TWI600155B - 用於半導體裝置之電極及形成該等電極之方法 - Google Patents

用於半導體裝置之電極及形成該等電極之方法 Download PDF

Info

Publication number
TWI600155B
TWI600155B TW103104944A TW103104944A TWI600155B TW I600155 B TWI600155 B TW I600155B TW 103104944 A TW103104944 A TW 103104944A TW 103104944 A TW103104944 A TW 103104944A TW I600155 B TWI600155 B TW I600155B
Authority
TW
Taiwan
Prior art keywords
layer
iii
sidewall
transistor
electrode
Prior art date
Application number
TW103104944A
Other languages
English (en)
Other versions
TW201438229A (zh
Inventor
邱杜利斯拉班提
米喜拉鄔梅西
朵拉尤法拉
Original Assignee
全斯法姆公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全斯法姆公司 filed Critical 全斯法姆公司
Publication of TW201438229A publication Critical patent/TW201438229A/zh
Application granted granted Critical
Publication of TWI600155B publication Critical patent/TWI600155B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28114Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor characterised by the sectional shape, e.g. T, inverted-T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28587Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T
    • H01L21/28593Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T asymmetrical sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76804Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics by forming tapered via holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28581Deposition of Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28587Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

用於半導體裝置之電極及形成該等電極之方法
本申請案主張申請於2013年2月15日之美國臨時申請案序號第61/765,635號之優先權。先前申請案之揭示內容視為本申請案之揭示內容的部分且以引用之方式併入本申請案之揭示內容。
本發明有關於半導體電子裝置,具體而言,具有連接至電場板之電極的半導體電子裝置。
至今,現代功率半導體二極體例如高電壓P-I-N二極體,以及功率電晶體例如功率MOSFET及絕緣閘極雙極性電晶體(IGBT),已通常由矽(Si)半導體材料所製造。最近,由於碳化矽(SiC)功率裝置之優越的性能,已研究碳化矽功率裝置。III族-氮化物(III-N)半導體裝置現今成為具有吸引力的候選者,以承載大電流及支持高電壓,及提供極低的導通電阻值、高電壓裝置操作及快速的切換時間。如本文所使用的,用語「III-N」或「III族-氮化物」材料、層、裝置等,意指由化合物半導體材料根據化學計量公式BwAlxInyGazN所組成的 材料或裝置,其中w+x+y+z約為1。
先前技術之III-N高電子遷移率電晶體(HEMT)之實例圖示於第1圖及第2圖中。第1圖之III-N HEMT包含基板10、在基板頂上的III-N通道層11及在通道層頂上的III-N阻障層12,III-N通道層11例如GaN層,III-N阻障層12例如AlxGa1-xN層。在通道層11中靠近通道層11與阻障層12之間的介面感應出二維電子氣(2DEG)通道19。源極接點14及汲極接點15分別形成歐姆接點至2DEG通道。閘極接點16調變在閘極區域中的2DEG之部分,亦即,該部分正好位於閘極接點16之下方處。
電場板經常用於III-N裝置中,以如降低峰值電場及增加裝置崩潰電壓的方式在裝置之高電場區域中成形電場,藉此允許高電壓操作。先前技術之具有電場板的III-N HEMT之實例圖示於第2圖。除了包含於第1圖之裝置中的該等層之外,在第2圖中的裝置包含電場板18及絕緣層13,電場板18連接至閘極16,絕緣層13例如SiN層介於電場板18與III-N阻障層12之間。電場板18可包含與閘極16相同的材料或由與閘極16相同的材料所形成。絕緣層13可作為表面鈍化層,以避免或抑制鄰近絕緣層13於III-N材料之表面處的電壓波動。
傾斜型電場板已經證明為特別有效於在III-N裝置中降低峰值電場及增加崩潰電壓。相似於第2圖之先前技術的III-N裝置,第3圖圖示先前技術的III-N裝置但具有傾斜型電場板24。在此裝置中,閘極16(亦即,在垂直虛線之間的 電極29之部分)及傾斜型電場板24由單一電極29所形成。絕緣層23,可為SiN,為含有凹口的電極界定層,該凹口至少部分界定電極29之形狀。電極界定層23亦可作為表面鈍化層,以避免或抑制鄰近電極界定層23於III-N材料之表面處的電壓波動。在此裝置中的閘極16及傾斜型電場板24可由以下方式來形成:首先在III-N阻障層12之整個表面上沉積電極界定層23,然後在含有閘極16的區域中通過電極界定層23蝕刻出凹口,該凹口包含傾斜側壁25,且最後至少於凹口中及在傾斜側壁25上方沉積電極29。與習知電場板相比,例如第3圖中的電場板18不包含傾斜部分,傾斜型電場板例如第3圖中的電場板24傾向於在裝置中於較大的體積上分散電場。因此,傾斜型電場板傾向於更有效降低在下方裝置中的峰值電場,藉此允許較大操作電壓及崩潰電壓。
當第3圖之裝置在截止狀態中以相對於源極14將大電壓施加至汲極15來偏壓時,在半導體層11及半導體層12中的電場分佈在電場板24之水平長度上。如此,對於電極界定層23之給定厚度,電場所分佈的區域之水平長度主要由電場板與下方的III-N材料結構之表面28所形成的角度26來決定。較小的角度26導致電場之較大分佈,允許相應較大的裝置之操作電壓及崩潰電壓。舉例而言,在電極界定層23為約0.85微米厚的III-N裝置中,對於可靠的50V或100V操作可能需要約40度或較小的角度,而對於可靠的300V或600V操作可能需要約10度或較小的角度。然而,減小角度26導致電場板24之較長的橫向延伸朝向汲極15,此舉可能需要閘 極16與汲極15之間有更大的間隔。此外,可再現地製造具有如此小角度26的傾斜型電場板24可能為困難的。需要能提供峰值電場之足夠抑制且可再現地被製造之電場板結構。
在第一態樣中,描述一種III-N電晶體。該電晶體包含III-N材料結構、源極及汲極以及具有厚度的電極界定層。電極界定層位於III-N材料結構之表面上方且具有凹口,於汲極的近端具有第一側壁及於源極的近端具有第二側壁,第一側壁及第二側壁各包括複數個階梯。III-N材料結構的遠端的凹口之一部分具有第一寬度,且III-N材料結構的近端的凹口之一部分具有第二寬度,第一寬度大於第二寬度。該電晶體進一步包含在凹口中的電極,該電極包含延伸部分,該延伸部分至少部分位於第一側壁上方。第一側壁相對於III-N材料結構之表面形成第一等效角,且第二側壁相對於III-N材料結構之表面形成第二等效角,第二等效角大於第一等效角。
在第二態樣中,描述一種電晶體。該電晶體包含半導體材料結構、源極及汲極以及位於源極與汲極之間的電極,該半導體材料結構於該半導體材料結構中包含通道,各源極及汲極與通道電性接觸。電極包含閘極及延伸部分,該延伸部分從閘極延伸朝向汲極。該電晶體具有低於20微米的閘極-汲極間隔,當閘極以低於相對於源極的電晶體之臨界電壓被偏壓且電晶體之汲極-源極電壓為約600V或更大時,該電晶體之每單位閘極寬度下的截止狀態汲極電流為約10-8Amps/mm或更低,以及當該電晶體以2微秒或更低的切換時 間被切換時,該電晶體之動態導通電阻值為低於該電晶體之直流導通電阻值的1.1倍。
在第三態樣中,描述一種電晶體。該電晶體包含半導體材料結構、源極及汲極以及位於源極與汲極之間的電極,該半導體材料結構於該半導體材料結構中包含通道,各源極及汲極與通道電性接觸。電極包含閘極及延伸部分,該延伸部分從閘極延伸朝向汲極。該電晶體具有低於20微米的閘極-汲極間隔,該延伸部分包含複數個階梯,其中該延伸部分之每微米的長度下在該複數個階梯中的階梯之數目大於0.4,及當閘極以低於相對於源極的電晶體之臨界電壓被偏壓且電晶體之汲極-源極電壓為約600V或更大時,該電晶體之每單位閘極寬度下的截止狀態汲極電流為約10-8Amps/mm或更低。
在第四態樣中,描述一種形成半導體裝置之方法。該方法包含提供半導體材料結構,在半導體材料結構之表面上形成具有厚度的電極界定層,及在電極界定層上方圖案化遮罩層,該遮罩層包含具有寬度的開口。該方法進一步包含蝕刻電極界定層以在該電極界定層中形成凹口,該凹口具有第一側壁及相對於第一側壁的第二側壁,第一側壁及第二側壁各包括複數個階梯,其中第一側壁相對於半導體材料結構之表面形成第一等效角,且第二側壁相對於半導體材料結構之表面形成第二等效角,且半導體材料結構的遠端的凹口之一部分具有第一寬度,且半導體材料結構的近端的凹口之一部分具有第二寬度,第一寬度大於第二寬度。該電極界定層 之蝕刻包含實行第一流程及第二流程,第一流程包括移除該電極界定層之一部分,且第二流程包括移除遮罩層之一部分而非整個移除遮罩層,其中第二流程導致遮罩層中的開口之寬度增加。此外,該電極界定層之蝕刻造成第二等效角大於第一等效角。
在第五態樣中,描述一種形成半導體裝置之方法。該方法包含提供半導體材料結構,在該半導體材料結構之表面上形成具有厚度的電極界定層,及在該電極界定層上方圖案化遮罩層,該遮罩層包含開口。該開口形成圖案,該圖案包含複數個區域,具有第一寬度的該複數個區域與具有第二寬度的該複數個區域交錯,第一寬度大於第二寬度。該方法進一步包含蝕刻在該開口下的該電極界定層以在該電極界定層中形成凹口,該凹口具有第一側壁及第二側壁,第一側壁包含複數個區段,各該複數個區段鄰近具有第一寬度的該等區域中之一者,且第二側壁包含複數個區段,各該複數個區段鄰近具有第二寬度的該等區域中之一者。此外,該蝕刻造成第二側壁之該等區段之平均斜率大於第一側壁之該等區段之平均斜率。
本文所述的裝置及方法之各者可包含以下特徵或步驟之一或更多者。第二等效角可大幅大於第一等效角。第二等效角比起第一等效角可至少大10度。半導體或III-N材料結構可包含第一III-N材料層、第二III-N材料層及2DEG通道,該2DEG通道係因為第一III-N材料層與第二III-N材料層之間的組成的差異而在第一III-N材料層中鄰近第二III-N 材料層處被感應出。第一III-N材料層可包含GaN且第二III-N材料層可包含AlGaN、AlInN、AlInGaN或BAlInGaN。第一III-N材料層及第二III-N材料層可為III族面向層或[0 0 0 1]定向層或III族終止半極性層,且第二III-N材料層可位於第一III-N材料層與電極界定層之間。第一III-N材料層及第二III-N材料層可為N面向層或[0 0 0 -1]定向層或氮終止半極性層,且第一III-N材料層可位於第二III-N材料層與電極界定層之間。凹口可延伸通過電極界定層之整個厚度。凹口可延伸進入III-N材料結構及/或通過2DEG通道。
電極界定層可包括SiNx。電極界定層之厚度可介於約0.1微米與約5微米之間。電晶體可進一步包括III-N材料結構與電極界定層之間的介電鈍化層,該介電鈍化層直接接觸鄰近電極的III-N材料之表面。介電鈍化層可包括SiNx。介電鈍化層可位於電極與III-N材料結構之間,使得該電極不直接接觸III-N材料結構。電晶體可進一步包含介電鈍化層與電極界定層之間的額外的絕緣層。該額外的絕緣層可包括AlN。該電極之延伸部分可直接接觸側壁。
該電極可包含閘極及第一側壁及第二側壁中的該複數個階梯,該閘極在該電晶體之閘極區域中,該複數個階梯可各包含第一階梯、第二階梯及第三階梯,第一階梯具有正好鄰近閘極的第一階梯寬度,第二階梯具有正好鄰近第一階梯的第二階梯寬度,且第三階梯具有正好鄰近第二階梯的第三階梯寬度,其中在第一側壁中的該複數個階梯中的第一階梯寬度對於第二階梯寬度之比例實質上相同於在第二側壁中 的該複數個階梯中的第一階梯寬度對於第二階梯寬度之比例。在第一側壁中的該複數個階梯中的第一階梯寬度對於第三階梯寬度之比例可實質上相同於在第二側壁中的該複數個階梯中的第一階梯寬度對於第三階梯寬度之比例。在第一側壁中的第一階梯寬度、第二階梯寬度及第三階梯寬度之總和可大於在第二側壁中的第一階梯寬度、第二階梯寬度及第三階梯寬度之總和。
半導體材料結構可包含III-N材料,且通道可位於III-N材料中。該電晶體或該裝置之直流導通電阻值可為低於12歐姆毫米。該電場板或該延伸部分可具有12微米或更短的長度。
該蝕刻可造成第二等效角大幅大於第一等效角。該蝕刻可造成第二等效角比起第一等效角至少大10度。遮罩層可包括光阻。該方法可進一步包括在實行蝕刻步驟之前導致遮罩層中的光阻之重新分佈。導致光阻之重新分佈可包括熱退火該光阻。該光阻之重新分佈可造成遮罩層在開口之一側上具有第一傾斜側壁及在開口之相對側上具有第二傾斜側壁。該光阻之重新分佈可造成第二傾斜側壁比起第一傾斜側壁具有較大的斜率。該方法可進一步包含移除遮罩層及在凹口中形成電極。該蝕刻可進一步包含在已實行第二流程之後再次實行第一流程,及在已再次實行第一流程之後再次實行第二流程。該蝕刻可造成凹口延伸通過電極界定層之整個厚度。半導體材料結構可包括III-N層。該蝕刻可包括蝕刻通過電極界定層之整個厚度及於該蝕刻之整體期間使用遮罩層作 為蝕刻遮罩。該蝕刻可進一步包括蝕刻進入正好位於電極界定層下的層。
