PL178578B1 - Zawiesina cząstek 3-0-deacylowanego monofosforylolipidu A i sposób jej wytwarzania oraz kompozycja szczepionki zawierającej antygen w połączeniu z 3-0-deacylowanym monofosforylolipidem A i sposób jej wytwarzania - Google Patents
Zawiesina cząstek 3-0-deacylowanego monofosforylolipidu A i sposób jej wytwarzania oraz kompozycja szczepionki zawierającej antygen w połączeniu z 3-0-deacylowanym monofosforylolipidem A i sposób jej wytwarzaniaInfo
- Publication number
- PL178578B1 PL178578B1 PL94310598A PL31059894A PL178578B1 PL 178578 B1 PL178578 B1 PL 178578B1 PL 94310598 A PL94310598 A PL 94310598A PL 31059894 A PL31059894 A PL 31059894A PL 178578 B1 PL178578 B1 PL 178578B1
- Authority
- PL
- Poland
- Prior art keywords
- mpl
- antigen
- vaccine composition
- hbsag
- composition
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7024—Esters of saccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/715—Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55505—Inorganic adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55566—Emulsions, e.g. Freund's adjuvant, MF59
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55572—Lipopolysaccharides; Lipid A; Monophosphoryl lipid A
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Virology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- AIDS & HIV (AREA)
- Biotechnology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
1. Zawiesina czastek 3-0-deacylowanego monofosforylolipidu A (MPL), znamienna tym, ze jest wizual- nie przejrzysta i sterylizowalna przez slepa filtracje na hydrofilowej membranie PVDF 0,22 µ m, korzystnie czastki zawiesiny maja rozmiar mniejszy niz 120 nm. 2. Sposób wytwarzania zawiesiny czastek 3-0-deacylowanego monofosforylolipidu A, znamienny tym, ze sklada sie z zawieszania 3-0-deacylowanego monofosforylolipidu A w wodzie i poddawania otrzymanej za- wiesiny dzialaniu ultradzwieków do wytworzenia zawiesiny czastek wizualnie przejrzystej i sterylizowalnej przez slepa filtracje na hydrofilowej membranie PVDF 0,22 µ m, korzystnie o rozmiarze czastek zawiesiny generalnie mniejszym niz 120 nm. 3. Kompozycja szczepionki zawierajacej antygen w polaczeniu z zawiesina 3-0-deacylowanego mono- fosforylolipidu A (MPL) i odpowiednim nosnikiem, znamienna tym, ze zawiera MPL w postaci zawiesiny czastek wizualnie przejrzystej i sterylizowalnej przez slepa filtracje na hydrofilowej membranie PVDF 0,22 µ m, korzystnie o rozmiarze czastek zawiesiny generalnie mniejszym niz 120 nm, w ilosci 10-100 µ g na dawke i antygen. 25. Sposób wytwarzania kompozycji szczepionki zawierajacej antygen w polaczeniu z zawiesina 3-0-deacylowanego monofosforylolipidu A (MPL) i odpowiednim nosnikiem, znam ienny tym, ze polega na mieszaniu zawiesiny czastek MPL wizualnie przejrzystej i sterylizowalnej przez slepa filtracje na hydrofilo- wej membranie PVDF 0,22 µ m, korzystnie o rozmiarze czastek zawiesiny generalnie mniejszym niz 120 nm, z nosnikiem i antygenem w farmaceutycznie dopuszczalnej zaróbce. PL PL
Description
Przedmiotem wynalazkujest nowa zawiesina cząstek 3-0-deacylowanego monofosforylolipidu A i sposóbjej wytwarzania oraz kompozycja szczepionki zawierającej antygen w połączeniu z 3-0-deacylowanym monofosforylolipidem A i sposób jej wytwarzania.
3-0-deacylowany monofosforylolipid A (lub 3-de-0-acylowany monofosforylolipid A) był poprzednio nazywany 3D-MPL lub d3-MPL w celu wskazania że pozycja 3 redukującego końca glukozaminy jest de-O-acylowana. Preparatykę podaje brytyjski opis patentowy nr 2220211A. Chemicznie jest to mieszanina 3-deacylowanego monofosforylolipidu A z 4,5 lub 6 acylowanymi łańcuchami. W opisie termin 3D-MPL (lub d3-MPL) skracany jest do MPL, ponieważ „MPL” jest zastrzeżoną nazwą Ribi Immunochem,. Montana, stosowanym przez Ribi w celu jednoznacznego nazwania swojego 3-0-deacylowanego monofosforylolipidu A.
Brytyjski opis patentowy nr 2220211A wspomina, że endotoksyczność wcześniej stosowanych enterobakteryj nych lipopolisacharydów (LPS) zmniejsza się przy zachowaniu immunogennych właściwości. Jednak opis podaje te informacje po prostu w związku z układami bakteryjnymi (Gram-ujemnymi). Nie wspomniano o rozmiarach cząstek MPL. W istocie rozmiary cząstek 3-0-deacylowanego monofosforylolipidu A przekraczają 500 nm.
Publikacja WO/92/16231 opisuje szczepionkę zawierającą glikoproteinę gD wirusa opryszczki lub jej immunologiczne fragmenty w połączeniu z 3-0-deacylowanym monofosforylolipidem A. Tu także nie wspomniano o rozmiarach cząstek 3-0-deacylowanego monofosforylolipidu A.
Publikacja WO/92/06113 opisuje szczepionkę zawierającą glikoproteinę 160 wirusa HIV lub jej immunologiczne fragmenty w połączeniu z 3-0-deacylowanym monofosforylolipidem A. Nie wspomniano o rozmiarach cząstek MPL.
Przedmiotem wynalazkujest zawiesina cząstek 3-0-deacylowanego monofosforylolipidu
A (MPL), charakteryzująca się tym, że jest wizualnie przejrzysta i sterylizowalna przez ślepą filtrację nahydrofilowej membranie PVDF 0,22 pm, korzystnie cząstki zawiesiny mająrozmiar generalnie mniejszy niż 120 nm.
178 578
Przedmiotem wynalazku jest też sposób wytwarzania zawiesiny cząstek 3-0-deacylowanego monofosforylolipidu A, charakteryzujący się tym, że składa się z zawieszania 3-0-deacylowanego monofosforylolipidu A w wodzie i poddawania otrzymanej zawiesiny działaniu ultra-dźwięków do wytworzenia zawiesiny cząstek wizualnie przejrzystej i sterylizowalnej przez ślepąfiltrację nahydrofilowej membranie PVDF 0,22 pm, korzystnie o rozmiarze cząstek zawiesiny generalnie mniejszym niż 120 nm.
Przedmiotem wynalazkujest też kompozycja szczepionki zawierającej antygen w połączeniu z zawiesiną 3-0-deacylowanego monofosforylolipidu A (MPL) i odpowiednim nośnikiem, charakteryzująca się tym, że zawiera MPL w postaci zawiesiny cząstek wizualnie przejrzystej i sterylizowalnej przez ślepą filtrację na hydrofilowej membranie PVDF 0,22 pm, korzystnie o rozmiarze cząstek zawiesiny generalnie mniejszym niż 120 nm, w ilości 10-W0 pg na dawkę i antygen.
Korzystnie kompozycja zawiera MPL o rozmiarach cząstek 60-120 nm, a szczególnie korzystnie o rozmiarach cząstek mniejszych niż 100 nm.
W innym korzystnym wykonaniu kompozycja szczepionki zawiera jako nośnik wodorotlenek glinu.
Innym korzystnym nośnikiem jest emulsja typu olej w wodzie lub inny ciekły nośnik lipidowy.
Korzystnie szczepionka według wynalazku antygen zawiera antygen wirusowy. Szczególnie korzystnymi antygenami są: antygen Hepatitis A, a zwłaszcza zdezaktywowana kompozycja pełnych komórek szczepu HM-175; antygen Hepatitis B, a zwłaszcza antygen powierzchniowy Hepatitis B (HBsAg) lubjego wariant, antygen HBsAg będący antygenem S HBsAg (226 aminokwasów), antygen HBsAg zawierający dodatkowo sekwencję pre-S, antygen HBsAg zawierający złożoną cząstkę o wzorze (L*, S), przy czym L* oznacza zmodyfikowane białko L wirusa Hepatitis B mające sekwencję aminokwasową złożoną z reszt 12-52, następnie 133-145 i 175-400 białka L, a S oznacza białko S HBsAg; antygen Hepatitis A; jeden lub wiele antygenów Hepatitis i co najmniej jeden składnik wybrany spośród związków' różnych od antygenu Hepatitis, który chroni przed jedną lub wieloma chorobami wybranymi spośród dyfterytu, tężca, kokluszu, Haemofilis influenzae b (Hib) oraz polio.
Szczególnie korzystne są kompozycje zawierające kombinację DTP (dyfteryt-tężec-koklusz)-HBsAg, kombinację Hib-HBsAg, kombinację DTP-Hib-HBsAg oraz kombinację IPV (nieaktywna szczepionka polio)-DTP-Hib-HBsAg, i ewentualnie dodatkowo antygen Hepatitis A.
W innym wykonaniu kompozycja szczepionki zawiera glikoproteinę D HSV lub jej immunologiczny fragment, a zwłaszcza glikoproteinę D o uciętej sekwencji, korzystnie HSVgD2 pozbawione kotwiczącego końca C.
Kompozycja szczepionki korzystnie zawiera HIV gp 160 lub jego immunologiczny fragment, a zwłaszcza jako pochodną gp 160 zawiera pochodną gp 120.
Przedmiotem wynalazku jest też sposób wytwarzania kompozycji szczepionki zawierającej antygen w połączeniu z zawiesinąMPL polegający na mieszaniu zawiesiny MPL z nośnikiem i antygenem w farmaceutycznie dopuszczalnej zaróbce.
Korzystnym przedmiotem wynalazkujest kompozycja szczepionki zawierająca antygen w połączeniu z 3-0-deacylowanym monofosforylolipidem A (skracanym do nazwy MPL) i odpowiedni nośnik, w której rozmiar cząstek MPL jest „niewielki”, nie przekracza 120 nm.
Takie preparaty nadają się do wielu jedno- lub wielow-artościowych szczepionek.
Nieoczekiwanie stwierdzono, że kompozycje szczepionek według wynalazku mają szczególnie korzystne właściwości opisane poniżej. W szczególności takie kompozycje są wysoce immunogenne. Ponadto można zapewnić sterylność kompozycji z adiuwantem, ponieważ produkt nadaje się do sterylizującej filtracji. Kolejna korzyść z „małych” cząstek MPL pojawia się w przypadku kompozycji z wodorotlenkiem glinu, ponieważ MPL oddziaływuje z wodorotlenkiem glinu i antygenem tworząc wyodrębnionąjednostkę.
W kompozycjach według wynalazku antygen jest antygenem wirusowym, np. antygenem wobec infekcji żółtaczkowej (Hepatitis A, B, C, D lub E) lub opryszczki (HSV-1 lub HSV-2)
178 578 zgodnie z poniższym opisem. Opis współczesnych szczepionek przeciwżółtaczkowych wraz z pewną liczbą odnośników- można znaleźć w Lancet z 12 maja 1990 na stronie 1142 ff (prof.
A.L.W.F. Eddleston). Patrz także „Viral Hepatitis and Liver Disease” (wyd. Vyas, B.N., Dienstag, J.L. iHoofnagle, J.H., Grune and Stratton, Inc. (1984)) oraz „Viral Hepatitis and Liver Disease” (Proceedings of the 1990 International Symposium, wyd. F.B. Hollinger, S.M. Lemon i H. Margolis, publ. Williams i Wilkins). Odnośniki dla HSV-1 i HSV-2 można znaleźć w publikacji WO92/16321.
Infekcja wirusem hepatitis A (HAV) jest szeroko występującym problemem, ale dostępne są szczepionki nadające się do masowych szczepień, np. Havrix (SmithKline Beecham Biologicals) będący martwąatenuowanąszczepionkąze szczepu HM-175 HAV [patrz „Inactivated Candidate Vaccines for Hepatitis A”, F.E. Andre, A. Hepburn i E.D'Hondt, Prog Med. Virol., tom 37, str. 72-75 (1990) i monografia produktu „Havrix” opublikowana przez SmithKline Beecham Biologicals (1991)].
Flehming i in. (loc. cit., str. 56-71) przejrzał kliniczne aspekty, wirologię, immunologię i epidemiologię Hepatitis A i przedyskutował podejście do opracowywania szczepionek wobec tej pospolitej infekcji wirusowej.
W niniejszym opisie wyrażenie „antygen HAV” odnosi się do antygenu zdolnego do neutralizacji przeciwciała HAV u ludzi. Antygen HAV może zawierać żywe atenuowane cząstki wirusa lub zdezaktywowane atenuowane cząstki wirusa, albo też może być kapsyd lub białko wirusowe HAV, dogodne do wytworzenia metodami inżynierii genetycznej.
Infekcja wirusem hepatitis B (HBV) jest szeroko występującym problemem, ale dostępne są szczepionki nadające się do masowych szczepień, np. Engerix-B (SmithKline Beecham plc) otrzymywany metodami inżynierii genetycznej.
Wytwarzanie powierzchniowego antygenu Hepatitis B (HBsAg) jest dobrze udokumentowane. Patrz np. Hartford i in., Develop. Biol. Standard 54, str. 125 (1983), Gregg i in., Biotechnology, 5, str. 479 (1987), europejskie opisy patentowe EP-A-0226846, EP-A-0299108 i odnośniki tam zawarte.
W niniejszym opisie termin „antygen powierzchniowy Hepatitis B” lub „HBsAg” obejmuje każdy antygen HBsAg lub jego fragment wykazujący antygeniczoność antygenu powierzchniowego hBv. Należy rozumieć, że poza 226 aminokwasami sekwencji antygenu HBsAg S (patrz Tiollais i in., Nature, 317,489 (1985) i odnośniki tam zawarte) HBsAg opisany tutaj może w razie potrzeby zawierać całość lub część sekwencji pre-S opisanej w powyższych odnośnikach i w europejskim opisie patentowym EP-A-0278940. W szczególności HBsAg może stanowić polipeptyd zawierający sekwencję aminokwasów zawieraj ącąreszty 12-52, a następnie 133-145 i 175-400 białka L HBsAg względem otwartej ramki odczytu wirusa B Hepatitis serotypu ad (polipeptyd ten określa się jako L*, patrz europejski opis patentowy EP 0414374). HBsAg z zakresu wynalazku może także zawierać polipeptyd preS1-preS2-s opisany w europejskim opisie patentowym EP 0198474 (Endotronics) lub jego analogi takie, jak opisano w europejskim opisie patentowym EP 0304578 (McCormick i Jones). Opisany tutaj HBsAg może się też odnosić do mutantów, np. „mutanta ucieczkowego” opisanego w publikacji WO 91/14703 lub europejskim zgłoszeniu patentowym nr 0511855A1, a szczególnie do HBsAg, w którym na pozycji 145 glicynę podstawiono argininą.
Zwykle HBsAg występuje w postaci cząstek. Cząstki mogą zawierać np. białko S samo lub w postaci złożonych cząstek, np. (L*, S), gdzie L* jest takie, jak zdefiniowano powyżej, a S oznacza białko S HBsAg. Wymieniona cząstka ma korzystnie postać, w której jest produktem ekspresji w drożdżach.
Glikoproteina D wirusa Herpex Simplex mieści się w osłonie wirusa, a także możnają znaleźć w cytoplazmie zarażonych komórek (Eisenberg R.J. i in., J. of Virol. 1980, 35, 428-435). Składa się z 393 aminokwasów, w tym peptydu sygnałowego, i ma masę cząsteczkową około 60 kD. Ze wszystkich glikoprotein osłony tajest chyba najlepiej zbadana (Cohen i in. Virology 60,157-166). Wiadomo, że in vivo gra główną rolę w łączeniu się wirusa z błoną komórkową. Ponadto glikoproteina D wydziela neutralizujące przeciwciała in vivo (Eing i in. J. Med. Virology 127, 59-65).
178 578
Jednak latentny wirus HSV2 może wciąż ożyć i indukować nawrót choroby pomimo wysokiego poziomu neutralizujących przeciwciał w osoczu pacjenta. Jest więc oczywiste, że zdolność do indukowania tylko neutralizujących przeciwciał nie wystarcza do właściwego zwalczenia choroby.
W kompozycjach szczepionek według wynalazku korzystnie stosuje się dojrzałą rekombinacyjną uciętą glikoproteinę D (rgD2t) lub równoważne białka. Równoważne białka obejmują glikoproteinę gD z HSV-1.
W korzystnym aspekcie rgD2tjest glikoproteinąD o 308 aminokwasach, zawierająca aminokwasy od 1do 306 z naturalnej glikoproteiny z dodatkiem asparaginy lub glutaminy na końcu C uciętego białka. Ta postać białka obejmuje peptyd sygnałowy, który jest ucinany dając dojrzałe białko z 238 aminokwasami. Wytarzanie takiego białka w komórkach jajnika chomików chińskich opisuje europejski opis patentowy Genetech EP-B-139417 i Science 222, str. 524, a także Biotechnology, czerwiec 1984, str. 527. Taka szczepionka, skomponowana z małym MPL według wynalazku ma znacznie większy potencjał terapeutyczny niż znane kompozycj e rgD2tChociaż pewne doświadczalne i dostępne w handlu szczepionki dają doskonałe wyniki, wiadomo dobrze, że optymalna szczepionka musi stymulować nie tylko neutralizujące przeciwciało, ale także powinna stymulować tak skutecznie, jak to możliwe, odporność komórkową mediowaną komórkami T.
Szczególnie korzystne jest, że kompozycje szczepionek według wynalazku skutecznie indukują zabezpieczającą odporność, nawet przy badzo niewielkich dawkach antygenu.
Stanowią one doskonałą ochronę przeciwko pierwotnej i nawrotowej infekcji, a także korzystnie stymulują zarówno specyficznąpozakomórkową (neutralizującąprzeciwciała), a także mediowaną komórkami efektorowymi (DTH) odpowiedź immunologiczną.
W celu wytworzenia 3-deacylowanego monofosforylolipidu A z małymi rozmiarami cząstek, zwykle nie przekraczającymi 120 nm, można stosować procedurę opisanąw brytyj skim opisie patentowym GB 2200211 uzyskuj ąc znane 3D-MPL (lub handlowe MPL o większych rozmiarach cząstek można zakupić w Ribi Immunochem) i a następnie produkt można poddać działaniu ultradźwięków aż do otrzymania przejrzystego roztworu. Rozmiary cząstek można oszacować stosując dynamiczne rozpraszanie światła opisane poniżej. W celu utrzymania rozmiarów MPL w zakresie 100 nm po połączeniu z wodorotlenkiem glinu, antygenem i buforem, można dodać Tween 80 lub sorbitol. W tych warunkach ustalono, że MPL nie ulega agregacji w obecności bufora fosforanowego, jak to jest możliwe wjego nieobecności. Postępując w ten sposób określa się dokładniej końcową kompozycję. MPL wciąż oddziaływuje z wodorotlenkiem glinu i antygenem tworząc wyodrębnionąjednostkę. Przejrzysty zawiesina MPL również stanowi aspekt wynalazku. Zawiesinę można sterylizować przepuszczając ją przez filtr.
Korzystnie rozmiary cząstek w zawiesinie wynoszą 60-120 nm.
Najkorzystniej rozmiary cząstek w zawiesinie wynoszą poniżej 100 nm.
mPl zdefiniowany powyżej występuje w ilości 10-200 pg, korzystnie 25-50 pg na dawkę, w której antygen występuje w ilości 2-50 pg lub więcej. Kompozycja szczepionki według wynalazku może zawierać ponadto immunostymulatory, a w korzystnej odmianie QS21 (nazywane niekiedy QA21). Jest to frakcja HPLC ekstraktu saponiny pochodzącego z kory drzewa Quillaja Saponaria Molina, a sposób jej wytwarzania podaje opis patentowy Stanów Zjednoczonych Ameryki nr 5057540.
Nośnik może być ewentualnie emulsjątypu olej w wodzie, nośnikiem lipidów lub wodorotlenkiem glinu (solą wodorotlenku glinu).
Nietoksyczne emulsje typu olej w wodzie korzystnie zawierają nietoksyczny olej, np. skwalen, oraz emulgator taki jak Tween 80, w wodnym nośniku. Wodny nośnik może być np. solanką buforowaną fosforanem.
Korzystnie kompozycje szczepionki będą zawierały antygen lub kompozycję antygenową mogącą wywoływać odpowiedź immunologiczną wobec ludzkich lub zwierzęcych patogenów, przy czym antygen lub antygenowa kompozycja pochodzi w HIV-1 (taki jak gp120 lub gp160, patrz publikacja WO 92/06113 i odnośniki tam umieszczone), wirusa opryszczki, takijak gD lub
178 578 jego pochodne, lub białko Immediate Early takiejak ICP27 z HSV-1 lub HSV-2, gB (lubjego pochodne) z ludzkiego cytomegalowirusa, lub gpl, II lub III z wirusa Varicella Zoster, lub z wirusa żółtaczki, takiego jak wirus hepatitis B albo wobec innych wirusowych patogenów, takich jak Respiratory Syncytial Virus, wirus ludzkiego brodawczaka lub grypy, albo też patogenów bakteryjnych, takich jak Salmonella, Neisseria, Borr^lia (np. OspA lub OspB lub jego pochodne), lub Chlamydia, lub Bordetella, np. P.69, PT lub FHA, i pasożytów takichjak plazmodium lub Toxoplasma. Kompozycje szczepionki według wynalazku mogązawierać antygen nowotworowy, i nadawać się na szczepionkę przeciwrakową.
Jednąz odmian wynalazku jest kompozycja zawierająca antygen HAV (np. jak w Havrix) w mieszaninie z MPL i wodorotlenkiem glinu zgodnie z poniższym opisem.
Kolejną odmianą wynalazku jest kompozycja zawierająca antygen powierzchniowy wirusa HB (HBsAg) (np. jak w Engerix) w mieszaninie z MPL i wodorotlenkiem glinu zgodnie z poniższym opisem.
