KR100735533B1 - 듀얼 스트레스 기억 기술 제공 방법 및 상관된 구조 - Google Patents
듀얼 스트레스 기억 기술 제공 방법 및 상관된 구조 Download PDFInfo
- Publication number
- KR100735533B1 KR100735533B1 KR1020060074829A KR20060074829A KR100735533B1 KR 100735533 B1 KR100735533 B1 KR 100735533B1 KR 1020060074829 A KR1020060074829 A KR 1020060074829A KR 20060074829 A KR20060074829 A KR 20060074829A KR 100735533 B1 KR100735533 B1 KR 100735533B1
- Authority
- KR
- South Korea
- Prior art keywords
- stress
- film
- type transistor
- compressive stress
- semiconductor device
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 230000009977 dual effect Effects 0.000 title claims abstract description 24
- 239000004065 semiconductor Substances 0.000 claims abstract description 33
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 24
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 238000005137 deposition process Methods 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- -1 / halo ions Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823807—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823864—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
- H01L29/7843—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Abstract
N형 트랜지스터와 P형 트랜지스터를 포함하는 반도체 소자에 듀얼 스트레스 기억 기술을 제공하는 방법과 그에 의한 구조가 개시되어 있다. 방법의 일 실시예는 N형 트랜지스터 전면에 인장 스트레스막을 형성하고 P형 트랜지스터 전면에 압축 스트레스막을 형성하고, 반도체 소자에 스트레스를 기억시키기 위한 열공정을 진행하고, 스트레스막을 제거하는 것을 포함한다. 압축 스트레스막은 고밀도 플라즈마(High Density Plasma; HDP) 증착 공정에 의해 형성된 높은 스트레스의 실리콘 질화막을 포함한다. 열공정은 약 400-1,200℃의 온도에서 진행될 수 있다. 높은 스트레스의 압축 실리콘 질화막 및/또는 열공정 온도는 P형 트랜지스터에 압축 스트레스가 기억되어 유지될 수 있도록 한다.
듀얼 스트레스 기억 기술, 압축 스트레스막
Description
도 1은 본 발명의 일 실시예에 따른 듀얼 스트레스 기억 기술 제공 방법을 위한 예비적 구조를 나타낸 도면이다.
도 2 내지 도 7은 본 발명의 일 실시예에 따른 듀얼 스트레스 기억 기술 제공 방법에 대한 도면이다.
본 발명은 스트레스 기억 기술에 관한 것으로, 더욱 상세하게는 듀얼 스트레스 기억 기술을 제공하는 방법 및 상관된 구조에 관한 것이다.
전계 효과 트랜지스터에 스트레스를 적용하면 트랜지스터의 특성을 향상시킬 수 있다. 세로 방향, 즉 전류가 흐르는 방향으로 적용하면, 인장 스트레스는 전자 이동도(N형 트랜지스터의 드라이브 전류)를 향상시키며, 압축 스트레스는 정공 이동도(P형 트랜지스터의 드라이브 전류)를 향상시킨다고 알려져 있다.
이러한 스트레스를 제공하는 방법을 스트레스 기억 기술(Stress Memory Technique; SMT)이라 한다. 스트레스 기억 기술은 본질적으로 스트레스를 가진 물 질, 예를 들어 실리콘 질화막 등을 채널 영역에 형성하고, 열공정을 수행하여 게이트 폴리실리콘 또는 확산 영역 등에 스트레스를 기억시킨다. 이어서, 스트레스를 가진 물질은 제거한다. 그러나, 스트레스를 가진 물질을 제거하더라도, 스트레스는 트랜지스터에 남아 있게 된다. 따라서, 전자 또는 정공의 이동도를 향상시켜, 전체적인 트랜지스터의 특성을 향상시킨다. 열공정은 일반적으로 도펀트 활성 어닐링(dopant activation anneal)으로 제공된다.
스트레스 기억 기술의 하나의 문제점은 N형 트랜지스터에만 적용될 수 있다는 것이다. 구체적으로, 압축 스트레스를 주기 위하여 P형 트랜지스터 전면에 압축 스트레스를 가진 실리콘 질화막을 형성하면, 후속 공정인 열공정에서 스트레스가 대부분 제거된다. 즉, 압축 스트레스가 P형 트랜지스터에 거의 기억되지 않는다.
따라서, N형 트랜지스터와 P형 트랜지스터 모두에 스트레스를 기억시키는 듀얼 스트레스 기억 기술을 제공하는 것이 필요하다.
본 발명이 이루고자 하는 기술적 과제는, 듀얼 스트레스 기억 기술을 제공하는 데 있다.
본 발명이 이루고자 하는 다른 기술적 과제는, 듀얼 스트레스 기억 기술과 상관된 구조를 제공하는 데 있다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
N형 트랜지스터와 P형 트랜지스터를 포함하는 반도체 소자에 듀얼 스트레스 기억 기술을 제공하는 방법과 그에 의한 구조가 개시되어 있다.
방법의 일 실시예에는 N형 트랜지스터 전면에 인장 스트레스막을 형성하고 P형 트랜지스터 전면에 압축 스트레스막을 형성하고, 반도체 소자에 스트레스를 기억시키기 위한 열공정을 진행하고, 스트레스막을 제거하는 것을 포함한다. 압축 스트레스막은 고밀도 플라즈마(High Density Plasma; HDP) 증착 공정에 의해 형성된 높은 스트레스의 실리콘 질화막을 포함한다. 열공정은 약 400-1,200℃의 온도에서 진행될 수 있다. 높은 스트레스의 압축 실리콘 질화막 및/또는 열공정 온도는 P형 트랜지스터에 압축 스트레스가 기억되어 유지될 수 있도록 한다.
본 발명의 일 태양인 듀얼 스트레스 기억 기술 제공 방법은 N형 트랜지스터와 P형 트랜지스터를 포함하는 반도체 소자를 제공하고, 상기 반도체 소자 전면에 제1 스트레스막을 형성하고, 상기 제1 스트레스막 상에 제1 식각정지막을 형성하고, N형 트랜지스터와 P형 트랜지스터 중 하나의 트랜지스터 상의 제1 스트레스막과 식각정지막을 제거하고, 상기 반도체 소자 상에 제2 스트레스막을 형성하되, P형 트랜지스터 상에 형성된 스트레스막은 압축 스트레스 실리콘 질화막을 포함하도록 하고, 열공정을 수행하여 반도체 소자가 스트레스를 기억하도록 하고, 제1 및 제2 스트레스막과 식각정지막을 제거하는 것을 포함한다.