描述可再現地製造之III-N裝置,該等III-N裝置能支持高電壓而具有低漏電,且同時能展現低導通電阻值及高崩潰電壓,如所述。還描述形成該等裝置之方法。本文所述的III-N裝置可為電晶體,且可為適合用於高電壓應用的高電壓裝置。本發明之一或更多實施方式之細節記載於附圖及以下描述中。從描述及圖式以及從申請專利範圍,本發明之其他特徵及優點將為顯而易見的。
10‧‧‧基板
11‧‧‧III-N通道層/半導體層/第一III-N層
12‧‧‧III-N阻障層/半導體層/第二III-N層
13‧‧‧絕緣層
14‧‧‧源極接點/源極
15‧‧‧汲極接點/汲極
16‧‧‧閘極接點/閘極
17‧‧‧凹口
18‧‧‧電場板
19‧‧‧二維電子氣(2DEG)通道
21‧‧‧額外的介電層
22‧‧‧鈍化層
23‧‧‧絕緣層/電極界定層
24‧‧‧傾斜型電場板
25‧‧‧傾斜側壁
26‧‧‧角度
28‧‧‧III-N材料結構之表面
29‧‧‧電極
33‧‧‧電極界定層
36‧‧‧等效角
37‧‧‧等效角
43‧‧‧側壁
44‧‧‧點
45‧‧‧點
46‧‧‧側壁
47‧‧‧點
48‧‧‧點
51‧‧‧閘極區域
52‧‧‧源極入口區域
53‧‧‧汲極入口區域
54‧‧‧第一延伸部分/電場板
55‧‧‧第二延伸部分
56‧‧‧歐姆接觸區域
59‧‧‧閘電極
60‧‧‧虛線
61‧‧‧閘電極之部分/閘極/主動閘極部分
63‧‧‧虛線
64‧‧‧源極接觸墊
65‧‧‧汲極接觸墊
66‧‧‧虛線
71‧‧‧光阻遮罩層
72‧‧‧開口
73‧‧‧側壁/水平寬度
74‧‧‧側壁/水平寬度
80‧‧‧虛線
81‧‧‧階梯
82‧‧‧階梯
83‧‧‧階梯
84‧‧‧階梯
90‧‧‧虛線
91‧‧‧階梯
92‧‧‧階梯
93‧‧‧階梯
94‧‧‧階梯
200‧‧‧基板
201‧‧‧緩衝層
202‧‧‧III-N層
204‧‧‧III-N層
D1‧‧‧寬度
D1’‧‧‧寬度
LFP‧‧‧電場板長度
LGD‧‧‧閘極-汲極間隔
S1‧‧‧寬度
S1’‧‧‧寬度
第1圖至第3圖為先前技術之III-N HEMT裝置之橫截面視圖。
第4圖至第5圖為III-N HEMT裝置之實施方式之橫截面視圖。
第6圖為第4圖之III-N HEMT及第5圖之III-N HEMT之平面視圖。
第7圖至第17圖繪示形成第4圖之III-N HEMT的方法。
第18圖為III-N HEMT裝置之另一個實施方式之橫截面視圖。
於各圖式中相同的元件符號指示相同的元件。
描述基於III-N異質結構的電晶體。設計裝置之電極使得該裝置能被可再現地製造,能支持高電壓而具有低漏 電,且同時能展現低導通電阻值及低閘極電容值。亦描述形成電極之方法。本文所述的III-N裝置可為適用於高電壓應用的高電壓裝置。在如此高電壓電晶體中,當電晶體被偏壓截止時(亦即,相對於源極在閘極上的電壓低於電晶體臨界電壓),電晶體至少能夠支持全部的源極-汲極電壓低於或等於在應用中的高電壓,在該應用中使用該電晶體,舉例而言,高電壓可為100V、300V、600V、1200V、1700V或更高。當高電壓電晶體被偏壓導通時(亦即,相對於源極在閘極上的電壓高於電晶體臨界電壓),該高電壓電晶體能夠以低導通電壓傳導大量電流。可允許的導通電壓最大值為能在應用中所維持的電壓最大值,在該應用中使用該電晶體。
本文所述的電晶體各包含電場板結構,該電場板結構允許可與第3圖之裝置相比的裝置操作電壓及崩潰電壓,但該電場板結構能被可再現地製造。此外,電場板配置允許對於給定操作電壓所設計的電晶體在閘極與汲極之間具有非常小的間隔,用以減低裝置導通電阻值且使電性損失最小化。
本文所述的裝置繪示於第4圖至第5圖及第17圖至第18圖。本文所述的III-N電晶體各包含在III-N材料結構之頂上的電極界定層。電極界定層包含凹口,且電極在該凹口中。於凹口之頂部上的寬度大於在凹口之底部的寬度。電極包含在該電極之相反側上的第一延伸部分及第二延伸部分,第一延伸部分及第二延伸部分在電極界定層之部分上方。第一延伸部分延伸朝向汲極電極而作為電場板。第二延伸部分延伸朝向源極電極。在電極界定區域中的凹口中保形地沉積 電極且具有延伸部分在凹口之側壁上方。因此,延伸部分之輪廓為至少部分由對應的側壁之輪廓所決定。在電極之延伸部分下方的凹口之側壁包含複數個階梯。側壁各者相對於下方的III-N材料結構之最上方表面形成等效角度。在第一延伸部分下方的側壁之等效角度,界定(且因此相同於)電場板之等效角度,可為足夠小以允許裝置之高電壓操作,如在其中使用該裝置之電路應用所要求的。在第二延伸部分下方的側壁之等效角度,界定(且因此相同於)第二延伸部分之等效角度,為大於第一延伸部分之等效角度。相較於其中第一延伸部分及第二延伸部分具有實質上相同的等效角度的裝置而言,此舉允許對於源極與閘極之間的給定水平間隔有較小的閘極-源極電容值。
參照第4圖,III-N HEMT包含基板10(雖然基板為任選的)、在基板之頂上的第一III-N層11及在第一III-N層之頂上的第二III-N層12。III-N層11及III-N層12彼此具有不同的組成,該等組成經選擇使得二維電子氣(2DEG)19(由虛線所繪示),亦即,傳導通道,在靠近第一III-N層11及第二III-N層12之間的介面被感應出。電極界定層33形成於第二III-N層上方,電極界定層33包含凹口17,凹口17可延伸通過電極界定層33之整個厚度。或者,凹口17可僅部分地延伸通過電極界定層(未圖示)。電極界定層33通常介於約0.1微米與5微米厚之間,例如約0.85微米厚。電極界定層33可具有實質上各處都均勻的組成。電極界定層33由絕緣體所形成,例如矽氮化物(SiNx)。
閘電極59形成於凹口中。在第4圖圖示的實施方式中,閘電極59保形覆蓋凹口中的整個曝露的表面,雖然在某些實施方式中,閘電極59僅覆蓋凹口中的曝露的表面之一部分(未圖示),如以下進一步所述。在閘極區域51中的閘電極59之部分61為裝置之閘極61。閘電極59進一步包含第一延伸部分54及第二延伸部分55,第一延伸部分54在汲極入口區域53中的電極界定層之至少一部分上方,第二延伸部分55在源極入口區域52中的電極界定層之至少一部分上方。第一延伸部分54作為電場板,當裝置以大的汲極-源極電壓而被偏壓於截止狀態中時(亦即,閘極-源極電壓低於裝置臨界電壓),降低裝置中的峰值電場。裝置包含第二延伸部分55以確保如果於裝置製造期間發生閘電極59與凹口之不對準時,閘電極59延伸朝向源極接點14至少超越閘極區域51之源極側邊緣。閘電極59在電極界定區域中被保形沉積於凹口中。
第一延伸部分54在凹口之側壁43上方,側壁43從點44(亦即,最靠近閘極區域51的電極界定層33之部分)延伸直到最靠近汲極的凹口之頂上的邊緣處的點45。第二延伸部分55在凹口之側壁46上方,側壁46從點47(亦即,最靠近區域51的電極界定層33之部分)延伸直到最靠近源極的凹口之頂上的邊緣處的點48。因此,延伸部分54之輪廓及延伸部分55之輪廓為至少部分地分別由側壁43之輪廓及側壁46之輪廓所決定。雖然第二延伸部分55圖示為延伸超過整個側壁46至少到達點48,在某些實施方式中,延伸部分55僅沿側壁46向上延伸部分(未圖示)。讓第二延伸部分55僅沿側壁 46向上延伸部分可降低閘極電容值,此舉改善裝置效能。然而,在某些情況下,相較於類似的裝置其中第二延伸部分55僅沿側壁46向上延伸部分,讓第二延伸部分55延伸超過整個側壁46至少到達點48降低分散(dispersion)。
源極接點14及汲極接點15分別位於閘極59之相對側上且形成歐姆接點至2DEG通道19。III-N HEMT還包含閘極區域51及分別位於閘極區域之相對側上的源極入口區域52及汲極入口區域53,閘極61沉積於閘極區域51中。源極接點14及汲極接點15分別沉積於裝置結構之區域56中,該等區域56稱作裝置歐姆區域。源極入口區域52位於源極接點14與閘極61(亦即,在閘極區域51中的閘電極59之部分)之間,且汲極入口區域53位於汲極接點15與閘極61之間。III-N HEMT還包含額外的III-N層(未圖示),舉例而言,在第一III-N層11與基板10之間的III-N緩衝層,或在第一III-N層11與第二III-N層12之間的III-N層例如AlN。III-N HEMT還可任選地包含鈍化層22及額外的介電層21(亦為任選),鈍化層22接觸至少在凹口區域中的III-N材料表面,額外的介電層21在鈍化層22與電極界定層33之間。如第4圖所示,在電極界定層33中的凹口17可延伸通過額外的介電層21之整個厚度但不通過鈍化層22。因此,鈍化層22可在III-N材料與閘極區域51中的閘極61之間,藉此作為閘極絕緣體。閘極絕緣體可幫助避免HEMT中的閘極漏電流。
分散意指相較於當裝置在DC條件下操作時,當裝置在RF條件或切換條件下操作所時觀察到的電流-電壓(I-V) 特徵中的差異。在III-N裝置中,例如分散的效應經常由在III-N材料層之最上方的一或更多個表面處的電壓波動所導致,於裝置操作期間表面狀態之充電之結果。因此,鈍化層例如第4圖中的層22,藉由避免或抑制於最上方的III-N表面處的電壓波動來避免或抑制分散。
在包含有鈍化層22的實施方式中,電極界定層33與鈍化層22之結合維持裝置之最上方的III-N表面之有效鈍化。當額外的介電層21例如AlN被包含於鈍化層22與電極界定層33之間時,額外的介電層21可能需要做得夠薄,例如比約20nm薄,比約10nm薄或比約5nm薄,以確保仍能維持最上方的III-N表面之有效鈍化。太厚的額外的介電層21,例如大於約20nm,可能劣化層22之鈍化效果及層33之鈍化效果。
第4圖之III-N HEMT可為增強模式(亦即,常關型,且臨界電壓大於0V)或空乏模式(亦即,常開型,且臨界電壓小於0V)裝置。用於第4圖之III-N HEMT的其他配置亦為可能的。舉例而言,在一個實施方式中,在電極界定層33中的凹口17僅延伸部分地通過電極界定層33之厚度,使得電極界定層33之一部分位於III-N材料與閘極區域中的閘極61之間(未圖示)。在此情況下,電極界定層33亦可作為閘極絕緣體,且省略鈍化層22及/或額外的介電層21可為可能的。在其他實施方式中,在電極界定層33中的凹口17額外地延伸通過鈍化層22之整個厚度,且閘極61直接接觸位於下方的III-N材料(未圖示)。在又另一個實施方式中,凹口17進一步 延伸進入III-N材料中,如第5圖所示。
第5圖繪示與第4圖之III-N HEMT相似的III-N HEMT,除了在沉積閘電極59之前,電極界定層33中的凹口17被進一步蝕刻而延伸通過鈍化層22且進入III-N材料結構(層11及層12)中。如第5圖所示,凹口17可延伸通過2DEG 19。在凹口17延伸通過2DEG 19的情況中,該HEMT可為增強模式裝置。
參照第4圖及第5圖,電極界定層33之側壁43及側壁46各者包含複數個階梯(且因此閘電極59之延伸部分54及延伸部分55亦包含複數個階梯)。側壁43及側壁46各者具有等效斜率,該等等效斜率分別等於虛線63及虛線66之斜率,其中虛線63通過點44及點45,且虛線66通過點47及點48。如此,側壁43及側壁46各者與位於下方的III-N材料結構之最上方表面分別形成等效角36及37。或以不同的方式來描述,側壁43及側壁46之各側壁具有等效斜率,等效斜率分別等於虛線63及虛線66之斜率。
如第4圖及第5圖所示,側壁46之等效斜率大於側壁43之等效斜率,且在許多情況下側壁46之等效斜率大幅大於側壁43之等效斜率。對應地,由側壁46相對於III-N材料結構之最上方表面所形成的等效角37大於(舉例而言,大幅大於或至少大於10度)由側壁43相對於III-N材料結構之最上方表面所形成的等效角36。鄰近汲極15的側壁43之等效角36被維持足夠小,以允許能施加較大的截止狀態電壓,而無裝置承受高電場崩潰或其他與裝置中較大電場關聯的有害 的效應的情況。亦即,增加等效角36通常造成當裝置在截止狀態時(亦即,當閘極相對於源極於低於裝置臨界電壓的某電壓下偏壓時)對於給定的汲極-源極電壓該裝置中峰值電場的增加,導致較低的關閉狀態操作電壓及崩潰電壓。然而,對於源極14與閘極61之間給定的分隔,增加側壁46之等效角37可降低閘極-源極電容值,此舉有益於裝置效能。若使得有效角37實質上與角36相同,而非如圖示的大於角36,則可能需要增加源極14與閘極61之間的分隔,以允許可靠的裝置製造且避免閘極-源極電容值太大。
第6圖為第4圖之裝置及第5圖之裝置之平面圖(頂視),且包含交錯的源極接點14及汲極接點15之「手指」,而源極接點14連接至源極接觸墊64且汲極接點15連接至汲極接觸墊65。虛線60指示對應於第4圖及第5圖中繪示的橫截面之切片。如第6圖所示,閘極61以類似蛇紋石的圖案來形成且寬度S1之區域與寬度D1之區域交錯,其中D1實質上大於S1。源極接點14之手指在寬度S1之區域中,且汲極接點15之手指在寬度D1之區域中。閘極61亦可連接至閘極接觸墊(未圖示)。雖然第6圖繪示3個源極手指及3個汲極手指,通常而言裝置可包含較少或較多源極手指及汲極手指。
使用習知技術可能難以再現地達成凹口17之形成,凹口17含有第4圖及第5圖中繪示的形狀的閘電極59,其中側壁43及側壁46之各者包含複數個階梯且具有不同的等效斜率。製造第4圖至第6圖之裝置之簡單且可再現的方法繪示於第7圖至第16圖。該方法利用寬度S1及寬度D1的 差,如以上參照第6圖所述,用以達成在具有如第4圖及第5圖所示的輪廓的電極界定層33中的凹口17,其中側壁46之等效斜率大於側壁43之等效斜率。該方法僅需要單一微影步驟但仍然能達成凹口17之輪廓,其中側壁46之等效斜率大於(例如,大幅大於)側壁43之等效斜率。可用以達成如此輪廓的其他流程通常涉及多個微影步驟且因此比起繪示於第7圖至第16圖中且如下所述的方法更為複雜且昂貴。
參照第7圖,舉例而言,藉由有機金屬化學氣相沉積法(MOCVD)或分子束磊晶(MBE),III-N材料層11及III-N材料層12形成於基板10上。然後藉由例如MOCVD或電漿輔助化學氣相沉積(PECVD)的方法來沉積形成於III-N材料層11及III-N材料層12上方的鈍化層22。再者,如第8A圖中可見,分別形成源極接點14及汲極接點15。源極接點及汲極接點與在III-N材料層中感應出的2DEG 19電性接觸。源極接點14及汲極接點15分別可以數種方式來形成。舉例而言,於層12之表面上,舉例而言,藉由蒸鍍、濺射或CVD,可於歐姆接觸區域56(第4圖中所示)中沉積金屬或數個金屬之組合,繼之以熱退火,熱退火導致沉積的金屬與位於下方的半導體材料形成金屬合金。或者,n型摻質可被離子佈植進入歐姆區域56中,繼之以於此區域頂上的藉由沉積、濺射或CVD的金屬沉積。或是歐姆接觸區域56中的材料可被蝕刻掉,藉由MOCVD或MBE,n型材料可再生長於此區域中,且然後金屬可沉積於此區域頂上。第8B圖圖示第8A圖中的裝置之平面視圖,其中虛線80指示第8A圖中繪示的橫截面。如第 8B圖可見,沉積交錯的源極接點14之手指及汲極接點15之手指,使得相鄰源極手指與汲極手指之間的間隔於裝置各處為近似相同的。
