US20030108793A1 - Cathode compositions for lithium ion batteries - Google Patents

Cathode compositions for lithium ion batteries Download PDF

Info

Publication number
US20030108793A1
US20030108793A1 US10/210,919 US21091902A US2003108793A1 US 20030108793 A1 US20030108793 A1 US 20030108793A1 US 21091902 A US21091902 A US 21091902A US 2003108793 A1 US2003108793 A1 US 2003108793A1
Authority
US
United States
Prior art keywords
lithium
ion battery
crystal structure
composition
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/210,919
Other languages
English (en)
Inventor
Jeffrey Dahn
Zhonghua Lu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US10/210,919 priority Critical patent/US20030108793A1/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAHN, JEFFREY R., LU, ZHONGHUA
Publication of US20030108793A1 publication Critical patent/US20030108793A1/en
Priority to US11/317,607 priority patent/US7368071B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This invention relates to compositions useful as cathodes for lithium ion batteries.
  • Lithium-ion batteries typically include an anode, an electrolyte, and a cathode that contains lithium in the form of a lithium-transition metal oxide.
  • lithium-transition metal oxides that have been used include lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide. None of these materials, however, exhibits an optimal combination of high initial capacity, high thermal stability, and good capacity retention after repeated charge-discharge cycling.
  • the invention features a cathode composition for a lithium ion battery that contains lithium having the formula (a) Li y [M 1 (1 ⁇ b) Mn b ]O 2 or (b) Li y [M 1 (1 ⁇ b) Mn b ]O 15+c where 0 ⁇ y ⁇ 1, 0 ⁇ b ⁇ 1 and 0 ⁇ c ⁇ 0.5 and M 1 represents one or more metal elements, with the proviso that for (a) M 1 is a metal element other than chromium.
  • the composition is in the form of a single phase having an O3 crystal structure that does not undergo a phase transformation to a spinel crystal structure when incorporated in a lithium-ion battery and cycled for 100 full charge-discharge cycles at 30° C. and a final capacity of 130 mAh/g using a discharge current of 30 mA/g.
  • the invention also features lithium-ion batteries incorporating these cathode compositions in combination with an anode and an electrolyte.
  • the resulting cathode composition has the formula Li y [Li (1 ⁇ 2x)/3 M 2 x Mn (2 ⁇ x)/3 ]O 15+x .
  • An example of M 2 is nickel.
  • M 1 (1 ⁇ b) , M 2 and x are defined as in the first embodiment, with the proviso that (1 ⁇ 2x) ⁇ y ⁇ 1 and M 2 is a metal element other than chromium.
  • the resulting cathode composition has the formula Li y [Li (1 ⁇ 2x)/3 M 2 x Mn (2 ⁇ x)/3 ]O 2 .
  • An example of M 2 is nickel.
  • M 1 (1 ⁇ b) , M 2 and x are defined as in the first embodiment, with the proviso that 0 ⁇ y ⁇ (1 ⁇ 2x), 0 ⁇ a ⁇ (1 ⁇ y) and M 2 is a metal element other than chromium.
  • the resulting cathode has the formula Li y+a [Li (1 ⁇ 2x)/3 M 2 x Mn (2 ⁇ x)/3 ]O 1.5+x+y/2 .
  • An example of M 2 is nickel.
  • a fourth embodiment of (b); b, M 1 (1 ⁇ b) , M 2 and x are defined as in the first embodiment, with the proviso that 0 ⁇ y ⁇ (1 ⁇ 2x).
  • the resulting cathode composition has the formula Li y [Li (1 ⁇ 2x)/3 M 2 x Mn (2 ⁇ x)/3 ]O 1.5+x+y/2 .
  • An example of M 2 is nickel.
  • the resulting cathode composition has the formula Li y [Li (1 ⁇ x)/3 M 2 x Mn (2 ⁇ 2x)/3 ]O 15+x/2 .
  • M 2 are Co or Fe and combinations therof.
  • the resulting cathode composition has the formula Li y [Li (1 ⁇ x)/3 M 2 x Mn (2 ⁇ 2x)/3 ]O 15+x/2 .
  • M 2 are Co or Fe and combinations therof.
  • M 1 (1 ⁇ b) , M 2 and x are defined as in the fifth embodiment with the proviso that (1 ⁇ x) ⁇ y ⁇ 1 and M 2 is a metal element other than chromium.
  • the resulting cathode composition has the formula Li y [Li (1 ⁇ x)/3 M 2 x Mn (2 ⁇ 2x)/3 ]O 2 .
  • M 2 are Co or Fe and combinations thereof.
  • M 1 (1 ⁇ b) , M 2 and x are defined as in the fifth embodiment, with the proviso that 0 ⁇ y ⁇ (1 ⁇ x).
  • the resulting cathode composition has the formula Li y [Li (1 ⁇ x)/3 M 2 x Mn (2 ⁇ 2x)/3 ]O 15+x/2+y2 .
  • M 2 are Co or Fe and combinations thereof.
  • the resulting cathode composition has the formula Li y [Li (1 ⁇ x)/3 M 2 x Mn (2 ⁇ 2x)/3 ]O 15+15 x.
  • M 2 is chromium.
  • the resulting cathode composition has the formula Li y+a [Li (1 ⁇ x)/3 M 2 x Mn (2 ⁇ 2x)/3 ]O 1.5+1.5x+y/2 .
  • An example of M 2 is chromium.
  • the resulting cathode composition has the formula Li y [Li (1 ⁇ x)/3 M 2 x Mn (2 ⁇ 2x)/3 ]O 15x+15+y/2 .
  • M 2 is chromium.
  • the invention provides cathode compositions, and lithium-ion batteries incorporating these compositions, that exhibit high initial capacities and good capacity retention after repeated charge-discharge cycling.
  • the cathode compositions do not evolve substantial amounts of heat during elevated temperature abuse, thereby improving battery safety.
  • the cycling was between 2.0 and 4.8 V at 5 mA/g.
  • the cycling was between 3.0 and 4.4 V at 10 mA/g.
  • FIG. 3 is a plot of specific capacity versus x in Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 over various voltage ranges.
  • the solid and dashed lines as indicated give expected capacities.
  • the circles give the experimental capacity to 4.45 V, the squares give the experimental capacity of the anomalous plateau and the triangles give the experimental first charge capacity.
  • FIG 4 b shows the diffraction pattern of the starting powder.
  • the in-situ scans are synchronized with the voltage-time curve in FIG. 4 c . For example, the 8th x-ray scan took place at the top of the first charge as indicated.
  • FIG. 5 a is the voltage-time curve
  • FIG. 5 b are the lattice constants a and c
  • FIG. 5 c is the unit cell volume correlated to the voltage-time curve. The cell was cycled between 3.0 and 4.4 V
  • FIGS. 6 a - e are plots of differential capacity versus voltage for Li/Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 cells with x as indicated. The cells were charged and discharged between 3.0 and 4.4 V using a specific current of 10 mA/g.
  • FIG. 7 a is the voltage-time curve
  • FIG. 7 b are the lattice constants a and c
  • FIG. 7 c is the unit cell volume correlated to the voltage-time curve. The cell was cycled between 2.0 and 4.8 V.
  • FIG. 8 b shows the diffraction pattern of the starting powder.
  • the in-situ scans are synchronized with the voltage-time curve in FIG. 8 c . For example, the 16th x-ray scan took place at the top of the first charge as indicated.
  • FIG. 9 a is the voltage-time curve;
  • FIG. 9 b are the lattice constants a and c; and
  • FIG. 9 c is the unit cell volume correlated to the voltage-time curve. The cell was cycled between 2.0 and 4.8 V.
  • FIG. 10 is a Gibbs triangle for the Li—M—O ternary system with M representing Ni x Mn (2/3 ⁇ x/3) . The compositions of relevant phases are indicated.
  • FIG. 11 is an expanded portion of the Li—M—O Gibbs triangle of FIG. 10 showing the region of interest for the charge and discharge of Li/Li[Ni x Li (1 ⁇ 2x)/3 Mn (2 ⁇ x)/3 ]O 2 cells.
  • FIGS. 12 a - e are plots of differential capacity versus voltage for Li/Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 cells with x as indicated. The cells were charged and discharged between 2.0 and 4.8 V using a specific current of 5 mA/g.
  • FIG. 13 is a plot of the portion of the discharge capacity of Li/Li[Ni x Li (1 ⁇ 2x)/3 Mn (2 ⁇ x)/3 ]O 2 cells (first charged to 4.8 V) due to the reduction of Mn.
  • the points are the experimental results, the solid line is the prediction if the capacity is governed by the sites available in the Li layer (after the Ni 4+ is reduced to Ni 2+ ) and the dashed line is the capacity available if all Mn 4+ in the compound is reduced to Mn 3+ .
  • the estimated stoichiometry of the sample at this potential based on oxidation state arguments (see table 1) is [Ni 033 Li 0113 Mn 0556 ]O 1833.
  • the calculated pattern is shown as the solid line.
  • FIGS. 14 c and 14 d show the variation of the goodness of fit (G.O.F.) and the Bragg-R factor versus the occupation of the oxygen sites.
  • FIGS. 16 a - g are plots of capacity vs. cycle number for the materials of FIGS. 15 a - g under the same cycling conditions.
  • Cathode compositions have the formulae set forth in the Summary of the Invention, above.
  • the formulae themselves, as well as the choice of particular metal elements, and combinations thereof, for M 1 and M 2 reflect certain criteria that the inventors have discovered are useful for maximizing cathode performance.
  • the cathode compositions preferably adopt an O3 crystal structure featuring layers generally arranged in the sequence lithium-oxygen-metal-oxygen-lithium. This crystal structure is retained when the cathode composition is incorporated in a lithium-ion battery and cycled for 100 full charge-discharge cycles at 30° C.
  • the cathode compositions can be synthesized by electrochemically cycling cathode material described in Dahn, et.al.
  • Heating is preferably conducted in air at temperatures of at least about 600° C., more preferably at least 800° C. In general, higher temperatures are preferred because they lead to materials with increased crystallinity.
  • the ability to conduct the heating process in air is desirable because it obviates the need and associated expense of maintaining an inert atmosphere. Accordingly, the particular metal elements are selected such that they exhibit appropriate oxidation states in air at the desired synthesis temperature. Conversely, the synthesis temperature may be adjusted so that a particular metal element exists in a desired oxidation state in air at that temperature.
  • cathode composition examples include Ni, Co, Fe, Cu, Li, Zn, V, and combinations thereof.
  • Particularly preferred cathode compositions are those having the following formulae (where weighted average oxidation state of all M 2 is 2 when in a fully uncharged state and 4 when in a fully charged state):
  • the cathode compositions can be combined with an anode and an electrolyte to form a lithium-ion battery.
  • suitable anodes include lithium metal, graphite, and lithium alloy compositions, e.g., of the type described in Turner, U.S. Pat. No. 6,203,944 entitled “Electrode for a Lithium Battery” and Turner, WO 00/03444 entitled “Electrode Material and Compositions.”
  • the electrolyte can be liquid or solid.
  • solid electrolytes include polymeric electrolytes such as polyethylene oxide, polytetrafluoroethylene, fluorine-containing copolymers, and combinations thereof.
  • liquid electrolytes examples include ethylene carbonate, diethyl carbonate, propylene carbonate, and combinations thereof.
  • the electrolyte is provided with a lithium electrolyte salt.
  • suitable salts include LiPF 6 , LiBF 4 , and LiClO 4 .
  • Li/Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 is derived from Li 2 MnO 3 or Li[Li 1/3 Mn 2/3 ]O 2 by substitution of Li + and Mn 4+ by Ni 2+ while maintaining all the remaining Mn atoms in the 4+ oxidation state.
  • Conventional wisdom suggests that lithium can be removed from these materials only until both the Ni and Mn oxidation states reach 4 + giving a charge capacity of 2y.
  • Li/Li[Ni x Li (1/3 ⁇ 2/x3) Mn (2/3 ⁇ x/3) ]O 2 cells give smooth reversible voltage profiles reaching about 4.45 V when 2x Li atoms per formula unit are removed, as expected.
  • the cells are charged to higher voltages, surprisingly they exhibit a long plateau of length approximately equal to 1 ⁇ 2x in the range between 4.5 and 4.7 V. Subsequent to this plateau the materials can reversibly cycle over 225 mAh/g (almost one Li atom per formula unit) between 2.0 and 4.8 V.
  • In-situ x-ray diffraction and differential capacity measurements are used to infer that irreversible loss of oxygen from the compounds with x ⁇ 1 ⁇ 2 occurs during the first charge to 4.8 V.
