TW325601B - Process of manufacturing thin film semiconductor - Google Patents

Process of manufacturing thin film semiconductor

Info

Publication number
TW325601B
TW325601B TW083107211A TW83107211A TW325601B TW 325601 B TW325601 B TW 325601B TW 083107211 A TW083107211 A TW 083107211A TW 83107211 A TW83107211 A TW 83107211A TW 325601 B TW325601 B TW 325601B
Authority
TW
Taiwan
Prior art keywords
thin film
semi
manufacturing thin
conductor
film semiconductor
Prior art date
Application number
TW083107211A
Other languages
English (en)
Inventor
Mitsutoshi Miyazaka
Yojiro Matsue
Satoshi Takenaka
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Application granted granted Critical
Publication of TW325601B publication Critical patent/TW325601B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • H01L29/78627Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile with a significant overlap between the lightly doped drain and the gate electrode, e.g. GOLDD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0283Arrangement of drivers for different directions of scanning
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0289Details of voltage level shifters arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Recrystallisation Techniques (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
TW083107211A 1993-07-26 1994-08-05 Process of manufacturing thin film semiconductor TW325601B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18413493 1993-07-26
JP12283894 1994-06-03

Publications (1)

Publication Number Publication Date
TW325601B true TW325601B (en) 1998-01-21

Family

ID=26459887

Family Applications (5)

Application Number Title Priority Date Filing Date
TW087211974U TW408859U (en) 1993-07-26 1994-08-05 Display system
TW086100518A TW338848B (en) 1993-07-26 1994-08-05 Display system (4)
TW087213376U TW407796U (en) 1993-07-26 1994-08-05 Display system
TW083107211A TW325601B (en) 1993-07-26 1994-08-05 Process of manufacturing thin film semiconductor
TW087216771U TW408860U (en) 1993-07-26 1994-08-05 Display system

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW087211974U TW408859U (en) 1993-07-26 1994-08-05 Display system
TW086100518A TW338848B (en) 1993-07-26 1994-08-05 Display system (4)
TW087213376U TW407796U (en) 1993-07-26 1994-08-05 Display system

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW087216771U TW408860U (en) 1993-07-26 1994-08-05 Display system

Country Status (7)

Country Link
US (2) US6808965B1 (zh)
EP (2) EP0923138B1 (zh)
KR (1) KR100202122B1 (zh)
DE (1) DE69431636T2 (zh)
SG (1) SG64308A1 (zh)
TW (5) TW408859U (zh)
WO (1) WO1995003629A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269827B2 (en) 2014-06-20 2016-02-23 Chunghwa Picture Tubes, Ltd. Oxidizing the source and doping the drain of a thin-film transistor