其次,如第9圖可見,舉例而言,藉由PECVD、濺射或蒸鍍,額外的介電層21及電極界定層33沉積於鈍化層22上方。然後,舉例而言,藉由反應性離子蝕刻RIE或感應耦合電漿(ICP)蝕刻,通過電極界定層蝕刻出凹口。用於形成凹口的流程繪示於第10圖至第16圖中。
參照第10A圖,於電極界定層33上圖案化光阻遮罩層71以具有開口72。可藉由標準微影流程來實行圖案化。第10B圖圖示第10A圖中的裝置之平面圖,其中虛線90指示第10A圖中繪示的橫截面。藉由具有虛線的矩形來指示被光阻遮罩層71所覆蓋的源極手指14及汲極手指15。如第10B圖可見,在光阻遮罩層71中的開口72是以類似蛇紋石的圖案來形成且寬度S1’之區域與寬度D1’之區域交錯,其中S1’與第6圖中的寬度S1近似相同,且D1’與第6圖中的寬度D1近似相同。正好位於相鄰的源極手指與汲極手指之間的開口72之部分為設置於比起汲極手指實質上較靠近源極手指處,因此,D1’實質上大於S1’。因此,在寬度D1’之區域中的光阻之體積及表面面積大幅大於在寬度S1’之區域中的光阻之體積及表面面積。
然後,舉例而言,藉由熱退火該結構,重新分佈在遮罩層71中的光阻,導致如第11圖中所示的光阻輪廓。於不損害光阻層71或位於下方的層之任一層的溫度下實行退 火。如第11圖所繪示,於光阻之重新分佈之後,光阻遮罩層具有傾斜的側壁73及側壁74。側壁73及側壁74之確切斜率及造成的輪廓至少部分取決於正好與側壁相鄰的光阻之部分之體積及/或表面面積。因為與側壁74相鄰的光阻之部分(該部分具有寬度D1’)比起與側壁73相鄰的光阻之部分(該部分具有寬度S1’)具有實質上較大的體積及表面面積,所以於開口72中造成的側壁輪廓為非對稱的,且側壁73比側壁74陡。光阻層71及側壁73與74之造成的輪廓可進一步藉由變化退火條件來控制,退火條件例如退火時間、退火溫度及在其中實行退火的周圍氣體之化學物。舉例而言,較長的退火時間或更高的溫度可導致側壁73及側壁74中的較小斜坡,雖然如第11圖中繪示且上述的不對稱性仍維持。
參照第12圖,然後藉由實行第一蝕刻來部分地形成在電極界定層33中的凹口,第一蝕刻採用蝕刻化學物,該蝕刻化學物蝕刻在層71中的光阻及電極界定層33之材料兩者。舉例而言,若電極界定層33為SiNx,則可藉由使用蝕刻化學物的反應性離子蝕刻(RIE)或感應耦合電漿(ICP)蝕刻來實行第一蝕刻,該蝕刻化學物包含O2及SF6。在某些實施方式中,第一蝕刻為實質上非等向性蝕刻。
如第13圖所繪示,然後實行第二蝕刻,第二蝕刻蝕刻光阻遮罩層71而無實質上蝕刻電極界定層33,藉此增加開口72之寬度。舉例而言,若電極界定層33為SiNx,則可藉由使用蝕刻化學物的反應性離子蝕刻(RIE)或感應耦合電漿(ICP)蝕刻來實行第二蝕刻,該蝕刻化學物僅包含O2。在某些 實施方式中,第二蝕刻為實質上等向性蝕刻。然後實行第三蝕刻,如同第一蝕刻,第三蝕刻利用蝕刻化學物,該蝕刻化學物蝕刻在層71中的光阻及電極界定層33之材料兩者,造成第14圖之輪廓。如第14圖所示,形成於電極界定層33中的凹口之源極側上的側壁之水平寬度74大於形成於凹口之源極側上的側壁之水平寬度73。然後重複數次光阻蝕刻流程與繼之以用於蝕刻層71及層33兩者之流程,重複該等流程直到凹口17延伸直到通過電極界定層33,造成具有陡峭側壁的孔徑。然後,舉例而言,藉由溶劑清潔,移除光阻遮罩層71,造成第15圖中所示的輪廓。額外的介電層21可由實質上不被用以蝕刻電極界定層33中的凹口之蝕刻流程所蝕刻的材料所形成。在該等例子中,額外的介電層21作為蝕刻終止層。
參照第16圖,然後舉例而言藉由實行蝕刻來移除與電極界定層33中的凹口17相鄰的額外的介電層21之部分,該蝕刻蝕刻額外的介電層21之材料但不蝕刻電極界定層33或鈍化層22之材料。舉例而言,當層33及層22皆為SiNx,且層21為AlN時,與電極界定層33中的凹口17相鄰的層21之該部分可於鹼中被化學蝕刻,例如光阻顯影劑。最後,舉例而言藉由蒸鍍、濺射或CVD,電極59保形地沉積於凹口中,造成第17圖之電晶體,第17圖之電晶體與第4圖之電晶體相同。為了形成第5圖之電晶體,於沉積電極59之前,實行額外的蝕刻,此舉將凹口17延伸通過鈍化層22且進入III-N材料結構中。
由於上述用於形成電極界定層33中的凹口17之蝕 刻過程之本質,側壁43及側壁46(標記於第17圖中)各具有相同數目的階梯。於相對側上同時形成的階梯具有實質上相同的高度。舉例而言,參照第17圖之裝置,同時形成的階梯81及階梯91具有實質上相同的高度。相似地,階梯82及階梯92具有實質上相同的高度,階梯83及階梯93具有實質上相同的高度,且階梯84及階梯94具有實質上相同的高度。此外,階梯81至階梯84之各者之大小及寬度實質上正比於在相對側壁上的對應階梯之大小及寬度。亦即,階梯81之寬度對於階梯91之寬度之比例,階梯82之寬度對於階梯92之寬度之比例,階梯83之寬度對於階梯93之寬度之比例,及階梯84之寬度對於階梯94之寬度之比例皆大約相同,亦即,實質上相同。在替代的過程中,其中階梯之各者由階梯自己的微影流程所形成,由於在微影流程中固有的對準公差(例如,不對準),在對應的階梯之寬度之比例之間的上述關係通常無法維持。
第4圖至第6圖之裝置或者可藉由使用上述的方法之稍微經修改的版本來形成。舉例而言,可於在電極界定層33中形成凹口17之後分別形成源極接點14及汲極接點15。此外,對於第6圖之裝置,用以將凹口17延伸進入III-N材料結構中所實行的額外的蝕刻步驟可包含以下步驟。一旦凹口延伸通過鈍化層22至III-N材料之最上方的表面,且在電極59之沉積之前,可使用蝕刻化學物來蝕刻該結構,比起用於電極界定層33及鈍化層22所使用的材料之蝕刻速率,該蝕刻化學物於較高的蝕刻速率下蝕刻III-N材料。舉例而言, 當電極界定層33及鈍化層22皆為SiNx時,可實行Cl2 RIE或ICP蝕刻,造成凹口延伸進入III-N材料結構中。
再次參照第17圖之裝置,階梯81至階梯84及階梯91至階梯94之各者包含兩個表面(雖然該等步驟可各包含額外的表面)。該等表面之一個表面為水平的(亦即,實質上平行於III-N材料結構之最上方表面),同時第二表面為傾斜的表面,且第二表面相對於III-N材料結構之最上方表面呈某角度。各階梯之傾斜的表面之傾斜的角度為製造過程中使用的光阻遮罩層71之傾斜的側壁之結果,如第11圖中所繪示。如先前所述,光阻層之側壁中的傾斜為重新分佈流程例如熱退火所導致的。然而,階梯81至階梯84及階梯91至階梯94之傾斜表面或者可由實質上垂直表面所取代。若需要實質上垂直表面而非傾斜的表面,則可省略光阻重新分佈流程或更改光阻重新分佈流程以改變造成的光阻輪廓。
參照凹口17之側壁43,側壁43界定第4圖及第17圖之裝置中的電場板54之形狀,吾人已發現藉由引入較大的階梯之數目/密度而不改變其他裝置參數之任一參數,能可靠地達成較高電壓操作。此外,若增加階梯之數目/密度,則吾人已發現裝置可以與具有較低的階梯之數目/密度的裝置相似的可靠性來操作,即使減少閘極-汲極間隔(在第17圖中標記為LGD),此為無法預期的結果。此外,若增加階梯之數目/密度,則吾人已發現裝置可以與具有較低的階梯之數目/密度的裝置相似的可靠性來操作,即使減少電場板長度(在第17圖中標記為LFP),此亦為無法預期的結果。舉例而言,具有電場 板長度LFP等於11.5微米(其中LFP界定為從點44至電場板之邊緣的水平長度,如第17圖所繪示)且8個階梯(例如,階梯密度大於每微米的電場板長度下0.4個階梯)及閘極-汲極間隔LGD(其中LGD如第17圖中所示來界定)等於18微米(例如,小於20微米)的裝置,當該裝置在截止狀態時(亦即,當閘極相對於源極以低於裝置臨界電壓的電壓下被偏壓時),已發現該裝置可靠地支持至少600V的汲極-源極電壓。在這些裝置中,於600V的汲極-源極電壓且相對於源極以低於裝置臨界電壓來偏壓閘極,每單位閘極寬度下的截止狀態汲極電流為約10-8Amps/mm,且直流導通電阻值為低於16歐姆毫米,其中直流導通電阻值界定為當閘極被偏壓導通時,於低汲極-源極電壓下裝置之直流電流-電壓曲線之斜率。藉由增加用於源極歐姆接點及汲極歐姆接點的金屬之厚度,直流導通電阻值能進一步減低至約12歐姆毫米或更低。這些裝置還具有非常低的直流-射頻(DC-RF)分散。裝置之動態導通電阻值,界定為在切換條件下的導通電阻值,為低於針對2微秒或更少的切換時間(亦即,轉換率)之直流導通電阻值的1.1倍(例如,實質上低於1.5倍)。在比較中,以僅具有3個階梯的電場板所形成的裝置,但具有在其他方面與上述裝置相似的結構,當裝置在截止狀態時,需要22微米的閘極-汲極間隔LGD(例如,大於20微米)以可靠地支持至少600V的汲極-源極電壓。此外,由於增加的閘極-汲極間隔,這些裝置展現了實質上較大的直流導通電阻值及動態導通電阻值。
此外,還已發現階梯81與最靠近階梯81的階梯(階 梯82至84)之相對大小於高電壓操作期間會影響裝置之可靠性。明確而言,使階梯82及任選地階梯83為實質上小於階梯81,繼之以較大的階梯(階梯84),如第17圖所示,於高電壓操作期間增加裝置之可靠性。此亦為無法預期的結果。據推測,具有如此的階梯大小圖案減低靠近內在閘極之汲極側邊緣(亦即,靠近點44)的峰值電場同時仍維持沿著電場板之長度之剩餘長度的高電場,藉此允許以低峰值電場得以支持較大的電壓。
如前所述,III-N層11及III-N層12彼此之間具有不同的組成。選擇該等組成使得第二III-N層12比起第一III-N層11具有較大的間隙,此舉幫助實現2DEG 19之形成。作為一個實例,III-N層11可為GaN且III-N層12可為AlGaN或AlInGaN或BAlInGaN,而層12可為n摻雜或可不含有摻雜雜質之顯著濃度。在層12為未摻雜的情況下,感應出的2DEG為層11與層12之間的極化電場中的差異之結果。
若III-N層11及III-N層12為由以非極性或半極性定向的III-N材料所組成,則亦可能需要用n型雜質來摻雜全部的或部分的第二半導體層12,以感應出2DEG 19。若III-N層11及III-N層12為於極化方向中定向,例如[0 0 0 1](亦即,III族面向)定向,則藉由極化電場可感應出2DEG 19而不需要該等III-N層之任一者之任何實質的摻雜,雖然藉由用n型雜質來摻雜全部的或部分的第二III-N層12可增加2DEG片電荷濃度。增加的2DEG片電荷濃度可為有利的,在於該等濃度可減低二極體導通電阻值,但該等濃度亦可導致較低 的逆向崩潰電壓。因此,2DEG片電荷濃度較佳地被最佳化至針對應用之適合的值,於該應用中使用二極體。
基板10可為任何適合的基板,於該基板上可形成III-N層11及III-N層12,舉例而言,碳化矽(SiC)、矽、藍寶石(sapphire)、GaN、AlN或任何其他於該基板上可形成III-N裝置的適合的基板。在某些實施方式中,在基板10與半導體層11之間包含III-N緩衝層(未圖示)例如AlGaN或AlN以使層11及層12中的材料缺陷最小化。
第18圖圖示與第4圖及第17圖之裝置相似的III-N HEMT電晶體之橫截面視圖,但該III-N HEMT電晶體為製造於定向於N極性[0 0 0 1bar]方向中或為氮終止半極性材料之III-N半導體材料上。裝置包含基板200,基板200適合用於N極性III-N材料或半極性III-N材料之生長。層201為緩衝層,例如GaN或AlN,該緩衝層降低在下方的III-N材料中的缺陷密度。在某些情況下,可以省略層201且在基板200上直接生長III-N層204。選擇III-N層204及III-N層202之組成使得在層202中靠近層202與層204之間的介面處可感應出2DEG 19。舉例而言,層204可為AlGaN或AlInGaN,且層202可為GaN。額外的III-N層(未圖示),例如AlN層,可被包含於III-N層204與III-N層202之間。另一個額外的III-N層(未圖示),例如AlInGaN、AlInN或AlGaN,亦可被包含於遠離III-N層204的III-N層202之相對側上。電極界定層33,再次包含凹口,相似於或相同於第4圖及第17圖之電極界定層。閘極59形成於凹口中。閘極59包含在裝置之 閘極區域51中的主動閘極部分61,以及延伸部分54及延伸部分55,如第4圖及第17圖。閘極59保形地沉積於電極界定區域中的凹口中,且延伸部分54位於凹口之側壁43上方。因此,延伸部分54之輪廓為至少部分由側壁43之輪廓所決定。源極接點14及汲極接點15分別位於閘極59之相對側上且形成歐姆接觸至2DEG通道19。
如在第4圖及第17圖之HEMT中,鈍化層22例如SiNx層可被包含於III-N材料結構之最上方表面上,且額外的介電層21例如AlN層可被包含於電極界定層33與鈍化層22之間。如第18圖所示,在電極界定層33中的凹口可延伸通過額外介電層21之整個厚度但不通過鈍化層22,使得鈍化層22亦作為閘極絕緣體。
第18圖之III-N HEMT可為增強模式(亦即,常關型,且臨界電壓大於0V)或空乏模式(亦即,常開型,且臨界電壓小於0V)裝置。用於第18圖之III-N HEMT的其他配置亦為可能的。舉例而言,在一個實施方式中,在電極界定層33中的凹口僅延伸部分地通過電極界定層33之厚度,使得電極界定層33之一部分位於III-N材料與閘極部分61之間(未圖示)。在此情況下,電極界定層33亦可作為閘極絕緣體,且省略鈍化層22及/或額外的介電層21可為可能的。在另一個實施方式中,在電極界定層33中的凹口額外地延伸通過鈍化層22之整個厚度,且閘極59直接接觸位於下方的III-N材料(未圖示)。在又另一個實施方式中,凹口進一步延伸進入III-N材料中(未圖示),例如通過2DEG 19,如第5圖之電晶體。
用於形成第18圖之裝置的流程與圖示於第7圖至第16圖中用於形成第4圖之裝置的流程相同,除了形成於第18圖中之基板上的III-N材料層相較於形成於第4圖中之基板上的III-N材料層具有不同的晶體方向。
已描述數個實施方式。然而,將瞭解,在不脫離本文描述的技術及裝置之精神與範疇的情況下可作各種修改。表示於該等實施方式之各者中的特徵可被獨立地使用或與其他特徵結合。因此,其他實施方式在下述申請專利範圍之範疇內。
10‧‧‧基板
11‧‧‧第一III-N層
12‧‧‧第二III-N層
14‧‧‧源極接點/源極
15‧‧‧汲極接點/汲極
17‧‧‧凹口
19‧‧‧二維電子氣(2DEG)通道
21‧‧‧額外的介電層
22‧‧‧鈍化層
33‧‧‧電極界定層
36‧‧‧等效角
37‧‧‧等效角
43‧‧‧側壁
44‧‧‧點
45‧‧‧點
46‧‧‧側壁
47‧‧‧點
48‧‧‧點
51‧‧‧閘極區域
52‧‧‧源極入口區域
53‧‧‧汲極入口區域
54‧‧‧第一延伸部分/電場板
55‧‧‧第二延伸部分
56‧‧‧歐姆接觸區域
59‧‧‧閘電極
61‧‧‧閘電極之部分/閘極
63‧‧‧虛線
66‧‧‧虛線