  • These oxygen deficient materials then reversibly react with lithium.
  • the electrochemical activity during the first extraction of lithium is thought to be derived from the oxidation of Ni (Ni 2+ ⁇ Ni 4+ , Cr (Cr 3+ ⁇ Cr 6+ ) or Co (Co 3+ ⁇ Co 4+ ).
  • Ni Ni 2+ ⁇ Ni 4+ , Cr (Cr 3+ ⁇ Cr 6+ ) or Co (Co 3+ ⁇ Co 4+ ).
  • These oxidation state changes therefore, set limits for the maximum amount of Li that can be extracted from the compounds in a conventional intercalation process.
  • the Ni oxidation state reaches 4+ at the stoichiometry Li 1 ⁇ 2x [Ni x Li (1 ⁇ 2x)/3 Mn (2 ⁇ x)/3 ]O 2 , leading to an expected reversible capacity of 2x Li per formula unit.
  • There is a clear change in slope of the voltage profile of the first charge near 4.45 V, followed by an irreversible plateau (except for x 1 ⁇ 2), whose length increases as x decreases.
  • the capacity of the first charge between 3.0 V and 4.45 V in the sloping portion of the curve is very near to that expected when Ni reaches 4+, as we will show later below. Therefore, the origin of the long plateau is mysterious, but useful, because it leads to materials with considerably greater reversible capacity.
  • the compositions involved in this irreversible plateau are the focus of this application.
  • the capacity versus cycle number is also shown for the same cells in the right hand panels of the figures.
  • the voltage profiles are smooth and the cells show excellent reversibility.
  • the solid line in FIG. 3 shows the capacity expected before the Ni oxidation state equals +4 plotted versus x in Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 . This occurs at the stoichiometry Li 1 ⁇ 2x [Ni x Li (1 ⁇ 2x)/3 Mn (2 ⁇ x)/3 ]O 2 .
  • FIGS. 5 a - c shows the lattice constants and the unit cell volume correlated to the voltage profile. Within the error of the experiment, the changes to the lattice constants and the unit cell volume appear to be reversible as lithium is removed from and added to the compound.
  • FIGS. 6 a - e shows the differential capacity versus voltage for the Li/Li[Ni x Li (1 ⁇ 2x)/3 Mn (2 ⁇ x)/3 ]O 2 cells cycled between 3.0 and 4.4 V. Apart from small differences between the first charge cycle and later cycles thought to be caused by the impedance of the uncycled Li electrode in the freshly assembled cells, the differential capacity is perfectly repeatable for numerous cycles, suggesting a stable intercalation process for all these materials.
  • FIGS. 1 a - e clearly shows that there is excess capacity available in these samples above 4.45 V which occurs as a plateau between 4.5 and 4.7 V during the first charge cycle.
  • the length of the plateau capacity is plotted versus x in Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 as the squares in FIG. 3.
  • the plateau capacity decreases smoothly with x.
  • the plateau should have a length of 1 ⁇ 2x per formula unit, if all Li atoms can be removed from the Li layers and provided that Li atoms cannot be extracted from the predominantly transition metal layer.
  • This prediction is given as the long dashed line in FIG. 3 and agrees well with the square data points which are the experimental plateau capacities from FIG. 1
  • the total capacity of the first charge of the cells described by FIG. 1 is given as the triangles in FIG. 3, and compared to the capacity expected if all the Li atoms could be extracted from the Li layers. The agreement is quite good.
  • the lattice constant and the unit cell volume changes are correlated to the voltage profile.
  • the c-axis begins to decrease rapidly, consistent with the behaviour observed (for example in LiCoO 2 ) when the last lithium atoms are removed from the lithium layers.
  • the a-axis remains almost constant, while the c-axis is changing.
  • the plateau cannot correspond entirely to a parasitic side reaction involving the electrolyte, because clearly the lithium content of the material is changing. Both the clear plateau near 4.6 V and the region of constant a-axis are not observed during the second charge. Some irreversible change has occurred in the electrode during its charge to 4.8V.
  • FIGS. 8 a - c show the raw in-situ XRD results and FIGS. 9 a - c show the lattice constants and unit cell volume correlated to the cell voltage profile. Both FIGS. 8 and 9 clearly show that the structure of the material, as evidenced by the diffraction pattern and the lattice constants, in the discharged state (53 hours) is different from the virgin sample. In particular, the unit cell volume (FIG. 9 c ) is much larger than in the original material.
  • FIG. 9 c shows the unit cell volume
  • the charge removed must come from the oxygen atoms and therefore the removal of lithium must be accompanied by the expulsion of oxygen from the structure along this plateau.
  • FIG. 10 shows the Gibbs triangle of the ternary Li—M—O system where we have abbreviated Ni x Mn (2 ⁇ x)/3 by M, where x is set by the nickel quantity in Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 .
  • the compositions of relevant phases in the triangle are given.
  • the solid solution series Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 (0 ⁇ x ⁇ 0.5) is found on the line joining Li[Li 1/3 M 2/3 ]O 2 and LiMO 2 .
  • the line joining Li[Li 1/3 M 2/3 ]O 2 and MO 2 represents a line of constant transition metal oxidation state equal to 4+.
  • FIG. 11 shows an expanded view of the Gibbs triangle in the region of interest to describe the charge of a Li/Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 cell.
  • the electrode in the freshly assembled cell begins at the point of intersection between the heavy solid line and the line joining Li[Li 1/3 M 2/3 ]O 2 and LiMO 2 .
  • FIG. 12 reinforces this point by showing that the differential capacity versus voltage of the first charge to 4.8 V is different than the next cycles for the cells described by FIG. 1.
  • the subsequent cycles are very reversible, as predicted by the line from “B” to “C” in FIG. 11.
  • Table 1 gives the expected Mn oxidation state at the point “C” in FIG. 11.
  • the structural model used to calculate the diffraction pattern in figure assumed that the sample retained the O3 structure.
  • Table 2 gives the results of the Rietveld refinement of the charged electrodes.
  • the obtained oxygen stoichiometry is compared to the predicted oxygen stoichiometry at 4.8 V given in table 1 based on oxidation state arguments.
  • the agreement between predicted and measured oxygen stoichiometries appears to be very good and is evidence that the charged materials are oxygen deficient.
  • TABLE 2 Results of ex-situ x-ray diffraction analysis of the samples charged to 4.8 V, showing oxygen loss.
  • LiOH.H 2 O (98%+, Aldrich), Ni(NO 3 ) 2 .6H 2 O (98%+, Fluka) and Mn(NO 3 ) 2 .6H 2 O (97%+, Fluka) were used as the starting materials.
  • a 50 ml aqueous solution of the transition metal nitrates was slowly dripped (1 to 2 hours) into 400 ml of a stirred solution of LiOH using a buret. This causes the precipitation of M(OH) 2 (M ⁇ Mn, Ni) with what we hope is a homogeneous cation distribution.
  • the buret was washed three times to make sure that all the transition metal nitrates were added to the LiOH solution.
  • the precipitate was filtered out and washed twice with additional distilled water to remove the residual Li salts (LiOH and the formed LiNO 3 ). The precipitate was dried in air at 180° C. overnight.
  • the dried precipitate was mixed with the stoichiometric amount of Li(OH).H 2 O and ground in an automatic grinder. Pellets about 5 mm thick were then pressed. The pellets were heated in air at 480° C. for 3 hrs. Tongs were used to remove the pellets from the oven and sandwich them between two copper plates in order to quench the pellets to room temperature. The pellets were ground and new pellets made. The new pellets were heated in air at 900° C. for another 3 hrs and quenched to room temperature in the same way. The samples described here are the same ones reported in U.S. Ser. No. 09/845,178.
  • the heated powder was ground in an automatic grinder again and pellets about 5 mm thick were pressed.
  • the pellets were heated in an argon stream at 900° C. for 3 hours using a Lindberg tube furnace.
  • the oven was heated to 900° C. at a rate of 600° C./hr. After dwelling at 900° C. for 3 hours, the oven was cooled to room temperature at a rate of 600° C./hr.
  • argon was purged through the tube oven for about 3 hrs to remove residual oxygen from the tube.
  • X-ray diffraction was carried out using a Siemens D500 diffractometer equipped with a Cu target X-ray tube and a diffracted beam monochromator.
  • Profile refinement of the data for the powder samples was made using Hill and Howard's version of the Rietveld Program Rietica as described in Rietica v1.62, window version of LHPM, R. J. Hill and C. J. Howard, J. Appl. Crystallogr. 18, 173 (1985); D. B. Wiles and R. A. Young, J. Appl. Crystallogr.14, 149 (1981).
  • the materials are single phase and adopt the ⁇ -NaFeO 2 structure (space group R-3M, #166).
  • In-situ x-ray diffraction measurements were made using the same diffractometer and lattice constants were determined by least squares refinements to the positions of at least 7 Bragg peaks. Rietveld profile refinement was not performed on in-situ x-ray diffraction results.
  • Bellcore-type electrodes were prepared for the electrochemical tests. Z grams of the sample is mixed with ca. 0.1Z (by weight) super S carbon black and 0.25Z Kynar 2801 (PVdF-HFP)(Elf-Atochem). This mixture was added to 3.1Z acetone and 0.4Z dibutyl phthalate (DBP, Aldrich) to dissolve the polymer.
  • DBP dibutyl phthalate
  • the slurry was then spread on a glass plate using a notch bar spreader to obtain an even thickness of 0.66 mm.
  • the dry films were peeled off the plate and punched into circular disks with a diameter of 12 mm.
  • the punched electrode was washed several times in anhydrous diethyl ether to remove the DBP. The washed electrode was dried at 90° C. in air overnight before use.
  • FIGS. 15 a - g and FIGS. 16 a - g show the charge-discharge curves and capacity retention versus cycle number of Li/Li[CrxLi(1 ⁇ 3 ⁇ x/3)Mn(2 ⁇ 3 ⁇ 2x/3)]O 2 cells cycled between 2.0 and 4.8 V using a specific current of 5 mA/g at 30° C.
  • FIGS. 15 a - g shows that the first charge profiles are quite different from the following ones and that the irreversible capacity losses are between 75 mAh/g and 150 mAh/g.
  • 16 a - g shows that the delivered reversible capacity gradually decreases from about 260 mAh/g to almost 0 mAh/g as the Cr content increases from 1 ⁇ 6 to 1.
  • the Cr is believed to be in 3+ oxidation state and the Mn in the 4+ oxidation state. Since Mn4+ can not be oxidized beyond the 4+ oxidation state in these experiments, the Mn4+ is assumed not to take part in the redox reaction.
  • FIG. 17 shows that the first charge is quite different from the following ones.
  • the features (marked with the dashed circle) during the first charge become more pronounced as the Cr content, x increases. These changes may be related to the movement of Cr during the first extraction of Li.
  • the peak in FIG. 17 marked with the solid circle near 4.5 V during the first charge is due to oxygen loss.
  • FIGS. 17 a - g show that the peak near 4.5 V in FIGS. 17 a - g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
US10/210,919 2001-08-07 2002-08-02 Cathode compositions for lithium ion batteries Abandoned US20030108793A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/210,919 US20030108793A1 (en) 2001-08-07 2002-08-02 Cathode compositions for lithium ion batteries
US11/317,607 US7368071B2 (en) 2001-08-07 2005-12-23 Cathode compositions for lithium ion batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31062201P 2001-08-07 2001-08-07
US10/210,919 US20030108793A1 (en) 2001-08-07 2002-08-02 Cathode compositions for lithium ion batteries

