JP6783290B2 - 有極性、カイラル、非中心対称性強誘電体材料、その材料を含むメモリセルおよび関連するデバイスと方法 - Google Patents

有極性、カイラル、非中心対称性強誘電体材料、その材料を含むメモリセルおよび関連するデバイスと方法 Download PDF

Info

Publication number
JP6783290B2
JP6783290B2 JP2018231727A JP2018231727A JP6783290B2 JP 6783290 B2 JP6783290 B2 JP 6783290B2 JP 2018231727 A JP2018231727 A JP 2018231727A JP 2018231727 A JP2018231727 A JP 2018231727A JP 6783290 B2 JP6783290 B2 JP 6783290B2
Authority
JP
Japan
Prior art keywords
crystal material
semiconductor device
ferroelectric
ferroelectric crystal
hafnium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018231727A
Other languages
English (en)
Other versions
JP2019057727A (ja
Inventor
シー. パンディ,スミート
シー. パンディ,スミート
ビー,レイ
イー. ミード,ロイ
イー. ミード,ロイ
タオ,チエン
エー. チャヴァン,アショニタ
エー. チャヴァン,アショニタ
Original Assignee
マイクロン テクノロジー,インク.
マイクロン テクノロジー,インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロン テクノロジー,インク., マイクロン テクノロジー,インク. filed Critical マイクロン テクノロジー,インク.
Publication of JP2019057727A publication Critical patent/JP2019057727A/ja
Application granted granted Critical
Publication of JP6783290B2 publication Critical patent/JP6783290B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the memory core region

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Description

[優先権主張]
本出願は、2014年5月20日に出願された、米国特許出願整理番号14/282,520の“Polar,Chiral,and Non−Centro−Symmetric Ferroelectric Materials,Memory Cells Including Such Materials,and Related Devices and Methods”の出願日の利益を享受する権利を主張する。
本開示の実施形態は、半導体デバイス設計および製造の分野に関する。より詳細には、本開示の実施形態は、強誘電体材料を含む強誘電体メモリセルを形成する方法と、メモリデバイスなどの関連する半導体デバイス構造に関する。
より大きい記憶容量およびより高速のアクセス速度の半導体メモリデバイスに対する需要は、増加し続けてきた。半導体メモリデバイスは、揮発性メモリデバイスと不揮発性メモリデバイスとに分類されることが出来る。ダイナミックランダムアクセスメモリ(DRAM)は、高速かつ大容量のデータストレージをもたらす代表的な揮発性メモリデバイスである。不揮発性メモリデバイスの例は、ROM(リードオンリーメモリ)、EEPROM(電気的に消去可能なプログラマブルROM)、FeRAM(強誘電体RAM)およびMRAM(磁気抵抗RAM)を含む。
FeRAMデバイスに関して、情報を記憶するために強誘電体材料が用いられる。FeRAMデバイスは、DRAMメモリセルに対する構造と類似した、1T−1C(1トランジスタ−1キャパシタ)メモリセル設計を含むことが出来、1キャパシタおよび1アクセストランジスタが、メモリセルを形成する。DRAMセルキャパシタの誘電体材料は、線形誘電体材料であって、FeRAMセルキャパシタの誘電体材料は、強誘電体誘電材料を含む。FeRAMデバイスは、強誘電性電界効果トランジスタ(FeFET)に基づいた、1T(1トランジスタ)メモリセル設計を含む。FeFETメモリセルに対して、ゲート絶縁材料は、強誘電体誘電材料を含む。
強誘電体(FE)材料は、少なくとも二つの分極状態を有する電気的に分極可能な材料であって、分極状態は、外部電界の印加によって切り替えることが出来る。FE材料の各分極状態は、少なくとも幾らかの期間、印加された電界の除去の後でも安定したままである。分極状態のこの安定性によって、FE材料は、メモリ用途に用いられてきた。分極状態のうちの一方は論理“1”であると考えられ、他方は論理“0”であると考えられる。FE材料は、印加された電界と蓄えられた見かけの電荷との間に非線形の関係を有し、その結果、ヒステリシスループの形態で強誘電性特性を生じる。FeRAMデバイス、ならびにNANDおよびNORデバイス用のFeFETなど、幾つかの種類のFEメモリデバイスが報告されている。
ジルコン酸チタン酸鉛(PZT)などのペロブスカイト材料は、FEメモリデバイス用途のためのFE材料として通常用いられてきた。しかしながら、このような従来のFEメモリデバイスは、しばしばビット密度およびスケーラビリティの点で不十分である。なぜなら、ペロブスカイト材料は、低い残留分極(Pr)を示すからである。FeRAMのために、強誘電体PZT膜の厚さは、200ナノメートル(nm)までにしなければならない。したがって、サブ20nmのFEメモリデバイスに対する従来のFE材料の利用は、制限されてきた。さらに、PZTなどの従来のFE材料は、標準的な半導体処理技術との整合性を制限される。
斜方晶相におけるシリコンをドープされた酸化ハフニウム(SiHfO)の薄膜は、FEメモリデバイス用のFE材料として研究されてきた。しかしながら、SiHfOの斜方晶相は、安定ではなく、斜方晶相を安定化させるためには、ある限定的な処理技術が用いられなければならない。例えば、高温アニーリングプロセスを介して、SiHfO材料の結晶化を誘発する前に、窒化チタン(TiN)上部電極は、SiHfO材料の薄膜の上に形成されてもよい。上にあるTiN上部電極キャップの存在下でSiHfO材料を結晶化することによって、SiHfO材料の斜方晶相が形成され、TiN上部電極を機械的に閉じ込める(即ち、キャッピング)効果によって安定させ、それによって、下にあるSiHfO材料に機械的に歪みを与える。FEメモリデバイスに対するFE材料として、このようなSiHfO材料を用いることによって、FE材料の必要な厚さは、10nm未満に減少することが出来ることが報告されている。
Boesckeに対して2012年11月6日に発行された米国特許8,304823号は、強誘電体メモリセルを製造するための方法を開示する。Hf、Zrまたは(Hf,Zr)の非晶質酸化物層は、キャリアの上に形成され、その後、被覆層が、非晶質酸化物層の上に形成される。被覆層に閉じ込められた状態(即ち、機械的キャッピング)で、非晶質酸化物層をその結晶化温度を超える温度まで加熱することによって、非晶質酸化物層の少なくとも一部は、その結晶状態を、非晶質から結晶質へと変化させ、その結果、FEメモリセルのためのFE材料として適切な結晶化酸化物層を生じる。
本発明の半導体デバイスは、反転中心を通る反転対称のない有極性カイラル結晶構造を有する強誘電体結晶材料を含み、前記強誘電体結晶材料は、酸化ハフニウム(HfO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ジルコニウムハフニウム(HfZrO)、酸化チタンハフニウム(HfTiO)、及び酸化シリコンハフニウム(HfSiO)からなる群の中から選択され、更に、ニオブ(Nb)、タンタル(Ta)、ランタン(La)、ガドリニウム(Gd)、バナジウム(V)、リン(P)、カリウム(K)、スカンジウム(Sc)、ルビジウム(Rb)、セレン(Se)、スズ(Sn)、及びインジウム(In)からなる群の中から選択された少なくとも一種のドーパントを含む。
本発明の半導体デバイスを形成する方法は、酸化ハフニウム(HfO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ジルコニウムハフニウム(HfZrO)、酸化チタンハフニウム(HfTiO)、及び酸化シリコンハフニウム(HfSiO)からなる群の中から選択された材料を含む強誘電体結晶材料を形成することと、ニオブ(Nb)、タンタル(Ta)、ランタン(La)、ガドリニウム(Gd)、バナジウム(V)、リン(P)、カリウム(K)、スカンジウム(Sc)、ルビジウム(Rb)、セレン(Se)、スズ(Sn)、及びインジウム(In)からなる群の中から選択された少なくとも一種のドーパントを、前記強誘電体結晶材料にドーピングすることと、を含み、前記前記強誘電体結晶材料は、反転中心を通る反転対称のない有極性カイラル結晶構造を有する。
本開示の一実施形態による、1T−FeRAMメモリセルの断面図である。 本開示の別の実施形態による、1T−FeRAMメモリセルの断面図である。 本開示のさらに別の実施形態による、1T−FeRAMメモリセルの断面図である。 静止状態における図1と類似の1T−FeRAMメモリセルの断面図であり、Vd,Vg、VsおよびVbの電圧は0Vに設定される。 “書き込み0”動作状態における図1と類似の1T−FeRAMメモリセルの断面図であり、ゲート電圧Vgは0Vより大きく設定され、Vd、Vs、Vbは0Vに設定される。 “書き込み1”動作状態における図1と類似の1T−FeRAMメモリセルの断面図であり、ゲート電圧Vgは、0V未満に設定され、Vd、Vs、Vbは0Vに設定される。 本開示の別の実施形態による、1T−1CFeRAMメモリセルの断面図である。 本開示の一実施形態による、FeRAMメモリセルアレイの一部の簡略化された平面図である。
反転中心についての反転対称のない、有極性カイラル結晶構造を含む強誘電体材料を含む半導体構造が開示され、強誘電体(FE)結晶材料は、ハフニウム(Hf)およびジルコニウム(Zr)のうちの少なくとも一種の酸化物を実質的に含まない。強誘電体結晶材料は、反転中心を通る反転対称の形成を回避するために、ドープされてもよいし、機械的に歪みを与えられてもよいし、またはその双方をされてもよい。このような強誘電体材料を含む半導体構造を形成する方法と、それに関連する半導体デバイスも開示される。
本開示の実施形態の十分な記述を提供するために、以下の記述は、材料の種類、材料の厚さ、処理条件などの具体的な詳細事項を提供する。しかしながら、本開示の実施形態は、これらの具体的な詳細事項を使用することなく実施することが出来ることを当業者は理解するだろう。実際に、本開示の実施形態は、業界で使用される従来の製造技術と組み合わせて実施されてもよい。さらに、本明細書で提供される記述は、半導体デバイス構造を形成するための完全なプロセスフローを形成せず、以下に記述される半導体デバイス構造の各々は、完全な半導体デバイスを形成しない。本開示の実施形態を理解するのに必要なプロセス動作および構造のみが、以下に詳細に記述される。完全な半導体デバイスを形成するためのさらなる動作が、従来の製造技術によって実施されてもよい。また、本出願に添付したあらゆる図面は、例示の目的のためだけのものであるため、同一の縮尺で描かれているとは限らないことにも留意されたい。さらに、図面の間の共通の要素は、同一の番号表示を保持することがある。
本明細書で用いられるように、単数形“一種の(a)”“一種の(an)”および“その(the)”は、文脈が明確にそうでないと示さない限りは、複数形を同様に含むと意図される。
本明細書で用いられるように、“上部(top)”“底部(bottom)”“の上(over)”“の下(under)”などの相対的な語は、本開示および添付の図面を理解するうえで明瞭性と簡便性のために用いられ、文脈がそうでないと明確に示さない限りは、任意の特定の優先度、方向または順序を示したり、それらに依存したりすることはない。
本明細書で用いられるように、“基板(substrate)”という語は、半導体デバイス構造内のコンポーネントなどのコンポーネントが形成される、基盤材料または構造を意味し、含む。基板は、半導体基板、支持構造上のベース半導体材料、金属電極、または一種以上の材料、構造もしくは領域がその上に形成される半導体基板であってもよい。基板は、半導電性材料を含む従来のシリコン基板または他のバルク基板であってもよい。本明細書で用いられるように、“バルク基板(bulk substrate)”という語は、シリコンウェーハのみならず、とりわけ、シリコン・オン・サファイア(“SOS”)基板もしくはシリコン・オン・グラス(“SOG”)基板などのシリコン・オン・インシュレータ(“SOI”)基板、ベース半導体基盤上のシリコンのエピタキシャル層またはシリコンゲルマニウム(Si1−xGex、ここでxは、例えば、0.2から0.8の間のモル分率である)、ゲルマニウム(Ge)、ヒ化ガリウム(GaAs)、窒化ガリウム(GaN)もしくはリン化インジウム(InP)などの他の半導体もしくは光電子材料も意味し、含む。さらに、以下の記述で“基板”に対して参照が行われるとき、ベース半導体構造もしくは基盤内またはその上に材料、領域もしくは接合を形成するために、それより前の段階が用いられてもよい。
開示された強誘電体材料は、FeRAMデバイスに対して適切なことがある。限定しない例として、FeRAMデバイスは、強誘電体電界効果トランジスタ(FeFET)に基づく、1T−1C(1トランジスタ−1キャパシタ)FEメモリセルまたは1T(1トランジスタ)FEメモリセルを含むことが出来るが、そのいずれにも限定はされない。
図1〜図4は、1T−FeRAMメモリセルの限定しない例を示し、図5は、1T−1CFeRAMメモリセルの限定しない例を示す。
図1は、開示されたFE結晶材料によって置換される線形誘電体酸化物材料を有する金属酸化物半導体電界効果トランジスタ(MOSFET)に構造的に類似している、開示された1T−FeRAM(FeFET)メモリセルの限定しない例を示す。1T−FeRAMメモリセル100は、基板102と、ソース104と、ドレイン106と、基板102の上のFE結晶材料140と、FE結晶材料140の上のゲート電極材料160とを含む。
FE結晶材料140は、反転中心を通る反転対称のない、有極性カイラル結晶構造を含むことが出来、強誘電体結晶材料は、ハフニウム(Hf)およびジルコニウム(Zr)のうちの少なくとも一種の酸化物を実質的に含まない。
結晶化によって、FE結晶材料140は、多結晶微細構造を形成することが出来、多結晶微細構造内の少なくとも幾つかの粒子または結晶は、強誘電体特性を有する。多結晶微細構造内のある粒子または結晶は、強誘電体特性を示さなくてもよい。一般的に、一つ以上の有極性カイラル非中心対称相は、強誘電体特性を示す。
幾つかの実施形態においては、FE結晶材料140は、斜方晶、正方晶、立方晶、単斜晶、三斜晶、三方晶および六方晶相で構成される群から選択された有極性カイラル非中心対称相を含むことが出来る。
幾つかの実施形態においては、FE結晶材料140は、斜方晶および正方晶相で構成される群から選択された有極性カイラル非中心対称相を含むことが出来る。
幾つかの実施形態においては、FE結晶材料140は、Pca2,Pbc2,Pmc2,Pmn2,Pna2で構成される群から選択されたスペースグループに対応する非中心対称斜方晶構造を含むことが出来る。
Pca2スペースグループに対応する非中心対称斜方晶構造を有するFE結晶材料140の限定しない例は、V、KMoScO12、BaYCo、CaNaAlSi16またはLaNaを含むことが出来るが、そのいずれにも限定はされない。
Pbc2スペースグループに対応する非中心対称斜方晶構造を有するFE結晶材料140の限定しない例は、V、KMoScO12、BaYCo、CaNaAlSi16またはLaNaを含むことが出来るが、そのいずれにも限定はされない。
Pmc2スペースグループに対応する非中心対称斜方晶構造を有するFE結晶材料140の限定しない例は、SnGaSe、SeO、TiTaLa11(x+y+z=3)またはIn11Mo4062を含むことが出来るが、そのいずれにも限定はされない。一実施形態においては、Pmc2スペースグループに対応する非中心対称斜方晶構造を有するFE結晶材料140は、Ti1.92Ta1.08La11とすることが出来る。
Pmn2スペースグループに対応する非中心対称斜方晶構造を有するFE結晶材料140の限定しない例は、TiSO、V、SrNb16またはZrMoを含むことが出来るが、そのいずれにも限定はされない。
Pna2スペースグループに対応する非中心対称斜方晶構造を有するFE結晶材料140の限定しない例は、Si、Sr、またはTi0.98Zr0.02RbPOを含むことが出来るが、そのいずれにも限定はされない。
幾つかの実施形態においては、FE結晶材料140は、P422,P422,P422,P42,P422,P42,P422およびP42で構成される群から選択されたスペースグループに対応する非中心対称正方晶構造を含むことが出来る。
幾つかの実施形態においては、FE結晶材料140は、ジルコニウムおよびハフニウムが少なくとも実質的になくてもよい。
幾つかの実施形態においては、FE結晶材料140は、反転中心を通る反転対称の形成を回避するために、ドープされるか、機械的に歪みを与えられるか、またはその双方をされてもよい。
幾つかの実施形態においては、FE結晶材料140は、Ti1.1Zr0.893Hf0.008,Ti1.92Ta1.08La11,SrNb16,ZrMo,SiおよびTi0.98Zr0.02RbPOで構成される群から選択された三元または四元酸化物材料をさらに含むことが出来る。
幾つかの実施形態においては、FE結晶材料140は、イットリウム(Y)、ランタン(La)、ガドリニウム(Gd)、ニオブ(Nb)、タンタル(Ta)、バナジウム(V)、リン(P)、カリウム(K)、スカンジウム(Sc)、ルビジウム(Rb)、セレン(Se)、スズ(Sn)、マグネシウム(Mg)、カルシウム(Ca)、バリウム(Ba)およびインジウム(In)で構成される群から選択された少なくとも一種のドーパントを含むことが出来る。
FEメモリセルの耐久性を高め、保磁場/電圧(Ec/Vc)を低下させ、キャパシタンス/誘電定数とその周波数応答を調整し、界面または相対的バルク内の酸化還元抵抗を高め、酸素空孔生成/移動および再分配を減少させ、残留/自発的分極の増加につながるFE相を安定化させるために、FE結晶/多結晶材料内に含まれるドーパントが用いられてもよい。
幾つかの実施形態においては、FE結晶材料140は、ガドリニウム(Gd)、ランタン(La)、バナジウム(V)、リン(P)、カリウム(K)、スカンジウム(Sc)、ルビジウム(Rb)、セレン(Se)、スズ(Sn)、マグネシウム(Mg)、カルシウム(Ca)、バリウム(Ba)およびインジウム(In)で構成される群から選択された少なくとも一種の金属をドープされた高誘電率の誘電体材料を含むことが出来る。高誘電率の誘電体材料は、酸化ハフニウム(HfO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ジルコニウムハフニウム(HfZrOx)、酸化チタンハフニウム(HfTiO)または酸化シリコンハフニウム(HfSiO)で構成される群から選択された少なくとも一種の金属をドープされた高誘電率の誘電体材料を含むことが出来る。FE結晶材料140は、約0.5重量%から約重量30%の間の量の少なくとも一種の金属を含むことが出来る。
一実施形態においては、FE結晶材料140は、イットリウム(Y)をドープされた高誘電率の誘電体材料を含むことが出来、高誘電率の誘電体材料は、酸化ハフニウム(HfO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ジルコニウムハフニウム(HfZrOx)、酸化チタンハフニウム(HfTiO)または酸化シリコンハフニウム(HfSiO)を含む。FE結晶材料140は、約0.5重量%から約25重量%の間の量のYを含むことが出来る。
一実施形態においては、FE結晶材料140は、ストロンチウム(Sr)をドープされた高誘電率の誘電体材料を含むことが出来、高誘電率の誘電体材料は、酸化ハフニウム(HfO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ジルコニウムハフニウム(HfZrOx)、酸化チタンハフニウム(HfTiO)または酸化シリコンハフニウム(HfSiO)を含む。FE結晶材料140は、約0.05重量%から約20重量%の間の量のSrを含むことが出来る。
一実施形態においては、FE結晶材料140は、ニオブ(Nb)およびタンタル(Ta)のうちの少なくとも一種をドープされた高誘電率の誘電体材料を含むことが出来、高誘電率の誘電体材料は、酸化ハフニウム(HfO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ジルコニウムハフニウム(HfZrOx)、酸化チタンハフニウム(HfTiO)または酸化シリコンハフニウム(HfSiO)を含む。NbおよびTaのうちの少なくとも一種は、約0.2重量%から約10重量%の間の量でFE結晶材料140内に存在し得る。
FE結晶材料140は、任意の従来の技術によって基板102の上に形成されることが出来る。従来技術の限定しない例は、原子層堆積(ALD)、金属有機原子層堆積(MOALD)、化学蒸着(CVD)、金属有機化学蒸着(MOCVD)および物理蒸着(PVD)を含むが、そのいずれにも限定はされない。
幾つかの特定の実施形態においては、FE結晶材料140は、FE金属酸化物、酸化剤および任意でFE金属酸化物の反転対称を妨げることが可能なドーパントの前駆物質に基づいて、ALDまたはMOALDによって基板102の上に形成されてもよい。ALDまたはMOALDプロセスは、約150℃から約350℃の間の温度で、約10mtorrから約10torrの間の圧力で実施されてもよい。
このプロセスのために、種々の既知の酸化剤が使用されてもよい。限定しない例として、酸化剤は、水蒸気(HO)、過酸化水素(H)、オゾン(O)または酸素(O)を含むことが出来、そのいずれにも限定はされない。
FE結晶材料140がZrベースの材料を含むとき、FE結晶材料140は、あらゆる既知のZr前駆物質に基づいて、ALDプロセスによって形成されることが出来る。Zr前駆物質の限定しない例は、ZrCl、C24Zrまたは(C)Zr[N(CHを含むことが出来るが、そのいずれにも限定はされない。
FE結晶材料140がHfベースの材料を含むとき、FE結晶材料140は、あらゆる既知のHf前駆物質に基づいて、ALDプロセスによって形成されることが出来る。Hf前駆物質の限定しない例は、HfCl、C24Hfまたは(C)Hf[N(CHを含むことが出来るが、そのいずれにも限定はされない。
FE結晶材料140がTiベースの材料を含むとき、FE結晶材料140は、あらゆる既知のTi前駆物質に基づいて、ALDプロセスによって形成されることが出来る。Ti前駆物質の限定しない例は、TiCl、C24Tiまたは(C)Ti[N(CHを含むことが出来るが、そのいずれにも限定はされない。
FE結晶材料140がドーパントを含むとき、FE結晶材料140内のドーパントの量は、前駆物質のサイクル比を変化させることによって規定することが出来る。ドーパントの含有量は、任意の従来技術によって監視され、決定されることが出来るため、本明細書では詳細には記述されない。このような技術の限定しない例は、二次イオンマス分光分析、X線光電子分光法(XPS)、高解像度透過分光法(HR−TEM)などを含むことが出来るが、そのいずれにも限定はされない。幾つかの実施形態においては、FE結晶材料140内のドーパントの量は、約0.05重量%から約30重量%の範囲内にあってもよい。ドーパントの量は、FE結晶材料140の厚さ、FE結晶材料140もしくは上部電極160のプロセス温度、またはポストメタライゼーションアニーリング(PMA)条件などのアニーリング条件に依存することがある。例えば、FE結晶材料140の厚さを増加させると、ドーパントの量は、また、強誘電性特性を有する所望の結晶化を達成するために増加されなければならないことがある。
幾つかの実施形態においては、FE結晶材料140の厚さは、約1nmから約100nmの範囲内にあってもよい。幾つかの実施形態においては、FE結晶材料140の厚さは、約2nmから約20nmの範囲内にあってもよい。
ゲート電極材料160は、半導体構造100を提供するために、FE結晶材料140の上に形成されてもよい。ゲート電極材料160は、あらゆる従来の技術によって、FE結晶材料140の上に形成されることが出来る。このような従来技術の限定しない例は、原子層堆積(ALD)、プラズマ強化原子層堆積(PE−ALD)、原子蒸着(AVD)、紫外線支援原子層堆積(UV−ALD)、化学蒸着(CVD)、プラズマ強化化学蒸着(PECVD)または物理蒸着(PVD)を含むことが出来るが、そのいずれにも限定はされない。
あらゆる従来のゲート電極材料は、ゲート電極材料160用に使用されてもよい。このような材料は、元素金属、二つ以上の元素金属の合金、導電性金属化合物、導電性を有するようにドープされた半導体材料またはその混合物を含むことが出来る。限定しない例は、TiN、TiCN、TiAlN、TiAlCN、Ti−W、Ru−TiNまたはRuCNを含むことが出来るが、そのいずれにも限定はされない。
このように、本開示は、複数のメモリセルを含む強誘電性メモリデバイスを記述する。メモリセルの各々は、少なくとも一つの電極と、少なくとも一つの電極に近接して配置された強誘電体結晶材料とを含む。強誘電体結晶材料は、帯電された状態における少なくとも一つの電極によって生成される電界によって分極可能である。強誘電体結晶材料は、反転中心を通る反転対称のない、有極性カイラル結晶構造を有する。強誘電体結晶材料は、酸化ハフニウム(HfO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ジルコニウムハフニウム(HfZrO)、酸化チタンハフニウム(HfTiO)および酸化シリコンハフニウム(HfSiO)で構成される群から選択された材料を含む。強誘電体結晶材料は、イットリウム(Y)、ストロンチウム(Sr)、ニオブ(Nb)、タンタル(Ta)、ランタン(La)、ガドリニウム(Gd)、バナジウム(V)、リン(P)、カリウム(K)、スカンジウム(Sc)、ルビジウム(Rb)、セレン(Se)、スズ(Sn)、マグネシウム(Mg)、カルシウム(Ca)、バリウム(Ba)およびインジウム(In)で構成される群から選択された少なくとも一種のドーパントをさらに含む。
さらに、本開示は、半導体構造を形成する方法を記述する。方法は、基板の上に強誘電体結晶材料を形成することと、強誘電体結晶材料に近接して少なくとも一つの電極を形成することと、を含む。強誘電体結晶材料は、反転中心を通る反転対称のない、有極性カイラル結晶構造を有する。強誘電体結晶材料は、ハフニウム(Hf)およびジルコニウム(Zr)のうちの少なくとも一種の酸化物を実質的に含まない。
幾つかの実施形態においては、方法は、強誘電体結晶材料をアニールすることと、強誘電体結晶材料の結晶構造を変化させることと、をさらに含む。
FE結晶材料140は、所望の強誘電性相への結晶化を開始するためにアニールされてもよい。所望の強誘電性相へのFE結晶材料140のアニーリングは、堆積後アニーリング(PDA)またはポストメタライゼーションアニーリング(PMA)プロセスによって実施されてもよい。
PDAプロセスにおいては、FE結晶材料140は、FE結晶材料140の上のゲート電極材料160の形成の前に、所望の強誘電性相にアニールされる。
PMAプロセスにおいては、FE結晶材料140は、FE結晶材料140の上にゲート電極材料160が形成された後で、所望の強誘電性相にアニールされる。幾つかの実施形態においては、PMAアニーリングは、周囲の窒素(N)またはアルゴン(A)条件の下で、高速熱処理(RTP)アニーリング技術によって実施されてもよい。
したがって、幾つかの実施形態においては、方法は、強誘電体結晶材料の有極性カイラル結晶構造を安定化するために、強誘電体結晶材料に機械的に歪みを与えることをさらに含んでもよい。
FE結晶材料140がPDAプロセスによってアニールされるか、またはPMAプロセスによってアニールされるかは、高誘電率の誘電体材料の種類、ドーパントの種類と量、またはFE結晶相の所望の構造を含む様々な要因に依存するが、そのいずれにも限定はされない。
PDAまたはPMAアニーリング条件は、様々な制御要因に基づいて規定されてもよい。限定しない例として、このような制御要因は、FE結晶材料140の組成、FE結晶材料140の厚さ、FE結晶材料140の上にある電極材料160の組成と厚さ(PMAプロセスの場合)を含むことが出来るが、そのいずれにも限定はされない。比較的薄いFE結晶/多結晶材料140は、より高いアニーリング温度とより長いアニーリング時間とを必要とすることがある。アニーリング要件は、FE材料140の選択に強く依存するが、本開示の幾つかの実施形態においては、堆積後アニールのみで十分であり、ポストメタライゼーションアニールは排除されることが出来る。FE結晶/多結晶材料140および/または電極材料160の厚さに加え、基板に誘発される応力は、重要な役割を果たすことが出来、アニーリング条件に顕著に影響を及ぼすことが出来る。
FE結晶材料140は、少なくとも一種のドーパントを含み、FE結晶材料140のアニーリング条件は、FE結晶材料140内に存在するドーパントの量および種類の関数とすることもできる。比較的高いドーパント濃度では、FE結晶材料140のアニーリング温度は、より少量のドーパントを有するFE結晶材料140のアニーリング温度よりも高くすることが出来る。
FE結晶材料140が、ガドリニウム(Gd)、ランタン(La)、バナジウム(V)、リン(P)、カリウム(K)、スカンジウム(Sc)、ルビジウム(Rb)、セレン(Se)、スズ(Sn)、マグネシウム(Mg)、カルシウム(Ca)、バリウム(Ba)およびインジウム(In)で構成される群から選択された少なくとも一種のドープされた金属を含む実施形態においては、FE結晶材料140のアニーリングは、約500℃から約800℃の温度で、約20秒から約600秒の間の、PMAアニーリングによって達成されることが出来る。
FE結晶材料140がイットリウム(Y)でドープされた高誘電率の誘電体材料を含むとき、FE結晶材料140のアニーリングは、約450℃から約800℃の間の温度で、約20秒から約600秒の間の、堆積後アニーリング(PDA)またはポストメタライゼーションアニーリング(PMA)によって達成されることが出来る。
FE結晶材料140がストロンチウム(Sr)でドープされた高誘電率の誘電体材料を含むとき、FE結晶材料140のアニーリングは、約450℃から約800℃の間の温度で、約20秒から約600秒の間の、PMAアニーリングによって達成されることが出来る。
FE結晶材料140がニオブ(Nb)およびタンタル(Ta)のうちの少なくとも一種でドープされた高誘電率の誘電体材料を含むとき、FE結晶材料140のアニーリングは、約450℃から約800℃の間の温度で、約20秒から約300秒の間の、PMAアニーリングによって達成されることが出来る。
このように、本開示は、半導体構造を形成する方法を記述する。方法は、基板の上に強誘電体結晶材料を形成することを含む。強誘電体結晶材料は、反転中心を通る反転対称のない、有極性カイラル結晶構造を有する。強誘電体結晶材料は、酸化ハフニウム(HfO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ジルコニウムハフニウム(HfZrO)、酸化チタンハフニウム(HfTiO)および酸化シリコンハフニウム(HfSiO)で構成される群から選択される。強誘電体結晶材料は、イットリウム(Y)、ストロンチウム(Sr)、ニオブ(Nb)、タンタル(Ta)、ランタン(La)、ガドリニウム(Gd)、バナジウム(V)、リン(P)、カリウム(K)、スカンジウム(Sc)、ルビジウム(Rb)、セレン(Se)、スズ(Sn)、マグネシウム(Mg)、カルシウム(Ca)、バリウム(Ba)およびインジウム(In)で構成される群から選択された少なくとも一種のドーパントをドープされる。方法は、強誘電体結晶材料に近接した少なくとも一種の電極を形成することをさらに含む。
幾つかの実施形態においては、このような強誘電体結晶相を安定化するためのキャッピング効果を必要とすることなく、FE結晶材料140は、アニールされて、安定な強誘電体結晶相に結晶化されてもよい。限定しない例として、このような安定な強誘電体結晶相は、斜方晶Pbc2相であってもよい。したがって、このような実施形態においては、FE結晶材料140の結晶化は、FE結晶材料の結晶化が被覆層の存在下で実施されなければならない米国特許8,304,823号に記述されたような機械的閉じ込め(キャッピング)の存在下で実施される必要はない。
したがって、幾つかの実施形態においては、半導体構造を形成する方法は、キャッピングの存在なしで、FE結晶材料140を強誘電性相へと結晶化することを含む。
FE結晶材料140は、所望の強誘電性相へと結晶化される前にパターン化されてもよい。或いは、FE結晶材料140は、FE結晶材料140のパターン化の前、またはそれと同時に所望の強誘電性相へと結晶化されてもよい。FE結晶材料140のパターン化は、このようなFE結晶材料140の使用目的に適応されることが出来る。限定しない例として、FE結晶材料140は、1T−FeRAM(FeFET)のゲート積層の少なくとも一部を規定するために、または1T−1CFeRAMのキャパシタ誘電体材料を規定するためにパターン化されてもよい。
図2は、開示される1T−FeRAM(FeFET)メモリセルの限定しない別の例を示す。1T−FeRAMメモリセル200は、基板202と、ソース204と、ドレイン206と、基板202の上のFE結晶材料240と、基板202とFE結晶材料240との間の絶縁バッファ材料220と、FE結晶材料240の上のゲート電極材料260とを含む。幾つかの実施形態においては、絶縁バッファ材料220は、基板202およびFE結晶材料240と適合する結晶化材料を含んでもよい。幾つかの実施形態においては、絶縁バッファ材料は、SiOなどの酸化シリコン、または酸窒化シリコン(SiON)であってもよい。幾つかの実施形態においては、絶縁バッファ材料220の厚さは、約0.3nmから約6nmの間の範囲内にあってもよい。幾つかの実施形態においては、絶縁バッファ材料220の厚さは、約0.05nmから約3nmの間の範囲内にあってもよい。
図3は、開示された1T−FERAM(FeFET)メモリセルのさらに別の限定しない例を示す。1T−FeRAMメモリセル300は、基板302と、ソース304と、ドレイン306と、基板302の上のFE結晶材料340と、基板302とFE結晶材料340との間の絶縁バッファ材料320と、FE結晶材料340の上のゲート電極材料360と、FE結晶材料340とゲート電極材料360との間の界面材料350と、を含む。
このように、本開示は強誘電体メモリセルを記述する。強誘電体メモリセルは、反転中心を通る反転対称のない、有極性カイラル結晶構造を有する強誘電体結晶材料を含む。強誘電体結晶材料は、ハフニウム(Hf)およびジルコニウム(Zr)のうちの少なくとも一種の酸化物を実質的に含まない。
図4A〜図4Cは、基板402と、ソース404と、ドレイン406と、基板402の上のFE結晶材料440と、FE結晶材料440の上のゲート電極材料460とを含む1T−FeRAMメモリセル400の断面図を示す。ゲート電極材料460は、ゲート電圧Vgに結合され、ソース404は、ソース電圧Vsに結合され、ドレイン406は、ドレイン電圧Vdに結合され、その中に埋め込まれたソース/ドレイン404/406を含むバルク領域は、バルク電圧Vbに結合される。
図4Aは、静止状態における1T−FeRAMメモリセル400を示し、Vd、Vg、VsおよびVbの電圧は、ゼロ(0)ボルト(V)に設定される。
図4Bは、“書き込み0”動作状態における1T−FeRAMメモリセル400を示す。ゲート電圧Vgを0Vを超えるように設定し、Vd、Vs、Vbを0Vに設定することによって、1T−FeRAMメモリセル400にバイナリ情報状態“0”が書き込まれる。したがって、バルク(402、404、406)とゲート電極460との間の電界は、情報状態“0”に関連付けられる第一の分極状態440Bに、FE結晶材料440を変化させる。例えば、図4Bに示されるように、FE結晶材料440Bは、そのダイポールモーメントが下向き矢印の方向を有するように、分極する。印加された電圧が除去されると、分極状態“0”は保存される。
図4Cは、“書き込み1”動作状態における1T−FeRAMメモリセル400を示す。ゲート電圧Vgを0V未満に設定し、Vd、Vs、Vbを0Vに設定することによって、バルク(402、404、406)とゲート電極460との間の電界は、反転されて、動作状態“書き込み1”が設定される。この動作状態においては、FE結晶材料440は、バイナリ情報状態“1”に関連付けられ、第一の分極状態440Bと逆の第二の分極状態440Cに設定される。例えば、図4Cに示されるように、FE結晶材料440Cは、そのダイポールモーメントが上向き矢印の方向を有するように分極する。印加された電圧が除去されると、反転された分極状態“1”がFE結晶材料440内にあるままである。
したがって、動作状態“0”および“1”は、FE結晶材料440の異なる分極状態(440B、440C)によるものとすることが出来る。これらの異なる分極状態(440B、440C)の結果として、1T−FeRAMメモリセルの異なる閾値電圧を生じる。
“読み出し”動作状態の下では、その情報は、ソース404とドレイン406との間の電流を検知することによって、1T−FeRAMメモリセル400から読み出される。1T−FeRAMメモリセル400からの読み出しは、非破壊的とすることが出来る。
図5は、DRAMメモリセルに対する構造と類似した、開示された1T−1CFeRAMメモリセルの限定しない例を示し、ここでは、一つのキャパシタと一つのアクセストランジスタが、メモリセルを形成する。DRAMセルキャパシタの誘電体材料は線形誘電体材料であるが、FeRAMセルキャパシタの誘電体材料は、強誘電体誘電材料を含む。
図5に示されるように、1T−1CFeRAMメモリセル500は、基板502内に形成されたソース504およびドレイン506と、アクセストランジスタとして機能し、かつ線形誘電体材料545と、ゲート電極560と、相互接続構造570(例えば、接触プラグ)を介してドレイン506に結合されたキャパシタ510とを含む従来のトランジスタと、を含む。キャパシタ510は、底部電極590と、上部電極595と、底部電極590と上部電極595との間のFE結晶材料540と、を含む。
FE結晶材料540は、図1のFE結晶材料140に対して前述された方法を用いて、底部電極590の上に形成されてもよい。所望の強誘電性相へのFE結晶材料540の結晶化は、FE結晶材料540の上に上部電極595を形成する前に実施されてもよい。或いは、FE結晶材料540の所望の強誘電性相への結晶化は、FE結晶材料540の上に上部電極595を形成した後、またはそれと同時に実施されてもよい。
底部電極590および上部電極595は、あらゆる従来の電極材料であってもよい。底部電極590および上部電極595は、同一または異なる材料で形成されてもよい。底部電極590は、約20Åから約200Å、約50Åから約130Åまたは約40Åから約70Åの範囲の厚さなど、連続的な材料として形成されてもよい。幾つかの実施形態においては、底部電極590は、約60Åの厚さを有する。
図1〜図5は、1T−FeRAM(FeFET)および1T−1CFeRAMメモリセルを示すが、本開示は、如何なる適切な種類のFEメモリセル(例えば、2T−2CFeRAMメモリセル)に適用されてもよいことを理解されたい。さらに、完全なFeRAMデバイスを形成するためのさらなる動作は、従来の製造技術によって実施されてもよい。
開示されたFE結晶材料は、FEメモリデバイス用のFE材料として従来用いられるペロブスカイト材料よりも顕著に高い残留分極(Pr)を示すことがある。したがって、開示されたFE結晶材料は、様々なFEメモリデバイス用途に対して適切なことがある。限定しない例として、開示されたFE結晶材料は、FERAMデバイス用、またはNANDおよびNOR用途のためのFeFETデバイス用に用いられてもよい。
開示されたFE結晶材料は、その本質的な微細構造による、高い分極、高速のスイッチング速度、低い保磁場、高い保持力、低い疲労および低いインプリントなど、FEメモリデバイスで使用するために必要な特性を満足することが出来る。さらに、これらのFE結晶材料は、低い処理温度、良好なCMOS適合性、安定供給の容易性、より低いコスト、より良好なスケーラビリティなどの非本質的な製造要件を満たすことが出来る。
図1〜図5に示される、FeRAMメモリセル100、200、300、400および500の断面図は、半導体デバイスの一部を参照するにすぎないことを理解されたい。したがって、半導体デバイスは、強誘電体メモリセルアレイの形式で配置された複数のFeRAMメモリセルを含んでもよい。さらに、さらなる半導体構造が基板内に形成されてもよい。限定しない例として、これらのさらなる半導体構造は、ワード線ドライブ回路、ビット線ドライブ回路、ソース線ドライブ回路、センス回路または制御回路を含むことが出来るが、そのいずれにも限定はされない。
図6は、FeRAMメモリセルアレイの一部の限定しない例を示す。FeRAMメモリセルアレイ600は、複数のメモリセル601と、複数のデジット線611(それらが埋め込まれていることを示すために破線で示される)と、複数のワード線612(それらが埋め込まれていることを示すために破線で示される)とを含む。FeRAMメモリセル601は、(共通のデジット線611に結合された)行および(共通のワード線612に結合された)列に配列される。個々のFeRAMメモリセル601は、デジット線611とワード線612との交点に配置される。
したがって、本開示は、複数のメモリセルを含む強誘電体メモリデバイスを記述する。メモリセルの各々は、少なくとも一つの電極と、少なくとも一つの電極に近接して配置された強誘電体結晶材料とを含む。強誘電体結晶材料は、少なくとも一つの電極の電荷に応じて、電界によって分極可能である。強誘電体結晶材料は、反転中心を通る反転対称のない、有極性カイラル結晶構造を有する。強誘電体結晶材料は、ハフニウム(Hf)およびジルコニウム(Zr)のうちの少なくとも一種の酸化物を実質的に含まない。
使用および動作中に、本開示のFEメモリセルは、サイクリングの改善、データ保持力の改善、より低い強誘電性飽和保磁力(Ec)およびより低い電界飽和などの、セル性能の改善を示すことが出来る。
FE結晶材料を含む本開示の半導体構造は、メモリデバイス以外の集積回路における用途を見出すことが出来る。
本開示は、様々な改変および代替形態が可能であるが、特定の実施形態が図面において例示として示され、本明細書で詳細に記述されてきた。しかしながら、本開示は、開示された特定の実施形態に限定されることを意図するものではない。むしろ、本開示は、以下に添付された請求項とその法的均等物によって定義されるように、本開示の範囲内にある全ての改変、均等物および代替物を包含するべきである。
100 1T−FeRAMメモリセル
102 基板
104 ソース
106 ドレイン
140 FE結晶材料
160 ゲート電極材料
200 1T−FeRAMメモリセル
202 基板
204 ソース
206 ドレイン
220 絶縁バッファ材料
240 FE結晶材料
260 ゲート電極材料
300 1T−FeRAMメモリセル
302 基板
304 ソース
306 ドレイン
320 絶縁バッファ材料
340 FE結晶材料
350 界面材料
360 ゲート電極材料
400 1T−FeRAMメモリセル
402 基板
404 ソース
406 ドレイン
440 FE結晶材料
460 ゲート電極材料
500 1T−1CFeRAMメモリセル
502 基板
504 ソース
506 ドレイン
540 FE結晶材料
545 線形誘電体材料
560 ゲート電極
570 相互接続構造
590 底部電極
595 上部電極
510 キャパシタ
600 FeRAMメモリセルアレイ
601 メモリセル
611 デジット線
612 ワード線

Claims (20)

  1. 反転中心を通る反転対称のない有極性カイラル結晶構造を有する強誘電体結晶材料を含む半導体デバイスであって、
    前記強誘電体結晶材料は、酸化ハフニウム(HfO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ジルコニウムハフニウム(HfZrO)、酸化チタンハフニウム(HfTiO)、及び酸化シリコンハフニウム(HfSiO)からなる群の中から選択され、
    前記強誘電体結晶材料は、タンタル(Ta)、バナジウム(V)、リン(P)、カリウム(K)、ルビジウム(Rb)、セレン(Se)、及びスズ(Sn)からなる群の中から選択された少なくとも一種のドーパントを更に含む、半導体デバイス。
  2. 前記強誘電体結晶材料は、前記少なくとも一種のドーパントを0.5重量%から30重量%の間の量だけ含む、請求項1に記載の半導体デバイス。
  3. 前記強誘電体結晶材料はイットリウム(Y)を更に含む、請求項1に記載の半導体デバイス。
  4. 前記強誘電体結晶材料は、0.5重量%から25重量%の間のイットリウム(Y)を含む、請求項3に記載の半導体デバイス。
  5. 前記強誘電体結晶材料はストロンチウム(Sr)を更に含む、請求項1に記載の半導体デバイス。
  6. 前記強誘電体結晶材料は、0.05重量%から20重量%の間のストロンチウム(Sr)を含む、請求項5に記載の半導体デバイス。
  7. 前記強誘電体結晶材料はニオブ(Nb)を更に含む、請求項1に記載の半導体デバイス。
  8. 前記強誘電体結晶材料は、0.2重量%から10重量%の間のニオブ(Nb)を含む、請求項7に記載の半導体デバイス。
  9. 前記少なくとも一種のドーパントはタンタル(Ta)を含む、請求項1に記載の半導体デバイス。
  10. 前記強誘電体結晶材料は、0.2重量%から10重量%の間のタンタル(Ta)を含む、請求項9に記載の半導体デバイス。
  11. 前記強誘電体結晶材料は酸化シリコンハフニウム(HfSiO)を含む、請求項1に記載の半導体デバイス。
  12. 前記強誘電体結晶材料は、マグネシウム(Mg)、カルシウム(Ca)、及びバリウム(Ba)のうちの少なくとも一種を更に含む、請求項1に記載の半導体デバイス。
  13. ソース及びドレインを更に含み、
    前記強誘電体結晶材料は、前記ソースと前記ドレインとの間に配置される、請求項1に記載の半導体デバイス。
  14. 前記強誘電体結晶材料に隣接するゲート電極を更に含む、請求項13に記載の半導体デバイス。
  15. 前記強誘電体結晶材料に隣接する、酸化シリコン又は酸窒化シリコンを含む絶縁バッファを更に含む、請求項13に記載の半導体デバイス。
  16. ソースと、
    ドレインと、
    相互接続構造によって前記ドレインに電気的に結合された、前記強誘電体結晶材料を含むキャパシタと、
    を更に含む、請求項1に記載の半導体デバイス。
  17. 前記強誘電体結晶材料は、2nmから20nmの間の厚さを有する、請求項1に記載の半導体デバイス。
  18. 半導体デバイスを形成する方法であって、
    酸化ハフニウム(HfO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ジルコニウムハフニウム(HfZrO)、酸化チタンハフニウム(HfTiO)、及び酸化シリコンハフニウム(HfSiO)からなる群の中から選択された材料を含む強誘電体結晶材料を形成することと、
    タンタル(Ta)、バナジウム(V)、リン(P)、カリウム(K)、ルビジウム(Rb)、セレン(Se)、及びスズ(Sn)からなる群の中から選択された少なくとも一種のドーパントを、前記強誘電体結晶材料にドーピングすることと、
    を含み、
    記強誘電体結晶材料は、反転中心を通る反転対称のない有極性カイラル結晶構造を有する、方法。
  19. 前記強誘電体結晶材料を形成することは、ZrCl、C24Zr、(C)Zr[N(CH、HfCl、C24Hf、又は(C)Hf[N(CHのうちの少なくとも一種を用いた原子層堆積(ALD)又は金属有機原子層堆積(MOALD)によって前記強誘電体結晶材料を形成することを含む、請求項18に記載の方法。
  20. 前記強誘電体結晶材料にドーピングすることは、ニオブ(Nb)及びタンタル(Ta)のうちの少なくとも一種を前記強誘電体結晶材料にドーピングすることを含む、請求項18に記載の方法。
JP2018231727A 2014-05-20 2018-12-11 有極性、カイラル、非中心対称性強誘電体材料、その材料を含むメモリセルおよび関連するデバイスと方法 Active JP6783290B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/282,520 2014-05-20
US14/282,520 US10242989B2 (en) 2014-05-20 2014-05-20 Polar, chiral, and non-centro-symmetric ferroelectric materials, memory cells including such materials, and related devices and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016568022A Division JP6464401B2 (ja) 2014-05-20 2015-04-23 有極性、カイラル、非中心対称性強誘電体材料、その材料を含むメモリセルおよび関連するデバイスと方法。

Publications (2)

Publication Number Publication Date
JP2019057727A JP2019057727A (ja) 2019-04-11
JP6783290B2 true JP6783290B2 (ja) 2020-11-11

Family

ID=54554506

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016568022A Active JP6464401B2 (ja) 2014-05-20 2015-04-23 有極性、カイラル、非中心対称性強誘電体材料、その材料を含むメモリセルおよび関連するデバイスと方法。
JP2018231727A Active JP6783290B2 (ja) 2014-05-20 2018-12-11 有極性、カイラル、非中心対称性強誘電体材料、その材料を含むメモリセルおよび関連するデバイスと方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016568022A Active JP6464401B2 (ja) 2014-05-20 2015-04-23 有極性、カイラル、非中心対称性強誘電体材料、その材料を含むメモリセルおよび関連するデバイスと方法。

Country Status (7)

Country Link
US (2) US10242989B2 (ja)
EP (1) EP3146566B1 (ja)
JP (2) JP6464401B2 (ja)
KR (2) KR101973248B1 (ja)
CN (2) CN106463513B (ja)
TW (1) TWI603607B (ja)
WO (1) WO2015179062A1 (ja)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6067524B2 (ja) * 2013-09-25 2017-01-25 株式会社東芝 半導体装置および誘電体膜
US10242989B2 (en) * 2014-05-20 2019-03-26 Micron Technology, Inc. Polar, chiral, and non-centro-symmetric ferroelectric materials, memory cells including such materials, and related devices and methods
US10153155B2 (en) * 2015-10-09 2018-12-11 University Of Florida Research Foundation, Incorporated Doped ferroelectric hafnium oxide film devices
US9876018B2 (en) * 2015-12-03 2018-01-23 Micron Technology, Inc. Ferroelectric capacitor, ferroelectric field effect transistor, and method used in forming an electronic component comprising conductive material and ferroelectric material
CN105609503A (zh) * 2016-01-25 2016-05-25 中国科学院微电子研究所 存储单元、存储器件及电子设备
US10056393B2 (en) * 2016-03-01 2018-08-21 Namlab Ggmbh Application of antiferroelectric like materials in non-volatile memory devices
DE102016015010A1 (de) 2016-12-14 2018-06-14 Namlab Ggmbh Integrierte Schaltung, die eine ferroelektrische Speicherzelle enthält, und ein Herstellungsverfahren dafür
RU2649622C1 (ru) * 2016-12-23 2018-04-04 Акционерное общество "Научно-исследовательский институт молекулярной электроники" Ячейка сегнетоэлектрической памяти
US10923501B2 (en) * 2017-02-23 2021-02-16 SK Hynix Inc. Ferroelectric memory device and method of manufacturing the same
US10319426B2 (en) 2017-05-09 2019-06-11 Micron Technology, Inc. Semiconductor structures, memory cells and devices comprising ferroelectric materials, systems including same, and related methods
CN107230676B (zh) * 2017-05-22 2020-05-26 复旦大学 高读出电流的非挥发铁电存储器及其操作方法
US10396082B2 (en) * 2017-07-05 2019-08-27 Micron Technology, Inc. Memory cells having a controlled-conductivity region
US20190057860A1 (en) * 2017-08-18 2019-02-21 Lam Research Corporation Methods for improving performance in hafnium oxide-based ferroelectric material using plasma and/or thermal treatment
US10600808B2 (en) * 2017-09-05 2020-03-24 Namlab Ggmbh Ferroelectric memory cell for an integrated circuit
US10438645B2 (en) 2017-10-27 2019-10-08 Ferroelectric Memory Gmbh Memory cell and methods thereof
US10460788B2 (en) 2017-10-27 2019-10-29 Ferroelectric Memory Gmbh Memory cell and methods thereof
US10741678B2 (en) * 2017-10-30 2020-08-11 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
US11121139B2 (en) * 2017-11-16 2021-09-14 International Business Machines Corporation Hafnium oxide and zirconium oxide based ferroelectric devices with textured iridium bottom electrodes
CN109817253B (zh) * 2017-11-21 2020-11-03 上海磁宇信息科技有限公司 一种控制体电位的mram芯片
CN110245749A (zh) * 2018-03-08 2019-09-17 三星电子株式会社 用于执行同或运算的计算单元、神经网络及方法
KR102578816B1 (ko) * 2018-03-16 2023-09-15 에스케이하이닉스 주식회사 강유전성 메모리 장치
CN111937118A (zh) * 2018-04-02 2020-11-13 朗姆研究公司 基于氧化铪的铁电材料的覆盖层
JP7123622B2 (ja) * 2018-05-18 2022-08-23 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US10790149B2 (en) 2018-07-26 2020-09-29 Tokyo Electron Limited Method of forming crystallographically stabilized ferroelectric hafnium zirconium based films for semiconductor devices
DE102018212736B4 (de) * 2018-07-31 2022-05-12 Christian-Albrechts-Universität Zu Kiel Ferroelektrische Halbleitervorrichtung mit einer einen Mischkristall aufweisenden ferroelektrischen Speicherschicht und Verfahren zu deren Herstellung
KR102645021B1 (ko) 2019-03-06 2024-03-06 삼성전자주식회사 반도체 장치
CN109920848A (zh) * 2019-03-18 2019-06-21 西安电子科技大学 无界面层的ZrO2基反铁电存储器
CN109979811B (zh) * 2019-03-20 2021-09-24 电子科技大学 一种钽掺杂二氧化铪铁电材料的制备方法
CN113889476A (zh) * 2019-03-29 2022-01-04 湘潭大学 一种1t1c柔性铁电存储器及其制备方法
CN113892157A (zh) 2019-04-08 2022-01-04 开普勒计算公司 掺杂极性层及并入有掺杂极性层的半导体装置
TWI691078B (zh) * 2019-04-25 2020-04-11 國立中興大學 半導體裝置
US10861862B1 (en) 2019-06-24 2020-12-08 Wuxi Petabyte Technologies Co, Ltd. Ferroelectric memory devices
US20210005728A1 (en) * 2019-07-02 2021-01-07 National Taiwan Normal University Storage memory device
US11145740B2 (en) * 2019-07-23 2021-10-12 National Tsing Hua University Ferroelectric field effect transistor device
JP7292140B2 (ja) 2019-07-25 2023-06-16 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
CN110459611B (zh) * 2019-08-19 2022-05-24 湘潭大学 一种铁电场效应晶体管及其制备方法
KR20210033346A (ko) * 2019-09-18 2021-03-26 삼성전자주식회사 전자 소자 및 그 제조방법
KR20210035553A (ko) 2019-09-24 2021-04-01 삼성전자주식회사 도메인 스위칭 소자 및 그 제조방법
JP7480951B2 (ja) 2019-10-09 2024-05-10 国立大学法人京都工芸繊維大学 強誘電体薄膜の製造方法および強誘電体薄膜製造装置
KR102305342B1 (ko) * 2019-11-14 2021-09-24 울산과학기술원 2차원 강유전성 물질을 이용한 비휘발성 3진 메모리 소자 및 이의 제조 방법
CN112928116B (zh) * 2019-12-06 2024-03-22 财团法人工业技术研究院 铁电记忆体
US20220285497A1 (en) * 2019-12-30 2022-09-08 Unist(Ulsan National Institute Of Science And Technology) Transistor, ternary inverter comprising same, and transistor manufacturing method
KR20210085460A (ko) 2019-12-30 2021-07-08 삼성전자주식회사 강유전성의 커패시터, 트랜지스터, 메모리 소자 및 강유전성의 커패시터의 제조방법
DE102020119609A1 (de) * 2020-01-31 2021-08-05 Taiwan Semiconductor Manufacturing Co., Ltd. Neue gatestrukturen zur einstellung der grenzspannung
CN111554745B (zh) * 2020-04-23 2022-03-08 西安电子科技大学 一种铁电电容和铁电场效应晶体管及制备方法
KR20210138993A (ko) * 2020-05-13 2021-11-22 삼성전자주식회사 박막 구조체 및 이를 포함하는 반도체 소자
KR20210143046A (ko) * 2020-05-19 2021-11-26 삼성전자주식회사 산화물 반도체 트랜지스터
US11569382B2 (en) * 2020-06-15 2023-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of fabricating the same
CN111880018B (zh) * 2020-06-29 2022-02-11 西安交通大学 一种铁电晶体矫顽场强的测量装置及方法
JP2022051465A (ja) * 2020-09-18 2022-03-31 キオクシア株式会社 半導体記憶装置
TW202213766A (zh) * 2020-09-22 2022-04-01 日商半導體能源研究所股份有限公司 鐵電體器件及半導體裝置
US20220122996A1 (en) * 2020-10-16 2022-04-21 Ferroelectric Memory Gmbh Memory cell and methods thereof
US11706928B2 (en) * 2020-10-30 2023-07-18 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device and method for fabricating the same
US11950430B2 (en) 2020-10-30 2024-04-02 Ferroelectric Memory Gmbh Memory cell, capacitive memory structure, and methods thereof
US20220140147A1 (en) * 2020-11-04 2022-05-05 Samsung Electronics Co., Ltd. Thin film structure and semiconductor device comprising the same
JP2022077593A (ja) * 2020-11-12 2022-05-24 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN112490248B (zh) * 2020-12-03 2022-10-21 中国科学院微电子研究所 铁电浮栅存储器单元串及制备方法
US11508755B2 (en) * 2021-02-25 2022-11-22 Taiwan Semiconductor Manufacturing Company, Ltd. Stacked ferroelectric structure
US20220278115A1 (en) * 2021-02-26 2022-09-01 Taiwan Semiconductor Manufacturing Company, Ltd. Ferroelectric Memory Device and Method of Manufacturing the Same
US11557609B2 (en) * 2021-03-04 2023-01-17 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit structure and method of forming the same
JP2022147355A (ja) 2021-03-23 2022-10-06 キオクシア株式会社 半導体記憶装置
US11574927B2 (en) * 2021-04-16 2023-02-07 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and method for manufacturing the same
CN113808685B (zh) * 2021-08-27 2024-01-16 西北工业大学深圳研究院 一种非中心对称超导拓扑电子材料的分析方法及系统
US20230180482A1 (en) * 2021-12-07 2023-06-08 Intel Corporation Three-dimensional nanoribbon-based hysteretic memory
DE102021214885B4 (de) 2021-12-22 2023-10-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Elektronisches Bauteil mit mindestens einer Schicht aus einem ferroelektrischen oder antiferroelektrischen Werkstoff
KR102571133B1 (ko) * 2022-04-26 2023-08-25 강원대학교산학협력단 강유전체 소자의 제조방법 및 강유전체 소자

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179404A (en) * 1976-12-15 1979-12-18 Denka Chemical Corporation Catalyst preparative method
ATE223108T1 (de) * 1995-04-24 2002-09-15 Infineon Technologies Ag Halbleiter-speichervorrichtung unter verwendung eines ferroelektrischen dielektrikums und verfahren zur herstellung
US6498362B1 (en) * 1999-08-26 2002-12-24 Micron Technology, Inc. Weak ferroelectric transistor
EP1110603A1 (en) * 1999-12-22 2001-06-27 Haldor Topsoe A/S Process for the synthesis of VPO catalysts
US20020015556A1 (en) * 2000-06-19 2002-02-07 Steinberg Dan A. Method of fabricating an optical fiber array using photosensitive material
JP3939250B2 (ja) 2001-05-10 2007-07-04 シメトリックス・コーポレーション 強誘電性複合材料、その製造方法、およびそれを用いたメモリ
NO20015735D0 (no) * 2001-11-23 2001-11-23 Thin Film Electronics Asa Barrierelag
US6504214B1 (en) * 2002-01-11 2003-01-07 Advanced Micro Devices, Inc. MOSFET device having high-K dielectric layer
EP1550504A1 (en) 2002-09-12 2005-07-06 Kyoto Instruments Co., Ltd. Thin film and method for manufacturing same
JP3873935B2 (ja) 2003-06-18 2007-01-31 セイコーエプソン株式会社 強誘電体メモリ素子
JP4713071B2 (ja) 2003-09-12 2011-06-29 トヨタ自動車株式会社 燃料電池とその製造方法
JP4257413B2 (ja) * 2003-09-12 2009-04-22 独立行政法人産業技術総合研究所 強誘電体物質
JP2007525829A (ja) 2003-12-22 2007-09-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 不揮発性強誘電体メモリ装置の製造方法及びその方法によって得られるメモリ装置
WO2005064705A1 (en) * 2003-12-22 2005-07-14 Koninklijke Philips Electronics N.V. Increasing the wettability of polymer solutions to be deposited on hydrophobic ferroelecric polymerb layers
US7172947B2 (en) * 2004-08-31 2007-02-06 Micron Technology, Inc High dielectric constant transition metal oxide materials
JPWO2006028005A1 (ja) 2004-09-08 2008-05-08 国立大学法人京都大学 強磁性強誘電体及びその製造方法
JP4375560B2 (ja) 2004-12-07 2009-12-02 セイコーエプソン株式会社 トランジスタ型強誘電体メモリの製造方法
US7253469B2 (en) * 2005-04-26 2007-08-07 Micron Technology, Inc. Flash memory device having a graded composition, high dielectric constant gate insulator
KR100729231B1 (ko) * 2005-08-03 2007-06-15 삼성전자주식회사 강유전체 구조물, 강유전체 구조물의 형성 방법, 강유전체구조물을 구비하는 반도체 장치 및 그 제조 방법
EP1986982A2 (de) * 2006-02-15 2008-11-05 Basf Se Verfahren zur dehydrierung
JP2007243003A (ja) * 2006-03-10 2007-09-20 Oki Electric Ind Co Ltd 半導体装置の製造方法
JP4797717B2 (ja) 2006-03-14 2011-10-19 セイコーエプソン株式会社 強誘電体メモリ装置、強誘電体メモリ装置の製造方法
JP4600322B2 (ja) 2006-03-14 2010-12-15 セイコーエプソン株式会社 強誘電体メモリ装置の製造方法
JP4320679B2 (ja) 2007-02-19 2009-08-26 セイコーエプソン株式会社 強誘電体メモリ装置の製造方法
US20100135937A1 (en) 2007-03-26 2010-06-03 The Trustees Of Columbia University In The City Of New York Metal oxide nanocrystals: preparation and uses
JP5253895B2 (ja) * 2007-06-08 2013-07-31 富士フイルム株式会社 強誘電体膜、圧電素子、及び液体吐出装置
US7709359B2 (en) 2007-09-05 2010-05-04 Qimonda Ag Integrated circuit with dielectric layer
JP2009076571A (ja) 2007-09-19 2009-04-09 Seiko Epson Corp 強誘電体キャパシタとその製造方法、及び強誘電体メモリ装置
JP2009096772A (ja) 2007-10-18 2009-05-07 Hiroshima Univ 有機金属錯体、その製造方法、該有機金属錯体溶液組成物、液晶素材、および、液晶素子、ならびに、非破壊読み出し可能メモリー素子
US8304823B2 (en) 2008-04-21 2012-11-06 Namlab Ggmbh Integrated circuit including a ferroelectric memory cell and method of manufacturing the same
EP2393090A1 (en) * 2010-06-01 2011-12-07 Nxp B.V. Highly-integrated thin film capacitor with amorphous cathode
CN101894844B (zh) 2010-06-04 2012-05-09 清华大学 基于金属氧化物气相沉积铁电动态随机存储器及制备方法
WO2012005957A2 (en) 2010-07-07 2012-01-12 Advanced Technology Materials, Inc. Doping of zro2 for dram applications
KR20120006218A (ko) * 2010-07-12 2012-01-18 한국전자통신연구원 이중 게이트 구조의 비휘발성 메모리 트랜지스터
JP2014075159A (ja) 2011-01-27 2014-04-24 Panasonic Corp 不揮発性記憶装置及び不揮発性記憶装置の駆動方法
JP5981206B2 (ja) 2012-04-20 2016-08-31 株式会社東芝 半導体装置の製造方法および半導体製造装置
JP2014053568A (ja) 2012-09-10 2014-03-20 Toshiba Corp 強誘電体メモリ及びその製造方法
JP6121819B2 (ja) * 2013-07-04 2017-04-26 株式会社東芝 半導体装置および誘電体膜
JP6067524B2 (ja) * 2013-09-25 2017-01-25 株式会社東芝 半導体装置および誘電体膜
JP2015062551A (ja) 2013-09-25 2015-04-09 キヤノン株式会社 被検体情報取得装置およびその制御方法
US20150179657A1 (en) * 2013-12-24 2015-06-25 Kabushiki Kaisha Toshiba Semiconductor storage device
US10242989B2 (en) * 2014-05-20 2019-03-26 Micron Technology, Inc. Polar, chiral, and non-centro-symmetric ferroelectric materials, memory cells including such materials, and related devices and methods

Also Published As

Publication number Publication date
KR102099546B1 (ko) 2020-04-10
KR101973248B1 (ko) 2019-04-26
CN106463513B (zh) 2019-06-28
JP2017518639A (ja) 2017-07-06
US20150340372A1 (en) 2015-11-26
KR20170007811A (ko) 2017-01-20
US10242989B2 (en) 2019-03-26
US20190189627A1 (en) 2019-06-20
TWI603607B (zh) 2017-10-21
EP3146566A1 (en) 2017-03-29
EP3146566B1 (en) 2022-03-16
EP3146566A4 (en) 2018-05-30
JP2019057727A (ja) 2019-04-11
KR20190043641A (ko) 2019-04-26
JP6464401B2 (ja) 2019-02-06
CN110265400A (zh) 2019-09-20
TW201546803A (zh) 2015-12-16
WO2015179062A1 (en) 2015-11-26
CN106463513A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6783290B2 (ja) 有極性、カイラル、非中心対称性強誘電体材料、その材料を含むメモリセルおよび関連するデバイスと方法
US10600808B2 (en) Ferroelectric memory cell for an integrated circuit
JP7177574B2 (ja) テクスチャ形成されたイリジウム底部電極を有する酸化ハフニウムおよび酸化ジルコニウムベースの強誘電性デバイス
US11043502B2 (en) Semiconductor devices including ferroelectric materials
US11398263B2 (en) Semiconductor structures, memory cells and devices comprising ferroelectric materials, systems including same, and related methods
US9053802B2 (en) Ferroelectric memory cell for an integrated circuit
US20180082729A1 (en) Multilevel Ferroelectric Memory Cell for an Integrated Circuit
Lomenzo et al. Ferroelectric Si-doped HfO 2 device properties on highly doped germanium
CN108511517A (zh) 铁电存储器件和制造其的方法
US9871044B2 (en) Enhanced charge storage materials, related semiconductor memory cells and semiconductor devices, and related systems and methods
US20240145571A1 (en) Inserting inhibition layer for inducing antiferroelectricity to ferroelectric structure
KR20240060480A (ko) 강유전성 구조물에 반강유전성을 유도하기 위한 억제층 삽입
CN117580364A (zh) 铁电结构、集成电路与其形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201021

R150 Certificate of patent or registration of utility model

Ref document number: 6783290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250