Claims (43)

  1. 一種III族-氮化物(III-N)電晶體,包括:一III-N材料結構;一源極及一汲極;一電極界定層,該電極界定層具有一厚度,該電極界定層位於該III-N材料結構之一表面上方,該電極界定層具有一凹口,且於該汲極的近端具有一第一側壁及於該源極的近端具有一第二側壁,該第一側壁及該第二側壁各包括複數個階梯,其中該III-N材料結構的遠端的該凹口之一部分具有一第一寬度,且該III-N材料結構的近端的該凹口之一部分具有一第二寬度,該第一寬度大於該第二寬度;及在該凹口中的一電極,該電極包含一延伸部分,該延伸部分至少部分位於該第一側壁上方;其中該第一側壁相對於該III-N材料結構之該表面形成一第一等效角,且該第二側壁相對於該III-N材料結構之該表面形成一第二等效角,該第二等效角大於該第一等效角。
  2. 如請求項1所述之電晶體,其中該第二等效角大幅大於該第一等效角。
  3. 如請求項1所述之電晶體,其中該第二等效角比起該第一等效角至少大10度。
  4. 如請求項1所述之電晶體,其中該III-N材料結構包括一 第一III-N材料層、一第二III-N材料層及一2DEG通道,該2DEG通道係因為該第一III-N材料層與該第二III-N材料層之間的一組成差異而在該第一III-N材料層中鄰近該第二III-N材料層處被感應出。
  5. 如請求項4所述之電晶體,其中該第一III-N材料層包含GaN且該第二III-N材料層包含AlGaN、AlInN、AlInGaN或BAlInGaN。
  6. 如請求項4所述之電晶體,其中該第一III-N材料層及該第二III-N材料層為III族面向層或[0 0 0 1]定向層或III族終止半極性層,且該第二III-N材料層位於該第一III-N材料層與該電極界定層之間。
  7. 如請求項4所述之電晶體,其中該第一III-N材料層及該第二III-N材料層為N面向層或[0 0 0 -1]定向層或氮終止半極性層,且該第一III-N材料層位於該第二III-N材料層與該電極界定層之間。
  8. 如請求項4所述之電晶體,其中該凹口延伸通過該電極界定層之整個該厚度。
  9. 如請求項8所述之電晶體,其中該凹口延伸進入該III-N材料結構。
  10. 如請求項9所述之電晶體,其中該凹口延伸通過該2DEG通道。
  11. 如請求項1所述之電晶體,其中該電極界定層包括SiNx
  12. 如請求項1所述之電晶體,其中該電極界定層之一厚度介於約0.1微米與約5微米之間。
  13. 如請求項1所述之電晶體,進一步包括該III-N材料結構與該電極界定層之間的一介電鈍化層,該介電鈍化層直接接觸鄰近該電極的該III-N材料之一表面。
  14. 如請求項13所述之電晶體,其中該介電鈍化層包括SiNx
  15. 如請求項14所述之電晶體,其中該介電鈍化層位於該電極與該III-N材料結構之間,使得該電極不直接接觸該III-N材料結構。
  16. 如請求項14所述之電晶體,進一步包括該介電鈍化層與該電極界定層之間的一額外的絕緣層。
  17. 如請求項16所述之電晶體,其中該額外的絕緣層包括AlN。
  18. 如請求項1所述之電晶體,其中該電極之該延伸部分直接接觸該側壁。
  19. 如請求項1所述之電晶體,其中該電極包含一閘極,該閘極在該電晶體之一閘極區域中;及該第一側壁及該第二側壁中的該複數個階梯各包含一第一階梯、一第二階梯及一第三階梯,該第一階梯具有正好鄰近該閘極的一第一階梯寬度,該第二階梯具有正好鄰近該第一階梯的一第二階梯寬度,且該第三階梯具有正好鄰近該第二階梯的一第三階梯寬度;其中在該第一側壁中的該複數個階梯中的該第一階梯寬度對於該第二階梯寬度之一比例實質上相同於在該第二側壁中的該複數個階梯中的該第一階梯寬度對於該第二階梯寬度之一比例。
  20. 如請求項19所述之電晶體,其中在該第一側壁中的該複數個階梯中的該第一階梯寬度對於該第三階梯寬度之一比例實質上相同於在該第二側壁中的該複數個階梯中的該第一階梯寬度對於該第三階梯寬度之一比例。
  21. 如請求項19所述之電晶體,其中在該第一側壁中的該第一階梯寬度、該第二階梯寬度及該第三階梯寬度之一總和大 於在該第二側壁中的該第一階梯寬度、該第二階梯寬度及該第三階梯寬度之一總和。
  22. 一種形成一半導體裝置之方法,包括以下步驟:提供一半導體材料結構;在該半導體材料結構之一表面上形成一電極界定層,該電極界定層具有一厚度;在該電極界定層上方圖案化一遮罩層,該遮罩層包含一開口,該開口具有一寬度;及蝕刻該電極界定層以在該電極界定層中形成一凹口,該凹口具有一第一側壁及相對於該第一側壁的一第二側壁,該第一側壁及該第二側壁各包括複數個階梯,該第一側壁相對於該半導體材料結構之該表面形成一第一等效角,且該第二側壁相對於該半導體材料結構之該表面形成一第二等效角,該半導體材料結構的遠端的該凹口之一部分具有一第一寬度,且該半導體材料結構的近端的該凹口之一部分具有一第二寬度,該第一寬度大於該第二寬度;其中該蝕刻包含實行一第一流程及一第二流程,該第一流程包括移除該電極界定層之一部分,且該第二流程包括移除該遮罩層之一部分而非整個移除該遮罩層,該第二流程導致該遮罩層中的該開口之該寬度增加;及該蝕刻造成該第二等效角大於該第一等效角。
  23. 如請求項22所述之方法,其中該蝕刻造成該第二等效角 大幅大於該第一等效角。
  24. 如請求項22所述之方法,其中該蝕刻造成該第二等效角比起該第一等效角至少大10度。
  25. 如請求項22所述之方法,其中該遮罩層包括光阻。
  26. 如請求項25所述之方法,進一步包括在實行該蝕刻步驟之前導致該遮罩層中的該光阻之一重新分佈。
  27. 如請求項26所述之方法,其中導致該光阻之該重新分佈包括熱退火該光阻。
  28. 如請求項26所述之方法,其中該光阻之該重新分佈造成該遮罩層在該開口之一側上具有一第一傾斜側壁及在該開口之相對側上具有一第二傾斜側壁。
  29. 如請求項28所述之方法,其中該光阻之該重新分佈造成該第二傾斜側壁比起該第一傾斜側壁具有一較大的斜率。
  30. 如請求項22所述之方法,進一步包含移除該遮罩層及在該凹口中形成一電極。
  31. 如請求項22所述之方法,其中該蝕刻進一步包含在已實 行該第二流程之後再次實行該第一流程,及在已再次實行該第一流程之後再次實行該第二流程。
  32. 如請求項22所述之方法,其中該蝕刻造成該凹口延伸通過該電極界定層之整個該厚度。
  33. 如請求項22所述之方法,其中該半導體材料結構包括一III-N層。
  34. 一種形成一半導體裝置之方法,包括以下步驟:提供一半導體材料結構;在該半導體材料結構之一表面上形成一電極界定層,該電極界定層具有一厚度;在該電極界定層上方圖案化一遮罩層,該遮罩層包含一開口,該開口形成一圖案,該圖案包含複數個區域,具有一第一寬度的該複數個區域與具有一第二寬度的該複數個區域交錯,該第一寬度大於該第二寬度;及蝕刻在該開口下的該電極界定層以在該電極界定層中形成一凹口,該凹口具有一第一側壁及一第二側壁,該第一側壁包含複數個區段,各該複數個區段鄰近具有該第一寬度的該等區域中之一者,且該第二側壁包含複數個區段,各該複數個區段鄰近具有該第二寬度的該等區域中之一者;其中該蝕刻造成該第二側壁之該等區段之一平均斜率大於該第一側壁之該等區段之一平均斜率。
  35. 如請求項34所述之方法,其中該蝕刻包括蝕刻通過該電極界定層之整個該厚度及於該蝕刻之整體期間使用該遮罩層作為一蝕刻遮罩。
  36. 如請求項35所述之方法,其中該蝕刻進一步包括蝕刻進入正好位於該電極界定層下的一層。
  37. 如請求項34所述之方法,其中該半導體材料結構包括一III-N層。
  38. 一種電晶體,包括:一半導體材料結構,該半導體材料結構於該半導體材料結構中包含一通道;一源極及一汲極,各該源極及該汲極與該通道電性接觸;及位於該源極與該汲極之間的一電極,該電極包含一閘極及一延伸部分,該延伸部分從該閘極延伸朝向該汲極;其中該電晶體具有低於20微米的一閘極-汲極間隔;當該閘極以低於相對於該源極的該電晶體之一臨界電壓被偏壓,且該電晶體之一汲極-源極電壓為約600V或更大時,該電晶體之每單位閘極寬度下的一截止狀態汲極電流為約10-8Amps/mm或更低;及當該電晶體以2微秒或更低的一切換時間被切換時,該 電晶體之一動態導通電阻值為低於該電晶體之一直流導通電阻值的1.1倍。
  39. 如請求項38所述之電晶體,其中該半導體材料結構包括一III-N材料,且該通道位於該III-N材料中。
  40. 如請求項38所述之電晶體,其中該電晶體之該直流導通電阻值為低於12歐姆毫米。
  41. 一種電晶體,包括:一半導體材料結構,該半導體材料結構於該半導體材料結構中包含一通道;一源極及一汲極,各該源極及該汲極與該通道電性接觸;及位於該源極與該汲極之間的一電極,該電極包含一閘極及一延伸部分,該延伸部分從該閘極延伸朝向該汲極;其中該電晶體具有低於20微米的一閘極-汲極間隔;該延伸部分包含複數個階梯,其中該延伸部分之每微米的長度下在該複數個階梯中的階梯之數目大於0.4;及當該閘極以低於相對於該源極的該電晶體之一臨界電壓被偏壓,且該電晶體之一汲極-源極電壓為約600V或更大時,該電晶體之每單位閘極寬度下的一截止狀態汲極電流為約10-8Amps/mm或更低。
  42. 如請求項41所述之電晶體,其中該延伸部分具有12微米或更短的一長度。
  43. 如請求項41所述之電晶體,其中該電晶體之一直流導通電阻值為低於12歐姆毫米。
TW103104944A 2013-02-15 2014-02-14 用於半導體裝置之電極及形成該等電極之方法 TWI600155B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361765635P 2013-02-15 2013-02-15

Publications (2)

Publication Number Publication Date
TW201438229A TW201438229A (zh) 2014-10-01
TWI600155B true TWI600155B (zh) 2017-09-21

Family

ID=51350565

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103104944A TWI600155B (zh) 2013-02-15 2014-02-14 用於半導體裝置之電極及形成該等電極之方法

Country Status (5)

Country Link
US (2) US9171730B2 (zh)
JP (1) JP6522521B2 (zh)
CN (1) CN105164811B (zh)
TW (1) TWI600155B (zh)
WO (1) WO2014127150A1 (zh)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090191821A1 (en) * 2008-01-25 2009-07-30 Spyridon Charalabos Kavadias Method and system for transmit path filter and mixer co-design
WO2014127150A1 (en) 2013-02-15 2014-08-21 Transphorm Inc. Electrodes for semiconductor devices and methods of forming the same
US9467105B2 (en) * 2013-03-26 2016-10-11 Sensor Electronic Technology, Inc. Perforated channel field effect transistor
US9437724B2 (en) * 2014-04-21 2016-09-06 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
US9761438B1 (en) * 2014-05-08 2017-09-12 Hrl Laboratories, Llc Method for manufacturing a semiconductor structure having a passivated III-nitride layer
US10756208B2 (en) 2014-11-25 2020-08-25 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated chip and method of forming the same
US11164970B2 (en) 2014-11-25 2021-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Contact field plate
US9337040B1 (en) * 2014-12-05 2016-05-10 Varian Semiconductor Equipment Associates, Inc. Angled ion beam processing of heterogeneous structure
US10177061B2 (en) * 2015-02-12 2019-01-08 Infineon Technologies Austria Ag Semiconductor device
WO2016157581A1 (ja) * 2015-03-31 2016-10-06 シャープ株式会社 窒化物半導体電界効果トランジスタ
ITUB20155536A1 (it) * 2015-11-12 2017-05-12 St Microelectronics Srl Transistore hemt di tipo normalmente spento includente una trincea contenente una regione di gate e formante almeno un gradino, e relativo procedimento di fabbricazione
US10541323B2 (en) * 2016-04-15 2020-01-21 Macom Technology Solutions Holdings, Inc. High-voltage GaN high electron mobility transistors
US10651317B2 (en) 2016-04-15 2020-05-12 Macom Technology Solutions Holdings, Inc. High-voltage lateral GaN-on-silicon Schottky diode
EP3252824B1 (en) * 2016-05-30 2021-10-20 STMicroelectronics S.r.l. High-power and high-frequency heterostructure field-effect transistor
CN109891561B (zh) * 2016-10-24 2021-09-21 三菱电机株式会社 化合物半导体器件的制造方法
CN107331608B (zh) * 2017-08-23 2020-11-24 成都海威华芯科技有限公司 一种双台阶t型栅的制作方法
US10630285B1 (en) 2017-11-21 2020-04-21 Transphorm Technology, Inc. Switching circuits having drain connected ferrite beads
CN109841594B (zh) * 2017-11-27 2021-04-02 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
US11233047B2 (en) 2018-01-19 2022-01-25 Macom Technology Solutions Holdings, Inc. Heterolithic microwave integrated circuits including gallium-nitride devices on highly doped regions of intrinsic silicon
US10950598B2 (en) 2018-01-19 2021-03-16 Macom Technology Solutions Holdings, Inc. Heterolithic microwave integrated circuits including gallium-nitride devices formed on highly doped semiconductor
US11056483B2 (en) 2018-01-19 2021-07-06 Macom Technology Solutions Holdings, Inc. Heterolithic microwave integrated circuits including gallium-nitride devices on intrinsic semiconductor
CN108417628A (zh) * 2018-03-06 2018-08-17 中国电子科技集团公司第十三研究所 一种GaN HEMT器件及制备方法
CN109786453B (zh) * 2018-04-25 2022-05-17 苏州捷芯威半导体有限公司 半导体器件及其制作方法
JP7143660B2 (ja) * 2018-07-18 2022-09-29 サンケン電気株式会社 半導体装置
US10756207B2 (en) 2018-10-12 2020-08-25 Transphorm Technology, Inc. Lateral III-nitride devices including a vertical gate module
WO2020191357A1 (en) 2019-03-21 2020-09-24 Transphorm Technology, Inc. Integrated design for iii-nitride devices
CN109841677A (zh) * 2019-03-28 2019-06-04 英诺赛科(珠海)科技有限公司 高电子迁移率晶体管及其制造方法
US10818625B1 (en) * 2019-06-19 2020-10-27 Nanya Technology Corporation Electronic device
US11177379B2 (en) * 2019-06-19 2021-11-16 Win Semiconductors Corp. Gate-sinking pHEMTs having extremely uniform pinch-off/threshold voltage
CN112216738A (zh) * 2019-07-09 2021-01-12 台湾积体电路制造股份有限公司 集成芯片及其形成方法
TWI812805B (zh) * 2019-11-05 2023-08-21 聯華電子股份有限公司 高電子遷移率電晶體及其製作方法
CN110808211A (zh) * 2019-11-08 2020-02-18 中国电子科技集团公司第十三研究所 斜型栅结构氧化镓场效应晶体管及其制备方法
US11658233B2 (en) * 2019-11-19 2023-05-23 Wolfspeed, Inc. Semiconductors with improved thermal budget and process of making semiconductors with improved thermal budget
CN111106169A (zh) * 2019-11-27 2020-05-05 厦门市三安集成电路有限公司 晶体管器件及其制备方法
US11600614B2 (en) 2020-03-26 2023-03-07 Macom Technology Solutions Holdings, Inc. Microwave integrated circuits including gallium-nitride devices on silicon
US11749656B2 (en) 2020-06-16 2023-09-05 Transphorm Technology, Inc. Module configurations for integrated III-Nitride devices
US20230299190A1 (en) 2020-08-05 2023-09-21 Transphorm Technology, Inc. Iii-nitride devices including a depleting layer
CN111952360B (zh) * 2020-08-19 2023-02-21 深圳方正微电子有限公司 场效应管及其制备方法
CN111816707B (zh) * 2020-08-28 2022-03-08 电子科技大学 消除体内曲率效应的等势降场器件及其制造方法
US11682721B2 (en) 2021-01-20 2023-06-20 Raytheon Company Asymmetrically angled gate structure and method for making same
CN113314405B (zh) * 2021-05-26 2022-07-26 四川上特科技有限公司 半导体功率器件斜坡场板的制作方法
CN117716496A (zh) * 2021-08-03 2024-03-15 新唐科技日本株式会社 可变电容元件
JPWO2023189082A1 (zh) * 2022-03-29 2023-10-05
WO2024065149A1 (en) * 2022-09-27 2024-04-04 Innoscience (suzhou) Semiconductor Co., Ltd. Nitride-based semiconductor device and method for manufacturing thereof
CN117410173B (zh) * 2023-12-15 2024-03-08 中晶新源(上海)半导体有限公司 一种阶梯介质层的沟槽半导体器件的制作方法