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/317,607 Continuation US7368071B2 (en) 2001-08-07 2005-12-23 Cathode compositions for lithium ion batteries

Publications (1)

Publication Number Publication Date
US20030108793A1 true US20030108793A1 (en) 2003-06-12

Family

ID=23203370

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/210,919 Abandoned US20030108793A1 (en) 2001-08-07 2002-08-02 Cathode compositions for lithium ion batteries
US11/317,607 Expired - Lifetime US7368071B2 (en) 2001-08-07 2005-12-23 Cathode compositions for lithium ion batteries

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/317,607 Expired - Lifetime US7368071B2 (en) 2001-08-07 2005-12-23 Cathode compositions for lithium ion batteries

Country Status (8)

Country Link
US (2) US20030108793A1 (fr)
EP (1) EP1425810A2 (fr)
JP (2) JP4955193B2 (fr)
KR (1) KR101036743B1 (fr)
CN (1) CN100459242C (fr)
AU (1) AU2002355544A1 (fr)
TW (1) TW557598B (fr)
WO (1) WO2003015198A2 (fr)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040677A1 (fr) 2002-10-31 2004-05-13 Lg Chem, Ltd. Oxyde de metal de transition de lithium presentant un gradient de composition metallique
US20040121234A1 (en) * 2002-12-23 2004-06-24 3M Innovative Properties Company Cathode composition for rechargeable lithium battery
US20050031957A1 (en) * 2003-08-08 2005-02-10 3M Innovative Properties Company Multi-phase, silicon-containing electrode for a lithium-ion battery
US20050112054A1 (en) * 2003-11-26 2005-05-26 3M Innovative Properties Company Solid state synthesis of lithium ion battery cathode material
WO2005064715A1 (fr) 2003-12-31 2005-07-14 Lg Chem, Ltd. Poudre de matiere active pour electrodes contenant une composition dependante de la taille et procede permettant de preparer ladite matiere
US20060051673A1 (en) * 2004-09-03 2006-03-09 Johnson Christopher S Manganese oxide composite electrodes for lithium batteries
US20060147798A1 (en) * 2001-04-27 2006-07-06 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US20060159994A1 (en) * 2001-08-07 2006-07-20 Dahn Jeffrey R Cathode compositions for lithium ion batteries
US20070020522A1 (en) * 2005-07-25 2007-01-25 3M Innovative Properties Company Alloy composition for lithium ion batteries
US20070020528A1 (en) * 2005-07-25 2007-01-25 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US20070020521A1 (en) * 2005-07-25 2007-01-25 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US20070037043A1 (en) * 2005-07-22 2007-02-15 Chang Sung K Pretreatment method of electrode active material
US20070037056A1 (en) * 2005-08-11 2007-02-15 Hideki Kitao Non-aqueous electrolyte secondary battery
US20070128517A1 (en) * 2005-12-01 2007-06-07 3M Innovative Properties Company Electrode Compositions Based On An Amorphous Alloy Having A High Silicon Content
US20070148546A1 (en) * 2005-12-28 2007-06-28 Noriyuki Shimizu Non-aqueous electrolyte secondary battery
US20070148544A1 (en) * 2005-12-23 2007-06-28 3M Innovative Properties Company Silicon-Containing Alloys Useful as Electrodes for Lithium-Ion Batteries
US20070218359A1 (en) * 2006-02-08 2007-09-20 Noriyuki Shimizu Non-aqueous electrolyte secondary battery
US20070269718A1 (en) * 2006-05-22 2007-11-22 3M Innovative Properties Company Electrode composition, method of making the same, and lithium ion battery including the same
US7303840B2 (en) 2004-09-03 2007-12-04 Uchicago Argonne, Llc Manganese oxide composite electrodes for lithium batteries
US20080280205A1 (en) * 2007-05-07 2008-11-13 3M Innovative Properties Company Lithium mixed metal oxide cathode compositions and lithium-ion electrochemical cells incorporating same
US20080311464A1 (en) * 2005-10-13 2008-12-18 Krause Larry J Method of Using an Electrochemical Cell
US20090087747A1 (en) * 2007-09-28 2009-04-02 3M Innovative Properties Company Sintered cathode compositions
US20090087744A1 (en) * 2007-09-28 2009-04-02 3M Innovative Properties Company Method of making cathode compositions
US20090123842A1 (en) * 2004-09-03 2009-05-14 Uchicago Argonne, Llc Manganese oxide composite electrodes for lithium batteries
US20100264381A1 (en) * 2005-09-29 2010-10-21 Massachusetts Institute Of Technology Oxides having high energy densities
WO2014143834A1 (fr) * 2013-03-15 2014-09-18 E. I. Du Pont De Nemours And Company Batterie au lithium-ion haute tension
US8916295B2 (en) 2011-03-09 2014-12-23 Nissan Motor Co., Ltd. Positive electrode active material for lithium ion secondary battery
US9017841B2 (en) 2005-08-19 2015-04-28 Lg Chem, Ltd. Electrochemical device with high capacity and method for preparing the same
US9306211B2 (en) 2012-03-07 2016-04-05 Nissan Motor Co., Ltd. Positive electrode active material, positive electrode for electrical device, and electrical device
US9343711B2 (en) 2010-09-24 2016-05-17 Kabushiki Kaisha Toshiba Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery pack, and method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery
US9391326B2 (en) 2012-03-07 2016-07-12 Nissan Motor Co., Ltd. Positive electrode active material, positive electrode for electric device, and electric device
US9461299B2 (en) 2012-02-01 2016-10-04 Nissan Motor Co., Ltd. Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
US9906060B2 (en) 2013-09-06 2018-02-27 Nissan Motor Co., Ltd. Control device and control method for a secondary battery
US10158117B2 (en) 2013-07-31 2018-12-18 Nissan Motor Co., Ltd. Transition metal oxide containing solid-solution lithium, and non-aqueous electrolyte secondary battery using transition metal oxide containing solid-solution lithium as positive electrode
US20190013518A1 (en) * 2017-07-10 2019-01-10 Uchicago Argonne, Llc High valent lithiated surface structures for lithium ion battery electrode materials