Kolejną odmianą wynalazku jest kompozycja zawierająca antygen HBsAg jako cząstki (L8, S) w mieszaninie z MPL i wodorotlenkiem glinu.
Kombinowane szczepionki Hepatitis A z Hepatitis B można wytwarzać zgodnie ze sposobem według wynalazku.
Kolejną odmianą wynalazku jest kompozycja szczepionki zawierająca dojrzałą uciętą glikoproteinę D(rgD2)) lub równoważne białka opisane powyżej. Tak więc kolejną. odmianą wynalazku jest kompozycja według wynalazku zawierająca antygen OspA lub jego pochodną z Borelia btagdorferi. Można na przykład stosować antygeny, szczególnie antygeny OsaA ze szczepów ZS7' lub B31. Tak więc kolejną odmianą wynalazku jest kompozycja szczepionki zawierająca antygen grypy. Dzięki temu otrzymuje się z ulepszoną szczepionkę przeciw grypie, szczególnie przy zastosowaniu wirusa rozszczepionego.
Kompozycję można stosować także z lekkimi cząstkami opryszczkowymi, takimi jak opisane w międzynarodowym zgłoszeniu patentowym nr PCT/GB92/00824 i międzynarodowym zgłoszeniu patentowym nr PCT/GB/00179.
Korzystnie kompozycje szczepionki według wynalazku zawierają inne antygeny do skutecznego leczenia lub profilaktyki jednej lub wielu infekcji bakteryjnych, wirusowych lub grzybiczych.
Np. kompozycje szczepionki na żółtaczkę według wynalazku korzystnie zawierająco najmniej jeden składnik taki jak antygen nieżółtaczkowy, znany z tego, że nadaje odporność na jedną lub kilka z powyższych infekcji: defteryt, tężec, koklusz, Haemofilis influenzae b (Hib) oraz polio.
Korzystnie szczepionka według wynalazku zawiera HBsAg jak zdefiniowano powyżej. Szczególna kombinacja szczepionki według wynalazku obejmuje kombinację szczepionek DTP (dyfteryt-tężec-koklusz^hepatitis B, kombinację szczepionek Hib-hepatitis B, kombinację szczepionek DTP-Hib-hepatitis B i kombinację szczepionek IPV (nieaktywna szczepionka aoli)-DTP-Hib-hepatitis B.
Powyższe kombinacje mogą korzystnie zawiera składnik zabezpieczający przed Hepatitis A, szczególnie martwy osłabiony szczep pochodzący ze szczepu HM-175 obecny w Havrix.
Odpowiednie składniki takich szczepionek są dostępne w handlu, a szczegóły można otrzymać ze Światowej Organizacji Zdrowia. Na przykład składnik IPV może być zdeaktywowaną szczepionką przeciw polio Salka. Szczepiona przeciwko krztuścowi może zawierać całe komórki lub produkty komórkowe.
Korzystnie szczepionka przeciw hepatitis lub kombinowana jest szczepionką pediatryczną.
Kompozycje szczepionek według wynalazku mają zastosowanie w terapii medycznej, szczególnie do leczenia lub profilaktyki infekcji, w tym wirusowych i bakteryjnych, lub do immunoterapeutycznego leczenia nowotworów. W korzystnym aspekcie szczepionka według wynalazku stanowi szczepionkę terapeutyczną do leczenia istniejących infekcji, np. żółtaczki B lub opryszczki u ludzi.
178 578
Preparaty szczepionkowe są opisane ogólnie w New Trends and Developments in Vaccines, wyd. Voller i in., University Park Press, Baltimore, Maryland, USA, 1978. Kapsułkowanie liposomami opisuje np. Fullerton, opis patentowy Stanów Zjednoczonych Ameryki nr 4372945 i Armor i in., opis patentowy Stanów Zjednoczonych Ameryki nr 4474757.
Ilość antygenu w każdej dawce szczepionki dobiera się tak, indukowała immunozabezpieczającą odpowiedź bez znaczących niekorzystnych efektów ubocznych typowych szczepionek. Ilość ta będzie zmieniała się w zależności od rodzaju wykorzystanych immunogenów. Zwykle można się spodziewać, że każda będzie zawierać 1-1000 pg pełnego immunogenu, korzystnie 2-100 pg, najkorzystniej 4-40 pg. Optymalną ilość dla konkretnej szczepionki można ustalić w standardowy sposób, w tym obserwując miano przeciwciał lub inne odpowiedzi u badanych. Po wstępnym szczepieniu pacjenci mogąotrzymać wtórnąszczepionkę po około 4 tygodniach.
W kolejnym aspekcie przedmiotem wynalazku jest sposób wytwarzania szczepionki skutecznej w zapobieganiu lub leczeniu infekcji, który to sposób polega na mieszaniu antygenu z nośnikiem i zawiesinąMPL, przy czym rozmiary cząstek MPL korzystnie nie przekraczają 120 nm, zwykle 60-120 nm, bardziej korzystnie około 100 nm lub mniej.
Następujące przykłady ilustrują wynalazek i pokazują płynące z niego korzyści.
Przykład 1: Wytwarzanie MPL o rozmiarach cząstek 60-120 nm.
Wodę do zastrzyków wprowadza się do fiolek zawierających 3-de-O-acylowany monofosforylolipid A (MPL) z Ribi Immunochem, Montana, przy pomocy strzykawki do stężenia 1 do 2 mg/ml. Zawiesinę początkowąuzyskano stosując mieszanie wirowe. Zawartość fiolek przeniesiono do 25 ml okrągłodennych probówek Corex (10 ml zawiesiny na probówkę) i zawiesinę poddano działaniu ultradźwięków w łaźni ultradźwiękowej. Gdy zawiesina stała się przejrzysta, rozmiary cząstek oceniono metodą dynamicznego rozpraszania światła (Malvern Zetasizer 3). Obróbkę kontynuowano do osiągnięcia przez cząstki MPL rozmiarów 60-120 nm.
Zawiesiny można w pewnych przypadkach przechowywać w temperaturze 4°C bez znaczącej agregacji do 5 miesięcy. Izotoniczny NaCl (0,15 M) lub izotoniczny NaCl z 40 mM fosforanu indukuje gwałtowną agregację (rozmiar >3-5 pm).
Przykład 2: Wytwarzanie wielkoskalowe sterylnego rozpuszczalnego MPL o rozmiarach cząstek poniżej 100 nm.
Liofilizowany 3-de-O-acylowany monofosforylolipid A (MPL) z Ribi Immunochem umieszczono w zawiesinie w wodzie do zastrzyków (WFI). Zawiesinę przepompowywano w sposób ciągły przez ultradźwiękową komorę przepływową. Komora taka jest sporządzana ze szkła lub stali nierdzewnej z uszczelnieniem z PTFE, aby spełniać wymagania praktyki ogólnolekarskiej. Ultradźwięki generuje się odpowiednim generatorem i sonotrodą z Undatim Ultrasonics (Louvain-La-Neuve, Belgia). Wymiennik ciepła dołącza się do pętli w celu uniknięcia degradacji cieplnej produktu. Temperatura MPL między wlotem a wylotem komory wynosi od +4°C do 30°C, a różnica tych temperatur nie przekracza 20°C. Należy rozumieć, że ciepło jest usuwane w miarę przechodzenia materiału przez aparat.
Aparat ten pokazano schematycznie na fig. 1.
2.1. Ultradźwięki
Proszek MPL(5 Odo 500 mg) umieszcza się w zawiesinie w WFI w stężeniu od 1do2 mg/ml.
Zawiesinę MPL (w warunkach mieszania) przepompowuje się w sposób ciągły przez pętlę ultrr^cU^^^wicęktową (fig. 1) z natężeniem od 50 do 100 ml na minutę w celu uzyskania temperatury równowagi układu wynoszącej od +4 do +15°C.
Widmo własnej częstotliwości sonotrody w układzie (moc, komora przepływowa, natężenie przepływu cieczy, temperatura) ustawia się zgodnie z instrukcją producenta. Wstępnie ustalone granice mieszczą się od 19000 do 21000 Hz dla przetwornika 20000 Hz.
Generator pozwala kontrolować optymalną wydajność obróbki ultradźwiękowej (więcej energii i mniej ciepła) w danym czasie.
Temperatura w czasie procesu wynosi poniżej 30°C, aby uniknąć degradacji MPL.
Proces jest zakończony, gdy cząstki mająrozmiary poniżej 100 nm, a roztwórjest widocznie przejrzysty. W czasie działania ultradźwiękami pobiera się próbki, aby ustalić .rozmiary cząstek
178 578 metodąfotokorekcyjnej spektroskopii (dynamiczne rozpraszanie światła) stosując Malvern Zetasizer 3 w taki sposób, jak w przykładzie 1. Całkowity czas przebywania cieczy w komorze oblicza się na od 2,5 do 3,5 minuty (patrz tabela 1) przy komorze o pojemności 20 ml i natężeniu recyrkulacji 50 ml na minutę. Daje to średni czas przebywania 25 s na cykl, a zwykle potrzeba mniej niż 10 cykli dla uzyskania pożądanego efektu - małych cząstek MPL.
2.2. Proces sterylizacji
Powstały „rozpuszczony” MPL sterylizuje się przez ślepą filtrację na hydrofitowej membranie PVDF 0,22 pm. Obserwowane ciśnienie wynosi poniżej 1 bar. Co najmniej 25 mg „rozpuszczonego” MPL z łatwością przetwarza się na 1 cm2 z odzyskiem ponad 85%.
2.3. Przechowywanie/Trwałość
Sterylny „rozpuszczony” MPL przechowuje się w temperaturze +2 do 8°C. Dane o trwałości (Malvern) nie wykazują znacznych różnic rozmiarów cząstek po 6 miesiącach przechowywani (patrz tabela 2).
Przykład 3: Kompozycja szczepionki przeciwkoHepatitis B.
MPL o rozmiarach cząstek poniżej 100 nm otrzymano jak w przykładzie 1. Wodorotlenek glinu otrzymano z Superfos (Alhydrogel).
MPL umieszczono w zawiesinie w wodzie do zastrzyków w stężeniach od 0,2 do 1 mg.ml metodą działania ultradźwiękami w łaźni wodnej, aż do osiągnięcia rozmiarów cząstek od 80 do 500 nm, według pomiaru fotokorekcyjnego rozpraszania światła.
Od 1 do 20 pg HBsAg (S-antygen, jak w Engerix B) w roztworze bufora fosforanowego (1 mg/ml)zaadsorbowanona30do 100 pg wodorotlenku glinu (roztwór 10,3 8 mg/ml Al3+) przez 1 godzinę w temperaturze pokojowej z mieszaniem. Do roztworu dodano następnie 30 do 50 pg MPL (roztwór 1 mg/ml). Objętość i osmotyczność ustawiono na 600 pl wodą do zastrzyków i stężonym 5-krotnie buforem fosforanowym. Roztwór inkubowano w temperaturze pokojowej przez 1 godzinę i trzymano w temperaturze 4°C do użycia. Dojrzewanie kompozycji zachodzi w czasie przechowywania. Całość stanowi 10 dawek wstrzykiwanych przy testach na myszach.
Przykład 4: kompozycja szczepionki przeciwko Hepatitis A.
MPL o rozmiarach cząstek poniżej 100 nm otrzymano jak w przykładzie 1. Wodorotlenek glinu otrzymano z Superfos (Alhydrogel).
HAV (360 do 22 EU (jednostki ELISA) na dawkę) poddano wstępnej adsorpcji na 10% końcowego stężenia wodorotlenku glinu (0,5 mg/ml). Do roztworu dodano MPL (12,5 do 100 pg na dawkę).
Pozostały wodorotlenek glinu dodano do roztworu i pozostawiono na godzinę w temperaturze pokojowej. Objętości uzupełniono buforem fosforanowym i końcowąkompozycję trzymano w temperaturze 4°C do użycia.
Przykład 5: Porównanie skuteczności adiuwantów w szczepionce rekombinacyjnej podjednostki glikoproteiny D Herpes Simplex.
5.1. W studium tym określono zdolność kompozycji Al(OH)3 z MPL do polepszania odporności ochronnej obciętej glikoproteiny D wirusa Herpes Simplex typu 2. Stadia immunogeniczne przeprowadzono na naczelnych. Celem eksperymentów było zbadanie wpływu rozmiarów cząstek 3-de-O-acylowanego monofosforylolipidu A (MPL) na immunogenność i skuteczność kompozycji rgD2t, Al(OH)3 i MPL u gryzoni i naczelnych. Zbadano trzy różne kompozycje Al(OH)3 z MPL o małych rozmiarach cząstek:
Al(OH)3 z MPL 100 nm (jak opisano poprzednio)
Al(OH)3 z MPL i sorbitolem
Al(OH)3 z MPL i Tween
5.2. Kompozycje antygenowe
Wodorotlenek glinu (Al(OH)3) otrzymano z Superfos (Alhydrogel Superfod, Dania). MPL otrzymano z Ribi Immunochem Research Inc.
178 578
5.2.1.1. rgD2t z Al(OH)3/MPL i TEA (trójetyloglin)
MPL umieszczono metodą działania ultradźwiękami w łaźni wodnej otrzymując rozmiary cząstek od 200 do 600 nm. Preparaty otrzymano zgodnie ze zgłoszeniem patentowym nr WO 92/16231 i przechowywano w temperaturze 4°C przed użyciem.
Dawka zawierała 5 pg fgD2t, 0,5 mg Al(OH)3 i 50 pg MPL.
5.2.1.2. rgD2t z Al(OH)3/MPL 100 nm
MPL (rozmiary cząstek poniżej 100 nm) otrzymano jak w przykładzie 1. rgD2t adsorbowano na wodorotlenku glinu i inkubowano jeszcze przez godzinę w temperaturze pokojowej.
Preparat skompletowano dodając bufor PBS z końcowym stężeniem 10 nM PO4 i 150 mM NaCl. Końcową kompozycję inkubowano dalej przez 30 minut w temperaturze pokojowej i przechowywano w temperaturze 4°C przed użyciem.
Dawka zawierała 5 pg fgD2t, 0,5 mg Al(OH)3 i 50 pg MPL.
5.2.1.3. rgD2t z Al(OH)3/MPL 100 nm i sorbitol
MPL otrzymano jak w przykładzie 1. rgD2t adsorbowano na wodorotlenku glinu i inkubowano jeszcze przez godzinę w temperaturze pokojowej. Dodano następnie 50% roztwór sorbitolu do końcowego stężenia 5%. Dodano następnie roztwór Tris 10 mM do końcowej objętości i ihkubowano jeszcze przez godzinę w temperaturze pokojowej z mieszaniem.
Kompozycję przechowywano w temperaturze 4°C przed użyciem.
Dawka zawierała 5 pg fgD2t, 0,5 mg Al(OH)3 i 50 pg MPL.
5.2.1.4. rgD2t z Al(OH)3/MPL 100 nm i Tween
MPL otrzymano jak w przykładzie 1. W celu utrzymania rozmiarów cząstek MPL 100 nm dodano do roztworu Tween 80 w stężeniu takim, że daje stężenie 0,01 %w końcowej kompozycji. Dalej przygotowano kompozycję jak powyżej w 5.2.1.3.
Dawka zawierała 5 pg fgD2t, 0,5 mg Al (OH)3 i 50 pg MPL.
5.3. Eksperyment profilaktyczny na świnkach morskich
W eksperymentach zaszczepiono grupę świnek morskich w dniu 0 i 28 5 pg rgD2t w dwu różnych kompozycjach MPL z wodorotlenkiem glinu. Szczepiono podskórnie dawką 0,5 ml. W miesiąc po pierwszym szczepieniu prowadzono świnkom dopochwowo 105 jednostek HSV2 szczep MS. Obserwowano je codziennie szukając pierwotnej i nawrotnej choroby HSV2 (dni 4 do 39 po zarażeniu).
5.3.1. Eksperymenty terapeutyczne na świnkach morskich
W eksperymentach zarażono grupę świnek morskich 105jednostkami HSV2 szczep MS. Po wyzdrowieniu z pierwotnej infekcji obserwowano je codziennie szukając nawrotu choroby opryszczkowej (dni 13 do 21). Świnki zaszczepiono w -dniu 21 i 42 szczepionką rgDfoA/OH/./MPL. Szczepionki podawano podskórnie w dawce 0,5 ml. Zwierzęta obserwowano codziennie na obecność opryszczkowych uszkodzeń aż około do dnia 60 do 84.
5.3.2. Studia immunogenności u naczelnych
Immunogenność rgD2t/Al(OH)3/MPL w kombinacji z MPL w sorbitolu przeprowadzono na afrykańskich zielonych małpach. Grupy małp zaszczepiono w dniu 0 i 28 20 pg rgD2t i 0,5 mg Al(OH)3 z 50,20 lub 5 pg MPL w sorbitolu. Badano specyficzne pozakomórkowe (miano ELISA i zobojętniające) oraz komórek efektorowych (reakcja nadwrażliwa typu opóźnionego DTH) odpowiedzi immunologiczne. Kompozycje podawano domięśniowo w dawce 1 ml. Preparaty kompozycji przygotowywano tak, jak opisano powyżej. Badano krew zwierząt co około dwa tygodnie w celu stwierdzenia obecności przeciwciał.
Odpowiedź DTH badano w 14 dni po drugim szczepieniu. Opis testu skórnego podano poniżej.
5.4. Odczyty informacji
Przeprowadzono testy w celu określenia specyficznej odpowiedzi na przeciwciała indukowanej przez kompozycje rgD2t/Al(OH).3/MPL (określenie miana ELISA anty-rgD2t i miana zobojętniającego anty-HSV2). Skuteczność ochronną, kompozycji gD2 oceniano na modelach profilaktycznych i terapeutycznych na świnkach morskich. Przeprowadzono także na małpach studia immunogenności. Określono odpowiedzi specyficzne pozakomórkowe i DTH.
178 578
5.4.1. Miana ELISA i zobojętniające
Określono miana anty-przeciwciało rgD2t i aktywność neutralizującą anty-HSV2 zgodnie ze sposobami podanymi w zgłoszeniu patentowym WO 92/16231.
5.4.2. Nadwrażliwość typu opóźnionego (DTH)
Kompozycje rgD2t przetestowano na zdolność indukowania odpowiedzi immunologicznej specyficznej dla komórek T mierzonej przez indukcję odpowiedzi nadwrażliwości typu opóźnionego (DTH).
Afrykańskie zielone małpy zaszczepiono w dniu 0 i 28 20 pg kompozycji szczepionki gD2 podawanej domięśniowo. Wykonano na nich testy skórne w 14 dni po drugim szczepieniu metodą śródskómej iniekcji na brzuchu 15 lub 5 pg rgD2t w solance. Wykonano na nich testy skórne z solankąjako płynem kontrolnym. Miejsce iniekcji zbadano w 24 i 48 godzin później w poszukiwaniu rumienia i stwardnienia. Zmierzono rozmiary lokalnych reakcji.
5.4.3. Model dopochwowy zarażenia na śwince morskiej
Model ze świnką morską infekcji genitalnej HSV opisał L. Stanberry i in. (J. of Infectious Diseases 1982, 146:397-403); Intervirology 1985, 24: 226-231). Krótko, w eksperymentach profilaktycznych świnki morskie zarażono dopochwowo 105jednostek HSV2 szczep MS w miesiąc po ostatnim szczepieniu. Obserwowano codziennie kliniczny przebieg pierwotnej choroby i ostrość uszkodzeń skóry genitalnej w 4-12 dni po zarażeniu. Badano codziennie zwierzęta na obecność powrotnych uszkodzeń optyszczkowych w dniach od 13 do 39. W eksperymentach terapeutycznych świnki morskie zarażono w dniu 0 105jednostkami HSV2 szczep MS. Po wyzdrowieniu z pierwotnej infekcji badano je codziennie pod kątem nawrotu opryszczki (dni 13 do 21), po czym podzielono na grupy przypadkowo zgodnie z skutkami choroby pierwotnej i wtórnej (równoważny rozkład zwierząt z łagodną i ostrą infekcją w każdej grupie) w celu wykonania szczepienia lub niewykonania szczepienia. Szczepionkę podawano w dniu 20 i 41 po zarażeniu. Rozkład obecności nawrotu choroby obserwowano zwykłe w około 70 dni po zarażeniu.
Uszkodzenia opiyszczkowe oceniono ilościowo stosując skalę od 0 do 32.
Skala ocen
Typ uszkodzenia | Ocena |
Brak | 0 |
Uszkodzenia pochwowe | |
- krwawienie | 0,5 |
- zaczerwienienie przez 1 do 2 dni bez krwawienia | 0,5 |
- zaczerwienienie i krwawienie przez dzień | 1 |
- zaczerwienienie bez krwawienia przez co najmniej 3 dni | 1 |
Zewnętrzne pęcherzyki opryszczkowe | |
- <4 małe pęcherzyki | 2 |
- > 4 małe pęcherzyki lub 1 duży | 4 |
- > 4 duże uszkodzenia | 8 |
- zlewające się duże uszkodzenia | 16 |
- zlewające się duże uszkodzenia na całych zewnętrzu genitaliów | 32 |
Odczyty kliniczne
Infekcja pierwotna
- Ostrość urzkodzzkia - en arna duiennyeh odczytów yróez prz z dn do 12 po infekcji.
Ostrość uszkodzenia wyraża się jako średnią arytmetyczną ± odchylenie standardowe, a także medianę (lepsze dla testu bezparametrowego)
178 578
- Wystąpienia pierwotnej infekcji = % zwierząt mających maksymalne oceny 0,0,:5,12,4, lub 16 (rzadziej 32).
Indeks pierwotnej infekcji=Ą (maks. ocena i) x (% wystąpień) z i = 0,0,5,2,4,8 lub 16.
Nawrót choroby
- Liczba dni nawrotu = liczba dni z nawrotem dla dni od 13 do 39 po infekcji. Jeden nawrót musi być poprzedzany i musi po nim następować jeden dzień bez uszkodzeń, a w jego okresie muszą być dwa dni z rumieniem lub jeden z pęcherzykami. Liczba dni nawrotu jest wyrażana średnią arytmetyczną ± odchylenie standardowe i medianami.
- Ostrość nawrotu=suma dziennych ocen dla dni od 13 do 39 po infekcji. Wyniki sąpodane jako średnie arytmetyczne ± odchylenia standardowe i mediany.
5.5. Wyniki
Skuteczność ochronna różnych kompozycji rgD2t/Al(OH)3/MPL porównano w eksperymentach profilaktycznych na świnkach morskich. Przeprowadzono także na naczelnych studia immunogenności. Celem tych eksperymentów było porównanie immunogenności i skuteczności ochronnej ^^D2tzAl(OH)3 w połączeniu z MPL o różnych rozmiarach cząstek.
5.5.1. Eksperymenty profilaktyczne
Przeprowadzono dwa eksperymenty w celu określenia potencjału różnych szczepionek rgD2t/Al(OH)3/MPL w chronieniu przed pierwotną i powrotną chorobą HSV2 przy podawaniu świnkom morskim przed zarażeniem dopochwowym.
Eksperyment 1: Porównanie MPL 100 nm z sorbitolem z MPL z TEA
Grupę samic świnek morskich Hartleya (200-250 g) zaszczepiono w dniu 0 i 28 5 pg rgD2t/Al(OH)3 w połączeniu z MPL o małych rozmiarach cząstek (100 nm, MPL w sorbitolu) lub większych (MPL w TEA). Kontrolne zwierzęta zaszczepiono zgodnie z tym samym protokołem adiuwantem lub nie szczepiono wcale. Krew pobierano w dniu 14 i 28 po drugim szczepieniu w celu określenia przeciwciał w teście ELISA lub teście zobojętniania. Zwierzęta zarażono 29 dni po drugim szczepieniu 105jednostkami HSV2 szczep MS dopochwowo. Po zarażeniu obserwowano je codziennie szukając śladów ostrej infekcji (dni 4 do 12 po zarażeniu) i dowodów nawrotnej choroby opryszczkowej (dni 13 do 39 po zarażeniu).
a) indukcja odporności pozakomórkowej
Jak pokazano w tabeli 3, wyższe miana ELISA i zobojętniające uzyskano w przypadku stosowania MPL o małych rozmiarach cząstek w kompozycji ng.D2t/Al(OH)3.
b) Wpływ szczepienia na pierwotną infekcję HSV2 (tabela 3)
W porównaniu z grupą kontrolną zarażoną i przechodzącą ostrą pierwotną infekcję, obie szczepione grupy wykazały znacznie niższy poziom uszkodzeń (p <0,00005). Rzadsze występowanie uszkodzeń skóry zaobserwowano w przypadku grupy szczepionej rgD2t/Al(OH)3/MPL 100 nm (p<0.06).
c) Wpływ szczepienia na nawrotnąinfekcję HSV2
Wyniki podaje tabela 4. W porównaniu z kontrolną grupą obie szczepionki były w stanie wstrzymać rozwój nawrotu choroby opryszczkowej, na co wskazywała mniej sza liczba przypadków nawrotu (p <0,02 dla rgD2t/Al(OH)3MPL 100 nm).
d) Wnioski
Obie kompozycje sąw stanie zapewnić znai^^^ochronę przed pierwotnąinfekcją i zmniejszyć zakres nawrotu choroby. Wyniki pokazują, że kompozycja rgD2t/Al(OH)3/MPL z cząstkami MPL o małych rozmiarach ma bardzo dużą skuteczność profilaktyczną.
Eksperyment 2: Skuteczność Al(OH)3/MPL 100 nm
Grupę świnek morskich Hartleya (200-250 g) zaszczepiono w dniu 0 i 28 5 pg gD2 w Al(OH)3 z MPL 100 nm. Szczepienie wykonano podskórnie w dawce 0,5 ml. Kontrolne zwierzęta zaszczepiono zgodnie z tym samym protokołem adiuwantem lub nie szczepiono wcale. Krew pobierano w dniu 14 i 28 po drugim szczepieniu w celu określenia przeciwciał w teście ELISA lub teście zobojętniania. Zwierzęta zarażono 29 dni po drugim szczepieniu 105 jednostkami HSV2 szczep MS dopochwowo.
a) indukcja odporności pozakomórkowej
178 578
Jak pokazano w tabeli 3, grupa szczepiona wykazała dobre miana ELISA i zobojętniające. Grupa kontrolna nie wykazała wykrywalnej odpowiedzi pczeciwciałowej.
b) Wpływ szczepienia na pierwotną infekcję HSV2 (tabela 3)
W porównaniu z grupąkontrolnązarażoną i przechodzącą ostrąpierwotną infekcję, szczepiona grupa wykazała znacznie niższy poziom uszkodzeń (p < 0,00005) i występowania (p < 0,002). Nie zaobserwowano zewnętrznych uszkodzeń skóry u szczepionych świnek morskich.
c) Wpływ szczepienia na nawrotną infekcję HSV2 (tabela 4)
W porównaniu z kontrolną grupą szczepionka rg'D2t/Al(OH)3/MPL była w stanie zmienić rozwój nawrotu choroby opryszczkowej, na co wskazywała znaczna redukcja ostrości przypadków nawrotu (p < 0,00005) i częstości nawrotów (p < 0,01)
d) Wnioski
Kompozycja rgD2t/Al(OH)3 z cząstkami MPL o małych rozmiarach ma bardzo dużąskuteczność w zapewnianiu ochrony przed pierwotną i wtórną infekcją HSV2 u świnek morskich.
Z eksperymentów opisanych powyżej można wyciągnąć wniosek, że kompozycje Al(OH)3 z MPL o małych rozmiarach otrzymane na dwa różne sposoby indukująco najmniej tak silną odpowiedź profilaktyczną, jak kompozycje Al(OH)3 z MPL o dużych rozmiarach. Ponadto MPL o małych rozmiarach korzystnie ulega łatwej sterylizacji przed użyciem.
5.5.2. Eksperymenty terapeutyczne
Celem tych eksperymentów jest porównanie potencjału terapeutycznego różnych kompozycji rgD2t/Al(OH)3/MPL w czasie nawrotu opryszczki u świnek morskich z ustaloną infekcjąHSV2.
Świnki morskie szczepiono dopochwowo w dniu 0 105jednostkami HSV2 szczep MS. Obserwowano je codziennie szukając pierwotnej infekcji (dni 4 do 12), atakże nawrotu infekcji opryszczkowej (dni 13 do 20). Zwierzęta podzielono na grupy przypadkowo zgodnie z skutkami choroby pierwotnej i wtórnej (równoważny rozkład zwierząt z łagodną i ostrą infekcją w każdej grupie). Świnki morskie bez śladów klinicznych infekcji nie wprowadzono do protokołu. Szczepionkę podawano podskórnie w dniu 21 i 42 po zarażeniu.
Terapeutycznąinfekcję rgD2t/Al(OH)3/MPL oceniono w trzech różnych eksperymentach.
Eksperyment 1: Porównanie rgD2t/Al(OH)3 z MPL o dużych rozmiarach cząstek (MPL w TEA)
Świnki morskie z nawrotem choroby podzielono na grupy, podając im albo 20 pg rgD2t/Al(OH)3 z MPL o dużych rozmiarach cząstek (MPL w TEA), lub sam adiuwant. Szczepionki podawano podskórnie w dniu 21 i 42 po zarażeniu. Rozkład nawrotów choroby obserwowano do dnia 84.
Jak pokazuje tabela 3, kompozycja rgD2t/Al(OH)3/MPL z TEA nie była skuteczna w osłabianiu trwaaącego nawrotu infekcji;
Eksperyment 2: Skuteczność rgD2t/Al(OH)3 z MPL 100 nm
Dwie grupy świnek morskich zaszczepiono 20 pg rgD2t/Al(OH)3 z MPL o małych rozmiarach cząstek (MPL 100 nm), lub zaniechano szczepienia.
Szczepionki podawano w dniu 21 i 42 po zarażeniu.
Rozkład nawrotów choroby obserwowano do dnia 69.
Jak pokazuje tabela 5, w porównaniu z danymi z eksperymentu 1, gdzie użyto MPL o dużych rozmiarach cząstek, szczepienie rgD2t/Al(OH)3/MPL 100 nm zmieniła częstość powstawania choroby HSV2 w porównaniu z grupąkontrolną, zmniejszając ostrość nawrotu (-39%, p <0,05) i liczbę dni z nawrotem (-28%, p <0,1).
Eksperyment 3: Porównanie skuteczności Al(OH)3 w połączeniu z MPL o małych rozmiarach cząstek
W eksperymencie zastosowano trzecią strategię otrzymywania MPL o małych rozmiarach cząstek: dodanie Tween, np. Tween 80.
Grupy eksperymentalne były następujące: Grupa 1 (n = 15): 20 pg rgD2t/Al(OH)3 z MPL
100 nm z Tween
Grupa 2 (n = 15): 20 pg rgD2t/Al(OH)3 z MPL 100 nm z sorbitolem
178 578
Grupa 3 (n = 16): kontrolna
Grup kontrolnych nie poddawano szczepieniu lub szczepiono tylko Al(OH):, z MPL. Szczepionki podawano w dniu 21 i 42 po zarażeniu. Rozkład nawrotów choroby obserwowano do dnia 60.
Wyniki pokazano w tabeli 5. Znaczne, wyraźne działanie terapeutyczne zaobserwowano u zwierząt szczepionych dwoma kompozycjami rgD2t/Al(OH)3 z MPL. Obie kompozycje znacznie zmniejszały ostrość nawrotów, liczbę dni ich trwania i liczbę nawrotów.
Wnioski
Zaobserwowano bardzo silne działanie terapeutyczne wobec ustalonego nawrotu genitalnej choroby HSV2 w przypadku dwu kompozycji rgD2t/Al(OH>3 z MPL o małych rozmiarach cząstek (około 100 nm). W przeciwieństwie do tego nie zaobserwowano działania terapeutycznego w przypadku MPL o dużych rozmiarach cząstek (MPL w TEA) dodawanego do szczepionki rgD2t/Al(OH)3.
Wyniki otrzymane dla świnek morskich wyraźnie pokazują skuteczność profilaktyczną kompozycji rgD2t/Al(OH)3 z MPL o małych rozmiarach cząstek. Mają one wyższy potencjał terapeutyczny niż rgD2t/Al(OH)3 z MPL o dużych rozmiarach cząstek.
5.5.3. Studia immunogenności rgD2t/Al(OH)3 w połączeniu z MPL o małych rozmiarach cząstek u naczelnych
Dawki 50,20 lub 5 pg MPL 100 nm połączono z 20 pg rgD2t i A/OH) (0,5 mg). Wykonano dwa szczepienia w dniu 0 i po miesiącu. Mierzono specyficzne pozakomórkowe (miano ELISA i zobojętniające) oraz komórek efektorowych (DTH) odpowiedzi immunologiczne.
a) procedura doświadczalna
Trzy grupy zielonych małp afrykańskich zaszczepiono w dniu 0 i 28 20 pg gD2t z Al(OH)3 zawierającym 50,20 lub 5 pg MPL. Badano krew zwierząt co około dwa tygodnie w celu stwierdzenia obecności przeciwciał w testach ELISA (miana anty-gD2) i testach zobojętniających. Trzy kompozycje szczepionki porównano pod względem zdolności indukowania odpowiedzi immunologicznej specyficznej dla komórek T mierzonej przez indukcję odpowiedzi nadwrażliwości typu opóźnionego (DTH). Na trzech małpach z każdej grupy wykonano na nich testy skórne w 14 dni po drugim szczepieniu metodą iniekcji na brzuchu 15 lub 5 pg gD2t w solance. Wykonano na nich także testy skórne z solankąjako płynem kontrolnym. Miej sce iniekcji zbadano w 24 i 48 godzin później w poszukiwaniu rumienia i stwardnienia.
b) Wyniki
Odpowiedzi serologiczne i DTH pokazuje tabela 6. Grupy małp szczepione kompozycją rgD2t i Al(OH)3 zawierającą 50 lub 20 pg MPL wytwarzały znacznie więcej zobojętniających przeciwciał niż grupa otrzymująca dawkę 5 pg MPL (odpowiednio p <0,003 i p <0,008). Nie było wyraźnej różnicy w mianach ELISA i zobojętniającym mierzonych w grupach 50 lub 20 pg MPL. Zauważono korelację pomiędzy dawkąMPL a wpływem na odpowiedź immunologicznąkomórek efektorowych. Silnąodpowiedź DTH wykryto u większości małp (3/4) szczepionych kompozycjami z 50 lub 20 pg MPL. W przeciwieństwie do tego tylko jedna małpa z grupy 5 pg MPL wykazała odpowiedź w teście skórnym.
c) Wnioski
Dane podane powyżej pokazują, że działanie jako adiuwanta Al(OH)3 w połączeniu z MPL o małych rozmiarach cząstek jest skuteczne również u naczelnych, a nie tylko u małych gatunków zwierząt. U małp można zaobserwować korelację pomiędzy dawkąMPL i immunogenicznością kompozycji rgD2t/Al(OH)3/MPL , przy czym najlepszą odpowiedź serologiczną i DTH daje ilość 50 i 20 pg.
Przykład 6: BADANIA KLINICZNE szczepionek na Lyme i Hepatitis B oraz małych cząstek MPL
6.1. Szczepionka na chorobę Lyme zawierająca białko fuzyjne NS1(1-81)z wirusa grupy i
OspA z B. burgdorferi ZS7.
178 578
Wytwarzanie kompozycji
6.1.1. NS 1 -OspA/wodorotlenek glinu
NSl-OspA wytworzoną zgodnie z , procedurą ze zgłoszenia patentowego WO 93/04175 zaadsorbowano na wodorotlenku glinu i inkubowano w temperaturze pokojowej przez 1 godzinę Końcową objętość osiągnięto dodając bufor fosforanowy (PO4 10 mM, NaCl 150 mM). Kompozycję przechowywano w temperaturze 4°C do wykorzystania.
Dawka zawiera 10 pg NS1-OspA/500 pg wodorotlenku glinu.
6.1.2. NS1-OspA/wOdorotlenek glinu/MPL
NS1-OspA zaadsorbowano na wodorotlenku glinu i inkubowano w temperaturze pokojowej przez 1 godzinę. MPL, wytworzony jak uprzednio opisano, dodano do kompozycji i ponownie inkubowano w temperaturze pokojowej przez 1 godzinę. -Końcową objętość osiągnięto dodając bufor fosforanowy (PO4 10mM,NaCl 150 mM). Kompozycję przechowywano w temperaturze 4°C do wykorzystania.
Dawka zawiera 10 pg NSl-OspA/500 pg wodorotlenku glinu/50 pg MPL.
6.1.3. Przebieg szczepień
Ochotnicy otrzymali trzykrotnie zastrzyki domięśniowe 1 ml danej kompozycji w dniach 0, 31 i 62. Osocza pobrano w 30 dnia po I, II i III szczepieniu. Poddano je analizie ELISA na łączną zawartość IgG anty-OspA i podobnądo LA-2 odpowiedź przeciwcialową w teście inhibicji (LA-2 wykazało jako przeciwciało działanie zabezpieczające przed infekcją u myszy).
6.2. Κοιτφί^ο^ε HHsAg/'MPL dla. luuzi
6.2.1. Wytwarzanie kompozycji
HBsAg 20 pg/wodorotlenek glinu 500 pg
HBsAg zaadsorbowano 'na końcowej ilości wodorotlenku glinu i końcową objętość osiągnięto dodając bufor fosforanowy z solanką (PO4 10 mM, NaCl 150 mM) dla dawki 1 ml. Kompozycję przechowywano w temperaturze 4°C do wykorzystania.
6.2.2. HBsAg 20 pg/wodorotlenek glinu 100 pg
HBsAg skomponowano jak powyżej adsorbując na 100 pg wodorotlenku glinu. Końcowa objętość wynosiła 1 ml na dawkę.
6.2.3. HBsAg 20 pg/wodorotlenek glinu 100 pg/MPL 50 pg
HBsAg zaadsorbowano na 100 pg wodorotlenku glinu. Dodano MPL we właściwym stężeniu i inkubowano w temperaturze pokojowej przez 1 godzinę. Końcową objętość osiągnięto dodając odpowiedni bufor (jak powyżej) i przechowywano w temperaturze 4°C do wykorzystania.
6.2.4. Przebieg szczepień
Ochotnicy (20;w grupie) otrzymali zastrzyki domięśniowe 1 mljednej z danych kompozycji. Osocza pobrano w miesiącu 0, 1, 3 i 6. Poddano je analizie na przeciwciała zabezpieczające handlowo dostępnym testem Abbota.
6.3. WWNIKJ
Tabela 8 pokazuje, że MPL , stosowany w połączeniu z wodorotlenkiem glinu i NS1 -OspA w postaci cząstek 100 nm skutecznie pozwala na powstanie wyższych mian przeciwciał o naturze inhibitującej, niż antygen na wodorotlenku glinu, a kinetyka serokonwersji jest szybsza.
Wynika stąd że dla rozpuszczalnego antygenu ,takiego jak NS 1 -OspA , u ludzi MPL skomponowany w postaci małych cząstek ma własności adiuwanta wykazywane już u zwierząt w dla innych rozpuszczalnych antygenów.
Tabela 7 pokazuje, że działanie wspomagające utracone w wyniku zmniejszenia ilości wodorotlenku glinu w kompozycjach dla Hepatitis B może być odzyskane po dodaniu MPL w postaci opisanej w niniejszym opisie. MPL polepsza także szybkość serokonwersji.
Przykład 7: Połączona kompozycja szczepionki - Hepatitis B + Hepatitis A
HBsAg adsorbuje się na 90% końcowej ilości wodorotlenku glinu (0,5 mg/ml) i inkubuje w temperaturze pokojowej przez 1 godzinę. Odczyn pH ustawia się na 6,2 i preparat pozostawia na 14 dni w temperaturze pokojowej do dojrzenia.
antygen Hepatitis A w ilości 360 do 22 UE na dawkę, w postaci zdezaktywowanej pochodnej szczepu HM-175 (jak w Havrix) poddaje się wstępnej adsorpcji na wodorotlenku glinu
178 578 w 10% końcowego stężenia (0,5 mg/ml). Resztę wodorotlenku glinu dodaje się następnie do roztworu i pozostawia na godzinę w temperaturze pokojowej z mieszaniem.
HAV zaadsorbowany na wodorotlenku glinu dodaj e się następnie do kompozycj i HBsAg.
Do roztworu HAV/HBsAg dodaje się MPL (cząstki mniejsze niż 100 nm) do końcowego stężenia 12,5 do 100 pg na 1 ml dawki, uzupełnia się do końcowej objętości i przechowuje kompozycję w temperaturze 4°C przed użyciem.
Przykład 8: Kombinowane szczepionki zawierające dodatkowe antygeny
Kombinowane szczepionki można wytwarzać dodając jeden lub kilka żądanych antygenów do kompozycji opisanych w przykładzie 2, 3 lub 4 powyżej.
Przykład 9: Wzrost odporności pozakomórkowej i indukcja odporności komórkowej metodą immunizacji myszy HBsAg skomponowanym z wodorotlenkiem glinu i MPL.
9.1. Wpływ Al(OH)3 z MPL na indukcję przeciwciał anty-HBs
Myszy Balb/c immunizowano podskórnie lub przezskórnie rekomibnacyjnym HBsAg adsorbowanym na Al(OH)3 z MPL jako adiuwantem. Myszy szczepiono dwukrotnie kompozycjami HBsAg(Al(MPL i mierzono odpowiedź przeciwciał po pierwszej i drugiej dawce. Łączną ilość Ig zmierzono testem ELISA lub AUSAB (Abbott Lab, 111.), zawierając szczególną uwagę na indukcję przeciwciał izotypu IgG2a, ponieważjest on indukowany głównie przez wydzielanie g-interferonu. Indukcja tego izotypu pośrednio odzwierciedla aktywację odporności komórkowej, konkretnie aktywację Th1.
Zbadano stosunek HBsAg/MPL i rozmiary cząstek MPL.
9.1.1. Eksperyment 1: Wpływ dawki MPL (> 500 nm) na immunogenność rec HBsAg adsorbowanego na Al(OH)3
Grupę 10 samic myszy Balb/c immunizowano podskórnie 2,5 pg recHBsAg adsorbowanego na 50 pg Alłt + (jako Al(OH>3 zawierającego rosnące ilości MPL (3,1 do 50 pg) o rozmiarach cząstek> 500 nm. Myszy szczepiono dwukrotnie 100 pl w odstępie dwutygodniowym. Pobrano próbki krwi po 2 tygodniach od pierwszego zastrzyku (częściowe) i po tygodniu od drugiego. Zmierzono łączne IgG anty-HBs i specyficzne IgG2a testem ELISA stosując recHBsAg jako antygen przechwytujący. Miana wyrażono jako odwrotności rozcieńczenia odpowiadającego 50% wartości maksymalnej (środkowe rozcieńczenie). Wyniki wskazująca wzrost ilości specyficznych IgG i IgG2a ze wzrostem dawek MPL, szczególnie przy dawce od 12,5 do 50 pg. Wpływjest widoczny dla pierwotnej i wtórnej odpowiedzi, i jest szczególnie wyraźny dla IgG2a (prawie 20-krotny wzrost), wskazując pośrednio na wydzielanie g-interferonu indukowane immunizacją MPL.
9.1.2. Eksperyment II - Porównanie klinicznych zestawów adsorbowanego recHBsAg zawierającego lub nie zawierającego MPL (> 500 nm)
Przygotowano 3 kliniczne zestawy recHBsAg adsorbowanego na A^OHty zestaw DSAH16 nie zawierał MPL i był zestawem kontrolnym. Zestawy DSAR501 i 502 przygotowano w podobny sposób (20 pg recHBsAg adsorbowano na 0,5 mg Al+++ jako Al(OH^), ale zawierały 50 pg MPL (> 500 nm).
Trzy zestawy wstrzyknięto grupom po 10 myszy (200 pl zawiera 2,5 pg HBsAg, 100 pg Al+++ i 6,25 pg MPL), dwukrotnie w odstępie dwutygodniowym. Pobrano próbki krwi po 14 dniach od pierwszego zastrzyku i po tygodniu od drugiego. Zmierzono poziom przeciwciał anty-HBs zestawem AUSAB lub domowym ELISA dla IgG lub IgG2a. Wyniki podaje tabela 2. Wyniki wskazują, że dwa tygodnie po pierwszym zastrzyku oba zestawy zawierające MPL indukując bardzo wyraźną odpowiedź anty-HBs (12,4 i 41,9 mIU/ml), a zestaw bez MPl tylko odpowiedź minimalną (0,75 mIU/ml). Liczba odpowiedzi jest także wyższa w przypadku obecności MPL (9/10 i 9/10 wobec 1/10 bez MPL). Wpływ MPL podkreśla także stan po drugim zastrzyku, ponieważ uzyskane miana dla zestawów DSAR501 i DSAR502 są około 6-krotnie wyższe niż w nieobecności MPL.
Wskazuje to, że przynajmniej w przypadku myszy MPL (> 500 nm) może polepszyć zarówno kinetykę odpowiedzi anty-HBs, jak i poziom tej odpowiedzi.
178 578
Wyniki potwierdził poziom specyficznej IgG i IgG2a po immunizacji zestawem DSAH 16 (bez MPL) i DSAR502 (z MPL): miano anty-HBs IgG wynosi 5 (pierwotna odpowiedź) i 3 (wtórna odpowiedź) razy więcej w obecności MPL.
9.1.3. Eksperyment III: Wpływ dawki MPL (< 100 nm) na immunogenność rekombinacyjnego HBsAg adsorbowanego na Al(OH)3
Grupę 10 myszy (Balb/c, samice, 7-tygodniowe) immunizowano podskórnie 1 pg rekombinacyjnego HBsAg adsorbowanego na 50 pg A+++ (jako Al(OH)3) zawierającego rosnące ilości MPL (3,1 do 25 pg) o rozmiarach cząstek< 100 nm. Myszy szczepiono dwukrotnie 200 pl w odstępie dwutygodniowym. Pobrano próbki krwi po 2 tygodniach od pierwszego zastrzyku i po tygodniu od drugiego. Zmierzono testem ELISA odpowiedź anty-HBs (łączne Ig, IgG, IgG2a) na pobranym osoczu. Miana wyrażono jako środkowe rozcieńczenie (odwrotności rozcieńczenia odpowiadającego 50% wartości maksymalnej). Wyniki wskazują, że nawet mała dawka 3,1 pg MPL indukuje silny wzrost odpowiedzi antygenu, zarówno pierwotnej, jak i wtórnej. Odpowiedź jest maksymalna dla 6,25 pg i spada do wartości w nieobecności MPL przy dużych dawkach MPL; (25 pg). Wzór odpowiedzi jest podobny dla IgG, IgG2a i łącznej Ig. Wyniki są przeciwne do wyników dla MPL o dużych rozmiarach (> 500 nm) i wskazują, że cząstki MPL o małych rozmiarach (> 100 nm) są skuteczniejsze (co najmniej w przypadku odporności pozakomórkowej), ponieważ potrzeba mniej MPL dla uzyskania maksymalnego efektu. Wyższą aktywność MPL o małych rozmiarach cząstek potwierdziło kilka doświadczeń.
Jak widać dla MPL o dużych rozmiarach cząstek (> 500 nm), działanie wspomagające MPL jest wyższe dla IgG2a niż łącznej IgG lub Ig. Przy maksymalnym efekcie wtórnej odpowiedzi (6,25 pg MPL) występuje 25-krotny wzrost zawartości IgG2a, oraz odpowiednio 7,6 i
4,3 dla IgG i łącznej Ig.
9.2. Indukcja odporności komórkowej przez recHBsAg adsorbowany na Al(OH)3 - wpływ
MPL
Jeśli odporność eozakomórkowa wystarcza do ochrony przed wirusem Hheαtjtjtd B, indukcja komórkowej odporności (CTH, Th1) powinna mieć duże znaczenie w leczeniu choroby.
Do leczniczych szczepionek konieczne są nowe kompozycje, ponieważ Al(OH)3 jest w stanie polepszyć odporność pozakomórkową, ale nie komórkową.
Zbadano wpływ MPL na indukcję komórek Th1 zdolnych do wydzielania IL-2 i g-(to jest gamma)- interferonu u myszy Balb/c immunizowanych recHBsAg adsorbowanym na Al(OHty
9.2.1. Eksperyment I - Wpływ MPL (> 500 nm) na indukcję komórek Th1eo immumzncjj myszy Balb/c HBsAg adsorbowanym na Al(OH)3
Grupę 10 myszy Balb/c (samice, 5-tygodniowe) jmmunizowαnz zastrzykiem w poduszkę stóp 30 pl roztworu zawierającego 10 pg HBsAg 15 pg Al+++ (jako Al(OHty) i 15 pg MPL. Kontrolnym myszom wstrzyknięto tę samą ilość recHBsAg zmieszanego z FCA (pozytywna kontrola) lub adsorbowanego na Al(OH)3 (negatywna kontrola).
Sześć dni po immunizacji myszy zabito i usunięto podkopowe węzły chłonne. Komórki węzłów (LNC 2,105/ml) hodowano przez różny okres (24 do 74 godzin) na pożywce RPMI uzupełnionej 1 % negatywnego osocza myszy i 5 pg/ml recHBsAg. Po zakończeniu hodowli zmierzono ilość IL-2, INF-g i IL-4 wydzielonego do pożywki. IL-2 oszacowano po zdolności do stymulacji proliferacji (miarą jej było przyłączanie 3H-tymidyny) zależnej od IL-2 linii CTL (komórki VDA2), a miano wyrażono jako wskaźnik stymulacji (SI = ilość 3H-tymidyny włączanej do stymulowanych komórełk/ilość 3H tymidyny do mestymulzwnnych komórek). Ilość IL-4 i INF-g mierzono przy pomocy handlowych zestawów ELISA (Holland Biotechnology dla IFN-g i Endogen dla IL-4). Miana wyrażono w pg IFN-g/ml.
Wyniki wskazują, LNC z myszy immunizowanych HBsAg adsorbowanym na Al(OH)3 nie wydziela znaczniej szych ilości IL-2, IL-4 lub INF-g. W przeciwieństwie do tego duże ilości IL-2 (SI = 38 po 48 godzinach) i znaczne ilości INF-g wydzielają LNC z myszy immunizowanych HBsAg adsorbowanym na Al(OH)3 z MPL. Wydzielanie to jest podobne (INF-g) lub wyższe (IL-2) w porównaniu z obserwowanym dla myszy immunizowanych HBsAg z FCA, a in vitro zachodzi wcześniej.
178 578
Nie wykryto IL-4 po immunizacj i HBsAg absorbowanym na Al(OH)3 nawet w obecności MPL.
Taki profil wydzielania wskazuje, że specyficzne komórki Th1 (IL-2, INF-g) uległy indukcji przez immunizację adsorbowanym HBsAg w obecności MPL, ale nie wjego nieobecności. Jednak nie wykryto Th2 (IL-4) w tych warunkach immunizacji.
9.2.2. Eksperyment I - Wpływ dawki MPL (<100 nm) na indukcję komórek Th1 po immunizacji myszy Balb/c HBsAg adsorbowanym na Al(OH)3.
Grupę 5 myszy Balb/c immunizowano zastrzykiem w dwie poduszki stóp 30 pl roztworu zawierającego 10 pg HBsAg adsorbowanego na 15 pg A+++ (jako Al(OH^) ze wzrastającą ilością MPL (100 nm, 0 do 15 pg).
Sześć dni po zastrzyku myszy zabito i komórki węzłów podkolanowych (LNC, 2,106 komórek/ml)) hodowano na pożywce RPMI uzupełnionej 1%negatywnego osocza myszy przez różny okres (24 godziny do 96/25) w obecności 5 pg/ml rccHBsAg.
Wydzielanie IL-2 zmierzono stymulując proliferację komórek VDA2, a stężenie IL-2 wyrażono jako wskaźnik stymulacji (SI). Wydzielanie INF-g zmierzono przy pomocy handlowych zestawów7 i wyrażono w pg/ml.
Stwierdzono, że wydzielanie IL-2 wzrasta bardzo znacznie przy niskiej dawce MPL (7,5 pg), a maksymalny efekt powstaje przy 15 pg MPL.
Wydzielanie IL-2 jest znacznie istotniejsze po 24 godzinach niż po 48 lub 72 godzinach.
Wydzielanie INF-g nie następuje w przypadku HBsAg adsorbowanego na Al(OH)3 w nieobecności MPL. Mała dawka (7,5 pg) MPL indukuje wydzielanie INF-g, a ponownie maksymalny efekt powstaj e przy 15 pg MPL. W przeciwieństwie do IL-2 wydzielanie INF-gjest w hodowli opóźnione i wzrasta z czasem do 96 godzin.
Łącznie dane te wskazują, że MPL (poniżej 100 nm) jest silnym induktorem Th1 w połączeniu z HBsAg adsorbowanym na Al(OH)3. Zbadano wpływ kompozycji zawierającej HBsAg adsorbowany na Al(OH)3 i MPL na indukcję pozakomórkowej i komórkowej odporności u myszy Balb/c. Wyniki wskazuj, że MPL wyraźnie polepsza kinetykę odpowiedzi anty-HBs, ponieważ znacznie więcej przeciwciał anty-HBs znaleziono po pierwotnym i powtórnym szczepieniu. Zmodyfikowanajest także jakość anty-HBs i obserwuje się preferowanąindukcję IgG2a, która wskazuje pośrednio na wydzielanie INF-g, a więc indukcję komórkowej odporności.
Bezpośrednie określenie indukcji komórek Th1 przez kompozycje zawierające HBsAg, Al(OH)3 i MPL wskazuje wyraźnie, że MPL bardzo silnie indukuje wydzielanie IL-2 i INF-g przez komórki Th1. Takie kompozycje stanowiąważny wkład w rozwój leczniczych szczepionek.
Najlepsze wyniki osiągnięto w przypadku MPL o rozmiarach cząstek mniejszych niż 100 nm.
Wyniki eksperymentów opisanych tutaj podają tabele 9-14.
13. Wnioski
Łączne dane sugerują, że MPL o małych rozmiarach cząstek jest ulepszonym immunostymulatorem u naczelnych, w tym i człowieka, w porównaniu z MPL o dużych rozmiarach cząstek. Cech ta połączona z możliwością wytwarzania na wielką skalę preparatów sterylizowanych powoduje, że ML o małych rozmiarach cząstekjest odpowiednim immunostymulatorem do wielu ludzkich i zwierzęcych szczepionek.
Tabela 1
Cząstki MPL i odzyskiwanie filtracyjne przy różnych parametrach działania ultradźwiękami
Próba nr | Stężenie mg/ml | Łączny czas przebywania w komorze (min.) | Rozmiar cząstek przed filtracją (nm) | Odzysk po filtracji (%) |
16 | 1 | 2,5 | 92 | 104 |
17 | 1 | 3 | 79 | 78,5 |
18 | 1 | 3,5 | 95 | 86,4 |
19 | 2 | 2,8 | 77 | Brak |
20 | 1 | 2,8 | 98 | Brak |
178 578
Tabela 2
Stabilność rozmiarów cząstek sterylnego roztworu MPL określona metodą spektroskopii korelacji światła (Malvern), 1 mg/ml
Próba nr | Rozmiar cząstek po filtracji (nm) | Rozmiar cząstek po stabilizacji w temperaturze 4°C (nm) | |||
8 dni | 1 miesiąc | 3 miesiące | 6 miesięcy | ||
9 | 94 | 81 | 74 | 88 | 82 |
Tabela 3
Profilaktyczna skuteczność kompozycji rgD2t/ A1(OH)3/MPL u świnek morskich Odpowiedź pozakomórkowa i wpływ szczepienia na pierwotną chorobę HSV2
Grupa | Kompozycja | Miana (GTM) | Pierwotna infekcja | ||||||||||
28 dni po III | Ostrość | Wystąpienia ocen uszkodzeń**% | in- | ||||||||||
uszkodzenia* | deks | ||||||||||||
PI*** | |||||||||||||
ELISA | NEUTRA | Śr.arytm. | Mediana | 0 | 0,5 | 1 | 2 | 4 | 8 | 16 | |||
±SD | |||||||||||||
Eksperyment 1 | |||||||||||||
ln=12 | rgD2t 5 pg Al(OH)3/MPL (sorbitol) | 10439 | 673 | 2,2±311 | 0,5 | 50 | 17 | 0 | 33 | 0 | 0 | 0 | 75 |
2n=12 | rgD2t 5 pg Al(OH)a/MPL TEA | 5454 | 378 | 4,6±6,3 | 1,5 | 42 | 8 | 8 | 25 | 17 | 0 | 0 | 130 |
3n=11 | kontrolna | <100 | <50 | 55,3±51,8 | 55 | 18 | 0 | 0 | 0 | 27 | 0 | 55 | 988 |
Eksperyment 2 | |||||||||||||
1n=10 | rgD2t Al(OH)3/MPL | ||||||||||||
100 nm | 21039 | 696 | 0,5±0,7 | 0 | 60 | 30 | 10 | 0 | 0 | 0 | 0 | 25 | |
2n=10 | kontrolna | <100 | <50 | 28,5±29,1 | 31,5 | 30 | 0 | 0 | 0 | 10 | 40 | 20 | 680 |
* Suma ocen us zkzdoeń od dma 4 do 12 po io fekeji ** Oceny uszkodzeń: brak (0), pochwowe (0,5 lub 1), zewnętrzne pęcherzyki na skórze (2, 4, 8 lub 16 *** Indeks pierwotnej infekcji = Σί (maks. ocena i) x (% wystąpień); i = 0, 0,5, 1, 2, 4, 8 lub 16
Tabela 4
Profilaktyczna skuteczność kompozycji rgD2t/Al(OH)3/MPL u świnek morskich Wpływ szczepienia na nawrót choroby HSV2
Grupa | Kompozycja | Nawroty choroby | |||||||||
Ostrość nawrotu* | Liczba dni nawrotów** | Liczba wystąpień nawrotów (%) | |||||||||
Śr.arytm. ±SD | Mediana | Śr.arytm. ±SD | Mediana | 0 | 1 | 2 | 3 | 4 | 5 | ||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Eksperyment 1 | |||||||||||
1n=12 | rgD2t 5 pg | 5,44±6,2 | 3,5 | 4±5 | 2,5 | 33 | 42 | 8 | 8 | 8 | 0 |
Al(OH)3/MPL | |||||||||||
(sorbitol) | |||||||||||
2n=12 | rgD2t 5 pg | 6,5±5,9 | 6,5 | 4,3±3,9 | 3 | 27 | 27 | 9 | 27 | 9 | 0 |
Al(OH)j/MPL | |||||||||||
TEA | |||||||||||
3n=11 | kontrolna | 8±5,4 | 9 | 5,1±3,1 | 6 | 18 | 0 | 18 | 64 | 0 | 0 |
178 578
Tabela 4 - ciąg dalszy
1 | 2 | 9 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
1n=10 | Eksperyment 2 rgD2t | 1,6±9,9 | 0 | 0,5±1,1 | 0 | 80 | 20 | 0 | 0 | 0 | 0 |
2n=10 | Al(OH)3/MPL 100 nm kcnti-clna | 6,1 ±6 | 6,75 | 4,9±4,9 | 4,5 | 40 | 0 | 20 | 20 | 0 | 20 |
* Suma occn uszkoddee od ddia 1 3dd3 9poinfekcji ** Liczba dni nawrotów dla dni cd 19 dc 99 pc infekcji.
Jeden nawrót jest ocorzedzany i następuje pc nim dzień bez uszOcdzeń, a cznacza cn cc najmniej dwa dni z rumieniem lub jeden dzień z pęcherzykami.
T abe1 a 5
Terapeutyczna skutecz^ć Ocmpczycji rgD2t/Al(OH)3/MPL
Grupa | Kdmodzyzja | Działanie terapeutyczne | |||||
Ostrość* | Liczba dni nawrotu** | Liczba nawrctów*** | |||||
Śr.arytm.±UD | Mediana (% kcnt.) | Śr.arytm.±UD | Mediana (% kcnt) | Śr.arytm±UD | Mediana (% kcnt.) | ||
Eksperyment 1 | |||||||
1n=18 | rgD2t 20 pg Al(OH)9/MPL TEA | brak | brak | brak | 11 | brak | 7 |
2n=18 | kcnti-cina | brak | brak | brak | brak | 5 | |
Eksperyment 2 | |||||||
1n=14 | rgD2t Al(OH)9/MPL 1ϋ0 nm | 11,1±8,7 (-99%) p<0,05 | 10,25 (-41%) P<0,1 | 8,4±(-28%) P<0,1 | 8,5 (-29%) P<0,31 | β,2±2 | 4 |
2n=19 | kdftrdlfa | 18,9±10,9 | 17,5 | 11,7±6,8 | 11 | 4,4±2,1 | 4 |
Eksperyment 9 | |||||||
1n=15 | rgD2t Al(OH)9/MPL 100 nm, Tween | 10,9±10,1 | 6 (-54%) p<0,07 | 6,9±5,8 | 4 (-49%) P<0,1 | 2,7±2 p<0,1 | 9 (-25%) p<0,1 |
2n=15 | rgD2t Al(OH)9/MPL 100 nm, scrbitcl | 8,9±6,7 | 6,5(-50%) p<0,09 | 5,4±4,4 | 4 (-49%) p<0,1 | 2,7±1,5 | 9 (-25%) P<0,1 |
9n=16 | Odntrcina | 12,5±8,1 | 19 | 8,5±4,5 | 7 | 9,6±1,6 | 4 |
* Suma ccen uszOcdzeń cd dnia 21 dc 60 pc infekcji ** Łączna liczba dni nawrctów u zwierząt dla dni cd 21 dc 60 pc infekcji * * * I^iizzn ρι^Γ^ΙΟ^ nnwrotów dladm od 2 2 do 66 pp> infenoii.Jenen nfwróttent i nfltępoSepo mm dzień bez uszOcdznń, a cznacza cn cc najmniej dwa dni z rumieniem (dzefa = 0,5) lub jeden dzień z pęcherzykami zewnętrznymi (ccena^ 2). Immundterapie: pdOskórne zastrzyki 21 i 42 dnia pc infekcji, analiza statystyczna: test WilccKcna z rangami względem kcntrclnych adiowantów (ninzfaczące dla p> 0,1).
178 578
Tabela 6
Immunogenność kompozycji gD2t, wodorotlenek glinu, MPL 100 nm u naczelnych Wyniki serologiczne i DTH
Szczepionka | Liczba małp | Odpowiedź przeciwciała* | Odpowiedź DTH (stwardnienie)* | |||
Miano ELISA | Miano NEUTRA | PBS | GD2 5 Pg | gd2 15 pg | ||
20 μ gD2t | KQ 101 | 5554 | 1600 | - | - | - |
wodorotlenek glinu | KQ 102 | 14870 | 800 | - | ++ | +++ |
50 pgMPL | KQ 103 | 5846 | 1600 | - | ++ | +++ |
KQ 104 GTM | 16270 10665 | 1600 1213 | brak | brak | brak | |
KQ 105 | 16170 | 800 | - | + | ++ | |
20 pg gD2t | KQ 106 | 4389 | 800 | - | - | - |
wodorotlenek glinu | KQ 107 | 20440 | 1600 | - | ++ | +++ |
20 pg MPL | KQ 108 | 5613 | 800 | - | + | + |
KQ 109 GTM | 6755 8876 | 1600 1056 | brak | brak | brak | |
KQ 110 | 2486 | 200 | - | - | - | |
KQ 111 | 9918 | 800 | - | ++ | +++ | |
20 pg gD2t | KQ 112 | 2526 | 400 | - | - | - |
wodorotlenek glinu | KQ 113 | 7137 | 400 | - | - | - |
5 pgMPL | KQ 114 GTM | 8396 5181 | 400 400 | brak | brak | brak |
* mierzone w 6 cdii po IIIGTM = śrecdiie geemetryczne miano miano ELISA = miano punktu środkowego miano NEUTRA titer=odwrotność najwyższego rozcieńczenia dającego 100% ochrony przed cytopatogenią ** test na skórze 14 dnia po II stwardnienie - 24 godziny odczytu + = 1 mm ++ = 1-5 mm +++ = > 5 mm
Tabela 7
Czas | N | Serokonwersja | % | GMT | Min. miano | Maks. miano |
wodorotlenek glinu (500 pg), HBsAg przed | 20 | 0 | 0 | 0 | 0 | 0 |
PI (miesiąc 1) | 20 | 10 | 50 | 6 | 1 | 58 |
PII (miesiąc 3) | 20 | 19 | 95 | 80 | 7 | 565 |
wodorotlenek glinu (100 pg), HBsAg przed | 20 | 0 | 0 | 0 | 0 | 0 |
PI (miesiąc 1) | 18 | 7 | 36,8 | 4 | 1 | 56 |
PII (miesiąc 3) | 19 | 18 | 94,7 | 24 | 2 | 320 |
wodorotlenek glinu (100 | ||||||
pg), HBsAg przed | 20 | 0 | 0 | 0 | 0 | 0 |
PI (miesiąc 1) | 20 | 12 | 60 | 10 | 1 | 66 |
PII (miesiąc 3) | 20 | 20 | 100 | 73 | 6 | 605 |
178 578
Tabela 8
Immunogenność klinicznych szczepów OspA u ludzi Anty-OspA w teście inhibicji LA-2 (ng równoważniki LA-2/ml) (GTM)
Szczepionka | Przed dzień 0 | Po I 30 dzień 28 | Po II 30 dzień 56 | Po III 30 dzień 84 |
NS1-OspA na wodorotlenku glinu | 118 | 233 | 409 | 768 |
SC (%) | 2,6 | 77,2 | 86,5 | 100 |
NS1-OspA+MPL na wodorotlenku glinu | 134 | 269 | 865 | 2424 |
SC (%) | 2,6 | 88,6 | 97,2 | 100 |
N = 80 pg/dawkę
Domięśniowo
Tabela 9
Wpływ zwiększającej się dawki MPL (> 500 nm) na immunogenność recHBsAg adsorbowanego na Al(OH)3
Ilość MPL (pg/dawka) | Odpowiedź anty-HBs | |||
łączenie IgG | IgG2a | |||
dzień 14 | dzień 21 | dzień 14 | dzień 21 | |
0* | 69 | 743 | 3.2 | 11 |
3.13 | 122 | 541 | 3.8 | 20 |
6.25 | 296 | 882 | 6.4 | 24 |
12.5 | 371 | 1359 | 10 | 48 |
25 | 456 | 1493 | 18 | 138 |
50 | 403 | 1776 | 33 | 242 |
* HBsAg on Al.
Tabela 10
Porównanie 3 klinicznych zestawów z MPL i bez MPL. Odpowiedź AUSAB
Zestaw | Dawka HBsAg na Al(OH)3 (pg) | Dawka MPL (pg) | GMT anty-HBs (mlU/ml) | |
DSAH16 | 2,5 | 0 | 0,75 | 15,1 |
DSAR501 | 2,5 | 6,25 | 12,4 | 96,7 |
DSAR502 | 2,5 | 6,25 | 41,9 | 89,2 |
178 578
Tabela 11
Porównanie 2 klinicznych zestawów z MPL i bez MPL (> 500 nm). Odpowiedź anty-HBs IgG i IgG2a
Zestaw | Dawka HBsAg na Al(OH)3 (pg) | Dawka MPL (pg) | Odpowiedź anty-HBs | |||
IgG | IgG2a | |||||
d15 | d21 | d15 | d21 | |||
DSAH16 | 2,5 | 0 | 20 | 178 | <5 | 5 |
DSAR502 | 2,5 | 6,25 | 113 | 641 | <5 | 28 |
Tabela 12
Wpływ dawki MPL (< 100 nm) na immunogeniczność recHBsAg adsorbowanego na Al(OH)3
Dawka HBsAg adsorb, Al(OH)3 (pg) | Dawka MPL <100 nm (pg) | Odpowiedź anty-HBs | |||||
Łączne IG | IgG | IgG2a | |||||
d15 | d21 | d15 | d21 | d15 | d21 | ||
1 | 0 | 30 | 637 | 67 | 516 | 15 | 99 |
1 | 3,12 | 312 | 2302 | 335 | 3532 | 167 | 1752 |
1 | 6,25 | 538 | 2719 | 856 | 3932 | 261 | 2521 |
1 | 12,5 | 396 | 2104 | 485 | 3625 | 125 | 139 |
1 | 25,0 | 38 | 446 | 141 | 638 | 28 | 233 |
Tabela 13
Wpływ MPL (> 500 nm) na indukcję komórek Th1 specyficzną dla HBsAg w myszach Balb/c
Dawka HBsAg (pg/mysz) | Kompozycja | Wydzielanie in vitro | ||||||||
IL-2 (SI) | INF-γ (pg/ml) | IL-4 (pg/ml) | ||||||||
24h | 48h | 72h | 24h | 48h | 72h | 24h | 48h | 72h | ||
20 | FCA | 1,3 | 2,0 | 8,0 | <125 | <125 | 385 | NT | NT | NT |
- | FCA | 0,7 | 1,8 | 0,7 | <125 | <125 | <125 | NT | NT | NT |
20 | AI(OH)3 | 1,0 | 1,4 | 1,2 | <125 | <125 | <125 | <40 | <40 | <40 |
20 | Al(OH) + MPL (30 pg) | 2 | 38 | 10 | <125 | 280 | 280 | <40 | <40 | <40 |
Po opisanej w tekście, komórki węzłów chłonnych hodowano z 5 monnych hodowano z 5 pg recHBsAg przez wskazany okres i mierzono wydzielanie IL-2, INF-γ i IL-4 stosując linię VDA2 komórek T i dwa handlowe zestawy ELISA
178 578
Tabela 14
Wpływ różnych dawek MPL (< 100 nm) na indukcję specyficznych dla HBsAg komórek Thi
Dawka HBsAg ( p/mysz) | Dawka MPL | Wydzielanie in vitro | ||||||
IL-2 (SI) | INF-γ (pg/ml) | |||||||
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 96 h | ||
20 | 0 | 2,6 | 28 | 21,8 | <67 | <67 | <67 | <67 |
20 | 7,5 | 207 | 173 | 58 | < 67 | 207 | 522 | 698 |
20 | 15 | 270 | 71 | 36 | 275 | 878 | 1249 | 1582 |
20 | 30 | 41 | 59 | 36 | <67 | <67 | <67 | 207 |
POMPA
Departament Wydawnictw UP RP. Nakład 70 egz.
Cena 4,00 zł.
Claims (25)
- Zastrzeżenia patentowe1. Zawiesina cząstek 3-0-deacylowanego monofosforylolipidu A (MPL), znamienna tym, że jest wizualnie przejrzysta i sterylizowalna przez ślepą filtrację na hydrofilowej membranie PVDF 0,22 pm, korzystnie cząstki zawiesiny mają rozmiar mniejszy niż 120 nm.
- 2. Sposób wytwarzania zawiesiny cząstek 3-0-deacylowanego monofosforylolipidu A, znamienny tym, że składa się z zawieszania 3-0-deacylowanego monofosforylolipidu A w wodzie i poddawania otrzymanej zawiesiny działaniu ultradźwięków do wytworzenia zawiesiny cząstek wizualnie przejrzystej i sterylizowalnej przez ślepą filtrację na hydrofilowej membranie PVDF 0,22 pm, korzystnie o rozmiarze cząstek zawiesiny generalnie mniejszym niż 120 nm.
- 3. Kompozycja szczepionki zawierającej antygen w połączeniu z zawiesiną 3-0-deacylowanego monofosforylolipidu A (MPL) i odpowiednim nośnikiem, znamienna tym, że zawiera MPL w postaci zawiesiny cząstek wizualnie przejrzystej i sterylizowalnej przez ślepąfiltrację na hydrofilowej membranie PVDF 0,22 pm, korzystnie o rozmiarze cząstek zawiesiny generalnie mniejszym niż 120 nm, w ilości 10-100 pg na dawkę i antygen.
- 4. Kompozycja szczepionki według zastrz. 3, znamienna tym, że zawiera MPL o rozmiarach cząstek 60-120 nm.
- 5. Kompozycja szczepionki według zastrz. 3 albo 4, znamienna tym, że zawiera MPL o rozmiarach cząstek mniejszych niż 100 nm.
- 6. Kompozycja szczepionki według zastrz. 3, znamienna tym, że jako nośnik zawiera wodorotlenek glinu.
- 7. Kompozycja szczepionki według zastrz. 3, znamienna tym, że jako nośnik zawiera emulsję typu olej w wodzie lub inny ciekły nośnik lipidowy.
- 8. Kompozycja szczepionki według zastrz. 3, znamienna tym, że jako antygen zawiera antygen wirusowy.
- 9. Kompozycja szczepionki według zastrz. 3, znamienna tym, że jako antygen zawiera antygen Hepatitis A.
- 10. Kompozycja szczepionki według zastrz. 9, znamienna tym, że jako antygen Hepatitis A zawiera zdez.aktywowanąkompozycję pełnych komórek szczepu HM-175.
- 11. Kompozycja szczepionki ' według zastrz. 3 albo 4, albo 6, albo 7, albo 8, znamienna tym, że jako antygen zawiera antygen Hepatitis B.
- 12. Kompozycja szczepionki według zastrz. 11, znamienna tym, że jako antygen zawiera antygen powierzchniowy Hepatitis B (HBsAg) lub jego wariant.
- 13. Kompozycja szczepionki według zastrz. 12, znamienna tym, że jako antygen zawiera HBsAg będący antygenem S HBsAg (226 aminokwasów).
- 14. Kompozycja szczepionki według zastrz. 13, znamienna tym, że jako antygen zawiera HBsAg zawierający dodatkowo sekwencję pre-S.
- 15. Kompozycja szczepionki według zastrz. 13, znamienna tym, że jako antygen HBsAg zawiera złożoną cząstkę o wzorze (L*, S), przy czym L* oznacza zmodyfikowane białko L wirusa Hepatitis B mające sekwencję aminokwasową złożoną z reszt 12-52, następnie 133-145 i 175-400 białka L, a S oznacza białko S HBsAg.
- 16. Kompozycja szczepionki według zastrz. 11 albo 12, albo 13, znamienna tym, że zawiera dodatkowo antygen Hepatitis A.
- 17. Kompozycja szczepionki według zastrz. 3, znamienna tym, że zawierajeden lub wiele antygenów Hepatitis i co najmniej jeden składnik wybrany spośród związków różnych od anty178 578 genu Hepatitis, który chroni przez jedną lub wieloma chorobami wybranymi spośród dyfterytu, tężca, kokluszu, Haemofilis influenzae b (Hib) oraz polio.
- 18. Kompozycja szczepionki według zastrz. 17, znamienna tym, że zawiera kombinację DTP (dyfteryt-tężec-koklusz)-HBsAg, kombinację Hib-HBsAg, kombinację DTP-Hib- HBsAg oraz kombinację IPV (nieaktywna szczepionka polio)-DTP-Hib- HBsAg.
- 19. Kompozycja szczepionki według zastrz. 18, znamienna tym, że zawiera dodatkowo antygen Hepatitis A.
- 20. Kompozycja szczepionki według zastrz. 3 albo 4, albo 6, albo 7, albo 8, znamienna tym, że zawiera glikoproteinę D HSV lub jej immunologiczny fragment.
- 21. Kompozycja szczepionki według zastrz. 20, znamienna tym, że zawiera glikoproteinę D o uciętej sekwencji.
- 22. Kompozycja szczepionki według zastrz. 21, znamienna tym, że jako białko o uciętej sekwencji zawiera HSVgD2 pozbawione kotwiczącego końca C.
- 23. Kompozycja szczepionki według zastrz. 3 albo 4, albo 6, albo 7, albo 8, znamienna tym, że zawiera HIV gp 160 lub jego immunologiczny fragment.
- 24. Kompozycj a szczepionki według zastrz. 23, znamienna tym, że j ako pochodna gp 160 zawiera pochodną gp 120.
- 25. Sposób wytwarzania kompozycji szczepionki zawierającej antygen w połączeniu z zawiesiną 3-0-deacylowanego monofosforylolipidu A (MPL). i odpowiednim nośnikiem, znamienny tym, że polega na mieszaniu zawiesiny cząstek MPL wizualnie przejrzystej i sterylizowalnej przez ślepą filtrację nahydrofilowej membranie PVDF 0,22 pm, korzystnie o rozmiarze cząstek zawiesiny generalnie mniejszym niż 120 nm, z nośnikiem i antygenem w farmaceutycznie dopuszczalnej zaróbce.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB939306029A GB9306029D0 (en) | 1993-03-23 | 1993-03-23 | Vaccine compositions |
GB9403417A GB9403417D0 (en) | 1994-02-23 | 1994-02-23 | Vaccine compositions |
PCT/EP1994/000818 WO1994021292A1 (en) | 1993-03-23 | 1994-03-14 | Vaccine compositions containing 3-o deacylated monophosphoryl lipid a |
Publications (2)
Publication Number | Publication Date |
---|---|
PL310598A1 PL310598A1 (en) | 1995-12-27 |
PL178578B1 true PL178578B1 (pl) | 2000-05-31 |
Family
ID=26302633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PL94310598A PL178578B1 (pl) | 1993-03-23 | 1994-03-14 | Zawiesina cząstek 3-0-deacylowanego monofosforylolipidu A i sposób jej wytwarzania oraz kompozycja szczepionki zawierającej antygen w połączeniu z 3-0-deacylowanym monofosforylolipidem A i sposób jej wytwarzania |
Country Status (28)
Country | Link |
---|---|
US (1) | US5776468A (pl) |
EP (3) | EP1175912A1 (pl) |
JP (2) | JP4028593B2 (pl) |
KR (1) | KR100310510B1 (pl) |
CN (1) | CN1087176C (pl) |
AP (1) | AP515A (pl) |
AT (2) | ATE204762T1 (pl) |
AU (1) | AU685443B2 (pl) |
BR (1) | BR9405957A (pl) |
CZ (1) | CZ289476B6 (pl) |
DE (2) | DE69428136T3 (pl) |
DK (2) | DK0812593T4 (pl) |
DZ (1) | DZ1763A1 (pl) |
ES (2) | ES2162139T5 (pl) |
FI (1) | FI110844B (pl) |
GR (1) | GR3025483T3 (pl) |
HK (3) | HK1011930A1 (pl) |
HU (1) | HU219056B (pl) |
IL (1) | IL109056A (pl) |
MA (1) | MA23143A1 (pl) |
NO (2) | NO322578B1 (pl) |
NZ (1) | NZ263538A (pl) |
PL (1) | PL178578B1 (pl) |
PT (1) | PT812593E (pl) |
SA (1) | SA94140762B1 (pl) |
SG (1) | SG48309A1 (pl) |
SK (1) | SK117395A3 (pl) |
WO (1) | WO1994021292A1 (pl) |
Families Citing this family (432)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9105992D0 (en) * | 1991-03-21 | 1991-05-08 | Smithkline Beecham Biolog | Vaccine |
US6620414B2 (en) * | 1992-03-27 | 2003-09-16 | Smithkline Beecham Biologicals (S.A.) | Hepatitis vaccines containing 3-0-deacylated monophoshoryl lipid A |
PT835663E (pt) * | 1992-05-23 | 2010-01-04 | Glaxosmithkline Biolog Sa | Vacinas combinadas compreendendo o antigénio de superfície da hepatite b e outros antigénios |
ATE196737T1 (de) * | 1993-05-25 | 2000-10-15 | American Cyanamid Co | Adjuvantien für impfstoffe gegen das respiratorische synzitialvirus |
GB9326253D0 (en) | 1993-12-23 | 1994-02-23 | Smithkline Beecham Biolog | Vaccines |
US6488934B1 (en) | 1995-02-25 | 2002-12-03 | Smithkline Beecham Biologicals S.A. | Hepatitis B vaccine |
GB9503863D0 (en) * | 1995-02-25 | 1995-04-19 | Smithkline Beecham Biolog | Vaccine compositions |
UA56132C2 (uk) * | 1995-04-25 | 2003-05-15 | Смітклайн Бічем Байолоджікалс С.А. | Композиція вакцини (варіанти), спосіб стабілізації qs21 відносно гідролізу (варіанти), спосіб приготування композиції вакцини |
US6696065B1 (en) * | 1995-05-04 | 2004-02-24 | Aventis Pastuer Limited | Acellular pertussis vaccines and methods of preparation thereof |
DK0909323T3 (da) | 1996-01-04 | 2007-05-21 | Novartis Vaccines & Diagnostic | Helicobacter pylori-bakterioferritin |
US20060024301A1 (en) * | 1997-02-25 | 2006-02-02 | Corixa Corporation | Prostate-specific polypeptides and fusion polypeptides thereof |
US7517952B1 (en) * | 1997-02-25 | 2009-04-14 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of prostate cancer |
US20030185830A1 (en) * | 1997-02-25 | 2003-10-02 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of prostate cancer |
US20060269532A1 (en) * | 1997-02-25 | 2006-11-30 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of prostate cancer |
TR199902437T2 (xx) * | 1997-04-01 | 2000-01-21 | Corixa Corporation | Monofosforil lipid A'ya ait sulu im�nolojik adjuvant terkipleri. |
US6491919B2 (en) * | 1997-04-01 | 2002-12-10 | Corixa Corporation | Aqueous immunologic adjuvant compostions of monophosphoryl lipid A |
GB9706957D0 (en) * | 1997-04-05 | 1997-05-21 | Smithkline Beecham Plc | Formulation |
US6368604B1 (en) | 1997-09-26 | 2002-04-09 | University Of Maryland Biotechnology Institute | Non-pyrogenic derivatives of lipid A |
GB9724531D0 (en) | 1997-11-19 | 1998-01-21 | Smithkline Biolog | Novel compounds |
US6761888B1 (en) | 2000-05-26 | 2004-07-13 | Neuralab Limited | Passive immunization treatment of Alzheimer's disease |
US6787523B1 (en) | 1997-12-02 | 2004-09-07 | Neuralab Limited | Prevention and treatment of amyloidogenic disease |
US7588766B1 (en) | 2000-05-26 | 2009-09-15 | Elan Pharma International Limited | Treatment of amyloidogenic disease |
TWI239847B (en) | 1997-12-02 | 2005-09-21 | Elan Pharm Inc | N-terminal fragment of Abeta peptide and an adjuvant for preventing and treating amyloidogenic disease |
US6743427B1 (en) | 1997-12-02 | 2004-06-01 | Neuralab Limited | Prevention and treatment of amyloidogenic disease |
US6913745B1 (en) | 1997-12-02 | 2005-07-05 | Neuralab Limited | Passive immunization of Alzheimer's disease |
US6750324B1 (en) | 1997-12-02 | 2004-06-15 | Neuralab Limited | Humanized and chimeric N-terminal amyloid beta-antibodies |
US20080050367A1 (en) | 1998-04-07 | 2008-02-28 | Guriq Basi | Humanized antibodies that recognize beta amyloid peptide |
US6923964B1 (en) | 1997-12-02 | 2005-08-02 | Neuralab Limited | Active immunization of AScr for prion disorders |
US7790856B2 (en) | 1998-04-07 | 2010-09-07 | Janssen Alzheimer Immunotherapy | Humanized antibodies that recognize beta amyloid peptide |
US7964192B1 (en) * | 1997-12-02 | 2011-06-21 | Janssen Alzheimer Immunotherapy | Prevention and treatment of amyloidgenic disease |
US7179892B2 (en) * | 2000-12-06 | 2007-02-20 | Neuralab Limited | Humanized antibodies that recognize beta amyloid peptide |
DE19803453A1 (de) * | 1998-01-30 | 1999-08-12 | Boehringer Ingelheim Int | Vakzine |
GB9808866D0 (en) | 1998-04-24 | 1998-06-24 | Smithkline Beecham Biolog | Novel compounds |
US20030147882A1 (en) * | 1998-05-21 | 2003-08-07 | Alan Solomon | Methods for amyloid removal using anti-amyloid antibodies |
CA2332979A1 (en) * | 1998-05-22 | 1999-12-02 | Smithkline Beecham Biologicals S.A. | Correlative protection using ospa antibody titers |
WO2000003744A2 (en) * | 1998-07-14 | 2000-01-27 | American Cyanamid Company | Adjuvant and vaccine compositions containing monophosphoryl lipid a |
US6306404B1 (en) | 1998-07-14 | 2001-10-23 | American Cyanamid Company | Adjuvant and vaccine compositions containing monophosphoryl lipid A |
US20040213806A1 (en) * | 1998-08-28 | 2004-10-28 | Smithkline Beecham Biologicals, S.A. | Salmonella typhi vaccine compositions |
GB9819898D0 (en) * | 1998-09-11 | 1998-11-04 | Smithkline Beecham Plc | New vaccine and method of use |
US6692752B1 (en) | 1999-09-08 | 2004-02-17 | Smithkline Beecham Biologicals S.A. | Methods of treating human females susceptible to HSV infection |
GB9820525D0 (en) * | 1998-09-21 | 1998-11-11 | Allergy Therapeutics Ltd | Formulation |
GB9822714D0 (en) | 1998-10-16 | 1998-12-09 | Smithkline Beecham Sa | Vaccines |
CA2773698C (en) * | 1998-10-16 | 2015-05-19 | Glaxosmithkline Biologicals S.A. | Adjuvant systems comprising an immunostimulant adsorbed to a metallic salt particle and vaccines thereof |
AU1580300A (en) | 1998-12-08 | 2000-06-26 | Smithkline Beecham Biologicals (Sa) | Novel compounds |
EP1163343B1 (en) | 1999-03-12 | 2009-12-09 | GlaxoSmithKline Biologicals S.A. | Neisseria meningitidis antigenic polypeptides, corresponding polynucleotides and protective antibodies |
HU228499B1 (en) | 1999-03-19 | 2013-03-28 | Smithkline Beecham Biolog | Streptococcus vaccine |
GB9909077D0 (en) * | 1999-04-20 | 1999-06-16 | Smithkline Beecham Biolog | Novel compositions |
PT1187629E (pt) | 1999-04-19 | 2005-02-28 | Glaxosmithkline Biolog Sa | Composicao adjuvante que compreende saponina e um oligonucleotido imunoestimulador |
US6558670B1 (en) | 1999-04-19 | 2003-05-06 | Smithkline Beechman Biologicals S.A. | Vaccine adjuvants |
WO2000069456A2 (en) * | 1999-05-13 | 2000-11-23 | American Cyanamid Company | Adjuvant combination formulations |
US6787637B1 (en) | 1999-05-28 | 2004-09-07 | Neuralab Limited | N-Terminal amyloid-β antibodies |
UA81216C2 (en) * | 1999-06-01 | 2007-12-25 | Prevention and treatment of amyloid disease | |
US6635261B2 (en) | 1999-07-13 | 2003-10-21 | Wyeth Holdings Corporation | Adjuvant and vaccine compositions containing monophosphoryl lipid A |
GB9921147D0 (en) * | 1999-09-07 | 1999-11-10 | Smithkline Beecham Biolog | Novel composition |
GB9921146D0 (en) | 1999-09-07 | 1999-11-10 | Smithkline Beecham Biolog | Novel composition |
GB9923176D0 (en) | 1999-09-30 | 1999-12-01 | Smithkline Beecham Biolog | Novel composition |
CA2721011A1 (en) | 1999-10-22 | 2001-05-03 | Aventis Pasteur Limited | Modified gp100 and uses thereof |
EP1104767A1 (en) | 1999-11-30 | 2001-06-06 | Stichting Dienst Landbouwkundig Onderzoek | Mono- and disaccharide derivatives containing both fatty acid ester and sulfate ester groups |
GB0000891D0 (en) * | 2000-01-14 | 2000-03-08 | Allergy Therapeutics Ltd | Formulation |
WO2001085932A2 (en) | 2000-05-10 | 2001-11-15 | Aventis Pasteur Limited | Immunogenic polypeptides encoded by mage minigenes and uses thereof |
US6821519B2 (en) * | 2000-06-29 | 2004-11-23 | Corixa Corporation | Compositions and methods for the diagnosis and treatment of herpes simplex virus infection |
GB0022742D0 (en) | 2000-09-15 | 2000-11-01 | Smithkline Beecham Biolog | Vaccine |
AU2002223970A1 (en) * | 2000-10-06 | 2002-04-15 | H. Henrich Paradies | Kyberdrug as autovaccines with immune-regulating effects |
PT2266603E (pt) * | 2000-10-18 | 2012-11-02 | Glaxosmithkline Biolog Sa | Vacinas tumorais |
EP1328543B1 (en) | 2000-10-27 | 2009-08-12 | Novartis Vaccines and Diagnostics S.r.l. | Nucleic acids and proteins from streptococcus groups a & b |
US7048931B1 (en) * | 2000-11-09 | 2006-05-23 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of prostate cancer |
HUP0600589A2 (en) * | 2000-11-10 | 2006-11-28 | Wyeth Corp | Adjuvant combination formulations |
US7700751B2 (en) | 2000-12-06 | 2010-04-20 | Janssen Alzheimer Immunotherapy | Humanized antibodies that recognize β-amyloid peptide |
TWI255272B (en) | 2000-12-06 | 2006-05-21 | Guriq Basi | Humanized antibodies that recognize beta amyloid peptide |
EP2336368A1 (en) | 2000-12-07 | 2011-06-22 | Novartis Vaccines and Diagnostics, Inc. | Endogenous retroviruses up-regulated in prostate cancer |
DE60239594D1 (de) | 2001-02-23 | 2011-05-12 | Glaxosmithkline Biolog Sa | Influenza vakzinzusammensetzungen zur intradermaler verabreichung |
US20030031684A1 (en) | 2001-03-30 | 2003-02-13 | Corixa Corporation | Methods for the production of 3-O-deactivated-4'-monophosphoryl lipid a (3D-MLA) |
GB0109297D0 (en) | 2001-04-12 | 2001-05-30 | Glaxosmithkline Biolog Sa | Vaccine |
US20100221284A1 (en) | 2001-05-30 | 2010-09-02 | Saech-Sisches Serumwerk Dresden | Novel vaccine composition |
TWI228420B (en) | 2001-05-30 | 2005-03-01 | Smithkline Beecham Pharma Gmbh | Novel vaccine composition |
GB0115176D0 (en) | 2001-06-20 | 2001-08-15 | Chiron Spa | Capular polysaccharide solubilisation and combination vaccines |
US8481043B2 (en) | 2001-06-22 | 2013-07-09 | Cpex Pharmaceuticals, Inc. | Nasal immunization |
GB0118249D0 (en) | 2001-07-26 | 2001-09-19 | Chiron Spa | Histidine vaccines |
GB0121591D0 (en) | 2001-09-06 | 2001-10-24 | Chiron Spa | Hybrid and tandem expression of neisserial proteins |
US7361352B2 (en) | 2001-08-15 | 2008-04-22 | Acambis, Inc. | Influenza immunogen and vaccine |
AR045702A1 (es) | 2001-10-03 | 2005-11-09 | Chiron Corp | Composiciones de adyuvantes. |
CA2476626A1 (en) | 2002-02-20 | 2003-08-28 | Chiron Corporation | Microparticles with adsorbed polypeptide-containing molecules |
US7351413B2 (en) | 2002-02-21 | 2008-04-01 | Lorantis, Limited | Stabilized HBc chimer particles as immunogens for chronic hepatitis |
MY139983A (en) * | 2002-03-12 | 2009-11-30 | Janssen Alzheimer Immunotherap | Humanized antibodies that recognize beta amyloid peptide |
GB0206360D0 (en) | 2002-03-18 | 2002-05-01 | Glaxosmithkline Biolog Sa | Viral antigens |
US8518694B2 (en) | 2002-06-13 | 2013-08-27 | Novartis Vaccines And Diagnostics, Inc. | Nucleic acid vector comprising a promoter and a sequence encoding a polypeptide from the endogenous retrovirus PCAV |
CA2501812C (en) | 2002-10-11 | 2012-07-10 | Mariagrazia Pizza | Polypeptide-vaccines for broad protection against hypervirulent meningococcal lineages |
PL376792A1 (pl) | 2002-10-23 | 2006-01-09 | Glaxosmithkline Biologicals S.A. | Sposoby szczepienia przeciwko malarii |
US7858098B2 (en) | 2002-12-20 | 2010-12-28 | Glaxosmithkline Biologicals, S.A. | Vaccine |
ES2411080T3 (es) | 2003-01-30 | 2013-07-04 | Novartis Ag | Vacunas inyectables contra múltiples serogrupos de meningococos |
TWI374893B (en) | 2003-05-30 | 2012-10-21 | Janssen Alzheimer Immunotherap | Humanized antibodies that recognize beta amyloid peptide |
ES2596553T3 (es) | 2003-06-02 | 2017-01-10 | Glaxosmithkline Biologicals Sa | Composiciones inmunogénicas a base de micropartículas que comprenden toxoide adsorbido y un antígeno que contiene un polisacárido |
GB0321615D0 (en) | 2003-09-15 | 2003-10-15 | Glaxo Group Ltd | Improvements in vaccination |
GB0323103D0 (en) | 2003-10-02 | 2003-11-05 | Chiron Srl | De-acetylated saccharides |
RU2378010C2 (ru) | 2003-10-02 | 2010-01-10 | Новартис Вэксинес Энд Дайэгностикс С.Р.Л. | Жидкие вакцины для множественных серогрупп менингококков |
WO2005032584A2 (en) | 2003-10-02 | 2005-04-14 | Glaxosmithkline Biologicals S.A. | Pertussis antigens and use thereof in vaccination |
DE202005022108U1 (de) | 2004-03-09 | 2013-11-12 | Novartis Vaccines And Diagnostics, Inc. | Influenza-Virus-Impfstoffe |
GB0500787D0 (en) | 2005-01-14 | 2005-02-23 | Chiron Srl | Integration of meningococcal conjugate vaccination |
GB0409745D0 (en) | 2004-04-30 | 2004-06-09 | Chiron Srl | Compositions including unconjugated carrier proteins |
BRPI0510315A (pt) | 2004-04-30 | 2007-10-16 | Chiron Srl | integração de vacinação com conjugado meningocócico |
GB0410866D0 (en) | 2004-05-14 | 2004-06-16 | Chiron Srl | Haemophilius influenzae |
WO2006078294A2 (en) | 2004-05-21 | 2006-07-27 | Novartis Vaccines And Diagnostics Inc. | Alphavirus vectors for respiratory pathogen vaccines |
DE602005025342D1 (de) | 2004-05-28 | 2011-01-27 | Glaxosmithkline Biolog Sa | Impfstoffzusammensetzungen mit virosomen und einem saponin-adjuvans |
US7758866B2 (en) | 2004-06-16 | 2010-07-20 | Glaxosmithkline Biologicals, S.A. | Vaccine against HPV16 and HPV18 and at least another HPV type selected from HPV 31, 45 or 52 |
US20090317420A1 (en) | 2004-07-29 | 2009-12-24 | Chiron Corporation | Immunogenic compositions for gram positive bacteria such as streptococcus agalactiae |
GB0417494D0 (en) | 2004-08-05 | 2004-09-08 | Glaxosmithkline Biolog Sa | Vaccine |
EP2305294B1 (en) | 2004-09-22 | 2015-04-01 | GlaxoSmithKline Biologicals SA | Immunogenic composition for use in vaccination against staphylococcei |
GB0424092D0 (en) | 2004-10-29 | 2004-12-01 | Chiron Srl | Immunogenic bacterial vesicles with outer membrane proteins |
CA2586690A1 (en) | 2004-11-03 | 2006-06-15 | Novartis Vaccines And Diagnostics, Inc. | Influenza vaccination |
TW200636066A (en) * | 2004-12-15 | 2006-10-16 | Elan Pharm Inc | Humanized antibodies that recognize beta amyloid peptide |
CA2590337C (en) | 2004-12-15 | 2017-07-11 | Neuralab Limited | Humanized amyloid beta antibodies for use in improving cognition |
HUE033196T2 (en) | 2005-01-27 | 2017-11-28 | Children's Hospital & Res Center At Oakland | GNA1870-based vesicle vaccines for broad-spectrum protection against diseases caused by Neisseria meningitidis |
GB0502095D0 (en) | 2005-02-01 | 2005-03-09 | Chiron Srl | Conjugation of streptococcal capsular saccharides |
NZ560930A (en) * | 2005-02-16 | 2011-06-30 | Novartis Vaccines & Diagnostic | Hepatitis B virus vaccine comprising a hepatitis B virus surface antigen, aluminium phosphate, 3-O-deacylated monophosphoryl lipid A and a triethylammonium ion |
GB0503337D0 (en) | 2005-02-17 | 2005-03-23 | Glaxosmithkline Biolog Sa | Compositions |
ES2385045T3 (es) | 2005-02-18 | 2012-07-17 | Novartis Vaccines And Diagnostics, Inc. | Inmunógenos de Escherichia coli uropatogénica |
HUE027400T2 (en) | 2005-02-18 | 2016-10-28 | Glaxosmithkline Biologicals Sa | Proteins and nucleic acids from meningitis / sepsis with Escherichia coli |
GB0504436D0 (en) | 2005-03-03 | 2005-04-06 | Glaxosmithkline Biolog Sa | Vaccine |
HUE027837T2 (en) | 2005-03-23 | 2016-11-28 | Glaxosmithkline Biologicals Sa | Adjuvant use of influenza virus and oil-in-water emulsion to induce CD4 T-cell and / or enhanced B-cell cellular response |
WO2006113528A2 (en) | 2005-04-18 | 2006-10-26 | Novartis Vaccines And Diagnostics Inc. | Expressing hepatitis b virus surface antigen for vaccine preparation |
ATE543832T1 (de) | 2005-04-29 | 2012-02-15 | Glaxosmithkline Biolog Sa | Verfahren zur vorbeugung oder behandlung einer m.-tuberculosis-infektion |
GB0513421D0 (en) | 2005-06-30 | 2005-08-03 | Glaxosmithkline Biolog Sa | Vaccines |
WO2007047749A1 (en) | 2005-10-18 | 2007-04-26 | Novartis Vaccines And Diagnostics Inc. | Mucosal and systemic immunizations with alphavirus replicon particles |
US11707520B2 (en) | 2005-11-03 | 2023-07-25 | Seqirus UK Limited | Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture |
NZ567978A (en) | 2005-11-04 | 2011-09-30 | Novartis Vaccines & Diagnostic | Influenza vaccine with reduced amount of oil-in-water emulsion as adjuvant |
CA2628152C (en) | 2005-11-04 | 2016-02-02 | Novartis Vaccines And Diagnostics S.R.L. | Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture |
EP1951299B1 (en) | 2005-11-04 | 2012-01-04 | Novartis Vaccines and Diagnostics S.r.l. | Influenza vaccines including combinations of particulate adjuvants and immunopotentiators |
CA2628158C (en) * | 2005-11-04 | 2015-12-15 | Novartis Vaccines And Diagnostics S.R.L. | Emulsions with free aqueous-phase surfactant as adjuvants for split influenza vaccines |
AU2006310337B9 (en) | 2005-11-04 | 2013-11-28 | Novartis Ag | Adjuvanted influenza vaccines including cytokine-inducing agents |
GB0522765D0 (en) * | 2005-11-08 | 2005-12-14 | Chiron Srl | Combination vaccine manufacture |
EP2360175B1 (en) | 2005-11-22 | 2014-07-16 | Novartis Vaccines and Diagnostics, Inc. | Norovirus and Sapovirus virus-like particles (VLPs) |
GB0524066D0 (en) | 2005-11-25 | 2006-01-04 | Chiron Srl | 741 ii |
TWI457133B (zh) | 2005-12-13 | 2014-10-21 | Glaxosmithkline Biolog Sa | 新穎組合物 |
GB0607088D0 (en) | 2006-04-07 | 2006-05-17 | Glaxosmithkline Biolog Sa | Vaccine |
LT3017827T (lt) | 2005-12-22 | 2019-01-10 | Glaxosmithkline Biologicals S.A. | Pneumokokinė polisacharidinė konjuguota vakcina |
ZA200805602B (en) | 2006-01-17 | 2009-12-30 | Arne Forsgren | A novel surface exposed haemophilus influenzae protein (protein E; pE) |
PL1976559T6 (pl) | 2006-01-27 | 2020-08-10 | Novartis Influenza Vaccines Marburg Gmbh | Szczepionki przeciw grypie zawierające hemaglutyninę i białka macierzy |
CA2646891A1 (en) | 2006-03-23 | 2007-09-27 | Novartis Ag | Immunopotentiating compounds |
EP2357184B1 (en) | 2006-03-23 | 2015-02-25 | Novartis AG | Imidazoquinoxaline compounds as immunomodulators |
JP2009534303A (ja) | 2006-03-24 | 2009-09-24 | ノバルティス ヴァクシンズ アンド ダイアグノスティクス ゲーエムベーハー アンド カンパニー カーゲー | 冷蔵しないインフルエンザワクチンの保存 |
KR101541383B1 (ko) | 2006-03-30 | 2015-08-03 | 글락소스미스클라인 바이오로지칼즈 에스.에이. | 면역원성 조성물 |
US9839685B2 (en) | 2006-04-13 | 2017-12-12 | The Regents Of The University Of Michigan | Methods of inducing human immunodeficiency virus-specific immune responses in a host comprising nasally administering compositions comprising a naonemulsion and recombinant GP120 immunogen |
US10138279B2 (en) | 2006-04-13 | 2018-11-27 | Regents Of The University Of Michigan | Compositions and methods for Bacillus anthracis vaccination |
US8784810B2 (en) | 2006-04-18 | 2014-07-22 | Janssen Alzheimer Immunotherapy | Treatment of amyloidogenic diseases |
US20110206692A1 (en) | 2006-06-09 | 2011-08-25 | Novartis Ag | Conformers of bacterial adhesins |
SI2422810T1 (sl) | 2006-07-17 | 2015-01-30 | Glaxosmithkline Biologicals S.A. | Influenčno cepivo |
US9364525B2 (en) | 2006-07-18 | 2016-06-14 | Glaxosmithkline Biologicals Sa | Vaccines for malaria |
GB0614460D0 (en) | 2006-07-20 | 2006-08-30 | Novartis Ag | Vaccines |
EP2040744B1 (en) | 2006-07-25 | 2016-03-09 | The Secretary of State for Defence | Live vaccine strains of francisella |
EP2586790A3 (en) | 2006-08-16 | 2013-08-14 | Novartis AG | Immunogens from uropathogenic Escherichia coli |
CA2663196A1 (en) | 2006-09-11 | 2008-03-20 | Novartis Ag | Making influenza virus vaccines without using eggs |
TR201807756T4 (tr) | 2006-09-26 | 2018-06-21 | Infectious Disease Res Inst | Sentetik adjuvan içeren aşı bileşimi. |
US20090181078A1 (en) | 2006-09-26 | 2009-07-16 | Infectious Disease Research Institute | Vaccine composition containing synthetic adjuvant |
SG174845A1 (en) | 2006-09-29 | 2011-10-28 | Ligocyte Pharmaceuticals Inc | Norovirus vaccine formulations |
PT2086582E (pt) | 2006-10-12 | 2013-01-25 | Glaxosmithkline Biolog Sa | Vacina compreendendo uma emulsão adjuvante óleo em água |
SI2086582T1 (sl) | 2006-10-12 | 2013-02-28 | Glaxosmithkline Biologicals S.A. | Cepivo, ki obsega emulzijo olja v vodi kot adjuvans |
JP2011506264A (ja) | 2006-12-06 | 2011-03-03 | ノバルティス アーゲー | インフルエンザウイルスの4つの株に由来する抗原を含むワクチン |
MX2009009342A (es) | 2007-03-02 | 2009-09-11 | Glaxosmithkline Biolog Sa | Metodo novedoso y composiciones. |
US8003097B2 (en) | 2007-04-18 | 2011-08-23 | Janssen Alzheimer Immunotherapy | Treatment of cerebral amyloid angiopathy |
TW200908994A (en) | 2007-04-20 | 2009-03-01 | Glaxosmithkline Biolog Sa | Vaccine |
KR20100045445A (ko) | 2007-06-26 | 2010-05-03 | 글락소스미스클라인 바이오로지칼즈 에스.에이. | 스트렙토코쿠스 뉴모니애 캡슐 다당류 컨쥬게이트를 포함하는 백신 |
SI2185191T1 (sl) | 2007-06-27 | 2012-12-31 | Novartis Ag | Cepiva proti influenci z majhnimi dodatki |
GB0713880D0 (en) | 2007-07-17 | 2007-08-29 | Novartis Ag | Conjugate purification |
PT2182983E (pt) | 2007-07-27 | 2014-09-01 | Janssen Alzheimer Immunotherap | Tratamento de doenças amiloidogénicas com anticorpos anti-abeta humanizados |
GB0714963D0 (en) | 2007-08-01 | 2007-09-12 | Novartis Ag | Compositions comprising antigens |
HUE025149T2 (hu) * | 2007-08-02 | 2016-01-28 | Biondvax Pharmaceuticals Ltd | Multimer multiepitóp influenza vakcinák |
CA2695421A1 (en) | 2007-08-03 | 2009-02-12 | President And Fellows Of Harvard College | Chlamydia antigens |
EP2190470B1 (en) | 2007-08-13 | 2017-12-13 | GlaxoSmithKline Biologicals SA | Vaccines |
RU2471497C2 (ru) | 2007-09-12 | 2013-01-10 | Новартис Аг | Мутантные антигены gas57 и антитела против gas57 |
JO3076B1 (ar) | 2007-10-17 | 2017-03-15 | Janssen Alzheimer Immunotherap | نظم العلاج المناعي المعتمد على حالة apoe |
GB0810305D0 (en) | 2008-06-05 | 2008-07-09 | Novartis Ag | Influenza vaccination |
AU2008331800A1 (en) | 2007-12-03 | 2009-06-11 | President And Fellows Of Harvard College | Chlamydia antigens |
US8815253B2 (en) | 2007-12-07 | 2014-08-26 | Novartis Ag | Compositions for inducing immune responses |
AU2008352942B2 (en) | 2007-12-19 | 2013-09-12 | The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. | Soluble forms of Hendra and Nipah virus F glycoprotein and uses thereof |
GB0818453D0 (en) | 2008-10-08 | 2008-11-12 | Novartis Ag | Fermentation processes for cultivating streptococci and purification processes for obtaining cps therefrom |
CN104292312A (zh) | 2007-12-21 | 2015-01-21 | 诺华股份有限公司 | 链球菌溶血素o的突变形式 |
EP4206231A1 (en) * | 2007-12-24 | 2023-07-05 | ID Biomedical Corporation of Quebec | Recombinant rsv antigens |
EP2245048B1 (en) | 2008-02-21 | 2014-12-31 | Novartis AG | Meningococcal fhbp polypeptides |
US8506966B2 (en) | 2008-02-22 | 2013-08-13 | Novartis Ag | Adjuvanted influenza vaccines for pediatric use |
EP2265640B1 (en) | 2008-03-10 | 2015-11-04 | Children's Hospital & Research Center at Oakland | Chimeric factor h binding proteins (fhbp) containing a heterologous b domain and methods of use |
EP2268309B1 (en) | 2008-03-18 | 2015-01-21 | Novartis AG | Improvements in preparation of influenza virus vaccine antigens |
JP5749642B2 (ja) | 2008-04-16 | 2015-07-15 | グラクソスミスクライン バイオロジカルズ ソシエテ アノニム | ワクチン |
EP2293813A4 (en) | 2008-05-23 | 2012-07-11 | Univ Michigan | NANOEMULSION VACCINES |
BRPI0915960A2 (pt) * | 2008-07-18 | 2019-09-24 | Id Biomedical Corp | antígenos de polipeptídeos do vírus sincicial respiratório qimérico |
GB0815872D0 (en) | 2008-09-01 | 2008-10-08 | Pasteur Institut | Novel method and compositions |
AU2009296458A1 (en) | 2008-09-26 | 2010-04-01 | Nanobio Corporation | Nanoemulsion therapeutic compositions and methods of using the same |
US9067981B1 (en) | 2008-10-30 | 2015-06-30 | Janssen Sciences Ireland Uc | Hybrid amyloid-beta antibodies |
EP2376089B1 (en) | 2008-11-17 | 2018-03-14 | The Regents of the University of Michigan | Cancer vaccine compositions and methods of using the same |
WO2010064243A1 (en) | 2008-12-03 | 2010-06-10 | Protea Vaccine Technologies Ltd. | GLUTAMYL tRNA SYNTHETASE (GtS) FRAGMENTS |
EP2376108B1 (en) | 2008-12-09 | 2017-02-22 | Pfizer Vaccines LLC | IgE CH3 PEPTIDE VACCINE |
WO2010079081A1 (en) | 2009-01-07 | 2010-07-15 | Glaxosmithkline Biologicals S.A. | Methods for recovering a virus or a viral antigen produced by cell culture |
MX2011007456A (es) | 2009-01-12 | 2011-08-03 | Novartis Ag | Antigenos del dominio de proteina de superficie de union a colageno tipo b (can_b) en vacunas contra bacteria gram positiva. |
GB0901423D0 (en) | 2009-01-29 | 2009-03-11 | Secr Defence | Treatment |
GB0901411D0 (en) | 2009-01-29 | 2009-03-11 | Secr Defence | Treatment |
US20110293660A1 (en) | 2009-02-06 | 2011-12-01 | Bruno Rene Andre | Novel method |
AU2010212550B2 (en) | 2009-02-10 | 2016-03-10 | Seqirus UK Limited | Influenza vaccines with reduced amounts of squalene |
WO2010094663A1 (en) | 2009-02-17 | 2010-08-26 | Glaxosmithkline Biologicals S.A. | Inactivated dengue virus vaccine with aluminium-free adjuvant |
DK2403507T3 (en) * | 2009-03-05 | 2018-06-06 | Jenny Colleen Mccloskey | TREATMENT OF INFECTION |
US8568732B2 (en) | 2009-03-06 | 2013-10-29 | Novartis Ag | Chlamydia antigens |
SG175092A1 (en) | 2009-04-14 | 2011-11-28 | Novartis Ag | Compositions for immunising against staphylococcus aerus |
GB0906234D0 (en) | 2009-04-14 | 2009-05-20 | Secr Defence | Vaccine |
BRPI1014494A2 (pt) | 2009-04-30 | 2016-08-02 | Coley Pharm Group Inc | vacina pneumocócica e usos da mesma |
EP2437753B1 (en) | 2009-06-05 | 2016-08-31 | Infectious Disease Research Institute | Synthetic glucopyranosyl lipid adjuvants and vaccine compositions containing them |
GB0910046D0 (en) * | 2009-06-10 | 2009-07-22 | Glaxosmithkline Biolog Sa | Novel compositions |
DK2442826T3 (en) | 2009-06-15 | 2015-09-21 | Univ Singapore | Influenza vaccine, composition and methods of using |
CN102596243B (zh) | 2009-06-16 | 2015-10-21 | 密执安大学评议会 | 纳米乳剂疫苗 |
WO2010149745A1 (en) | 2009-06-24 | 2010-12-29 | Glaxosmithkline Biologicals S.A. | Recombinant rsv antigens |
MX2012000036A (es) | 2009-06-24 | 2012-02-28 | Glaxosmithkline Biolog Sa | Vacuna. |
SG177533A1 (en) | 2009-07-07 | 2012-02-28 | Novartis Ag | Conserved escherichia coli immunogens |
HRP20220756T1 (hr) | 2009-07-15 | 2022-09-02 | Glaxosmithkline Biologicals S.A. | Proteinski pripravci rsv f i postupci za izradu istih |
SG178035A1 (en) | 2009-07-16 | 2012-03-29 | Novartis Ag | Detoxified escherichia coli immunogens |
PE20120817A1 (es) | 2009-07-30 | 2012-07-07 | Pfizer Vaccines Llc | Peptidos tau antigenicos y usos de los mismos |
GB0913681D0 (en) | 2009-08-05 | 2009-09-16 | Glaxosmithkline Biolog Sa | Immunogenic composition |
GB0913680D0 (en) | 2009-08-05 | 2009-09-16 | Glaxosmithkline Biolog Sa | Immunogenic composition |
AU2010288240B2 (en) | 2009-08-27 | 2014-03-27 | Novartis Ag | Hybrid polypeptides including meningococcal fHBP sequences |
PE20161560A1 (es) | 2009-09-03 | 2017-01-11 | Pfizer Vaccines Llc | Vacuna de pcsk9 |
US20120237536A1 (en) | 2009-09-10 | 2012-09-20 | Novartis | Combination vaccines against respiratory tract diseases |
JP5774010B2 (ja) | 2009-09-25 | 2015-09-02 | グラクソスミスクライン バイオロジカルズ ソシエテ アノニム | インフルエンザウイルスのための免疫拡散アッセイ |
GB0917002D0 (en) | 2009-09-28 | 2009-11-11 | Novartis Vaccines Inst For Global Health Srl | Improved shigella blebs |
GB0917003D0 (en) | 2009-09-28 | 2009-11-11 | Novartis Vaccines Inst For Global Health Srl | Purification of bacterial vesicles |
JP2013506651A (ja) | 2009-09-30 | 2013-02-28 | ノバルティス アーゲー | Staphylococcus.aureus5型および8型莢膜多糖の結合体 |
WO2011039631A2 (en) | 2009-09-30 | 2011-04-07 | Novartis Ag | Expression of meningococcal fhbp polypeptides |
GB0918392D0 (en) | 2009-10-20 | 2009-12-02 | Novartis Ag | Diagnostic and therapeutic methods |
AU2010310985B2 (en) | 2009-10-27 | 2014-11-06 | Glaxosmithkline Biologicals S.A. | Modified meningococcal fHBP polypeptides |
GB0919117D0 (en) | 2009-10-30 | 2009-12-16 | Glaxosmithkline Biolog Sa | Process |
GB0919690D0 (en) | 2009-11-10 | 2009-12-23 | Guy S And St Thomas S Nhs Foun | compositions for immunising against staphylococcus aureus |
WO2011067758A2 (en) | 2009-12-02 | 2011-06-09 | Protea Vaccine Technologies Ltd. | Immunogenic fragments and multimers from streptococcus pneumoniae proteins |
DE102009056871A1 (de) * | 2009-12-03 | 2011-06-22 | Novartis AG, 4056 | Impfstoff-Adjuvantien und verbesserte Verfahren zur Herstellung derselben |
EP3257525A3 (en) | 2009-12-22 | 2018-02-28 | Celldex Therapeutics, Inc. | Vaccine compositions |
EP2519265B1 (en) | 2009-12-30 | 2018-11-14 | GlaxoSmithKline Biologicals SA | Polysaccharide immunogens conjugated to e. coli carrier proteins |
GB201003333D0 (en) | 2010-02-26 | 2010-04-14 | Novartis Ag | Immunogenic proteins and compositions |
GB201003924D0 (en) | 2010-03-09 | 2010-04-21 | Glaxosmithkline Biolog Sa | Immunogenic composition |
GB201003920D0 (en) | 2010-03-09 | 2010-04-21 | Glaxosmithkline Biolog Sa | Method of treatment |
CN103221065A (zh) | 2010-03-26 | 2013-07-24 | 葛兰素史密斯克莱生物公司 | Hiv疫苗 |
CN102834410B (zh) | 2010-03-30 | 2016-10-05 | 奥克兰儿童医院及研究中心 | 改性的h因子结合蛋白(fhbp)及其使用方法 |
GB201005625D0 (en) | 2010-04-01 | 2010-05-19 | Novartis Ag | Immunogenic proteins and compositions |
WO2011127316A1 (en) | 2010-04-07 | 2011-10-13 | Novartis Ag | Method for generating a parvovirus b19 virus-like particle |
WO2011130379A1 (en) | 2010-04-13 | 2011-10-20 | Novartis Ag | Benzonapthyridine compositions and uses thereof |
US20130039943A1 (en) | 2010-05-03 | 2013-02-14 | Bruno Rene Andre | Novel method |
JP2013532008A (ja) | 2010-05-28 | 2013-08-15 | テトリス オンライン インコーポレイテッド | 対話式ハイブリッド非同期コンピュータ・ゲーム・インフラストラクチャ |
GB201009273D0 (en) | 2010-06-03 | 2010-07-21 | Glaxosmithkline Biolog Sa | Novel vaccine |
CA2798837A1 (en) | 2010-06-07 | 2011-12-15 | Pfizer Inc. | Her-2 peptides and vaccines |
CA2800774A1 (en) | 2010-06-07 | 2011-12-15 | Pfizer Vaccines Llc | Ige ch3 peptide vaccine |
GB201009861D0 (en) | 2010-06-11 | 2010-07-21 | Novartis Ag | OMV vaccines |
US8658603B2 (en) | 2010-06-16 | 2014-02-25 | The Regents Of The University Of Michigan | Compositions and methods for inducing an immune response |
US9192661B2 (en) | 2010-07-06 | 2015-11-24 | Novartis Ag | Delivery of self-replicating RNA using biodegradable polymer particles |
US20130171185A1 (en) | 2010-07-06 | 2013-07-04 | Ethan Settembre | Norovirus derived immunogenic compositions and methods |
GB201101665D0 (en) | 2011-01-31 | 2011-03-16 | Novartis Ag | Immunogenic compositions |
AU2011310643A1 (en) | 2010-09-27 | 2013-04-11 | Glaxosmithkline Biologicals S.A. | Vaccine |
BR112013004582A2 (pt) | 2010-09-27 | 2016-09-06 | Crucell Holland Bv | método para induzir uma resposta imune em um sujeito contra um antígeno de um parasita que causa a malária |
GB201017519D0 (en) | 2010-10-15 | 2010-12-01 | Novartis Vaccines Inst For Global Health S R L | Vaccines |
AU2011315447A1 (en) | 2010-10-15 | 2013-05-09 | Glaxosmithkline Biologicals S.A. | Cytomegalovirus gB antigen |
FR2966044B1 (fr) * | 2010-10-18 | 2012-11-02 | Sanofi Pasteur | Procede de conditionnement d'un vaccin contenant un adjuvant d'aluminium |
WO2012072769A1 (en) | 2010-12-01 | 2012-06-07 | Novartis Ag | Pneumococcal rrgb epitopes and clade combinations |
NZ611176A (en) | 2010-12-02 | 2015-07-31 | Bionor Immuno As | Peptide scaffold design |
EP3593813A1 (en) | 2010-12-14 | 2020-01-15 | GlaxoSmithKline Biologicals S.A. | Mycobacterium antigenic composition |
CA2860331A1 (en) | 2010-12-24 | 2012-06-28 | Novartis Ag | Compounds |
GB201022007D0 (en) | 2010-12-24 | 2011-02-02 | Imp Innovations Ltd | DNA-sensor |
US9493514B2 (en) | 2011-01-06 | 2016-11-15 | Bionor Immuno As | Dimeric scaffold proteins comprising HIV-1 GP120 and GP41 epitopes |
TR201908715T4 (tr) | 2011-01-26 | 2019-07-22 | Glaxosmithkline Biologicals Sa | Rsv immünizasyon rejimi. |
WO2012114323A1 (en) | 2011-02-22 | 2012-08-30 | Biondvax Pharmaceuticals Ltd. | Multimeric multiepitope polypeptides in improved seasonal and pandemic influenza vaccines |
US20140004142A1 (en) | 2011-03-02 | 2014-01-02 | Pfizer Inc. | Pcsk9 vaccine |
GB201106357D0 (en) | 2011-04-14 | 2011-06-01 | Pessi Antonello | Composition and uses thereof |
AU2012243039B2 (en) | 2011-04-08 | 2017-07-13 | Immune Design Corp. | Immunogenic compositions and methods of using the compositions for inducing humoral and cellular immune responses |
TW201302779A (zh) | 2011-04-13 | 2013-01-16 | Glaxosmithkline Biolog Sa | 融合蛋白質及組合疫苗 |
PL2707385T3 (pl) | 2011-05-13 | 2018-03-30 | Glaxosmithkline Biologicals Sa | Prefuzyjne antygeny RSV F |
BR112013029514A2 (pt) | 2011-05-17 | 2019-09-24 | Glaxosmithkline Biologicals Sa | composição imunogênica, vacina, e, método de tratar ou impedir uma doença |
EP2726097A4 (en) | 2011-07-01 | 2015-03-11 | Univ California | HERPES VIRUS VACCINE AND METHOD OF USE |
US11896636B2 (en) | 2011-07-06 | 2024-02-13 | Glaxosmithkline Biologicals Sa | Immunogenic combination compositions and uses thereof |
EP2729168A2 (en) | 2011-07-06 | 2014-05-14 | Novartis AG | Immunogenic compositions and uses thereof |
WO2013009564A1 (en) | 2011-07-08 | 2013-01-17 | Novartis Ag | Tyrosine ligation process |
WO2013009849A1 (en) | 2011-07-11 | 2013-01-17 | Ligocyte Pharmaceuticals, Inc. | Parenteral norovirus vaccine formulations |
WO2013016460A1 (en) | 2011-07-25 | 2013-01-31 | Novartis Ag | Compositions and methods for assessing functional immunogenicity of parvovirus vaccines |
GB201114923D0 (en) | 2011-08-30 | 2011-10-12 | Novartis Ag | Immunogenic proteins and compositions |
IN2014CN02152A (pl) | 2011-09-01 | 2015-09-04 | Novartis Ag | |
CN103917245B (zh) | 2011-09-14 | 2017-06-06 | 葛兰素史密丝克莱恩生物有限公司 | 用于制备糖‑蛋白质糖缀合物的方法 |
SG11201400193SA (en) | 2011-09-16 | 2014-05-29 | Ucb Pharma Sa | Neutralising antibodies to the major exotoxins tcda and tcdb of clostridium difficile |
GB201116248D0 (en) | 2011-09-20 | 2011-11-02 | Glaxosmithkline Biolog Sa | Liposome production using isopropanol |
CA2854934A1 (en) | 2011-11-07 | 2013-05-16 | Novartis Ag | Carrier molecule comprising a spr0096 and a spr2021 antigen |
WO2013074501A1 (en) | 2011-11-14 | 2013-05-23 | Crucell Holland B.V. | Heterologous prime-boost immunization using measles virus-based vaccines |
WO2013108272A2 (en) | 2012-01-20 | 2013-07-25 | International Centre For Genetic Engineering And Biotechnology | Blood stage malaria vaccine |
JP2015509520A (ja) | 2012-03-07 | 2015-03-30 | ノバルティス アーゲー | 狂犬病ウイルス免疫原のアジュバント化製剤 |
EP2822586A1 (en) | 2012-03-07 | 2015-01-14 | Novartis AG | Adjuvanted formulations of streptococcus pneumoniae antigens |
JP2015509963A (ja) | 2012-03-08 | 2015-04-02 | ノバルティス アーゲー | Tlr4アゴニストを含む混合ワクチン |
AU2013229432A1 (en) | 2012-03-08 | 2014-10-16 | Novartis Ag | Adjuvanted formulations of booster vaccines |
US20150110824A1 (en) | 2012-03-18 | 2015-04-23 | Glaxosmithkline Biologicals, Sa | Method of vaccination against human papillomavirus |
EP3492095A1 (en) | 2012-04-01 | 2019-06-05 | Technion Research & Development Foundation Limited | Extracellular matrix metalloproteinase inducer (emmprin) peptides and binding antibodies |
EP2659907A1 (en) | 2012-05-01 | 2013-11-06 | Affiris AG | Compositions |
EP2659906A1 (en) | 2012-05-01 | 2013-11-06 | Affiris AG | Compositions |
EP2659908A1 (en) | 2012-05-01 | 2013-11-06 | Affiris AG | Compositions |
MX359257B (es) | 2012-05-04 | 2018-09-19 | Pfizer | Antígenos asociados a próstata y regímenes de inmunoterapia basados en vacuna. |
RS57420B1 (sr) | 2012-05-16 | 2018-09-28 | Immune Design Corp | Vakcine za hsv-2 |
SG11201407440WA (en) | 2012-05-22 | 2014-12-30 | Novartis Ag | Meningococcus serogroup x conjugate |
EP2666785A1 (en) | 2012-05-23 | 2013-11-27 | Affiris AG | Complement component C5a-based vaccine |
MX2014014683A (es) | 2012-06-06 | 2015-02-24 | Bionor Immuno As | Peptidos derivados de proteinas virales para usarse como inmunogenos y reactivos de dosificacion. |
JP2015522580A (ja) | 2012-07-06 | 2015-08-06 | ノバルティス アーゲー | 免疫学的組成物およびその使用 |
US20140037680A1 (en) | 2012-08-06 | 2014-02-06 | Glaxosmithkline Biologicals, S.A. | Novel method |
AU2013301312A1 (en) | 2012-08-06 | 2015-03-19 | Glaxosmithkline Biologicals S.A. | Method for eliciting in infants an immune response against RSV and B. pertussis |
EP2703483A1 (en) | 2012-08-29 | 2014-03-05 | Affiris AG | PCSK9 peptide vaccine |
JP6324961B2 (ja) | 2012-09-06 | 2018-05-16 | ノバルティス アーゲー | 血清群b髄膜炎菌とd/t/pとの組み合わせワクチン |
AU2013320313B2 (en) | 2012-09-18 | 2018-07-12 | Glaxosmithkline Biologicals Sa | Outer membrane vesicles |
EA201590427A1 (ru) | 2012-10-02 | 2015-09-30 | Глаксосмитклайн Байолоджикалс С.А. | Нелинейные сахаридные конъюгаты |
SG11201500979RA (en) | 2012-10-03 | 2015-07-30 | Glaxosmithkline Biolog Sa | Immunogenic composition |
EP3620172A1 (en) | 2012-10-12 | 2020-03-11 | GlaxoSmithKline Biologicals SA | Non-cross-linked acellular pertussis antigens for use in combination vaccines |
US9987344B2 (en) | 2012-11-30 | 2018-06-05 | Glaxosmithkline Biologicals Sa | Pseudomonas antigens and antigen combinations |
EP3513806B1 (en) | 2012-12-05 | 2023-01-25 | GlaxoSmithKline Biologicals SA | Immunogenic composition |
WO2014160463A1 (en) | 2013-03-13 | 2014-10-02 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Prefusion rsv f proteins and their use |
AR095425A1 (es) | 2013-03-15 | 2015-10-14 | Glaxosmithkline Biologicals Sa | Vacuna, uso y procedimiento para prevenir una infección por picornavirus |
CA2909221A1 (en) | 2013-04-18 | 2014-10-23 | Immune Design Corp. | Gla monotherapy for use in cancer treatment |
US20210145963A9 (en) | 2013-05-15 | 2021-05-20 | The Governors Of The University Of Alberta | E1e2 hcv vaccines and methods of use |
US9463198B2 (en) | 2013-06-04 | 2016-10-11 | Infectious Disease Research Institute | Compositions and methods for reducing or preventing metastasis |
GB201310008D0 (en) | 2013-06-05 | 2013-07-17 | Glaxosmithkline Biolog Sa | Immunogenic composition for use in therapy |
KR20160040290A (ko) | 2013-08-05 | 2016-04-12 | 글락소스미스클라인 바이오로지칼즈 에스.에이. | 조합 면역원성 조성물 |
CA2920934C (en) | 2013-08-30 | 2022-12-06 | Glaxosmithkline Biologicals S.A. | Large scale production of viruses in cell culture |
JP6306700B2 (ja) | 2013-11-01 | 2018-04-04 | ユニバーシティ オブ オスロUniversity of Oslo | アルブミン改変体及びその使用 |
EP2870974A1 (en) | 2013-11-08 | 2015-05-13 | Novartis AG | Salmonella conjugate vaccines |
US11452767B2 (en) | 2013-11-15 | 2022-09-27 | Oslo Universitetssykehus Hf | CTL peptide epitopes and antigen-specific t cells, methods for their discovery, and uses thereof |
WO2015092710A1 (en) | 2013-12-19 | 2015-06-25 | Glaxosmithkline Biologicals, S.A. | Contralateral co-administration of vaccines |
US11160855B2 (en) | 2014-01-21 | 2021-11-02 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
EP3096785B1 (en) | 2014-01-21 | 2020-09-09 | Pfizer Inc | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
WO2015123291A1 (en) | 2014-02-11 | 2015-08-20 | The Usa, As Represented By The Secretary, Dept. Of Health And Human Services | Pcsk9 vaccine and methods of using the same |
TW201620927A (zh) | 2014-02-24 | 2016-06-16 | 葛蘭素史密斯克藍生物品公司 | Uspa2蛋白質構築體及其用途 |
SG11201607404PA (en) * | 2014-03-25 | 2016-10-28 | Government Of The Us Secretary Of The Army | Methods for enhancing the immunostimulation potency of aluminum salt-adsorbed vaccines |
EA037818B1 (ru) | 2014-03-26 | 2021-05-25 | Глаксосмитклайн Байолоджикалс С.А. | Мутантные стафилококковые антигены |
US11571472B2 (en) | 2014-06-13 | 2023-02-07 | Glaxosmithkline Biologicals Sa | Immunogenic combinations |
DK3160500T3 (da) | 2014-06-25 | 2019-11-11 | Glaxosmithkline Biologicals Sa | Clostridium difficile immunogen sammensætning |
EP3169699A4 (en) | 2014-07-18 | 2018-06-20 | The University of Washington | Cancer vaccine compositions and methods of use thereof |
WO2016012385A1 (en) | 2014-07-21 | 2016-01-28 | Sanofi Pasteur | Vaccine composition comprising ipv and cyclodextrins |
EP4074726A3 (en) | 2014-07-23 | 2022-11-23 | Children's Hospital & Research Center at Oakland | Factor h binding protein variants and methods of use thereof |
WO2016057921A1 (en) | 2014-10-10 | 2016-04-14 | Baker Jr James R | Nanoemulsion compositions for preventing, suppressing or eliminating allergic and inflammatory disease |
AR102548A1 (es) | 2014-11-07 | 2017-03-08 | Takeda Vaccines Inc | Vacunas contra la enfermedad de manos, pies y boca y métodos de fabricación y uso |
AR102547A1 (es) | 2014-11-07 | 2017-03-08 | Takeda Vaccines Inc | Vacunas contra la enfermedad de manos, pies y boca y métodos de fabricación y su uso |
BE1023004A1 (fr) | 2014-12-10 | 2016-10-31 | Glaxosmithkline Biologicals Sa | Procede de traitement |
DK3244917T5 (da) | 2015-01-15 | 2024-10-14 | Pfizer Inc | Immunogene sammensætninger til anvendelse i pneumokokvacciner |
WO2016141320A2 (en) | 2015-03-05 | 2016-09-09 | Northwestern University | Non-neuroinvasive viruses and uses thereof |
JP2018511655A (ja) | 2015-03-20 | 2018-04-26 | ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン | ボルデテラ属に対するワクチン接種における使用のための免疫原性組成物 |
AU2016271857B2 (en) | 2015-06-03 | 2020-05-28 | Affiris Ag | IL-23-P19 vaccines |
KR20180035807A (ko) | 2015-06-26 | 2018-04-06 | 세퀴러스 유케이 리미티드 | 항원적으로 매치된 인플루엔자 백신 |
EP3319988A1 (en) | 2015-07-07 | 2018-05-16 | Affiris AG | Vaccines for the treatment and prevention of ige mediated diseases |
PE20180657A1 (es) | 2015-07-21 | 2018-04-17 | Pfizer | Composiciones inmunogenas que comprenden antigenos de sacarido capsular conjugados, kits que las comprenden y sus usos |
GB201518684D0 (en) | 2015-10-21 | 2015-12-02 | Glaxosmithkline Biolog Sa | Vaccine |
GB201518668D0 (en) | 2015-10-21 | 2015-12-02 | Glaxosmithkline Biolog Sa | Immunogenic Comosition |
CA3005524C (en) | 2015-11-20 | 2023-10-10 | Pfizer Inc. | Immunogenic compositions for use in pneumococcal vaccines |
WO2017109698A1 (en) | 2015-12-22 | 2017-06-29 | Glaxosmithkline Biologicals Sa | Immunogenic formulation |
WO2017158421A1 (en) | 2016-03-14 | 2017-09-21 | University Of Oslo | Anti-viral engineered immunoglobulins |
CR20180445A (es) | 2016-03-14 | 2019-02-08 | Univ Oslo | Inmunoglobulinas diseñadas por ingeniería genética con unión alterada al fcrn |
US11173207B2 (en) | 2016-05-19 | 2021-11-16 | The Regents Of The University Of Michigan | Adjuvant compositions |
GB201610599D0 (en) | 2016-06-17 | 2016-08-03 | Glaxosmithkline Biologicals Sa | Immunogenic Composition |
EP3471761A2 (en) | 2016-06-21 | 2019-04-24 | University Of Oslo | Hla binding vaccine moieties and uses thereof |
CA3034124A1 (en) | 2016-08-23 | 2018-03-01 | Glaxosmithkline Biologicals Sa | Fusion peptides with antigens linked to short fragments of invariant chain (cd74) |
GB201614799D0 (en) | 2016-09-01 | 2016-10-19 | Glaxosmithkline Biologicals Sa | Compositions |
US11466292B2 (en) | 2016-09-29 | 2022-10-11 | Glaxosmithkline Biologicals Sa | Compositions and methods of treatment |
GB201616904D0 (en) | 2016-10-05 | 2016-11-16 | Glaxosmithkline Biologicals Sa | Vaccine |
WO2018096396A1 (en) | 2016-11-22 | 2018-05-31 | University Of Oslo | Albumin variants and uses thereof |
CA3045952A1 (en) | 2016-12-07 | 2018-06-14 | Glaxosmithkline Biologicals Sa | Novel process |
GB201620968D0 (en) | 2016-12-09 | 2017-01-25 | Glaxosmithkline Biologicals Sa | Adenovirus polynucleotides and polypeptides |
MX2019006349A (es) | 2016-12-16 | 2019-08-22 | Inst Res Biomedicine | Proteinas recombinantes rsv f de prefusion nuevas y usos de las mismas. |
GB201621686D0 (en) | 2016-12-20 | 2017-02-01 | Glaxosmithkline Biologicals Sa | Novel methods for inducing an immune response |
SI3570879T1 (sl) | 2017-01-20 | 2022-06-30 | Pfizer Inc. | Imunogenska kompozicija za uporabo v pnevmokoknih cepivih |
BR112019020209A2 (pt) | 2017-03-31 | 2020-06-02 | Glaxosmithkline Intellectual Property Development Limited | Composição imunogênica, uso de uma composição imunogênica, método de tratamento ou prevenção de uma recorrência de uma exacerbação aguda de doença pulmonar obstrutiva crônica, e, terapia de combinação. |
WO2018178265A1 (en) | 2017-03-31 | 2018-10-04 | Glaxosmithkline Intellectual Property Development Limited | Immunogenic composition, use and method of treatment |
CN110945022B (zh) | 2017-04-19 | 2024-04-05 | 生物医学研究所 | 作为疫苗及新疟疾疫苗和抗体结合靶标的疟原虫子孢子npdp肽 |
EP3615061A1 (en) | 2017-04-28 | 2020-03-04 | GlaxoSmithKline Biologicals S.A. | Vaccination |
GB201707700D0 (en) | 2017-05-12 | 2017-06-28 | Glaxosmithkline Biologicals Sa | Dried composition |
JP7291633B2 (ja) | 2017-05-30 | 2023-06-15 | グラクソスミスクライン バイオロジカルズ ソシエテ アノニム | アジュバントを製造する方法 |
BR112020001768A2 (pt) | 2017-08-14 | 2020-09-29 | Glaxosmithkline Biologicals S.A. | método de reforçar uma resposta imune pré-existente contra haemophilus influenzae e moraxella catarrhalis não tipáveis em um indivíduo, e, protocolo de vacinação. |
WO2019048936A1 (en) | 2017-09-07 | 2019-03-14 | University Of Oslo | VACCINE MOLECULES |
WO2019048928A1 (en) | 2017-09-07 | 2019-03-14 | University Of Oslo | VACCINE MOLECULES |
CN111315406A (zh) | 2017-09-08 | 2020-06-19 | 传染病研究所 | 包括皂苷的脂质体调配物及其使用方法 |
CA3081436A1 (en) | 2017-10-31 | 2019-05-09 | Western Oncolytics Ltd. | Platform oncolytic vector for systemic delivery |
CN111511395B (zh) | 2017-11-03 | 2024-10-15 | 武田疫苗股份有限公司 | 用于将寨卡病毒灭活和用于确定灭活完全性的方法 |
GB201721069D0 (en) | 2017-12-15 | 2018-01-31 | Glaxosmithkline Biologicals Sa | Hepatitis B Immunisation regimen and compositions |
GB201721068D0 (en) | 2017-12-15 | 2018-01-31 | Glaxosmithkline Biologicals Sa | Hepatitis B immunisation regimen and compositions |
GB201721582D0 (en) | 2017-12-21 | 2018-02-07 | Glaxosmithkline Biologicals Sa | S aureus antigens and immunogenic compositions |
GB201721576D0 (en) | 2017-12-21 | 2018-02-07 | Glaxosmithkline Biologicals Sa | Hla antigens and glycoconjugates thereof |
CN112638936A (zh) | 2018-06-12 | 2021-04-09 | 葛兰素史密丝克莱恩生物有限公司 | 腺病毒多核苷酸和多肽 |
EP3581201A1 (en) | 2018-06-15 | 2019-12-18 | GlaxoSmithKline Biologicals S.A. | Escherichia coli o157:h7 proteins and uses thereof |
CN110680909B (zh) * | 2018-07-04 | 2024-09-20 | 辽宁成大生物股份有限公司 | 一种速释b型流感嗜血杆菌结合疫苗可溶性微针贴及其制备方法 |
WO2020026147A1 (en) | 2018-07-31 | 2020-02-06 | Glaxosmithkline Biologicals Sa | Antigen purification method |
MX2021001479A (es) | 2018-08-07 | 2021-04-28 | Glaxosmithkline Biologicals Sa | Novedosos procesos y vacunas. |
CN112912097A (zh) | 2018-08-23 | 2021-06-04 | 葛兰素史密丝克莱恩生物有限公司 | 免疫原性蛋白和组合物 |
US11260119B2 (en) | 2018-08-24 | 2022-03-01 | Pfizer Inc. | Escherichia coli compositions and methods thereof |
WO2020115171A1 (en) | 2018-12-06 | 2020-06-11 | Glaxosmithkline Biologicals Sa | Immunogenic compositions |
JP2022512345A (ja) | 2018-12-12 | 2022-02-03 | ファイザー・インク | 免疫原性多重ヘテロ抗原多糖-タンパク質コンジュゲートおよびその使用 |
EP3897846A1 (en) | 2018-12-21 | 2021-10-27 | GlaxoSmithKline Biologicals SA | Methods of inducing an immune response |
JP7239509B6 (ja) | 2019-02-22 | 2023-03-28 | ファイザー・インク | 細菌多糖類を精製するための方法 |
CN113573730A (zh) | 2019-03-05 | 2021-10-29 | 葛兰素史密斯克莱生物公司 | 乙型肝炎免疫方案和组合物 |
US20220184199A1 (en) | 2019-04-10 | 2022-06-16 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof |
US20220221455A1 (en) | 2019-04-18 | 2022-07-14 | Glaxosmithkline Biologicals Sa | Antigen binding proteins and assays |
EP3770269A1 (en) | 2019-07-23 | 2021-01-27 | GlaxoSmithKline Biologicals S.A. | Quantification of bioconjugate glycosylation |
EP4004018A1 (en) | 2019-07-24 | 2022-06-01 | GlaxoSmithKline Biologicals SA | Modified human cytomegalovirus proteins |
WO2021023691A1 (en) | 2019-08-05 | 2021-02-11 | Glaxosmithkline Biologicals Sa | Immunogenic composition |
CA3148928A1 (en) | 2019-08-05 | 2021-02-11 | Glaxosmithkline Biologicals Sa | Process for preparing a composition comprising a protein d polypeptide |
EP3777884A1 (en) | 2019-08-15 | 2021-02-17 | GlaxoSmithKline Biologicals S.A. | Immunogenic composition |
EP4028051A1 (en) | 2019-09-09 | 2022-07-20 | GlaxoSmithKline Biologicals S.A. | Immunotherapeutic compositions |
IL292494A (en) | 2019-11-01 | 2022-06-01 | Pfizer | Preparations of Escherichia coli and their methods |
US20230045642A1 (en) | 2019-12-19 | 2023-02-09 | Glaxosmithkline Biologicals Sa | S. aureus antigens and compositions thereof |
NL2027383B1 (en) | 2020-01-24 | 2022-04-06 | Aim Immunotech Inc | Methods, compositions, and vaccines for treating a virus infection |
WO2021160887A1 (en) | 2020-02-14 | 2021-08-19 | Immunor As | Corona virus vaccine |
WO2021165847A1 (en) | 2020-02-21 | 2021-08-26 | Pfizer Inc. | Purification of saccharides |
EP4107170A2 (en) | 2020-02-23 | 2022-12-28 | Pfizer Inc. | Escherichia coli compositions and methods thereof |
EP4146378A1 (en) | 2020-05-05 | 2023-03-15 | GlaxoSmithKline Biologicals S.A. | Microfluidic mixing device and methods of use |
US20230293659A1 (en) | 2020-08-03 | 2023-09-21 | Glaxosmithkline Biologicals Sa | Truncated fusobacterium nucleatum fusobacterium adhesin a (fada) protein and immunogenic compositions thereof |
IL302362A (en) | 2020-10-27 | 2023-06-01 | Pfizer | ESCHERICHIA COLI preparations and their methods |
CN116744965A (zh) | 2020-11-04 | 2023-09-12 | 辉瑞大药厂 | 用于肺炎球菌疫苗的免疫原性组合物 |
EP4243863A2 (en) | 2020-11-10 | 2023-09-20 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
EP4255919A2 (en) | 2020-12-02 | 2023-10-11 | GlaxoSmithKline Biologicals S.A. | Donor strand complemented fimh |
US20220202923A1 (en) | 2020-12-23 | 2022-06-30 | Pfizer Inc. | E. coli fimh mutants and uses thereof |
WO2022147373A1 (en) | 2020-12-31 | 2022-07-07 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Antibody-guided pcsk9-mimicking immunogens lacking 9-residue sequence overlap with human proteins |
EP4277654A1 (en) | 2021-01-18 | 2023-11-22 | Conserv Bioscience Limited | Coronavirus immunogenic compositions, methods and uses thereof |
WO2022171681A1 (en) | 2021-02-11 | 2022-08-18 | Glaxosmithkline Biologicals Sa | Hpv vaccine manufacture |
TW202245836A (zh) | 2021-02-19 | 2022-12-01 | 美商賽諾菲巴斯德公司 | 重組b型腦膜炎球菌疫苗 |
JP2024510717A (ja) | 2021-02-22 | 2024-03-11 | グラクソスミスクライン バイオロジカルズ ソシエテ アノニム | 免疫原性組成物、使用及び方法 |
JP2024516400A (ja) | 2021-04-30 | 2024-04-15 | カリヴィル イムノセラピューティクス, インコーポレイテッド | 修飾されたmhc発現のための腫瘍溶解性ウイルス |
JP2024522395A (ja) | 2021-05-28 | 2024-06-19 | ファイザー・インク | コンジュゲートさせた莢膜糖抗原を含む免疫原性組成物およびその使用 |
US20220387576A1 (en) | 2021-05-28 | 2022-12-08 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
WO2023020992A1 (en) | 2021-08-16 | 2023-02-23 | Glaxosmithkline Biologicals Sa | Novel methods |
WO2023020993A1 (en) | 2021-08-16 | 2023-02-23 | Glaxosmithkline Biologicals Sa | Novel methods |
WO2023020994A1 (en) | 2021-08-16 | 2023-02-23 | Glaxosmithkline Biologicals Sa | Novel methods |
IL312890A (en) | 2021-11-18 | 2024-07-01 | Matrivax Inc | Immunogenic fusion protein preparations and methods of using them |
AU2023207315A1 (en) | 2022-01-13 | 2024-06-27 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
WO2023144665A1 (en) | 2022-01-28 | 2023-08-03 | Glaxosmithkline Biologicals Sa | Modified human cytomegalovirus proteins |
WO2023161817A1 (en) | 2022-02-25 | 2023-08-31 | Pfizer Inc. | Methods for incorporating azido groups in bacterial capsular polysaccharides |
WO2023218322A1 (en) | 2022-05-11 | 2023-11-16 | Pfizer Inc. | Process for producing of vaccine formulations with preservatives |
GB202215634D0 (en) | 2022-10-21 | 2022-12-07 | Glaxosmithkline Biologicals Sa | Polypeptide scaffold |
WO2024110827A1 (en) | 2022-11-21 | 2024-05-30 | Pfizer Inc. | Methods for preparing conjugated capsular saccharide antigens and uses thereof |
US20240181028A1 (en) | 2022-11-22 | 2024-06-06 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
WO2024116096A1 (en) | 2022-12-01 | 2024-06-06 | Pfizer Inc. | Pneumococcal conjugate vaccine formulations |
WO2024133160A1 (en) | 2022-12-19 | 2024-06-27 | Glaxosmithkline Biologicals Sa | Hepatitis b compositions |
WO2024160901A1 (en) | 2023-02-02 | 2024-08-08 | Glaxosmithkline Biologicals Sa | Immunogenic composition |
WO2024166008A1 (en) | 2023-02-10 | 2024-08-15 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
WO2024201324A2 (en) | 2023-03-30 | 2024-10-03 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US703355A (en) * | 1901-11-05 | 1902-06-24 | Bertt H Brockway | Current-motor. |
US4196192A (en) * | 1977-10-28 | 1980-04-01 | American Cyanamid Company | Combined Haemophilus influenzae type b and pertussis vaccine |
US4620978A (en) * | 1982-04-07 | 1986-11-04 | The United States Of America As Represented By The Department Of Health And Human Services | Hepatitis A virus purified and triply cloned |
GB8508685D0 (en) * | 1985-04-03 | 1985-05-09 | Minor P D | Peptides |
US4806352A (en) * | 1986-04-15 | 1989-02-21 | Ribi Immunochem Research Inc. | Immunological lipid emulsion adjuvant |
US4877611A (en) * | 1986-04-15 | 1989-10-31 | Ribi Immunochem Research Inc. | Vaccine containing tumor antigens and adjuvants |
US5026557A (en) * | 1987-09-09 | 1991-06-25 | The Liposome Company, Inc. | Adjuvant composition |
JPH085804B2 (ja) * | 1988-04-28 | 1996-01-24 | 財団法人化学及血清療法研究所 | A型及びb型肝炎混合アジュバントワクチン |
US4912094B1 (en) * | 1988-06-29 | 1994-02-15 | Ribi Immunochem Research Inc. | Modified lipopolysaccharides and process of preparation |
DE3916595A1 (de) * | 1989-05-22 | 1990-11-29 | Boehringer Mannheim Gmbh | Verfahren zur nichtradioaktiven messung der nucleinsaeuresynthese in eukaryontischen zellen |
DE69031556T2 (de) * | 1989-07-25 | 1998-05-14 | Smithkline Beecham Biologicals S.A., Rixensart | Antigene sowie Verfahren zu deren Herstellung |
US5100662A (en) * | 1989-08-23 | 1992-03-31 | The Liposome Company, Inc. | Steroidal liposomes exhibiting enhanced stability |
CH678394A5 (pl) * | 1990-08-22 | 1991-09-13 | Cerny Erich H | |
GB9106048D0 (en) * | 1991-03-21 | 1991-05-08 | Smithkline Beecham Biolog | Vaccines |
AU654970B2 (en) * | 1990-09-28 | 1994-12-01 | Smithkline Beecham Biologicals (Sa) | Derivatives of gp160 and vaccines based on gp160 or a derivative thereof, containing an adjuvant |
WO1992011291A1 (en) * | 1990-12-20 | 1992-07-09 | Smithkline Beecham Biologicals (S.A.) | Vaccines based on hepatitis b surface antigen |
GB9028038D0 (en) * | 1990-12-24 | 1991-02-13 | Nycomed Pharma As | Test method and reagent kit therefor |
GB9105992D0 (en) * | 1991-03-21 | 1991-05-08 | Smithkline Beecham Biolog | Vaccine |
MY111880A (en) * | 1992-03-27 | 2001-02-28 | Smithkline Beecham Biologicals S A | Hepatitis vaccines containing 3-0 deacylated monophosphoryl lipid a |
CA2156525A1 (en) * | 1993-02-19 | 1994-09-01 | Susan Dillon | Influenza vaccine compositions containing 3-o-deacylated monophosphoryl lipid a |
-
1994
- 1994-03-14 SG SG1996008821A patent/SG48309A1/en unknown
- 1994-03-14 WO PCT/EP1994/000818 patent/WO1994021292A1/en active IP Right Grant
- 1994-03-14 ES ES97101617T patent/ES2162139T5/es not_active Expired - Lifetime
- 1994-03-14 JP JP52064094A patent/JP4028593B2/ja not_active Expired - Lifetime
- 1994-03-14 US US08/525,638 patent/US5776468A/en not_active Expired - Lifetime
- 1994-03-14 BR BR9405957A patent/BR9405957A/pt not_active Application Discontinuation
- 1994-03-14 CZ CZ19952467A patent/CZ289476B6/cs not_active IP Right Cessation
- 1994-03-14 DE DE69428136T patent/DE69428136T3/de not_active Expired - Lifetime
- 1994-03-14 PL PL94310598A patent/PL178578B1/pl unknown
- 1994-03-14 SK SK1173-95A patent/SK117395A3/sk unknown
- 1994-03-14 NZ NZ263538A patent/NZ263538A/en not_active IP Right Cessation
- 1994-03-14 CN CN94191582A patent/CN1087176C/zh not_active Expired - Lifetime
- 1994-03-14 AT AT97101617T patent/ATE204762T1/de active
- 1994-03-14 PT PT97101617T patent/PT812593E/pt unknown
- 1994-03-14 ES ES94911894T patent/ES2109685T5/es not_active Expired - Lifetime
- 1994-03-14 HU HU9501979A patent/HU219056B/hu unknown
- 1994-03-14 DE DE69405551T patent/DE69405551T3/de not_active Expired - Lifetime
- 1994-03-14 EP EP01112703A patent/EP1175912A1/en not_active Ceased
- 1994-03-14 AT AT94911894T patent/ATE157882T1/de active
- 1994-03-14 EP EP97101617A patent/EP0812593B8/en not_active Expired - Lifetime
- 1994-03-14 DK DK97101617T patent/DK0812593T4/da active
- 1994-03-14 AU AU64264/94A patent/AU685443B2/en not_active Expired
- 1994-03-14 EP EP94911894A patent/EP0689454B2/en not_active Expired - Lifetime
- 1994-03-14 DK DK94911894T patent/DK0689454T4/da active
- 1994-03-14 KR KR1019950704133A patent/KR100310510B1/ko not_active IP Right Cessation
- 1994-03-21 MA MA23451A patent/MA23143A1/fr unknown
- 1994-03-21 AP APAP/P/1994/000629A patent/AP515A/en active
- 1994-03-21 DZ DZ940026A patent/DZ1763A1/fr active
- 1994-03-21 IL IL109056A patent/IL109056A/en not_active IP Right Cessation
- 1994-06-05 SA SA94140762A patent/SA94140762B1/ar unknown
-
1995
- 1995-09-22 NO NO19953759A patent/NO322578B1/no not_active IP Right Cessation
- 1995-09-22 FI FI954514A patent/FI110844B/fi not_active IP Right Cessation
-
1997
- 1997-11-26 GR GR970403132T patent/GR3025483T3/el unknown
-
1998
- 1998-12-10 HK HK98113156A patent/HK1011930A1/xx not_active IP Right Cessation
- 1998-12-10 HK HK00100407A patent/HK1023499A1/xx not_active IP Right Cessation
-
2002
- 2002-07-30 HK HK02105614.3A patent/HK1045935A1/zh unknown
-
2004
- 2004-08-05 JP JP2004229276A patent/JP4837906B2/ja not_active Expired - Lifetime
-
2005
- 2005-10-12 NO NO20054701A patent/NO20054701D0/no not_active Application Discontinuation
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5776468A (en) | Vaccine compositions containing 3-0 deacylated monophosphoryl lipid A | |
RU2121849C1 (ru) | Вакцинная композиция против гепатита, способ профилактики гепатита | |
AP408A (en) | Vaccine composition containing adjuvants. | |
JP3881015B2 (ja) | B型肝炎ワクチン | |
US6893644B2 (en) | Hepatitis vaccines containing 3-O-deacylated monophoshoryl lipid A | |
AU705739B2 (en) | A method of preparing vaccine compositions containing 3-0-deacylated monophosphoryl lipid A | |
CA2157376C (en) | Vaccine compositions containing 3-o deacylated monophosphoryl lipid a | |
CA2555911C (en) | Adjuvant compositions containing 3-o deacylated monophosphoryl lipid a |