Family Cites Families (207)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300091A (en) 1980-07-11 1981-11-10 Rca Corporation Current regulating circuitry
JPS61166130A (ja) * 1985-01-18 1986-07-26 Matsushita Electronics Corp ホトレジストパタ−ンの形成方法
US4645562A (en) 1985-04-29 1987-02-24 Hughes Aircraft Company Double layer photoresist technique for side-wall profile control in plasma etching processes
US4728826A (en) 1986-03-19 1988-03-01 Siemens Aktiengesellschaft MOSFET switch with inductive load
US4821093A (en) 1986-08-18 1989-04-11 The United States Of America As Represented By The Secretary Of The Army Dual channel high electron mobility field effect transistor
JPH07120807B2 (ja) 1986-12-20 1995-12-20 富士通株式会社 定電流半導体装置
US5051618A (en) 1988-06-20 1991-09-24 Idesco Oy High voltage system using enhancement and depletion field effect transistors
US5329147A (en) 1993-01-04 1994-07-12 Xerox Corporation High voltage integrated flyback circuit in 2 μm CMOS
US6097046A (en) 1993-04-30 2000-08-01 Texas Instruments Incorporated Vertical field effect transistor and diode
US5550404A (en) 1993-05-20 1996-08-27 Actel Corporation Electrically programmable antifuse having stair aperture
US5740192A (en) 1994-12-19 1998-04-14 Kabushiki Kaisha Toshiba Semiconductor laser
US5646069A (en) 1995-06-07 1997-07-08 Hughes Aircraft Company Fabrication process for Alx In1-x As/Gay In1-y As power HFET ohmic contacts
US5618384A (en) 1995-12-27 1997-04-08 Chartered Semiconductor Manufacturing Pte, Ltd. Method for forming residue free patterned conductor layers upon high step height integrated circuit substrates using reflow of photoresist
JP3677350B2 (ja) 1996-06-10 2005-07-27 三菱電機株式会社 半導体装置、及び半導体装置の製造方法
US6008684A (en) 1996-10-23 1999-12-28 Industrial Technology Research Institute CMOS output buffer with CMOS-controlled lateral SCR devices
US5714393A (en) 1996-12-09 1998-02-03 Motorola, Inc. Diode-connected semiconductor device and method of manufacture
US5909103A (en) 1997-07-24 1999-06-01 Siliconix Incorporated Safety switch for lithium ion battery
US6316820B1 (en) 1997-07-25 2001-11-13 Hughes Electronics Corporation Passivation layer and process for semiconductor devices
JP3222847B2 (ja) 1997-11-14 2001-10-29 松下電工株式会社 双方向形半導体装置
JP3129264B2 (ja) 1997-12-04 2001-01-29 日本電気株式会社 化合物半導体電界効果トランジスタ
US6316793B1 (en) 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
JP3111985B2 (ja) 1998-06-16 2000-11-27 日本電気株式会社 電界効果型トランジスタ
JP3180776B2 (ja) 1998-09-22 2001-06-25 日本電気株式会社 電界効果型トランジスタ
JP2000058871A (ja) 1999-07-02 2000-02-25 Citizen Watch Co Ltd 電子機器の集積回路
US6984571B1 (en) 1999-10-01 2006-01-10 Ziptronix, Inc. Three dimensional device integration method and integrated device
US6586781B2 (en) 2000-02-04 2003-07-01 Cree Lighting Company Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same
JP3751791B2 (ja) 2000-03-28 2006-03-01 日本電気株式会社 ヘテロ接合電界効果トランジスタ
JP5130641B2 (ja) 2006-03-31 2013-01-30 サンケン電気株式会社 複合半導体装置
US6475889B1 (en) 2000-04-11 2002-11-05 Cree, Inc. Method of forming vias in silicon carbide and resulting devices and circuits
US7892974B2 (en) 2000-04-11 2011-02-22 Cree, Inc. Method of forming vias in silicon carbide and resulting devices and circuits
US7125786B2 (en) 2000-04-11 2006-10-24 Cree, Inc. Method of forming vias in silicon carbide and resulting devices and circuits
US6580101B2 (en) 2000-04-25 2003-06-17 The Furukawa Electric Co., Ltd. GaN-based compound semiconductor device
US6624452B2 (en) 2000-07-28 2003-09-23 The Regents Of The University Of California Gallium nitride-based HFET and a method for fabricating a gallium nitride-based HFET
US6727531B1 (en) 2000-08-07 2004-04-27 Advanced Technology Materials, Inc. Indium gallium nitride channel high electron mobility transistors, and method of making the same
US6548333B2 (en) 2000-12-01 2003-04-15 Cree, Inc. Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
TW466768B (en) 2000-12-30 2001-12-01 Nat Science Council An In0.34Al0.66As0.85Sb0.15/InP HFET utilizing InP channels
US7233028B2 (en) 2001-02-23 2007-06-19 Nitronex Corporation Gallium nitride material devices and methods of forming the same
US6830976B2 (en) 2001-03-02 2004-12-14 Amberwave Systems Corproation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6849882B2 (en) 2001-05-11 2005-02-01 Cree Inc. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
JP3834589B2 (ja) 2001-06-27 2006-10-18 株式会社ルネサステクノロジ 半導体装置の製造方法
AU2002357640A1 (en) 2001-07-24 2003-04-22 Cree, Inc. Insulting gate algan/gan hemt
JP4177048B2 (ja) 2001-11-27 2008-11-05 古河電気工業株式会社 電力変換装置及びそれに用いるGaN系半導体装置
US7030428B2 (en) 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
JP2003244943A (ja) 2002-02-13 2003-08-29 Honda Motor Co Ltd 電源装置の昇圧装置
US7919791B2 (en) 2002-03-25 2011-04-05 Cree, Inc. Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same
US6982204B2 (en) 2002-07-16 2006-01-03 Cree, Inc. Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
KR100497890B1 (ko) 2002-08-19 2005-06-29 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
WO2004019415A1 (en) 2002-08-26 2004-03-04 University Of Florida GaN-TYPE ENHANCEMENT MOSFET USING HETERO STRUCTURE
AU2003263510A1 (en) 2002-10-29 2004-05-25 Koninklijke Philips Electronics N.V. Bi-directional double nmos switch
JP4385205B2 (ja) 2002-12-16 2009-12-16 日本電気株式会社 電界効果トランジスタ
US7169634B2 (en) 2003-01-15 2007-01-30 Advanced Power Technology, Inc. Design and fabrication of rugged FRED
WO2004070791A2 (en) 2003-02-04 2004-08-19 Great Wall Semiconductor Bi-directional power switch
JP2004260114A (ja) 2003-02-27 2004-09-16 Shin Etsu Handotai Co Ltd 化合物半導体素子
US7112860B2 (en) 2003-03-03 2006-09-26 Cree, Inc. Integrated nitride-based acoustic wave devices and methods of fabricating integrated nitride-based acoustic wave devices
TW583636B (en) 2003-03-11 2004-04-11 Toppoly Optoelectronics Corp Source follower capable of compensating the threshold voltage
US7658709B2 (en) 2003-04-09 2010-02-09 Medtronic, Inc. Shape memory alloy actuators
US6979863B2 (en) 2003-04-24 2005-12-27 Cree, Inc. Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same
CA2427039C (en) 2003-04-29 2013-08-13 Kinectrics Inc. High speed bi-directional solid state switch
US7078743B2 (en) 2003-05-15 2006-07-18 Matsushita Electric Industrial Co., Ltd. Field effect transistor semiconductor device
US7501669B2 (en) 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
US7812369B2 (en) 2003-09-09 2010-10-12 The Regents Of The University Of California Fabrication of single or multiple gate field plates
WO2005062745A2 (en) 2003-10-10 2005-07-14 The Regents Of The University Of California GaN/AlGaN/GaN DISPERSION-FREE HIGH ELECTRON MOBILITY TRANSISTORS
US7268375B2 (en) 2003-10-27 2007-09-11 Sensor Electronic Technology, Inc. Inverted nitride-based semiconductor structure
US6867078B1 (en) 2003-11-19 2005-03-15 Freescale Semiconductor, Inc. Method for forming a microwave field effect transistor with high operating voltage
US7071498B2 (en) 2003-12-17 2006-07-04 Nitronex Corporation Gallium nitride material devices including an electrode-defining layer and methods of forming the same
US20050133816A1 (en) 2003-12-19 2005-06-23 Zhaoyang Fan III-nitride quantum-well field effect transistors
US7045404B2 (en) 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US7901994B2 (en) 2004-01-16 2011-03-08 Cree, Inc. Methods of manufacturing group III nitride semiconductor devices with silicon nitride layers
US8174048B2 (en) 2004-01-23 2012-05-08 International Rectifier Corporation III-nitride current control device and method of manufacture
US7382001B2 (en) 2004-01-23 2008-06-03 International Rectifier Corporation Enhancement mode III-nitride FET
US7612390B2 (en) 2004-02-05 2009-11-03 Cree, Inc. Heterojunction transistors including energy barriers
US7170111B2 (en) 2004-02-05 2007-01-30 Cree, Inc. Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same
US7465997B2 (en) 2004-02-12 2008-12-16 International Rectifier Corporation III-nitride bidirectional switch
US7550781B2 (en) 2004-02-12 2009-06-23 International Rectifier Corporation Integrated III-nitride power devices
US7084475B2 (en) 2004-02-17 2006-08-01 Velox Semiconductor Corporation Lateral conduction Schottky diode with plural mesas
US7573078B2 (en) 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US7550783B2 (en) 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US7432142B2 (en) 2004-05-20 2008-10-07 Cree, Inc. Methods of fabricating nitride-based transistors having regrown ohmic contact regions
US7332795B2 (en) 2004-05-22 2008-02-19 Cree, Inc. Dielectric passivation for semiconductor devices
JP4810072B2 (ja) * 2004-06-15 2011-11-09 株式会社東芝 窒素化合物含有半導体装置
US7859014B2 (en) 2004-06-24 2010-12-28 Nec Corporation Semiconductor device
JP2006032552A (ja) 2004-07-14 2006-02-02 Toshiba Corp 窒化物含有半導体装置
JP4744109B2 (ja) 2004-07-20 2011-08-10 トヨタ自動車株式会社 半導体装置とその製造方法
JP2006033723A (ja) 2004-07-21 2006-02-02 Sharp Corp 電力制御用光結合素子およびこの電力制御用光結合素子を用いた電子機器
US7238560B2 (en) 2004-07-23 2007-07-03 Cree, Inc. Methods of fabricating nitride-based transistors with a cap layer and a recessed gate
US20060076677A1 (en) 2004-10-12 2006-04-13 International Business Machines Corporation Resist sidewall spacer for C4 BLM undercut control
US7265399B2 (en) 2004-10-29 2007-09-04 Cree, Inc. Asymetric layout structures for transistors and methods of fabricating the same
JP4650224B2 (ja) 2004-11-19 2011-03-16 日亜化学工業株式会社 電界効果トランジスタ
JP4637553B2 (ja) 2004-11-22 2011-02-23 パナソニック株式会社 ショットキーバリアダイオード及びそれを用いた集積回路
US7456443B2 (en) 2004-11-23 2008-11-25 Cree, Inc. Transistors having buried n-type and p-type regions beneath the source region
US7709859B2 (en) 2004-11-23 2010-05-04 Cree, Inc. Cap layers including aluminum nitride for nitride-based transistors
US7161194B2 (en) 2004-12-06 2007-01-09 Cree, Inc. High power density and/or linearity transistors
US7834380B2 (en) 2004-12-09 2010-11-16 Panasonic Corporation Field effect transistor and method for fabricating the same
US7217960B2 (en) 2005-01-14 2007-05-15 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US7429534B2 (en) 2005-02-22 2008-09-30 Sensor Electronic Technology, Inc. Etching a nitride-based heterostructure
US7253454B2 (en) 2005-03-03 2007-08-07 Cree, Inc. High electron mobility transistor
US11791385B2 (en) 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
US7321132B2 (en) 2005-03-15 2008-01-22 Lockheed Martin Corporation Multi-layer structure for use in the fabrication of integrated circuit devices and methods for fabrication of same
US7465967B2 (en) 2005-03-15 2008-12-16 Cree, Inc. Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions
US7439557B2 (en) 2005-03-29 2008-10-21 Coldwatt, Inc. Semiconductor device having a lateral channel and contacts on opposing surfaces thereof
JP4912604B2 (ja) 2005-03-30 2012-04-11 住友電工デバイス・イノベーション株式会社 窒化物半導体hemtおよびその製造方法。
US20060226442A1 (en) 2005-04-07 2006-10-12 An-Ping Zhang GaN-based high electron mobility transistor and method for making the same
JP4756557B2 (ja) 2005-04-22 2011-08-24 ルネサスエレクトロニクス株式会社 半導体装置
US7615774B2 (en) 2005-04-29 2009-11-10 Cree.Inc. Aluminum free group III-nitride based high electron mobility transistors
US7544963B2 (en) 2005-04-29 2009-06-09 Cree, Inc. Binary group III-nitride based high electron mobility transistors
US7364988B2 (en) 2005-06-08 2008-04-29 Cree, Inc. Method of manufacturing gallium nitride based high-electron mobility devices
US7326971B2 (en) 2005-06-08 2008-02-05 Cree, Inc. Gallium nitride based high-electron mobility devices
US7408399B2 (en) 2005-06-27 2008-08-05 International Rectifier Corporation Active driving of normally on, normally off cascoded configuration devices through asymmetrical CMOS
US7855401B2 (en) 2005-06-29 2010-12-21 Cree, Inc. Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
KR101045573B1 (ko) 2005-07-06 2011-07-01 인터내쇼널 렉티파이어 코포레이션 Ⅲ족 질화물 인헨스먼트 모드 소자
JP4712459B2 (ja) 2005-07-08 2011-06-29 パナソニック株式会社 トランジスタ及びその動作方法
JP4730529B2 (ja) 2005-07-13 2011-07-20 サンケン電気株式会社 電界効果トランジスタ
US20070018199A1 (en) 2005-07-20 2007-01-25 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
US7548112B2 (en) 2005-07-21 2009-06-16 Cree, Inc. Switch mode power amplifier using MIS-HEMT with field plate extension
KR100610639B1 (ko) 2005-07-22 2006-08-09 삼성전기주식회사 수직 구조 질화갈륨계 발광다이오드 소자 및 그 제조방법
JP4751150B2 (ja) 2005-08-31 2011-08-17 株式会社東芝 窒化物系半導体装置
JP4997621B2 (ja) 2005-09-05 2012-08-08 パナソニック株式会社 半導体発光素子およびそれを用いた照明装置
TW200715570A (en) 2005-09-07 2007-04-16 Cree Inc Robust transistors with fluorine treatment
JP2009509343A (ja) 2005-09-16 2009-03-05 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア N極窒化アルミニウムガリウム/窒化ガリウムエンハンスメントモード電界効果トランジスタ
US7482788B2 (en) 2005-10-12 2009-01-27 System General Corp. Buck converter for both full load and light load operations
US7547925B2 (en) 2005-11-14 2009-06-16 Palo Alto Research Center Incorporated Superlattice strain relief layer for semiconductor devices
US8114717B2 (en) 2005-11-15 2012-02-14 The Regents Of The University Of California Methods to shape the electric field in electron devices, passivate dislocations and point defects, and enhance the luminescence efficiency of optical devices
JP2007149794A (ja) 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd 電界効果トランジスタ
US7932539B2 (en) 2005-11-29 2011-04-26 The Hong Kong University Of Science And Technology Enhancement-mode III-N devices, circuits, and methods
JP2007157829A (ja) 2005-12-01 2007-06-21 Matsushita Electric Ind Co Ltd 半導体装置
TW200723624A (en) 2005-12-05 2007-06-16 Univ Nat Chiao Tung Process of producing group III nitride based reflectors
KR100661602B1 (ko) 2005-12-09 2006-12-26 삼성전기주식회사 수직 구조 질화갈륨계 led 소자의 제조방법
JP2007165446A (ja) 2005-12-12 2007-06-28 Oki Electric Ind Co Ltd 半導体素子のオーミックコンタクト構造
US7419892B2 (en) 2005-12-13 2008-09-02 Cree, Inc. Semiconductor devices including implanted regions and protective layers and methods of forming the same
WO2007077666A1 (ja) 2005-12-28 2007-07-12 Nec Corporation 電界効果トランジスタ、ならびに、該電界効果トランジスタの作製に供される多層エピタキシャル膜
JP5065595B2 (ja) 2005-12-28 2012-11-07 株式会社東芝 窒化物系半導体装置
US7592211B2 (en) 2006-01-17 2009-09-22 Cree, Inc. Methods of fabricating transistors including supported gate electrodes
US7709269B2 (en) 2006-01-17 2010-05-04 Cree, Inc. Methods of fabricating transistors including dielectrically-supported gate electrodes
JP2007215331A (ja) 2006-02-10 2007-08-23 Hitachi Ltd 昇圧回路
US7566918B2 (en) 2006-02-23 2009-07-28 Cree, Inc. Nitride based transistors for millimeter wave operation
JP2007242853A (ja) 2006-03-08 2007-09-20 Sanken Electric Co Ltd 半導体基体及びこれを使用した半導体装置
EP1998376B1 (en) 2006-03-16 2011-08-03 Fujitsu Ltd. Compound semiconductor device and process for producing the same
TW200742076A (en) 2006-03-17 2007-11-01 Sumitomo Chemical Co Semiconductor field effect transistor and method of manufacturing the same
US8264003B2 (en) 2006-03-20 2012-09-11 International Rectifier Corporation Merged cascode transistor
US7388236B2 (en) 2006-03-29 2008-06-17 Cree, Inc. High efficiency and/or high power density wide bandgap transistors
US7745851B2 (en) 2006-04-13 2010-06-29 Cree, Inc. Polytype hetero-interface high electron mobility device and method of making
US7629627B2 (en) 2006-04-18 2009-12-08 University Of Massachusetts Field effect transistor with independently biased gates
TW200830550A (en) * 2006-08-18 2008-07-16 Univ California High breakdown enhancement mode gallium nitride based high electron mobility transistors with integrated slant field plate
WO2008035403A1 (en) 2006-09-20 2008-03-27 Fujitsu Limited Field-effect transistor
KR100782430B1 (ko) 2006-09-22 2007-12-05 한국과학기술원 고전력을 위한 내부전계전극을 갖는 갈륨나이트라이드기반의 고전자 이동도 트랜지스터 구조
JP4282708B2 (ja) 2006-10-20 2009-06-24 株式会社東芝 窒化物系半導体装置
US8193020B2 (en) 2006-11-15 2012-06-05 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition
JP5332168B2 (ja) 2006-11-17 2013-11-06 住友電気工業株式会社 Iii族窒化物結晶の製造方法
US7692263B2 (en) 2006-11-21 2010-04-06 Cree, Inc. High voltage GaN transistors
US8476125B2 (en) 2006-12-15 2013-07-02 University Of South Carolina Fabrication technique for high frequency, high power group III nitride electronic devices
JP5114947B2 (ja) 2006-12-28 2013-01-09 富士通株式会社 窒化物半導体装置とその製造方法
JP2008199771A (ja) 2007-02-13 2008-08-28 Fujitsu Ten Ltd 昇圧回路制御装置、及び昇圧回路
US7655962B2 (en) 2007-02-23 2010-02-02 Sensor Electronic Technology, Inc. Enhancement mode insulated gate heterostructure field-effect transistor with electrically isolated RF-enhanced source contact
US8110425B2 (en) 2007-03-20 2012-02-07 Luminus Devices, Inc. Laser liftoff structure and related methods
US7501670B2 (en) 2007-03-20 2009-03-10 Velox Semiconductor Corporation Cascode circuit employing a depletion-mode, GaN-based FET
JP2008244001A (ja) * 2007-03-26 2008-10-09 Sanken Electric Co Ltd 窒化物半導体装置
WO2008121980A1 (en) 2007-03-29 2008-10-09 The Regents Of The University Of California N-face high electron mobility transistors with low buffer leakage and low parasitic resistance
US20090085065A1 (en) 2007-03-29 2009-04-02 The Regents Of The University Of California Method to fabricate iii-n semiconductor devices on the n-face of layers which are grown in the iii-face direction using wafer bonding and substrate removal
FR2914500B1 (fr) 2007-03-30 2009-11-20 Picogiga Internat Dispositif electronique a contact ohmique ameliore
JP5292716B2 (ja) 2007-03-30 2013-09-18 富士通株式会社 化合物半導体装置
JP2008288289A (ja) 2007-05-16 2008-11-27 Oki Electric Ind Co Ltd 電界効果トランジスタとその製造方法
CN101312207B (zh) 2007-05-21 2011-01-05 西安捷威半导体有限公司 增强型hemt器件及其制造方法
US7728356B2 (en) 2007-06-01 2010-06-01 The Regents Of The University Of California P-GaN/AlGaN/AlN/GaN enhancement-mode field effect transistor
JP2008306130A (ja) 2007-06-11 2008-12-18 Sanken Electric Co Ltd 電界効果型半導体装置及びその製造方法
WO2008153130A1 (ja) 2007-06-15 2008-12-18 Rohm Co., Ltd. 窒化物半導体発光素子及び窒化物半導体の製造方法
JP4478175B2 (ja) 2007-06-26 2010-06-09 株式会社東芝 半導体装置
US7598108B2 (en) 2007-07-06 2009-10-06 Sharp Laboratories Of America, Inc. Gallium nitride-on-silicon interface using multiple aluminum compound buffer layers
US8502323B2 (en) 2007-08-03 2013-08-06 The Hong Kong University Of Science And Technology Reliable normally-off III-nitride active device structures, and related methods and systems
JP4775859B2 (ja) 2007-08-24 2011-09-21 シャープ株式会社 窒化物半導体装置とそれを含む電力変換装置
US7875537B2 (en) 2007-08-29 2011-01-25 Cree, Inc. High temperature ion implantation of nitride based HEMTs
US7859021B2 (en) * 2007-08-29 2010-12-28 Sanken Electric Co., Ltd. Field-effect semiconductor device
EP2887402B1 (en) 2007-09-12 2019-06-12 Transphorm Inc. III-nitride bidirectional switches
US7795642B2 (en) 2007-09-14 2010-09-14 Transphorm, Inc. III-nitride devices with recessed gates
US20090075455A1 (en) 2007-09-14 2009-03-19 Umesh Mishra Growing N-polar III-nitride Structures
US20090072269A1 (en) 2007-09-17 2009-03-19 Chang Soo Suh Gallium nitride diodes and integrated components
US7915643B2 (en) 2007-09-17 2011-03-29 Transphorm Inc. Enhancement mode gallium nitride power devices
JP2009081406A (ja) 2007-09-27 2009-04-16 Showa Denko Kk Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
JP2009081379A (ja) 2007-09-27 2009-04-16 Showa Denko Kk Iii族窒化物半導体発光素子
KR101502195B1 (ko) 2007-11-21 2015-03-12 미쓰비시 가가꾸 가부시키가이샤 질화물 반도체 및 질화물 반도체의 결정 성장 방법 그리고 질화물 반도체 발광 소자
WO2009076076A2 (en) 2007-12-10 2009-06-18 Transphorm Inc. Insulated gate e-mode transistors
JP5100413B2 (ja) 2008-01-24 2012-12-19 株式会社東芝 半導体装置およびその製造方法
US7965126B2 (en) 2008-02-12 2011-06-21 Transphorm Inc. Bridge circuits and their components
CN101971308B (zh) 2008-03-12 2012-12-12 日本电气株式会社 半导体器件
US8076699B2 (en) 2008-04-02 2011-12-13 The Hong Kong Univ. Of Science And Technology Integrated HEMT and lateral field-effect rectifier combinations, methods, and systems
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US7985986B2 (en) 2008-07-31 2011-07-26 Cree, Inc. Normally-off semiconductor devices
JP5368038B2 (ja) * 2008-09-11 2013-12-18 ミツミ電機株式会社 電池状態検知装置及びそれを内蔵する電池パック
TWI371163B (en) 2008-09-12 2012-08-21 Glacialtech Inc Unidirectional mosfet and applications thereof
US9112009B2 (en) 2008-09-16 2015-08-18 International Rectifier Corporation III-nitride device with back-gate and field plate for improving transconductance
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
JP2010087076A (ja) 2008-09-30 2010-04-15 Oki Electric Ind Co Ltd 半導体装置
US7898004B2 (en) * 2008-12-10 2011-03-01 Transphorm Inc. Semiconductor heterostructure diodes
US7884394B2 (en) 2009-02-09 2011-02-08 Transphorm Inc. III-nitride devices and circuits
JP5564815B2 (ja) * 2009-03-31 2014-08-06 サンケン電気株式会社 半導体装置及び半導体装置の製造方法
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US8390000B2 (en) 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
WO2011061572A1 (en) 2009-11-19 2011-05-26 Freescale Semiconductor, Inc. Lateral power transistor device and method of manufacturing the same
JP5625336B2 (ja) * 2009-11-30 2014-11-19 サンケン電気株式会社 半導体装置
US8389977B2 (en) 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
US8223458B2 (en) 2010-04-08 2012-07-17 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head having an asymmetrical shape and systems thereof
US8772832B2 (en) 2010-06-04 2014-07-08 Hrl Laboratories, Llc GaN HEMTs with a back gate connected to the source
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
US8786327B2 (en) 2011-02-28 2014-07-22 Transphorm Inc. Electronic components with reactive filters
US8716141B2 (en) * 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
WO2014127150A1 (en) 2013-02-15 2014-08-21 Transphorm Inc. Electrodes for semiconductor devices and methods of forming the same
US9257513B1 (en) * 2014-08-05 2016-02-09 Semiconductor Components Industries, Llc Semiconductor component and method

Also Published As

Publication number Publication date
WO2014127150A1 (en) 2014-08-21
US9520491B2 (en) 2016-12-13
CN105164811A (zh) 2015-12-16
JP2016511544A (ja) 2016-04-14
CN105164811B (zh) 2018-08-31
TW201438229A (zh) 2014-10-01
US20140231823A1 (en) 2014-08-21
US20160043211A1 (en) 2016-02-11
JP6522521B2 (ja) 2019-05-29
US9171730B2 (en) 2015-10-27

Similar Documents

Publication Publication Date Title
TWI600155B (zh) 用於半導體裝置之電極及形成該等電極之方法
JP6066933B2 (ja) 半導体デバイスの電極構造
US10756207B2 (en) Lateral III-nitride devices including a vertical gate module
US9941399B2 (en) Enhancement mode III-N HEMTs
TWI640095B (zh) 增強型iii族氮化物元件
CN107452791B (zh) 双沟道hemt器件及其制造方法
JP2023537713A (ja) 空乏層を有するiii族窒化物デバイス
KR102065113B1 (ko) 고전자이동도 트랜지스터 및 그 제조 방법
US9536966B2 (en) Gate structures for III-N devices
CN113517228A (zh) 用于垂直的氮化镓基fet的再生长源极接触的方法和系统
WO2013095847A1 (en) Method and system for a gan self-aligned vertical mesfet