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4080337B2 (ja) 2001-03-22 2008-04-23 松下電器産業株式会社 正極活物質およびこれを含む非水電解質二次電池
JP4510331B2 (ja) 2001-06-27 2010-07-21 パナソニック株式会社 非水電解質二次電池
US8658125B2 (en) * 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
CN1795574A (zh) * 2003-05-28 2006-06-28 加拿大国家研究委员会 用于锂电池和电池组的锂金属氧化物电极
US20090127520A1 (en) * 2003-05-28 2009-05-21 Pamela Whitfield Lithium metal oxide compositions
US7238450B2 (en) 2003-12-23 2007-07-03 Tronox Llc High voltage laminar cathode materials for lithium rechargeable batteries, and process for making the same
JP5315591B2 (ja) * 2006-02-20 2013-10-16 ソニー株式会社 正極活物質および電池
US8153301B2 (en) * 2008-07-21 2012-04-10 3M Innovative Properties Company Cathode compositions for lithium-ion electrochemical cells
JP2012504316A (ja) * 2008-09-30 2012-02-16 エンビア・システムズ・インコーポレイテッド 高い比容量を有するフッ素をドープされたリチウムリッチ金属酸化物からなる正極電池材料およびそれに対応する電池
US8389160B2 (en) * 2008-10-07 2013-03-05 Envia Systems, Inc. Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
US8465873B2 (en) 2008-12-11 2013-06-18 Envia Systems, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
JP2011034943A (ja) * 2009-03-16 2011-02-17 Sanyo Electric Co Ltd 非水電解液二次電池
US20100273055A1 (en) * 2009-04-28 2010-10-28 3M Innovative Properties Company Lithium-ion electrochemical cell
TWI422849B (zh) * 2009-08-13 2014-01-11 Neotec Semiconductor Ltd 以直流內阻估算鋰電池容量之方法
US8535832B2 (en) * 2009-08-27 2013-09-17 Envia Systems, Inc. Metal oxide coated positive electrode materials for lithium-based batteries
EP2471134B1 (fr) 2009-08-27 2022-01-05 Zenlabs Energy, Inc. Oxydes métalliques complexes riches en lithium couche-couche avec une capacité spécifique élevée et une excellente succession de cycles
US9843041B2 (en) * 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
US8993177B2 (en) 2009-12-04 2015-03-31 Envia Systems, Inc. Lithium ion battery with high voltage electrolytes and additives
US8765306B2 (en) * 2010-03-26 2014-07-01 Envia Systems, Inc. High voltage battery formation protocols and control of charging and discharging for desirable long term cycling performance
US8741484B2 (en) 2010-04-02 2014-06-03 Envia Systems, Inc. Doped positive electrode active materials and lithium ion secondary battery constructed therefrom
US8928286B2 (en) 2010-09-03 2015-01-06 Envia Systems, Inc. Very long cycling of lithium ion batteries with lithium rich cathode materials
US8663849B2 (en) 2010-09-22 2014-03-04 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
US20130216910A1 (en) 2010-11-09 2013-08-22 3M Innovative Properties Company High capacity alloy anodes and lithium-ion electrochemical cells containing same
CN102655230B (zh) * 2011-03-03 2015-11-25 苏州大学 用于锂离子二次电池的正极材料及其制备方法、锂离子二次电池正极和锂离子二次电池
JP2012204291A (ja) * 2011-03-28 2012-10-22 Tokyo Univ Of Science リチウムイオン二次電池およびこれに用いる正極材料
BR112013032169A2 (pt) 2011-06-16 2016-12-13 3M Innovative Properties Co materiais microporosos com estrutura fibrilar de malha de rede e métodos de fabricação e uso dos mesmos
JP5970978B2 (ja) 2011-07-04 2016-08-17 日産自動車株式会社 電気デバイス用正極活物質、電気デバイス用正極及び電気デバイス
US9159990B2 (en) 2011-08-19 2015-10-13 Envia Systems, Inc. High capacity lithium ion battery formation protocol and corresponding batteries
KR101414955B1 (ko) 2011-09-26 2014-07-07 주식회사 엘지화학 안전성 및 수명특성이 향상된 양극활물질 및 이를 포함하는 리튬 이차전지
US10170762B2 (en) 2011-12-12 2019-01-01 Zenlabs Energy, Inc. Lithium metal oxides with multiple phases and stable high energy electrochemical cycling
US9070489B2 (en) 2012-02-07 2015-06-30 Envia Systems, Inc. Mixed phase lithium metal oxide compositions with desirable battery performance
JP5999307B2 (ja) 2012-03-07 2016-09-28 日産自動車株式会社 正極活物質、電気デバイス用正極及び電気デバイス
WO2014021014A1 (fr) 2012-08-02 2014-02-06 日産自動車株式会社 Cellule secondaire à électrolyte organique non aqueux
US9552901B2 (en) 2012-08-17 2017-01-24 Envia Systems, Inc. Lithium ion batteries with high energy density, excellent cycling capability and low internal impedance
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
TWI549342B (zh) 2013-03-12 2016-09-11 蘋果公司 使用先進陰極材料之高電壓、高容積能量密度鋰離子電池
KR20160030932A (ko) * 2013-07-15 2016-03-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 및 이차 전지
TWI521781B (zh) 2013-08-19 2016-02-11 Lg Chemical Ltd 具有較優壽命特性之鋰鈷系複合氧化物及含有該複合氧化物之用於二次電池的陰極活性材料
JP6167775B2 (ja) * 2013-09-06 2017-07-26 日産自動車株式会社 二次電池の制御装置及び制御方法
US9716265B2 (en) 2014-08-01 2017-07-25 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries
WO2017058650A1 (fr) 2015-09-30 2017-04-06 Hongli Dai Matériaux actifs de cathode, leurs précurseurs et procédés de préparation
JP6052643B2 (ja) * 2016-01-06 2016-12-27 株式会社Gsユアサ 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
WO2017160851A1 (fr) 2016-03-14 2017-09-21 Apple Inc. Matières actives de cathode pour batteries au lithium-ion
KR20230079485A (ko) 2016-07-05 2023-06-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지
CN109715561B (zh) 2016-09-20 2020-09-22 苹果公司 具有改善的颗粒形态的阴极活性材料
JP2019530630A (ja) 2016-09-21 2019-10-24 アップル インコーポレイテッドApple Inc. リチウムイオン電池用の表面安定化カソード材料及びその合成方法
CN115188932A (zh) 2016-10-12 2022-10-14 株式会社半导体能源研究所 正极活性物质粒子以及正极活性物质粒子的制造方法
JP7177769B2 (ja) 2017-05-12 2022-11-24 株式会社半導体エネルギー研究所 正極活物質粒子及びリチウムイオン二次電池
CN117038958A (zh) 2017-05-19 2023-11-10 株式会社半导体能源研究所 锂离子二次电池
KR102529620B1 (ko) 2017-06-26 2023-05-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질의 제작 방법 및 이차 전지
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
CN112751006B (zh) * 2021-01-18 2022-04-15 北京大学深圳研究生院 一种无钴锂离子电池层状正极材料及其制备方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550023A (en) * 1981-08-07 1985-10-29 Hans Schoberth Method and flour for producing sliceable bread with a high bran content
US4780381A (en) * 1987-11-05 1988-10-25 Allied-Signal, Inc. Rechargeable battery cathode from sodium cobalt dioxide in the O3, O'3, P3 and/or P'3 phases
US5753202A (en) * 1996-04-08 1998-05-19 Duracell Inc. Method of preparation of lithium manganese oxide spinel
US5858324A (en) * 1997-04-17 1999-01-12 Minnesota Mining And Manufacturing Company Lithium based compounds useful as electrodes and method for preparing same
US5874538A (en) * 1995-10-31 1999-02-23 Morinaga & Co., Ltd. Process for producing soybean protein
US5900385A (en) * 1997-10-15 1999-05-04 Minnesota Mining And Manufacturing Company Nickel--containing compounds useful as electrodes and method for preparing same
US6168887B1 (en) * 1999-01-15 2001-01-02 Chemetals Technology Corporation Layered lithium manganese oxide bronze and electrodes thereof
US6214493B1 (en) * 1996-01-15 2001-04-10 The University Court Of The University Of St. Andrews Manganese oxide based material for an electrochemical cell
US6291009B1 (en) * 2000-05-16 2001-09-18 Deborah W. Cohen Method of producing a soy-based dough and products made from the dough
US6333128B1 (en) * 1998-03-19 2001-12-25 Sanyo Electric Co., Ltd. Lithium secondary battery
US6355283B1 (en) * 1999-11-26 2002-03-12 Toyofumi Yamada Process for making soybean curd bread
US6368749B1 (en) * 1999-06-23 2002-04-09 Sanyo Electric Co., Ltd. Active substances, electrodes, nonaqueous electrolyte secondary cells, and a process for fabricating the active substances