본 발명의 다른 태양인 듀얼 스트레스 기억 기술을 제공하는 방법은 N형 트랜지스터와 P형 트랜지스터를 포함하는 반도체 소자를 제공하고, N형 트랜지스터 상에 인장 스트레스막을 형성하고, P형 트랜지스터 상에는 압축 스트레스막을 형성하되, 상기 압축 스트레스막은 이후의 열공정을 진행하는 동안 적어도 일부분은 압축 스트레스를 유지하는 고스트레스((high stress) 필름을 포함하고, 열공정을 진행하여 상기 반도체 소자에 스트레스를 기억시키고, 상기 압축 스트레스막 및 인장 스트레스막을 제거하는 것을 포함한다.
본 발명의 또 다른 태양인 반도체 소자는 일부분에 인장 스트레스가 기억된 N형 트랜지스터 및 일부분에 압축 스트레스가 기억된 P형 트랜지스터를 포함한다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
도 1은 본 발명의 일 실시예에 따른 듀얼 스트레스 기억 기술(SMT)을 제공하는 방법을 위한 반도체 소자(100)의 예비적 구조를 도시하고 있다. 예비적 구조는 N형 트랜지스터(104)와 P형 트랜지스터(106)가 형성된 기판(102)을 포함한다. 도시된 바와 같이, 반도체 소자(100)에는 STI(110) 형성, 웰 이온 주입, 게이트 절연막(112) 형성, 게이트 도전체(114) 형성, 확산 영역(116)을 형성하기 위한 확산/할 로이온 주입/소스/드레인 이온주입 등의 완전한 초기 공정이 진행되어 있다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 듀얼 스트레스 기억 기술 제공 방법의 첫번째 단계는 N형 트랜지스터(104) 전면에 인장 스트레스막(120)을 형성하고, P형 트랜지스터(106) 전면에 압축 스트레스막(122)을 형성하는 것을 포함한다. 인장 스트레스막(120)과 압축 스트레스막(122)은 본질적으로 스트레스를 가진 실리콘 질화막(Si3N4)을 포함할 수 있다. 그러나, 바람직한 일 실시예에서, 압축 스트레스막(122)은 고밀도 플라즈마 증착 공정으로 형성된 HDP(High Density Plasma) 실리콘 질화막(Si3N4)을 포함한다. 바람직한 일 실시예에서 압축 스트레스막(122)을 형성하는 단계는 약 50mTorr의 압력, 약 0-1,500W의 RF 바이어스 전원, 약 2,000-4,500W의 RF 소스 전원에서 약 200 sccm의 Ar, 약 100 sccm의 SiH4, 약 300 sccm의 N2를 공급하고, 실리콘 질화막 HDP 증착을 수행하는 것을 포함한다. 따라서, 압축 스트레스막(122)은 높은 스트레스의 실리콘 질화막을 포함하게 되고, 후술하는 후속 공정인 열공정을 진행하는 동안 전체적으로 또는 부분적으로 압축 스트레스를 유지시킴으로써, 스트레스가 P형 트랜지스터(106)의 일부분에 스트레스가 기억되기 때문에 듀얼 스트레스 기억 기술를 제공할 수 있다.
첫번째 단계인 인장 스트레스막(120) 및 압축 스트레스막(122)을 형성하는 단계는 다양한 공정으로 진행될 수 있으나, 여기에서는 예시적으로 2가지 실시예만 설명한다. 도 3 내지 도 6은 이에 대하여 도시하고 있다. 우선, 도 3에 도시된 바와 같이, 식각정지막(118)을 형성하는 것을 포함한다. 예를 들어, 식각정지막(118) 은 실리콘 이산화막(SiO2, 도 3에서 점선으로 도시)일 수 있다. 이어서, 도 3에 도시된 바와 같이, 제1 서브 스텝(a first sub step)은 반도체 소자(100) 전면에 제1 스트레스막(130)을 형성하는 것을 포함한다. 후술하는 설명에서 알 수 있는 바와 같이, 제1 스트레스막(130)은 인장 스트레스막(도 2의 120 참조) 또는 압축 스트레스막(도 2의 122 참조)일 수 있다. 그러나, 도 3에 도시된 제1 스트레스막(130)은 본질적으로 인장 스트레스를 가지는 실리콘 질화막을 포함한다. 이어서, 도 3에 도시된 바와 같이, 제2 서브 스텝은 제1 스트레스막(130) 전면에 식각정지막(132)을 형성하는 것을 포함한다. 식각정지막(132)은 현재 알려졌거나, 앞으로 발견될 수 있는 물질로써, 실리콘 이산화막(SiO2)과 같은 식각 정지 물질을 포함할 수 있다. 이어서, 도 3에 도시된 바와 같이, N형 트랜지스터(104)와 P형 트랜지스터(106) 중에서 하나의 도전형 트랜지스터(도시된 것은 P형 트랜지스터)의 전면에 덮여 있는 제1 스트레스막(130) 및 식각정지막(132)을 제거하여 하나의 도전형 트랜지스터를 노출시킨다. 식각 공정(138)은 패터닝된 마스크(136; 점선으로 표시)와 일반적인 건식 식각에 사용되는 화학 물질을 사용하여 진행된다. 도 4에는 P형 트랜지스터(106)를 노출시킨 구조가 도시되어 있다.
이어서, 도 5를 참조하면, 반도체 소자(100) 전면에 제2 스트레스막(140)을 형성한다. 도시된 바와 같이, P형 트랜지스터(106) 전면에 제2 스트레스막(140)이 형성되며, 제2 스트레스막(140)은 고밀도 압축 스트레스 실리콘 질화막을 포함한다. 여기서, 다음 단계인 열공정을 진행하기 전에, N형 트랜지스터(104) 전면의 제 2 스트레스막(140)을 제거하는 것을 더 포함할 수 있다. 제2 스트레스막(140)을 제거하는 것은 패터닝된 마스크(146; 점선으로 도시)와 일반적으로 사용되는 물질을 사용한 건식 식각(144)으로 진행된다. 도 6은 결과 구조를 도시하고 있다. 제2 스트레스막(140)이 제거되지 않은 영역에서는 제1 스트레스막(130)에 의한 스트레스가 다소 감소될 수 있다. 그러나, 그 감소되는 정도는 미미하다.
