protein-free media for cultivation of cells |
US10655099B2 (en) | 2004-10-29 | 2020-05-19 | Baxalta Incorporated | Animal protein-free media for cultivation of cells |
US20060094104A1 (en) * | 2004-10-29 | 2006-05-04 | Leopold Grillberger | Animal protein-free media for cultivation of cells |
US9222075B2 (en) | 2004-10-29 | 2015-12-29 | Baxalta Incorporated | Animal protein-free media for cultivation of cells |
US20060094113A1 (en) * | 2004-10-29 | 2006-05-04 | David Epstein | Chemically defined media compositions |
US8748156B2 (en) | 2004-10-29 | 2014-06-10 | Baxter International Inc. | Animal protein-free media for cultivation of cells |
US8530192B2 (en) | 2005-02-11 | 2013-09-10 | Novo Nordisk Healthcare Ag | Production of a polypeptide in a serum-free cell culture liquid containing plant protein hydrolysate |
US20080254514A1 (en) * | 2005-02-11 | 2008-10-16 | Novo Nordisk Health Care Ag | Production of a Polypeptide in a Serum-Free Cell Culture Liquid Containing Plant Protein Hydrolysate |
KR100670105B1 (ko) | 2005-06-29 | 2007-01-17 | 주식회사 셀트리온 | 콩가수분해물의 저분자량 분획을 이용하여 시알산 함량이증가된 에리스로포이에틴을 생산하는 방법 및 그에 의하여생산된 시알산 함량이 증가된 에리스로포이에틴 |
US9758568B2 (en) | 2006-01-04 | 2017-09-12 | Baxalta GmbH | Oligopeptide-free cell culture media |
US20110151512A1 (en) * | 2006-01-04 | 2011-06-23 | Baxter International Inc. | Oligopeptide-free cell culture media |
US10696731B2 (en) | 2006-01-04 | 2020-06-30 | Baxalta GmbH | Oligopeptide-free cell culture media |
US9982033B2 (en) * | 2007-05-04 | 2018-05-29 | Novo Nordisk A/S | Factor VIII polypeptide titers in cell cultures |
US20100120094A1 (en) * | 2007-05-04 | 2010-05-13 | Novo Nordisk A/S | Factor viii polypeptide titers in cell cultures |
US9441207B2 (en) | 2008-06-16 | 2016-09-13 | Intervet Inc. | Method of replicating viruses in suspension cultures of dog kidney cells |
EP2356247B2 (en) † | 2008-11-12 | 2019-05-15 | Baxalta Incorporated | Method of producing serum-free insulin-free factor vii |
US20100120093A1 (en) * | 2008-11-12 | 2010-05-13 | Baxter International Inc. | Method of Producing Serum-Free Insulin-Free Factor VII |
WO2010056584A1 (en) | 2008-11-12 | 2010-05-20 | Baxter International Inc. | Method of producing serum-free insulin-free factor vii |
EP2977461A1 (en) | 2008-11-12 | 2016-01-27 | Baxalta Incorporated | Method of producing serum-free insulin-free factor vii |
WO2012030217A2 (en) | 2010-08-31 | 2012-03-08 | Friesland Brands B.V. | Culture medium for eukaryotic cells |
WO2012030217A3 (en) * | 2010-08-31 | 2012-07-19 | Friesland Brands B.V. | Culture medium for eukaryotic cells |
US9505834B2 (en) | 2011-04-27 | 2016-11-29 | Abbvie Inc. | Methods for controlling the galactosylation profile of recombinantly-expressed proteins |
WO2013133715A1 (en) | 2012-03-08 | 2013-09-12 | Friesland Brands B.V. | Culture medium for eukaryotic cells |
WO2013133714A1 (en) | 2012-03-08 | 2013-09-12 | Friesland Brands B.V. | Culture medium for eukaryotic cells |
US9505833B2 (en) | 2012-04-20 | 2016-11-29 | Abbvie Inc. | Human antibodies that bind human TNF-alpha and methods of preparing the same |
US9708400B2 (en) | 2012-04-20 | 2017-07-18 | Abbvie, Inc. | Methods to modulate lysine variant distribution |
US9957318B2 (en) | 2012-04-20 | 2018-05-01 | Abbvie Inc. | Protein purification methods to reduce acidic species |
US9683033B2 (en) | 2012-04-20 | 2017-06-20 | Abbvie, Inc. | Cell culture methods to reduce acidic species |
US9512214B2 (en) | 2012-09-02 | 2016-12-06 | Abbvie, Inc. | Methods to control protein heterogeneity |
US9708399B2 (en) | 2013-03-14 | 2017-07-18 | Abbvie, Inc. | Protein purification using displacement chromatography |
US9499614B2 (en) | 2013-03-14 | 2016-11-22 | Abbvie Inc. | Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosaccharides |
US9598667B2 (en) | 2013-10-04 | 2017-03-21 | Abbvie Inc. | Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins |
US9688752B2 (en) | 2013-10-18 | 2017-06-27 | Abbvie Inc. | Low acidic species compositions and methods for producing and using the same using displacement chromatography |
US9522953B2 (en) | 2013-10-18 | 2016-12-20 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same |
US9499616B2 (en) | 2013-10-18 | 2016-11-22 | Abbvie Inc. | Modulated lysine variant species compositions and methods for producing and using the same |
US9550826B2 (en) | 2013-11-15 | 2017-01-24 | Abbvie Inc. | Glycoengineered binding protein compositions |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9982286B2 (en) | Medium for the protein-free and serum-free cultivation of cells | |
US6475725B1 (en) | Recombinant cell clones having increased stability and methods of making and using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAXTER AKTIENGESELLSCHAFT, AUSTRIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REITER, MANFRED;MUNDT, WOLFGANG;DORNER, FRIEDRICH;AND OTHERS;REEL/FRAME:018043/0418;SIGNING DATES FROM 20060710 TO 20060712 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: BAXTER INNOVATIONS GMBH, AUSTRIA Free format text: CHANGE OF NAME;ASSIGNOR:BAXTER AKTIENGESELLSCHAFT;REEL/FRAME:025913/0329 Effective date: 20080509 |