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567031A (en) * 1983-12-27 1986-01-28 Combustion Engineering, Inc. Process for preparing mixed metal oxides
US5264201A (en) * 1990-07-23 1993-11-23 Her Majesty The Queen In Right Of The Province Of British Columbia Lithiated nickel dioxide and secondary cells prepared therefrom
DE69127251T3 (de) * 1990-10-25 2005-01-13 Matsushita Electric Industrial Co., Ltd., Kadoma Nichtwässrige elektrochemische Sekundärbatterie
US5521027A (en) * 1990-10-25 1996-05-28 Matsushita Electric Industrial Co., Ltd. Non-aqueous secondary electrochemical battery
CA2055305C (fr) * 1990-11-17 2002-02-19 Naoyuki Sugeno Batterie secondaire a electrolyte non aqueux
JPH05299092A (ja) * 1992-01-17 1993-11-12 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池及びその製造方法
US5393622A (en) * 1992-02-07 1995-02-28 Matsushita Electric Industrial Co., Ltd. Process for production of positive electrode active material
US5478671A (en) * 1992-04-24 1995-12-26 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
CA2096386A1 (fr) * 1992-05-18 1993-11-19 Masahiro Kamauchi Accumulateur secondaire au lithium
US5474858A (en) * 1992-07-21 1995-12-12 Medtronic, Inc. Method for preventing gas formation in electro-chemical cells
US5742070A (en) * 1993-09-22 1998-04-21 Nippondenso Co., Ltd. Method for preparing an active substance of chemical cells
JP3487441B2 (ja) * 1993-09-22 2004-01-19 株式会社デンソー リチウム二次電池用活物質の製造方法
WO1995009449A1 (fr) * 1993-09-27 1995-04-06 Arthur D. Little, Inc. Electrodes a fines particules preparees par des procedes aerosol
US5478675A (en) * 1993-12-27 1995-12-26 Hival Ltd. Secondary battery
US5609975A (en) * 1994-05-13 1997-03-11 Matsushita Electric Industrial Co., Ltd. Positive electrode for non-aqueous electrolyte lithium secondary battery and method of manufacturing the same
US5531920A (en) * 1994-10-03 1996-07-02 Motorola, Inc. Method of synthesizing alkaline metal intercalation materials for electrochemical cells
EP0720247B1 (fr) * 1994-12-16 1998-05-27 Matsushita Electric Industrial Co., Ltd. Procédé de fabrication des matières positives actives pour batteries secondaires au lithium et batteries secondaires au lithium les contenant
JP3329124B2 (ja) * 1995-03-03 2002-09-30 松下電器産業株式会社 非水電解液二次電池用正極活物質の製造法
DE19511355A1 (de) * 1995-03-28 1996-10-02 Merck Patent Gmbh Verfahren zur Herstellung von Lithium-Interkalationsverbindungen
JP3606289B2 (ja) * 1995-04-26 2005-01-05 日本電池株式会社 リチウム電池用正極活物質およびその製造法
EP0836238B1 (fr) * 1995-06-28 2005-11-16 Ube Industries, Ltd. Batterie bivalente non aqueuse
EP0806397B1 (fr) * 1995-11-24 2002-03-27 Fuji Chemical Industry Co., Ltd. Oxyde composite lithium-nickel, son procede de preparation, et materiau actif positif destine a une batterie secondaire
JP3181296B2 (ja) * 1995-12-26 2001-07-03 花王株式会社 正極活物質及びそれを含む非水系二次電池
US5718989A (en) * 1995-12-29 1998-02-17 Japan Storage Battery Co., Ltd. Positive electrode active material for lithium secondary battery
JPH09245836A (ja) * 1996-03-08 1997-09-19 Fuji Photo Film Co Ltd 非水電解質二次電池
JP3846601B2 (ja) * 1996-06-13 2006-11-15 株式会社ジーエス・ユアサコーポレーション リチウム電池用正極活物質およびその製造方法ならびに前記活物質を備えた電池
US6030726A (en) * 1996-06-17 2000-02-29 Hitachi, Ltd. Lithium secondary battery having negative electrode of carbon material which bears metals
US5981445A (en) * 1996-06-17 1999-11-09 Corporation De I'ecole Polytechnique Process of making fine ceramic powders from aqueous suspensions
TW363940B (en) * 1996-08-12 1999-07-11 Toda Kogyo Corp A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery
JP3489771B2 (ja) * 1996-08-23 2004-01-26 松下電器産業株式会社 リチウム電池およびリチウム電池の製造法
US6077496A (en) * 1996-09-12 2000-06-20 Dowa Mining Co., Ltd. Positive electrode active material for nonaqueous secondary cells and a process for producing said active material
US5783333A (en) * 1996-11-27 1998-07-21 Polystor Corporation Lithium nickel cobalt oxides for positive electrodes
JPH10172571A (ja) * 1996-12-16 1998-06-26 Aichi Steel Works Ltd リチウム二次電池及びその正極活物質の製造方法
US5993998A (en) * 1996-12-20 1999-11-30 Japan Storage Battery Co., Ltd. Positive active material for lithium battery, lithium battery having the same and method for producing the same
US6040089A (en) * 1997-02-28 2000-03-21 Fmc Corporation Multiple-doped oxide cathode material for secondary lithium and lithium-ion batteries
JP3036694B2 (ja) * 1997-03-25 2000-04-24 三菱重工業株式会社 Liイオン電池電極材料用Li複合酸化物の製造方法
JP2870741B2 (ja) * 1997-04-14 1999-03-17 堺化学工業株式会社 マンガン酸リチウム粒子状組成物及びその製造方法並びにリチウムイオン二次電池
DE69819395T2 (de) * 1997-04-15 2004-09-09 Sanyo Electric Co., Ltd., Moriguchi Positivelektrodenmaterialf für Verwendung nichtwässriger Elektrolyt enthaltender Batterie und Verfahren zur seiner Herstellung und nichtwässriger Elektrolyt enthaltende Batterie
US6277521B1 (en) * 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
JP3045998B2 (ja) * 1997-05-15 2000-05-29 エフエムシー・コーポレイション 層間化合物およびその作製方法
US5948596A (en) * 1997-05-27 1999-09-07 Kodak Polychrome Graphics Llc Digital printing plate comprising a thermal mask
DE19728382C2 (de) * 1997-07-03 2003-03-13 Hosokawa Alpine Ag & Co Verfahren und Vorrichtung zur Fließbett-Strahlmahlung
US5948569A (en) 1997-07-21 1999-09-07 Duracell Inc. Lithium ion electrochemical cell
US6017654A (en) * 1997-08-04 2000-01-25 Carnegie Mellon University Cathode materials for lithium-ion secondary cells
JPH1186861A (ja) * 1997-09-04 1999-03-30 Res Dev Corp Of Japan 電池正極活物質とその製造方法
SG77657A1 (en) * 1997-10-31 2001-01-16 Canon Kk Electrophotographic photosensitive member and process cartridge and electrophotographic apparatus having the electrophotographic photosensitive member
US6372385B1 (en) * 1998-02-10 2002-04-16 Samsung Display Devices Co., Ltd. Active material for positive electrode used in lithium secondary battery and method of manufacturing same
DE19810549A1 (de) * 1998-03-11 1999-09-16 Delo Industrieklebstoffe Gmbh Polymerisierbare fluorhaltige Zubereitung, ihre Verwendung und Verfahren zur Herstellung ausgehärteter Polymermassen aus dieser Zubereitung
US6203944B1 (en) * 1998-03-26 2001-03-20 3M Innovative Properties Company Electrode for a lithium battery
IL124007A (en) * 1998-04-08 2001-08-26 Univ Ramot Long cycle-life alkali metal battery
JPH11307094A (ja) * 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質とリチウム二次電池
US6255017B1 (en) * 1998-07-10 2001-07-03 3M Innovative Properties Co. Electrode material and compositions including same
FR2782999B1 (fr) * 1998-09-09 2002-05-10 Ulice Materiau biodegradable a base de polymere et de farine cerealiere,son procede de fabrication et ses utilisations