다른 실시예에서, 전술한 첫번째 단계는 다음과 같은 공정으로 진행될 수 있다. 그것은, 반도체 소자(100) 전면에 압축 스트레스막(122)을 형성하고, 압축 스트레스막(122) 전면에 식각정지막(132)을 형성하고, N형 트랜지스터(104) 전면의 압축 스트레스막(122) 및 식각정지막(132)을 제거하고, 반도체 소자(100) 전면에 인장 스트레스막(120)을 형성하는 것을 포함할 수 있다. 여기서, 다음 단계인 열공정 전을 진행하기 전에 P형 트랜지스터(106) 상의 인장 스트레스막(120)만 선택적으로 제거할 수 있다. 인장 스트레스막(120)이 제거되지 않은 영역에서는 압축 스트레스막(122)에 의한 스트레스가 다소 감소할 수 있다. 그러나 감소되는 정도는 미미하다.
도 6에는 본 발명의 일 실시예에 따른 듀얼 스트레스 기억 기술 제공 방법의 두번째 단계가 도시되어 있다. 두번째 단계는 반도체 소자(100)에 스트레스를 기억시키기 위해서 열공정(150)을 진행하는 것을 포함한다. 열공정(150)은 약 400-1,200℃의 온도에서 진행될 수 있다. 열공정 온도는 최적화되어, 반도체 소자(100)가 스트레스막(120, 122)으로부터 스트레스를 기억할 수 있고, P형 트랜지스터(106)의 일부분이 압축 스트레스를 잃지 않도록 한다. 예를 들어, 일반적인 PECVD방법으로 형성한 압축 실리콘 질화막의 스트레스가 약 -1.8 Gpa/cm2라면 열공정 후에는 인장 스트레스인 약 0.04Gpa/cm2가 된다. 반면에, 본 발명의 일 실시예에 따른 HDP 압축 스트레스 실리콘 질화막은 약 -3.0 Gpa/cm2의 스트레스를 갖도록 형성되는데, 열공정 후에는 약 -100 Mpa/cm2의 스트레스를 가지게 되고, 따라서, 압축 스트레스를 유지한다. 본 발명의 일 실시예에서는, 압축 스트레스는 약 -1 Gpa/cm2의 범위일 수 있다.
도 7을 참조하면, 세번째 단계는 스트레스막(120, 122) 및 식각정지막(132)을 제거하는 것을 포함한다. 제거 단계(148)는 습식 식각 또는 건식 식각으로 진행하거나, 습식 식각과 건식 식각 모두를 사용하여 진행할 수 있다. 예를 들어, 습식 또는 건식 식각을 진행하여 식각정지막(132)을 제거하고, 고온의 인산을 사용한 습식 스트립 공정을 진행하여 실리콘 질화막인 스트레스막을 제거할 수 있다. 또한, 도 7을 참조하면, 본 발명에 따른 반도체 소자(200)는 예를 들어 게이트 도전체(214) 및/또는 확산 영역(216)에 일부로 기억된 인장 스트레스(260)를 가지는 N형 트랜지스터(204)와, 예를 들어 게이트 도전체(220) 및/또는 확산 영역(222)에 일부로 기억된 압축 스트레스(262)를 가지는 P형 트랜지스터(106)를 포함한다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
상기한 바와 같은 듀얼 스트레스 기억 기술 제공 방법과 상관된 구조에 따르면 N형 트랜지스터와 P형 트랜지스터를 포함하는 반도체 소자에 듀얼 스트레스 기억 기술을 제공할 수 있다.
Claims (20)
- N형 트랜지스터와 P형 트랜지스터를 포함하는 반도체 소자를 제공하고,상기 반도체 소자 전면에 제1 스트레스막을 형성하고,상기 제1 스트레스막 상에 제1 식각정지막을 형성하고,N형 트랜지스터와 P형 트랜지스터 중 하나의 트랜지스터 상의 제1 스트레스막과 식각정지막을 제거하고,상기 반도체 소자 상에 제2 스트레스막을 형성하되, P형 트랜지스터 상에 형성된 스트레스막은 압축 스트레스 실리콘 질화막을 포함하도록 하고,열공정을 수행하여 반도체 소자가 스트레스를 기억하도록 하고,제1 및 제2 스트레스막과 식각정지막을 제거하는 것을 포함하는 듀얼 스트레스 기억 기술 제공 방법.
- 제 1항에 있어서,상기 압축 스트레스 실리콘 질화막은 HDP(High Density Plasma) 실리콘 질화막을 포함하는 듀얼 스트레스 기억 기술 제공 방법.
- 제 1항에 있어서,제1 스트레스막을 형성하기 전에 추가 식각정지막을 형성하는 것을 더 포함하는 듀얼 스트레스 기억 기술 제공 방법.
- 제 1항에 있어서,상기 열공정을 수행한 후에 압축 스트레스 실리콘 질화막은 -100Mpa/cm2의 스트레스를 가지는 듀얼 스트레스 기억 기술 제공 방법.
- 제 1항에 있어서,상기 열공정은 약 400~1,200℃의 온도에서 수행되는 듀얼 스트레스 기억 기술 제공 방법.
- 제 1항에 있어서,상기 열공정을 수행하기 전에 N형 트랜지스터 또는 P형 트랜지스터 중 하나의 전면에 형성된 상기 제2 스트레스막을 제거하는 것을 더 포함하는 듀얼 스트레스 기억 기술 제공 방법.
- 제 1항에 있어서,N형 트랜지스터와 P형 트랜지스터 중 하나의 트랜지스터는 N형 트랜지스터이고,상기 제1 스트레스막은 본질적으로 인장 스트레스를 가지는 물질을 포함하고, 상기 제2 스트레스막은 압축 스트레스 실리콘 질화막을 포함하는 듀얼 스트레 스 기억 기술 제공 방법.