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777763B1 (en) * 1993-10-01 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US5719065A (en) 1993-10-01 1998-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device with removable spacers
DE69533982T2 (de) * 1994-11-21 2006-01-05 Seiko Epson Corp. Flüssigkristallsteuergerät, flüssigkristallanzeigegerät und flüssigkristallsteuerungsverfahren
KR100265179B1 (ko) * 1995-03-27 2000-09-15 야마자끼 순페이 반도체장치와 그의 제작방법
JPH1054999A (ja) * 1996-06-04 1998-02-24 Canon Inc 表示装置とその製造法
US8603870B2 (en) 1996-07-11 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
TW556263B (en) * 1996-07-11 2003-10-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
JP3759999B2 (ja) * 1996-07-16 2006-03-29 株式会社半導体エネルギー研究所 半導体装置、液晶表示装置、el装置、tvカメラ表示装置、パーソナルコンピュータ、カーナビゲーションシステム、tvプロジェクション装置及びビデオカメラ
US6979882B1 (en) * 1996-07-16 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Electronic device and method for manufacturing the same
JP3725266B2 (ja) * 1996-11-07 2005-12-07 株式会社半導体エネルギー研究所 配線形成方法
WO1998028731A2 (en) * 1996-12-20 1998-07-02 Cirrus Logic, Inc. Liquid crystal display signal driver system and method
NL1004886C2 (nl) * 1996-12-23 1998-06-24 Univ Utrecht Halfgeleiderinrichtingen en werkwijze voor het maken daarvan.
US6335445B1 (en) * 1997-03-24 2002-01-01 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) Derivatives of 2-(iminomethyl)amino-phenyl, their preparation, their use as medicaments and the pharmaceutical compositions containing them
EP0911677B1 (en) 1997-04-18 2007-08-22 Seiko Epson Corporation Circuit and method for driving electrooptic device, electrooptic device, and electronic equipment made by using the same
US6667494B1 (en) * 1997-08-19 2003-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor display device
TW381187B (en) * 1997-09-25 2000-02-01 Toshiba Corp Substrate with conductive films and manufacturing method thereof
US6686623B2 (en) 1997-11-18 2004-02-03 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile memory and electronic apparatus
JPH11214700A (ja) * 1998-01-23 1999-08-06 Semiconductor Energy Lab Co Ltd 半導体表示装置
JP2000039628A (ja) * 1998-05-16 2000-02-08 Semiconductor Energy Lab Co Ltd 半導体表示装置
JP2000012864A (ja) * 1998-06-22 2000-01-14 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
US6271101B1 (en) 1998-07-29 2001-08-07 Semiconductor Energy Laboratory Co., Ltd. Process for production of SOI substrate and process for production of semiconductor device
JP4476390B2 (ja) 1998-09-04 2010-06-09 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6617644B1 (en) * 1998-11-09 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7141821B1 (en) 1998-11-10 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an impurity gradient in the impurity regions and method of manufacture
US6518594B1 (en) * 1998-11-16 2003-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor devices
US6909114B1 (en) 1998-11-17 2005-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having LDD regions
US6501098B2 (en) 1998-11-25 2002-12-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device
US6365917B1 (en) * 1998-11-25 2002-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6277679B1 (en) 1998-11-25 2001-08-21 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing thin film transistor
JP2000163014A (ja) * 1998-11-27 2000-06-16 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置
US6469317B1 (en) * 1998-12-18 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
JP4869464B2 (ja) * 1998-12-25 2012-02-08 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
US6524895B2 (en) 1998-12-25 2003-02-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
KR100284808B1 (ko) * 1999-03-31 2001-03-15 구본준 레이저 어닐링을 이용한 반도체 층 결정화 및 활성화 방법
JP3331397B2 (ja) * 1999-07-23 2002-10-07 ティーディーケイ株式会社 トンネル磁気抵抗効果素子
US6521958B1 (en) * 1999-08-26 2003-02-18 Micron Technology, Inc. MOSFET technology for programmable address decode and correction
JP2001111053A (ja) * 1999-10-04 2001-04-20 Sanyo Electric Co Ltd 薄膜トランジスタ及び表示装置
US6967633B1 (en) * 1999-10-08 2005-11-22 Semiconductor Energy Laboratory Co., Ltd. Display device
KR100362703B1 (ko) * 1999-11-11 2002-11-29 삼성전자 주식회사 박막트랜지스터 제조방법
US6307322B1 (en) * 1999-12-28 2001-10-23 Sarnoff Corporation Thin-film transistor circuitry with reduced sensitivity to variance in transistor threshold voltage
TWI263336B (en) 2000-06-12 2006-10-01 Semiconductor Energy Lab Thin film transistors and semiconductor device
JP2002083974A (ja) 2000-06-19 2002-03-22 Semiconductor Energy Lab Co Ltd 半導体装置
US6828587B2 (en) * 2000-06-19 2004-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6703265B2 (en) * 2000-08-02 2004-03-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP2002076352A (ja) * 2000-08-31 2002-03-15 Semiconductor Energy Lab Co Ltd 表示装置及びその作製方法
US6746942B2 (en) * 2000-09-05 2004-06-08 Sony Corporation Semiconductor thin film and method of fabricating semiconductor thin film, apparatus for fabricating single crystal semiconductor thin film, and method of fabricating single crystal thin film, single crystal thin film substrate, and semiconductor device
JP4045731B2 (ja) * 2000-09-25 2008-02-13 株式会社日立製作所 薄膜半導体素子の製造方法
JP2002141514A (ja) * 2000-11-07 2002-05-17 Sanyo Electric Co Ltd ボトムゲート型薄膜トランジスタ及びその製造方法
US6674667B2 (en) * 2001-02-13 2004-01-06 Micron Technology, Inc. Programmable fuse and antifuse and method therefor
US20030048656A1 (en) * 2001-08-28 2003-03-13 Leonard Forbes Four terminal memory cell, a two-transistor sram cell, a sram array, a computer system, a process for forming a sram cell, a process for turning a sram cell off, a process for writing a sram cell and a process for reading data from a sram cell
KR100767365B1 (ko) * 2001-08-29 2007-10-17 삼성전자주식회사 액정 표시 장치 및 그 구동 방법
US6908797B2 (en) * 2002-07-09 2005-06-21 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
AU2003264515A1 (en) 2002-09-20 2004-04-08 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
JP4282985B2 (ja) * 2002-12-27 2009-06-24 株式会社半導体エネルギー研究所 表示装置の作製方法
KR100623248B1 (ko) * 2004-02-17 2006-09-18 삼성에스디아이 주식회사 Ldd 영역을 포함하는 pmos 박막트랜지스터 및 이의제조방법
KR100675636B1 (ko) * 2004-05-31 2007-02-02 엘지.필립스 엘시디 주식회사 Goldd구조 및 ldd구조의 tft를 동시에포함하는 구동회로부 일체형 액정표시장치
EP1615262A1 (en) * 2004-07-09 2006-01-11 Thomson Licensing Active matrix for oled display
US7736964B2 (en) * 2004-11-22 2010-06-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and method for manufacturing the same
CN1924870A (zh) * 2005-09-02 2007-03-07 鸿富锦精密工业(深圳)有限公司 自动选取金属氧化物半导体场效应晶体管的系统及方法
US7790527B2 (en) * 2006-02-03 2010-09-07 International Business Machines Corporation High-voltage silicon-on-insulator transistors and methods of manufacturing the same
US7632729B2 (en) * 2006-09-27 2009-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Method for semiconductor device performance enhancement
KR100841365B1 (ko) * 2006-12-06 2008-06-26 삼성에스디아이 주식회사 박막트랜지스터와 그 제조방법 및 이를 구비한유기전계발광표시장치
JP4998142B2 (ja) * 2007-08-23 2012-08-15 セイコーエプソン株式会社 電気光学装置及び電子機器
TW200950099A (en) * 2008-01-31 2009-12-01 Corning Inc Thin film transistor having long lightly doped drain on SOI substrate and process for making same
US8239794B2 (en) * 2009-09-29 2012-08-07 International Business Machines Corporation System and method for estimating leakage current of an electronic circuit
SG10201406869QA (en) 2009-10-29 2014-12-30 Semiconductor Energy Lab Semiconductor device
KR20180133548A (ko) 2009-11-20 2018-12-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR20110099422A (ko) * 2010-03-02 2011-09-08 삼성전자주식회사 박막 트랜지스터 및 이의 제조 방법
WO2012002186A1 (en) 2010-07-02 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8921948B2 (en) * 2011-01-12 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6013685B2 (ja) * 2011-07-22 2016-10-25 株式会社半導体エネルギー研究所 半導体装置
US8822295B2 (en) * 2012-04-03 2014-09-02 International Business Machines Corporation Low extension dose implants in SRAM fabrication
TWI666623B (zh) 2013-07-10 2019-07-21 日商半導體能源研究所股份有限公司 半導體裝置、驅動器電路及顯示裝置
KR102060377B1 (ko) * 2014-01-27 2020-02-11 한국전자통신연구원 디스플레이 소자, 그 제조 방법, 및 이미지 센서 소자의 제조방법
US9583187B2 (en) * 2015-03-28 2017-02-28 Intel Corporation Multistage set procedure for phase change memory
CN109449210B (zh) * 2018-09-19 2022-06-10 云谷(固安)科技有限公司 阵列基板及显示器件

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856467A (ja) * 1981-09-30 1983-04-04 Toshiba Corp 半導体装置の製造方法
US4597160A (en) * 1985-08-09 1986-07-01 Rca Corporation Method of fabricating a polysilicon transistor with a high carrier mobility
JPS62234372A (ja) 1986-04-04 1987-10-14 Seiko Epson Corp 半導体集積回路装置の製造方法
JPS62241375A (ja) 1986-04-11 1987-10-22 Seiko Epson Corp 半導体集積回路装置の製造方法
JPS6366969A (ja) 1986-09-08 1988-03-25 Nippon Telegr & Teleph Corp <Ntt> 高耐圧多結晶シリコン薄膜トランジスタ
JPS63239936A (ja) 1987-03-27 1988-10-05 Canon Inc 多結晶薄膜半導体の形成方法
JPS63239937A (ja) 1987-03-27 1988-10-05 Canon Inc 半導体多結晶膜の形成方法
JPS63304670A (ja) * 1987-06-04 1988-12-12 Hitachi Ltd 薄膜半導体装置の製造方法
JPH0245972A (ja) 1988-08-08 1990-02-15 Seiko Epson Corp 半導体装置
JPH0258274A (ja) 1988-08-23 1990-02-27 Seiko Epson Corp 半導体装置
DE69030775T2 (de) 1989-02-14 1997-11-13 Seiko Epson Corp Herstelllungsverfahren einer Halbleitervorrichtung
JPH02246277A (ja) * 1989-03-20 1990-10-02 Matsushita Electron Corp Mosトランジスタおよびその製造方法
JP2585140B2 (ja) * 1989-11-14 1997-02-26 三菱電機株式会社 半導体装置の配線接触構造
JPH03243771A (ja) 1990-02-20 1991-10-30 Nippon Sheet Glass Co Ltd 多結晶Si膜の製造方法
JPH0442579A (ja) 1990-06-08 1992-02-13 Seiko Epson Corp 薄膜トランジスタ及び製造方法
US5112764A (en) * 1990-09-04 1992-05-12 North American Philips Corporation Method for the fabrication of low leakage polysilicon thin film transistors
JP2940880B2 (ja) * 1990-10-09 1999-08-25 三菱電機株式会社 半導体装置およびその製造方法
JPH04180617A (ja) * 1990-11-15 1992-06-26 Ricoh Co Ltd 大結晶粒径の多結晶シリコンを製造する方法およびそれを使用した薄膜半導体
US5849601A (en) * 1990-12-25 1998-12-15 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US5289030A (en) * 1991-03-06 1994-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide layer
JP2794678B2 (ja) * 1991-08-26 1998-09-10 株式会社 半導体エネルギー研究所 絶縁ゲイト型半導体装置およびその作製方法
US5614257A (en) * 1991-08-09 1997-03-25 Applied Materials, Inc Low temperature, high pressure silicon deposition method
JPH0572555A (ja) 1991-09-13 1993-03-26 Seiko Epson Corp 薄膜トランジスター
US5495121A (en) * 1991-09-30 1996-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2650543B2 (ja) * 1991-11-25 1997-09-03 カシオ計算機株式会社 マトリクス回路駆動装置
JP3072637B2 (ja) 1991-12-25 2000-07-31 セイコーエプソン株式会社 アクティブマトリクス基板
JP3128939B2 (ja) * 1992-03-27 2001-01-29 ソニー株式会社 薄膜トランジスタ
JP3123252B2 (ja) 1992-09-18 2001-01-09 セイコーエプソン株式会社 アクティブ・マトリックス型表示装置
KR100292767B1 (ko) * 1992-09-25 2001-09-17 이데이 노부유끼 액정표시장치
US5359219A (en) * 1992-12-04 1994-10-25 Texas Instruments Incorporated Silicon on insulator device comprising improved substrate doping
US5973363A (en) * 1993-07-12 1999-10-26 Peregrine Semiconductor Corp. CMOS circuitry with shortened P-channel length on ultrathin silicon on insulator
JPH0766424A (ja) * 1993-08-20 1995-03-10 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP3243771B2 (ja) 1993-12-17 2002-01-07 ローム株式会社 Dcモータ駆動回路およびこれを内蔵する携帯用音響機器
DE19500380C2 (de) * 1994-05-20 2001-05-17 Mitsubishi Electric Corp Aktivmatrix-Flüssigkristallanzeige und Herstellungsverfahren dafür

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269827B2 (en) 2014-06-20 2016-02-23 Chunghwa Picture Tubes, Ltd. Oxidizing the source and doping the drain of a thin-film transistor
US9923099B2 (en) 2014-06-20 2018-03-20 Chunghwa Picture Tubes, Ltd. TFT with oxide layer on IGZO semiconductor active layer

Also Published As

Publication number Publication date
US6808965B1 (en) 2004-10-26
KR960701481A (ko) 1996-02-24
EP0923138A3 (en) 1999-08-04
DE69431636T2 (de) 2003-06-26
EP0923138A2 (en) 1999-06-16
DE69431636D1 (de) 2002-12-05
EP0923138B1 (en) 2002-10-30
SG64308A1 (en) 1999-04-27
US6180957B1 (en) 2001-01-30
TW408860U (en) 2000-10-11
KR100202122B1 (ko) 1999-07-01
TW338848B (en) 1998-08-21
EP0663697A4 (en) 1997-11-26
EP0663697A1 (en) 1995-07-19
WO1995003629A1 (fr) 1995-02-02
TW408859U (en) 2000-10-11
TW407796U (en) 2000-10-01

Similar Documents

Publication Publication Date Title
TW325601B (en) Process of manufacturing thin film semiconductor
EP1158580A3 (en) Method of crystallizing a silicon layer
MY113505A (en) Semiconductor substrate and process for production thereof
CA2107174A1 (en) Epitaxial Magnesium Oxide as a Buffer Layer on (111) Tetrahedral Semiconductors
EP0363689A3 (en) Semiconductor devices manufacture using selective epitaxial growth and poly-si deposition in the same apparatus
CA2231625A1 (en) Semiconductor substrate having compound semiconductor layer, process for its production, and electronic device fabricated on semiconductor substrate
HK76392A (en) Process for the manufacture of a titanium/titanium nitride double layer for use as a contact and barrier layer in very large scale integrated circuits
EP0253611A3 (en) Method of epitaxially growing gallium arsenide on silicon
KR920010829A (ko) 반도체장치의 필드산화막 형성방법
JPS6432622A (en) Formation of soi film
US4789421A (en) Gallium arsenide superlattice crystal grown on silicon substrate and method of growing such crystal
EP0164928A3 (en) Vertical hot wall cvd reactor
EP0296719A3 (en) Method for making superconductor films
JPS6433973A (en) Method of evaporating amorphous silicon for forming intermediate level dielectric of semiconductor memory device
TW352479B (en) Process to producing semiconductor device and comprising device
TW267258B (en) Method of producing a compound semiconductor crystal layer with a steep heterointerface
JPS5271171A (en) Production of epitaxial wafer
JPS6477924A (en) Manufacture of semiconductor device
EP0371901A3 (en) Thick epitaxial films with abrupt junctions
JPS61256732A (ja) 選択エピタキシアル成長方法
GB1425102A (en) Methods of etching gallium arsenide substrates and epitaxially depositing gallium arsenide thereon
JPS5642336A (en) Manufacturing method of semiconductor device
KR960036155A (ko) 피.엘.티. 박막 제조방법
CN1045815A (zh) 金刚石膜的选择性气相生长
JPS57192017A (en) Epitaxial growing method

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent