RU2691318C2 - Способ позиционирования конца катетера - Google Patents

Способ позиционирования конца катетера Download PDF

Info

Publication number
RU2691318C2
RU2691318C2 RU2015110633A RU2015110633A RU2691318C2 RU 2691318 C2 RU2691318 C2 RU 2691318C2 RU 2015110633 A RU2015110633 A RU 2015110633A RU 2015110633 A RU2015110633 A RU 2015110633A RU 2691318 C2 RU2691318 C2 RU 2691318C2
Authority
RU
Russia
Prior art keywords
endovascular
amplitude
wave
spectral power
cutaneous
Prior art date
Application number
RU2015110633A
Other languages
English (en)
Other versions
RU2015110633A (ru
RU2015110633A3 (ru
Inventor
Сорен ГРЕНВОЛЬД
Original Assignee
Бард Аксесс Системс, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бард Аксесс Системс, Инк. filed Critical Бард Аксесс Системс, Инк.
Publication of RU2015110633A publication Critical patent/RU2015110633A/ru
Publication of RU2015110633A3 publication Critical patent/RU2015110633A3/ru
Application granted granted Critical
Publication of RU2691318C2 publication Critical patent/RU2691318C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/353Detecting P-waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/347Detecting the frequency distribution of signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6876Blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • A61M25/0014Connecting a tube to a hub
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/726Details of waveform analysis characterised by using transforms using Wavelet transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • A61M2039/1077Adapters, e.g. couplings adapting a connector to one or several other connectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • A61M2039/1083Tube connectors; Tube couplings having a plurality of female connectors, e.g. Luer connectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • A61M2039/1088Tube connectors; Tube couplings having a plurality of male connectors, e.g. Luer connectors

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cardiology (AREA)
  • Human Computer Interaction (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Robotics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

Группа изобретений относится к медицине, а именно к кардиологии. Компьютерный способ включает прием эндоваскулярного сигнала ЭКГ, ассоциированного с эндоваскулярным устройством. Обработку эндоваскулярного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды зубца Р и спектральной мощности для каждого заданного периода времени. Определение максимальной амплитуды зубца Р из множества амплитуд зубца Р и соответствующей максимальной спектральной мощности из множества спектральных мощностей. Ассоциирование максимальной амплитуды зубца Р и максимальной спектральной мощности с заранее заданным местоположением в сердце или рядом с ним. Вычисление местоположения эндоваскулярного устройства для каждого заранее заданного периода времени на основе отношения амплитуды зубца Р к максимальной амплитуде зубца Р и отношения спектральной мощности к максимальной спектральной мощности и отображение пользователю местоположения эндоваскулярного устройства. Группа изобретений позволяет максимально точно неинвазивным путем определить местоположение конца кончика катетера в сердце или магистральных сосудах. 4 н. и 22 з.п. ф-лы, 15 ил.

Description

ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ
[0001] Заявляется приоритет в соответствии с предварительной заявкой на патент США №61/213,474, поданной 12 июня 2009 г., которая полностью включена в настоящее описание путем ссылки.
ОБЛАСТЬ ИЗОБРЕТЕНИЯ
[0002] Настоящее изобретение относится к позиционированию эндоваскулярного устройства. В частности, настоящее изобретение относится к способу позиционирования конца эндоваскулярного устройства, такого как центральный венозный катетер, в сердце и рядом с ним с использованием сигналов электрокардиограммы (ЭКГ) (electrocardiogram, ECG).
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
[0003] Электропроводящая система сердца формирует характерные электрические сигналы, распределение электрической энергии и характер изменения которых указывают на конкретные местоположения в грудной клетке и/или на характерные функции или состояния сердца. При эндоваскулярных измерениях, то есть измерениях внутри кровеносных сосудов и внутри сердца, некоторые параметры электрической активности сердца могут быть использованы для идентификации конкретных местоположений в сердечно-сосудистой системе и/или функциональных состояний, нормальных или патологических. Более того, путем точной локальной идентификации местоположения и типа состояния, терапия таких состояний может быть оптимизирована, а эффект такой терапии может отслеживаться в реальном масштабе времени.
[0004] Обычно используют два вида клинических исследований. Первый связан с проведением эндоваскулярных устройств через сердечно-сосудистую систему, в то время как второй связан с неинвазивным или малоинвазивным дистанционным мониторингом электрической активности сердца.
[0005] Наведение, позиционирование и подтверждение размещения эндоваскулярных катетеров необходимо в некоторых клинических применениях, таких как, например: 1. Центральный венозный доступ, например, центральный венозный катетер (central venous catheter, CVC), периферически вводимый центральный катетер (peripherally inserted central catheter, PICC), имплантируемые порты; 2. Катетеры для гемодиализа; 3. Размещение отведений водителя ритма сердца; 4. Катетеры для мониторинга гемодинамики, например, катетеры Сван- Ганца и катетеры для мониторинга центрального венозного давления; и 5. Проведение проволочных направителей катетеров и катетеров в левые отделы сердца.
[0006] Местоположение конца катетера очень важно для безопасности пациента, продолжительности и успеха процедуры. Сегодня «золотым стандартом» для подтверждения целевого местоположения конца катетера является рентген грудной клетки. Наряду с этим, в настоящее время на рынке предлагаются два вида продуктов для наведения катетера в реальном масштабе времени, в которых стремятся преодолеть ограничения, присущие подтверждению на основе рентгенограммы грудной клетки: электромагнитное подтверждение и подтверждение на основе ЭКГ. В больницах, в которых применяют процедуру наведения катетера в реальном масштабе времени, результаты улучшаются с точки зрения сокращения количества облучений, времени на осуществление процедуры и ее стоимости. При осуществлении процедуры наведения катетера в реальном масштабе времени доля успешных первых попыток обычно возрастает с 75%-80% до 90%-95%. Более того, в больницах, в которых используется проведение на основе ЭКГ, например в Италии, Бельгии, Германии, подтверждение с помощью рентгена грудной клетки было отменено более чем для 90% пациентов. Электромагнитные системы используются в основном в Соединенных Штатах Америки, в то время как системы на основе ЭКГ используются в основном в Европе. Среди других факторов, которые определяют различие между рынками в США и Европе с точки зрения выбора технологии, выделяются: а) тип медицинского персонала, допущенного к проведению процедуры: медсестры в США являются более универсальными, b) тип размещенных устройств: катетеры PICC все чаще размещаются в США, c) чувствительность к ценам: Европейский рынок представляется более чувствительным к ценам, и d) коммерциализация производства современных устройств наведения некоторыми производителями для работы исключительно с катетерами собственного производства: проникновение на рынок систем наведения отражает проникновение на рынок конкретного производителя катетеров.
[0007] Также было установлено, что существуют различные мнения относительно того, где должно быть целевое местоположение конца катетера: апример, нижняя треть верхней полой вены (superior vena cava, SVC) или правое предсердие (right atrium, RA). Следовательно, технологии наведения должны обеспечивать распознавание этих местоположений. Рентген грудной клетки, являющийся в настоящее время «золотым стандартом», не всегда обеспечивает такое распознавание, которое требует четкости изображения обычно лучше, чем 2 см. Кроме того, поскольку системы на основе ЭКГ используют физиологическую информацию, относящуюся к сердечной деятельности, их способность управлять размещением является достоверной с точки зрения анатомии. Этого не происходит в системах электромагнитного наведения, в которых измеряют расстояние между концом катетера в сосудистой сети и внешним источником референтного сигнала, обычно помещаемого на груди пациента. В связи с данным аспектом системы на основе ЭКГ могут использоваться для документирования окончательного результата местоположения катетера, потенциально заменяя рентген грудной клетки в качестве «золотого стандарта».
[0008] Являясь одним из наиболее ценных доступных диагностических инструментов, ЭКГ регистрирует электрическую активность сердца в виде сигналов (форм колебаний). Расшифровав формы этих сигналов, можно выявить нарушения ритма, отклонения в проводимости и электролитический дисбаланс. ЭКГ помогает в проведении диагностики и мониторинга таких состояний, как острые коронарные синдромы и перикардит. Электрическая активность сердца создает токи, которые распространяются через окружающую ткань к коже. Когда электроды приложены к коже, они улавливают эти электрические токи и передают их на электрокардиограф. Поскольку электрические токи распространяются от сердца к коже во многих направлениях, электроды размещают в различных местах на коже для получения полной картины электрической активности сердца. Затем электроды подсоединяют к электрокардиографу или компьютеру и регистрируют информацию в разных проекциях, которые называются отведениями и плоскостями. Отведение формирует изображение электрической активности сердца между двумя точками или полюсами. Плоскость представляет собой поперечный разрез сердца, который формирует другое изображение электрической активности сердца. В настоящее время расшифровка форм сигнала ЭКГ основывается на идентификации амплитуд компонентов сигнала, анализе и последующем сравнении амплитуд с конкретными стандартами. Варианты этих компонентов амплитуды указывают на конкретные состояния, например, повышение сегмента ST, или на некоторые местоположения в сердце, например, амплитуда зубца Р. В современной практике мониторы ЭКГ широко применяются для регистрации форм сигналов ЭКГ. Все более доступными для приобретения становятся системы с автоматической идентификацией компонентов амплитуды ЭКГ. В конкретных случаях становятся доступными средства для поддержки принятия решений и для автоматической расшифровки компонентов амплитуды ЭКГ в связи с лежащими в их основе состояниями сердца.
[0009] Дистанционный мониторинг пациента является хорошо разработанной областью медицины. И все же дистанционный мониторинг состояний сердца не так широко принят, как следовало бы и как это возможно. Одной из причин является относительно сложный способ получения сигналов, связанных с сердечной деятельностью, в частности сигналов ЭКГ. Другим важным ограничивающим фактором для современных технологий дистанционного мониторинга является использование каналов связи, таких как телефонные линии, с которыми трудно организовать интерфейс как со стороны пациента, так и со стороны врача.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0010] Варианты осуществления настоящего изобретения преимущественно предлагают компьютерные способы позиционирования конца эндоваскулярного устройства, такого как центральный венозный катетер, в сердце или рядом с ним с использованием сигналов электрокардиограммы (ЭКГ). Эндоваскулярное устройство может представлять собой центральный венозный катетер, соединенный с адаптером, который включает электрод в контакте со столбиком физиологического раствора, открытым для конца катетера, при этом эндоваскулярный сигнал ЭКГ может основываться на электрическом сигнале, измеренном с помощью этого электрода.
[0011] В соответствии с одним вариантом осуществления настоящего изобретения предлагается компьютерный способ позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы (ЭКГ). Данный способ включает прием эндоваскулярного сигнала ЭКГ, ассоциированного с эндоваскулярным устройством и включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент зубца Р, обработку эндоваскулярного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды зубца Р и спектральной мощности для каждого заранее заданного периода времени, определение максимальной амплитуды зубца Р из множества амплитуд зубца Р и соответствующей максимальной спектральной мощности из множества спектральных мощностей, ассоциирование максимальной амплитуды зубца Р и максимальной спектральной мощности с заранее заданным местоположением в сердце или рядом с ним, вычисление местоположения эндоваскулярного устройства для каждого заранее заданного периода времени на основе отношения амплитуды зубца Р к максимальной амплитуде зубца Р и отношения спектральной мощности к максимальной спектральной мощности и отображение пользователю местоположения эндоваскулярного устройства.
[0012] В этом варианте осуществления местоположением эндоваскулярного устройства может являться атрио-кавальное соединение, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р больше, чем 0,9, отношение спектральной мощности к максимальной спектральной мощности больше, чем 0,9, и амплитуда зубца Р больше амплитуды зубца R. Альтернативно, местоположением эндоваскулярного устройства является верхняя часть верхней полой вены, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р меньше, чем 0,4, отношение спектральной мощности к максимальной спектральной мощности меньше, чем 0,4, и зубец Р является однополярным. Альтернативно, местоположением эндоваскулярного устройства является нижняя треть верхней полой вены, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р находится в диапазоне от 0,4 до 0,6, отношение спектральной мощности к максимальной спектральной мощности находится в диапазоне от 0,4 до 0,6 и зубец Р является однополярным. Альтернативно, местоположением эндоваскулярного устройства является правое предсердие, если отношение спектральной мощности к максимальной спектральной мощности находится в диапазоне от 0,6 до 0,9 и зубец Р является биполярным. Альтернативно, местоположением эндоваскулярного устройства является верхняя треть нижней полой вены, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р находится в диапазоне от 0,4 до 0,6, отношение спектральной мощности к максимальной спектральной мощности находится в диапазоне от 0,4 до 0,6 и зубец Р является однополярным с обратной полярностью.
[0013] В соответствии с другим вариантом осуществления изобретения вышеописанный вариант адаптируется для одновременного приема накожного сигнала ЭКГ, ассоциированного с накожным отведением ЭКГ и включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент зубца Р, обработки накожного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды накожного зубца Р и накожной спектральной мощности для каждого заранее заданного периода времени, определения максимальной амплитуды накожного зубца Р из множества амплитуд накожного зубца Р и соответствующей максимальной накожной спектральной мощности из множества накожных спектральных мощностей, ассоциирования максимальной амплитуды накожного зубца Р и максимальной накожной спектральной мощности с заранее заданным местоположением в сердце или рядом с ним и для вычисления местоположения эндоваскулярного устройства для каждого заранее заданного периода времени на основе отношения амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р и отношения эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности.
[0014] В этом варианте осуществления местоположением эндоваскулярного устройства может являться атрио-кавальное соединение, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р больше, чем 2,5, отношение спектральной мощности к максимальной спектральной мощности больше, чем 2,59, и амплитуда эндоваскулярного зубца Р больше, чем амплитуда эндоваскулярного зубца R. Альтернативно, местоположением эндоваскулярного устройства является верхняя часть верхней полой вены, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р находится в диапазоне от 0,9 до 1,2, отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 0,9 до 1,2 и эндоваскулярный зубец Р является однополярным. Альтернативно, местоположением эндоваскулярного устройства является нижняя треть верхней полой вены, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р находится в диапазоне от 1,5 до 2,0, отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 1,5 до 2,0 и эндоваскулярный зубец Р является однополярным. Альтернативно, местоположением эндоваскулярного устройства является правое предсердие, если отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 2,0 до 2,5 и эндоваскулярный зубец Р является биполярным. Альтернативно, местоположением эндоваскулярного устройства является верхняя треть нижней полой вены, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р находится в диапазоне от 0,9 до 1,2, отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 0,9 до 1,2 и эндоваскулярный зубец Р является однополярным с обратной полярностью.
[0015] Таким образом, были достаточно широко описаны конкретные варианты осуществления настоящего изобретения для того, чтобы их подробное описание далее в настоящей заявке было лучше понято, и чтобы был лучше оценен вклад настоящей заявки в существующий уровень техники. Естественно, имеются и другие варианты осуществления изобретения, которые будут описаны ниже и которые составят объект изобретения в соответствии с пунктами приложенной формулы изобретения.
[0016] В этом отношении, прежде чем подробно рассмотреть по меньшей мере один вариант осуществления изобретения, следует упомянуть о необходимости понимания того, что изобретение не ограничено в своем применении деталями структуры и конфигурациями компонентов, представленных в дальнейшем описании и проиллюстрированных на чертежах. Изобретение допускает варианты осуществления в дополнение к описанным и может быть реализовано на практике и выполнено различными путями. Следует также понимать, что фразеология и терминология, использованные в настоящей заявке, а также реферат, применяются только для описания и не могут рассматриваться как ограничивающие.
[0017] По существу, специалисты оценят и то, что концепция, на которой основывается настоящее описание, может быть использована в качестве основы для разработки других структур, способов и систем для достижения некоторых целей настоящего изобретения. Следовательно, важно, что пункты формулы изобретения рассматриваются как включающие такие эквивалентные структуры, до тех пор пока они не выходят за рамки сущности и объема настоящего изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0018] На фиг.1 представлена блок-схема, отображающая устройство в соответствии с вариантом осуществления настоящего изобретения.
[0019] На фиг.2А, 2В и 2С представлены различные эндоваскулярные адаптерные устройства.
[0020] На фиг.3 представлена блок-схема электронного модуля для получения и обработки эндоваскулярной электрокардиограммы в соответствии с вариантом осуществления настоящего изобретения.
[0021] На фиг.4А, 4В, 4С и 4D представлены схемы наложения электродов, которые обеспечивают оптимальное получение эндоваскулярной электрокардиограммы в соответствии с различными вариантами осуществления настоящего изобретения. На фиг.4А представлена схема с одним отведением, на фиг.4В представлена модифицированная схема с тремя отводами с возможностями мониторинга и наведения, на фиг.4С представлена телеметрическая схема с одним заземленным отводом и на фиг.4D представлен вариант применения мониторов ЭКГ для наведения эндоваскулярных устройств.
[0022] Фиг.5 иллюстрирует типичные амплитуды сигнала электрокардиограммы в различных местоположениях центральной венозной системы.
[0023] Фиг.6 иллюстрирует типичные спектральные мощности сигнала электрокардиограммы в различных местоположениях центральной венозной системы.
[0024] Фиг.7 иллюстрирует типичное распределение электрической энергии сигнала электрокардиограммы в различных местоположениях центральной венозной системы.
[0025] На фиг.8 изображен графический пользовательский интерфейс в соответствии с вариантом осуществления настоящего изобретения.
[0026] На фиг.9 изображен графический пользовательский интерфейс в соответствии с другим вариантом осуществления настоящего изобретения.
[0027] На фиг.10А и 10В показаны типичные распечатки информации, отображенной с помощью графического пользовательского интерфейса в соответствии с вариантом осуществления настоящего изобретения.
[0028] На фиг.11 представлена блок-схема компьютерного способа позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы.
[0029] На фиг.12 представлен другой алгоритм поддержки принятия решений для компьютерного способа позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы в соответствии с альтернативным вариантом осуществления настоящего изобретения.
[0030] На фиг.13 изображена проводящая система сердца.
[0031] На фиг.14 показано распространение электрического сигнала в проводящей системе сердца.
[0032] Фиг.15 иллюстрирует электрическую активность кардиоваскулярной системы, обусловленную нейронной системой управления.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[0033] Изобретение далее описывается со ссылкой на чертежи, на которых подобные цифровые обозначения относятся к подобным частям по всему описанию.
[0034] Варианты осуществления настоящего изобретения предлагают устройство (устройства), алгоритмы компьютерной обработки данных и способы получения и использования эндоваскулярных электрокардиограмм в ряде клинических применений и параметров настройки. Например, может быть использовано устройство для проведения эндоваскулярных устройств в сердце или рядом с ним, например, для проведения устройств центрального венозного доступа в верхнюю полую вену, правое предсердие и правый желудочек. Такие устройства центрального венозного доступа могут включать центральные венозные катетеры (CVC), периферически вводимые центральные катетеры (PICC), имплантируемые порты, катетеры для гемодиализа, туннельные катетеры и прочее. К другим устройствам, которые могут воплотить преимущества от проведения эндоваскулярных устройств с помощью оборудования в соответствии с настоящим изобретением, относятся временные отведения водителя ритма сердца, вводимые через центральную венозную систему. Преимущества настоящего изобретения могут также найти воплощение в катетерах и проволочных направителях катетеров, используемых в процедурах в левых отделах сердца, путем уменьшения величины контрастности и излучения, необходимых для проведения данных устройств в необходимое место. В другом примере может быть использовано устройство для малоинвазивного мониторинга и оценки состояний сердца на основе его электрической активности, например, для оценки преднагрузки в сердечном цикле или для мониторинга сегментов ST и зубцов Т при застойной сердечной деятельности.
[0035] В соответствии с одним аспектом изобретения описано устройство, содержащее стерильные адаптеры, электронный модуль для получения сигналов, компьютерный модуль, программное обеспечение и периферийные устройства и соединения. В одном варианте осуществления изобретения электронный модуль для получения сигналов может быть предназначен для получения и обработки эндоваскулярных электрических сигналов, создаваемых телом пациента (эндоваскулярная ЭКГ), в другом варианте осуществления электронный модуль может быть предназначен для получения и обработки эндоваскулярных ЭКГ, а также накожных ЭКГ.
[0036] В одном варианте осуществления изобретения электронный модуль и компьютерный модуль могут быть отдельными модулями, в другом варианте осуществления они могут быть объединены в один и тот же модуль и корпус, еще в одном варианте осуществления они могут обмениваться информацией друг с другом с помощью беспроводной связи, такой как Bluetooth. В одном варианте осуществления устройство может содержать встроенный принтер, в то время как в другом варианте осуществления принтер может быть внешним и присоединяться к устройству, а устройство может соединяться через сеть, например беспроводную, с другими устройствами. Еще в одном варианте осуществления изобретения оборудование может использоваться для телеметрии и для передачи эндоваскулярных электрокардиограмм в удаленное место, например, по телефонной линии, Интернету и/или беспроводному телефону. Возможна также любая комбинация из вышеуказанных вариантов осуществления изобретения.
[0037] Согласно другому аспекту изобретения различные схемы обеспечивают соединение эндоваскулярных устройств, таких как устройства центрального венозного доступа, и электронного модуля для получения и обработки сигналов. В одном варианте осуществления изобретения такое устройство состоит из соединительного провода с двумя концами и специальными соединительными элементами на каждом конце. Один конец провода может быть соединен с металлическим или нитиноловым проволочным направителем катетера или тонкого зонда, которые, как правило, доступны для приобретения. Другой конец провода может быть безопасным образом соединен с электронным модулем. В другом варианте осуществления устройство содержит проволочные направители с покрытием, изготовленные, например, из нитинола или нержавеющей стали с дистальным и проксимальным концами без покрытия и сантиметровой разметкой. В таком варианте осуществления проволочный направитель с покрытием вводится эндоваскулярно, при этом соединительный провод соединен с проксимальным концом проволочного направителя с покрытием. Еще в одном варианте осуществления устройство содержит адаптер катетера-шприца, снабженный электрическим соединительным проводом. Один конец электрического соединительного провода находится в контакте с жидкостью, например физиологическим раствором, протекающим через адаптер катетера-шприца. Другой конец соединительного провода может быть соединен с электронным модулем.
[0038] Согласно еще одному аспекту изобретения различные схемы наложения электродов обеспечивают оптимальное получение эндоваскулярных ЭКГ. В одном варианте осуществления изобретения используется одно отведение) для получения информации о местоположении конца эндоваскулярного устройства в сосудистой сети. В другом варианте осуществления используется модифицированная схема с тремя отведениями для осуществления одновременного мониторинга сердечной активности в трех отведениях с предоставлением в то же время информации о местоположении конца катетера. В другом варианте осуществления используется модифицированная схема с одним отведением с заземлением для телеметрии и удаленной передачи информации от конца катетера.
[0039] Согласно еще одному аспекту изобретения вводятся алгоритмы для анализа форм сигналов ЭКГ и для поддержки принятия решений на основании этих сигналов. Эти алгоритмы позволяют провести различие между разными местоположениями в сосудистой сети и оценить функции тела (систематические или в конкретных местоположениях в теле), в частности, функционирование сердца. В разных вариантах осуществления изобретения в данных алгоритмах используют анализ форм колебаний во временной области: морфологический, например, формы; статистический, например, поведения.
[0040] В других вариантах осуществления изобретения в алгоритмах используют анализ форм колебаний в частотной области: морфологический, например, формы; статистический, например, поведения. Еще в одних вариантах осуществления выполняют анализ энергии сигналов во временной и частотной областях, морфологический и статистический. В качестве средств поддержки принятия решений настоящее изобретение также рассматривает принятие решений на основе размытой информации, статистической информации и знаний.
[0041] В другом аспекте изобретения предусматривается пользовательский интерфейс, который значительно упрощает расшифровку данных и последовательность выполняемых действий. В одном варианте осуществления изобретения пользовательский интерфейс включает упрощенные графические средства, показывающие местоположение в сосудистой сети и в сердце конца применяемого эндоваскулярного устройства без демонстрации форм сигналов ЭКГ. В другом варианте осуществления пользовательский интерфейс показывает в реальном масштабе времени изменение местоположения конца применяемого эндоваскулярного устройства.
[0042] В еще одном аспекте изобретения представлены несколько способов, предусматривающих использование оборудования, рассмотренного в настоящем описании, в клинических применениях. В одном варианте осуществления изобретения предлагается компьютерный способ, предусматривающий проведение центральных венозных катетеров (катетеров CVC, катетеров PICC, катетеров для гемодиализа, имплантируемых портов и других) с использованием тонких зондов, проволочных направителей катетеров и физиологических растворов в верхнюю полую вену, нижнюю полую вену, правое предсердие и правый желудочек. Данный способ преимущественно менее чувствителен для пациентов с аритмиями по сравнению с известными решениями и представляет в большинстве клинических случаев альтернативу подтверждению местоположения конца центральных венозных катетеров на основе рентгена грудной клетки. В другом варианте осуществления изобретения предлагается компьютерный способ, предусматривающий проведение проволочных направителей катетеров с покрытием в правые и левые отделы сердца. В еще одном варианте осуществления предлагается способ, предусматривающий управление размещением временных отведений водителя ритма сердца через центральную венозную систему. В еще одном варианте осуществления предлагается способ, который является малоинвазивным и предусматривает мониторинг преднагрузки на основе использования деполяризации и ритмов сердца. В еще одном варианте осуществления изобретения предлагается способ, который является малоинвазивным и предусматривает мониторинг аритмий с использованием анализа зубца Р. В еще одном варианте осуществления предлагается способ, который является малоинвазивным и предусматривает мониторинг сердечной недостаточности с использованием анализа сегмента ST и зубца Т.
[0043] На фиг.1 представлена блок-схема, которая иллюстрирует устройство в соответствии с вариантом осуществления настоящего изобретения.
[0044] Устройство 100 может быть подключено через адаптер (120) к большому количеству устройств васкулярного доступа (110), имеющимся в продаже и разработанным под индивидуальных заказчиков. Примерами таких устройств являются: центральные венозные катетеры (CVC), периферически вводимые центральные катетеры (PICC), имплантируемые порты, туннельные катетеры, катетеры для гемодиализа, направляющие катетеры для отведений водителя ритма сердца, проволочные направители катетеров, используемые для коронарных и васкулярных интервенций, тонкие зонды, иглы для шприцев и другие. Если в качестве устройства васкулярного доступа выступает тонкий зонд, проволочный направитель катетера или игла шприца, материал, из которого устройство изготовлено, должен быть в достаточной мере электропроводным, например, нержавеющая сталь или нитинол. В таком случае, в соответствии с настоящим изобретением, должен использоваться адаптер с крючком или зажимом типа «аллигатор». Если в качестве устройства васкулярного доступа выступает катетер, необходимо использовать физиологический раствор для создания проводящего пути через один из просветов катетера. В данном случае, в соответствии с настоящим изобретением, следует использовать адаптер шприца- катетера.
[0045] Электронный модуль (130) принимает электрические сигналы от адаптера и от одного или более других электродов, размещенных на кожном покрове пациента. Альтернативно, одновременно могут использоваться более одного адаптера для подключения к более чем одному эндоваскулярному устройству для формирования различных электрических сигналов для электронного модуля. В некоторых конфигурациях устройства применение накожных электродов является опциональным. Электронный модуль обрабатывает электрические сигналы и передает их в компьютерный модуль (140) для дальнейшей обработки и других функций. В одном варианте осуществления изобретения электронный и компьютерный модули могут быть выполнены в отдельных корпусах, в другом варианте осуществления они могут быть объединены в одном корпусе. В одном варианте осуществления изобретения связь между электронным и компьютерным модулями может быть выполнена аппаратными средствами, в другом варианте она может быть беспроводной, например, с использованием Bluetooth.
[0046] Компьютерный модуль обрабатывает сигналы от электронного модуля на основе алгоритмов (170), как описано в настоящем изобретении. Компьютерный модуль также может быть соединен с периферийными устройствами (160), например принтером, или принтером для печати наклеек, или запоминающими устройствами, и обеспечивает возможность соединения, включая и беспроводную связь (150), с другими компьютерами или с Интернетом. Запоминающее устройство может быть использовано для хранения базы данных по тематике и информации, касающейся используемого применения. Интерфейс для связи может использоваться для обновления этой базы данных дистанционно в соответствии с самым последним опытом и новейшей информацией, например новыми клиническими случаями заболеваний и новыми данными, относящимися к взаимосвязям между электрокардиограммами и состояниями сердца. Компьютерный модуль поддерживает графический пользовательский интерфейс (180), оптимизированный для цели используемого клинического применения.
[0047] На фиг.2А, 2В и 2С представлены различные эндоваскулярные адаптерные устройства.
[0048] Фиг.2А иллюстрирует адаптеры, которые могут быть выполнены из изолированного проводника (255) из меди или нержавеющей стали, имеющего два конца: один конец, соединенный с устройством васкулярного доступа (255), другой конец, соединенный с электронным модулем (250). Конец, соединенный с устройствами васкулярного доступа, включает коннектор, который может иметь несколько конфигураций. В одном варианте осуществления изобретения в качестве коннектора используется коннектор с J-зажимом (230) с пружиной для изоляции, когда J-наконечник не выдвинут. В другом варианте осуществления в качестве коннектора используется изолированный зажим «аллигатор» (220). В другом варианте осуществления коннектором является адаптер катетера-шприца (210). Один конец адаптера катетера-шприца (211) может соединяться с люэровским наконечником катетера. Другой конец может соединяться (215) со шприцем. Металлическая вставка (214), например металлическое кольцо, помещается внутри корпуса адаптера и входит в контакт с физиологическим раствором, когда он протекает от шприца в направлении просвета катетера. Металлическая вставка соединяется через стенку адаптера с проводом (212), который в свою очередь соединяется с коннектором (250). В одном варианте осуществления изобретения коннектор (250) соединяется безопасным образом с помощью внешней изоляции (241) и штекеров с электронным модулем. В еще одном варианте коннектор (250) имеет оптимизированную соскообразную форму (242), обеспечивающую простое и безопасное подсоединение стандартного коннектора кабеля ЭКГ.
[0049] На фиг.2В показан новый проволочный направитель (260) катетера, обеспечивающий сбор электрической информации только на его дистальном конце (261). Проволочный направитель катетера изготовлен из электропроводных материалов с достаточно хорошей проводимостью, например, из нержавеющей стали или нитинола. Проволочный направитель покрывается электрически изолирующим покрытием, таким как конформное покрытие на основе парилена, по всей длине, за исключением дистального и проксимального концов. Катетер снабжен маркировкой длины в виде меток, напечатанных на нем (262). Дистальный конец, который является атравматическим наконечником, либо J- наконечником, либо любой другой атравматической конструкцией, не имеет покрытия и обеспечивает электрический контакт с кровью. Проксимальный конец не имеет покрытия (263) и обеспечивает электрическое соединение коннекторов, подобных изображенным на фиг.2 (220 или 230), с проволочным направителем.
[0050] На фиг.2С показан другой вариант осуществления адаптера катетера-шприца. Пластиковое изделие (270) имеет формованный конец (271), который может стыковаться с люэровским разъемом стандартного катетера и с просветом катетера. Форма и материал создают хороший контакт между концом (271) и внутренней стенкой люэровского наконечника или просвета, так что во время работы исключаются утечка протекающей жидкости и попадание в просвет воздуха. Другой конец изделия (272) является коннектором люэровского типа, который может стыковаться с любым стандартным шприцем. Корпус адаптера, или внутренняя камера (273), обеспечивает адаптирование диаметра люэровского наконечника к размеру внутреннего просвета (271) катетера и соединение электропроводного элемента во внутренней камере с проводом, соединенным с внешней поверхностью камеры через перфорацию в стенке камеры (274). Соединение через стенку камеры является водонепроницаемым. Когда через адаптер вводится физиологический раствор, соединение (274) создает водонепроницаемый проводящий путь между физиологическим раствором и внешним проводом. Адаптер (290) является пластиковым изделием, обеспечивающим сопряжение двух диаметров (291) и (292). В одном варианте осуществления изобретения конец (271) адаптера (270) стыкуется с концом (291) для просвета адаптера (290), а другой конец (292) адаптера (290) стыкуется с просветом катетера, используемого для размещения имплантируемых портов.
[0051] Фиг.3 является блок-схемой электронного модуля (300) для получения и обработки эндоваскулярной электрокардиограммы в соответствии с вариантом осуществления настоящего изобретения.
[0052] Интерфейс (310) для соединения с пациентом обеспечивает связь электрических отведений с пациентом (305). Может использоваться любая комбинация накожных электродов и/или электрических соединений с эндоваскулярными устройствами с использованием рассмотренных выше адаптеров. В одном варианте осуществления изобретения усилитель (320) является четырехкаскадным усилителем с переменным коэффициентом усиления, который усиливает электрические сигналы, поступающие по кабелю от пациента, например, с типичными электрокардиографическими значениями. Аналогово-цифровой преобразователь (330) (АЦП) преобразует сигналы в цифровой формат, читаемый микропроцессором (340). Для осуществления функции микропроцессорной обработки (340) могут использоваться микропроцессоры, микроконтроллеры, цифровые сигнальные процессоры в любом количестве и любых конструкций.
[0053] В одном варианте осуществления изобретения микроконтроллер обеспечивает управление последовательной связью с компьютерным модулем (390) через последовательный интерфейс (370) или через беспроводной интерфейс (380), а цифровой сигнальный процессор (digital signal processor, DSP) обеспечивает выполнение одного или нескольких предлагаемых алгоритмов, описанных в настоящей заявке. Альтернативно, один процессор может использоваться как для обеспечения связи, так и для обработки.
[0054] Микропроцессор (340) также получает команды от компьютерного модуля (390) и соответствующим образом управляет различными элементами электронного модуля, например, усилителем (320). Блок изоляции пациента (350) разрывает электрическую связь источника питания (360) и канала последовательной связи (370) от интерфейса (310) для соединения с пациентом (310) для обеспечения защиты пациента от поражения электрическим током. В одном варианте осуществления изобретения блок изоляции (350) может состоять из трансформатора и/или элементов связи, например, оптических элементов связи.
[0055] На фиг.4А, 4В, 4С и 4D показаны схемы наложения электродов, обеспечивающие оптимальное получение эндоваскулярной электрокардиограммы в соответствии с различными вариантами осуществления настоящего изобретения.
[0056] Фиг.4А иллюстрирует схему наложения электродов для одного отведения с референтным электродом (410), например, прикрепленным к кожному покрову пациента над правой рукой, и вторым электродом, соединенным через адаптер с эндоваскулярным устройством (415). Референтный электрод, прикрепленный к кожному покрову над правой рукой, предлагается в данной схеме только для иллюстрации. Возможны другие местоположения референтного электрода в зависимости от вида требуемой ЭКГ. Референтый электрод над правой рукой вместе с концом эндоваскулярного устройства, используемым с адаптером, может быть подобен отведению II стандартной ЭКГ. В данном случае электрокардиограммы, полученные из верхней полой вены (401) и нижней полой вены (402), могут быть оптимизированы. Референтный электрод может быть прикреплен к кожному покрову в любом другом месте для получения других отведений стандартных ЭКГ. Референтный электрод также может быть соединен с адаптерами, подсоединенными к другим эндоваскулярным устройствам, для получения более детальной локальной информации изнутри сердца пациента (400).
[0057] На фиг.4В представлена модифицированная схема наложения электродов для трех отведений с четырьмя электродами с возможностями мониторинга и наведения. Три (3) электрода соответствуют стандартным электродам ЭКГ: на правой руке (RA, 420), левой руке (LA, 425) и левой ноге (LL, 430), используемый как референтный. Четвертый электрод прикрепляется через адаптер к эндоваскулярному устройству (С, 435). В данной схеме электронный модуль и алгоритм выполняют две функции одновременно: три стандартных электрода (RA, LA и LL) выполняют функцию мониторинга сердца, в то время как электрод С (435) обеспечивает запись ЭКГ с конца устройства.
[0058] На фиг.4С отображена телеметрическая схема для одного заземленного отведения, включающая схему, изображенную на фиг.4А, и референтную «землю» (450). Данная схема может использоваться для дистанционной передачи электрокардиограмм через телеметрическую систему.
[0059] На фиг.4D представлено одно применение мониторов ЭКГ для наведения эндоваскулярных устройств. Используется стандартный монитор ЭКГ, имеющий стандартные входы RA (465), LA (460) и LL (470). Вход LA (460) соединяется с левой рукой, а вход LL (470) с левой ногой пациента. Вход RA (465) соединяется с переключателем, который может использоваться клиническим врачом для переключения входа RA (465) между электродом RA и электродом 475 катетера (С). Таким образом, может осуществляться попеременно либо мониторинг, либо управление размещением катетера.
[0060] На фиг.5 показаны типичные амплитуды сигналов электрокардиограммы в различных местах центральной венозной системы.
[0061] Представлены сердце (504), правое предсердие (501), верхняя полая вена (SVC) (502) и нижняя полая вена (inferior vena cava, IVC) (503). Местоположение А находится в верхней части SVC, местоположение В находится в нижней трети SVC, местоположение С находится в атрио-кавальном соединении, местоположение D находится в правом предсердии и местоположение Е находится в верхней части нижней полой вены.
[0062] Диаграмма 510 отображает форму сигнала ЭКГ как функцию времени, записанную в местоположении А. Абсолютная амплитуда сигнала записана на шкале амплитуды (590). В случае эндоваскулярной ЭКГ показаны стандартные элементы электрокардиограммы: зубец Р (560), зубец R (570) и зубец Т (580). Амплитуды и форма в местоположении А, записанные в схеме для одного отведения, как на фиг.4D, подобны электрокардиограмме, записанной на уровне кожного покрова с той же самой схемой наложения электродов.
[0063] Диаграмма 520 отображает эндоваскулярную ЭКГ, записанную в местоположении В. Амплитуда в этом местоположении выше амплитуды в местоположении А, но общие формы сигнала схожи в местоположениях А и В.
[0064] Диаграмма 530 отображает эндоваскулярную ЭКГ, записанную в местоположении С. В местоположении С в атрио-кавальном соединении амплитуда сигнала еще выше по сравнению с амплитудой в местоположении В, и зубец Р претерпел резкое изменение и стал выше зубца R. Такой сигнал является показателем близости синоатриального узла.
[0065] Диаграмма 540 отображает эндоваскулярную ЭКГ, записанную в местоположении D. В местоположении D в правом предсердии амплитуды схожи с амплитудами в местоположении С, но зубец Р меняет полярность, становясь биполярным. Это указывает на то, что измерение ЭКГ происходит за синоатриальным узлом.
[0066] Диаграмма 550 отображает эндоваскулярную ЭКГ, записанную в местоположении Е. В местоположении Е в нижней полой вене, сигнал похож на сигнал в местоположении А с точки зрения амплитуды, за исключением того, что зубец Р имеет обратную полярность. Различия в форме сигналов ЭКГ в разных местоположениях используются в алгоритмах, предложенных в настоящем изобретении, для распознавания соответствующих местоположений и для оценки функциональных свойств сердца и кровеносных сосудов.
[0067] Фиг.6 иллюстрирует примеры спектров мощности сигнала электрокардиограммы в различных местоположениях в центральной венозной системе с использованием спектральной шкалы (690).
[0068] Показаны сердце (604), правое предсердие (601), верхняя полая вена (SVC) (602) и нижняя полая вена (IVC) (603). Диаграмма 610 представляет спектр эндоваскулярной ЭКГ, записанной в местоположении А. В этом местоположении вид спектра (610) указывает на наличие одной средней частоты или одной полосы частот (660), а также на спектральную мощность и энергию частотного распределения, схожие с аналогичными показателями на уровне кожного покрова.
[0069] Диаграмма 620 иллюстрирует спектр эндоваскулярной ЭКГ, записанной в местоположении В. В этом местоположении частотное распределение содержит две основные полосы частот и имеет более высокие энергию и спектральную мощность по сравнению с энергией и спектральной мощностью в местоположении А.
[0070] Диаграмма 630 иллюстрирует спектр эндоваскулярной ЭКГ, записанной в местоположении С. В этом местоположении имеется несколько (3-4) основных частот или основных спектральных компонентов, распределенных в более широком диапазоне частот (670). Такое спектральное распределение характерно для распределения энергии вокруг синоартриального узла. Спектральная мощность и энергия сигнала выросли по сравнению с местоположением В.
[0071] Диаграмма 640 иллюстрирует спектр эндоваскулярной ЭКГ, записанной в местоположении D. В этом местоположении увеличивается ширина спектра, и он становится более широкополосным, что свидетельствует об электрической активности правого предсердия.
[0072] Диаграмма 650 иллюстрирует спектр эндоваскулярной ЭКГ, записанной в местоположении Е. В этом местоположении спектр частот схож со спектром в местоположении А. Различия в форме спектральных колебаний в разных местоположениях используются в алгоритмах, предложенных в настоящем изобретении, для распознавания соответствующих местоположений и для оценки функциональных свойств сердца и кровеносных сосудов.
[0073] На фиг.7 изображен пример распределения электрической энергии сигнала электрокардиограммы в различных местоположениях в центральной венозной системе. Показаны сердце (704), правое предсердие (701), верхняя полая вена (SVC) (702) и нижняя полая вена (IVC) (703). Диаграммы (710, 720, 730, 740, 750) демонстрируют распределение энергии в различных местоположениях (A, B, C, D и E соответственно), а изменения во времени используются в алгоритмах, предлагаемых в настоящем изобретении, для распознавания соответствующих местоположений и для оценки функциональных свойств сердца и кровеносного сосуда.
[0074] На фиг.8 изображен графический пользовательский интерфейс в соответствии с вариантом осуществления настоящего изобретения.
[0075] Окно (810) представляет форму сигнала ЭКГ в реальном масштабе времени в момент его получения электронным модулем в результате использования соответствующей схемы наложения электродов. Окно (820) является референтным окном и представляет застывшую форму сигнала, используемую для сравнения с текущим окном. В одном варианте осуществления изобретения референтная форма сигнала в окне (820) может быть получена с помощью электродов, соединенных с электронным модулем, при референтном местоположении катетера и/или с использованием реферетной схемы наложения накожных электродов. Например, такой референтной формой сигнала может быть ЭКГ, записанная с использованием адаптера в соответствии с настоящим изобретением, подсоединенного к эндоваскулярному устройству, которое размещено в атрио-кавальном соединении. В другом варианте осуществления изобретения референтная форма сигнала в окне 820 может быть типичной формой сигнала в конкретном местоположении в сосудистой сети или типичной формой сигнала конкретного состояния сердца, которая записывается в базу данных форм сигналов и хранится в запоминающем устройстве компьютерной системы. Если схема наложения электродов обеспечивает одновременный мониторинг сердца и регистрацию электрокардиограмм с использованием эндоваскулярного устройства, окно (830) показывает одно из стандартных отведений ЭКГ для мониторинга сердца, в то время как окно (810) показывает ЭКГ, записанную с конца эндоваскулярного устройства, подключенного к адаптеру, подобному тем, которые обсуждались выше.
[0076] Значок (870) является отображением сердца, а местоположения от А до Е (875) иллюстрируют различные местоположения в сердце и сердечно- сосудистой системе, которые могут быть распознаны путем анализа эндоваскулярных электрокардиограмм в соответствии со способами, которые раскрываются в настоящем описании. Поскольку местоположение в сосудистой сети идентифицируется с помощью алгоритмов, соответствующее место, а значит и буква на значке (875), подсвечивается или иным образом делается видимым для пользователя. Столбики (884), (885) и (886) показывают энергетические уровни сигнала. Столбик «Е» (885) отображает величину электрической энергии, рассчитанной исходя из частотного спектра ЭКГ в текущем местоположении конца эндоваскулярного устройства. Столбик «R» (884) показывает величину электрической энергии, рассчитанной исходя из частотного спектра в референтном местоположении. Столбик «М» (886) показывает величину электрической энергии, рассчитанной исходя из частотного спектра ЭКГ с использованием мониторингового сигнала ЭКГ от накожных электродов. Окно (840) отражает мониторинговую информацию, например частоту сердечных сокращений. Информация о пациенте (фамилия, дата процедуры и прочее) показана в окне (850). Окно (860) содержит элементы управления системой, такие как кнопочные устройства и статусная информация, например, шкала, скорость прокрутки, параметры системы и диагностика системы.
[0077] На фиг.9 изображен графический пользовательский интерфейс в соответствии с другим вариантом осуществления настоящего изобретения.
[0078] Значок (920) является отображением сердца, а местоположения от А до Е (930) иллюстрируют различные местоположения в сердце и сердечно- сосудистой системе, которые могут быть распознаны путем анализа эндоваскулярных электрокардиограмм. Поскольку местоположение в сосудистой сети идентифицируется с помощью алгоритмов, соответствующее место, а значит и буква на значке (930), подсвечивается или иным образом делается видимым для пользователя. Столбики (940), (950) и (960) показывают энергетические уровни сигнала. Столбик «Е» (940) представляет величину электрической энергии, рассчитанной исходя из частотного спектра ЭКГ в текущем местоположении конца эндоваскулярного устройства. Столбик «R» (950) представляет величину электрической энергии, рассчитанной исходя из частотного спектра ЭКГ в референтном местоположении. Столбик «М» (960) представляет величину электрической энергии, рассчитанной из частотного спектра ЭКГ с использованием мониторингового сигнала ЭКГ, поступающего от накожных электродов. Кнопка «Печать» («Print») (960) позволяет пользователю распечатать информацию, документирующую данный случай, на принтере, например, на принтере для печати наклеек, для быстрого прикрепления к карте клинических данных пациента.
[0079] На фиг.10А и 10В представлены типичные распечатки информации, отображенной графическим пользовательским интерфейсом, в соответствии с вариантом осуществления настоящего изобретения.
[0080] Фиг.10А демонстрирует распечатку (1000) для случая процедуры размещения конца катетера в нижней трети SVC. Поле 1010 отображает значок сердца, в соответствии с которым подсвечивается (1040) буква «В», соответствующая нижней трети верхней полой вены (SVC). Поле 1030 отображает референтную форму сигнала ЭКГ, записанную при местоположении конца катетера в атрио-кавальном соединении поблизости от синоатриального узла. Поле 1020 отображает форму сигнала ЭКГ при местоположении конца катетера в позиции, в которую он был помещен в конце процедуры. Для фиг.10А такое местоположение находится в нижней трети SVC, и форма сигнала ЭКГ соответствует этому местоположению. Также распечатываются фамилия пациента (1001) и дата процедуры.
[0081] На фиг.10В представлена похожая распечатка (1050), за исключением того, что конечная позиция в конце процедуры находится в атрио- кавальном соединении в местоположении С (1090) на значке сердца (1060). Поле «Узел SA» (синоатриальный узел («SA Node», sino-atrial node)) отображает реферетную форму сигнала ЭКГ (1080), а поле «Конечная позиция» («Final Position») (1070) показывает, что конец катетера был размещен в синоатриальном узле: форма сигнала ЭКГ в конечной позиции является схожей или даже идентичной форме сигнала в реферетном местоположении в синоатриальном узле (Узел SA). Известно, что близость узла SA указывает на местоположение в атрио-кавальном соединении. Некоторые клинические врачи иногда рассматривают эти местоположения как идентичные.
[0082] Фиг.11 представляет блок-схему компьютерного способа (1100) позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы.
[0083] Алгоритмы применяются к входному сигналу (1102) (ЭКГ), полученному адаптером для эдоваскулярных устройств и, опционально, от накожных электродов. Блок обнаружения ошибок (1105) определяет по меньшей мере три вида состояний ошибок / исключений, таких как, например, когда дефибриллятор был применен к пациенту, когда водитель ритма сердца запускает импульсы возбуждения и/или когда отключается отведение/электрод. Такие ошибки / исключения могут быть отрегулированы по-разному, и пользователь может быть проинформирован о наличии исключения и способе его урегулирования (1110).
[0084] Блок предварительной обработки (1115) может усиливать сигнал, уменьшать шум, устранять артефакты и т.п. В одном варианте осуществления изобретения изменение масштаба сигнала в соответствии с размером дисплея происходит под управлением пользователя и не является автоматическим, как в случае с большинством доступных сегодня для приобретения мониторов ЭКГ. Тем самым легко распознаются изменения в амплитуде электрокардиограмм. Высокочастотный фильтр корректирует базовую линию и сокращает такие артефакты, как дыхательный артефакт. Широкополосное подавление шума может быть получено путем использования избирательных фильтров, например вейвлет-преобразованием. Электромагнитные помехи от другого оборудования и от единой энергосистемы могут быть подавлены с помощью режекторного фильтра (узкополосного фильтра), работающего на частоте 60 Гц или 50 Гц для согласования с отечественными и международными источниками электроснабжения. Высокочастотный шум может быть подавлен с помощью фильтра низких частот, который в одном варианте осуществления изобретения реализован с использованием усреднения с переменной длиной, такого, например, как усреднение в скользящем окне, соответствующем сердечному циклу, усреднение ЭКГ по нескольким последовательным сердечным циклам и т.п. Адаптивный фильтрующий блок (1120) оптимизирует коэффициенты фильтра путем минимизации сигнала ошибки.
[0085] Блок распознавания образов во временной области (1130) идентифицирует элементы сигнала ЭКГ, их взаимосвязь (взаимосвязи) и поведение (поведения) во времени. Важным аспектом алгоритма распознавания образов во временной области в блоке 1130, также как и алгоритма блока распознавания образов в частотной области 1140, является история данных. Некоторые элементы электрокардиограмм анализируются в реальном масштабе времени, а что касается других элементов, то в памяти электронного и/или компьютерного модулей выделяется буфер данных соответствующей длины для проведения анализа сохраненных в истории данных и прогнозирования на основе этого анализа. В одном варианте осуществления настоящего изобретения буфер истории данных имеет длину в несколько секунд, что позволяет сохранить в буфере сигнал ЭКГ, соответствующий нескольким сердечным сокращениям. Техника двойной буферизации позволяет обрабатывать форму сигнала в одном буфере, в то время как второй буфер продолжает хранить сигналы. Таким образом, при обработке форм сигнала в одном буфере не происходит потерь данных сигнала. После завершения обработки данных в одном буфере результаты пересылаются к блоку (1150) алгоритмов поддержки принятия решений и буферы меняются ролями. Размер буфера соответствует продолжительности времени обработки данных для обеспечения недопущения потери данных. Подобная техника двойной буферизации также применяется в отношении данных, поступающих в блок (1140) распознавания образов в частотной области.
[0086] В случае эндоваскулярной ЭКГ элементы, которые представляют интерес, включают один или более из следующих элементов, но не ограничиваются ими: 1. Зубцы Р, Q, R, S, T и U, их пики, амплитуды и длительность; 2. Длительность сегментов/интервалов P-R, S-T и T-P; 3. Подъем сегмента S-T; 4. Отклонения интервалов P-P и R-R; 5. Отклонения интервалов S-T и R-T и других; 6. Значения полного размаха колебаний зубца Р и комплекса QRS; 7. Отношение амплитуд зубца Р и зубца R и отношение амплитуд полного размаха колебаний зубца Р и комплекса QRS; 8. Полярность зубца Р: одиночная положительная, одиночная отрицательная или биполярность; 9. Производная зубца Р, комплекса QRS и зубца Т; 10. Временное среднее значение интервала R-R и цикла сердечных сокращений; 11. Максимальное значение амплитуды / пика зубца Р и амплитуды полного размаха колебаний зубца Р в течение конкретного интервала времени; 12. Максимальное значение амплитуды / пика зубца R и амплитуды полного размаха колебаний комплекса QRS в течение конкретного интервала времени.
[0087] Некоторые техники могут быть использованы для получения информации, перечисленной выше, из форм сигналов ЭКГ, включая один или более из следующих методов, но не ограничиваются ими: 1. «Обнаружение пика»; 2. Вычисление первых производных; 3. Скользящие средние значения вдоль сигнала в одном сердечном сокращении или вдоль множества сердечных сокращений; 4. Адаптивная регулировка порога; 5. Автокорреляция.
[0088] Быстрое преобразование Фурье в блоке (1125) производит быстрое преобразование Фурье с некоторым количеством ЭКГ-выборок, хранящихся в буфере конкретной длины, например на 256, 512, 1024, 2048 или более выборок данных. Быстрое преобразование Фурье переводит сигнал из временной области в частотную область.
[0089] Блок (1140) распознавания образов в частотной области представляет различные аспекты распознавания образов, выполненных над электрокардиограммами в частотной области, включая один или более аспектов из нижеследующих, но не ограничиваются ими: 1. Анализ главных компонентов, то есть исследование наиболее существенных элементов частотного спектра (подобно анализу морфологических элементов электрокардиограммы, например конкретных колебаний и сегментов во временной области): 2. Сжатие данных для уменьшения объема вычислений на основе главных компонентов; 3. Определение количества и морфологии главных компонентов, в частности, определение того, имеет ли спектр только одну, две или множество главных частот (частотных полос); 4. Вычисление спектральной мощности и энергии сигнала по частотному спектру; 5. Скользящее среднее значение по частотному диапазону в пределах одного спектра для сокращения широкополосного шума; 6. Скользящее среднее значение по нескольким спектрам для фильтрования артефактов; 7. Определение дополнительных морфологических элементов спектра, например, максимальной частоты, энергии, соответствующей максимальной частоте, частотной гистограммы, то есть каким частотам соответствует какая энергия, частоты самого большого существенного энергетического пика и т.п.; 8. Вычисление поведения и средних в течение времени значений главных компонентов и других параметров, определенных из спектрального распределения, например, определение максимального значения энергии сигнала и спектральной мощности в течение конкретного интервала времени; 9. Определение / оценка некоторых состояний сердца на основе спектрального анализа. Осуществление такого определения / оценки также описано более подробно в блоках с 1150 по 1250.
[0090] В нескольких алгоритмах поддержки принятия решений используют информацию, предоставленную алгоритмом распознавания образов во временной области и алгоритмом распознавания образов в частотной области. В одном варианте осуществления изобретения блок (1150) поддерживает размещение эндоваскулярного устройства либо в нижней трети SVC, либо в атрио-кавальном соединении.
[0091] В частности, блок (1150) базируется на концепции первоначального достижения атрио-кавального соединения при размещении катетера. В атрио- кавальном соединении или возле синоатриального узла зубец Р и другие электрические параметры достигают максимального значения. В атрио-кавальном соединении зубец Р является однополярным. После достижения синоатриального узла в атрио-кавальном соединении, то есть при максимальном значении амплитуды пика Р и спектральной мощности, катетер оттягивается назад на несколько сантиметров до тех пор, пока амплитуда зубца Р не уменьшится до половины амплитуды, достигнутой в атрио-кавальном соединении. Считается, что местоположение катетера, когда зубец Р уменьшится до половины амплитуды, достигнутой в атрио-кавальном соединении, приходится на нижнюю треть верхней полой вены. Пиковая амплитуда зубца Р и амплитуда размаха колебаний, а также спектральная мощность используются для установления соответствия местоположения в сосудистой сети форме сигнала ЭКГ.
[0092] В частности, после приема эндоваскулярного ЭГК-сигнала, ассоциированного с эндоваскулярным устройством, этот сигнал обрабатывается в течение множества заранее заданных периодов времени для вычисления амплитуды зубца Р и спектральной мощности для каждого заранее заданного периода времени. Затем из множества амплитуд зубца Р определяется максимальная амплитуда зубца Р, равно как и соответствующая максимальная спектральная мощность из множества спектральных мощностей. Местоположение, в котором определяются указанные максимальные значения, соответствует заранее заданному местоположению в сердце или рядом с ним, такому как атрио-кавальное соединение. Затем для каждого заранее заданного периода времени рассчитывается местоположение эндоваскулярного устройства на основе отношения амплитуды зубца Р к максимальной амплитуде зубца Р и отношения спектральной мощности к максимальной спектральной мощности, а затем местоположение эндоваскулярного устройства отображается пользователю на дисплее. Дополнительно, для установления местоположения эндоваскулярного устройства могут также использоваться полярность зубца Р и амплитуда зубца R.
[0093] Для поддержки принятия решений может использоваться единый критерий или комбинация таких критериев. В одном варианте осуществления изобретения Т1, Т2 и Т3 могут быть эмпирически установленными порогами, которые отличаются для каждого пациента, и в алгоритме может использоваться адаптивная петля для настройки порогов в зависимости от текущих измерений. В другом варианте осуществления изобретения пороги являются заранее заданными.
[0094] В альтернативных вариантах осуществления изобретения отношение между пиком Р / амплитудой Р или амплитудой размаха колебаний зубца Р к пику R / амплитуде R или к амплитуде размаха колебаний комплекса QRS могут также использоваться для установления местоположения относительно синоатриального узла. В одном варианте осуществления изобретения пик / амплитуда Р должны быть равными примерно половине пика / амплитуды R и зубец Р должен быть однополярным, чтобы местоположение соответствовало нижней трети SVC. В другом варианте осуществления изобретения размах колебаний зубца Р должен быть равным половине амплитуды размаха колебаний QRS и зубец Р должен быть однополярным, чтобы местоположение соответствовало нижней трети SVC.
[0095] Как было рассмотрено выше, результаты блока 1150 поддержки принятия решений могут быть представлены пользователю, например, сильным подсвечиванием нужного местоположения на значке сердца, которое соответствует типу ЭКГ, идентифицированному системой (1160).
[0096] Блок 1250 алгоритма поддержки принятия решений базируется на сравнении зубца Р, зубца R и спектральной мощности зубца Р в текущих местоположениях со значениями этих параметров, установленных от накожных электрокардиограмм в эквивалентном отведении, например, отведении II. Пороги от Т1 до Т6 являются эмпирическими значениями и зависят от адаптивных настроек по отношению к каждому пациенту. Могут использоваться каждый из критериев или комбинация критериев, представленных на фиг.12.
[0097] Могут также использоваться другие алгоритмы принятия решений, в частности, алгоритмы, связанные с уровнем электрической энергии, рассчитанной по спектру ЭКГ. В случае размещения эндоваскулярных устройств критерием может являться то, что в местоположении, соответствующем нижней трети SVC, средняя электрическая энергия, вычисленная исходя из эндоваскулярной ЭКГ, в два раза выше средней электрической энергии, вычисленной исходя из эндоваскулярной ЭКГ на кожном уровне или из накожной ЭКГ в соответствующем отведении, например, отведении II.
[0098] Фиг.13 изображает проводящую систему сердца, а фиг.14 иллюстрирует распространение электрического сигнала в проводящей системе сердца.
[0099] Данные чертежи иллюстрируют проводящий механизм сердца, который объясняет, почему распределение электрической энергии внутри сердца при измерении указывает на определенные местоположения внутри сердца. Соответственно, могут быть измерены локальные электрические сигналы, поведения и концентрации энергии и более точно могут быть установлены местоположения внутри сердца и кровеносного сосуда, а также могут быть более точно описаны состояния сердца.
[0100] Проводящая система сердца начинается с доминирующего водителя ритма сердца, синоатриального узла (1310). Характерная частота сокращений узла SA составляет от 60 до 100 ударов/мин. Когда импульс выходит из узла SA, он движется через предсердие по пучку Бахмана (1350) и межузловым путям в сторону атрио-вентрикулярного (atro-ventricular, AV) узла (1320) и желудочков. После того, как импульс пройдет узел AV, он движется к желудочкам, вначале вниз к пучку Гиса (1330), затем вдоль ветвей пучка и, наконец, вниз к сети волокон Пуркинье (1340). Клетки водителя ритма сердца в соединительной ткани и волокна Пуркинье на желудочках в норме остаются в состоянии покоя, так как они получают импульсы из узла SA. Характерная частота сокращений соединения AV составляет от 40 до 60 ударов/мин, характерная частота сокращений желудочков равна от 20 до 40 ударов/мин. Различные скорости распространения электрических импульсов показаны на фиг.14. Из узла SA (1410) импульсы распространяются через предсердную мышцу (1420) и вентрикулярную мышцу (1460) на скорости примерно 0,5 м/с, через пучок и ветви пучка Гиса (1440) и (1450) на скорости примерно 2 м/с, через волокна Пуркинье (1470) со скоростью примерно 4 м/с и через узел AV (1430) со скоростью примерно 0,05 м/с.
[0101] Электрические сигналы и распределение электрической энергии используются для идентификации близости к синоатриальному узлу и электрической активности правого предсердия даже в случае аритмии, то есть в отсутствии когерентного зубца Р, измеренного с помощью стандартной накожной электрокардиограммы. Хотя в некоторых случаях аритмии случайный электрический сигнал, созданный в правом предсердии, не является достаточно когерентным для распространения через тело к коже, электрическая энергия все же присутствует в правом предсердии и может быть обнаружена с помощью локальных эндоваскулярных измерений как некогерентный зубец Р, то есть как значительная электрическая активность в сегменте Р сигнала ЭКГ. Измерения энергии являются также менее чувствительными к некоторым локальным аномалиям в проводимости импульсов: нарушенному автоматизму (аритмиям), ректроградному проведению импульсов, нарушениям, связанным с повторным обратным входом импульса возбуждения.
[0102] Электрические сигналы и распределение электрической энергии также предпочтительно используются для количественной оценки функциональных возможностей сердца, например, преднагрузки, которая связана с деполяризацией и растяжением сердечной мышцы.
[0103] Электрические сигналы и распределение электрической энергии также предпочтительно используются для проведения проволочных направителей и направляющих катетеров через аорту в левые отделы сердца. Данный способ позволяет упростить доступ в левое предсердие и в коронарные артерии и уменьшить значимость контрастности и излучения, необходимых для проведения эндоваскулярных устройств в данные местоположения. В другом применении может также использоваться оборудование для проведения катетеров, например, Сван-Ганца, через правый желудочек в легочную артерию. Другие эндоваскулярные устройства могут быть проведены и использованы для измерения эндоваскулярной электрической активности в других местоположениях сердечно-сосудистой системы, которые могут быть идентифицированы с помощью электрокардиограмм, измеренных с помощью нового оборудования, представленного в настоящем изобретении.
[0104] Фиг.15 иллюстрирует электрическую активность в сердечно- сосудистой системе, обусловленную нейронной системой управления. Некоторые пути проводимости связаны с механизмом управления активностью сердца (1530) и кровеносного сосуда (1520): рецепторы (1510), например, прессорные рецепторы, передают информацию, связанную с состоянием кровеносных сосудов и состоянием сердца, в нервную систему через медуллярные центры (1500). Гипоталамус (1540) и высшие центры (1550) вовлечены в обработку информации, полученной от сенсоров / рецепторов, и в реагирование на нее. В свою очередь они посылают импульсы (1560) обратно в кровеносные сосуды и сердце. Измеряя электрическую активность, связанную с системой управления, может быть получена информация о состояниях сердца, которая ранее не могла быть получена.
[0105] Многие признаки и преимущества изобретения являются очевидными из подробного описания, и, таким образом, приложенная формула изобретения охватывает все эти признаки и преимущества в рамках сущности и объема изобретения. Более того, поскольку специалисты могут столкнуться с многочисленными модификациями и вариантами изобретения, оно не может быть ограничено точными конструкцией и функционированием, которые были проиллюстрированы и описаны, и, соответственно, все подходящие модификации и эквиваленты могут быть отнесены к вариантам в рамках объема настоящего изобретения.

Claims (50)

1. Компьютерный способ позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы (ЭКГ), включающий:
прием эндоваскулярного сигнала ЭКГ, ассоциированного с эндоваскулярным устройством, включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент зубца Р;
обработку эндоваскулярного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды зубца Р и спектральной мощности для каждого заранее заданного периода времени;
определение максимальной амплитуды зубца Р из множества амплитуд зубца Р и соответствующей максимальной спектральной мощности из множества спектральных мощностей;
определение местоположения эндоваскулярного устройства для каждого заранее заданного периода времени на основе отношения амплитуды зубца Р к максимальной амплитуде зубца Р и отношения спектральной мощности к максимальной спектральной мощности; и
отображение пользователю местоположения эндоваскулярного устройства.
2. Способ по п. 1, в котором амплитуда зубца Р является значением размаха колебаний и максимальная амплитуда зубца Р является значением размаха колебаний.
3. Способ по п. 1, в котором эндоваскулярное устройство представляет собой центральный венозный катетер, соединенный с адаптером, который включает электрод в контакте со столбиком физиологического раствора, открытым для конца катетера, и эндоваскулярный сигнал ЭКГ основывается на электрическом сигнале, измеренном с помощью электрода.
4. Способ по п. 1, в котором зубец Р является сегментом Р.
5. Способ по любому из пп. 1-4, в котором местоположением эндоваскулярного устройства является атрио-кавальное соединение, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р больше чем 0,9, отношение спектральной мощности к максимальной спектральной мощности больше чем 0,9 и амплитуда зубца Р больше амплитуды зубца R.
6. Компьютерный способ позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы (ЭКГ), включающий:
прием эндоваскулярного сигнала ЭКГ, ассоциированного с эндоваскулярным устройством, включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент зубца Р;
обработку эндоваскулярного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды зубца Р и спектральной мощности для каждого заранее заданного периода времени и для определения полярности для каждой амплитуды зубца Р;
определение максимальной амплитуды зубца Р из множества амплитуд зубца Р и соответствующей максимальной спектральной мощности из множества спектральных мощностей;
определение местоположения эндоваскулярного устройства для каждого заранее заданного периода времени на основе полярности зубца Р, отношения амплитуды зубца Р к максимальной амплитуде зубца Р и отношения спектральной мощности к максимальной спектральной мощности; и
отображение пользователю местоположения эндоваскулярного устройства.
7. Способ по п. 6, в котором амплитуда зубца Р является значением размаха колебаний и максимальная амплитуда зубца Р является значением размаха колебаний.
8. Способ по п. 6, в котором эндоваскулярное устройство представляет собой центральный венозный катетер, соединенный с адаптером, который включает электрод в контакте со столбиком физиологического раствора, открытым для конца катетера, и эндоваскулярный сигнал ЭКГ основывается на электрическом сигнале, измеренном с помощью электрода.
9. Способ по п. 6, в котором зубец Р является сегментом Р.
10. Способ по любому из пп. 6-9, в котором местоположением эндоваскулярного устройства является верхняя часть верхней полой вены, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р меньше чем 0,4, отношение спектральной мощности к максимальной спектральной мощности меньше чем 0,4 и зубец Р является однополярным.
11. Способ по любому из пп. 6-9, в котором местоположением эндоваскулярного устройства является нижняя треть верхней полой вены, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р находится в диапазоне от 0,4 до 0,6, отношение спектральной мощности к максимальной спектральной мощности находится в диапазоне от 0,4 до 0,6 и зубец Р является однополярным.
12. Способ по любому из пп. 6-9, в котором местоположением эндоваскулярного устройства является правое предсердие, если отношение спектральной мощности к максимальной спектральной мощности находится в диапазоне от 0,6 до 0,9 и зубец Р является биполярным.
13. Способ по любому из пп. 6-9, в котором местоположением эндоваскулярного устройства является верхняя треть нижней полой вены, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р находится в диапазоне от 0,4 до 0,6, отношение спектральной мощности к максимальной спектральной мощности находится в диапазоне от 0,4 до 0,6 и зубец Р является однополярным с обратной полярностью.
14. Компьютерный способ позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы (ЭКГ), включающий:
прием эндоваскулярного сигнала ЭКГ, ассоциированного с эндоваскулярным устройством, включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент эндоваскулярного зубца Р;
одновременный прием накожного сигнала ЭКГ, ассоциированного с накожным отведением ЭКГ и включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент накожного зубца Р;
обработку эндоваскулярного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды эндоваскулярного зубца Р и эндоваскулярной спектральной мощности для каждого заранее заданного периода времени;
обработку накожного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды накожного зубца Р и накожной спектральной мощности для каждого заранее заданного периода времени;
определение максимальной амплитуды накожного зубца Р из множества амплитуд накожного зубца Р и соответствующей максимальной накожной спектральной мощности из множества накожных спектральных мощностей;
определение местоположения эндоваскулярного устройства для каждого заранее заданного периода времени на основе отношения амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р и отношения эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности; и
отображение пользователю местоположения эндоваскулярного устройства.
15. Способ по п. 14, в котором амплитуды эндоваскулярного и накожного зубцов Р являются значениями размаха колебаний и максимальная амплитуда накожного зубца Р является значением размаха колебаний.
16. Способ по п. 14, в котором эндоваскулярное устройство представляет собой центральный венозный катетер, соединенный с адаптером, который включает электрод в контакте со столбиком физиологического раствора, открытым для конца катетера, и эндоваскулярный сигнал ЭКГ основывается на электрическом сигнале, измеренном с помощью электрода.
17. Способ по п. 14, в котором эндоваскулярный и накожный зубцы Р являются сегментами Р.
18. Способ по любому из пп. 14-17, в котором местоположением эндоваскулярного устройства является атрио-кавальное соединение, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р больше чем 2,5, отношение спектральной мощности к максимальной спектральной мощности больше чем 2,59 и амплитуда эндоваскулярного зубца Р больше, чем амплитуда эндоваскулярного зубца R.
19. Компьютерный способ позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы (ЭКГ), включающий:
прием эндоваскулярного сигнала ЭКГ, ассоциированного с эндоваскулярным устройством, включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент эндоваскулярного зубца Р;
одновременный прием накожного сигнала ЭКГ, ассоциированного с накожным отведением ЭКГ и включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент накожного зубца Р;
обработку эндоваскулярного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды эндоваскулярного зубца Р и эндоваскулярной спектральной мощности для каждого заранее заданного периода времени и для определения полярности для каждой амплитуды эндоваскулярного зубца Р;
обработку накожного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды накожного зубца Р и накожной спектральной мощности для каждого заранее заданного периода времени;
определение максимальной амплитуды накожного зубца Р из множества амплитуд накожного зубца Р и соответствующей максимальной накожной спектральной мощности из множества накожных спектральных мощностей;
определение местоположения эндоваскулярного устройства для каждого заранее заданного периода времени на основе полярности эндоваскулярного зубца Р, отношения амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р и отношения эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности; и
отображение пользователю местоположения эндоваскулярного устройства.
20. Способ по п. 19, в котором амплитуды эндоваскулярного и накожного зубцов Р являются значениями размаха колебаний и максимальная амплитуда накожного зубца Р является значением размаха колебаний.
21. Способ по п. 19, в котором эндоваскулярное устройство представляет собой центральный венозный катетер, соединенный с адаптером, который включает электрод в контакте со столбиком физиологического раствора, открытым для конца катетера, и эндоваскулярный сигнал ЭКГ основывается на электрическом сигнале, измеренном с помощью электрода.
22. Способ по п. 19, в котором эндоваскулярный и накожный зубцы Р являются сегментами Р.
23. Способ по любому из пп. 19-22, в котором местоположением эндоваскулярного устройства является верхняя часть верхней полой вены, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р находится в диапазоне от 0,9 до 1,2, отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 0,9 до 1,2 и эндоваскулярный зубец Р является однополярным.
24. Способ по любому из пп. 19-22, в котором местоположением эндоваскулярного устройства является нижняя треть верхней полой вены, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р находится в диапазоне от 1,5 до 2,0, отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 1,5 до 2,0 и эндоваскулярный зубец Р является однополярным.
25. Способ по любому из пп. 19-22, в котором местоположением эндоваскулярного устройства является правое предсердие, если отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 2,0 до 2,5 и эндоваскулярный зубец Р является биполярным.
26. Способ по любому из пп. 19-22, в котором местоположением эндоваскулярного устройства является верхняя треть нижней полой вены, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р находится в диапазоне от 0,9 до 1,2, отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 0,9 до 1,2 и эндоваскулярный зубец Р является однополярным с обратной полярностью.
RU2015110633A 2009-06-12 2010-06-14 Способ позиционирования конца катетера RU2691318C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21347409P 2009-06-12 2009-06-12
US61/213,474 2009-06-12

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2011150917/14A Division RU2549998C2 (ru) 2009-06-12 2010-06-14 Способ позиционирования конца катетера

Publications (3)

Publication Number Publication Date
RU2015110633A RU2015110633A (ru) 2015-08-27
RU2015110633A3 RU2015110633A3 (ru) 2018-10-25
RU2691318C2 true RU2691318C2 (ru) 2019-06-11

Family

ID=43307023

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2011150917/14A RU2549998C2 (ru) 2009-06-12 2010-06-14 Способ позиционирования конца катетера
RU2015110633A RU2691318C2 (ru) 2009-06-12 2010-06-14 Способ позиционирования конца катетера

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2011150917/14A RU2549998C2 (ru) 2009-06-12 2010-06-14 Способ позиционирования конца катетера

Country Status (9)

Country Link
US (1) US9339206B2 (ru)
EP (2) EP3542713A1 (ru)
JP (1) JP5795576B2 (ru)
KR (1) KR101773207B1 (ru)
CN (1) CN102802514B (ru)
BR (1) BRPI1010773B1 (ru)
ES (1) ES2745861T3 (ru)
RU (2) RU2549998C2 (ru)
WO (1) WO2010144922A1 (ru)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8024024B2 (en) * 2007-06-27 2011-09-20 Stereotaxis, Inc. Remote control of medical devices using real time location data
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
ES2651898T3 (es) 2007-11-26 2018-01-30 C.R. Bard Inc. Sistema integrado para la colocación intravascular de un catéter
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US9636031B2 (en) 2007-11-26 2017-05-02 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
EP2313143B1 (en) 2008-08-22 2014-09-24 C.R. Bard, Inc. Catheter assembly including ecg sensor and magnetic assemblies
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
EP3542713A1 (en) 2009-06-12 2019-09-25 Bard Access Systems, Inc. Adapter for a catheter tip positioning device
WO2011019760A2 (en) 2009-08-10 2011-02-17 Romedex International Srl Devices and methods for endovascular electrography
US11103213B2 (en) 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
BR112012019354B1 (pt) 2010-02-02 2021-09-08 C.R.Bard, Inc Método para localização de um dispositivo médico implantável
EP2912999B1 (en) 2010-05-28 2022-06-29 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
JP5980201B2 (ja) 2010-05-28 2016-08-31 シー・アール・バード・インコーポレーテッドC R Bard Incorporated 針および医療用コンポーネントのための挿入誘導システム
US8603004B2 (en) * 2010-07-13 2013-12-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Methods and systems for filtering respiration noise from localization data
CN103228219B (zh) 2010-08-09 2016-04-27 C·R·巴德股份有限公司 用于超声探测器头的支撑和覆盖结构
MX338127B (es) 2010-08-20 2016-04-04 Bard Inc C R Reconfirmacion de colocacion de una punta de cateter asistida por ecg.
ES2922673T3 (es) * 2010-09-23 2022-09-19 Bard Inc C R Aparato y método para navegación de catéter usando mapeo de energía endovascular
WO2012058461A1 (en) 2010-10-29 2012-05-03 C.R.Bard, Inc. Bioimpedance-assisted placement of a medical device
TWI479160B (zh) * 2010-12-20 2015-04-01 Hon Hai Prec Ind Co Ltd 測試裝置及方法
RU2609203C2 (ru) 2011-07-06 2017-01-30 Си.Ар. Бард, Инк. Определение и калибровка длины иглы для системы наведения иглы
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
EP2564771A1 (de) 2011-09-05 2013-03-06 ECP Entwicklungsgesellschaft mbH Medizinprodukt mit einem Funktionselement zum invasiven Einsatz im Körper eines Patienten
WO2013070775A1 (en) 2011-11-07 2013-05-16 C.R. Bard, Inc Ruggedized ultrasound hydrogel insert
US9839368B2 (en) 2012-01-17 2017-12-12 Zoll Medical Corporation Systems and methods for filtering ECG artifacts
EP2861153A4 (en) 2012-06-15 2016-10-19 Bard Inc C R APPARATUS AND METHODS FOR DETECTION OF A REMOVABLE CAP ON AN ULTRASONIC PROBE
US9220432B2 (en) * 2013-03-02 2015-12-29 C. R. Bard, Inc. Method and system of utilizing ECG signal for central venous catheter tip positioning
US9445746B1 (en) 2013-03-14 2016-09-20 Angio Dynamics, Inc. Systems and methods for catheter tip placement using ECG
US10188831B2 (en) 2013-03-14 2019-01-29 Angiodynamics, Inc. Systems and methods for catheter tip placement using ECG
US9440047B1 (en) 2013-03-14 2016-09-13 Angiodynamics, Inc. Systems and methods for catheter tip placement using ECG
EP2829222B1 (en) 2013-07-24 2020-05-27 Cook Medical Technologies LLC Locating device
JP6273355B2 (ja) 2013-10-30 2018-01-31 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド 電位図の電圧ベースの評価のための心臓マッピングのシステム及び方法
EP3073910B1 (en) 2014-02-06 2020-07-15 C.R. Bard, Inc. Systems for guidance and placement of an intravascular device
US9854992B2 (en) * 2014-04-04 2018-01-02 Bard Access Systems, Inc. Apparatus and method for intravascular catheter navigation using the electrical conduction system of the heart and control electrodes
US20150282734A1 (en) 2014-04-08 2015-10-08 Timothy Schweikert Medical device placement system and a method for its use
CN105233392A (zh) * 2014-07-09 2016-01-13 山东百多安医疗器械有限公司 带有心电信号指示导管位置功能的中心静脉导管
KR20160007121A (ko) * 2014-07-11 2016-01-20 삼성전자주식회사 엑스선 장치
US9801585B2 (en) * 2014-12-31 2017-10-31 Biosense Webster (Israel) Ltd. Electrocardiogram noise reduction
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10271795B2 (en) 2015-06-12 2019-04-30 C. R. Bard, Inc. Systems and methods for confirmation of prior catheter tip placement
US10542961B2 (en) 2015-06-15 2020-01-28 The Research Foundation For The State University Of New York System and method for infrasonic cardiac monitoring
WO2016210325A1 (en) 2015-06-26 2016-12-29 C.R. Bard, Inc. Connector interface for ecg-based catheter positioning system
KR102378287B1 (ko) 2015-09-30 2022-03-23 허트 테스트 레버러토리스, 인크. 수량적 심장 테스팅
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US10244956B2 (en) * 2016-02-12 2019-04-02 Nuvectra Corporation Stimulation needle apparatus and method
CN105796093B (zh) * 2016-05-11 2019-02-01 苏州康晟通医疗科技有限公司 中心静脉导管套件
CN105832329A (zh) * 2016-05-11 2016-08-10 苏州康晟通医疗科技有限公司 心电监测系统
WO2017197114A1 (en) 2016-05-11 2017-11-16 Affera, Inc. Anatomical model generation
WO2017197294A1 (en) 2016-05-12 2017-11-16 Affera, Inc. Three-dimensional cardiac representation
IT201600091852A1 (it) 2016-09-12 2018-03-12 De Lutio Enrico Apparecchiatura medica per l’introduzione di cateteri nel corpo umano
CN110603600A (zh) * 2017-03-30 2019-12-20 皇家飞利浦有限公司 用于分布式无线管腔内感测系统的功能测量患者接口模块(pim)
US10686878B2 (en) * 2017-03-30 2020-06-16 Pacesetter, Inc. Method and device for managing display of multiple data streams
US11188069B2 (en) * 2017-08-16 2021-11-30 Covidien Lp Preventative maintenance of robotic surgical systems
US20200196885A1 (en) * 2017-08-30 2020-06-25 Affera, Inc. Catheter-based identification of cardiac regions
KR102053449B1 (ko) * 2017-09-25 2019-12-06 (주) 타우피엔유메디칼 캡쳐카테터
CN108685605B (zh) * 2017-12-20 2019-12-17 深圳市科曼医疗设备有限公司 导管末端定位方法和系统
WO2020081373A1 (en) 2018-10-16 2020-04-23 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
EP3996620A4 (en) 2019-07-26 2023-08-09 Bard Access Systems, Inc. SYSTEM AND METHOD FOR USING AN ECG SIGNAL FOR STATIC CATHETER TIP POSITION CONFIRMATION
WO2021021408A1 (en) * 2019-07-29 2021-02-04 Bard Access Systems, Inc. Connection systems and methods for establishing optical and electrical connections through a drape
CN110694163A (zh) * 2019-09-20 2020-01-17 山东百多安医疗器械有限公司 一种基于腔内心电的经外周中心静脉导管定位算法
WO2021173861A1 (en) * 2020-02-28 2021-09-02 Bard Access Systems, Inc. Optical connection systems and methods thereof
WO2021202589A1 (en) 2020-03-30 2021-10-07 Bard Access Systems, Inc. Optical and electrical diagnostic systems and methods thereof
US11899249B2 (en) 2020-10-13 2024-02-13 Bard Access Systems, Inc. Disinfecting covers for functional connectors of medical devices and methods thereof
US20220184377A1 (en) * 2020-12-10 2022-06-16 Abiomed, Inc. Systems and methods for determining positioning of intracardiac devices
KR102691151B1 (ko) * 2021-12-09 2024-08-05 박을준 카테터, 카테터 조작 방법 및 카테터 시스템
US12089815B2 (en) 2022-03-17 2024-09-17 Bard Access Systems, Inc. Fiber optic medical systems and devices with atraumatic tip
WO2024040023A1 (en) * 2022-08-15 2024-02-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Systems and methods for electrocardiographic radial depth navigation of intracardiac devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU555892A1 (ru) * 1974-09-24 1977-04-30 Каунасский Медицинский Институт Зонд дл эндокардиальной стимул ции сердца
US5121750A (en) * 1990-03-02 1992-06-16 Katims Jefferson J Apparatus for locating a catheter adjacent to a pacemaker node of the heart
US20080097232A1 (en) * 2006-10-23 2008-04-24 Rothenberg Peter M Method of locating the tip of a central venous catheter

Family Cites Families (1313)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US576080A (en) * 1897-01-26 Window-shade roller
US3133244A (en) 1960-09-15 1964-05-12 Gen Precision Inc Magnetic field detector and resolver having a two section housing for the detector
US3297020A (en) 1963-09-30 1967-01-10 Mathiesen Erik Apparatus for detecting estrus in animals
US3625200A (en) 1969-08-26 1971-12-07 Us Catheter & Instr Corp Controlled curvable tip member
SE336642B (ru) 1969-10-28 1971-07-12 Astra Meditec Ab
US4370983A (en) 1971-01-20 1983-02-01 Lichtenstein Eric Stefan Computer-control medical care system
US3817241A (en) 1972-02-16 1974-06-18 Henry And Carol Grausz Disposable central venous catheter and method of use
US3896373A (en) 1972-11-30 1975-07-22 Stein Paul D Method and apparatus for determining cross-sectional area of a blood conduit and volumetric flow therethrough
US3847157A (en) 1973-06-18 1974-11-12 J Caillouette Medico-surgical tube
US3902501A (en) 1973-06-21 1975-09-02 Medtronic Inc Endocardial electrode
US3868565A (en) 1973-07-30 1975-02-25 Jack Kuipers Object tracking and orientation determination means, system and process
US3995623A (en) 1974-12-23 1976-12-07 American Hospital Supply Corporation Multipurpose flow-directed catheter
US4003369A (en) 1975-04-22 1977-01-18 Medrad, Inc. Angiographic guidewire with safety core wire
US3986373A (en) 1975-06-27 1976-10-19 The Maytag Company Drive system for a laundry apparatus
US4175566A (en) 1975-08-07 1979-11-27 Millar Instruments, Inc. Catheter fluid-velocity flow probe
US4063561A (en) 1975-08-25 1977-12-20 The Signal Companies, Inc. Direction control device for endotracheal tube
US4181120A (en) 1976-04-23 1980-01-01 Tokyo Shibaura Electric Co., Ltd. Vessel for ultrasonic scanner
LU77252A1 (ru) 1976-05-06 1977-08-22
US4114601A (en) 1976-08-09 1978-09-19 Micro Tec Instrumentation, Inc. Medical and surgical implement detection system
US4072146A (en) 1976-09-08 1978-02-07 Howes Randolph M Venous catheter device
US4173228A (en) 1977-05-16 1979-11-06 Applied Medical Devices Catheter locating device
US4224949A (en) 1977-11-17 1980-09-30 Cornell Research Foundation, Inc. Method and electrical resistance probe for detection of estrus in bovine
DE10130427A1 (de) 2001-06-23 2003-03-27 Reinmar Peppmoeller Stabile, wasserquellbare und -saugende anionische Polymere mit Schwammstruktur sowie deren Herstellung und Verwendung
JPS54112585A (en) 1978-02-22 1979-09-03 Tokyo Shibaura Electric Co Ultrasonic wave probe for ultrasonic wave diagnosis device
US4244362A (en) 1978-11-29 1981-01-13 Anderson Charles C Endotracheal tube control device
US4327722A (en) 1979-08-20 1982-05-04 Groshong Leroy E Methods and apparatus for intravenous therapy and hyperalimentation
US4317078A (en) 1979-10-15 1982-02-23 Ohio State University Research Foundation Remote position and orientation detection employing magnetic flux linkage
US4380237A (en) 1979-12-03 1983-04-19 Massachusetts General Hospital Apparatus for making cardiac output conductivity measurements
US4365639A (en) 1980-02-07 1982-12-28 Applied Cardiac Electrophysiology Catheter, cardiac pacemaker and method of pacing
US4327723A (en) 1980-05-13 1982-05-04 Arrow International, Inc. Catheter shield
US4431214A (en) 1980-09-15 1984-02-14 Federal Paper Board Co., Inc. Data guide device
US4429693A (en) 1980-09-16 1984-02-07 Blake L W Surgical fluid evacuator
US4362166A (en) 1980-11-04 1982-12-07 Mallinckrodt, Inc. Disposable medical probe and connector
DE3109040A1 (de) 1981-03-10 1982-09-30 Siemens AG, 1000 Berlin und 8000 München Ultraschallapplikator
US4710708A (en) 1981-04-27 1987-12-01 Develco Method and apparatus employing received independent magnetic field components of a transmitted alternating magnetic field for determining location
US4431005A (en) 1981-05-07 1984-02-14 Mccormick Laboratories, Inc. Method of and apparatus for determining very accurately the position of a device inside biological tissue
US4445501A (en) 1981-05-07 1984-05-01 Mccormick Laboratories, Inc. Circuits for determining very accurately the position of a device inside biological tissue
US4459854A (en) 1981-07-24 1984-07-17 National Research Development Corporation Ultrasonic transducer coupling member
US4417886A (en) 1981-11-05 1983-11-29 Arrow International, Inc. Catheter introduction set
US4407294A (en) 1982-01-07 1983-10-04 Technicare Corporation Ultrasound tissue probe localization system
JPS5930213U (ja) 1982-08-17 1984-02-24 株式会社東芝 穿刺型超音波プロ−ブ用アダプタ
US4469106A (en) 1982-09-02 1984-09-04 Advanced Technology Laboratories, Inc. Needle guide for use with medical ultrasonic scanning apparatus
IL67660A (en) 1983-01-11 1987-07-31 Fidelity Medical Ltd Signal processing apparatus and high resolution electrocardiograph equipment including same
DK148405C (da) 1983-02-07 1986-04-21 Medical Innovation Co Forsats til ultralydsscannerhoved
US4582067A (en) 1983-02-14 1986-04-15 Washington Research Foundation Method for endoscopic blood flow detection by the use of ultrasonic energy
US4770185A (en) 1983-02-14 1988-09-13 The Board Of Regents Of The University Of Washington Method and apparatus for endoscopic blood flow detection by the use of ultrasonic energy
US4681117A (en) 1983-02-15 1987-07-21 Brodman Richard F Intracardiac catheter and a method for detecting myocardial ischemia
US4652820A (en) 1983-03-23 1987-03-24 North American Philips Corporation Combined position sensor and magnetic motor or bearing
JPS59147508U (ja) 1983-03-25 1984-10-02 株式会社東芝 超音波プロ−ブ用アダプタ
US4619247A (en) 1983-03-31 1986-10-28 Sumitomo Electric Industries, Ltd. Catheter
FR2545349B1 (fr) 1983-05-04 1986-09-26 Duret Francois Procede de saisie de la forme d'organes humains ou d'anomalies pathologiques et dispositif pour sa mise en oeuvre
US4608992A (en) 1983-08-18 1986-09-02 Salomon Hakim External magnetic detection of physiopathological and other parameters
US4593687A (en) 1983-10-31 1986-06-10 Gray Leo C Endotracheal catheter
US4577634A (en) 1983-11-22 1986-03-25 Gessman Lawrence J Method and apparatus for alleviating paroxysmal atrail tachycardia
US4595012A (en) 1984-01-13 1986-06-17 American Hospital Supply Corporation Lumen mounted electrodes for pacing and intra-cardiac ECG sensing
US4588394A (en) 1984-03-16 1986-05-13 Pudenz-Schulte Medical Research Corp. Infusion reservoir and pump system
US4622644A (en) 1984-05-10 1986-11-11 Position Orientation Systems, Ltd. Magnetic position and orientation measurement system
JPS60244161A (ja) 1984-05-18 1985-12-04 Fuji Photo Optical Co Ltd 内視鏡装置
US4572198A (en) 1984-06-18 1986-02-25 Varian Associates, Inc. Catheter for use with NMR imaging systems
US4587975A (en) 1984-07-02 1986-05-13 Cardiac Pacemakers, Inc. Dimension sensitive angioplasty catheter
US4697595A (en) 1984-07-24 1987-10-06 Telectronics N.V. Ultrasonically marked cardiac catheters
YU132884A (en) 1984-07-26 1987-12-31 Branko Breyer Electrode cateter with ultrasonic marking
GB8420116D0 (en) 1984-08-08 1984-09-12 Elchemtec Ltd Apparatus for monitoring redox reactions
US4798588A (en) 1984-12-03 1989-01-17 Rene Aillon Central venous pressure catheter and method for using
US4601706A (en) 1984-12-03 1986-07-22 Rene Aillon Central venous pressure catheter for preventing air embolism and method of making
US4733669A (en) 1985-05-24 1988-03-29 Cardiometrics, Inc. Blood flow measurement catheter
US4856529A (en) 1985-05-24 1989-08-15 Cardiometrics, Inc. Ultrasonic pulmonary artery catheter and method
US4660571A (en) 1985-07-18 1987-04-28 Cordis Corporation Percutaneous lead having radially adjustable electrode
US4681106A (en) 1985-08-12 1987-07-21 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4790809A (en) 1985-08-29 1988-12-13 Medical Engineering Corporation Ureteral stent
US4674518A (en) 1985-09-06 1987-06-23 Cardiac Pacemakers, Inc. Method and apparatus for measuring ventricular volume
US4665925A (en) 1985-09-13 1987-05-19 Pfizer Hospital Products Group, Inc. Doppler catheter
US4957111A (en) 1985-09-13 1990-09-18 Pfizer Hospital Products Group, Inc. Method of using a doppler catheter
US4889128A (en) 1985-09-13 1989-12-26 Pfizer Hospital Products Doppler catheter
US4644960A (en) * 1985-09-23 1987-02-24 Arrow International, Inc. Device for making electrical connection to an electrolyte, and system employing same
FR2593400A1 (fr) 1985-12-03 1987-07-31 Feingold Vladimir Dispositif d'administration sous-cutanee et procede pour supporter et guider une aiguille de seringue pendant et une fois qu'elle est inseree dans un tel dispositif
US4742356A (en) 1985-12-09 1988-05-03 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US4737794A (en) 1985-12-09 1988-04-12 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US5045071A (en) 1985-12-17 1991-09-03 Mbo Laboratories, Inc. Double wall catheter with internal printing and embedded marker
US5000185A (en) 1986-02-28 1991-03-19 Cardiovascular Imaging Systems, Inc. Method for intravascular two-dimensional ultrasonography and recanalization
US4809681A (en) 1986-03-28 1989-03-07 Aisin Seiki Kabushiki Kaisha Electrocardiographic measurement method for controlling an intra-aortic balloon pump
US4692148A (en) 1986-03-28 1987-09-08 Aisin Seiki Kabushiki Kaisha Intra-aortic balloon pump apparatus and method of using same
US5040548A (en) 1989-06-01 1991-08-20 Yock Paul G Angioplasty mehtod
FR2597351B1 (fr) 1986-04-16 1994-03-25 Celsa Composants Electriques Capsule distributrice de drogue implantable et procede et dispositif facilitant son utilisation.
US4821731A (en) 1986-04-25 1989-04-18 Intra-Sonix, Inc. Acoustic image system and method
US5078140A (en) 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US4676249A (en) 1986-05-19 1987-06-30 Cordis Corporation Multi-mode guidewire
US4798598A (en) 1986-05-23 1989-01-17 Sarcem S.A. Guide for a catheter
US4771788A (en) 1986-07-18 1988-09-20 Pfizer Hospital Products Group, Inc. Doppler tip wire guide
JPS6336172A (ja) 1986-07-29 1988-02-16 Toshiba Corp 超音波カプラ
US4867169A (en) 1986-07-29 1989-09-19 Kaoru Machida Attachment attached to ultrasound probe for clinical application
US4741356A (en) 1986-08-08 1988-05-03 Assured Flow Sales, Inc. Hydrant variable riser and restraint
US4796632A (en) 1986-08-11 1989-01-10 General Electric Company Standoff adapter for ultrasound probe
US4852580A (en) 1986-09-17 1989-08-01 Axiom Medical, Inc. Catheter for measuring bioimpedance
US4887606A (en) 1986-09-18 1989-12-19 Yock Paul G Apparatus for use in cannulation of blood vessels
DE3733439A1 (de) 1986-10-03 1988-04-14 Toshiba Kawasaki Kk Vorsatzstueck fuer diagnostische ultraschallsonde
US4945305A (en) 1986-10-09 1990-07-31 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4849692A (en) 1986-10-09 1989-07-18 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4850358A (en) 1986-11-14 1989-07-25 Millar Instruments, Inc. Method and assembly for introducing multiple devices into a biological vessel
US4966148A (en) 1986-11-14 1990-10-30 Millar Instruments, Inc. Assembly for positioning diagnostic devices in a biological vessel
US5046497A (en) 1986-11-14 1991-09-10 Millar Instruments, Inc. Structure for coupling a guidewire and a catheter
US5231995A (en) 1986-11-14 1993-08-03 Desai Jawahar M Method for catheter mapping and ablation
US4700997A (en) 1986-11-14 1987-10-20 Minnesota Mining And Manufacturing Company Electrical connector
US4836214A (en) 1986-12-01 1989-06-06 Bomed Medical Manufacturing, Ltd. Esophageal electrode array for electrical bioimpedance measurement
US5050607A (en) 1987-03-04 1991-09-24 Huntington Medical Research Institutes High resolution magnetic resonance imaging of body cavities
US4793361A (en) 1987-03-13 1988-12-27 Cardiac Pacemakers, Inc. Dual channel P-wave detection in surface electrocardiographs
JPH0197440A (ja) 1987-03-19 1989-04-14 Toshiba Corp 超音波プロ−ブ装置
US5174295A (en) 1987-04-10 1992-12-29 Cardiometrics, Inc. Apparatus, system and method for measuring spatial average velocity and/or volumetric flow of blood in a vessel and screw joint for use therewith
US4967753A (en) 1987-04-10 1990-11-06 Cardiometrics, Inc. Apparatus, system and method for measuring spatial average velocity and/or volumetric flow of blood in a vessel
US4943770A (en) 1987-04-21 1990-07-24 Mccormick Laboratories, Inc. Device for accurately detecting the position of a ferromagnetic material inside biological tissue
US5025799A (en) 1987-05-13 1991-06-25 Wilson Bruce C Steerable memory alloy guide wires
US4841977A (en) 1987-05-26 1989-06-27 Inter Therapy, Inc. Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly
US4787396A (en) 1987-06-18 1988-11-29 Fiberoptic Sensor Technologies, Inc. Fiberoptic pressure transducer
US4989608A (en) 1987-07-02 1991-02-05 Ratner Adam V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
US4840622A (en) 1987-10-06 1989-06-20 Menlo Care, Inc. Kink resistant catheter
US4809713A (en) 1987-10-28 1989-03-07 Joseph Grayzel Catheter with magnetic fixation
US4860757A (en) 1987-10-28 1989-08-29 Medical Parameters, Incorporated Guidewire advancement system
US5273042A (en) 1987-10-28 1993-12-28 Medical Parameters, Inc. Guidewire advancement method
US4911173A (en) 1987-11-13 1990-03-27 Diasonics, Inc. Biopsy attachment for ultrasound probe
GB8729637D0 (en) * 1987-12-19 1988-02-03 Smith Ind Plc Collection bags
US4901725A (en) 1988-01-29 1990-02-20 Telectronics N.V. Minute volume rate-responsive pacemaker
US5251127A (en) 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US4869263A (en) 1988-02-04 1989-09-26 Cardiometrics, Inc. Device and method for measuring volumetric blood flow in a vessel
CN2031655U (zh) 1988-02-08 1989-02-01 山东医科大学 多功能复合型心导管
US4813729A (en) 1988-02-10 1989-03-21 Speckhart Frank H Magnetic retrieval tool
US5212988A (en) 1988-02-29 1993-05-25 The Reagents Of The University Of California Plate-mode ultrasonic structure including a gel
US5522878A (en) 1988-03-25 1996-06-04 Lectec Corporation Solid multipurpose ultrasonic biomedical couplant gel in sheet form and method
US4869718A (en) 1988-04-04 1989-09-26 Brader Eric W Transcricothyroid catheterization device
US4840182A (en) 1988-04-04 1989-06-20 Rhode Island Hospital Conductance catheter
US5202985A (en) 1988-04-14 1993-04-13 Racal-Datacom, Inc. Apparatus and method for displaying data communication network configuration after searching the network
US4856317A (en) 1988-05-02 1989-08-15 Fiberoptic Sensor Technologies, Inc. Vacuum calibration system and method for fiberoptic pressure transducer
US4873987A (en) 1988-06-30 1989-10-17 Ljubomir Djordjevich Noninvasive continuous monitor of arterial blood pressure waveform
US4899756A (en) 1988-07-18 1990-02-13 Sonek Jiri D Articulated needle guide for ultrasound imaging and method of using same
US5239464A (en) 1988-08-04 1993-08-24 Blair Preston E Interactive video system providing repeated switching of multiple tracks of actions sequences
US5067489A (en) 1988-08-16 1991-11-26 Flexmedics Corporation Flexible guide with safety tip
US5265614A (en) 1988-08-30 1993-11-30 Fujitsu Limited Acoustic coupler
US4905698A (en) 1988-09-13 1990-03-06 Pharmacia Deltec Inc. Method and apparatus for catheter location determination
US5078148A (en) 1988-10-05 1992-01-07 Cardiometrics, Inc. Apparatus and method for continuously measuring volumetric blood flow using multiple transducers and catheter for use therewith
US4947852A (en) 1988-10-05 1990-08-14 Cardiometrics, Inc. Apparatus and method for continuously measuring volumetric blood flow using multiple transducer and catheter for use therewith
JPH0299040A (ja) 1988-10-06 1990-04-11 Toshiba Corp X線診断装置
US4961433A (en) 1988-11-02 1990-10-09 Cardiometrics, Inc. Guide wire assembly with electrical functions and male and female connectors for use therewith
US4995396A (en) 1988-12-08 1991-02-26 Olympus Optical Co., Ltd. Radioactive ray detecting endoscope
US4887615A (en) 1988-12-28 1989-12-19 Microtek Medical Inc. Sterile drape for ultrasound probe
US4998916A (en) 1989-01-09 1991-03-12 Hammerslag Julius G Steerable medical device
US4924870A (en) 1989-01-13 1990-05-15 Fiberoptic Sensor Technologies, Inc. Fiber optic sensors
US5099850A (en) 1989-01-17 1992-03-31 Olympus Optical Co., Ltd. Ultrasonic diagnostic apparatus
US4977886A (en) 1989-02-08 1990-12-18 Olympus Optical Co., Ltd. Position controlling apparatus
US4917669A (en) 1989-02-08 1990-04-17 Safetyject Catheter inserter
US4911174A (en) 1989-02-13 1990-03-27 Cardiac Pacemakers, Inc. Method for matching the sense length of an impedance measuring catheter to a ventricular chamber
US5004456A (en) 1989-03-10 1991-04-02 Arrow International Investment Corporation In-dwelling catheter
US4957110A (en) 1989-03-17 1990-09-18 C. R. Bard, Inc. Steerable guidewire having electrodes for measuring vessel cross-section and blood flow
US5016173A (en) 1989-04-13 1991-05-14 Vanguard Imaging Ltd. Apparatus and method for monitoring visually accessible surfaces of the body
US5240004A (en) 1989-04-28 1993-08-31 Thomas Jefferson University Intravascular, ultrasonic imaging catheters and methods for making same
AU642647B2 (en) 1989-05-24 1993-10-28 Micronix Pty Ltd Medical instrument location means
CN1049287A (zh) 1989-05-24 1991-02-20 住友电气工业株式会社 治疗导管
US5029585A (en) 1989-07-14 1991-07-09 Baxter International Inc. Comformable intralumen electrodes
US6344053B1 (en) 1993-12-22 2002-02-05 Medtronic Ave, Inc. Endovascular support device and method
EP0416920B1 (en) * 1989-09-07 1996-01-03 Canon Kabushiki Kaisha Information processing method and information processing device
US5570671A (en) 1989-09-18 1996-11-05 The Research Foundation Of State University Of New York Method for positioning esophageal catheter for determining pressures associated with the left atrium
US5220924A (en) 1989-09-28 1993-06-22 Frazin Leon J Doppler-guided retrograde catheterization using transducer equipped guide wire
US5190045A (en) 1989-09-28 1993-03-02 Frazin Leon J Method and device for doppler-guided and imaged retrograde catheterization
EP0419729A1 (de) 1989-09-29 1991-04-03 Siemens Aktiengesellschaft Ortung eines Katheters mittels nichtionisierender Felder
DE69021158T2 (de) 1989-09-29 1995-12-07 Terumo Corp Ultraschallkoppler und Herstellungsverfahren.
US5084022A (en) 1989-10-04 1992-01-28 Lake Region Manufacturing Company, Inc. Graduated guidewire
US5125410A (en) 1989-10-13 1992-06-30 Olympus Optical Co., Ltd. Integrated ultrasonic diagnosis device utilizing intra-blood-vessel probe
US5005592A (en) 1989-10-27 1991-04-09 Becton Dickinson And Company Method and apparatus for tracking catheters
US5105829A (en) 1989-11-16 1992-04-21 Fabian Carl E Surgical implement detector utilizing capacitive coupling
US5057095A (en) 1989-11-16 1991-10-15 Fabian Carl E Surgical implement detector utilizing a resonant marker
JP2976379B2 (ja) 1989-11-30 1999-11-10 株式会社島津製作所 超音波診断装置
US5272513A (en) 1991-12-06 1993-12-21 Optical Air Data Systems, L.P. Laser doppler velocimeter
US5058595A (en) 1990-01-31 1991-10-22 St. Louis University Judkins-type angiographic catheter with Doppler crystal, and method of use
US5114401A (en) 1990-02-23 1992-05-19 New England Deaconess Hospital Corporation Method for central venous catheterization
US5214615A (en) 1990-02-26 1993-05-25 Will Bauer Three-dimensional displacement of a body with computer interface
US5078678A (en) 1990-03-02 1992-01-07 Jefferson Katims Method and apparatus for locating a catheter adjacent to a pacemaker node of the heart
US5078714A (en) 1990-03-02 1992-01-07 Jefferson Katims Method and apparatus for placement of a probe in the body and the medical procedure for guiding and locating a catheter or probe in the body
US5109862A (en) 1990-03-19 1992-05-05 Del Mar Avionics Method and apparatus for spectral analysis of electrocardiographic signals
CH681351A5 (ru) 1990-04-12 1993-03-15 Hans Baer Dr
JP2750201B2 (ja) 1990-04-13 1998-05-13 オリンパス光学工業株式会社 内視鏡の挿入状態検出装置
US5360443A (en) 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
US5092341A (en) 1990-06-18 1992-03-03 Del Mar Avionics Surface ecg frequency analysis system and method based upon spectral turbulence estimation
US5100387A (en) 1990-07-02 1992-03-31 Ng Raymond C Disposable universal needle guide apparatus (for amniocentesis)
US5058583A (en) 1990-07-13 1991-10-22 Geddes Leslie A Multiple monopolar system and method of measuring stroke volume of the heart
US5158086A (en) 1990-07-20 1992-10-27 W. L. Gore & Associates, Inc. Invasive probe system
US5160342A (en) 1990-08-16 1992-11-03 Evi Corp. Endovascular filter and method for use thereof
GB9018660D0 (en) 1990-08-24 1990-10-10 Imperial College Probe system
US5076278A (en) 1990-10-15 1991-12-31 Catheter Technology Co. Annular ultrasonic transducers employing curved surfaces useful in catheter localization
US5211636A (en) 1990-10-31 1993-05-18 Lake Region Manufacturing Co., Inc. Steerable infusion guide wire
DE9015857U1 (de) 1990-11-21 1991-02-07 B. Braun Melsungen Ag, 3508 Melsungen Führungssonde
US5348020A (en) 1990-12-14 1994-09-20 Hutson William H Method and system for near real-time analysis and display of electrocardiographic signals
US5531664A (en) 1990-12-26 1996-07-02 Olympus Optical Co., Ltd. Bending actuator having a coil sheath with a fixed distal end and a free proximal end
US5134370A (en) 1991-01-08 1992-07-28 Northwest Marine Technology Inc. Apparatus for the detection of magnetic tags
JP2953079B2 (ja) 1991-02-14 1999-09-27 富士写真光機株式会社 電子内視鏡装置
US5350352A (en) 1991-02-21 1994-09-27 Siemens Aktiengesellschaft Acoustic pressure pulse generator
US5235987A (en) 1991-02-22 1993-08-17 Dymax Corporation Needle guide
US5161536A (en) 1991-03-22 1992-11-10 Catheter Technology Ultrasonic position indicating apparatus and methods
US5257636A (en) 1991-04-02 1993-11-02 Steven J. White Apparatus for determining position of an endothracheal tube
DE69210395T2 (de) 1991-04-05 1997-01-09 Medtronic Inc Erfassungssystem mit subkutanen mehrfachelektroden
US5433729A (en) 1991-04-12 1995-07-18 Incontrol, Inc. Atrial defibrillator, lead systems, and method
US5144955A (en) 1991-04-15 1992-09-08 Cordis Corporation Doppler velocity measuring medical unit
US6564087B1 (en) 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US5330496A (en) 1991-05-06 1994-07-19 Alferness Clifton A Vascular catheter assembly for tissue penetration and for cardiac stimulation and methods thereof
US5233994A (en) 1991-05-13 1993-08-10 Advanced Technology Laboratories, Inc. Detection of tissue abnormality through blood perfusion differentiation
WO1992021285A1 (en) 1991-05-24 1992-12-10 Ep Technologies, Inc. Combination monophasic action potential/ablation catheter and high-performance filter system
US6821287B1 (en) 1991-05-24 2004-11-23 Advanced Cardiovascular Systems, Inc. Multi-mode vascular catheter system
US5261409A (en) 1991-05-27 1993-11-16 Sulzer Brothers Limited Puncturing device for blood vessels
US5395366A (en) 1991-05-30 1995-03-07 The State University Of New York Sampling capsule and process
US5279607A (en) 1991-05-30 1994-01-18 The State University Of New York Telemetry capsule and process
JP2567099Y2 (ja) 1991-06-07 1998-03-30 山形日本電気株式会社 ガス供給装置
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5184601A (en) 1991-08-05 1993-02-09 Putman John M Endoscope stabilizer
US5174299A (en) 1991-08-12 1992-12-29 Cardiac Pacemakers, Inc. Thermocouple-based blood flow sensor
US5275053A (en) 1991-08-21 1994-01-04 Fiberoptic Sensor Technologies, Inc. Fiber optic pressure sensor systems
US5211165A (en) 1991-09-03 1993-05-18 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency field gradients
US5265610A (en) 1991-09-03 1993-11-30 General Electric Company Multi-planar X-ray fluoroscopy system using radiofrequency fields
US5255680A (en) 1991-09-03 1993-10-26 General Electric Company Automatic gantry positioning for imaging systems
US5251635A (en) 1991-09-03 1993-10-12 General Electric Company Stereoscopic X-ray fluoroscopy system using radiofrequency fields
JP2735747B2 (ja) 1991-09-03 1998-04-02 ゼネラル・エレクトリック・カンパニイ 追跡及びイメージング・システム
US5425367A (en) 1991-09-04 1995-06-20 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5645065A (en) 1991-09-04 1997-07-08 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5191891A (en) 1991-09-10 1993-03-09 Ralin, Inc. Portable ECG monitor/recorder
US5325860A (en) 1991-11-08 1994-07-05 Mayo Foundation For Medical Education And Research Ultrasonic and interventional catheter and method
US5713363A (en) 1991-11-08 1998-02-03 Mayo Foundation For Medical Education And Research Ultrasound catheter and method for imaging and hemodynamic monitoring
US5205830A (en) 1991-11-12 1993-04-27 Arrow International Investment Corporation Catheter assembly
US5445150A (en) 1991-11-18 1995-08-29 General Electric Company Invasive system employing a radiofrequency tracking system
US5437277A (en) 1991-11-18 1995-08-01 General Electric Company Inductively coupled RF tracking system for use in invasive imaging of a living body
US5289373A (en) 1991-11-29 1994-02-22 General Electric Company Method and apparatus for real-time tracking of catheter guide wires in fluoroscopic images during interventional radiological procedures
US5274551A (en) 1991-11-29 1993-12-28 General Electric Company Method and apparatus for real-time navigation assist in interventional radiological procedures
US5366443A (en) 1992-01-07 1994-11-22 Thapliyal And Eggers Partners Method and apparatus for advancing catheters through occluded body lumens
US5280786A (en) 1992-01-21 1994-01-25 Fiberoptic Sensor Technologies, Inc. Fiberoptic blood pressure and oxygenation sensor
US6187744B1 (en) 1992-03-11 2001-02-13 Michael W. Rooney Methods and compositions for regulating the intravascular flow and oxygenating activity of hemoglobin in a human or animal subject
DE4207901C3 (de) 1992-03-12 1999-10-07 Aesculap Ag & Co Kg Verfahren und Vorrichtung zur Darstellung eines Arbeitsbereiches in einer dreidimensionalen Struktur
US5246007A (en) 1992-03-13 1993-09-21 Cardiometrics, Inc. Vascular catheter for measuring flow characteristics and method
US5318025A (en) 1992-04-01 1994-06-07 General Electric Company Tracking system to monitor the position and orientation of a device using multiplexed magnetic resonance detection
US5217026A (en) 1992-04-06 1993-06-08 Kingston Technologies, Inc. Guidewires with lubricious surface and method of their production
US5540681A (en) 1992-04-10 1996-07-30 Medtronic Cardiorhythm Method and system for radiofrequency ablation of tissue
US5422478A (en) 1992-04-17 1995-06-06 Fiberoptic Sensor Technologies, Inc. Fiberoptic pressure sensor having drift correction means for insitu calibration
US5247171A (en) 1992-04-17 1993-09-21 Fiberoptic Sensor Technologies, Inc. Drift correction for fiberoptic pressure sensors
US5292342A (en) 1992-05-01 1994-03-08 Medtronic, Inc. Low cost implantable medical device
US5423877A (en) 1992-05-04 1995-06-13 David C. Mackey Method and device for acute pain management by simultaneous spinal cord electrical stimulation and drug infusion
AU666554B2 (en) 1992-05-11 1996-02-15 Harold Jacob improved biliary catheter
US5536248A (en) 1992-05-11 1996-07-16 Arrow Precision Products, Inc. Method and apparatus for electrosurgically obtaining access to the biliary tree and placing a stent therein
US5246426A (en) 1992-06-17 1993-09-21 Arrow International Investment Corp. Catheterization system
US5271404A (en) 1992-06-25 1993-12-21 Cardiometrics, Inc. Method and apparatus for processing signal data to form an envelope on line
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
US5449002A (en) 1992-07-01 1995-09-12 Goldman; Robert J. Capacitive biofeedback sensor with resilient polyurethane dielectric for rehabilitation
US5307072A (en) 1992-07-09 1994-04-26 Polhemus Incorporated Non-concentricity compensation in position and orientation measurement systems
WO1994002077A2 (en) 1992-07-15 1994-02-03 Angelase, Inc. Ablation catheter system
US5476090A (en) 1992-07-15 1995-12-19 Fuji Photo Optical Co., Ltd. Hard enclosure and sheath for same
US5325873A (en) 1992-07-23 1994-07-05 Abbott Laboratories Tube placement verifier system
JP3204542B2 (ja) 1992-07-24 2001-09-04 株式会社東芝 磁場源測定装置
US5257979A (en) 1992-07-27 1993-11-02 Ravindar Jagpal Instrument for catheterization
US5269759A (en) 1992-07-28 1993-12-14 Cordis Corporation Magnetic guidewire coupling for vascular dilatation apparatus
EP0652745A1 (en) 1992-07-31 1995-05-17 Daratech Pty. Ltd. Controlled release implants
US5588442A (en) 1992-08-12 1996-12-31 Scimed Life Systems, Inc. Shaft movement control apparatus and method
US5776080A (en) 1992-08-12 1998-07-07 Scimed Life Systems, Inc. Shaft movement control apparatus
JP3432825B2 (ja) 1992-08-14 2003-08-04 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー 位置決定システム
US6757557B1 (en) 1992-08-14 2004-06-29 British Telecommunications Position location system
US7189208B1 (en) 1992-09-23 2007-03-13 Endocardial Solutions, Inc. Method for measuring heart electrophysiology
US7930012B2 (en) 1992-09-23 2011-04-19 St. Jude Medical, Atrial Fibrillation Division, Inc. Chamber location method
US5333614A (en) 1992-09-28 1994-08-02 Feiring Andrew J Measurement of absolute vascular flow
US5375596A (en) 1992-09-29 1994-12-27 Hdc Corporation Method and apparatus for determining the position of catheters, tubes, placement guidewires and implantable ports within biological tissue
US5666473A (en) 1992-10-08 1997-09-09 Science & Technology Corporation & Unm Tactile computer aided sculpting device
US5287331A (en) 1992-10-26 1994-02-15 Queen's University Air coupled ultrasonic transducer
US5456718A (en) 1992-11-17 1995-10-10 Szymaitis; Dennis W. Apparatus for detecting surgical objects within the human body
US5517990A (en) 1992-11-30 1996-05-21 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5337678A (en) 1993-01-07 1994-08-16 Ergonomic Equipment Pty. Ltd. Adjustable desk frame
NL9300028A (nl) 1993-01-07 1994-08-01 Academisch Ziekenhuis Utrecht Werkwijze voor het met behulp van een catheter meten van de elektrische impedantie in bloedvaten en catheterisatiesysteem voor het uitvoeren van die werkwijze.
US5505205A (en) 1993-01-08 1996-04-09 Hewlett-Packard Company Interface element for medical ultrasound transducer
US5385146A (en) 1993-01-08 1995-01-31 Goldreyer; Bruce N. Orthogonal sensing for use in clinical electrophysiology
US5311871A (en) 1993-01-12 1994-05-17 Yock Paul G Syringe with ultrasound emitting transducer for flow-directed cannulation of arteries and veins
ATE177923T1 (de) 1993-01-18 1999-04-15 Eric Dr Dardel Vorrichtung zum orten und punktieren von blutgefässen
US5651047A (en) 1993-01-25 1997-07-22 Cardiac Mariners, Incorporated Maneuverable and locateable catheters
US5706809A (en) 1993-01-29 1998-01-13 Cardima, Inc. Method and system for using multiple intravascular sensing devices to detect electrical activity
US5423334A (en) 1993-02-01 1995-06-13 C. R. Bard, Inc. Implantable medical device characterization system
US5919170A (en) 1993-02-01 1999-07-06 Mentor Corporation Urinary catheter
US5453575A (en) 1993-02-01 1995-09-26 Endosonics Corporation Apparatus and method for detecting blood flow in intravascular ultrasonic imaging
GB9302387D0 (en) 1993-02-06 1993-03-24 Osprey Metals Ltd Production of powder
US5329927A (en) 1993-02-25 1994-07-19 Echo Cath, Inc. Apparatus and method for locating an interventional medical device with a ultrasound color imaging system
JP3860227B2 (ja) 1993-03-10 2006-12-20 株式会社東芝 Mriガイド下で用いる超音波治療装置
US5433198A (en) 1993-03-11 1995-07-18 Desai; Jawahar M. Apparatus and method for cardiac ablation
US6522905B2 (en) 1993-03-11 2003-02-18 Jawahar M. Desai Apparatus and method for cardiac ablation
US5394877A (en) 1993-04-01 1995-03-07 Axon Medical, Inc. Ultrasound medical diagnostic device having a coupling medium providing self-adherence to a patient
US5368048A (en) 1993-04-19 1994-11-29 Stoy; George P. Method of making radio-opaque tipped, sleeved guidewire and product
US5411485A (en) 1993-04-19 1995-05-02 Hyprotek Catheter access system and method
ZA942812B (en) 1993-04-22 1995-11-22 Pixsys Inc System for locating the relative positions of objects in three dimensional space
DE9422172U1 (de) 1993-04-26 1998-08-06 St. Louis University, St. Louis, Mo. Angabe der Position einer chirurgischen Sonde
US5357961A (en) 1993-05-12 1994-10-25 Hdc Corporation Catheter guidewire and flushing apparatus and method of insertion
WO1994027501A1 (en) 1993-05-24 1994-12-08 Boston Scientific Corporation Medical acoustic imaging catheter and guidewire
US5465724A (en) 1993-05-28 1995-11-14 Acuson Corporation Compact rotationally steerable ultrasound transducer
DE4409797C2 (de) 1993-06-02 1997-07-03 Dornier Medizintechnik Steckverbindung
DE4319033C1 (de) * 1993-06-08 1994-06-30 Braun Melsungen Ag Seldingerbesteck
US5526812A (en) 1993-06-21 1996-06-18 General Electric Company Display system for enhancing visualization of body structures during medical procedures
US5715817A (en) 1993-06-29 1998-02-10 C.R. Bard, Inc. Bidirectional steering catheter
US5840031A (en) 1993-07-01 1998-11-24 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials and ablating tissue
US5438873A (en) 1993-07-01 1995-08-08 Fiberoptic Sensor Technologies, Inc. Fiberoptic sensor using tapered and bundled fibers
WO1996005768A1 (en) 1994-08-19 1996-02-29 Biosense, Inc. Medical diagnosis, treatment and imaging systems
US6285898B1 (en) 1993-07-20 2001-09-04 Biosense, Inc. Cardiac electromechanics
US5738096A (en) 1993-07-20 1998-04-14 Biosense, Inc. Cardiac electromechanics
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5427114A (en) 1993-08-19 1995-06-27 Fiberoptic Sensor Technologies, Inc. Dual pressure sensing catheter
US5398691A (en) 1993-09-03 1995-03-21 University Of Washington Method and apparatus for three-dimensional translumenal ultrasonic imaging
US5425382A (en) 1993-09-14 1995-06-20 University Of Washington Apparatus and method for locating a medical tube in the body of a patient
US5902238A (en) 1993-09-14 1999-05-11 University Of Washington Medical tube and apparatus for locating the same in the body of a patient
US5558091A (en) 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
US5555618A (en) 1993-10-12 1996-09-17 Arrow International Investment Corp. Method of making electrode-carrying catheter
US5417208A (en) 1993-10-12 1995-05-23 Arrow International Investment Corp. Electrode-carrying catheter and method of making same
US5840024A (en) 1993-10-18 1998-11-24 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US6059718A (en) 1993-10-18 2000-05-09 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US5695479A (en) 1993-11-01 1997-12-09 Jagpal; Ravindar Instrument, system, kit and method for catheterization procedures
US5456256A (en) 1993-11-04 1995-10-10 Ultra-Scan Corporation High resolution ultrasonic imaging apparatus and method
US5464629A (en) 1993-11-16 1995-11-07 Georgetown University Method of forming hydrogel particles having a controlled size using liposomes
JPH07136162A (ja) 1993-11-17 1995-05-30 Fujitsu Ltd 超音波カプラ
US5429617A (en) 1993-12-13 1995-07-04 The Spectranetics Corporation Radiopaque tip marker for alignment of a catheter within a body
EP0683926A4 (en) 1993-12-14 1996-05-15 Plc Medical Systems Inc LADDER AND NEEDLE ELECTRODE UNIT OF AN ECG MONITORING SYSTEM.
EP0735842B1 (en) 1993-12-22 1999-03-31 Sulzer Osypka GmbH Ultrasonic marked cardiac ablation catheter
HRP940025A2 (en) 1994-01-14 1996-06-30 Branko Breyer A blood flow velocity measurement system perpendicular to a single probing beam
US6099524A (en) 1994-01-28 2000-08-08 Cardiac Pacemakers, Inc. Electrophysiological mapping and ablation catheter and method
US5413107A (en) 1994-02-16 1995-05-09 Tetrad Corporation Ultrasonic probe having articulated structure and rotatable transducer head
EP0673621B1 (en) 1994-03-18 1998-03-04 Schneider (Europe) Ag A magnetic resonance imaging system for tracking a medical appliance
US5425370A (en) 1994-03-23 1995-06-20 Echocath, Inc. Method and apparatus for locating vibrating devices
US5517989A (en) 1994-04-01 1996-05-21 Cardiometrics, Inc. Guidewire assembly
US5474065A (en) 1994-04-04 1995-12-12 Graphic Controls Corporation Non-invasive fetal probe
US5833622A (en) 1994-04-04 1998-11-10 Graphic Controls Corporation Non-invasive fetal probe having improved mechanical and electrical properties
US5540230A (en) 1994-04-15 1996-07-30 Echocath, Inc. Diffracting doppler-transducer
US5546949A (en) 1994-04-26 1996-08-20 Frazin; Leon Method and apparatus of logicalizing and determining orientation of an insertion end of a probe within a biotic structure
NO942222D0 (no) 1994-06-14 1994-06-14 Vingmed Sound As Fremgangsmåte ved bestemmelse av hastighet/tid-spektrum ved blodströmning
US5394876A (en) 1994-06-30 1995-03-07 Spacelabs Medical, Inc. Method and apparatus for aiming a doppler flow sensing device
US5600330A (en) 1994-07-12 1997-02-04 Ascension Technology Corporation Device for measuring position and orientation using non-dipole magnet IC fields
US5623582A (en) 1994-07-14 1997-04-22 Immersion Human Interface Corporation Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects
US5654864A (en) 1994-07-25 1997-08-05 University Of Virginia Patent Foundation Control method for magnetic stereotaxis system
US5669383A (en) 1994-07-28 1997-09-23 Sims Deltec, Inc. Polyimide sheath for a catheter detector and method
US5492538A (en) 1994-08-25 1996-02-20 Johlin, Jr.; Frederick C. Method for transferring the exit site of a catheter from the mouth to the nose and instrumentation useful therefor
US5701898A (en) 1994-09-02 1997-12-30 The United States Of America As Represented By The Department Of Health And Human Services Method and system for Doppler ultrasound measurement of blood flow
AU3371595A (en) 1994-09-06 1996-03-27 Sims Deltec, Inc. Method and apparatus for location of a catheter tip
US5829444A (en) 1994-09-15 1998-11-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
ATE252349T1 (de) 1994-09-15 2003-11-15 Visualization Technology Inc System zur positionserfassung mittels einer an einem patientenkopf angebrachten referenzeinheit zur anwendung im medizinischen gebiet
US5740808A (en) 1996-10-28 1998-04-21 Ep Technologies, Inc Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions
US5941251A (en) 1994-10-11 1999-08-24 Ep Technologies, Inc. Systems for locating and guiding operative elements within interior body regions
US5623931A (en) 1994-10-11 1997-04-29 Siemens Medical Systems, Inc. Needle guide for use with ultrasound imaging systems
US5578873A (en) 1994-10-12 1996-11-26 Micron Technology, Inc. Integrated circuitry having a thin film polysilicon layer in ohmic contact with a conductive layer
US5453576A (en) 1994-10-24 1995-09-26 Transonic Systems Inc. Cardiovascular measurements by sound velocity dilution
US6678552B2 (en) 1994-10-24 2004-01-13 Transscan Medical Ltd. Tissue characterization based on impedance images and on impedance measurements
US5919141A (en) 1994-11-15 1999-07-06 Life Sensing Instrument Company, Inc. Vital sign remote monitoring device
US5624430A (en) 1994-11-28 1997-04-29 Eton; Darwin Magnetic device to assist transcorporeal guidewire placement
US5622184A (en) 1994-11-29 1997-04-22 Applied Medical Resources Corporation Guidewire and method of manufacture
US5630419A (en) 1994-12-20 1997-05-20 Tetrad Corporation Sealing connector for multiconductor cables
US5762064A (en) 1995-01-23 1998-06-09 Northrop Grumman Corporation Medical magnetic positioning system and method for determining the position of a magnetic probe
US6690963B2 (en) 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
US5682890A (en) 1995-01-26 1997-11-04 Picker International, Inc. Magnetic resonance stereotactic surgery with exoskeleton tissue stabilization
JP3539645B2 (ja) 1995-02-16 2004-07-07 株式会社日立製作所 遠隔手術支援装置
US5626554A (en) 1995-02-21 1997-05-06 Exogen, Inc. Gel containment structure
US6019724A (en) 1995-02-22 2000-02-01 Gronningsaeter; Aage Method for ultrasound guidance during clinical procedures
US6374670B1 (en) 1995-03-13 2002-04-23 University Of Washington Non-invasive gut motility monitor
US5868673A (en) 1995-03-28 1999-02-09 Sonometrics Corporation System for carrying out surgery, biopsy and ablation of a tumor or other physical anomaly
US5795298A (en) 1995-03-28 1998-08-18 Sonometrics Corporation System for sharing electrocardiogram electrodes and transducers
US6246898B1 (en) 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5817022A (en) 1995-03-28 1998-10-06 Sonometrics Corporation System for displaying a 2-D ultrasound image within a 3-D viewing environment
US5779638A (en) 1995-03-28 1998-07-14 Sonometrics Corporation Ultrasound-based 3-D tracking system using a digital signal processor
US5797849A (en) 1995-03-28 1998-08-25 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5515853A (en) 1995-03-28 1996-05-14 Sonometrics Corporation Three-dimensional digital ultrasound tracking system
GB9506909D0 (en) 1995-04-04 1995-05-24 Scient Generics Ltd Spatial magnetic interrogation system
US5730129A (en) 1995-04-03 1998-03-24 General Electric Company Imaging of interventional devices in a non-stationary subject
US5666958A (en) 1995-04-06 1997-09-16 Rothenberg; Peter M. Interface module for electrically connecting medical equipment
US6017496A (en) 1995-06-07 2000-01-25 Irori Matrices with memories and uses thereof
US6319668B1 (en) 1995-04-25 2001-11-20 Discovery Partners International Method for tagging and screening molecules
US6329139B1 (en) 1995-04-25 2001-12-11 Discovery Partners International Automated sorting system for matrices with memory
US5494038A (en) 1995-04-25 1996-02-27 Abbott Laboratories Apparatus for ultrasound testing
US6100026A (en) 1995-04-25 2000-08-08 Irori Matrices with memories and uses thereof
US6340588B1 (en) 1995-04-25 2002-01-22 Discovery Partners International, Inc. Matrices with memories
US6284459B1 (en) 1995-04-25 2001-09-04 Discovery Partners International Solid support matrices with memories and combinatorial libraries therefrom
US5961923A (en) 1995-04-25 1999-10-05 Irori Matrices with memories and uses thereof
US5713858A (en) 1995-04-28 1998-02-03 Medtronic, Inc. Permanently implantable guiding catheter
US5742291A (en) 1995-05-09 1998-04-21 Synthonics Incorporated Method and apparatus for creation of three-dimensional wire frames
AU5665996A (en) 1995-05-16 1996-11-29 Afmc Lo/Jaz System and method for enhanced visualization of subcutaneous structures
US5699801A (en) 1995-06-01 1997-12-23 The Johns Hopkins University Method of internal magnetic resonance imaging and spectroscopic analysis and associated apparatus
US5691898A (en) 1995-09-27 1997-11-25 Immersion Human Interface Corp. Safe and low cost computer peripherals with force feedback for consumer applications
US5752513A (en) 1995-06-07 1998-05-19 Biosense, Inc. Method and apparatus for determining position of object
US6032070A (en) 1995-06-07 2000-02-29 University Of Arkansas Method and apparatus for detecting electro-magnetic reflection from biological tissue
US5729129A (en) 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
US5718241A (en) 1995-06-07 1998-02-17 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias with no discrete target
WO1996041654A1 (en) 1995-06-12 1996-12-27 Cordis Webster, Inc. Catheter with an electromagnetic guidance sensor
US5592939A (en) 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
US5702433A (en) 1995-06-27 1997-12-30 Arrow International Investment Corp. Kink-resistant steerable catheter assembly for microwave ablation
CA2226938A1 (en) 1995-07-16 1997-02-06 Yoav Paltieli Free-hand aiming of a needle guide
AU6677596A (en) 1995-07-21 1997-02-18 Respironics, Inc. Method and apparatus for diode laser pulse oximetry using multifiber optical cables and disposable fiber optic probes
US6023638A (en) 1995-07-28 2000-02-08 Scimed Life Systems, Inc. System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US5842986A (en) 1995-08-16 1998-12-01 Proton Sciences Corp. Ferromagnetic foreign body screening method and apparatus
US5700889A (en) 1995-08-17 1997-12-23 E. I. Du Pont De Nemours And Company Process for polymerization of copolymers of tetrafluoroethylene and hexafluoropropylene
US5824005A (en) * 1995-08-22 1998-10-20 Board Of Regents, The University Of Texas System Maneuverable electrophysiology catheter for percutaneous or intraoperative ablation of cardiac arrhythmias
US5638819A (en) 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
DE19532676C1 (de) 1995-09-05 1997-05-07 Inst Physikalische Hochtech Ev Anordnung zur Bestimmung der Position eines Markers in einem Hohlraum innerhalb des Organismus eines Lebewesens
US5669388A (en) 1995-09-06 1997-09-23 Echocath, Inc. Apparatus and method for automatic placement of transducer
US6071300A (en) 1995-09-15 2000-06-06 Sub-Q Inc. Apparatus and method for percutaneous sealing of blood vessel punctures
US6615071B1 (en) 1995-09-20 2003-09-02 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
US6763261B2 (en) 1995-09-20 2004-07-13 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
JPH0994298A (ja) 1995-09-28 1997-04-08 Terumo Corp ガイドワイヤー
AU4362496A (en) 1995-09-29 1997-04-17 Swee Chuan Tjin Fiber optic catheter for accurate flow measurements
USD383968S (en) 1995-09-29 1997-09-23 Siemens Medical Systems, Inc. Ultrasound transducer probe holder
USD375450S (en) 1995-09-29 1996-11-12 Siemens Medical Systems Inc. Ultrasound transducer probe holder with groove
US6375615B1 (en) 1995-10-13 2002-04-23 Transvascular, Inc. Tissue penetrating catheters having integral imaging transducers and their methods of use
US5733323A (en) 1995-11-13 1998-03-31 Cordis Corporation Electrically conductive unipolar vascular sheath
US5716389A (en) 1995-11-13 1998-02-10 Walinsky; Paul Cardiac ablation catheter arrangement with movable guidewire
US5697377A (en) 1995-11-22 1997-12-16 Medtronic, Inc. Catheter mapping system and method
US5944023A (en) 1995-12-07 1999-08-31 Sims Deltec, Inc. Systems and methods for determining the location of an implanted device including a magnet
US5598846A (en) 1995-12-21 1997-02-04 Hewlett-Packard Company Rotatable ultrasound transducer finger probe
NL1001979C1 (nl) 1995-12-22 1997-06-24 Cardiovasculair Research Insti Inrichting voor het bepalen van een karakteristiek punt in de hartcy- clus.
US6569103B2 (en) 1995-12-22 2003-05-27 Arrow International Investment Corp. Device for determining a characteristic point in the cardiac cycle
US7452358B2 (en) 1996-01-05 2008-11-18 Thermage, Inc. RF electrode assembly for handpiece
US5617866A (en) 1996-01-05 1997-04-08 Acuson Corporation Modular transducer system
US5727552A (en) 1996-01-11 1998-03-17 Medtronic, Inc. Catheter and electrical lead location system
DE29601310U1 (de) 1996-01-26 1997-06-05 B. Braun Melsungen Ag, 34212 Melsungen Katheterbesteck mit EKG-Ableitungsmöglichkeit
US5711299A (en) 1996-01-26 1998-01-27 Manwaring; Kim H. Surgical guidance method and system for approaching a target within a body
US20020045812A1 (en) 1996-02-01 2002-04-18 Shlomo Ben-Haim Implantable sensor for determining position coordinates
US5795632A (en) 1996-02-06 1998-08-18 Parker Laboratories Protective cover set for a medical probe
WO1997029678A2 (en) 1996-02-15 1997-08-21 Biosense Inc. Catheter calibration and usage monitoring system
EP0891152B1 (en) 1996-02-15 2003-11-26 Biosense, Inc. Independently positionable transducers for location system
EP0883374B1 (en) 1996-02-15 2005-06-22 Biosense Webster, Inc. Movable transmit or receive coils for location system
JP4166277B2 (ja) 1996-02-15 2008-10-15 バイオセンス・ウェブスター・インコーポレイテッド 体内プローブを用いた医療方法および装置
IL125754A (en) 1996-02-15 2002-12-01 Biosense Inc Illuminated catheter
US5769843A (en) 1996-02-20 1998-06-23 Cormedica Percutaneous endomyocardial revascularization
US5991693A (en) 1996-02-23 1999-11-23 Mindcraft Technologies, Inc. Wireless I/O apparatus and method of computer-assisted instruction
ES2242213T3 (es) 1996-02-27 2005-11-01 Biosense Webster, Inc. Sistema de localizacion con secuencias de activacion de campos.
US5824031A (en) 1996-02-28 1998-10-20 Cardio Source Apparatus and method for deflecting a tip of a lead or catheter
DE69736549T2 (de) 1996-02-29 2007-08-23 Acuson Corp., Mountain View System, verfahren und wandler zum ausrichten mehrerer ultraschallbilder
US5731996A (en) 1996-03-05 1998-03-24 Hughes Electronics Dipole moment detector and localizer
US5665103A (en) 1996-03-07 1997-09-09 Scimed Life Systems, Inc. Stent locating device
US5727553A (en) 1996-03-25 1998-03-17 Saad; Saad A. Catheter with integral electromagnetic location identification device
US6050718A (en) 1996-03-28 2000-04-18 Immersion Corporation Method and apparatus for providing high bandwidth force feedback with improved actuator feel
US5727550A (en) 1996-04-09 1998-03-17 Lectec Corporation Dual purpose ultrasonic biomedical couplant pad and electrode
US7678098B2 (en) 1996-04-10 2010-03-16 Endoscopic Technologies, Inc. Venous cannula and cardiopulmonary bypass system
US5800410A (en) 1996-04-19 1998-09-01 Becton Dickinson And Company Catheter with stress distribution fingers
US5928145A (en) 1996-04-25 1999-07-27 The Johns Hopkins University Method of magnetic resonance imaging and spectroscopic analysis and associated apparatus employing a loopless antenna
US7236816B2 (en) 1996-04-25 2007-06-26 Johns Hopkins University Biopsy and sampling needle antennas for magnetic resonance imaging-guided biopsies
JP4636634B2 (ja) 1996-04-26 2011-02-23 ボストン サイエンティフィック サイムド,インコーポレイテッド 脈管内ステント
US5810733A (en) 1996-05-07 1998-09-22 Acuson Corporation Encapsulated ultrasound transducer probe assembly
WO1997044089A1 (en) 1996-05-17 1997-11-27 Biosense Inc. Self-aligning catheter
CA2256365A1 (en) 1996-05-22 1997-11-27 Diversified Pharmaceuticals, Inc. Compositions, methods and devices for the transdermal delivery of drugs
DE19622078A1 (de) 1996-05-31 1997-12-04 Siemens Ag Vorrichtung zum Lokalisieren von Aktionsströmen im Herzen
US5767960A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Optical 6D measurement system with three fan-shaped beams rotating around one axis
US5767669A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Magnetic field position and orientation measurement system with dynamic eddy current rejection
US5742394A (en) 1996-06-14 1998-04-21 Ascension Technology Corporation Optical 6D measurement system with two fan shaped beams rotating around one axis
KR20000016633A (ko) 1996-06-17 2000-03-25 로버트 골든. 환자 몸 내부의 삽입 및 검출용 의료용 튜브
US5775322A (en) 1996-06-27 1998-07-07 Lucent Medical Systems, Inc. Tracheal tube and methods related thereto
US6962566B2 (en) 2001-04-19 2005-11-08 Sonosite, Inc. Medical diagnostic ultrasound instrument with ECG module, authorization mechanism and methods of use
US6416475B1 (en) 1996-06-28 2002-07-09 Sonosite, Inc. Ultrasonic signal processor for a hand held ultrasonic diagnostic instrument
US7819807B2 (en) 1996-06-28 2010-10-26 Sonosite, Inc. Balance body ultrasound system
US6135961A (en) 1996-06-28 2000-10-24 Sonosite, Inc. Ultrasonic signal processor for a hand held ultrasonic diagnostic instrument
US6569101B2 (en) 2001-04-19 2003-05-27 Sonosite, Inc. Medical diagnostic ultrasound instrument with ECG module, authorization mechanism and methods of use
US5893363A (en) 1996-06-28 1999-04-13 Sonosight, Inc. Ultrasonic array transducer transceiver for a hand held ultrasonic diagnostic instrument
US5722412A (en) 1996-06-28 1998-03-03 Advanced Technology Laboratories, Inc. Hand held ultrasonic diagnostic instrument
US6575908B2 (en) 1996-06-28 2003-06-10 Sonosite, Inc. Balance body ultrasound system
SE9602574D0 (sv) 1996-06-28 1996-06-28 Siemens Elema Ab Method and arrangement for locating a measurement and/or treatment catheter in a vessel or organ of a patient
US5817024A (en) 1996-06-28 1998-10-06 Sonosight, Inc. Hand held ultrasonic diagnostic instrument with digital beamformer
US6496715B1 (en) 1996-07-11 2002-12-17 Medtronic, Inc. System and method for non-invasive determination of optimal orientation of an implantable sensing device
JPH1043310A (ja) 1996-08-02 1998-02-17 Terumo Corp カテーテル装置
CA2212275C (en) 1996-08-05 2007-07-03 Cordis Corporation Guidewire having a distal tip that can change its shape within a vessel
US5713362A (en) 1996-08-19 1998-02-03 Echocath, Inc. Higher-order quadrature driven diffraction grating doppler transducers
US5827192A (en) 1996-08-21 1998-10-27 Cleveland Clinic Foundation Method of determining the conductivity of blood
US5842998A (en) 1996-08-21 1998-12-01 Cleveland Clinic Foundation Apparatus for determining the conductivity of blood
US5844140A (en) 1996-08-27 1998-12-01 Seale; Joseph B. Ultrasound beam alignment servo
US5744953A (en) 1996-08-29 1998-04-28 Ascension Technology Corporation Magnetic motion tracker with transmitter placed on tracked object
US5997473A (en) 1996-09-06 1999-12-07 Olympus Optical Co., Ltd. Method of locating a coil which consists of determining the space occupied by a source coil generating a magnetic field
US5831260A (en) 1996-09-10 1998-11-03 Ascension Technology Corporation Hybrid motion tracker
US5795297A (en) 1996-09-12 1998-08-18 Atlantis Diagnostics International, L.L.C. Ultrasonic diagnostic imaging system with personal computer architecture
SE9603314D0 (sv) 1996-09-12 1996-09-12 Siemens Elema Ab Förfarande och anordning för att bestämma läget hos en kateter inuti kroppen hos en patient
US5971933A (en) 1996-09-17 1999-10-26 Cleveland Clinic Foundation Method and apparatus to correct for electric field non-uniformity in conductance catheter volumetry
US5830145A (en) 1996-09-20 1998-11-03 Cardiovascular Imaging Systems, Inc. Enhanced accuracy of three-dimensional intraluminal ultrasound (ILUS) image reconstruction
US6293955B1 (en) 1996-09-20 2001-09-25 Converge Medical, Inc. Percutaneous bypass graft and securing system
US5758650A (en) 1996-09-30 1998-06-02 Siemens Medical Systems, Inc. Universal needle guide for ultrasonic transducers
US6136274A (en) 1996-10-07 2000-10-24 Irori Matrices with memories in automated drug discovery and units therefor
US6165977A (en) 1996-10-18 2000-12-26 Board Of Trustees Of The Leland Stanford Junior University Isozyme-specific activators of protein kinase C methods and compositions
US5676159A (en) 1996-11-05 1997-10-14 Janin Group Ultrasound cover
US6406442B1 (en) 1996-11-07 2002-06-18 Prolifix Medical, Inc. Guidewire for precision catheter positioning
US7302288B1 (en) 1996-11-25 2007-11-27 Z-Kat, Inc. Tool position indicator
US5967991A (en) 1996-12-03 1999-10-19 Echocath, Inc. Drive apparatus for an interventional medical device used in an ultrasonic imaging system
US5810008A (en) 1996-12-03 1998-09-22 Isg Technologies Inc. Apparatus and method for visualizing ultrasonic images
WO1998025513A2 (en) 1996-12-09 1998-06-18 Swee Chuan Tjin Apparatus for continuous cardiac output monitoring
US6275258B1 (en) 1996-12-17 2001-08-14 Nicholas Chim Voice responsive image tracking system
US5782767A (en) 1996-12-31 1998-07-21 Diagnostic Ultrasound Corporation Coupling pad for use with medical ultrasound devices
USD391838S (en) 1997-01-02 1998-03-10 Siemens Medical Systems, Inc. Fitted ultrasound transducer probe holder
EP1491139B1 (en) 1997-01-03 2007-08-29 Biosense Webster, Inc. Bend-responsive catheter
US5951598A (en) 1997-01-14 1999-09-14 Heartstream, Inc. Electrode system
WO1998033136A1 (en) 1997-01-27 1998-07-30 Immersion Human Interface Corporation Method and apparatus for providing high bandwidth, realistic force feedback including an improved actuator
IL120228A0 (en) 1997-02-16 1997-06-10 Technion Res & Dev Foundation Blood vessel cross-sectional detector and compliance measurement device and method
US6019725A (en) 1997-03-07 2000-02-01 Sonometrics Corporation Three-dimensional tracking and imaging system
US6266563B1 (en) 1997-03-14 2001-07-24 Uab Research Foundation Method and apparatus for treating cardiac arrhythmia
JP4430744B2 (ja) 1997-03-14 2010-03-10 ユニヴァーシティ・オヴ・アラバマ・アト・バーミンガム・リサーチ・ファンデイション 心臓の電気的除細動を行う、そのような治療を必要とする患者のためのインプラント可能なシステム
US5836882A (en) 1997-03-17 1998-11-17 Frazin; Leon J. Method and apparatus of localizing an insertion end of a probe within a biotic structure
US5833605A (en) 1997-03-28 1998-11-10 Shah; Ajit Apparatus for vascular mapping and methods of use
US5984908A (en) 1997-04-10 1999-11-16 Chase Medical Inc Venous return catheter having integral support member
JPH10290839A (ja) 1997-04-21 1998-11-04 Terumo Corp ガイドワイヤ
US5876328A (en) 1997-04-23 1999-03-02 Endolap, Inc. Surgical camera drape assembly and method
US5944022A (en) 1997-04-28 1999-08-31 American Cardiac Ablation Co. Inc. Catheter positioning system
US6129668A (en) 1997-05-08 2000-10-10 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
US6263230B1 (en) 1997-05-08 2001-07-17 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
US5879297A (en) 1997-05-08 1999-03-09 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
US6635027B1 (en) 1997-05-19 2003-10-21 Micro Therepeutics, Inc. Method and apparatus for intramural delivery of a substance
WO1998052466A1 (en) 1997-05-21 1998-11-26 Lucent Medical Systems, Inc. Non-invasive sensing of a physical parameter
US5769881A (en) 1997-05-22 1998-06-23 Sulzer Intermedics Inc. Endocardial lead with multiple branches
EP0880108A1 (fr) 1997-05-23 1998-11-25 Koninklijke Philips Electronics N.V. Procédé de traitement d'une image incluant une étape de chainage, et appareil d'imagerie médicale incluant des moyens pour mettre en oeuvre ce procédé
US5921598A (en) * 1997-05-24 1999-07-13 Bredow; Edward F. Golf ball retriever
US6514249B1 (en) 1997-07-08 2003-02-04 Atrionix, Inc. Positioning system and method for orienting an ablation element within a pulmonary vein ostium
SE9702678D0 (sv) 1997-07-11 1997-07-11 Siemens Elema Ab Anordning för att kartlägga elektrisk aktivitet i hjärtat
CA2240757C (en) 1997-07-14 2001-08-28 Matsushita Electric Industrial Co., Ltd. Blood vessel puncturing device
US5843153A (en) 1997-07-15 1998-12-01 Sulzer Intermedics Inc. Steerable endocardial lead using magnetostrictive material and a magnetic field
US5800497A (en) 1997-07-17 1998-09-01 Medtronic, Inc. Medical electrical lead with temporarily stiff portion
US6190370B1 (en) 1997-07-25 2001-02-20 Arrow International, Inc. Devices, systems and methods for determining proper placement of epidural catheters
US6115624A (en) 1997-07-30 2000-09-05 Genesis Technologies, Inc. Multiparameter fetal monitoring device
US6490474B1 (en) 1997-08-01 2002-12-03 Cardiac Pathways Corporation System and method for electrode localization using ultrasound
GB9717574D0 (en) 1997-08-19 1997-10-22 Flying Null Ltd Catheter location
CA2300817A1 (en) 1997-08-19 1999-02-25 John D. Mendlein Ultrasonic transmission films and devices, particularly for hygienic transducer surfaces
US5913830A (en) 1997-08-20 1999-06-22 Respironics, Inc. Respiratory inductive plethysmography sensor
US6016038A (en) 1997-08-26 2000-01-18 Color Kinetics, Inc. Multicolored LED lighting method and apparatus
US6720745B2 (en) 1997-08-26 2004-04-13 Color Kinetics, Incorporated Data delivery track
US7038398B1 (en) 1997-08-26 2006-05-02 Color Kinetics, Incorporated Kinetic illumination system and methods
US7352339B2 (en) 1997-08-26 2008-04-01 Philips Solid-State Lighting Solutions Diffuse illumination systems and methods
US20020113555A1 (en) 1997-08-26 2002-08-22 Color Kinetics, Inc. Lighting entertainment system
US6459919B1 (en) 1997-08-26 2002-10-01 Color Kinetics, Incorporated Precision illumination methods and systems
US6211626B1 (en) 1997-08-26 2001-04-03 Color Kinetics, Incorporated Illumination components
US6528954B1 (en) 1997-08-26 2003-03-04 Color Kinetics Incorporated Smart light bulb
US6292901B1 (en) 1997-08-26 2001-09-18 Color Kinetics Incorporated Power/data protocol
US6015414A (en) 1997-08-29 2000-01-18 Stereotaxis, Inc. Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter
US6128174A (en) 1997-08-29 2000-10-03 Stereotaxis, Inc. Method and apparatus for rapidly changing a magnetic field produced by electromagnets
US5941904A (en) 1997-09-12 1999-08-24 Sulzer Intermedics Inc. Electromagnetic acceleration transducer for implantable medical device
US5836990A (en) 1997-09-19 1998-11-17 Medtronic, Inc. Method and apparatus for determining electrode/tissue contact
US6248072B1 (en) 1997-09-19 2001-06-19 John M. Murkin Hand controlled scanning device
US6027451A (en) 1997-09-26 2000-02-22 Ep Technologies, Inc. Method and apparatus for fixing the anatomical orientation of a displayed ultrasound generated image
US6248074B1 (en) 1997-09-30 2001-06-19 Olympus Optical Co., Ltd. Ultrasonic diagnosis system in which periphery of magnetic sensor included in distal part of ultrasonic endoscope is made of non-conductive material
DE69823214T2 (de) 1997-10-01 2005-03-10 Boston Scientific Ltd., St. Michael Kit zur Längenbestimmung von Kathetern vor ihrer Einführung
US5953683A (en) 1997-10-09 1999-09-14 Ascension Technology Corporation Sourceless orientation sensor
US6138681A (en) 1997-10-13 2000-10-31 Light Sciences Limited Partnership Alignment of external medical device relative to implanted medical device
US5941889A (en) 1997-10-14 1999-08-24 Civco Medical Instruments Inc. Multiple angle disposable needle guide system
US6259941B1 (en) 1997-10-20 2001-07-10 Irvine Biomedical, Inc. Intravascular ultrasound locating system
JPH11128237A (ja) 1997-10-27 1999-05-18 Toshiba Medical Seizo Kk 穿刺アダプタ
US5935063A (en) 1997-10-29 1999-08-10 Irvine Biomedical, Inc. Electrode catheter system and methods thereof
US6099481A (en) 1997-11-03 2000-08-08 Ntc Technology, Inc. Respiratory profile parameter determination method and apparatus
AU1520699A (en) 1997-11-07 1999-05-31 Johns Hopkins University, The Methods for treatment of disorders of cardiac contractility
US6157853A (en) 1997-11-12 2000-12-05 Stereotaxis, Inc. Method and apparatus using shaped field of repositionable magnet to guide implant
US6212419B1 (en) 1997-11-12 2001-04-03 Walter M. Blume Method and apparatus using shaped field of repositionable magnet to guide implant
US6311082B1 (en) 1997-11-12 2001-10-30 Stereotaxis, Inc. Digital magnetic system for magnetic surgery
AU6325798A (en) 1997-11-12 1999-05-31 Stereotaxis, Inc. Intracranial bolt and method of placing and using an intracranial bolt to position a medical device
US7066924B1 (en) 1997-11-12 2006-06-27 Stereotaxis, Inc. Method of and apparatus for navigating medical devices in body lumens by a guide wire with a magnetic tip
US6014580A (en) 1997-11-12 2000-01-11 Stereotaxis, Inc. Device and method for specifying magnetic field for surgical applications
US6224571B1 (en) 1997-11-14 2001-05-01 Venetec International, Inc. Medical line securement device
GB2331365B (en) 1997-11-15 2002-03-13 Roke Manor Research Catheter tracking system
GB2331807B (en) 1997-11-15 2002-05-29 Roke Manor Research Catheter tracking system
US6233994B1 (en) 1997-11-24 2001-05-22 Morgan Construction Company Apparatus for and method of processing billets in a rolling mill
US20030163142A1 (en) 1997-11-27 2003-08-28 Yoav Paltieli System and method for guiding the movements of a device to a target particularly for medical applications
IL122336A0 (en) 1997-11-27 1998-04-05 Ultra Guide Ltd System and method for guiding the movements of a device to a target particularly for medical applications
US5931788A (en) 1997-12-05 1999-08-03 Keen; Richard R. Method and apparatus for imaging internal organs and vascular structures through the gastrointestinal wall
US7132804B2 (en) 1997-12-17 2006-11-07 Color Kinetics Incorporated Data delivery track
US6073043A (en) 1997-12-22 2000-06-06 Cormedica Corporation Measuring position and orientation using magnetic fields
US5931863A (en) 1997-12-22 1999-08-03 Procath Corporation Electrophysiology catheter
US5916209A (en) 1997-12-24 1999-06-29 Mick; Matthew J. Coronary catheters for use in a transradial catheterization
DE19800416C2 (de) 1998-01-08 2002-09-19 Storz Karl Gmbh & Co Kg Vorrichtung zur Behandlung von Körpergewebe, insbesondere von oberflächennahem Weichgewebe, mittels Ultraschall
US6052610A (en) 1998-01-09 2000-04-18 International Business Machines Corporation Magnetic catheter tracker and method therefor
US5865748A (en) 1998-01-16 1999-02-02 Guidant Corporation Guided directional coronary atherectomy distal linear encoder
WO1999035977A1 (en) 1998-01-16 1999-07-22 Lumend, Inc. Catheter apparatus for treating arterial occlusions
DE69835422T2 (de) 1998-01-22 2006-12-21 Biosense Webster, Inc., Diamond Bar Messung im körperinneren
JP4373605B2 (ja) 1998-01-26 2009-11-25 ボストン サイエンティフィック リミテッド 遠方誘導結合器および埋め込み伝送路を備えたカテーテルアセンブリ
US6505062B1 (en) 1998-02-09 2003-01-07 Stereotaxis, Inc. Method for locating magnetic implant by source field
CA2286107C (en) 1998-02-10 2007-01-09 Biosense, Inc. Improved catheter calibration
US5997481A (en) 1998-02-17 1999-12-07 Ultra Sound Probe Covers, Llc Probe cover with deformable membrane gel reservoir
US6176829B1 (en) 1998-02-26 2001-01-23 Echocath, Inc. Multi-beam diffraction grating imager apparatus and method
US6471700B1 (en) 1998-04-08 2002-10-29 Senorx, Inc. Apparatus and method for accessing biopsy site
US6148228A (en) 1998-03-05 2000-11-14 Fang; Dan Oun System and method for detecting and locating heart disease
US6006137A (en) 1998-03-06 1999-12-21 Medtronic, Inc. Method for single elecrode bi-atrial pacing
US6165144A (en) 1998-03-17 2000-12-26 Exogen, Inc. Apparatus and method for mounting an ultrasound transducer
US5910113A (en) 1998-03-24 1999-06-08 Pruter; Rick L. Sheath for ultrasound probe
SE9801006D0 (sv) 1998-03-25 1998-03-25 Siemens Elema Ab Method and arrangement for determining the location of a catheter within an animal body
AU3453599A (en) 1998-03-26 1999-10-18 Boston Scientific Corporation Interactive systems and methods for controlling the use of diagnostic or therapeutic instruments in interior body regions
GB2335744A (en) 1998-03-27 1999-09-29 Intravascular Res Ltd Medical ultrasonic imaging
AU3491499A (en) 1998-04-13 1999-11-01 Prolifix Medical, Inc. Guidewire for precision catheter positioning
US6173199B1 (en) 1998-05-05 2001-01-09 Syncro Medical Innovations, Inc. Method and apparatus for intubation of a patient
US5957857A (en) 1998-05-07 1999-09-28 Cardiac Pacemakers, Inc. Apparatus and method for automatic sensing threshold determination in cardiac pacemakers
US6266555B1 (en) 1998-05-07 2001-07-24 Medtronic, Inc. Single complex electrogram display having a sensing threshold for an implantable medical device
US6306105B1 (en) 1998-05-14 2001-10-23 Scimed Life Systems, Inc. High performance coil wire
US6107699A (en) 1998-05-22 2000-08-22 Scimed Life Systems, Inc. Power supply for use in electrophysiological apparatus employing high-voltage pulses to render tissue temporarily unresponsive
US6231518B1 (en) 1998-05-26 2001-05-15 Comedicus Incorporated Intrapericardial electrophysiological procedures
US6064905A (en) 1998-06-18 2000-05-16 Cordis Webster, Inc. Multi-element tip electrode mapping catheter
US5910120A (en) 1998-06-23 1999-06-08 Incontrol, Inc. Method and system for detecting dislodgment of an implanted right atrial endocardial lead
US6039694A (en) 1998-06-25 2000-03-21 Sonotech, Inc. Coupling sheath for ultrasound transducers
GB9814400D0 (en) 1998-07-02 1998-09-02 Nokia Telecommunications Oy Amplifier circuitry
US6149595A (en) 1998-07-02 2000-11-21 Seitz; Walter S. Noninvasive apparatus and method for the determination of cardiac valve function
US6113504A (en) 1998-07-10 2000-09-05 Oblon, Spivak, Mcclelland, Maier & Neustadt, P.C. Golf ball locator
US6438411B1 (en) 1998-07-23 2002-08-20 Cardio Technologies, Inc. Digital ECG detection system
AU4644799A (en) 1998-08-02 2000-03-14 Super Dimension Ltd. Intrabody navigation system for medical applications
US6950689B1 (en) 1998-08-03 2005-09-27 Boston Scientific Scimed, Inc. Dynamically alterable three-dimensional graphical model of a body region
US6315709B1 (en) 1998-08-07 2001-11-13 Stereotaxis, Inc. Magnetic vascular defect treatment system
EP1115327A4 (en) 1998-08-07 2007-06-20 Stereotaxis Inc METHOD AND DEVICE FOR MAGNETICALLY CONTROLLING CATHETERS IN LIGHTS AND BODY CAVITIES
US6132378A (en) 1998-08-10 2000-10-17 Marino; Sharon Cover for ultrasound probe
US6332874B1 (en) 1998-08-28 2001-12-25 C.R. Bard, Inc. Coupling and stabilization system for proximal end of catheter
US6385472B1 (en) 1999-09-10 2002-05-07 Stereotaxis, Inc. Magnetically navigable telescoping catheter and method of navigating telescoping catheter
US6361499B1 (en) 1998-09-16 2002-03-26 Civco Medical Instruments Inc. Multiple angle needle guide
US6379307B1 (en) 1998-09-16 2002-04-30 Roy Filly Adjustable needle guide apparatus and method
US6261231B1 (en) 1998-09-22 2001-07-17 Dupont Pharmaceuticals Company Hands-free ultrasound probe holder
DE29817053U1 (de) 1998-09-23 2000-02-17 B. Braun Melsungen Ag, 34212 Melsungen Anschlußvorrichtung für die intraatriale EKG-Ableitung
IL126333A0 (en) 1998-09-24 1999-05-09 Super Dimension Ltd System and method of recording and displaying in context of an image a location of at least one point-of-interest in body during an intra-body medical procedure
AU5882599A (en) 1998-09-24 2000-04-10 Super Dimension Ltd. System and method for determining the location of a catheter during an intra-body medical procedure
US6167765B1 (en) 1998-09-25 2001-01-02 The Regents Of The University Of Michigan System and method for determining the flow rate of blood in a vessel using doppler frequency signals
US6200305B1 (en) 1998-09-30 2001-03-13 Medtronic Ave, Inc. Catheter having a variable length shaft segment and method of use
US6120445A (en) 1998-10-02 2000-09-19 Scimed Life Systems, Inc. Method and apparatus for adaptive cross-sectional area computation of IVUS objects using their statistical signatures
AU6279299A (en) 1998-10-02 2000-04-26 Stereotaxis, Inc. Magnetically navigable and/or controllable device for removing material from body lumens and cavities
US6428551B1 (en) 1999-03-30 2002-08-06 Stereotaxis, Inc. Magnetically navigable and/or controllable device for removing material from body lumens and cavities
US6203499B1 (en) 1998-10-05 2001-03-20 Atl Ultrasound Inc. Multiple angle needle guide
US6375639B1 (en) 1998-10-09 2002-04-23 Renee F. Duplessie Intravenous stabilizing device
FR2799633B1 (fr) 1999-10-14 2002-03-22 Sometec Procede et dispositif d'amelioration de la precision de mesure d'une vitesse d'un fluide
US6373240B1 (en) 1998-10-15 2002-04-16 Biosense, Inc. Metal immune system for tracking spatial coordinates of an object in the presence of a perturbed energy field
US6132379A (en) 1998-11-04 2000-10-17 Patacsil; Estelito G. Method and apparatus for ultrasound guided intravenous cannulation
US6545678B1 (en) 1998-11-05 2003-04-08 Duke University Methods, systems, and computer program products for generating tissue surfaces from volumetric data thereof using boundary traces
US6277077B1 (en) 1998-11-16 2001-08-21 Cardiac Pathways Corporation Catheter including ultrasound transducer with emissions attenuation
DE19854905C2 (de) 1998-11-27 2002-08-14 Siemens Ag Verfahren zur Darstellung der Spitze eines im Körper eines Patienten befindlichen medizinischen Instrumentes
US6522906B1 (en) 1998-12-08 2003-02-18 Intuitive Surgical, Inc. Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
US6538634B1 (en) 1998-12-18 2003-03-25 Kent Ridge Digital Labs Apparatus for the simulation of image-guided surgery
EP1161691A2 (en) 1998-12-23 2001-12-12 Peter D. Jakab Magnetic resonance scanner with electromagnetic position and orientation tracking device
JP4612194B2 (ja) 1998-12-23 2011-01-12 イメージ・ガイディッド・テクノロジーズ・インコーポレイテッド 複数センサーによって追跡されるハイブリッド3dプローブ
WO2000039753A1 (en) 1998-12-29 2000-07-06 Koninklijke Philips Electronics N.V. Image processing method and x-ray apparatus having image processing means for extracting a thread-like structure in a noisy digital image
US6139502A (en) 1998-12-30 2000-10-31 G.E. Vingmed Ultrasound A/S Ultrasonic transducer probe and handle housing and stand-off pad
WO2000040155A1 (en) 1999-01-01 2000-07-13 Dymax Corporation Slotted needle guide
JP4417459B2 (ja) 1999-01-11 2010-02-17 株式会社東芝 X線診断装置
US6241673B1 (en) 1999-01-26 2001-06-05 Acuson Corporation Diagnostic medical ultrasound system with wireless communication device
US6986744B1 (en) 1999-02-02 2006-01-17 Transonic Systems, Inc. Method and apparatus for determining blood flow during a vascular corrective procedure
US6236883B1 (en) 1999-02-03 2001-05-22 The Trustees Of Columbia University In The City Of New York Methods and systems for localizing reentrant circuits from electrogram features
US6330467B1 (en) 1999-02-04 2001-12-11 Stereotaxis, Inc. Efficient magnet system for magnetically-assisted surgery
US6544251B1 (en) 1999-02-10 2003-04-08 Michael K. Crawford Peripherally inserted catheter
US6193743B1 (en) 1999-02-18 2001-02-27 Intermedics Inc. Apparatus for manufacturing an endocardial defibrillation lead with multi-lumen lead body and method
US6719724B1 (en) 1999-02-19 2004-04-13 Alsius Corporation Central venous line catheter having multiple heat exchange elements and multiple infusion lumens
CA2360513C (en) 1999-02-25 2004-11-16 Minimed Inc. Test plug and cable for a glucose monitor
US6173715B1 (en) 1999-03-01 2001-01-16 Lucent Medical Systems, Inc. Magnetic anatomical marker and method of use
US6471656B1 (en) 1999-06-25 2002-10-29 Florence Medical Ltd Method and system for pressure based measurements of CFR and additional clinical hemodynamic parameters
US6494832B1 (en) 1999-03-09 2002-12-17 Conductance Technologies, Inc. Multifrequency conductance catheter-based system and method to determine LV function in a patient
US6112115A (en) 1999-03-09 2000-08-29 Feldman; Marc D. Method and apparatus for determining cardiac performance in a patient
US7174201B2 (en) 1999-03-11 2007-02-06 Biosense, Inc. Position sensing system with integral location pad and position display
WO2000053078A2 (en) 1999-03-12 2000-09-14 Echocath, Inc. Angle-independent continuous wave doppler device
US6375606B1 (en) 1999-03-17 2002-04-23 Stereotaxis, Inc. Methods of and apparatus for treating vascular defects
US6148823A (en) 1999-03-17 2000-11-21 Stereotaxis, Inc. Method of and system for controlling magnetic elements in the body using a gapped toroid magnet
US6296604B1 (en) 1999-03-17 2001-10-02 Stereotaxis, Inc. Methods of and compositions for treating vascular defects
US6075442A (en) 1999-03-19 2000-06-13 Lucent Technoilogies Inc. Low power child locator system
US6470207B1 (en) 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
FR2791249B1 (fr) 1999-03-25 2001-06-15 Edap Technomed Milieu de couplage pour ultrasons de puissance
US6546787B1 (en) 1999-03-25 2003-04-15 Regents Of The University Of Minnesota Means and method for modeling and treating specific tissue structures
US6911026B1 (en) 1999-07-12 2005-06-28 Stereotaxis, Inc. Magnetically guided atherectomy
US6466815B1 (en) 1999-03-30 2002-10-15 Olympus Optical Co., Ltd. Navigation apparatus and surgical operation image acquisition/display apparatus using the same
US6398736B1 (en) 1999-03-31 2002-06-04 Mayo Foundation For Medical Education And Research Parametric imaging ultrasound catheter
US6593754B1 (en) 1999-04-01 2003-07-15 Actuant Corporation Compact subsurface object locator
USD424693S (en) 1999-04-08 2000-05-09 Pruter Rick L Needle guide for attachment to an ultrasound transducer probe
US7452331B1 (en) 1999-04-08 2008-11-18 Rick L Pruter Vascular adjustable multi-gauge tilt-out method and apparatus for guiding needles
US6612990B1 (en) 1999-04-08 2003-09-02 Rick L. Pruter Method and apparatus for guiding needles
US7226467B2 (en) 1999-04-09 2007-06-05 Evalve, Inc. Fixation device delivery catheter, systems and methods of use
US6902528B1 (en) 1999-04-14 2005-06-07 Stereotaxis, Inc. Method and apparatus for magnetically controlling endoscopes in body lumens and cavities
AU3985400A (en) 1999-04-15 2000-11-02 Ultra-Guide Ltd. Apparatus and method for detecting the bending of medical invasive tools in medical interventions
US6031765A (en) 1999-04-22 2000-02-29 Aplus Flash Technology, Inc. Reversed split-gate cell array
US6139496A (en) 1999-04-30 2000-10-31 Agilent Technologies, Inc. Ultrasonic imaging system having isonification and display functions integrated in an easy-to-manipulate probe assembly
US6364839B1 (en) 1999-05-04 2002-04-02 Sonosite, Inc. Ultrasound diagnostic instrument having software in detachable scanhead
US6292678B1 (en) 1999-05-13 2001-09-18 Stereotaxis, Inc. Method of magnetically navigating medical devices with magnetic fields and gradients, and medical devices adapted therefor
WO2000069490A1 (en) 1999-05-18 2000-11-23 Sonometrics Corporation System for incorporating sonomicrometer functions into medical instruments and implantable biomedical devices
US6233476B1 (en) 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US6417839B1 (en) 1999-05-20 2002-07-09 Ascension Technology Corporation System for position and orientation determination of a point in space using scanning laser beams
DE19925853A1 (de) 1999-06-02 2000-12-07 Biotronik Mess & Therapieg Kardioversionsanordnung
NL1012223C2 (nl) 1999-06-03 2000-12-06 Martil Instr B V Hartgangmaker alsmede gangmakereenheid en elektrische draad daarvoor.
DK1185200T3 (da) 1999-06-05 2008-04-07 Wilson Cook Medical Inc Kendetegn til en endoskopisk, medicinsk anordning
US6288704B1 (en) 1999-06-08 2001-09-11 Vega, Vista, Inc. Motion detection and tracking system to control navigation and display of object viewers
US6478793B1 (en) 1999-06-11 2002-11-12 Sherwood Services Ag Ablation treatment of bone metastases
US6306097B1 (en) 1999-06-17 2001-10-23 Acuson Corporation Ultrasound imaging catheter guiding assembly with catheter working port
US6423002B1 (en) 1999-06-24 2002-07-23 Acuson Corporation Intra-operative diagnostic ultrasound multiple-array transducer probe and optional surgical tool
US7426409B2 (en) 1999-06-25 2008-09-16 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
JP2001061861A (ja) 1999-06-28 2001-03-13 Siemens Ag 画像撮影手段を備えたシステムおよび医用ワークステーション
US6471655B1 (en) 1999-06-29 2002-10-29 Vitalwave Corporation Method and apparatus for the noninvasive determination of arterial blood pressure
US6270493B1 (en) 1999-07-19 2001-08-07 Cryocath Technologies, Inc. Cryoablation structure
US6246231B1 (en) 1999-07-29 2001-06-12 Ascension Technology Corporation Magnetic field permeable barrier for magnetic position measurement system
US6142987A (en) 1999-08-03 2000-11-07 Scimed Life Systems, Inc. Guided filter with support wire and methods of use
US7033603B2 (en) 1999-08-06 2006-04-25 Board Of Regents The University Of Texas Drug releasing biodegradable fiber for delivery of therapeutics
US6427079B1 (en) 1999-08-09 2002-07-30 Cormedica Corporation Position and orientation measuring with magnetic fields
DE19938558A1 (de) 1999-08-17 2001-02-22 Axel Muntermann Katheter mit verbesserten elektrischen Eigenschaften sowie Behandlungsverfahren zur Verbesserung von elektrischen Eigenschaften von Kathetern
US20020173721A1 (en) 1999-08-20 2002-11-21 Novasonics, Inc. User interface for handheld imaging devices
US6360123B1 (en) 1999-08-24 2002-03-19 Impulse Dynamics N.V. Apparatus and method for determining a mechanical property of an organ or body cavity by impedance determination
AU3885801A (en) 1999-09-20 2001-04-24 Stereotaxis, Inc. Magnetically guided myocardial treatment system
US6385476B1 (en) 1999-09-21 2002-05-07 Biosense, Inc. Method and apparatus for intracardially surveying a condition of a chamber of a heart
US6368285B1 (en) 1999-09-21 2002-04-09 Biosense, Inc. Method and apparatus for mapping a chamber of a heart
US6535625B1 (en) 1999-09-24 2003-03-18 Magnetus Llc Magneto-acoustic imaging
US6315727B1 (en) 1999-09-29 2001-11-13 Cornel Research Foundation, Inc. Method and apparatus for ultrasound corneal scanning
US7019610B2 (en) 2002-01-23 2006-03-28 Stereotaxis, Inc. Magnetic navigation system
US6975197B2 (en) 2002-01-23 2005-12-13 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
US6702804B1 (en) 1999-10-04 2004-03-09 Stereotaxis, Inc. Method for safely and efficiently navigating magnetic devices in the body
US6672308B1 (en) 1999-10-08 2004-01-06 Jnc Medical, Llc Endotracheal intubation control assembly
US6102044A (en) 1999-10-08 2000-08-15 Medical Concepts Development, Inc. Electrode carrying surgical drape and method
US6463121B1 (en) 1999-10-13 2002-10-08 General Electric Company Interactive x-ray position and exposure control using image data as reference information
US6493573B1 (en) 1999-10-28 2002-12-10 Winchester Development Associates Method and system for navigating a catheter probe in the presence of field-influencing objects
US6701179B1 (en) 1999-10-28 2004-03-02 Michael A. Martinelli Coil structures and methods for generating magnetic fields
US6381485B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
US7366562B2 (en) 2003-10-17 2008-04-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6379302B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies Inc. Navigation information overlay onto ultrasound imagery
US8239001B2 (en) 2003-10-17 2012-08-07 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6474341B1 (en) 1999-10-28 2002-11-05 Surgical Navigation Technologies, Inc. Surgical communication and power system
US6172499B1 (en) 1999-10-29 2001-01-09 Ascension Technology Corporation Eddy current error-reduced AC magnetic position measurement system
US6325540B1 (en) 1999-11-29 2001-12-04 General Electric Company Method and apparatus for remotely configuring and servicing a field replaceable unit in a medical diagnostic system
US6574518B1 (en) 1999-11-29 2003-06-03 General Electric Company Method and apparatus for communicating operational data for a system unit in a medical diagnostic system
GB9928695D0 (en) 1999-12-03 2000-02-02 Sinvent As Tool navigator
JP4488568B2 (ja) 1999-12-14 2010-06-23 東芝メディカル製造株式会社 穿刺アダプタ
US6366804B1 (en) 1999-12-29 2002-04-02 Ge Medical Systems Information Technologies, Inc. Method of and apparatus for Identifying a portion of a waveform representing a physiological event
US6412980B1 (en) 1999-12-30 2002-07-02 Ge Medical Systems Global Technology Company, Llc Method and apparatus for configuring and monitoring a system unit in a medical diagnostic system
US6552841B1 (en) 2000-01-07 2003-04-22 Imperium Advanced Ultrasonic Imaging Ultrasonic imager
EP1158021B1 (en) 2000-01-11 2011-10-05 Shiseido Company Limited Microgels and external preparations containing the same
US6354999B1 (en) 2000-01-14 2002-03-12 Florence Medical Ltd. System and method for detecting, localizing, and characterizing occlusions and aneurysms in a vessel
US6556858B1 (en) 2000-01-19 2003-04-29 Herbert D. Zeman Diffuse infrared light imaging system
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US8221402B2 (en) 2000-01-19 2012-07-17 Medtronic, Inc. Method for guiding a medical device
US6711428B2 (en) 2000-01-27 2004-03-23 Biosense Webster, Inc. Catheter having mapping assembly
US6628976B1 (en) 2000-01-27 2003-09-30 Biosense Webster, Inc. Catheter having mapping assembly
US6487916B1 (en) 2000-02-02 2002-12-03 Bechtel Bxwt Idaho, Llc Ultrasonic flow metering system
US6816266B2 (en) 2000-02-08 2004-11-09 Deepak Varshneya Fiber optic interferometric vital sign monitor for use in magnetic resonance imaging, confined care facilities and in-hospital
US6514226B1 (en) 2000-02-10 2003-02-04 Chf Solutions, Inc. Method and apparatus for treatment of congestive heart failure by improving perfusion of the kidney
US6515657B1 (en) 2000-02-11 2003-02-04 Claudio I. Zanelli Ultrasonic imager
US6401723B1 (en) 2000-02-16 2002-06-11 Stereotaxis, Inc. Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments
US7162291B1 (en) 2000-03-01 2007-01-09 Mirabel Medical Systems Ltd. Uniform, disposable, interface for multi-element probe
US6607488B1 (en) 2000-03-02 2003-08-19 Acuson Corporation Medical diagnostic ultrasound system and method for scanning plane orientation
US6406422B1 (en) 2000-03-02 2002-06-18 Levram Medical Devices, Ltd. Ventricular-assist method and apparatus
US6615155B2 (en) 2000-03-09 2003-09-02 Super Dimension Ltd. Object tracking using a single sensor or a pair of sensors
US8611993B2 (en) * 2000-03-13 2013-12-17 Arrow International, Inc. Pre-loaded lockable stimulating catheter for delivery of anaesthetic drugs
US7386341B2 (en) 2000-03-13 2008-06-10 Arrow International, Inc. Instrument and method for delivery of anaesthetic drugs
US6456874B1 (en) 2000-03-13 2002-09-24 Arrow International Inc. Instrument for delivery of anaesthetic drug
US6475152B1 (en) 2000-03-13 2002-11-05 Koninklijke Philips Electronics N.V. Biopsy needle guide for attachment to an ultrasound transducer
US6491671B1 (en) 2000-03-14 2002-12-10 Vanderbilt University Microcatheter with hemodynamic guide structure
US6584343B1 (en) 2000-03-15 2003-06-24 Resolution Medical, Inc. Multi-electrode panel system for sensing electrical activity of the heart
DE10015826A1 (de) 2000-03-30 2001-10-11 Siemens Ag System und Verfahren zur Erzeugung eines Bildes
US6238344B1 (en) 2000-03-30 2001-05-29 Acuson Corporation Medical diagnostic ultrasound imaging system with a wirelessly-controlled peripheral
US6733500B2 (en) 2000-03-31 2004-05-11 Medtronic, Inc. Method and system for delivering a medical electrical lead within a venous system
US6958677B1 (en) 2000-03-31 2005-10-25 Ge Medical Systems Information Technologies, Inc. Object location monitoring system
WO2001076479A1 (en) 2000-04-06 2001-10-18 Martil Instruments B.V. Catheter for measuring the impedance of surrounding blood
US6940379B2 (en) 2000-04-11 2005-09-06 Stereotaxis, Inc. Magnets with varying magnetization direction and method of making such magnets
US6626902B1 (en) 2000-04-12 2003-09-30 University Of Virginia Patent Foundation Multi-probe system
US7146209B2 (en) 2000-05-08 2006-12-05 Brainsgate, Ltd. Stimulation for treating eye pathologies
US8133698B2 (en) 2000-05-15 2012-03-13 Silver James H Sensors for detecting substances indicative of stroke, ischemia, infection or inflammation
US6508802B1 (en) 2000-05-23 2003-01-21 Cornell Research Foundation, Inc. Remote sensing gene therapy delivery device and method of administering a therapeutic solution to a heart
US6277326B1 (en) 2000-05-31 2001-08-21 Callaway Golf Company Process for liquid-phase sintering of a multiple-component material
JP2001340334A (ja) 2000-06-01 2001-12-11 Ge Medical Systems Global Technology Co Llc 穿刺針案内具、超音波プローブおよび超音波撮影装置
US6689119B1 (en) 2000-06-02 2004-02-10 Scimed Life Systems, Inc. Self-aligning medical device
US6869390B2 (en) 2000-06-05 2005-03-22 Mentor Corporation Automated implantation system for radioisotope seeds
US6537192B1 (en) 2000-06-05 2003-03-25 Mentor Corporation Automated radioisotope seed loader system for implant needles
US6961608B2 (en) 2000-06-05 2005-11-01 Kabushiki Kaisha Toshiba Interventional MR imaging with detection and display of device position
US6527782B2 (en) 2000-06-07 2003-03-04 Sterotaxis, Inc. Guide for medical devices
US6423050B1 (en) 2000-06-16 2002-07-23 Zbylut J. Twardowski Method and apparatus for locking of central-vein catheters
US6964667B2 (en) * 2000-06-23 2005-11-15 Sdgi Holdings, Inc. Formed in place fixation system with thermal acceleration
US20020019447A1 (en) 2000-07-03 2002-02-14 Renn Donald Walter Physical forms of clarified hydrocolloids of undiminished properties and method of producing same
US6569160B1 (en) 2000-07-07 2003-05-27 Biosense, Inc. System and method for detecting electrode-tissue contact
US6546270B1 (en) 2000-07-07 2003-04-08 Biosense, Inc. Multi-electrode catheter, system and method
US6511474B1 (en) 2000-07-12 2003-01-28 Corpak, Inc. Bolus for non-occluding high flow enteral feeding tube
DE10033723C1 (de) 2000-07-12 2002-02-21 Siemens Ag Visualisierung von Positionen und Orientierung von intrakorporal geführten Instrumenten während eines chirurgischen Eingriffs
KR20030020361A (ko) 2000-07-13 2003-03-08 윌슨-쿡 메디컬, 인크. 의료기기용 표적 시스템
US6484118B1 (en) 2000-07-20 2002-11-19 Biosense, Inc. Electromagnetic position single axis system
US6569097B1 (en) 2000-07-21 2003-05-27 Diagnostics Ultrasound Corporation System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
WO2002007794A2 (en) 2000-07-24 2002-01-31 Stereotaxis, Inc. Magnetically navigated pacing leads, and methods for delivering medical devices
WO2002009037A2 (en) 2000-07-24 2002-01-31 Reflex Systems Inc. Modeling human beings by symbol manipulation
DE10037491A1 (de) 2000-08-01 2002-02-14 Stryker Leibinger Gmbh & Co Kg Verfahren zum dreidimensionalen Visualisieren von Strukturen im Körperinneren
US8036731B2 (en) 2001-01-22 2011-10-11 Spectrum Dynamics Llc Ingestible pill for diagnosing a gastrointestinal tract
US20040087877A1 (en) 2000-08-23 2004-05-06 Besz William John Catheter locator apparatus and method of use
NL1016122C2 (nl) 2000-09-07 2002-03-11 Jozef Reinier Cornelis Jansen Werkwijze en inrichting voor het bepalen van het segmentale volume en de elektrische parallelgeleiding van een hartkamer of een bloedvat van een patiÙnt, alsmede katheter voor toepassing bij deze werkwijze of inrichting.
US6524303B1 (en) 2000-09-08 2003-02-25 Stereotaxis, Inc. Variable stiffness magnetic catheter
AU2001296873A1 (en) 2000-09-14 2002-03-26 Leland Stanford Junior University Technique for manipulating medical images
US6350160B1 (en) 2000-09-20 2002-02-26 Robert Feuersanger Medical connector system and method of use
NL1016247C2 (nl) 2000-09-22 2002-03-25 Martil Instr B V Hart-long machine voorzien van een inrichting voor elektrische impedantiemeting ter signalering van microemboliÙn en/of fibrinogeen- concentratie.
US6398738B1 (en) 2000-09-25 2002-06-04 Millar Instruments, Inc. Method and apparatus for reconstructing a high fidelity pressure waveform with a balloon catheter
NL1016320C2 (nl) 2000-10-03 2002-04-04 Jozef Reinier Cornelis Jansen Inrichting voor het aansturen van hartondersteunende apparaten.
US7106479B2 (en) 2000-10-10 2006-09-12 Stryker Corporation Systems and methods for enhancing the viewing of medical images
US6537196B1 (en) 2000-10-24 2003-03-25 Stereotaxis, Inc. Magnet assembly with variable field directions and methods of magnetically navigating medical objects
US20030149368A1 (en) 2000-10-24 2003-08-07 Hennemann Willard W. Method and apparatus for locating and detecting vascular plaque via impedence and conductivity measurements, and for cryogenically passivating vascular plaque and inhibiting vascular plaque progression and rupture
JP4241038B2 (ja) 2000-10-30 2009-03-18 ザ ジェネラル ホスピタル コーポレーション 組織分析のための光学的な方法及びシステム
US6941166B2 (en) 2000-11-10 2005-09-06 C.R. Bard, Inc. Software controlled electrophysiology data management
US6944495B2 (en) 2000-11-10 2005-09-13 C.R. Bard, Inc. Methods for processing electrocardiac signals having superimposed complexes
US6662034B2 (en) 2000-11-15 2003-12-09 Stereotaxis, Inc. Magnetically guidable electrophysiology catheter
EP1208799A1 (de) 2000-11-16 2002-05-29 Kretztechnik Aktiengesellschaft Verfhren zu Bestimmung der Einführungsrichtung und zur Uberwachung des Einführungsweges von Biopsienadeln
US6677752B1 (en) 2000-11-20 2004-01-13 Stereotaxis, Inc. Close-in shielding system for magnetic medical treatment instruments
US7103205B2 (en) 2000-11-24 2006-09-05 U-Systems, Inc. Breast cancer screening with ultrasound image overlays
WO2002044749A1 (en) 2000-11-28 2002-06-06 Roke Manor Research Limited Optical tracking systems
US6517520B2 (en) 2000-12-21 2003-02-11 Ethicon Endo Surgery, Inc. Peripherally inserted catheter with flushable guide-tube
US6597943B2 (en) 2000-12-26 2003-07-22 Ge Medical Systems Information Technologies, Inc. Method of using spectral measures to distinguish among atrialfibrillation, atrial-flutter and other cardiac rhythms
US6540679B2 (en) 2000-12-28 2003-04-01 Guided Therapy Systems, Inc. Visual imaging system for ultrasonic probe
DE10100975C1 (de) * 2001-01-11 2002-07-25 Horst Pajunk Spannadapter für einen Katheter
US6352363B1 (en) 2001-01-16 2002-03-05 Stereotaxis, Inc. Shielded x-ray source, method of shielding an x-ray source, and magnetic surgical system with shielded x-ray source
US6602241B2 (en) 2001-01-17 2003-08-05 Transvascular, Inc. Methods and apparatus for acute or chronic delivery of substances or apparatus to extravascular treatment sites
AU2002226655B2 (en) 2001-01-22 2006-09-07 Spectrum Dymanics Medical Limited Ingestible device
US20020099326A1 (en) 2001-01-24 2002-07-25 Wilson Jon S. Multi-lumen catheter with attachable hub
US7300430B2 (en) 2001-01-24 2007-11-27 Arrow International, Inc. Multi-lumen catheter with attachable hub
US6626834B2 (en) 2001-01-25 2003-09-30 Shane Dunne Spiral scanner with electronic control
US20020103430A1 (en) 2001-01-29 2002-08-01 Hastings Roger N. Catheter navigation within an MR imaging device
US7630750B2 (en) 2001-02-05 2009-12-08 The Research Foundation For The State University Of New York Computer aided treatment planning
CA2436166A1 (en) 2001-02-06 2002-08-15 Joshua Makower Methods and apparatus for guided transluminal interventions using vessel wall penetrating catheters and other apparatus
EP1236435B1 (en) 2001-03-01 2004-05-19 Pulsion Medical Systems AG Apparatus, computer program and central venous catheter assembly for hemodynamic monitoring
US6560473B2 (en) 2001-03-02 2003-05-06 Steven Dominguez Disposable ECG chest electrode template with built-in defibrillation electrodes
ITSV20010008A1 (it) 2001-03-05 2002-09-05 Esaote Spa Dispositivo guida-ago in particolare per sonde ecografiche e combinazione di sonda ecografica e detto dispositivo guida-ago
US6679857B1 (en) 2001-03-06 2004-01-20 Conair Corporation Massagers having gel coverings
AU2002236195A1 (en) 2001-03-13 2002-09-24 Wide Horizon Holdings Inc. Cerebral programming
JP2002270118A (ja) 2001-03-14 2002-09-20 Hitachi Ltd パネル接地電極および表示装置
US6485426B2 (en) 2001-03-14 2002-11-26 Sandhu Navparkash Needle guide for ultrasound transducer
US6695786B2 (en) 2001-03-16 2004-02-24 U-Systems, Inc. Guide and position monitor for invasive medical instrument
US6645148B2 (en) 2001-03-20 2003-11-11 Vermon Ultrasonic probe including pointing devices for remotely controlling functions of an associated imaging system
US6785571B2 (en) 2001-03-30 2004-08-31 Neil David Glossop Device and method for registering a position sensor in an anatomical body
US6773412B2 (en) 2001-04-13 2004-08-10 Chf Solutions, Inc. User interface for blood treatment device
US6969373B2 (en) 2001-04-13 2005-11-29 Tricardia, Llc Syringe system
JP2003010138A (ja) 2001-04-16 2003-01-14 Nippon Koden Corp 医療用テレメータシステム
WO2002085442A1 (en) 2001-04-19 2002-10-31 Radi Medical Systems Ab Combined pressure-volume sensor and guide wire assembly
US6685644B2 (en) 2001-04-24 2004-02-03 Kabushiki Kaisha Toshiba Ultrasound diagnostic apparatus
US6512958B1 (en) 2001-04-26 2003-01-28 Medtronic, Inc. Percutaneous medical probe and flexible guide wire
US6605086B2 (en) 2001-05-02 2003-08-12 Cardiac Pacemakers, Inc. Steerable catheter with torque transfer system
US6610058B2 (en) 2001-05-02 2003-08-26 Cardiac Pacemakers, Inc. Dual-profile steerable catheter
US6652506B2 (en) 2001-05-04 2003-11-25 Cardiac Pacemakers, Inc. Self-locking handle for steering a single or multiple-profile catheter
US6648875B2 (en) 2001-05-04 2003-11-18 Cardiac Pacemakers, Inc. Means for maintaining tension on a steering tendon in a steerable catheter
US7276044B2 (en) 2001-05-06 2007-10-02 Stereotaxis, Inc. System and methods for advancing a catheter
US6511413B2 (en) 2001-05-16 2003-01-28 Levram Medical Devices, Ltd. Single cannula ventricular-assist method and apparatus
US6755822B2 (en) 2001-06-01 2004-06-29 Cryocor, Inc. Device and method for the creation of a circumferential cryogenic lesion in a pulmonary vein
US20040243118A1 (en) 2001-06-01 2004-12-02 Ayers Gregory M. Device and method for positioning a catheter tip for creating a cryogenic lesion
JP2002368224A (ja) 2001-06-04 2002-12-20 Sony Corp 機能性デバイスおよびその製造方法
US7141812B2 (en) 2002-06-05 2006-11-28 Mikro Systems, Inc. Devices, methods, and systems involving castings
WO2002098271A2 (en) 2001-06-05 2002-12-12 Barnev Ltd. Birth monitoring system
US20030208142A1 (en) 2001-06-12 2003-11-06 Boudewijn Alexander C Vascular guidewire for magnetic resonance and /or fluoroscopy
US6473167B1 (en) 2001-06-14 2002-10-29 Ascension Technology Corporation Position and orientation determination using stationary fan beam sources and rotating mirrors to sweep fan beams
US7273056B2 (en) 2001-06-19 2007-09-25 The Trustees Of The University Of Pennsylvania Optical guidance system for invasive catheter placement
JP4854137B2 (ja) 2001-06-21 2012-01-18 株式会社東芝 医用画像診断装置
WO2003002181A2 (en) 2001-06-29 2003-01-09 A.B. Korkor Medical, Inc. Catheter introducer having an expandable tip
US6666828B2 (en) 2001-06-29 2003-12-23 Medtronic, Inc. Catheter system having disposable balloon
DE10132332A1 (de) 2001-07-02 2003-02-06 Heiko Fiebig Isometrisches Krafttrainingsgerät
US6528991B2 (en) 2001-07-03 2003-03-04 Ascension Technology Corporation Magnetic position measurement system with field containment means
US20030013986A1 (en) 2001-07-12 2003-01-16 Vahid Saadat Device for sensing temperature profile of a hollow body organ
US6786900B2 (en) 2001-08-13 2004-09-07 Cryovascular Systems, Inc. Cryotherapy methods for treating vessel dissections and side branch occlusion
JP2003061752A (ja) 2001-08-23 2003-03-04 Katsuhiko Yamagishi シャワーホース用回転ブラシ
WO2003017745A2 (en) 2001-08-23 2003-03-06 Sciperio, Inc. Architecture tool and methods of use
JP4443079B2 (ja) 2001-09-13 2010-03-31 株式会社日立メディコ 磁気共鳴イメージング装置及び磁気共鳴イメージング装置用rf受信コイル
EP1432345B1 (en) 2001-09-24 2011-11-09 Given Imaging Ltd. System for controlling a device in vivo
US6684176B2 (en) 2001-09-25 2004-01-27 Symbol Technologies, Inc. Three dimensional (3-D) object locator system for items or sites using an intuitive sound beacon: system and method of operation
US6733458B1 (en) 2001-09-25 2004-05-11 Acuson Corporation Diagnostic medical ultrasound systems and methods using image based freehand needle guidance
IL145700A0 (en) 2001-09-30 2002-06-30 Younis Imad Electrode system for neural applications
US6976962B2 (en) 2001-10-10 2005-12-20 Bullis James K Enhanced focusing of propagating waves by compensation for medium attenuation
WO2003032837A1 (en) 2001-10-12 2003-04-24 University Of Florida Computer controlled guidance of a biopsy needle
US6980299B1 (en) 2001-10-16 2005-12-27 General Hospital Corporation Systems and methods for imaging a sample
GB0124887D0 (en) 2001-10-17 2001-12-05 Qinetiq Ltd Metal detection apparatus
JP2003126093A (ja) 2001-10-23 2003-05-07 Olympus Optical Co Ltd 超音波診断装置
US7308303B2 (en) 2001-11-01 2007-12-11 Advanced Bionics Corporation Thrombolysis and chronic anticoagulation therapy
CA2464737A1 (en) 2001-11-02 2003-05-15 Vincent B. Ho Cardiac gating method and system
US20030088195A1 (en) 2001-11-02 2003-05-08 Vardi Gil M Guidewire having measurement indicia
US6959214B2 (en) 2001-11-28 2005-10-25 Medtronic, Inc. Implantable medical device for measuring mechanical heart function
US6689067B2 (en) 2001-11-28 2004-02-10 Siemens Corporate Research, Inc. Method and apparatus for ultrasound guidance of needle biopsies
AU2002353016A1 (en) 2001-12-03 2003-06-17 Ekos Corporation Small vessel ultrasound catheter
US7065403B1 (en) 2001-12-03 2006-06-20 Pacesetter, Inc. System and method for measuring lead impedance in an implantable stimulation device employing pulse-train waveforms
EP1319366A1 (de) 2001-12-14 2003-06-18 BrainLAB AG Magnetische Katheternavigation
US7670302B2 (en) 2001-12-18 2010-03-02 Boston Scientific Scimed, Inc. Super elastic guidewire with shape retention tip
US7729742B2 (en) 2001-12-21 2010-06-01 Biosense, Inc. Wireless position sensor
KR20030058423A (ko) 2001-12-31 2003-07-07 주식회사 메디슨 중재적 초음파를 사용하는 3 차원 초음파 진단 시스템에서검침 도구의 관찰 및 이의 대상체로의 진입을 용이하게하기 위한 방법 및 장치
JP4090741B2 (ja) 2002-01-07 2008-05-28 イビケン株式会社 出荷管理システム、及び出荷管理プログラム
AU2003207507A1 (en) 2002-01-11 2003-07-30 Gen Hospital Corp Apparatus for oct imaging with axial line focus for improved resolution and depth of field
US7020512B2 (en) 2002-01-14 2006-03-28 Stereotaxis, Inc. Method of localizing medical devices
US6999821B2 (en) 2002-01-18 2006-02-14 Pacesetter, Inc. Body implantable lead including one or more conductive polymer electrodes and methods for fabricating same
CA2473730A1 (en) 2002-01-18 2003-11-27 Std Manufacturing, Inc. Ablation technology for catheter based delivery systems
TWI220386B (en) 2002-01-21 2004-08-21 Matsushita Electric Works Ltd Ultrasonic transdermal permeation device
US20040210289A1 (en) 2002-03-04 2004-10-21 Xingwu Wang Novel nanomagnetic particles
US7091412B2 (en) 2002-03-04 2006-08-15 Nanoset, Llc Magnetically shielded assembly
US7161453B2 (en) 2002-01-23 2007-01-09 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
WO2003061752A1 (en) 2002-01-24 2003-07-31 Quinn David G Catheter and stylet assembly and method of catheter insertion
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US7169107B2 (en) 2002-01-25 2007-01-30 Karen Jersey-Willuhn Conductivity reconstruction based on inverse finite element measurements in a tissue monitoring system
DE10203372A1 (de) 2002-01-29 2003-09-04 Siemens Ag Medizinisches Untersuchungs- und/oder Behandlungssystem
US6755789B2 (en) 2002-02-05 2004-06-29 Inceptio Medical Technologies, Llc Ultrasonic vascular imaging system and method of blood vessel cannulation
US6719699B2 (en) 2002-02-07 2004-04-13 Sonotech, Inc. Adhesive hydrophilic membranes as couplants in ultrasound imaging applications
US6711431B2 (en) 2002-02-13 2004-03-23 Kinamed, Inc. Non-imaging, computer assisted navigation system for hip replacement surgery
US7027634B2 (en) 2002-02-13 2006-04-11 Ascension Technology Corporation Range adaptable system for determining the angular position and distance of a radiating point source and method of employing
US6599249B1 (en) 2002-02-14 2003-07-29 Koninklijke Philips Electronics N.V. Intraoperative ultrasound probe with an integrated acoustic standoff
US6701918B2 (en) 2002-02-19 2004-03-09 Ibionics Corporation Magnetically guided device for insertion through a nasal passageway
US20030220557A1 (en) 2002-03-01 2003-11-27 Kevin Cleary Image guided liver interventions based on magnetic tracking of internal organ motion
US6889091B2 (en) 2002-03-06 2005-05-03 Medtronic, Inc. Method and apparatus for placing a coronary sinus/cardiac vein pacing lead using a multi-purpose side lumen
US6968846B2 (en) 2002-03-07 2005-11-29 Stereotaxis, Inc. Method and apparatus for refinably accurate localization of devices and instruments in scattering environments
DE60315427T2 (de) 2002-03-15 2008-04-30 C.R. Bard, Inc. Apparat zur steuerung von ablationsenergie und elektrogrammaufnahme mittels einer vielzahl gemeinsamer elektroden in einem elektrophysiologie-katheter
US6784660B2 (en) 2002-03-18 2004-08-31 Ascension Technology Corporation Magnetic position and orientation measurement system with magnetic field permeable attenuator
NL1021183C2 (nl) 2002-03-20 2003-09-23 Martil Instr B V Katheter met geïntegreerd signaal verwerkingsapparaat.
JP4282979B2 (ja) 2002-03-25 2009-06-24 テルモ株式会社 ガイドワイヤ
US6774624B2 (en) 2002-03-27 2004-08-10 Ge Medical Systems Global Technology Company, Llc Magnetic tracking system
ATE357190T1 (de) 2002-03-27 2007-04-15 Brainlab Ag Medizinische navigation bzw. prä-operative behandlungsplanung mit unterstützung durch generische patientendaten
US7163533B2 (en) 2002-04-04 2007-01-16 Angiodynamics, Inc. Vascular treatment device and method
US6704590B2 (en) 2002-04-05 2004-03-09 Cardiac Pacemakers, Inc. Doppler guiding catheter using sensed blood turbulence levels
JP3967950B2 (ja) 2002-04-10 2007-08-29 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 穿刺針案内具、超音波プローブおよび超音波撮影装置
US20050256398A1 (en) 2004-05-12 2005-11-17 Hastings Roger N Systems and methods for interventional medicine
SE519337C2 (sv) 2002-04-26 2003-02-18 Kvaerner Pulping Tech Diffusörtvätt för cellulosamassor
EP1499380A2 (en) 2002-05-01 2005-01-26 Venetec International, Inc. Medical line securement device
US7008418B2 (en) 2002-05-09 2006-03-07 Stereotaxis, Inc. Magnetically assisted pulmonary vein isolation
US6908433B1 (en) 2002-05-10 2005-06-21 Rick L. Pruter Adhesive method and apparatus for guiding needles
US7022082B2 (en) 2002-05-13 2006-04-04 Sonek Jiri D Needle guide systems and methods
JP4388255B2 (ja) 2002-05-21 2009-12-24 アロカ株式会社 穿刺用超音波探触子
CA2484515A1 (en) 2002-05-30 2003-12-11 University Of Washington Solid hydrogel coupling for ultrasound imaging and therapy
US6676605B2 (en) 2002-06-07 2004-01-13 Diagnostic Ultrasound Bladder wall thickness measurement system and methods
DE10225518B4 (de) 2002-06-10 2004-07-08 Rayonex Schwingungstechnik Gmbh Verfahren und Vorrichtung zur Steuerung und Positionsbestimmung eines Instruments oder Gerätes
US6875179B2 (en) 2002-06-17 2005-04-05 Board Of Trustees Of The University Of Arkansas Ultrasonic guided catheter deployment system
US6856823B2 (en) 2002-06-18 2005-02-15 Ascension Technology Corporation Spiral magnetic transmitter for position measurement system
US7640053B2 (en) 2002-06-26 2009-12-29 Endosense S.A. Catheterization method and system for controlling tip displacement
US20040002732A1 (en) * 2002-06-27 2004-01-01 Clifford Teoh Stretch-resistant vaso-occlusive assembly with multiple detaching points
US7248914B2 (en) 2002-06-28 2007-07-24 Stereotaxis, Inc. Method of navigating medical devices in the presence of radiopaque material
US7189198B2 (en) 2002-07-03 2007-03-13 Stereotaxis, Inc. Magnetically guidable carriers and methods for the targeted magnetic delivery of substances in the body
US7096059B2 (en) 2002-07-03 2006-08-22 Bioanalytical Systems, Inc. Device and method for electrocardiography on freely moving animals
CA2492140A1 (en) 2002-07-12 2004-01-22 Iscience Surgical Corporation Ultrasound interfacing device for tissue imaging
US7096057B2 (en) 2002-08-02 2006-08-22 Barnes Jewish Hospital Method and apparatus for intracorporeal medical imaging using a self-tuned coil
US7604608B2 (en) 2003-01-14 2009-10-20 Flowcardia, Inc. Ultrasound catheter and methods for making and using same
US6860422B2 (en) 2002-09-03 2005-03-01 Ricoh Company, Ltd. Method and apparatus for tracking documents in a workflow
GB0220986D0 (en) 2002-09-10 2002-10-23 Univ Bristol Ultrasound probe
US6962580B2 (en) 2002-09-17 2005-11-08 Transoma Medical, Inc. Vascular access port with needle detector
US7106043B1 (en) 2002-09-17 2006-09-12 Bioluminate, Inc. Low capacitance measurement probe
US7128734B1 (en) 2002-09-20 2006-10-31 Arrow International, Inc. Apparatus and method for reverse tunneling a multi-lumen catheter in a patient
US7107105B2 (en) 2002-09-24 2006-09-12 Medtronic, Inc. Deployable medical lead fixation system and method
US7620444B2 (en) 2002-10-05 2009-11-17 General Electric Company Systems and methods for improving usability of images for medical applications
US7534223B2 (en) 2002-10-08 2009-05-19 Boston Scientific Scimed, Inc. Catheter with formed guide wire ramp
JP3821435B2 (ja) 2002-10-18 2006-09-13 松下電器産業株式会社 超音波探触子
US7252633B2 (en) 2002-10-18 2007-08-07 Olympus Corporation Remote controllable endoscope system
US20040082916A1 (en) 2002-10-29 2004-04-29 Jenkins Jane A. Catheter support system
US6794667B2 (en) 2002-10-31 2004-09-21 Ge Medical Systems Global Technology Company, Llc Source pin loading methods and apparatus for positron emission tomography
US6754596B2 (en) 2002-11-01 2004-06-22 Ascension Technology Corporation Method of measuring position and orientation with improved signal to noise ratio
US7881769B2 (en) 2002-11-18 2011-02-01 Mediguide Ltd. Method and system for mounting an MPS sensor on a catheter
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7599730B2 (en) 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US20040097803A1 (en) 2002-11-20 2004-05-20 Dorin Panescu 3-D catheter localization using permanent magnets with asymmetrical properties about their longitudinal axis
CA2451059C (en) 2002-11-27 2013-05-21 Z-Tech (Canada) Inc. Eliminating interface artifact errors in bioimpedance measurements
US7153277B2 (en) 2002-12-03 2006-12-26 Scimed Life Systems, Inc. Composite medical device with markers
CA2508784C (en) 2002-12-04 2012-03-06 Lake Region Manufacturing, Inc. Marked guidewires
US7267650B2 (en) 2002-12-16 2007-09-11 Cardiac Pacemakers, Inc. Ultrasound directed guiding catheter system and method
US7455660B2 (en) 2002-12-18 2008-11-25 Medical Components, Inc. Locking guidewire straightener
US7043293B1 (en) 2002-12-24 2006-05-09 Cardiodynamics International Corporation Method and apparatus for waveform assessment
US7351205B2 (en) 2003-01-03 2008-04-01 Civco Medical Instruments Co., Inc. Shallow angle needle guide apparatus and method
US20040133130A1 (en) 2003-01-06 2004-07-08 Ferry Steven J. Magnetically navigable medical guidewire
EP1583470A1 (en) 2003-01-07 2005-10-12 Philips Intellectual Property & Standards GmbH Method and arrangement for tracking a medical instrument
US6815651B2 (en) 2003-01-10 2004-11-09 Ascension Technology Corporation Optical position measurement system employing one or more linear detector arrays
US6843771B2 (en) 2003-01-15 2005-01-18 Salutron, Inc. Ultrasonic monitor for measuring heart rate and blood flow rate
US7947040B2 (en) 2003-01-21 2011-05-24 Baylis Medical Company Inc Method of surgical perforation via the delivery of energy
US7112197B2 (en) 2003-01-21 2006-09-26 Baylis Medical Company Inc. Surgical device with pressure monitoring ability
US7048733B2 (en) 2003-09-19 2006-05-23 Baylis Medical Company Inc. Surgical perforation device with curve
US7270662B2 (en) 2004-01-21 2007-09-18 Naheed Visram Surgical perforation device with electrocardiogram (ECG) monitoring ability and method of using ECG to position a surgical perforation device
US7204798B2 (en) 2003-01-24 2007-04-17 Proteus Biomedical, Inc. Methods and systems for measuring cardiac parameters
WO2004069032A2 (en) 2003-01-29 2004-08-19 Sandhill Scientific, Inc. Viscous swallow medium and method of use for esophageal function testing
US7542791B2 (en) 2003-01-30 2009-06-02 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US7098907B2 (en) 2003-01-30 2006-08-29 Frantic Films Corporation Method for converting explicitly represented geometric surfaces into accurate level sets
US7591786B2 (en) 2003-01-31 2009-09-22 Sonosite, Inc. Dock for connecting peripheral devices to a modular diagnostic ultrasound apparatus
WO2008091609A2 (en) 2007-01-23 2008-07-31 Dtherapeutics, Llc Devices, systems, and methods for mapping organ profiles
US8185194B2 (en) 2003-02-21 2012-05-22 Dtherapeutics, Llc Systems and methods for determining phasic cardiac cycle measurements
US9603545B2 (en) 2003-02-21 2017-03-28 3Dt Holdings, Llc Devices, systems, and methods for removing targeted lesions from vessels
US8078274B2 (en) 2003-02-21 2011-12-13 Dtherapeutics, Llc Device, system and method for measuring cross-sectional areas in luminal organs
EP1599232B1 (en) 2003-02-21 2013-08-14 Electro-Cat, LLC System for measuring cross-sectional areas and pressure gradients in luminal organs
US7182735B2 (en) 2003-02-26 2007-02-27 Scimed Life Systems, Inc. Elongated intracorporal medical device
US20070055142A1 (en) 2003-03-14 2007-03-08 Webler William E Method and apparatus for image guided position tracking during percutaneous procedures
US20040186461A1 (en) 2003-03-17 2004-09-23 Dimatteo Kristian Catheter with an adjustable cuff
US20040185066A1 (en) 2003-03-17 2004-09-23 Yuh-Jye Uang Antifreeze gel in a deformable container
US7054228B1 (en) 2003-03-25 2006-05-30 Robert Hickling Sound source location and quantification using arrays of vector probes
US7028387B1 (en) 2003-03-26 2006-04-18 Advanced Neuromodulation Systems, Inc. Method of making a miniaturized positional assembly
US20040199069A1 (en) 2003-04-02 2004-10-07 Connelly Patrick R. Device and method for preventing magnetic resonance imaging induced damage
US20050149002A1 (en) 2003-04-08 2005-07-07 Xingwu Wang Markers for visualizing interventional medical devices
US7651469B2 (en) 2003-04-25 2010-01-26 Cook Incorporated Low friction coated marked wire guide for over the wire insertion of a catheter
US20040225233A1 (en) 2003-05-09 2004-11-11 Frankowski Brian J. Magnetic guidewires
DE602004017248D1 (de) 2003-05-19 2008-12-04 Ust Inc Geometrisch geformte Kopplungskörper aus Hydrogel für die Behandlung mit fokussiertem Ultraschall von hoher Intensität
CN100542489C (zh) 2003-05-21 2009-09-23 皇家飞利浦电子股份有限公司 用于引导导管的装置和方法
EP1628574A1 (en) 2003-05-21 2006-03-01 Philips Intellectual Property & Standards GmbH Apparatus and method for navigating a catheter
US6980843B2 (en) 2003-05-21 2005-12-27 Stereotaxis, Inc. Electrophysiology catheter
US7909815B2 (en) 2003-05-23 2011-03-22 Civco Medical Instruments Co., Inc. Instrument guide for use with needles and catheters
US7090639B2 (en) 2003-05-29 2006-08-15 Biosense, Inc. Ultrasound catheter calibration system
US7850613B2 (en) 2003-05-30 2010-12-14 Orison Corporation Apparatus and method for three dimensional ultrasound breast imaging
SE525289C2 (sv) 2003-06-02 2005-01-25 Moelnlycke Health Care Ab Uppdukningsprodukt för kirurgiska ingrepp
US7494459B2 (en) 2003-06-26 2009-02-24 Biophan Technologies, Inc. Sensor-equipped and algorithm-controlled direct mechanical ventricular assist device
EP1680017B1 (en) 2003-07-11 2013-01-09 C.R. Bard, Inc. Multi-color overlay system for processing and displaying electrocardiac signals
WO2005009509A2 (en) 2003-07-22 2005-02-03 Georgia Tech Research Corporation Needle insertion systems and methods
CN100473336C (zh) 2003-07-24 2009-04-01 沙丘医疗设备有限公司 用于检查特别是组织的物质以表征其类型的方法和设备
US7321228B2 (en) 2003-07-31 2008-01-22 Biosense Webster, Inc. Detection of metal disturbance in a magnetic tracking system
US20050159676A1 (en) 2003-08-13 2005-07-21 Taylor James D. Targeted biopsy delivery system
US7001341B2 (en) 2003-08-13 2006-02-21 Scimed Life Systems, Inc. Marking biopsy sites
KR100506543B1 (ko) 2003-08-14 2005-08-05 주식회사 제닉 온도 감응성 상태변화 하이드로겔 조성물 및 그 제조방법
US8123691B2 (en) 2003-08-19 2012-02-28 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus for fixedly displaying a puncture probe during 2D imaging
US20050043640A1 (en) 2003-08-21 2005-02-24 Chang Alexander C. Remote electrocardiogram for early detection of coronary heart disease
US7313430B2 (en) 2003-08-28 2007-12-25 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US8000771B2 (en) 2003-09-02 2011-08-16 Cardiac Pacemakers, Inc. Method and apparatus for catheterization by detecting signals indicating proximity to anatomical features
CA2938411C (en) 2003-09-12 2019-03-05 Minnow Medical, Llc Selectable eccentric remodeling and/or ablation of atherosclerotic material
US20050075561A1 (en) 2003-10-01 2005-04-07 Lucent Medical Systems, Inc. Method and apparatus for indicating an encountered obstacle during insertion of a medical device
US20050075696A1 (en) 2003-10-02 2005-04-07 Medtronic, Inc. Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device
WO2005033574A1 (en) 2003-10-03 2005-04-14 Micronix Pty Ltd Universal ball joint tensioning mechanism
WO2005033524A1 (en) 2003-10-03 2005-04-14 Micronix Pty Ltd Universal equipment clamp
JP4167162B2 (ja) 2003-10-14 2008-10-15 アロカ株式会社 超音波診断装置
US7840253B2 (en) 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7951081B2 (en) 2003-10-20 2011-05-31 Boston Scientific Scimed, Inc. Transducer/sensor assembly
US7280863B2 (en) 2003-10-20 2007-10-09 Magnetecs, Inc. System and method for radar-assisted catheter guidance and control
US20050085718A1 (en) 2003-10-21 2005-04-21 Ramin Shahidi Systems and methods for intraoperative targetting
US7029446B2 (en) 2003-10-30 2006-04-18 Martin Edmund Wendelken Standoff holder and standoff pad for ultrasound probe
US7244234B2 (en) 2003-11-11 2007-07-17 Soma Development Llc Ultrasound guided probe device and method of using same
US7285096B2 (en) 2003-11-12 2007-10-23 Esi, Inc. Ultrasound probe positioning immersion shell
US7106431B2 (en) 2003-11-13 2006-09-12 Ascension Technology Corporation Sensor for determining the angular position of a radiating point source in two dimensions
US7161686B2 (en) 2003-11-13 2007-01-09 Ascension Technology Corporation Sensor for determining the angular position of a radiating point source in two dimensions and method of operation
US20050208095A1 (en) 2003-11-20 2005-09-22 Angiotech International Ag Polymer compositions and methods for their use
MXPA06005677A (es) 2003-11-21 2006-12-14 Johnson & Johnson Metodo y sistema de suministro transdermico de vacuna asistido por ultrasonido.
US20050113700A1 (en) 2003-11-26 2005-05-26 Koji Yanagihara Ultrasonic probe
DE10355275B4 (de) 2003-11-26 2009-03-05 Siemens Ag Kathedereinrichtung
EP1687587B1 (en) 2003-11-28 2020-01-08 The General Hospital Corporation Method and apparatus for three-dimensional spectrally encoded imaging
US7237313B2 (en) 2003-12-05 2007-07-03 Boston Scientific Scimed, Inc. Elongated medical device for intracorporal use
EP1691666B1 (en) 2003-12-12 2012-05-30 University of Washington Catheterscope 3d guidance and interface system
DE10358735B4 (de) 2003-12-15 2011-04-21 Siemens Ag Kathetereinrichtung umfassend einen Katheter, insbesondere einen intravaskulären Katheter
JP3873285B2 (ja) 2003-12-24 2007-01-24 有限会社エスアールジェイ 内視鏡装置
US20050154308A1 (en) 2003-12-30 2005-07-14 Liposonix, Inc. Disposable transducer seal
US7026927B2 (en) 2003-12-31 2006-04-11 Calypso Medical Technologies, Inc. Receiver used in marker localization sensing system and having dithering in excitation pulses
US7104980B1 (en) 2004-01-16 2006-09-12 Dennis M Laherty Catheterization assist device and method of use
WO2005070318A1 (en) * 2004-01-20 2005-08-04 Philips Intellectual Property & Standards Gmbh Device and method for navigating a catheter
WO2005072616A2 (en) 2004-01-20 2005-08-11 Therus Corporation Interface for use between medical instrumentation and a patient
US8620406B2 (en) 2004-01-23 2013-12-31 Boston Scientific Scimed, Inc. Medical devices visible by magnetic resonance imaging
US20050165313A1 (en) 2004-01-26 2005-07-28 Byron Jacquelyn M. Transducer assembly for ultrasound probes
US7341569B2 (en) 2004-01-30 2008-03-11 Ekos Corporation Treatment of vascular occlusions using ultrasonic energy and microbubbles
JP4631057B2 (ja) 2004-02-18 2011-02-16 国立大学法人大阪大学 内視鏡システム
US7299086B2 (en) 2004-03-05 2007-11-20 Cardiac Pacemakers, Inc. Wireless ECG in implantable devices
US7699782B2 (en) 2004-03-09 2010-04-20 Angelsen Bjoern A J Extended, ultrasound real time 3D image probe for insertion into the body
FR2867396B1 (fr) 2004-03-10 2006-12-22 P2A Performeur perforant a connexion sterile
US7578803B2 (en) * 2004-03-18 2009-08-25 C. R. Bard, Inc. Multifunction adaptor for an open-ended catheter
US20050205081A1 (en) 2004-03-18 2005-09-22 American Permanent Ware Corporation Drawer for a heated food cabinet
US7565208B2 (en) 2004-03-25 2009-07-21 Boston Scientific Scimed, Inc. Catheter with sensor tips, tool and device and methods of use of same
US7699829B2 (en) 2004-03-25 2010-04-20 Boston Scientific Scimed, Inc. Catheter with sensor tip and method of use of same
WO2005096267A1 (en) 2004-04-02 2005-10-13 Koninklijke Philips Electronics, N.V. Intracavity probe with continuous shielding of acoustic window
US7650178B2 (en) 2004-04-30 2010-01-19 University Of Basel Magnetic field sensor-based navigation system to track MR image-guided interventional procedures
US20050256541A1 (en) 2004-04-30 2005-11-17 Medtronic, Inc. Catheter with temporary stimulation electrode
DE102004022628A1 (de) 2004-05-07 2005-12-15 Sensient Imaging Technologies Gmbh FRET-Bioassay
US20050288599A1 (en) 2004-05-17 2005-12-29 C.R. Bard, Inc. High density atrial fibrillation cycle length (AFCL) detection and mapping system
US20080027320A1 (en) 2004-05-18 2008-01-31 Siemens Medical Solutions Usa, Inc. Multidimensional transducer systems and methods for intra patient probes
US20080200773A1 (en) 2004-05-26 2008-08-21 Gheorghe Aurel Marie Pop Catheter and Portable Data Managing Device
EP1750607A2 (en) 2004-06-02 2007-02-14 Medtronic, Inc. Loop ablation apparatus and method
WO2005119505A2 (en) 2004-06-04 2005-12-15 Stereotaxis, Inc. User interface for remote control of medical devices
MXPA06014441A (es) 2004-06-16 2007-06-05 Greater Glasgow Nhs Board Guia de onda ultrasonica.
USD518574S1 (en) 2004-06-18 2006-04-04 Visualsonics Inc. Nosepiece
USD525363S1 (en) 2004-06-18 2006-07-18 Visual Sonics Nosepiece
USD520140S1 (en) 2004-06-18 2006-05-02 Visualsonics Inc. Nosepiece
USD520139S1 (en) 2004-06-18 2006-05-02 Visualsonics Inc. Nosepiece
US20050283216A1 (en) 2004-06-21 2005-12-22 Pyles Stephen T Apparatus and method for displacing tissue obstructions
US7850610B2 (en) 2004-06-28 2010-12-14 Medtronic, Inc. Electrode location mapping system and method
JP4995720B2 (ja) 2004-07-02 2012-08-08 ザ ジェネラル ホスピタル コーポレイション ダブルクラッドファイバを有する内視鏡撮像プローブ
JP4109272B2 (ja) 2004-07-09 2008-07-02 直彦 徳本 穿刺用アダプタ
US7402134B2 (en) 2004-07-15 2008-07-22 Micardia Corporation Magnetic devices and methods for reshaping heart anatomy
ITMI20041448A1 (it) 2004-07-20 2004-10-20 Milano Politecnico Apparato per la fusione e navigazione di immagini ecografiche e volumetriche di un paziente che utilizza una combinazione di marcatori ottici attivi e passivi per la localizzazione di sonde ecografiche e strumenti chirurgici rispetto al paziente
US7373271B1 (en) 2004-09-20 2008-05-13 Ascension Technology Corporation System and method for measuring position and orientation using distortion-compensated magnetic fields
EP2329759B1 (en) 2004-09-29 2014-03-12 The General Hospital Corporation System and method for optical coherence imaging
US20060068074A1 (en) 2004-09-30 2006-03-30 Stefandl Roland E Shelf stable gelatinous product
US7096870B2 (en) 2004-09-30 2006-08-29 Lonnie Jay Lamprich Disposable sterile surgical drape and attached instruments
US7831294B2 (en) 2004-10-07 2010-11-09 Stereotaxis, Inc. System and method of surgical imagining with anatomical overlay for navigation of surgical devices
US7327872B2 (en) 2004-10-13 2008-02-05 General Electric Company Method and system for registering 3D models of anatomical regions with projection images of the same
US7190819B2 (en) 2004-10-29 2007-03-13 Stereotaxis, Inc. Image-based medical device localization
US7382949B2 (en) 2004-11-02 2008-06-03 The General Hospital Corporation Fiber-optic rotational device, optical system and method for imaging a sample
US7653427B2 (en) 2004-11-12 2010-01-26 Intra-Medical Imaging LLC Method and instrument for minimally invasive sentinel lymph node location and biopsy
DE102005045071A1 (de) 2005-09-21 2007-04-12 Siemens Ag Kathetervorrichtung mit einem Positionssensorsystem zur Behandlung eines teilweisen und/oder vollständigen Gefäßverschlusses unter Bildüberwachung
US7798970B2 (en) 2004-11-17 2010-09-21 Salutron, Inc Ultrasonic monitor for measuring blood flow and pulse rates
US7713210B2 (en) 2004-11-23 2010-05-11 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for localizing an ultrasound catheter
US20060116576A1 (en) 2004-12-01 2006-06-01 Scimed Life Systems, Inc. System and use thereof to provide indication of proximity between catheter and location of interest in 3-D space
DE102004058008B4 (de) 2004-12-01 2007-08-23 Siemens Ag Führungsdraht für Gefäßkatheter mit verbesserter Ortungs- und Navigiermöglichkeit
EP3511047B1 (en) 2004-12-08 2024-03-13 Boston Scientific Scimed, Inc. Apparatus for performing needle guided interventions
US7869865B2 (en) 2005-01-07 2011-01-11 Biosense Webster, Inc. Current-based position sensing
US20070032746A1 (en) 2005-01-10 2007-02-08 Stereotaxis, Inc. Guide wire with magnetically adjustable bent tip and method for using the same
US20070225589A1 (en) 2005-01-11 2007-09-27 Viswanathan Raju R Single catheter diagnosis, navigation and treatment of arrhythmias
US7976518B2 (en) 2005-01-13 2011-07-12 Corpak Medsystems, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
US20110098559A1 (en) 2005-01-14 2011-04-28 William John Besz Guiding insert assembly for a catheter used with a catheter position guidance system
WO2006074509A1 (en) 2005-01-14 2006-07-20 Micronix Pty Ltd Tubing assembly for use with a catheter position guidance system
WO2006078677A2 (en) 2005-01-18 2006-07-27 Traxtal Technologies Inc. Electromagnetically tracked k-wire device
CN101106944B (zh) 2005-01-26 2011-01-05 株式会社日立医药 压迫构件、超声波探头及超声波诊断装置
US20080021336A1 (en) 2006-04-24 2008-01-24 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac synchrony and dyssynchrony
US20060176242A1 (en) 2005-02-08 2006-08-10 Blue Belt Technologies, Inc. Augmented reality device and method
CA2599168A1 (en) 2005-02-24 2006-08-31 Ernest E. Braxton Apparatus and method for non-invasive measurement of intracranial pressure
EP1856545A2 (en) 2005-03-02 2007-11-21 Koninklijke Philips Electronics N.V. Low power standby mode monitor
US10362947B2 (en) 2005-03-15 2019-07-30 Integra LifeSciences Switzerland Sarl Pressure sensing devices
EP1863449A2 (en) 2005-03-28 2007-12-12 Dexcel Pharma Technologies Ltd. Controlled absorption of statins in the intestine
US20090062684A1 (en) 2005-03-31 2009-03-05 Globalreach Holding Aps Apparatus and method for a global model of hollow internal organs including the determination of cross-sectional areas and volume in internal hollow organs and wall properties
FR2883982B1 (fr) 2005-04-05 2009-05-29 Centre Nat Rech Scient Procede et dispositif d'imagerie utilisant des ondes de cisaillement
US7542800B2 (en) 2005-04-05 2009-06-02 Cardiac Pacemakers, Inc. Method and apparatus for synchronizing neural stimulation to cardiac cycles
CN1672649A (zh) 2005-04-16 2005-09-28 何明利 一种脑脊液穿刺引流器
AU2006239877B2 (en) 2005-04-21 2012-11-01 Boston Scientific Scimed, Inc. Control methods and devices for energy delivery
US20090118612A1 (en) 2005-05-06 2009-05-07 Sorin Grunwald Apparatus and Method for Vascular Access
EP1887940B1 (en) 2005-05-06 2013-06-26 Vasonova, Inc. Apparatus for endovascular device guiding and positioning
US8597193B2 (en) 2005-05-06 2013-12-03 Vasonova, Inc. Apparatus and method for endovascular device guiding and positioning using physiological parameters
US20070060992A1 (en) 2005-06-02 2007-03-15 Carlo Pappone Methods and devices for mapping the ventricle for pacing lead placement and therapy delivery
JP2006338526A (ja) 2005-06-03 2006-12-14 Dentsu Kiko Kk ポインティングデバイス,モーションセンサー並びに文字認識装置および位置データ演算方法
DE102005028226A1 (de) 2005-06-17 2006-12-28 Siemens Ag Vorrichtung zur Steuerung eines magnetischen Elements im Körper eines Patienten
JP2007000226A (ja) 2005-06-22 2007-01-11 Toshiba Corp 医用画像診断装置
US20080214931A1 (en) 2005-06-28 2008-09-04 Timm Dickfeld Method and System for Guiding a Probe in a Patient for a Medical Procedure
EP1906858B1 (en) 2005-07-01 2016-11-16 Hansen Medical, Inc. Robotic catheter system
US7536218B2 (en) 2005-07-15 2009-05-19 Biosense Webster, Inc. Hybrid magnetic-based and impedance-based position sensing
DE102005034167B4 (de) 2005-07-21 2012-01-26 Siemens Ag Einrichtung und Verfahren zur Ermittlung einer Position eines Implantats in einem Körper
WO2007014447A1 (en) 2005-08-04 2007-02-08 Universite Laval Gelation of undenatured proteins with polysaccharides
JP2007068989A (ja) 2005-08-11 2007-03-22 Toshiba Corp 超音波診断装置、超音波プローブ及び穿刺アダプタ
CN100556367C (zh) 2005-08-11 2009-11-04 株式会社东芝 超声波诊断装置、超声波探针以及穿刺适配器
US8150522B2 (en) 2005-08-19 2012-04-03 The Trustees Of The University Of Pennsylvania Active control of epileptic seizures and diagnosis based on critical systems-like behavior
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US8147408B2 (en) 2005-08-31 2012-04-03 Sonosite, Inc. Medical device guide locator
US8852111B2 (en) 2005-09-02 2014-10-07 Ultrasound Ventures, Llc Ultrasound guidance system
JP2009507617A (ja) 2005-09-14 2009-02-26 ネオガイド システムズ, インコーポレイテッド 経腔的及び他の操作を行うための方法及び装置
NL1032272C2 (nl) 2005-09-15 2007-05-16 Martil Instr B V Werkwijze en inrichting voor het bepalen van het debiet in een bloedvat.
GB0519391D0 (en) 2005-09-22 2005-11-02 Aion Diagnostics Ltd Imaging agents
WO2007040172A1 (ja) 2005-10-04 2007-04-12 Hitachi Medical Corporation 超音波探触子及びそれを用いた超音波診断装置
CN101631476B (zh) 2005-10-05 2012-07-04 Fmc生物聚合物联合股份有限公司 胶凝组合物和方法
US7981038B2 (en) 2005-10-11 2011-07-19 Carnegie Mellon University Sensor guided catheter navigation system
US7988633B2 (en) 2005-10-12 2011-08-02 Volcano Corporation Apparatus and method for use of RFID catheter intelligence
DE102005050344A1 (de) 2005-10-20 2007-05-03 Siemens Ag Kryokatheter zur Einführung in ein Körpergefäß sowie medizinische Untersuchungs- und Behandlungsvorrichtung
US7850623B2 (en) 2005-10-27 2010-12-14 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
US7574255B1 (en) 2005-11-07 2009-08-11 Pacesetter, Inc. Criteria for monitoring intrathoracic impedance
US7774055B1 (en) 2005-11-07 2010-08-10 Pacesetter, Inc. Left atrial pressure-based criteria for monitoring intrathoracic impedance
US8303505B2 (en) 2005-12-02 2012-11-06 Abbott Cardiovascular Systems Inc. Methods and apparatuses for image guided medical procedures
US7867169B2 (en) 2005-12-02 2011-01-11 Abbott Cardiovascular Systems Inc. Echogenic needle catheter configured to produce an improved ultrasound image
KR20070058785A (ko) 2005-12-05 2007-06-11 주식회사 메디슨 중재적 시술을 위한 초음파 시스템
US8728077B2 (en) 2005-12-06 2014-05-20 St. Jude Medical, Atrial Fibrillation Division, Inc. Handle set for ablation catheter with indicators of catheter and tissue parameters
DE102005059271B4 (de) 2005-12-12 2019-02-21 Siemens Healthcare Gmbh Kathetervorrichtung
JP5270365B2 (ja) 2005-12-15 2013-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電気生理マッピングおよび治療の際の心臓形態可視化のシステムおよび方法
JP2007175431A (ja) 2005-12-28 2007-07-12 Olympus Medical Systems Corp 超音波診断装置
US8060214B2 (en) 2006-01-05 2011-11-15 Cardiac Pacemakers, Inc. Implantable medical device with inductive coil configurable for mechanical fixation
US8204582B2 (en) 2006-01-12 2012-06-19 Arrow International, Inc. Adaptive real time ECG triggering and uses thereof
CA2636066C (en) 2006-01-25 2012-11-13 Dtherapeutics, Llc Devices, systems and methods for determining sizes of vessels
US7519424B2 (en) 2006-01-30 2009-04-14 Medtronic, Inc. Intravascular medical device
US7627376B2 (en) 2006-01-30 2009-12-01 Medtronic, Inc. Intravascular medical device
US7616992B2 (en) 2006-01-30 2009-11-10 Medtronic, Inc. Intravascular medical device
JP2009537024A (ja) 2006-02-01 2009-10-22 ザ ジェネラル ホスピタル コーポレイション 少なくとも一つのファイバの少なくとも二つの部位の少なくとも一つを制御する装置
JP5680829B2 (ja) 2006-02-01 2015-03-04 ザ ジェネラル ホスピタル コーポレイション 複数の電磁放射をサンプルに照射する装置
US7637163B2 (en) 2006-02-02 2009-12-29 The Boeing Company Thin-film ultrasonic probe
US7869854B2 (en) 2006-02-23 2011-01-11 Magnetecs, Inc. Apparatus for magnetically deployable catheter with MOSFET sensor and method for mapping and ablation
US7729753B2 (en) 2006-03-14 2010-06-01 Cardionet, Inc. Automated analysis of a cardiac signal based on dynamical characteristics of the cardiac signal
US7792563B2 (en) 2006-03-16 2010-09-07 Massachusetts Institute Of Technology Method and apparatus for the guided ablative therapy of fast ventricular arrhythmia
US20070225610A1 (en) 2006-03-27 2007-09-27 Boston Scientific Scimed, Inc. Capturing electrical signals with a catheter needle
US8948845B2 (en) 2006-03-31 2015-02-03 Koninklijke Philips N.V. System, methods, and instrumentation for image guided prostate treatment
US20070244413A1 (en) 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Medical guidewire tip construction
US20070247454A1 (en) 2006-04-19 2007-10-25 Norbert Rahn 3D visualization with synchronous X-ray image display
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
US20070255270A1 (en) 2006-04-27 2007-11-01 Medtronic Vascular, Inc. Intraluminal guidance system using bioelectric impedance
US20070265526A1 (en) 2006-05-11 2007-11-15 Assaf Govari Low-profile location pad
US20080009720A1 (en) 2006-05-12 2008-01-10 General Electric Company Catheter connector
US7774051B2 (en) 2006-05-17 2010-08-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for mapping electrophysiology information onto complex geometry
WO2007136784A2 (en) 2006-05-17 2007-11-29 Nuvasive, Inc. Surgical trajectory monitoring system and related methods
DE102006023733A1 (de) 2006-05-19 2007-12-06 Siemens Ag Instrument, bildgebendes Ortungssystem und Ortungsverfahren
US8118743B2 (en) 2006-05-26 2012-02-21 Ultrasound Ventures, Llc Sterile cover
US7727143B2 (en) 2006-05-31 2010-06-01 Allergan, Inc. Locator system for implanted access port with RFID tag
US7505810B2 (en) 2006-06-13 2009-03-17 Rhythmia Medical, Inc. Non-contact cardiac mapping, including preprocessing
US7515954B2 (en) * 2006-06-13 2009-04-07 Rhythmia Medical, Inc. Non-contact cardiac mapping, including moving catheter and multi-beat integration
WO2007144894A1 (en) 2006-06-15 2007-12-21 Yissum Research Development Company Of The Hebrew University Of Jerusalem Hydrocolloid carrier beads with inert filler material
US8560047B2 (en) 2006-06-16 2013-10-15 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
US20080008745A1 (en) 2006-06-21 2008-01-10 University Of Kentucky Research Foundation Transdermal delivery of naltrexone hydrochloride, naltrexol hydrochloride, and bis(hydroxy-methyl)propionyl-3-0 ester naltrexone using microneedles
US9039712B2 (en) 2006-06-28 2015-05-26 Medtronic Cryocath Lp Shape modification system for a cooling chamber of a medical device
US8892196B2 (en) 2006-07-06 2014-11-18 Los Angeles Biomedial Research Institute At Harbor-Ucla Medical Center Device and method for screening congenital heart disease
DE102006033229B4 (de) 2006-07-18 2013-05-08 Ezono Ag Ultraschallsonde und Verfahren zur optischen Detektion von Ultraschallwellen
US20090074917A2 (en) 2006-07-26 2009-03-19 Remington Direct Lp Low-calorie, no laxation bulking system
US20080045908A1 (en) 2006-08-16 2008-02-21 Boston Scientific Scimed, Inc. Medical device including a metallic tube fillet welded to a core member
US7833564B2 (en) 2006-08-24 2010-11-16 Boston Scientific Scimed, Inc. Elongate medical device and method of coating the same
US20080051626A1 (en) 2006-08-28 2008-02-28 Olympus Medical Systems Corp. Fistulectomy method between first duct and second duct, ultrasonic endoscope, catheter with balloon, magnet retaining device, and magnet set
WO2008028253A1 (en) 2006-09-08 2008-03-13 Micronix Pty Ltd Guide-wire and guiding insert placement assembly for over-the-wire catheter placement and method of use
JP5121201B2 (ja) 2006-09-28 2013-01-16 オリンパスメディカルシステムズ株式会社 検知体位置検出システム
EP2069009A1 (en) 2006-09-28 2009-06-17 Medtronic, Inc. Implantable medical device with sensor self-test feature
JP4943796B2 (ja) 2006-09-29 2012-05-30 テルモ株式会社 医療デバイス
US8068920B2 (en) 2006-10-03 2011-11-29 Vincent A Gaudiani Transcoronary sinus pacing system, LV summit pacing, early mitral closure pacing, and methods therefor
EP2076193A4 (en) 2006-10-18 2010-02-03 Minnow Medical Inc MATCHED RF-ENERGY AND ELECTRO-TISSUE CHARACTERIZATION FOR THE SELECTIVE TREATMENT OF TARGET TISSUE
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
WO2009100158A1 (en) 2008-02-05 2009-08-13 Rothenberg Peter M Method of locating the tip of a central venous catheter
US9642986B2 (en) 2006-11-08 2017-05-09 C. R. Bard, Inc. Resource information key for an insertable medical device
US8155732B2 (en) 2006-11-10 2012-04-10 Draeger Medical Systems, Inc. ECG system for use in ECG signal measurement of intra-cardiac ECG using a catheter
JP2008136655A (ja) 2006-12-01 2008-06-19 Omron Healthcare Co Ltd 脈波測定用電極ユニットおよび脈波測定装置
US20080139944A1 (en) 2006-12-08 2008-06-12 Weymer Raymond F Devices for covering ultrasound probes of ultrasound machines
US20080146942A1 (en) 2006-12-13 2008-06-19 Ep Medsystems, Inc. Catheter Position Tracking Methods Using Fluoroscopy and Rotational Sensors
US20080146940A1 (en) 2006-12-14 2008-06-19 Ep Medsystems, Inc. External and Internal Ultrasound Imaging System
ES2361134T1 (es) 2006-12-22 2011-06-14 Pulsion Medical Systems Ag Aparato de monitorización de pacientes para determinar un parámetro que representa un compartimiento de volumen intratorácico de un paciente.
US9220439B2 (en) 2006-12-29 2015-12-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
EP2114511B1 (en) 2007-01-03 2013-10-30 Covidien LP Surgical system having a magnetic entry
USD585556S1 (en) 2007-01-10 2009-01-27 Kabushiki Kaisha Toshiba Probe connector cover for an ultrasonic diagnosis apparatus
US8473030B2 (en) 2007-01-12 2013-06-25 Medtronic Vascular, Inc. Vessel position and configuration imaging apparatus and methods
US7996057B2 (en) 2007-01-31 2011-08-09 Biosense Webster, Inc. Ultrasound catheter calibration with enhanced accuracy
US20080188830A1 (en) 2007-02-06 2008-08-07 Arrow International, Inc. Selectively reinforced medical devices
US20080190438A1 (en) 2007-02-08 2008-08-14 Doron Harlev Impedance registration and catheter tracking
US7665893B2 (en) 2007-02-16 2010-02-23 Parker Laboratories, Inc. Protective cover set for a medical probe
US8303502B2 (en) 2007-03-06 2012-11-06 General Electric Company Method and apparatus for tracking points in an ultrasound image
US9468396B2 (en) 2007-03-19 2016-10-18 University Of Virginia Patent Foundation Systems and methods for determining location of an access needle in a subject
WO2008118992A1 (en) 2007-03-26 2008-10-02 Boston Scientific Scimed, Inc. High resolution electrophysiology catheter
US20080236598A1 (en) 2007-03-30 2008-10-02 Fred Gobel Drape for open tracheal suctioning
EP2134403B1 (en) 2007-04-11 2012-12-12 Elcam Medical Agricultural Cooperative Association Ltd. System for accurate placement of a catheter tip in a patient
US20080255475A1 (en) 2007-04-16 2008-10-16 C. R. Bard, Inc. Guidewire-assisted catheter placement system
US20080269611A1 (en) 2007-04-24 2008-10-30 Gianni Pedrizzetti Flow characteristic imaging in medical diagnostic ultrasound
GB0707906D0 (en) 2007-04-24 2007-05-30 Apparatus for detecting the position of a catheter
EP2140235A4 (en) 2007-04-24 2014-08-20 Scisense Inc METHOD AND DEVICE FOR MEASURING THE BLOOD VOLUME
US8463359B2 (en) 2007-04-25 2013-06-11 Nidus Medical, Llc Shape-sensing expandable member
US20080275765A1 (en) 2007-05-02 2008-11-06 Edward Kuchar Configurable gis data system
WO2008136008A2 (en) 2007-05-08 2008-11-13 Mediguide Ltd. Method for producing an electrophysiological map of the heart
US8480653B2 (en) 2007-05-23 2013-07-09 Biosense Webster, Inc. Magnetically guided catheter with concentric needle port
US7976469B2 (en) 2007-06-04 2011-07-12 Medtronic, Inc. Percutaneous needle guide
DE102007029229A1 (de) 2007-06-22 2008-12-24 Pajunk Gmbh & Co. Kg Besitzverwaltung Spannadapter für einen Katheter
US8784338B2 (en) 2007-06-22 2014-07-22 Covidien Lp Electrical means to normalize ablational energy transmission to a luminal tissue surface of varying size
WO2009001266A2 (en) 2007-06-22 2008-12-31 Koninklijke Philips Electronics N.V. Acoustic offset for transducer
US8447860B2 (en) 2007-06-25 2013-05-21 Dell Products L.P. Storage area network with target side recognition and routing table upload
US8057394B2 (en) 2007-06-30 2011-11-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Ultrasound image processing to render three-dimensional images from two-dimensional images
WO2009009064A1 (en) 2007-07-09 2009-01-15 Orison Corporation Ultrasound coupling material
EP2015105B1 (en) 2007-07-13 2011-06-08 eZono AG Opto-electrical ultrasound sensor and system
US20090024018A1 (en) 2007-08-07 2009-01-22 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Anatomical imaging system
US8226562B2 (en) 2007-08-10 2012-07-24 Ultrasonix Medical Corporation Hand-held ultrasound system having sterile enclosure
JP5127371B2 (ja) 2007-08-31 2013-01-23 キヤノン株式会社 超音波画像診断システム、及びその制御方法
US20090101577A1 (en) 2007-09-28 2009-04-23 Fulkerson Barry N Methods and Systems for Controlling Ultrafiltration Using Central Venous Pressure Measurements
US20090082661A1 (en) 2007-09-20 2009-03-26 General Electric Company System and method to automatically assist mobile image acquisition
US8527036B2 (en) 2007-09-28 2013-09-03 Maquet Critical Care Ab Catheter positioning method and computerized control unit for implementing the method
US8088072B2 (en) 2007-10-12 2012-01-03 Gynesonics, Inc. Methods and systems for controlled deployment of needles in tissue
CN101801436B (zh) 2007-10-31 2012-10-24 奥林巴斯株式会社 药液投给系统和药液投给用套管
GB0722406D0 (en) 2007-11-15 2007-12-27 Smiths Group Plc Medico-surgical assemblies and methods
CN101877996B (zh) 2007-11-21 2014-10-15 美国医软科技公司 通过计算机对三维体图像进行处理的方法和用于交互式经皮术前手术规划的系统
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US9636031B2 (en) 2007-11-26 2017-05-02 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
ES2651898T3 (es) 2007-11-26 2018-01-30 C.R. Bard Inc. Sistema integrado para la colocación intravascular de un catéter
EP2067498B1 (de) 2007-12-03 2012-02-01 BrainLAB AG Katheterstilett mit Katheter-Aufnahmelumen
US20090171217A1 (en) 2007-12-27 2009-07-02 Jeong Hwan Kim Ultrasound system for diagnosing breast cancer
US8255035B2 (en) 2007-12-31 2012-08-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Coated hypodermic needle
CN101475790B (zh) 2008-01-04 2012-10-10 杨光 新型木材胶粘剂及其制备方法
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US20090209950A1 (en) 2008-02-20 2009-08-20 Guided Delivery Systems Inc. Electrophysiology catheter system
US20090221908A1 (en) 2008-03-01 2009-09-03 Neil David Glossop System and Method for Alignment of Instrumentation in Image-Guided Intervention
US8016814B2 (en) 2008-03-10 2011-09-13 Medtronic Vascular, Inc. Guidewires and delivery catheters having fiber optic sensing components and related systems and methods
US8538509B2 (en) 2008-04-02 2013-09-17 Rhythmia Medical, Inc. Intracardiac tracking system
US8287520B2 (en) 2008-04-10 2012-10-16 Medtronic, Inc. Automated integrity tests
ES2921476T3 (es) 2008-04-17 2022-08-26 Bard Inc C R Sistemas para romper un campo estéril para la colocación intravascular de un catéter
US8494608B2 (en) 2008-04-18 2013-07-23 Medtronic, Inc. Method and apparatus for mapping a structure
WO2009129475A1 (en) 2008-04-18 2009-10-22 Medtronic, Inc. Method and apparatus for mapping a structure
US8340751B2 (en) 2008-04-18 2012-12-25 Medtronic, Inc. Method and apparatus for determining tracking a virtual point defined relative to a tracked member
US8260395B2 (en) 2008-04-18 2012-09-04 Medtronic, Inc. Method and apparatus for mapping a structure
WO2009129845A1 (en) 2008-04-22 2009-10-29 Ezono Ag Ultrasound imaging system and method for providing assistance in an ultrasound imaging system
US8814798B2 (en) 2008-04-25 2014-08-26 Medtronic, Inc. Implantable device and method for monitoring venous diameter
US20090275828A1 (en) 2008-05-01 2009-11-05 Magnetecs, Inc. Method and apparatus for creating a high resolution map of the electrical and mechanical properties of the heart
CN102215770B (zh) 2008-06-20 2013-11-13 皇家飞利浦电子股份有限公司 用于执行活检的方法和系统
US20100076305A1 (en) 2008-06-25 2010-03-25 Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts Method, system and computer program product for targeting of a target with an elongate instrument
US20100004543A1 (en) 2008-07-03 2010-01-07 Ahlund Patrick Ultrasound probe cover and method for its manufacture
US20100010612A1 (en) 2008-07-09 2010-01-14 Daniel Gelbart Lumen diameter and stent apposition sensing
US20100016726A1 (en) 2008-07-18 2010-01-21 Meier Joseph H Handheld Imaging Device And Method For Manufacture Thereof
JP2011528955A (ja) 2008-07-23 2011-12-01 セント ジュード メディカル インコーポレイテッド ワイヤレス送信用カテーテル無線周波アダプタ
US20100041984A1 (en) 2008-08-12 2010-02-18 James Edward Shapland Impedance sensing device and catheter system
EP2326249B1 (en) 2008-08-13 2017-01-18 Koninklijke Philips N.V. Dynamical visualization of coronary vessels and myocardial perfusion information
EP2313143B1 (en) 2008-08-22 2014-09-24 C.R. Bard, Inc. Catheter assembly including ecg sensor and magnetic assemblies
US20100057157A1 (en) 2008-08-28 2010-03-04 Assaf Govari Pacemaker with position sensing
WO2010027349A1 (en) 2008-09-03 2010-03-11 Transdermal Innovations Inc. Multipurpose hydrogel compositions and products
US9216188B2 (en) 2008-09-04 2015-12-22 The General Hospital Corporation Hydrogels for vocal cord and soft tissue augmentation and repair
US20100063401A1 (en) 2008-09-09 2010-03-11 Olympus Medical Systems Corp. Ultrasound endoscope system and ultrasound observation method
US8456182B2 (en) 2008-09-30 2013-06-04 Biosense Webster, Inc. Current localization tracker
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US20100114573A1 (en) 2008-10-30 2010-05-06 Motorola, Inc. Method and Device for Verifying a User
EP2348971A4 (en) 2008-10-30 2013-09-25 Troy D Payner SYSTEMS AND METHOD FOR LEADING A MEDICAL INSTRUMENT
US20100168557A1 (en) 2008-12-30 2010-07-01 Deno D Curtis Multi-electrode ablation sensing catheter and system
USD603050S1 (en) 2009-01-06 2009-10-27 Tung Thih Electronic Co., Ltd. Ultrasound transducer
US20100234733A1 (en) 2009-03-13 2010-09-16 Paul Wahlheim Sterile Ultrasound Probe Cover and Method of Releasing Coupling Agent from a Sealed Compartment
US20100249598A1 (en) 2009-03-25 2010-09-30 General Electric Company Ultrasound probe with replaceable head portion
US8298149B2 (en) 2009-03-31 2012-10-30 Boston Scientific Scimed, Inc. Systems and methods for making and using a motor distally-positioned within a catheter of an intravascular ultrasound imaging system
WO2010143196A1 (en) 2009-04-03 2010-12-16 Cavinkare Pvt Ltd. Novel synergistic transparent / translucent hydrogel composition; method of preparing it and a sheet / film made thereform
US8326419B2 (en) 2009-04-07 2012-12-04 Pacesetter, Inc. Therapy optimization via multi-dimensional mapping
MX2011011514A (es) 2009-04-28 2011-11-18 Alltranz Inc Formulaciones de canabidiol y metodos para utilizarlas.
US8608481B2 (en) 2009-05-13 2013-12-17 Medtronic Navigation, Inc. Method and apparatus for identifying an instrument location based on measuring a characteristic
US20130085571A1 (en) 2009-05-14 2013-04-04 Anja Mueller Composition and method of preparation of polysaccharide gel-based artificial, biodegradable skin scaffolds
US9895135B2 (en) 2009-05-20 2018-02-20 Analogic Canada Corporation Freehand ultrasound imaging systems and methods providing position quality feedback
US10039527B2 (en) 2009-05-20 2018-08-07 Analogic Canada Corporation Ultrasound systems incorporating spatial position sensors and associated methods
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
EP3542713A1 (en) 2009-06-12 2019-09-25 Bard Access Systems, Inc. Adapter for a catheter tip positioning device
US20110015527A1 (en) 2009-07-15 2011-01-20 Cardinal Health - Neurocare Flat doppler probe and method of the same
WO2011019760A2 (en) 2009-08-10 2011-02-17 Romedex International Srl Devices and methods for endovascular electrography
EP2464417B1 (en) 2009-08-14 2014-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical apparatus
SI2473475T1 (sl) 2009-08-31 2017-10-30 Zynerba Pharmaceuticals, Inc. Uporaba kanabidiolnih predzdravil pri topičnem in transdermalnem dajanju z mikroiglami
US9642534B2 (en) 2009-09-11 2017-05-09 University Of Virginia Patent Foundation Systems and methods for determining location of an access needle in a subject
US8215907B2 (en) 2009-09-30 2012-07-10 General Electric Company Method and apparatus for controlling acoustic emissions of a wind turbine
US11103213B2 (en) 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US8761862B2 (en) 2009-10-09 2014-06-24 Stephen F. Ridley Ultrasound guided probe device and sterilizable shield for same
US8496592B2 (en) 2009-10-09 2013-07-30 Stephen F. Ridley Clamp for a medical probe device
US20110112396A1 (en) 2009-11-09 2011-05-12 Magnetecs, Inc. System and method for targeting catheter electrodes
EP2327450A1 (en) 2009-11-27 2011-06-01 Theraclion SAS A cover, a treatment device and a method of use of such a device
CN102665694A (zh) 2009-12-17 2012-09-12 思玛化验室公司 抗滥用制剂
US8439873B1 (en) 2009-12-17 2013-05-14 Gail Marie Donovan Catheter with position indicator
BR112012019354B1 (pt) 2010-02-02 2021-09-08 C.R.Bard, Inc Método para localização de um dispositivo médico implantável
US8706209B2 (en) 2010-02-05 2014-04-22 3Dt Holdings, Llc Devices, systems, and methods for measuring parallel tissue conductance, luminal cross-sectional areas, fluid velocity, and/or determining plaque vulnerability using temperature
USD630756S1 (en) 2010-03-10 2011-01-11 Kabushiki Kaisha Toshiba Probe for an ultrasonic diagnosis apparatus
USD630757S1 (en) 2010-03-10 2011-01-11 Kabushiki Kaisha Toshiba Probe for an ultrasonic diagnosis apparatus
US8483802B2 (en) 2010-03-25 2013-07-09 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US20110245659A1 (en) 2010-04-01 2011-10-06 Sonosite, Inc. Systems and methods to assist with internal positioning of instruments
DE102010014869A1 (de) 2010-04-13 2011-10-13 Lts Lohmann Therapie-Systeme Ag Hydrogel für naturkosmetische Zwecke
USD684265S1 (en) 2010-04-20 2013-06-11 Ge Sensing & Inspection Technologies Gmbh Ultrasonic probe device
US9131869B2 (en) 2010-05-11 2015-09-15 Rhythmia Medical, Inc. Tracking using field mapping
US20130102890A1 (en) 2010-05-26 2013-04-25 Nabil Dib System and Method for Visualizing Catheter Placement in a Vasculature
EP2912999B1 (en) 2010-05-28 2022-06-29 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
JP5980201B2 (ja) 2010-05-28 2016-08-31 シー・アール・バード・インコーポレーテッドC R Bard Incorporated 針および医療用コンポーネントのための挿入誘導システム
USD629526S1 (en) 2010-06-04 2010-12-21 Medicis Technologies Corporation Therapy cap for ultrasonic therapy head
USD629527S1 (en) 2010-06-04 2010-12-21 Medicis Technologies Corporation Ultrasound therapy cap connection
EP2579767A2 (en) 2010-06-13 2013-04-17 Angiometrix Corporation Diagnostic kit and method for measuring balloon dimension in vivo
US20120101369A1 (en) 2010-06-13 2012-04-26 Angiometrix Corporation Methods and systems for determining vascular bodily lumen information and guiding medical devices
US8675939B2 (en) 2010-07-13 2014-03-18 Stryker Leibinger Gmbh & Co. Kg Registration of anatomical data sets
US8532743B2 (en) 2010-08-05 2013-09-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Movable magnet for magnetically guided catheter
CN103228219B (zh) 2010-08-09 2016-04-27 C·R·巴德股份有限公司 用于超声探测器头的支撑和覆盖结构
US8244339B2 (en) 2010-08-09 2012-08-14 Medtronic, Inc. Wireless cardiac pulsatility sensing
MX338127B (es) 2010-08-20 2016-04-04 Bard Inc C R Reconfirmacion de colocacion de una punta de cateter asistida por ecg.
US8425425B2 (en) 2010-09-20 2013-04-23 M. Dexter Hagy Virtual image formation method for an ultrasound device
US8634896B2 (en) 2010-09-20 2014-01-21 Apn Health, Llc 3D model creation of anatomic structures using single-plane fluoroscopy
ES2922673T3 (es) 2010-09-23 2022-09-19 Bard Inc C R Aparato y método para navegación de catéter usando mapeo de energía endovascular
EP2433564A1 (de) 2010-09-23 2012-03-28 BIOTRONIK SE & Co. KG Positionierung von Kathetern mittels Impedanzmessung
WO2012058461A1 (en) 2010-10-29 2012-05-03 C.R.Bard, Inc. Bioimpedance-assisted placement of a medical device
US8391956B2 (en) 2010-11-18 2013-03-05 Robert D. Zellers Medical device location systems, devices and methods
WO2012083245A1 (en) 2010-12-17 2012-06-21 C.R. Bard, Inc. Catheter introducer including a valve and valve actuator
JP2014501143A (ja) 2010-12-23 2014-01-20 バード・アクセス・システムズ,インコーポレーテッド 医療器具を案内するシステムおよび方法
US20120172727A1 (en) 2010-12-30 2012-07-05 Boston Scientific Scimed, Inc. Imaging system
US20130324866A1 (en) 2011-02-14 2013-12-05 Vita-Sentry Ltd. Indications of cross-section of small branched blood vessels
AU2012271236A1 (en) 2011-06-13 2014-01-16 Angiometrix Corporation Multifunctional guidewire assemblies and system for analyzing anatomical and functional parameters
US10506948B2 (en) 2011-07-05 2019-12-17 Cardioinsight Technologies, Inc. Localization for electrocardiographic mapping
RU2609203C2 (ru) 2011-07-06 2017-01-30 Си.Ар. Бард, Инк. Определение и калибровка длины иглы для системы наведения иглы
US9615759B2 (en) 2011-07-12 2017-04-11 Bard Access Systems, Inc. Devices and methods for ECG guided vascular access
JP2014522713A (ja) 2011-08-10 2014-09-08 カーディアック ペースメイカーズ, インコーポレイテッド 頚部インピーダンスを使用する生理学的パラメータの判定
EP2939599B1 (en) 2011-09-06 2018-03-07 eZono AG Magnetic medical device and magnetizer
US10791950B2 (en) 2011-09-30 2020-10-06 Biosense Webster (Israel) Ltd. In-vivo calibration of contact force-sensing catheters using auto zero zones
US11109835B2 (en) 2011-12-18 2021-09-07 Metritrack Llc Three dimensional mapping display system for diagnostic ultrasound machines
US8670816B2 (en) 2012-01-30 2014-03-11 Inneroptic Technology, Inc. Multiple medical device guidance
US9375195B2 (en) 2012-05-31 2016-06-28 Siemens Medical Solutions Usa, Inc. System and method for real-time ultrasound guided prostate needle biopsy based on biomechanical model of the prostate from magnetic resonance imaging data
EP2861153A4 (en) 2012-06-15 2016-10-19 Bard Inc C R APPARATUS AND METHODS FOR DETECTION OF A REMOVABLE CAP ON AN ULTRASONIC PROBE
WO2014052894A2 (en) 2012-09-28 2014-04-03 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
AU2013331376A1 (en) 2012-10-18 2015-04-30 C.R. Bard, Inc. Magnetic element-equipped needle assemblies
EP2964085A4 (en) 2013-03-08 2016-10-26 Bard Inc C R ICONIC PREPARATIONS RELATING TO SYSTEMS FOR PLACING A MEDICAL DEVICE
WO2014138918A1 (en) 2013-03-13 2014-09-18 The University Of British Columbia Apparatus, system and method for imaging a medical instrument
US10383542B2 (en) 2013-03-14 2019-08-20 St. Jude Medical, Atrial Fibrillation Division, Inc. Device, system, and method for intracardiac diagnosis or therapy with localization
US20140275990A1 (en) 2013-03-15 2014-09-18 Soma Access Systems, Llc Ultrasound Guidance System Including Tagged Probe Assembly
JP2015008777A (ja) 2013-06-27 2015-01-19 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びその制御プログラム
EP3073910B1 (en) 2014-02-06 2020-07-15 C.R. Bard, Inc. Systems for guidance and placement of an intravascular device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU555892A1 (ru) * 1974-09-24 1977-04-30 Каунасский Медицинский Институт Зонд дл эндокардиальной стимул ции сердца
US5121750A (en) * 1990-03-02 1992-06-16 Katims Jefferson J Apparatus for locating a catheter adjacent to a pacemaker node of the heart
US20080097232A1 (en) * 2006-10-23 2008-04-24 Rothenberg Peter M Method of locating the tip of a central venous catheter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mauro Pittiruti et al, The EKG Method for Positioning the Tip of PICCs: Results from Two Preliminary Studies, Journal of the Association for Vascular Access Volume 13, Issue 4, 2008, Pages 179-186, abstract. *

Also Published As

Publication number Publication date
CN102802514A (zh) 2012-11-28
RU2015110633A (ru) 2015-08-27
BRPI1010773B1 (pt) 2021-06-01
EP2440122A4 (en) 2014-04-09
US20100317981A1 (en) 2010-12-16
RU2011150917A (ru) 2013-07-20
EP3542713A1 (en) 2019-09-25
WO2010144922A1 (en) 2010-12-16
RU2549998C2 (ru) 2015-05-10
EP2440122B1 (en) 2019-08-14
JP5795576B2 (ja) 2015-10-14
KR101773207B1 (ko) 2017-08-31
EP2440122A1 (en) 2012-04-18
US9339206B2 (en) 2016-05-17
JP2012529929A (ja) 2012-11-29
ES2745861T3 (es) 2020-03-03
CN102802514B (zh) 2015-12-02
RU2015110633A3 (ru) 2018-10-25
KR20120027527A (ko) 2012-03-21
BRPI1010773A2 (pt) 2017-07-18

Similar Documents

Publication Publication Date Title
RU2691318C2 (ru) Способ позиционирования конца катетера
US10912488B2 (en) Apparatus and method for catheter navigation and tip location
US11419517B2 (en) Apparatus and method for catheter navigation using endovascular energy mapping
US10349857B2 (en) Devices and methods for endovascular electrography
JP6405090B2 (ja) 患者の血管系内で医療装置の位置を追跡するための医療システム及び医療システムを作動するための方法
JP5963834B2 (ja) 血管アクセス及びガイダンスシステム