- 제 1항에 있어서,각각의 스트레스막은 실리콘 질화막을 포함하는 듀얼 스트레스 기억 기술 제공 방법.
- 제 1항에 있어서,식각정지막은 실리콘 이산화물을 포함하는 듀얼 스트레스 기억 기술 제공 방법.
- N형 트랜지스터와 P형 트랜지스터를 포함하는 반도체 소자를 제공하고,N형 트랜지스터 상에 인장 스트레스막을 형성하고, P형 트랜지스터 상에는 압축 스트레스막을 형성하되, 상기 압축 스트레스막은 이후의 열공정을 진행하는 동안 적어도 일부분은 압축 스트레스를 유지하는 고스트레스((high stress) 필름을 포함하고,열공정을 진행하여 상기 반도체 소자에 스트레스를 기억시키고,상기 압축 스트레스막 및 인장 스트레스막을 제거하는 것을 포함하는 듀얼 스트레스 기억 기술 제공 방법.
- 제 10항에 있어서,상기 압축 스트레스막을 형성하는 것은 Ar은 약 200 sccm, SiH4는 약 100 sccm, N2는 약 300 sccm 공급하고, 압력은 50mTorr, RF 바이어스 파워는 0~1,500W, RF 소스 파워는 2,000~4,500W인 공정 조건에서 실리콘 산화막을 HDP로 증착하는 듀얼 스트레스 기억 기술 제공 방법.
- 제 10항에 있어서,상기 열공정은 약 400-1,200℃의 온도에서 수행되는 듀얼 스트레스 기억 기술 제공 방법.
- 제 10항에 있어서,상기 압축 스트레스막 및 상기 인장 스트레스막은 실리콘 질화막을 포함하는 듀얼 스트레스 기억 기술 제공 방법.
- 제 10항에 있어서,압축 스트레스막 및 인장 스트레스막을 형성하는 것은,반도체 소자 상에 인장 스트레스막을 형성하고,상기 인장 스트레스막 상에 식각정지막을 형성하고,P형 트랜지스터 상의 상기 인장 스트레스막 및 상기 식각정지막을 제거하고,상기 반도체 소자 상에 압축 스트레스막을 형성하는 것을 포함하는 듀얼 스 트레스 기억 기술 제공 방법.
- 제 14항에 있어서,열공정을 진행하기 전에 N형 트랜지스터 상의 압축 스트레스막을 제거하는 것을 더 포함하는 듀얼 스트레스 기억 기술 제공 방법.
- 제 14항에 있어서,식각정지막은 실리콘 이산화막을 포함하는 듀얼 스트레스 기억 기술 제공 방법.
- 제 10항에 있어서,압축 스트레스막 및 인장 스트레스막을 형성하는 것은,반도체 소자 상에 압축 스트레스막을 형성하고,상기 압축 스트레스막 상에 식각정지막을 형성하고,상기 N형 트랜지스터 상의 압축 스트레스막 및 식각정지막을 제거하고,상기 반도체 소자 상의 인장 스트레스막을 형성하는 것을 포함하는 듀얼 스트레스 기억 기술 제공 방법.
- 제 17항에 있어서,상기 열공정을 진행하기 전에 상기 P형 트랜지스터 상의 인장 스트레스막을 제거하는 것을 더 포함하는 듀얼 스트레스 기억 기술 제공 방법.
- 일부분에 인장 스트레스가 기억된 N형 트랜지스터 및일부분에 압축 스트레스가 기억된 P형 트랜지스터를 포함하는 반도체 소자.
- 제 19항에 있어서,상기 P형 트랜지스터는 압축 HDP 실리콘 질화막을 통해서 기억된 압축 스트레스를 갖는 반도체 소자.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/164,114 | 2005-11-10 | ||
US11/164,114 US7785950B2 (en) | 2005-11-10 | 2005-11-10 | Dual stress memory technique method and related structure |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20070050341A KR20070050341A (ko) | 2007-05-15 |
KR100735533B1 true KR100735533B1 (ko) | 2007-07-04 |
Family
ID=38004289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060074829A KR100735533B1 (ko) | 2005-11-10 | 2006-08-08 | 듀얼 스트레스 기억 기술 제공 방법 및 상관된 구조 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7785950B2 (ko) |
JP (1) | JP2007134718A (ko) |
KR (1) | KR100735533B1 (ko) |
CN (1) | CN100570860C (ko) |
SG (3) | SG151256A1 (ko) |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1684246B (zh) * | 2004-03-30 | 2010-05-12 | 三星电子株式会社 | 低噪声和高性能电路以及制造方法 |
US7785950B2 (en) | 2005-11-10 | 2010-08-31 | International Business Machines Corporation | Dual stress memory technique method and related structure |
US7332447B2 (en) * | 2005-11-24 | 2008-02-19 | United Microelectronics Corp. | Method of forming a contact |
US7678630B2 (en) * | 2006-02-15 | 2010-03-16 | Infineon Technologies Ag | Strained semiconductor device and method of making same |
JP4899085B2 (ja) * | 2006-03-03 | 2012-03-21 | 富士通セミコンダクター株式会社 | 半導体装置およびその製造方法 |
US7514370B2 (en) * | 2006-05-19 | 2009-04-07 | International Business Machines Corporation | Compressive nitride film and method of manufacturing thereof |
WO2007139140A1 (ja) * | 2006-05-31 | 2007-12-06 | Tokyo Electron Limited | プラズマcvd方法、窒化珪素膜の形成方法および半導体装置の製造方法 |
JP5017958B2 (ja) * | 2006-08-08 | 2012-09-05 | 富士通セミコンダクター株式会社 | 半導体装置の製造方法 |
US7632729B2 (en) * | 2006-09-27 | 2009-12-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for semiconductor device performance enhancement |
US7795644B2 (en) * | 2007-01-04 | 2010-09-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | Integrated circuits with stress memory effect and fabrication methods thereof |
US7759207B2 (en) * | 2007-03-21 | 2010-07-20 | Chartered Semiconductor Manufacturing Ltd. | Integrated circuit system employing stress memorization transfer |
US20080237734A1 (en) * | 2007-03-29 | 2008-10-02 | United Microelectronics Corp. | Complementary metal-oxide-semiconductor transistor and method of fabricating the same |
US7611939B2 (en) * | 2007-05-07 | 2009-11-03 | Texas Instruments Incorporated | Semiconductor device manufactured using a laminated stress layer |
US7834399B2 (en) | 2007-06-05 | 2010-11-16 | International Business Machines Corporation | Dual stress memorization technique for CMOS application |
US7741168B2 (en) * | 2007-07-25 | 2010-06-22 | Sematech, Inc. | Systems and methods for fabricating nanometric-scale semiconductor devices with dual-stress layers using double-stress oxide/nitride stacks |
US20090050972A1 (en) * | 2007-08-20 | 2009-02-26 | Richard Lindsay | Strained Semiconductor Device and Method of Making Same |
JP5117883B2 (ja) * | 2008-02-25 | 2013-01-16 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
US8871587B2 (en) * | 2008-07-21 | 2014-10-28 | Texas Instruments Incorporated | Complementary stress memorization technique layer method |
US7767534B2 (en) * | 2008-09-29 | 2010-08-03 | Advanced Micro Devices, Inc. | Methods for fabricating MOS devices having highly stressed channels |
US8969969B2 (en) * | 2009-03-20 | 2015-03-03 | International Business Machines Corporation | High threshold voltage NMOS transistors for low power IC technology |
US8298876B2 (en) * | 2009-03-27 | 2012-10-30 | International Business Machines Corporation | Methods for normalizing strain in semiconductor devices and strain normalized semiconductor devices |
US8039349B2 (en) * | 2009-07-30 | 2011-10-18 | Globalfoundries Inc. | Methods for fabricating non-planar semiconductor devices having stress memory |
CN102054769B (zh) * | 2009-10-29 | 2013-03-27 | 中芯国际集成电路制造(上海)有限公司 | 互补型金属氧化物半导体结构的形成方法 |
CN102194749B (zh) * | 2010-03-11 | 2013-06-12 | 中芯国际集成电路制造(上海)有限公司 | 制作互补型金属氧化物半导体器件的方法 |
KR20120023968A (ko) | 2010-09-03 | 2012-03-14 | 삼성전자주식회사 | 트랜지스터 형성 방법, 상보형 트랜지스터 형성 방법 및 이를 이용한 반도체 소자 제조 방법 |
US9202913B2 (en) | 2010-09-30 | 2015-12-01 | Institute of Microelectronics, Chinese Academy of Sciences | Method for manufacturing semiconductor structure |
CN102446761B (zh) * | 2010-09-30 | 2015-07-15 | 中国科学院微电子研究所 | 半导体结构的制造方法 |
US8535999B2 (en) | 2010-10-12 | 2013-09-17 | International Business Machines Corporation | Stress memorization process improvement for improved technology performance |
CN102456626B (zh) * | 2010-10-20 | 2013-12-18 | 中芯国际集成电路制造(上海)有限公司 | 基于双应力薄膜技术的半导体器件的制作方法 |
CN102468160A (zh) * | 2010-11-03 | 2012-05-23 | 中芯国际集成电路制造(上海)有限公司 | 利用应力记忆技术提高nfet窄沟道效应的方法 |
US8216928B1 (en) | 2011-01-26 | 2012-07-10 | GlobalFoundries, Inc. | Methods for fabricating semiconductor devices having local contacts |
CN102420119B (zh) * | 2011-04-29 | 2013-06-26 | 上海华力微电子有限公司 | 一种增强应力记忆效应的栅多晶硅刻蚀方法 |
KR20120136672A (ko) | 2011-06-09 | 2012-12-20 | 삼성전자주식회사 | 반도체 소자의 제조 방법 |
CN102456565A (zh) * | 2011-08-29 | 2012-05-16 | 上海华力微电子有限公司 | 一种预防在双应力氮化硅工艺中光阻失效的方法 |
CN102446722A (zh) * | 2011-08-29 | 2012-05-09 | 上海华力微电子有限公司 | 一种预防在双应力氮化硅工艺中光阻失效的方法 |
CN103094108B (zh) * | 2011-10-29 | 2015-12-02 | 中芯国际集成电路制造(上海)有限公司 | 半导体器件的制作方法 |
CN103183307B (zh) * | 2011-12-28 | 2016-04-20 | 中国科学院微电子研究所 | 张应力LPCVD SiO2膜的制造方法 |
CN102709178B (zh) * | 2012-05-22 | 2015-08-19 | 上海华力微电子有限公司 | 一种形成双应力层氮化硅薄膜的方法 |
CN103474350A (zh) * | 2012-06-06 | 2013-12-25 | 中芯国际集成电路制造(上海)有限公司 | 半导体结构及其形成方法 |
CN103839800A (zh) * | 2012-11-20 | 2014-06-04 | 中国科学院微电子研究所 | 氮化硅制造方法 |
CN103107239B (zh) * | 2012-12-06 | 2016-08-31 | 杭州赛昂电力有限公司 | 异质结太阳能电池及其制作方法 |
CN103107234B (zh) * | 2012-12-06 | 2016-03-23 | 杭州赛昂电力有限公司 | 异质结太阳能电池及其制作方法 |
CN103107236B (zh) * | 2012-12-06 | 2016-05-04 | 杭州赛昂电力有限公司 | 异质结太阳能电池及其制作方法 |
CN103700631A (zh) * | 2013-11-29 | 2014-04-02 | 上海华力微电子有限公司 | 无结mos fet器件的制备方法 |
US9368627B2 (en) | 2014-09-11 | 2016-06-14 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and manufacturing method thereof |
CN104733391A (zh) * | 2015-03-31 | 2015-06-24 | 上海华力微电子有限公司 | 半导体器件的制造方法 |
KR102426960B1 (ko) * | 2015-10-15 | 2022-08-01 | 주식회사 테스 | 플라즈마를 이용하여 실리콘 산화막을 형성하는 방법 |
US9941211B1 (en) | 2017-03-24 | 2018-04-10 | International Business Machines Corporation | Reducing metallic interconnect resistivity through application of mechanical strain |
KR102414957B1 (ko) | 2018-06-15 | 2022-06-29 | 삼성전자주식회사 | 반도체 장치의 제조 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040029323A1 (en) | 2000-11-22 | 2004-02-12 | Akihiro Shimizu | Semiconductor device and method for fabricating the same |
US20050194596A1 (en) | 2003-10-30 | 2005-09-08 | Victor Chan | Increasing carrier mobility in NFET and PFET transistors on a common wafer |
Family Cites Families (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3602841A (en) | 1970-06-18 | 1971-08-31 | Ibm | High frequency bulk semiconductor amplifiers and oscillators |
US4853076A (en) | 1983-12-29 | 1989-08-01 | Massachusetts Institute Of Technology | Semiconductor thin films |
US4665415A (en) | 1985-04-24 | 1987-05-12 | International Business Machines Corporation | Semiconductor device with hole conduction via strained lattice |
ATE59917T1 (de) | 1985-09-13 | 1991-01-15 | Siemens Ag | Integrierte bipolar- und komplementaere mostransistoren auf einem gemeinsamen substrat enthaltende schaltung und verfahren zu ihrer herstellung. |
JPS6476755A (en) | 1987-09-18 | 1989-03-22 | Hitachi Ltd | Semiconductor device |
US4958213A (en) | 1987-12-07 | 1990-09-18 | Texas Instruments Incorporated | Method for forming a transistor base region under thick oxide |
US5354695A (en) | 1992-04-08 | 1994-10-11 | Leedy Glenn J | Membrane dielectric isolation IC fabrication |
US5459346A (en) | 1988-06-28 | 1995-10-17 | Ricoh Co., Ltd. | Semiconductor substrate with electrical contact in groove |
US5006913A (en) | 1988-11-05 | 1991-04-09 | Mitsubishi Denki Kabushiki Kaisha | Stacked type semiconductor device |
US5108843A (en) | 1988-11-30 | 1992-04-28 | Ricoh Company, Ltd. | Thin film semiconductor and process for producing the same |
US4952524A (en) | 1989-05-05 | 1990-08-28 | At&T Bell Laboratories | Semiconductor device manufacture including trench formation |
US5310446A (en) | 1990-01-10 | 1994-05-10 | Ricoh Company, Ltd. | Method for producing semiconductor film |
US5060030A (en) | 1990-07-18 | 1991-10-22 | Raytheon Company | Pseudomorphic HEMT having strained compensation layer |
US5081513A (en) | 1991-02-28 | 1992-01-14 | Xerox Corporation | Electronic device with recovery layer proximate to active layer |
US5371399A (en) | 1991-06-14 | 1994-12-06 | International Business Machines Corporation | Compound semiconductor having metallic inclusions and devices fabricated therefrom |
US5134085A (en) | 1991-11-21 | 1992-07-28 | Micron Technology, Inc. | Reduced-mask, split-polysilicon CMOS process, incorporating stacked-capacitor cells, for fabricating multi-megabit dynamic random access memories |
US5391510A (en) | 1992-02-28 | 1995-02-21 | International Business Machines Corporation | Formation of self-aligned metal gate FETs using a benignant removable gate material during high temperature steps |
US6008126A (en) | 1992-04-08 | 1999-12-28 | Elm Technology Corporation | Membrane dielectric isolation IC fabrication |
US5561302A (en) | 1994-09-26 | 1996-10-01 | Motorola, Inc. | Enhanced mobility MOSFET device and method |
US5670798A (en) | 1995-03-29 | 1997-09-23 | North Carolina State University | Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same |
US5679965A (en) | 1995-03-29 | 1997-10-21 | North Carolina State University | Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact, non-nitride buffer layer and methods of fabricating same |
US5557122A (en) | 1995-05-12 | 1996-09-17 | Alliance Semiconductors Corporation | Semiconductor electrode having improved grain structure and oxide growth properties |
KR100213196B1 (ko) | 1996-03-15 | 1999-08-02 | 윤종용 | 트렌치 소자분리 |
US6403975B1 (en) | 1996-04-09 | 2002-06-11 | Max-Planck Gesellschaft Zur Forderung Der Wissenschafteneev | Semiconductor components, in particular photodetectors, light emitting diodes, optical modulators and waveguides with multilayer structures grown on silicon substrates |
US5880040A (en) | 1996-04-15 | 1999-03-09 | Macronix International Co., Ltd. | Gate dielectric based on oxynitride grown in N2 O and annealed in NO |
US5861651A (en) | 1997-02-28 | 1999-01-19 | Lucent Technologies Inc. | Field effect devices and capacitors with improved thin film dielectrics and method for making same |
US5940736A (en) | 1997-03-11 | 1999-08-17 | Lucent Technologies Inc. | Method for forming a high quality ultrathin gate oxide layer |
US6309975B1 (en) | 1997-03-14 | 2001-10-30 | Micron Technology, Inc. | Methods of making implanted structures |
US6025280A (en) | 1997-04-28 | 2000-02-15 | Lucent Technologies Inc. | Use of SiD4 for deposition of ultra thin and controllable oxides |
US5960297A (en) | 1997-07-02 | 1999-09-28 | Kabushiki Kaisha Toshiba | Shallow trench isolation structure and method of forming the same |
JP3139426B2 (ja) | 1997-10-15 | 2001-02-26 | 日本電気株式会社 | 半導体装置 |
US6066545A (en) | 1997-12-09 | 2000-05-23 | Texas Instruments Incorporated | Birdsbeak encroachment using combination of wet and dry etch for isolation nitride |
US6274421B1 (en) | 1998-01-09 | 2001-08-14 | Sharp Laboratories Of America, Inc. | Method of making metal gate sub-micron MOS transistor |
KR100275908B1 (ko) | 1998-03-02 | 2000-12-15 | 윤종용 | 집적 회로에 트렌치 아이솔레이션을 형성하는방법 |
US6361885B1 (en) | 1998-04-10 | 2002-03-26 | Organic Display Technology | Organic electroluminescent materials and device made from such materials |
US6165383A (en) | 1998-04-10 | 2000-12-26 | Organic Display Technology | Useful precursors for organic electroluminescent materials and devices made from such materials |
US5989978A (en) | 1998-07-16 | 1999-11-23 | Chartered Semiconductor Manufacturing, Ltd. | Shallow trench isolation of MOSFETS with reduced corner parasitic currents |
JP4592837B2 (ja) | 1998-07-31 | 2010-12-08 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
US6319794B1 (en) | 1998-10-14 | 2001-11-20 | International Business Machines Corporation | Structure and method for producing low leakage isolation devices |
US6235598B1 (en) | 1998-11-13 | 2001-05-22 | Intel Corporation | Method of using thick first spacers to improve salicide resistance on polysilicon gates |
US6117722A (en) | 1999-02-18 | 2000-09-12 | Taiwan Semiconductor Manufacturing Company | SRAM layout for relaxing mechanical stress in shallow trench isolation technology and method of manufacture thereof |
US6255169B1 (en) | 1999-02-22 | 2001-07-03 | Advanced Micro Devices, Inc. | Process for fabricating a high-endurance non-volatile memory device |
US6284626B1 (en) | 1999-04-06 | 2001-09-04 | Vantis Corporation | Angled nitrogen ion implantation for minimizing mechanical stress on side walls of an isolation trench |
US6281532B1 (en) | 1999-06-28 | 2001-08-28 | Intel Corporation | Technique to obtain increased channel mobilities in NMOS transistors by gate electrode engineering |
US6228694B1 (en) | 1999-06-28 | 2001-05-08 | Intel Corporation | Method of increasing the mobility of MOS transistors by use of localized stress regions |
US6656822B2 (en) | 1999-06-28 | 2003-12-02 | Intel Corporation | Method for reduced capacitance interconnect system using gaseous implants into the ILD |
US6362082B1 (en) | 1999-06-28 | 2002-03-26 | Intel Corporation | Methodology for control of short channel effects in MOS transistors |
KR100332108B1 (ko) | 1999-06-29 | 2002-04-10 | 박종섭 | 반도체 소자의 트랜지스터 및 그 제조 방법 |
TW426940B (en) | 1999-07-30 | 2001-03-21 | United Microelectronics Corp | Manufacturing method of MOS field effect transistor |
US6483171B1 (en) | 1999-08-13 | 2002-11-19 | Micron Technology, Inc. | Vertical sub-micron CMOS transistors on (110), (111), (311), (511), and higher order surfaces of bulk, SOI and thin film structures and method of forming same |
US6284623B1 (en) | 1999-10-25 | 2001-09-04 | Peng-Fei Zhang | Method of fabricating semiconductor devices using shallow trench isolation with reduced narrow channel effect |
US6372291B1 (en) * | 1999-12-23 | 2002-04-16 | Applied Materials, Inc. | In situ deposition and integration of silicon nitride in a high density plasma reactor |
US6476462B2 (en) | 1999-12-28 | 2002-11-05 | Texas Instruments Incorporated | MOS-type semiconductor device and method for making same |
US6221735B1 (en) | 2000-02-15 | 2001-04-24 | Philips Semiconductors, Inc. | Method for eliminating stress induced dislocations in CMOS devices |
US6531369B1 (en) | 2000-03-01 | 2003-03-11 | Applied Micro Circuits Corporation | Heterojunction bipolar transistor (HBT) fabrication using a selectively deposited silicon germanium (SiGe) |
US6368931B1 (en) | 2000-03-27 | 2002-04-09 | Intel Corporation | Thin tensile layers in shallow trench isolation and method of making same |
US6881665B1 (en) * | 2000-08-09 | 2005-04-19 | Advanced Micro Devices, Inc. | Depth of focus (DOF) for trench-first-via-last (TFVL) damascene processing with hard mask and low viscosity photoresist |
US6493497B1 (en) | 2000-09-26 | 2002-12-10 | Motorola, Inc. | Electro-optic structure and process for fabricating same |
US6501121B1 (en) | 2000-11-15 | 2002-12-31 | Motorola, Inc. | Semiconductor structure |
US7312485B2 (en) | 2000-11-29 | 2007-12-25 | Intel Corporation | CMOS fabrication process utilizing special transistor orientation |
US6563152B2 (en) | 2000-12-29 | 2003-05-13 | Intel Corporation | Technique to obtain high mobility channels in MOS transistors by forming a strain layer on an underside of a channel |
US20020086497A1 (en) | 2000-12-30 | 2002-07-04 | Kwok Siang Ping | Beaker shape trench with nitride pull-back for STI |
US6265317B1 (en) | 2001-01-09 | 2001-07-24 | Taiwan Semiconductor Manufacturing Company | Top corner rounding for shallow trench isolation |
US6403486B1 (en) | 2001-04-30 | 2002-06-11 | Taiwan Semiconductor Manufacturing Company | Method for forming a shallow trench isolation |
US6531740B2 (en) | 2001-07-17 | 2003-03-11 | Motorola, Inc. | Integrated impedance matching and stability network |
US6498358B1 (en) | 2001-07-20 | 2002-12-24 | Motorola, Inc. | Structure and method for fabricating an electro-optic system having an electrochromic diffraction grating |
US6908810B2 (en) | 2001-08-08 | 2005-06-21 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of preventing threshold voltage of MOS transistor from being decreased by shallow trench isolation formation |
JP2003060076A (ja) | 2001-08-21 | 2003-02-28 | Nec Corp | 半導体装置及びその製造方法 |
US6831292B2 (en) | 2001-09-21 | 2004-12-14 | Amberwave Systems Corporation | Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same |
US20030057184A1 (en) | 2001-09-22 | 2003-03-27 | Shiuh-Sheng Yu | Method for pull back SiN to increase rounding effect in a shallow trench isolation process |
US6656798B2 (en) | 2001-09-28 | 2003-12-02 | Infineon Technologies, Ag | Gate processing method with reduced gate oxide corner and edge thinning |
US6635506B2 (en) | 2001-11-07 | 2003-10-21 | International Business Machines Corporation | Method of fabricating micro-electromechanical switches on CMOS compatible substrates |
US6461936B1 (en) | 2002-01-04 | 2002-10-08 | Infineon Technologies Ag | Double pullback method of filling an isolation trench |
US6621392B1 (en) | 2002-04-25 | 2003-09-16 | International Business Machines Corporation | Micro electromechanical switch having self-aligned spacers |
US6974981B2 (en) * | 2002-12-12 | 2005-12-13 | International Business Machines Corporation | Isolation structures for imposing stress patterns |
US6717216B1 (en) | 2002-12-12 | 2004-04-06 | International Business Machines Corporation | SOI based field effect transistor having a compressive film in undercut area under the channel and a method of making the device |
US20050156208A1 (en) * | 2003-09-30 | 2005-07-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Device having multiple silicide types and a method for its fabrication |
US6977194B2 (en) * | 2003-10-30 | 2005-12-20 | International Business Machines Corporation | Structure and method to improve channel mobility by gate electrode stress modification |
US6982196B2 (en) * | 2003-11-04 | 2006-01-03 | International Business Machines Corporation | Oxidation method for altering a film structure and CMOS transistor structure formed therewith |
US7052946B2 (en) * | 2004-03-10 | 2006-05-30 | Taiwan Semiconductor Manufacturing Co. Ltd. | Method for selectively stressing MOSFETs to improve charge carrier mobility |
DE102004052578B4 (de) * | 2004-10-29 | 2009-11-26 | Advanced Micro Devices, Inc., Sunnyvale | Verfahren zum Erzeugen einer unterschiedlichen mechanischen Verformung in unterschiedlichen Kanalgebieten durch Bilden eines Ätzstoppschichtstapels mit unterschiedlich modifizierter innerer Spannung |
US7271110B2 (en) * | 2005-01-05 | 2007-09-18 | Chartered Semiconductor Manufacturing, Ltd. | High density plasma and bias RF power process to make stable FSG with less free F and SiN with less H to enhance the FSG/SiN integration reliability |
US7396724B2 (en) * | 2005-03-31 | 2008-07-08 | International Business Machines Corporation | Dual-hybrid liner formation without exposing silicide layer to photoresist stripping chemicals |
US20070010073A1 (en) * | 2005-07-06 | 2007-01-11 | Chien-Hao Chen | Method of forming a MOS device having a strained channel region |
US20070018252A1 (en) * | 2005-07-21 | 2007-01-25 | International Business Machines Corporation | Semiconductor device containing high performance p-mosfet and/or n-mosfet and method of fabricating the same |
US7470943B2 (en) * | 2005-08-22 | 2008-12-30 | International Business Machines Corporation | High performance MOSFET comprising a stressed gate metal silicide layer and method of fabricating the same |
US20070075360A1 (en) * | 2005-09-30 | 2007-04-05 | Alpha &Omega Semiconductor, Ltd. | Cobalt silicon contact barrier metal process for high density semiconductor power devices |
US7785950B2 (en) | 2005-11-10 | 2010-08-31 | International Business Machines Corporation | Dual stress memory technique method and related structure |
-
2005
- 2005-11-10 US US11/164,114 patent/US7785950B2/en not_active Expired - Fee Related
-
2006
- 2006-08-08 KR KR1020060074829A patent/KR100735533B1/ko active IP Right Grant
- 2006-09-15 SG SG200901689-0A patent/SG151256A1/en unknown
- 2006-09-15 SG SG200606456-2A patent/SG132585A1/en unknown
- 2006-11-08 JP JP2006303401A patent/JP2007134718A/ja active Pending
- 2006-11-08 SG SG200607711-9A patent/SG132607A1/en unknown
- 2006-11-09 CN CNB2006101463928A patent/CN100570860C/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040029323A1 (en) | 2000-11-22 | 2004-02-12 | Akihiro Shimizu | Semiconductor device and method for fabricating the same |
US20050194596A1 (en) | 2003-10-30 | 2005-09-08 | Victor Chan | Increasing carrier mobility in NFET and PFET transistors on a common wafer |
Also Published As
Publication number | Publication date |
---|---|
US20070105299A1 (en) | 2007-05-10 |
SG151256A1 (en) | 2009-04-30 |
SG132585A1 (en) | 2007-06-28 |
US7785950B2 (en) | 2010-08-31 |
CN100570860C (zh) | 2009-12-16 |
KR20070050341A (ko) | 2007-05-15 |
JP2007134718A (ja) | 2007-05-31 |
SG132607A1 (en) | 2007-06-28 |
CN1971882A (zh) | 2007-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100735533B1 (ko) | 듀얼 스트레스 기억 기술 제공 방법 및 상관된 구조 | |
US11664376B2 (en) | Semiconductor device and method of manufacturing the same | |
US8324038B2 (en) | Method of removing a spacer, method of manufacturing a metal-oxide-semiconductor transistor device, and metal-oxide-semiconductor transistor device | |
JP2003174159A (ja) | 半導体装置の製造方法 | |
US20110156110A1 (en) | Field Effect Transistors Having Gate Electrode Silicide Layers with Reduced Surface Damage | |
KR101197464B1 (ko) | 반도체 장치의 제조 방법 | |
KR101120770B1 (ko) | 분리 영역을 갖는 반도체 디바이스를 형성하기 위한 방법 | |
KR100473735B1 (ko) | 반도체 소자의 제조 방법 | |
KR20080044779A (ko) | 반도체 장치의 제조 방법, 및 반도체 장치 | |
US20110001197A1 (en) | Method for manufacturing semiconductor device and semiconductor device | |
US7494885B1 (en) | Disposable spacer process for field effect transistor fabrication | |
US20050208726A1 (en) | Spacer approach for CMOS devices | |
US7348282B2 (en) | Forming method of gate insulating layer and nitrogen density measuring method thereof | |
KR20050048125A (ko) | 반도체 소자의 제조방법 | |
JP5387700B2 (ja) | 半導体装置の製造方法 | |
US20120071004A1 (en) | Stress-adjusting method of mos device | |
KR101146956B1 (ko) | 반도체 소자의 제조방법 | |
JPH10303417A (ja) | 半導体装置の製造方法 | |
KR20050009497A (ko) | 반도체 소자의 트랜지스터 제조 방법 | |
JP2010278464A (ja) | 半導体装置の製造方法 | |
KR20060002127A (ko) | 반도체 소자의 제조방법 | |
KR20070069368A (ko) | 반도체 소자의 제조방법 | |
KR20030089742A (ko) | 반도체소자의 제조 방법 | |
KR20050093228A (ko) | 반도체 소자의 트랜지스터 제조방법 | |
KR20080060368A (ko) | 반도체 소자의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130531 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140530 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150601 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20160531 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20190530 Year of fee payment: 13 |