JP2000133262A (ja) * 1998-10-21 2000-05-12 Sanyo Electric Co Ltd 非水系電解液二次電池
AU1720000A (en) * 1998-11-13 2000-06-05 Fmc Corporation Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same
TW438721B (en) * 1998-11-20 2001-06-07 Fmc Corp Multiple doped lithium manganese oxide compounds and methods of preparing same
KR100280998B1 (ko) * 1998-12-10 2001-03-02 김순택 리튬 이차 전지용 양극 활물질
JP4318002B2 (ja) * 1999-04-09 2009-08-19 Agcセイミケミカル株式会社 非水電解液二次電池用正極活物質の製造方法
JP3244227B2 (ja) * 1999-04-26 2002-01-07 日本電気株式会社 非水電解液二次電池
US6589694B1 (en) * 1999-05-14 2003-07-08 Mitsubishi Cable Industries, Ltd. Positive electrode active material, positive electrode active material composition and lithium ion secondary battery
JP4318270B2 (ja) * 1999-07-06 2009-08-19 Agcセイミケミカル株式会社 リチウム二次電池の製造方法
WO2001015252A1 (fr) * 1999-08-19 2001-03-01 Mitsubishi Chemical Corporation Materiau d'electrode positive pour accumulateur au lithium et electrode positive, et accumulateur au lithium
US6248477B1 (en) * 1999-09-29 2001-06-19 Kerr-Mcgee Chemical Llc Cathode intercalation compositions, production methods and rechargeable lithium batteries containing the same
JP4691228B2 (ja) * 1999-11-02 2011-06-01 Agcセイミケミカル株式会社 非水リチウム二次電池用リチウム−マンガン複合酸化物の製造法
KR100315227B1 (ko) * 1999-11-17 2001-11-26 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
US6579475B2 (en) * 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
US6623886B2 (en) * 1999-12-29 2003-09-23 Kimberly-Clark Worldwide, Inc. Nickel-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
US6694336B1 (en) * 2000-01-25 2004-02-17 Fusionone, Inc. Data transfer and synchronization system
KR100326460B1 (ko) * 2000-02-10 2002-02-28 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
JP4383681B2 (ja) 2000-02-28 2009-12-16 三星エスディアイ株式会社 リチウム二次電池用正極活物質及びその製造方法
JP3611188B2 (ja) * 2000-03-03 2005-01-19 日産自動車株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
JP3611190B2 (ja) * 2000-03-03 2005-01-19 日産自動車株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
JP4210892B2 (ja) * 2000-03-30 2009-01-21 ソニー株式会社 二次電池
JP4020565B2 (ja) * 2000-03-31 2007-12-12 三洋電機株式会社 非水電解質二次電池
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
US6677082B2 (en) * 2000-06-22 2004-01-13 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP3890185B2 (ja) * 2000-07-27 2007-03-07 松下電器産業株式会社 正極活物質およびこれを含む非水電解質二次電池
US6660432B2 (en) * 2000-09-14 2003-12-09 Ilion Technology Corporation Lithiated oxide materials and methods of manufacture
CN1278438C (zh) * 2000-09-25 2006-10-04 三星Sdi株式会社 用于可充电锂电池的正电极活性材料及其制备方法
JP2002100356A (ja) * 2000-09-25 2002-04-05 Seimi Chem Co Ltd リチウム二次電池
JP4183374B2 (ja) * 2000-09-29 2008-11-19 三洋電機株式会社 非水電解質二次電池
US7138209B2 (en) 2000-10-09 2006-11-21 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
US20020053663A1 (en) * 2000-11-06 2002-05-09 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP5034136B2 (ja) * 2000-11-14 2012-09-26 株式会社Gsユアサ 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池
US7351500B2 (en) * 2000-11-16 2008-04-01 Hitachi Maxell, Ltd. Lithium-containing composite oxide and nonaqueous secondary cell using the same, and method for manufacturing the same
US6706447B2 (en) * 2000-12-22 2004-03-16 Fmc Corporation, Lithium Division Lithium metal dispersion in secondary battery anodes
JP2002234733A (ja) * 2001-02-06 2002-08-23 Tosoh Corp 層状岩塩構造マンガン含有リチウム複合酸化物とその製造方法、並びにこれを用いた二次電池
EP1372202B8 (fr) * 2001-03-14 2013-12-18 GS Yuasa International Ltd. Matiere active pour electrode positive et accumulateur a electrolyte non aqueux comportant ladite matiere
JP4556377B2 (ja) * 2001-04-20 2010-10-06 株式会社Gsユアサ 正極活物質およびその製造方法、非水電解質二次電池用正極、並びに、非水電解質二次電池
JP2002321919A (ja) * 2001-04-24 2002-11-08 Nissan Motor Co Ltd リチウムマンガン複合酸化物及びリチウム二次電池
US6964828B2 (en) * 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
JP4510331B2 (ja) * 2001-06-27 2010-07-21 パナソニック株式会社 非水電解質二次電池
JP4635386B2 (ja) * 2001-07-13 2011-02-23 株式会社Gsユアサ 正極活物質およびこれを用いた非水電解質二次電池
AU2002355544A1 (en) * 2001-08-07 2003-02-24 3M Innovative Properties Company Cathode compositions for lithium ion batteries
US6680145B2 (en) * 2001-08-07 2004-01-20 3M Innovative Properties Company Lithium-ion batteries
US6878490B2 (en) * 2001-08-20 2005-04-12 Fmc Corporation Positive electrode active materials for secondary batteries and methods of preparing same
JP4340160B2 (ja) * 2002-03-08 2009-10-07 アルテアナノ インコーポレイテッド ナノサイズ及びサブミクロンサイズのリチウム遷移金属酸化物の製造方法
DE602004017798D1 (de) * 2003-02-21 2009-01-02 Toyota Motor Co Ltd Aktives Material für die positive Elektrode einer Sekundärbatterie mit nichtwässrigem Elektrolyt
US20050130042A1 (en) 2003-12-11 2005-06-16 Byd America Corporation Materials for positive electrodes of lithium ion batteries and their methods of fabrication
JP4100341B2 (ja) * 2003-12-26 2008-06-11 新神戸電機株式会社 リチウム二次電池用正極材料及びそれを用いたリチウム二次電池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550023A (en) * 1981-08-07 1985-10-29 Hans Schoberth Method and flour for producing sliceable bread with a high bran content
US4780381A (en) * 1987-11-05 1988-10-25 Allied-Signal, Inc. Rechargeable battery cathode from sodium cobalt dioxide in the O3, O'3, P3 and/or P'3 phases
US5874538A (en) * 1995-10-31 1999-02-23 Morinaga & Co., Ltd. Process for producing soybean protein
US6214493B1 (en) * 1996-01-15 2001-04-10 The University Court Of The University Of St. Andrews Manganese oxide based material for an electrochemical cell
US5753202A (en) * 1996-04-08 1998-05-19 Duracell Inc. Method of preparation of lithium manganese oxide spinel
US5858324A (en) * 1997-04-17 1999-01-12 Minnesota Mining And Manufacturing Company Lithium based compounds useful as electrodes and method for preparing same
US5900385A (en) * 1997-10-15 1999-05-04 Minnesota Mining And Manufacturing Company Nickel--containing compounds useful as electrodes and method for preparing same
US6333128B1 (en) * 1998-03-19 2001-12-25 Sanyo Electric Co., Ltd. Lithium secondary battery
US6168887B1 (en) * 1999-01-15 2001-01-02 Chemetals Technology Corporation Layered lithium manganese oxide bronze and electrodes thereof
US6368749B1 (en) * 1999-06-23 2002-04-09 Sanyo Electric Co., Ltd. Active substances, electrodes, nonaqueous electrolyte secondary cells, and a process for fabricating the active substances
US6355283B1 (en) * 1999-11-26 2002-03-12 Toyofumi Yamada Process for making soybean curd bread
US6291009B1 (en) * 2000-05-16 2001-09-18 Deborah W. Cohen Method of producing a soy-based dough and products made from the dough

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8685565B2 (en) * 2001-04-27 2014-04-01 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US8241791B2 (en) * 2001-04-27 2012-08-14 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US20060147798A1 (en) * 2001-04-27 2006-07-06 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US20120282523A1 (en) * 2001-04-27 2012-11-08 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US20060159994A1 (en) * 2001-08-07 2006-07-20 Dahn Jeffrey R Cathode compositions for lithium ion batteries
US7368071B2 (en) 2001-08-07 2008-05-06 3M Innovative Properties Company Cathode compositions for lithium ion batteries
WO2004040677A1 (fr) 2002-10-31 2004-05-13 Lg Chem, Ltd. Oxyde de metal de transition de lithium presentant un gradient de composition metallique
US7695649B2 (en) 2002-10-31 2010-04-13 Lg Chem, Ltd. Lithium transition metal oxide with gradient of metal composition
EP3121882A1 (fr) 2002-10-31 2017-01-25 LG Chem, Ltd. Oxyde de métal de transition au lithium à gradient de composition métallique
US20060105239A1 (en) * 2002-10-31 2006-05-18 Paulsen Jens M Lithium transition metal oxide with gradient of metal composition
US20040121234A1 (en) * 2002-12-23 2004-06-24 3M Innovative Properties Company Cathode composition for rechargeable lithium battery
US7498100B2 (en) 2003-08-08 2009-03-03 3M Innovative Properties Company Multi-phase, silicon-containing electrode for a lithium-ion battery
US20050031957A1 (en) * 2003-08-08 2005-02-10 3M Innovative Properties Company Multi-phase, silicon-containing electrode for a lithium-ion battery
US7488465B2 (en) 2003-11-26 2009-02-10 3M Innovative Properties Company Solid state synthesis of lithium ion battery cathode material
US20050112054A1 (en) * 2003-11-26 2005-05-26 3M Innovative Properties Company Solid state synthesis of lithium ion battery cathode material
US7211237B2 (en) 2003-11-26 2007-05-01 3M Innovative Properties Company Solid state synthesis of lithium ion battery cathode material
US20070202407A1 (en) * 2003-11-26 2007-08-30 3M Innovative Properties Company Solid state synthesis of lithium ion battery cathode material
WO2005064715A1 (fr) 2003-12-31 2005-07-14 Lg Chem, Ltd. Poudre de matiere active pour electrodes contenant une composition dependante de la taille et procede permettant de preparer ladite matiere
US8012626B2 (en) 2003-12-31 2011-09-06 Lg Chem, Ltd. Electrode active material powder with size dependent composition and method to prepare the same
EP3432392A1 (fr) 2003-12-31 2019-01-23 LG Chem, Ltd. Poudre de matiere active pour electrodes contenant une composition dependante de la taille et procede permettant de preparer ladite matiere
US7771877B2 (en) 2003-12-31 2010-08-10 Lg Chem, Ltd. Electrode active material powder with size dependent composition and method to prepare the same
US20100264363A1 (en) * 2003-12-31 2010-10-21 Jens Martin Paulsen Electrode active material powder with size dependent composition and method to prepare the same
US20070122705A1 (en) * 2003-12-31 2007-05-31 Lg Chem. Ltd. Electrode active material powder with size dependent composition and method to prepare the same
US7635536B2 (en) 2004-09-03 2009-12-22 Uchicago Argonne, Llc Manganese oxide composite electrodes for lithium batteries
US20090123842A1 (en) * 2004-09-03 2009-05-14 Uchicago Argonne, Llc Manganese oxide composite electrodes for lithium batteries
US8080340B2 (en) 2004-09-03 2011-12-20 Uchicago Argonne, Llc Manganese oxide composite electrodes for lithium batteries
US7303840B2 (en) 2004-09-03 2007-12-04 Uchicago Argonne, Llc Manganese oxide composite electrodes for lithium batteries
US20060051673A1 (en) * 2004-09-03 2006-03-09 Johnson Christopher S Manganese oxide composite electrodes for lithium batteries
US20070037043A1 (en) * 2005-07-22 2007-02-15 Chang Sung K Pretreatment method of electrode active material
US20070020522A1 (en) * 2005-07-25 2007-01-25 3M Innovative Properties Company Alloy composition for lithium ion batteries
US20070020521A1 (en) * 2005-07-25 2007-01-25 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7871727B2 (en) 2005-07-25 2011-01-18 3M Innovative Properties Company Alloy composition for lithium ion batteries
US7767349B2 (en) 2005-07-25 2010-08-03 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US20070020528A1 (en) * 2005-07-25 2007-01-25 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7851085B2 (en) 2005-07-25 2010-12-14 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US8871389B2 (en) 2005-08-11 2014-10-28 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US7655357B2 (en) 2005-08-11 2010-02-02 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US20070037056A1 (en) * 2005-08-11 2007-02-15 Hideki Kitao Non-aqueous electrolyte secondary battery
US9017841B2 (en) 2005-08-19 2015-04-28 Lg Chem, Ltd. Electrochemical device with high capacity and method for preparing the same
US8529800B2 (en) 2005-09-29 2013-09-10 Massachusetts Institute Of Technology Oxides having high energy densities
US20100264381A1 (en) * 2005-09-29 2010-10-21 Massachusetts Institute Of Technology Oxides having high energy densities
US7771861B2 (en) 2005-10-13 2010-08-10 3M Innovative Properties Company Method of using an electrochemical cell
US20080311464A1 (en) * 2005-10-13 2008-12-18 Krause Larry J Method of Using an Electrochemical Cell
TWI416779B (zh) * 2005-10-13 2013-11-21 3M Innovative Properties Co 使用電化電池之方法
US20100167126A1 (en) * 2005-12-01 2010-07-01 3M Innovative Properties Company Electrode compositions based on an amorphous alloy having a high silicon content
US20070128517A1 (en) * 2005-12-01 2007-06-07 3M Innovative Properties Company Electrode Compositions Based On An Amorphous Alloy Having A High Silicon Content
US7972727B2 (en) 2005-12-01 2011-07-05 3M Innovative Properties Company Electrode compositions based on an amorphous alloy having a high silicon content
US7732095B2 (en) 2005-12-01 2010-06-08 3M Innovative Properties Company Electrode compositions based on an amorphous alloy having a high silicon content
US8071238B2 (en) 2005-12-23 2011-12-06 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
US20070148544A1 (en) * 2005-12-23 2007-06-28 3M Innovative Properties Company Silicon-Containing Alloys Useful as Electrodes for Lithium-Ion Batteries
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
EP3249722A1 (fr) 2005-12-23 2017-11-29 3M Innovative Properties Co. Alliages au silicium utiles en tant qu'électrodes pour des batteries lithium-ion
US20070148546A1 (en) * 2005-12-28 2007-06-28 Noriyuki Shimizu Non-aqueous electrolyte secondary battery
US7892679B2 (en) 2005-12-28 2011-02-22 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US7955734B2 (en) 2006-02-08 2011-06-07 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US8530092B2 (en) 2006-02-08 2013-09-10 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US8227113B2 (en) 2006-02-08 2012-07-24 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US20070218359A1 (en) * 2006-02-08 2007-09-20 Noriyuki Shimizu Non-aqueous electrolyte secondary battery
US20070269718A1 (en) * 2006-05-22 2007-11-22 3M Innovative Properties Company Electrode composition, method of making the same, and lithium ion battery including the same
US20080280205A1 (en) * 2007-05-07 2008-11-13 3M Innovative Properties Company Lithium mixed metal oxide cathode compositions and lithium-ion electrochemical cells incorporating same
US8012624B2 (en) 2007-09-28 2011-09-06 3M Innovative Properties Company Sintered cathode compositions
US20090087747A1 (en) * 2007-09-28 2009-04-02 3M Innovative Properties Company Sintered cathode compositions
US20090087744A1 (en) * 2007-09-28 2009-04-02 3M Innovative Properties Company Method of making cathode compositions
US9343711B2 (en) 2010-09-24 2016-05-17 Kabushiki Kaisha Toshiba Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery pack, and method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery
US8916295B2 (en) 2011-03-09 2014-12-23 Nissan Motor Co., Ltd. Positive electrode active material for lithium ion secondary battery
US9461299B2 (en) 2012-02-01 2016-10-04 Nissan Motor Co., Ltd. Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
US9306211B2 (en) 2012-03-07 2016-04-05 Nissan Motor Co., Ltd. Positive electrode active material, positive electrode for electrical device, and electrical device
US9391326B2 (en) 2012-03-07 2016-07-12 Nissan Motor Co., Ltd. Positive electrode active material, positive electrode for electric device, and electric device
WO2014143834A1 (fr) * 2013-03-15 2014-09-18 E. I. Du Pont De Nemours And Company Batterie au lithium-ion haute tension
US9391322B2 (en) 2013-03-15 2016-07-12 E I Du Pont De Nemours And Company Cathode material and battery
US10158117B2 (en) 2013-07-31 2018-12-18 Nissan Motor Co., Ltd. Transition metal oxide containing solid-solution lithium, and non-aqueous electrolyte secondary battery using transition metal oxide containing solid-solution lithium as positive electrode
US9906060B2 (en) 2013-09-06 2018-02-27 Nissan Motor Co., Ltd. Control device and control method for a secondary battery
US20190013518A1 (en) * 2017-07-10 2019-01-10 Uchicago Argonne, Llc High valent lithiated surface structures for lithium ion battery electrode materials
US10431820B2 (en) * 2017-07-10 2019-10-01 Uchicago Argonne, Llc High valent lithiated surface structures for lithium ion battery electrode materials

Also Published As

Publication number Publication date
AU2002355544A1 (en) 2003-02-24
WO2003015198A3 (fr) 2004-04-01
JP4955193B2 (ja) 2012-06-20
JP2004538610A (ja) 2004-12-24
CN1582509A (zh) 2005-02-16
US7368071B2 (en) 2008-05-06
EP1425810A2 (fr) 2004-06-09
CN100459242C (zh) 2009-02-04
JP5539922B2 (ja) 2014-07-02
TW557598B (en) 2003-10-11
KR101036743B1 (ko) 2011-05-24
WO2003015198A2 (fr) 2003-02-20
KR20040022234A (ko) 2004-03-11
US20060159994A1 (en) 2006-07-20
JP2011155017A (ja) 2011-08-11

Similar Documents

Publication Publication Date Title
US7368071B2 (en) Cathode compositions for lithium ion batteries
US8685565B2 (en) Cathode compositions for lithium-ion batteries
EP1189296B9 (fr) Matériau à base d'oxide lithié et sa méthode de fabrication
US5759717A (en) Method for manufacturing a positive electrode active material for lithium battery
US6168887B1 (en) Layered lithium manganese oxide bronze and electrodes thereof
JP4813453B2 (ja) リチウム含有複合酸化物および非水二次電池
US7771875B2 (en) Positive electrodes for rechargeable batteries
JPH08217451A (ja) 針状マンガン複合酸化物及びその製造方法並びにその用途
Lee Structural and electrochemical characterization of high-energy oxide cathodes for lithium ion batteries

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAHN, JEFFREY R.;LU, ZHONGHUA;REEL/FRAME:013172/0229

Effective date: 20020726

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION