JP5618724B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP5618724B2
JP5618724B2 JP2010207653A JP2010207653A JP5618724B2 JP 5618724 B2 JP5618724 B2 JP 5618724B2 JP 2010207653 A JP2010207653 A JP 2010207653A JP 2010207653 A JP2010207653 A JP 2010207653A JP 5618724 B2 JP5618724 B2 JP 5618724B2
Authority
JP
Japan
Prior art keywords
layer
thin film
transistor
electrode layer
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010207653A
Other languages
English (en)
Other versions
JP2011192958A (ja
JP2011192958A5 (ja
Inventor
山崎 舜平
舜平 山崎
将志 津吹
将志 津吹
宏充 郷戸
宏充 郷戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2010207653A priority Critical patent/JP5618724B2/ja
Publication of JP2011192958A publication Critical patent/JP2011192958A/ja
Publication of JP2011192958A5 publication Critical patent/JP2011192958A5/ja
Application granted granted Critical
Publication of JP5618724B2 publication Critical patent/JP5618724B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Description

酸化物半導体を用いる半導体装置およびその作製方法に関する。
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数〜数百nm程度)を用いて薄膜トランジスタ(TFT)を構成する技術が注目されている。薄膜トランジスタはICや電気光学装置のような電子デバイスに広く応用され、特に画像表示装置のスイッチング素子として開発が急がれている。多様な金属酸化物が存在し、さまざまな用途に用いられている。酸化インジウムはよく知られた材料であり、液晶ディスプレイなどで必要とされる透明電極材料として用いられている。
金属酸化物の中には半導体特性を示すものがある。半導体特性を示す金属酸化物としては、例えば、酸化タングステン、酸化錫、酸化インジウム、酸化亜鉛などがあり、このような半導体特性を示す金属酸化物をチャネル形成領域とする薄膜トランジスタが既に知られている(特許文献1及び特許文献2)。
特開2007−123861号公報 特開2007−96055号公報
アクティブマトリクス型の表示装置においては、回路を構成する薄膜トランジスタの電気特性が重要であり、この電気特性が表示装置の性能を左右する。特に、薄膜トランジスタの電気特性のうち、しきい値電圧(以下、しきい値もしくはVthともいう)が重要である。電界効果移動度が高くともしきい値電圧値が高い、或いはしきい値電圧値がマイナスであると、その薄膜トランジスタを含む回路は制御することが困難である。しきい値電圧値が高く、しきい値電圧の絶対値が大きい薄膜トランジスタの場合には、駆動電圧が低い状態ではTFTとしてのスイッチング機能を果たすことができず、負荷となる恐れがある。また、しきい値電圧値がマイナスであると、ゲート電圧が0Vでもソース電極とドレイン電極の間に電流が流れる、所謂ノーマリーオンとなりやすい。
nチャネル型の薄膜トランジスタの場合、ゲート電圧に正の電圧を印加してはじめてチャネルが形成されて、ドレイン電流が流れ出す薄膜トランジスタが望ましい。駆動電圧を高くしないとチャネルが形成されない薄膜トランジスタや、負の電圧状態でもチャネルが形成されてドレイン電流が流れる薄膜トランジスタは、回路に用いる薄膜トランジスタとしては不向きである。
例えば、半導体装置において回路を構成する薄膜トランジスタの特性変動幅が大きい場合、そのしきい値電圧の変動に起因する動作不良が発生する恐れがある。そこで、本発明の一形態は、広い温度範囲で安定して動作する薄膜トランジスタ及びそれを用いた半導体装置を提供することを目的とする。
本明細書で開示する本発明の一態様は、絶縁表面を有する基板上に、ゲート電極層を形成し、ゲート電極層上にゲート絶縁層を形成し、ゲート絶縁層上に酸化物半導体層を形成し、酸化物半導体層上に、ソース電極層及びドレイン電極層を形成し、ゲート絶縁層、酸化物半導体層、ソース電極層及びドレイン電極層上に酸化物半導体層の一部と接する絶縁層を形成することを特徴とする半導体装置である。
また、本明細書で開示する本発明の一態様は、絶縁表面を有する基板上に、ゲート電極層を形成し、ゲート電極層上にゲート絶縁層を形成し、ゲート絶縁層上に酸化物半導体層を形成し、酸化物半導体層を形成した後、第1の熱処理を行い、酸化物半導体層上に、ソース電極層及びドレイン電極層を形成し、ゲート絶縁層、酸化物半導体層、ソース電極層及びドレイン電極層上に酸化物半導体層の一部と接する絶縁層を形成し、絶縁層を形成した後、第2の熱処理を行うことを特徴とする半導体装置の作製方法である。
なお、第1の熱処理は、窒素雰囲気または希ガス雰囲気下で行うことが好ましい。また、第1の熱処理は、350℃以上750℃以下の温度で行うことが好ましい。
第2の熱処理は、大気雰囲気、酸素雰囲気、窒素雰囲気または希ガス雰囲気下で行うことが好ましい。また、第2の熱処理は、100℃以上第1の熱処理温度以下で行うことが好ましい。
上記構成は、上記課題の少なくとも一つを解決する。
本明細書中で用いる酸化物半導体で、InMO(ZnO)(m>0)で表記される薄膜を形成し、その薄膜を酸化物半導体層として用いた薄膜トランジスタを作製する。ただし、mは必ずしも整数にはならない。なお、Mは、Ga、Fe、Ni、Mn及びCoから選ばれた一の金属元素または複数の金属元素を示す。例えばMとして、Gaの場合があることの他、GaとNiまたはGaとFeなど、Ga以外の上記金属元素が含まれる場合がある。また、上記酸化物半導体において、Mとして含まれる金属元素の他に、不純物元素としてFe、Niその他の遷移金属元素、または該遷移金属の酸化物が含まれている場合がある。本明細書においては、InMO(ZnO)(m>0)で表記される構造の酸化物半導体層のうち、MとしてGaを含む構造の酸化物半導体をIn−Ga−Zn−O系酸化物半導体とよび、その薄膜をIn−Ga−Zn−O系非単結晶膜とも呼ぶ。
また、酸化物半導体層に適用する酸化物半導体として上記の他にも、In−Sn−Zn−O系、In−Al−Zn−O系、Sn−Ga−Zn−O系、Al−Ga−Zn−O系、Sn−Al−Zn−O系、In−Zn−O系、Sn−Zn−O系、Al−Zn−O系、In−O系、Sn−O系、Zn−O系の酸化物半導体を適用することができる。また上記酸化物半導体層に酸化珪素を含ませてもよい。酸化物半導体層に結晶化を阻害する酸化珪素(SiO(X>0))を含ませることで、製造プロセス中において酸化物半導体層の形成後に加熱処理した場合に、結晶化してしまうのを抑制することができる。なお、酸化物半導体層は非晶質な状態であることが好ましく、一部結晶化していてもよい。
酸化物半導体は、好ましくはInを含有する酸化物半導体、さらに好ましくは、In、及びGaを含有する酸化物半導体である。酸化物半導体層をi型(真性)とするため、脱水化または脱水素化の工程を経ることは有効である。
また、加熱処理の条件または酸化物半導体層の材料によっては、酸化物半導体層が非晶質な状態から微結晶膜または多結晶膜となる場合もある。微結晶膜または多結晶膜となる場合であっても、TFTとしてスイッチング特性を得ることができる。
しきい値の変動幅が小さく、安定した電気特性を有する薄膜トランジスタを作製し、提供することができる。よって、電気特性が良好で信頼性のよい薄膜トランジスタを有する半導体装置を提供することができる。
半導体装置の作製工程を説明する図。 半導体装置を説明する図。 酸化物半導体層中の水素濃度の分析結果と、分析に用いた試料の断面構造模式図。 実施例1の薄膜トランジスタの電流電圧特性を示すグラフ。 実施例1の薄膜トランジスタの動作温度としきい値の関係を示す表とグラフ。 本明細書におけるしきい値の定義について説明する図。 半導体装置のブロック図を説明する図。 信号線駆動回路の回路構成を説明する図と、その動作を説明するタイミングチャート。 シフトレジスタの構成を示す回路図。 シフトレジスタの回路構成を説明する図と、シフトレジスタの動作を説明するタイミングチャート。 半導体装置を説明する図。 半導体装置を説明する図。 半導体装置を説明する図。 半導体装置の画素等価回路を説明する図。 半導体装置を説明する図。 半導体装置を説明する図。 半導体装置を説明する図。 半導体装置を説明する図。 半導体装置を説明する図。 半導体装置の構成を示す回路図。 半導体装置を説明する図。 半導体装置を説明する図。 半導体装置を説明する図。 半導体装置の構成を示す回路図。 電子書籍の例を示す図。 テレビジョン装置およびデジタルフォトフレームの例を示す図。 遊技機の例を示す図。 携帯型のコンピュータ及び携帯電話機の例を示す図。 半導体装置の計算結果と、計算に用いた半導体装置の断面構造を説明する図。 薄膜トランジスタの電流電圧特性を示すグラフ。 薄膜トランジスタの動作温度としきい値の関係を示す表とグラフ。 半導体装置の計算に用いた断面構造を示す図。 半導体装置の計算結果を説明する図。 実施例2の薄膜トランジスタの電流電圧特性を示すグラフ。 実施例2の薄膜トランジスタの動作温度としきい値の関係を示す表とグラフ。
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
電圧とは2点間における電位差のことをいい、電位とはある一点における静電場の中にある単位電荷が持つ静電エネルギー(電気的な位置エネルギー)のことをいう。ただし、一般的に、ある一点における電位と基準となる電位(例えば接地電位)との電位差のことを、単に電位もしくは電圧と呼び、電位と電圧が同義語として用いられることが多い。このため、本明細書では特に指定する場合を除き、電位を電圧と読み替えてもよいし、電圧を電位と読み替えてもよいこととする。
なお、薄膜トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。また、ゲートと重畳した領域にチャネル領域が形成される半導体を有しており、ゲートの電位を制御することで、チャネル領域を介してドレインとソースの間に流れる電流を制御することが出来る。ここで、ソースとドレインとは、薄膜トランジスタの構造や動作条件等によって変わるため、いずれがソースまたはドレインであるかを限定することが困難である。そこで、ソース及びドレインとして機能する領域を、ソースもしくはドレインと呼ばない場合がある。その場合、一例としては、それぞれを第1端子、第2端子と表記する場合がある。
(実施の形態1)
本実施の形態では、図1(D)に示す薄膜トランジスタ150の作製方法の一形態について、薄膜トランジスタ作製工程の断面図である図1(A)乃至図1(D)を用いて説明する。なお、図1(E)は、図1(D)に示す薄膜トランジスタ150の上面図である。薄膜トランジスタ150は、チャネルエッチ型と呼ばれるボトムゲート構造の一つであり、逆スタガ型トランジスタの一つでもある。
まず、絶縁表面を有する基板である基板100上に、フォトマスクを用いてフォトリソグラフィ工程によりゲート電極層101を設ける。なお、レジストマスクをインクジェット法で形成してもよい。レジストマスクをインクジェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
基板100としては、ガラス基板を用いることが好ましい。基板100として用いるガラス基板は、後の加熱処理の温度が高い場合には、歪み点が730℃以上のものを用いると良い。また、基板100には、例えば、アルミノシリケートガラス、アルミノホウケイ酸ガラス、バリウムホウケイ酸ガラスなどのガラス材料が用いられている。酸化ホウ素と比較して酸化バリウム(BaO)を多く含ませることで、より実用的な耐熱ガラスが得られる。このため、BよりBaOを多く含むガラス基板を用いることが好ましい。
なお、基板100は、上記ガラス基板に代えて、セラミック基板、石英基板、サファイア基板などの絶縁体でなる基板を用いても良い。他にも、結晶化ガラスなどを用いることができる。
また、下地膜となる絶縁膜を基板100とゲート電極層101の間に設けてもよい。下地膜は、基板100からの不純物元素の拡散を防止する機能があり、窒化珪素膜、酸化珪素膜、窒化酸化珪素膜、または酸化窒化珪素膜から選ばれた一または複数の膜による積層構造により形成することができる。
下地膜に、塩素、フッ素などのハロゲン元素を含ませることで、基板100からの不純物元素の拡散を防止する機能をさらに高めることができる。下地膜中に含ませるハロゲン元素の濃度は、SIMS(二次イオン質量分析計)を用いた分析により得られる濃度ピークを1×1015atoms/cm以上1×1020atoms/cm以下とすればよい。
ゲート電極層101としては、金属導電膜を用いることができる。金属導電膜の材料としては、Al、Cr、Cu、Ta、Ti、Mo、Wから選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組み合わせた合金等を用いるのが好ましい。例えば、チタン層上にアルミニウム層と、該アルミニウム層上にチタン層が積層された三層の積層構造、またはモリブデン層上にアルミニウム層と、該アルミニウム層上にモリブデン層を積層した三層の積層構造とすることが好ましい。勿論、金属導電膜として単層、または2層構造、または4層以上の積層構造としてもよい。
次いで、ゲート電極層101上にゲート絶縁層102を形成する。
ゲート絶縁層102は、プラズマCVD法またはスパッタリング法等を用いて、酸化珪素層、窒化珪素層、酸化窒化珪素層または窒化酸化珪素層を単層でまたは積層して形成することができる。例えば、成膜ガスとして、SiH、酸素及び窒素を用いてプラズマCVD法により酸化窒化珪素層を形成すればよい。ゲート絶縁層102の膜厚は、100nm以上500nm以下とし、積層の場合は、例えば、膜厚50nm以上200nm以下の第1のゲート絶縁層と、第1のゲート絶縁層上に膜厚5nm以上300nm以下の第2のゲート絶縁層の積層とする。
また、酸化物半導体膜の成膜前に、不活性ガス雰囲気(窒素、またはヘリウム、ネオン、アルゴン等)下において加熱処理(400℃以上基板の歪み点未満)を行い、層内に含まれる水素及び水などの不純物を除去したゲート絶縁層102としてもよい。
次いで、ゲート絶縁層102上に、膜厚5nm以上200nm以下、好ましくは10nm以上50nm以下の酸化物半導体膜を形成する。酸化物半導体膜の形成後に脱水化または脱水素化のための加熱処理を行っても酸化物半導体膜を非晶質な状態とするため、膜厚を50nm以下と薄くすることが好ましい。酸化物半導体膜の膜厚を薄くすることで酸化物半導体膜の形成後に加熱処理した場合に、結晶化してしまうのを抑制することができる。
なお、酸化物半導体膜をスパッタリング法により成膜する前に、アルゴンガスを導入してプラズマを発生させて逆スパッタを行い、ゲート絶縁層102の表面に付着しているゴミを除去することが好ましい。逆スパッタとは、ターゲット側に電圧を印加せずに、アルゴン雰囲気下で基板側にRF電源を用いて電圧を印加して基板近傍にプラズマを形成して表面を改質する方法である。なお、アルゴン雰囲気に代えて窒素、ヘリウムなどを用いてもよい。
酸化物半導体膜は、In−Ga−Zn−O系非単結晶膜、In−Sn−Zn−O系、In−Al−Zn−O系、Sn−Ga−Zn−O系、Al−Ga−Zn−O系、Sn−Al−Zn−O系、In−Zn−O系、Sn−Zn−O系、Al−Zn−O系、In−Ga−O系、In−O系、Sn−O系、Zn−O系の酸化物半導体膜を用いる。本実施の形態では、例えば、In−Ga−Zn−O系酸化物半導体ターゲットを用いてスパッタ法により成膜する。また、希ガス(代表的にはアルゴン)雰囲気下、酸素雰囲気下、又は希ガス(代表的にはアルゴン)及び酸素雰囲気下においてスパッタ法により酸化物半導体膜を形成することができる。また、スパッタ法を用いる場合、SiOを2重量%以上10重量%以下含むターゲットを用いて成膜を行い、酸化物半導体膜に結晶化を阻害するSiOx(X>0)を含ませ、後の工程で行う脱水化または脱水素化のための加熱処理の際に結晶化してしまうのを抑制することが好ましい。なお、電源としてパルス直流(DC)電源を用いると、ごみが軽減でき、膜厚分布も均一となるために好ましい。
また、酸化物半導体ターゲット中の酸化物半導体の相対密度は99%以上とするのが好ましい。これにより、形成された酸化物半導体膜中の不純物濃度を低減することができ、電気特性または信頼性の高い薄膜トランジスタを得ることができる。本実施の形態では、酸化物半導体の相対密度が97%の酸化物半導体ターゲットを用いる。
スパッタ法にはスパッタ用電源に高周波電源を用いるRFスパッタ法と、DCスパッタ法があり、さらにパルス的にバイアスを与えるパルスDCスパッタ法もある。RFスパッタ法は主に絶縁膜を成膜する場合に用いられ、DCスパッタ法は主に金属膜を成膜する場合に用いられる。
また、材料の異なるターゲットを複数設置できる多元スパッタ装置もある。多元スパッタ装置は、同一チャンバーで異なる材料膜を積層成膜することも、同一チャンバーで複数種類の材料を同時に放電させて成膜することもできる。
また、チャンバー内部に磁石機構を備えたマグネトロンスパッタ法を用いるスパッタ装置や、グロー放電を使わずマイクロ波を用いて発生させたプラズマを用いるECRスパッタ法を用いるスパッタ装置がある。
また、スパッタ法を用いる成膜方法として、成膜中にターゲット物質とスパッタガス成分とを化学反応させてそれらの化合物薄膜を形成するリアクティブスパッタ法や、成膜中に基板にも電圧をかけるバイアススパッタ法もある。
また、ゲート絶縁層102、及び酸化物半導体膜を大気に触れさせることなく連続的に形成してもよい。大気に触れさせることなく成膜することで、水やハイドロカーボンなどの、大気成分や大気中に浮遊する不純物元素に汚染されることなく各積層界面を形成することができるので、薄膜トランジスタ特性のばらつきを低減することができる。
次いで、酸化物半導体膜をフォトリソグラフィ工程により島状の酸化物半導体層103に加工する(図1(A)参照。)。また、島状の酸化物半導体層103を形成するためのレジストマスクをインクジェット法で形成してもよい。レジストマスクをインクジェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
次いで、第1の熱処理を行って、酸化物半導体層103の脱水化または脱水素化を行う。脱水化または脱水素化を行う第1の熱処理の温度は、350℃以上750℃未満、好ましくは425℃以上とする。なお、425℃以上であれば熱処理時間は1時間以下でよいが、425℃未満であれば加熱処理時間は、1時間よりも長時間行うこととする。例えば、加熱処理装置の一つである電気炉に基板を導入し、酸化物半導体層に対して窒素雰囲気下において加熱処理を行った後、大気に触れることなく、酸化物半導体層への水や水素の混入を防ぎ、酸化物半導体層103を得ることができる。本実施の形態では、酸化物半導体層103の脱水化または脱水素化を行う加熱温度Tから、水が入らないような十分な温度まで同じ炉を用い、具体的には加熱温度Tよりも100℃以上下がるまで窒素雰囲気下で徐冷する。また、窒素雰囲気に限定されず、ヘリウム、ネオン、アルゴン等下において脱水化または脱水素化を行う。
第1の熱処理により酸化物半導体層103を構成する酸化物半導体の原子レベルの再配列が行われる。第1の熱処理は、酸化物半導体層103中におけるキャリアの移動を阻害する歪みを解放できる点で重要である。
なお、第1の熱処理においては、窒素、またはヘリウム、ネオン、アルゴン等の希ガスに、水、水素などが含まれないことが好ましい。または、加熱処理装置に導入する窒素、またはヘリウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上、好ましくは7N(99.99999%)以上、(即ち不純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好ましい。
また、第1の熱処理の加熱処理装置は電気炉に限られず、抵抗発熱体などの発熱体からの熱伝導または熱輻射によって、被処理物を加熱する装置を備えていてもよい。例えば、GRTA(Gas Rapid Thermal Anneal)装置、LRTA(Lamp Rapid Thermal Anneal)装置等のRTA(Rapid Thermal Anneal)装置を用いることができる。LRTA装置は、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する装置である。GRTA装置は、高温のガスを用いて加熱処理を行う装置である。気体には、アルゴンなどの希ガス、または窒素のような、加熱処理によって被処理物と反応しない不活性気体が用いられる。
また、第1の熱処理の条件、または酸化物半導体層の材料によっては、酸化物半導体層が結晶化し、微結晶膜または多結晶膜となる場合もある。ここで、酸化物半導体層は、結晶化率が80%以上または90%以上の微結晶膜となることがある。また、酸化物半導体層の材料によっては、結晶を有さない酸化物半導体層となることもある。
また、酸化物半導体層の第1の熱処理は、島状の酸化物半導体層103に加工する前の酸化物半導体膜に行うこともできる。その場合には、第1の熱処理後に、加熱装置から基板を取り出し、フォトリソグラフィ工程を行う。
ここで、酸化物半導体層中の脱水素化有無における、水素濃度分析結果について触れておく。図3(A)は、本分析で用いた試料の断面構造模式図である。ガラス基板400上にプラズマCVD法で酸化窒化絶縁層401を形成し、酸化窒化絶縁層401上にIn−Ga−Zn−O系酸化物半導体層402を約40nm形成したものを用意した。用意した試料を分断し、一つは脱水素化を行わず、もう一つはGRTA法による窒素雰囲気中650℃、6分間の脱水素化を行なった。それぞれの試料について、酸化物半導体層中の水素濃度を測定することで、熱処理による脱水素化の効果について調査した。
酸化物半導体層中の水素濃度測定は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectroscopy)で行った。図3(B)は、酸化物半導体層中の膜厚方向の水素濃度分布を示すSIMS分析結果である。横軸は試料表面からの深さを示しており、左端の深さ0nmの位置が試料最表面(酸化物半導体層の最表面)に相当する。図3(A)に示す分析方向403は、SIMS分析の分析方向を示している。分析は酸化物半導体層の最表面からガラス基板400に向かう方向で行った。つまり、図3(B)の横軸において、左端から右端の方向に向かって行った。図3(B)の縦軸は、特定深さにおける試料中の水素濃度と、酸素イオン強度を対数軸で示している。
図3(B)において、水素濃度プロファイル412は、脱水素化を行っていない酸化物半導体層中の水素濃度プロファイルを示しており、水素濃度プロファイル413は、熱処理による脱水素化を行った後の酸化物半導体層中の水素濃度プロファイルを示している。酸素イオン強度プロファイル411は、水素濃度プロファイル412測定時に同時に取得した酸素イオン強度を示している。酸素イオン強度プロファイル411に極端な変動が無く、ほぼ一定のイオン強度が得られていることから、SIMS分析が正確に行われていることがわかる。なお、図示していないが、水素濃度プロファイル413測定時も同様に酸素イオン強度を測定しており、こちらもほぼ一定のイオン強度が得られている。水素濃度プロファイル412及び水素濃度プロファイル413は、試料と同じIn−Ga−Zn−O系酸化物半導体層で作製した標準試料を用いて定量している。
なお、SIMS分析は、その原理上、試料表面近傍や、材質が異なる積層膜界面近傍のデータを正確に得ることが困難であることが知られている。本分析においては、試料最表面から深さ約15nmまでは正確なデータが得られていないと考えられるため、深さ15nm以降のプロファイルを評価した。
水素濃度プロファイル412から、脱水素化を行っていない酸化物半導体層中に、水素が約3×1020atoms/cm以上、約5×1020atoms/cm以下、平均水素濃度で約4×1020atoms/cm含まれていることがわかる。また、水素濃度プロファイル413から、脱水素化により、酸化物半導体層中の平均水素濃度を約2×1019atoms/cmに低減できていることがわかる。
本分析により、熱処理による脱水素化を行うことで、酸化物半導体層中の水素濃度を低減できることが確認できた。また、GRTA法による窒素雰囲気中650℃、6分間の脱水素化により、酸化物半導体層中の水素濃度を1/10以下に低減できることが確認できた。
次いで、ゲート絶縁層102、及び酸化物半導体層103上にソース電極層及びドレイン電極層を形成するための導電膜を成膜する。
ソース電極層及びドレイン電極層を形成するための導電膜としては、ゲート電極層101と同様に、金属導電膜を用いることができる。金属導電膜の材料としては、Al、Cr、Cu、Ta、Ti、Mo、Wから選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組み合わせた合金等を用いるのが好ましい。例えば、チタン層上にアルミニウム層と、該アルミニウム層上にチタン層が積層された三層の積層構造、またはモリブデン層上にアルミニウム層と、該アルミニウム層上にモリブデン層を積層した三層の積層構造とすることが好ましい。勿論、金属導電膜として単層、または2層構造、または4層以上の積層構造としてもよい。
フォトマスクを用いてフォトリソグラフィ工程により、ソース電極層及びドレイン電極層を形成するための導電膜から、ソース電極層105aまたはドレイン電極層105bを形成する(図1(B)参照。)。また、このとき酸化物半導体層103も一部がエッチングされ、溝部(凹部)を有する酸化物半導体層103となる。
なお、ソース電極層105aまたはドレイン電極層105bを形成するためのレジストマスクをインクジェット法で形成してもよい。レジストマスクをインクジェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
また、酸化物半導体層103と、ソース電極層105a及び/またはドレイン電極層105bの間に、酸化物半導体層103よりも抵抗が低い酸化物導電層を形成しても良い。このような積層構成とすることで、薄膜トランジスタの耐圧を向上させることができる。具体的には、抵抗が低い酸化物導電層のキャリア濃度は、例えば1×1020/cm以上1×1021/cm以下の範囲内であると好ましい。
次に、ゲート絶縁層102、酸化物半導体層103、ソース電極層105a及びドレイン電極層105bを覆い、酸化物半導体層103の一部と接する保護絶縁層107を形成する(図1(C)参照。)。保護絶縁層107は、少なくとも1nm以上の膜厚とし、CVD法、スパッタリング法など、保護絶縁層107に水、水素等の不純物を混入させない方法を適宜用いて形成することができる。ここでは、保護絶縁層107は、スパッタリング法を用いて形成する。酸化物半導体層103の一部と接して形成される保護絶縁層107は、水分や、水素イオンや、OH−などの不純物を含まず、これらが外部から侵入することをブロックする無機絶縁膜を用い、代表的には酸化珪素膜、窒化酸化珪素膜、窒化珪素膜、酸化アルミニウム膜、酸化窒化アルミニウム膜又は窒化アルミニウム膜、を用いることができる。
また、保護絶縁層107は、酸化珪素膜、窒化酸化珪素膜、酸化アルミニウム膜又は酸化窒化アルミニウム膜の上に窒化珪素膜又は窒化アルミニウム膜を積層する構造としてもよい。特に窒化珪素膜は水分や、水素イオンや、OH−などの不純物を含まず、これらが外部から侵入することをブロックしやすいので好ましい。
保護絶縁層107の成膜時の基板温度は、室温以上300℃以下とすればよく、酸化珪素膜のスパッタリング法による成膜は、希ガス(代表的にはアルゴン)雰囲気下、酸素雰囲気下、または希ガス(代表的にはアルゴン)及び酸素雰囲気下において行うことができる。また、ターゲットとして酸化珪素ターゲットまたは珪素ターゲットを用いることができる。例えば、珪素ターゲットを用いて、酸素、及び窒素雰囲気下でスパッタリング法により酸化珪素を形成することができる。
次いで、第2の熱処理を行う。第2の熱処理は、100℃以上第1の熱処理の温度以下で行う。例えば、加熱処理装置の一つである電気炉に基板を導入し、窒素雰囲気下において加熱処理を行う。第2の熱処理は、保護絶縁層107形成以降の工程であれば、いつ行ってもよい。
以上の工程より、絶縁表面を有する基板である基板100上にゲート電極層101が設けられ、ゲート電極層101の上にゲート絶縁層102が設けられ、ゲート絶縁層102の上に酸化物半導体層103が設けられ、酸化物半導体層103の上にソース電極層105aまたはドレイン電極層105bが設けられ、ゲート絶縁層102、酸化物半導体層103、ソース電極層105a及びドレイン電極層105bを覆い、酸化物半導体層103の一部と接する保護絶縁層107が設けられている、チャネルエッチ型の薄膜トランジスタ150を形成することができる(図1(D)参照。)。
図1(E)は、本実施の形態で示した薄膜トランジスタ150の上面図である。図1(D)は、図1(E)のX1−X2部位の断面構成を示している。図1(E)において、Lはチャネル長を示しており、Wはチャネル幅を示している。また、Aはチャネル幅方向と平行な方向において、酸化物半導体層103がソース電極層105a及びドレイン電極層105bと重ならない領域の長さを示している。Lsはソース電極層105aとゲート電極層101が重なる長さを示しており、Ldはドレイン電極層105bとゲート電極層101が重なる長さを示している。
本実施の形態では、薄膜トランジスタ150をシングルゲート構造の薄膜トランジスタを用いて説明したが、必要に応じて、チャネル形成領域を複数有するマルチゲート構造の薄膜トランジスタや、保護絶縁層107上に第2のゲート電極層を有する構造の薄膜トランジスタとすることもできる。
また、本実施の形態では、チャネルエッチ型の薄膜トランジスタ150の作製方法について説明したが、本実施の形態の構成はこれに限られるものではない。図2(A)に示すような、ボトムゲート構造のボトムコンタクト型(逆コプラナ型とも呼ぶ)の薄膜トランジスタ160や、図2(B)に示すような、チャネル保護層110を有するチャネル保護型(チャネルストップ型ともいう)の薄膜トランジスタ170等も同様の材料、方法を用いて形成することができる。図2(C)は、チャネルエッチ型薄膜トランジスタの他の例を示している。図2(C)に示す薄膜トランジスタ180は、ゲート電極層101が酸化物半導体層103の端部よりも外側に伸びた構造となっている。
なお、薄膜トランジスタ150のチャネル長L(図1(E)中のL)は、ソース電極層105aとドレイン電極層105bとの距離で定義されるが、チャネル保護型の薄膜トランジスタ170のチャネル長は、キャリアの流れる方向と平行な方向のチャネル保護層の幅で定義される。
本実施の形態により、酸化物半導体層を有する薄膜トランジスタのゲート電圧が0Vにできるだけ近いしきい値電圧でチャネルが形成される薄膜トランジスタを作製することができる。
また、薄膜トランジスタのチャネル長が3μm以上10μm以下の範囲、もしくは、1.5μm以上乃至100μm以下の範囲において、室温以上180℃以下の動作温度範囲におけるしきい値電圧の変動幅を3V以下、さらには1.5V以下とすることができる。
また、−25℃以上150℃以下の動作温度範囲におけるしきい値電圧の変動幅を3V以下、さらには1.5V以下とすることができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
ここで、図29(A)に示す積層構造の薄膜トランジスタを用いた、室温以上180℃以下の環境下における薄膜トランジスタ特性の評価結果と、2次元デバイスシミュレーションによる検証について説明しておく。図29(A)は、薄膜トランジスタ850の断面構造を示している。
まず、ガラス基板801上に、ゲート電極層802としてタングステン層を100nmの厚さで形成し、ゲート電極層802上に、ゲート絶縁層803として、酸化窒化層を100nmの厚さで形成し、ゲート絶縁層803上に、In−Ga−Zn−O系の酸化物半導体層804を50nmの厚さで形成し、酸化物半導体層804上に、ソース電極層805及びドレイン電極層806としてチタン層を形成し、薄膜トランジスタ850を作製した。なお、薄膜トランジスタ850のチャネル長Lを10μm、チャネル幅Wを100μmとした。
次に、薄膜トランジスタ850に対して、測定時の基板温度を、室温(25℃)、40℃、60℃、85℃、100℃、120℃、140℃、160℃、180℃と変化させ、それぞれの基板温度(動作温度)における電流電圧特性を測定した。電流電圧特性の測定は、ソースとドレインの間の電圧(以下、ドレイン電圧もしくはVdという)を10Vとし、ソースとゲートの間の電圧(以下、ゲート電圧もしくはVgという)を−10Vから10Vまで変化させて行い、薄膜トランジスタの、ゲート電圧の変化に対するドレイン電流の変化を示すVg−Id曲線を得た。
図29(B)に、本測定で得られたVg−Id曲線を示す。図29(B)において、曲線811は、測定時の基板温度が室温(25℃)の時のVg−Id曲線を示している。測定時の基板温度が上昇するに従い、Vg−Id曲線が図29(B)に向かって左方向、すなわち、Vgのマイナス方向に順にシフトしている。全てのVg−Id曲線に符号をつけていないが、最も左に位置している曲線818が、基板温度180℃の時のVg−Id曲線である。図29(B)から、基板温度が室温(25℃)の時と180℃の時では、しきい値が5V以上もシフトしていることがわかる。
次に、図29(B)で見られたしきい値シフトは、温度による電子の励起が原因と考え,2次元デバイスシミュレーションによる再現検証を行った。シミュレーションにはシルバコ社製デバイスシミュレータATLASを用いた。酸化物半導体層のバンドギャップ(Eg)を3.05eV、電子移動度(μn)を15cm/Vsと仮定し、薄膜トランジスタ850と同じ構造のボトムゲート型TFTを仮定して、電流電圧特性を計算した。
図29(C)は、シミュレーションにより再現されたVg−Id曲線である。曲線821は、室温(25℃)時を想定したVg−Id曲線であり、曲線828は、180℃時を想定したVg−Id曲線の計算結果である。実測値である図29(B)と良く一致した再現結果が得られている。
図29(D)は、シミュレーション結果から得られた、酸化物半導体層中の状態密度を示している。横軸は酸化物半導体のバンドギャップを示しており、縦軸は状態密度を示している。図29(D)中、曲線831および曲線832は、バンドギャップ中におけるドナー準位密度の分布を示しており、曲線833は、バンドギャップ中におけるアクセプター準位密度の分布を示している。
曲線831は、伝導帯からバンドギャップの深くまで広く分布しているが、曲線832は、伝導帯近傍の極めて狭い範囲に分布し、非常に鋭いピークを持っている。曲線831は酸素欠損に由来し、曲線832は水素に由来する可能性が考えられる。
次に、図29(B)の結果が得られた試料とは異なる試料を作製し、得られた0℃以上150℃以下の環境下における薄膜トランジスタ特性の実験結果を元に、しきい値電圧の温度依存性に関して、以下に考察する。
試料は、スパッタ法により得られる300nmの酸化珪素膜を、図29(A)に示す積層構造の薄膜トランジスタを覆って形成した後、電流電圧特性を測定した。なお、薄膜トランジスタのチャネル長Lを3μm、チャネル幅Wを50μmとした。
薄膜トランジスタに対して、測定時の基板温度を、0℃、室温(25℃)、50℃、100℃、150℃と変化させ、それぞれの基板温度(動作温度)における電流電圧特性を測定した。電流電圧特性の測定は、ドレイン電圧Vdを10Vとし、ゲート電圧Vgを−20Vから20Vまで変化させて行い、薄膜トランジスタの、ゲート電圧Vgの変化に対するドレイン電流Idの変化を示すVg−Id曲線を得た。
図30に、本測定で得られたVg−Id曲線を示す。図30において、曲線911は、測定時の基板温度が0℃の時のVg−Id曲線を示している。測定時の基板温度が上昇するに従い、Vg−Id曲線が図30に向かって左方向、すなわち、Vgのマイナス方向にシフトして左に位置している曲線918が、基板温度150℃の時のVg−Id曲線である。
図31(A)は、Vg−Id曲線から求めたVth(しきい値電圧)をまとめた表である。図31(A)中、Vth変動幅は、0℃のときと150℃のときのVthの変動量を表している。
また、図31(B)は、図31(A)をグラフとして示した図である。横軸の測定温度は、薄膜トランジスタの電流電圧特性測定時の基板温度(動作温度)であり、縦軸のVthは、各基板温度におけるしきい値電圧である。
図31(A)から、基板温度が0℃の時と150℃の時を比較した場合、しきい値の変動は約1.5V程度に抑えられていることがわかる。
ここで、しきい値電圧(Vth)の温度依存性について以下に考察する。
フェルミ準位は温度が高くなるほど、真性フェルミ準位に近づく。式(1)にあるように反転しきい値電圧はフェルミポテンシャルの関数として示される。フェルミポテンシャルは真性フェルミ準位とフェルミ準位の差として定義される(式2)。つまり、n型もしくはp型に偏った半導体をチャネルに使用している場合、しきい値電圧は温度依存を示すことになる。
Figure 0005618724
Figure 0005618724
例えば、チャネルにp型を使用しているn型のSiトランジスタでは、温度が高くなるとφFがゼロに近づくため、しきい値電圧はマイナス方向にシフトする。なお、チャネルがi型(真性)であれば、しきい値電圧のシフトは起こらない。
一方、図30に示される測定結果を有する薄膜トランジスタは、基板温度が上昇すると、しきい値電圧はマイナス方向にシフトしている。一般に、酸化物半導体はp型化されにくく、n型化されやすいと言われており、チャネルが形成される酸化物半導体をn型と考えると、フェルミ準位の変化方向は逆である(n型のチャネルの場合であれば、しきい値電圧はプラス方向にシフトするはずである)。よって、酸化物半導体のしきい値電圧変動の起源は上記フェルミ準位とは別のメカニズムを考える必要がある。
また、上記議論は理想的な単結晶半導体において仮定される近似解であり、結晶欠陥や各種準位による温度依存を別途考慮しなくてはならない。酸化物半導体の温度依存のVg−Id曲線をみると、スレッショルド領域での電流増加が顕著であり、その領域の電流を支配するメカニズムとして一般的には欠陥を仮定することがよく行われる。特に、アモルファス状態を有する酸化物半導体の場合、欠陥準位が分布を持った関数として表現されることが一般的である。
チャネルが酸化物半導体の薄膜トランジスタのVthの温度依存性を計算で再現することを試みた。計算で仮定した構造を図32(A)及び図32(B)に示す。ゲート電極層701上に、酸化窒化シリコン膜からなる膜厚100nmのゲート絶縁層702と、膜厚30nmの酸化物半導体のチャネル703を有する逆スタガ型の薄膜トランジスタを仮定した。薄膜トランジスタのチャネル長L及びチャネル幅Wは、L/W=3/20μmとした。チャネル703だけでなく酸化物半導体の全体をi層にした図32(A)構造と、i層のチャネル703を有し、且つ、ソース電極層704bまたはドレイン電極層704aの下にN+領域705a、N+領域705bを仮定した図32(B)構造の2種類のTFTを仮定した。図32(B)構造のN+領域705a、N+領域705bは1×1019/cmのドナー(Nd)を仮定した。酸化物半導体のバンドギャップEg=3.15eV、電子親和力χ=4.3eV、誘電率は15を仮定した。またソース電極層704bまたはドレイン電極層704aに使用する金属の仕事関数は酸化物半導体の電子親和力と同じ4.3eVを仮定した。
また、アモルファス半導体では欠陥準位が温度特性に強く影響すると考え、計算では、図29(D)に示した曲線833であるバンドギャップ中におけるアクセプター準位密度の分布を仮定した。計算結果を図33に示す。図33には、図32(A)構造、図32(B)構造のそれぞれについて、アクセプター準位密度の分布を仮定した場合と仮定しない場合の計算結果を示す。また、図33には、0℃から150℃まで温度を上げた場合のVg−Id曲線と、そのときのVth変化(ΔVth)を示した。図33(A)は、図32(A)構造についてアクセプター準位密度の分布を仮定しない場合の計算結果である。また、図33(B)は、図32(B)構造についてアクセプター準位密度の分布を仮定しない場合の計算結果である。図33(C)は、図32(A)構造についてアクセプター準位密度の分布を仮定した場合の計算結果である。図33(D)は、図32(B)構造についてアクセプター準位密度の分布を仮定した場合の計算結果である。
バンドギャップ中におけるアクセプター準位密度の分布を仮定しない場合、即ち図33(A)及び33(B)の結果をみると、図32(A)構造も、図32(B)構造もVthの温度変化は0.1V程度となった。フェルミ・ディラック統計に従えば、0℃から150℃まで温度を上昇させると、真性キャリア濃度はおよそ11桁増加する。真性キャリア濃度(ni)が増加すると、以下の式(3)に従ってキャリア(電子)が増加する。
Figure 0005618724
その結果として、チャネルを開くために必要なゲート電圧が小さくて済み、Vthはマイナスシフトする。その差が0.1Vに相当する。
バンドギャップ中におけるアクセプター準位密度の分布を仮定した場合、即ち図33(C)及び33(D)の結果をみると、図32(A)構造も、図32(B)構造もΔVthは増加し、実測結果に近い値が計算によって得られた。酸化物半導体を真性と仮定しても、バンドギャップ内にアクセプター準位密度の分布が存在すると、温度依存性が表れることが確認できた。
バンドギャップ中におけるアクセプター準位密度の分布を仮定したことで、キャリア(電子)がトラップされるが、温度を上げることでトラップされたキャリアが解放され、チャネルのキャリア濃度が増加し、Vthがマイナスシフトしたと考えられる。酸化物半導体はほぼ真性状態にあるが、アクセプター準位密度の分布がVthの温度依存に現れていると考えられる。
なお、図32(A)構造と図32(B)構造の比較をした場合、両者に違いは見られなかった。仮定したTFTのチャネル長Lは3μmであるため、N+領域の影響は受けにくいと考えられる。
(実施の形態2)
本実施の形態では、同一基板上に少なくとも駆動回路の一部と、画素部に配置する薄膜トランジスタを作製する例について以下に説明する。
画素部に配置する薄膜トランジスタは、実施の形態1に従って形成する。また、実施の形態1に示す薄膜トランジスタはnチャネル型TFTであるため、駆動回路のうち、nチャネル型TFTで構成することができる駆動回路の一部を画素部の薄膜トランジスタと同一基板上に形成する。
アクティブマトリクス型表示装置のブロック図の一例を図7(A)に示す。表示装置の基板5300上には、画素部5301、第1の走査線駆動回路5302、第2の走査線駆動回路5303、信号線駆動回路5304を有する。画素部5301には、複数の信号線が信号線駆動回路5304から延伸して配置され、複数の走査線が第1の走査線駆動回路5302、及び走査線駆動回路5303から延伸して配置されている。なお走査線と信号線との交差領域には、各々、表示素子を有する画素がマトリクス状に配置されている。また、表示装置の基板5300はFPC(Flexible Printed Circuit)等の接続部を介して、タイミング制御回路5305(コントローラ、制御ICともいう)に接続されている。
図7(A)では、第1の走査線駆動回路5302、第2の走査線駆動回路5303、信号線駆動回路5304は、画素部5301と同じ基板5300上に形成される。そのため、外部に設ける駆動回路等の部品の数が減るので、コストの低減を図ることができる。また、基板5300外部に駆動回路を設けた場合、配線を延伸させる必要が生じ、配線間の接続数が増える。同じ基板5300上に駆動回路を設けた場合、その配線間の接続数を減らすことができ、信頼性の向上、又は歩留まりの向上を図ることができる。
なお、タイミング制御回路5305は、第1の走査線駆動回路5302に対し、一例として、第1の走査線駆動回路用スタート信号(GSP1)(スタートパルス)、走査線駆動回路用クロック信号(GCK1)を供給する。また、タイミング制御回路5305は、第2の走査線駆動回路5303に対し、一例として、第2の走査線駆動回路用スタート信号(GSP2)(スタートパルスともいう)、走査線駆動回路用クロック信号(GCK2)を供給する。信号線駆動回路5304に対し、一例として、信号線駆動回路用スタート信号(SSP)、信号線駆動回路用クロック信号(SCK)、ビデオ信号用データ(DATA)(単にビデオ信号ともいう)、ラッチ信号(LAT)を供給するものとする。なお各クロック信号は、周期のずれた複数のクロック信号でもよいし、クロック信号を反転させた信号(CKB)とともに供給されるものであってもよい。なお、第1の走査線駆動回路5302と第2の走査線駆動回路5303の一方を省略することが可能である。
図7(B)では、駆動周波数が低い回路(例えば、第1の走査線駆動回路5302、第2の走査線駆動回路5303)を画素部5301と同じ基板5300に形成し、信号線駆動回路5304を画素部5301とは別の基板に形成する構成について示している。当該構成により、単結晶半導体を用いたトランジスタと比較すると電界効果移動度が小さい薄膜トランジスタによって、基板5300に形成する駆動回路を構成することができる。したがって、表示装置の大型化、工程数の削減、コストの低減、又は歩留まりの向上などを図ることができる。
また、実施の形態1に示す薄膜トランジスタは、nチャネル型TFTである。図8(A)、図8(B)ではnチャネル型TFTで構成する信号線駆動回路の構成、動作について一例を示し説明する。
信号線駆動回路は、シフトレジスタ5601、及びスイッチング回路5602を有する。スイッチング回路5602は、スイッチング回路5602_1〜5602_N(Nは自然数)という複数の回路を有する。スイッチング回路5602_1〜5602_Nは、各々、薄膜トランジスタ5603_1〜5603_k(kは自然数)という複数のトランジスタを有する。薄膜トランジスタ5603_1〜5603_kは、nチャネル型TFTである例を説明する。
信号線駆動回路の接続関係について、スイッチング回路5602_1を例にして説明する。薄膜トランジスタ5603_1〜5603_kの第1端子は、各々、配線5604_1〜5604_kと接続される。薄膜トランジスタ5603_1〜5603_kの第2端子は、各々、信号線S1〜Skと接続される。薄膜トランジスタ5603_1〜5603_kのゲートは、配線5604_1と接続される。
シフトレジスタ5601は、配線5605_1〜5605_Nに順番にHレベル(H信号、高電源電位レベル、ともいう)の信号を出力し、スイッチング回路5602_1〜5602_Nを順番に選択する機能を有する。
スイッチング回路5602_1は、配線5604_1〜5604_kと信号線S1〜Skとの導通状態(第1端子と第2端子との間の導通)を制御する機能、即ち配線5604_1〜5604_kの電位を信号線S1〜Skに供給するか否かを制御する機能を有する。このように、スイッチング回路5602_1は、セレクタとしての機能を有する。また薄膜トランジスタ5603_1〜5603_Nは、各々、配線5604_1〜5604_kと信号線S1〜Skとの導通状態を制御する機能、即ち配線5604_1〜5604_kの電位を信号線S1〜Skに供給する機能を有する。このように、薄膜トランジスタ5603_1〜5603_Nは、各々、スイッチとしての機能を有する。
なお、配線5604_1〜5604_kには、各々、ビデオ信号用データ(DATA)が入力される。ビデオ信号用データ(DATA)は、画像情報又は画像信号に応じたアナログ信号である場合が多い。
次に、図8(A)の信号線駆動回路の動作について、図8(B)のタイミングチャートを参照して説明する。図8(B)には、信号Sout_1〜Sout_N、及び信号Vdata_1〜Vdata_kの一例を示す。信号Sout_1〜Sout_Nは、各々、シフトレジスタ5601の出力信号の一例であり、信号Vdata_1〜Vdata_kは、各々、配線5604_1〜5604_kに入力される信号の一例である。なお、信号線駆動回路の1動作期間は、表示装置における1ゲート選択期間に対応する。1ゲート選択期間は、一例として、期間T1〜期間TNに分割される。期間T1〜TNは、各々、選択された行に属する画素にビデオ信号用データ(DATA)を書き込むための期間である。
なお、本実施の形態の図面等において示す各構成の、信号波形のなまり等は、明瞭化のために誇張して表記している場合がある。よって、必ずしもそのスケールに限定されないものであることを付記する。
期間T1〜期間TNにおいて、シフトレジスタ5601は、Hレベルの信号を配線5605_1〜5605_Nに順番に出力する。例えば、期間T1において、シフトレジスタ5601は、ハイレベルの信号を配線5605_1に出力する。すると、薄膜トランジスタ5603_1〜5603_kはオンになるので、配線5604_1〜5604_kと、信号線S1〜Skとが導通状態になる。このとき、配線5604_1〜5604_kには、Data(S1)〜Data(Sk)が入力される。Data(S1)〜Data(Sk)は、各々、薄膜トランジスタ5603_1〜5603_kを介して、選択される行に属する画素のうち、1列目〜k列目の画素に書き込まれる。こうして、期間T1〜TNにおいて、選択された行に属する画素に、k列ずつ順番にビデオ信号用データ(DATA)が書き込まれる。
以上のように、ビデオ信号用データ(DATA)が複数の列ずつ画素に書き込まれることによって、ビデオ信号用データ(DATA)の数、又は配線の数を減らすことができる。よって、外部回路との接続数を減らすことができる。また、ビデオ信号が複数の列ずつ画素に書き込まれることによって、書き込み時間を長くすることができ、ビデオ信号の書き込み不足を防止することができる。
なお、シフトレジスタ5601及びスイッチング回路5602としては、実施の形態1に示す薄膜トランジスタで構成される回路を用いることが可能である。この場合、シフトレジスタ5601が有する全てのトランジスタの極性をnチャネル型、又はpチャネル型のいずれかの極性のみで構成することができる。
次に、走査線駆動回路の構成について説明する。走査線駆動回路は、シフトレジスタを有している。また場合によってはレベルシフタやバッファ等を有していても良い。走査線駆動回路において、シフトレジスタにクロック信号(CK)及びスタートパルス信号(SP)が入力されることによって、選択信号が生成される。生成された選択信号はバッファにおいて緩衝増幅され、対応する走査線に供給される。走査線には、1ライン分の画素のトランジスタのゲート電極が接続されている。そして、1ライン分の画素のトランジスタを一斉にONにしなくてはならないので、バッファは大きな電流を流すことが可能なものが用いられる。
走査線駆動回路及び/または信号線駆動回路の一部に用いるシフトレジスタの一形態について図9及び図10を用いて説明する。
走査線駆動回路、信号線駆動回路のシフトレジスタについて、図9及び図10を参照して説明する。シフトレジスタは、第1のパルス出力回路10_1乃至第Nのパルス出力回路10_N(Nは3以上の自然数)を有している(図9(A)参照)。図9(A)に示すシフトレジスタの第1のパルス出力回路10_1乃至第Nのパルス出力回路10_Nには、第1の配線11より第1のクロック信号CK1、第2の配線12より第2のクロック信号CK2、第3の配線13より第3のクロック信号CK3、第4の配線14より第4のクロック信号CK4が供給される。また第1のパルス出力回路10_1では、第5の配線15からのスタートパルスSP1(第1のスタートパルス)が入力される。また2段目以降の第nのパルス出力回路10_n(nは、2以上N以下の自然数)では、一段前段のパルス出力回路からの信号(前段信号OUT(n−1)という)(nは2以上の自然数)が入力される。また第1のパルス出力回路10_1では、2段後段の第3のパルス出力回路10_3からの信号が入力される。同様に、2段目以降の第nのパルス出力回路10_nでは、2段後段の第(n+2)のパルス出力回路10_n+2からの信号(後段信号OUT(n+2)という)が入力される。従って、各段のパルス出力回路からは、後段及び/または二つ前段のパルス出力回路に入力するための第1の出力信号(OUT(1)(SR)〜OUT(N)(SR))、別の配線等に第2の出力信号(OUT(1)〜OUT(N))が出力される。なお、図9(A)に示すように、シフトレジスタの最終段の2つの段には、後段信号OUT(n+2)が入力されないため、一例としては、別途第2のスタートパルスSP2、第3のスタートパルスSP3をそれぞれ入力する構成とすればよい。
なお、クロック信号(CK)は、一定の間隔でHレベルとLレベル(L信号、低電源電位レベル、ともいう)を繰り返す信号である。ここで、第1のクロック信号(CK1)〜第4のクロック信号(CK4)は、順に1/4周期分遅延している。本実施の形態では、第1のクロック信号(CK1)〜第4のクロック信号(CK4)を利用して、パルス出力回路の駆動の制御等を行う。なお、クロック信号は、入力される駆動回路に応じて、GCK、SCKということもあるが、ここではCKとして説明を行う。
第1のパルス出力回路10_1〜第Nのパルス出力回路10_Nの各々は、第1の入力端子21、第2の入力端子22、第3の入力端子23、第4の入力端子24、第5の入力端子25、第1の出力端子26、第2の出力端子27を有しているとする(図9(B)参照)。第1の入力端子21、第2の入力端子22及び第3の入力端子23は、第1の配線11〜第4の配線14のいずれかと電気的に接続されている。例えば、図9(A)において、第1のパルス出力回路10_1は、第1の入力端子21が第1の配線11と電気的に接続され、第2の入力端子22が第2の配線12と電気的に接続され、第3の入力端子23が第3の配線13と電気的に接続されている。また、第2のパルス出力回路10_2は、第1の入力端子21が第2の配線12と電気的に接続され、第2の入力端子22が第3の配線13と電気的に接続され、第3の入力端子23が第4の配線14と電気的に接続されている。
第1のパルス出力回路10_1において、第1の入力端子21に第1のクロック信号CK1が入力され、第2の入力端子22に第2のクロック信号CK2が入力され、第3の入力端子23に第3のクロック信号CK3が入力され、第4の入力端子24にスタートパルスSP1が入力され、第5の入力端子25に後段信号OUT(3)(SR)が入力され、第1の出力端子26より第1の出力信号OUT(1)(SR)が出力され、第2の出力端子27より第2の出力信号OUT(1)が出力されていることとなる。
なお第1のパルス出力回路10_1〜第Nのパルス出力回路10_Nは、3端子の薄膜トランジスタの他に、4端子の薄膜トランジスタを用いることができる。図9(C)に4端子の薄膜トランジスタ28のシンボルについて示し、図面等で以下用いることとする。薄膜トランジスタ28は、第1のゲート電極に入力される第1の制御信号G1及び第2のゲート電極に入力される第2の制御信号G2によって、In端子とOut端子間の電気的な制御を行うことのできる素子である。
図9(C)に示す薄膜トランジスタ28のしきい値電圧は、薄膜トランジスタ28のチャネル形成領域の上下にゲート絶縁膜を介してゲート電極を設け、上部及び/または下部のゲート電極の電位を制御することにより所望の値に制御することができる。
次に、パルス出力回路の具体的な回路構成の一例について、図9(D)で説明する。
第1のパルス出力回路10_1は、第1のトランジスタ31〜第13のトランジスタ43を有している(図9(D)参照)。また、上述した第1の入力端子21〜第5の入力端子25、及び第1の出力端子26、第2の出力端子27に加え、第1の高電源電位VDDが供給される電源線51、第2の高電源電位VCCが供給される電源線52、低電源電位VSSが供給される電源線53から、第1のトランジスタ31〜第13のトランジスタ43に信号、または電源電位が供給される。ここで図9(D)の各電源線の電源電位の大小関係は、第1の電源電位VDDは第2の電源電位VCC以上の電位とし、第2の電源電位VCCは第3の電源電位VSSより高い電位とする。なお、第1のクロック信号(CK1)〜第4のクロック信号(CK4)は、一定の間隔でHレベルとLレベルを繰り返す信号であるが、HレベルのときVDD、LレベルのときVSSであるとする。なお電源線51の電位VDDを、電源線52の電位VCCより高くすることにより、動作に影響を与えることなく、トランジスタのゲート電極に印加される電位を低く抑えることができ、トランジスタのしきい値のシフトを低減し、劣化を抑制することができる。なお図9(D)に図示するように、第1のトランジスタ31〜第13のトランジスタ43のうち、第1のトランジスタ31、第6のトランジスタ36乃至第9のトランジスタ39には、図9(C)で示した4端子の薄膜トランジスタ28を用いることが好ましい。第1のトランジスタ31、第6のトランジスタ36乃至第9のトランジスタ39の動作は、ソースまたはドレインとなる電極の一方が接続されたノードの電位を、ゲート電極の制御信号によって切り替えることが求められるトランジスタであり、ゲート電極に入力される制御信号に対する応答が速い(オン電流の立ち上がりが急峻)ことでよりパルス出力回路の誤動作を低減することができるトランジスタである。そのため、図9(C)で示した4端子の薄膜トランジスタ28を用いることによりしきい値電圧を制御することができ、誤動作がより低減できるパルス出力回路とすることができる。なお図9(D)では第1の制御信号G1及び第2の制御信号G2を同じ制御信号としたが、異なる制御信号が入力される構成としてもよい。
図9(D)において第1のトランジスタ31は、第1端子が電源線51に電気的に接続され、第2端子が第9のトランジスタ39の第1端子に電気的に接続され、ゲート電極(第1のゲート電極及び第2のゲート電極)が第4の入力端子24に電気的に接続されている。第2のトランジスタ32は、第1端子が電源線53に電気的に接続され、第2端子が第9のトランジスタ39の第1端子に電気的に接続され、ゲート電極が第4のトランジスタ34のゲート電極に電気的に接続されている。第3のトランジスタ33は、第1端子が第1の入力端子21に電気的に接続され、第2端子が第1の出力端子26に電気的に接続されている。第4のトランジスタ34は、第1端子が電源線53に電気的に接続され、第2端子が第1の出力端子26に電気的に接続されている。第5のトランジスタ35は、第1端子が電源線53に電気的に接続され、第2端子が第2のトランジスタ32のゲート電極及び第4のトランジスタ34のゲート電極に電気的に接続され、ゲート電極が第4の入力端子24に電気的に接続されている。第6のトランジスタ36は、第1端子が電源線52に電気的に接続され、第2端子が第2のトランジスタ32のゲート電極及び第4のトランジスタ34のゲート電極に電気的に接続され、ゲート電極(第1のゲート電極及び第2のゲート電極)が第5の入力端子25に電気的に接続されている。第7のトランジスタ37は、第1端子が電源線52に電気的に接続され、第2端子が第8のトランジスタ38の第2端子に電気的に接続され、ゲート電極(第1のゲート電極及び第2のゲート電極)が第3の入力端子23に電気的に接続されている。第8のトランジスタ38は、第1端子が第2のトランジスタ32のゲート電極及び第4のトランジスタ34のゲート電極に電気的に接続され、ゲート電極(第1のゲート電極及び第2のゲート電極)が第2の入力端子22に電気的に接続されている。第9のトランジスタ39は、第1端子が第1のトランジスタ31の第2端子及び第2のトランジスタ32の第2端子に電気的に接続され、第2端子が第3のトランジスタ33のゲート電極及び第10のトランジスタ40のゲート電極に電気的に接続され、ゲート電極(第1のゲート電極及び第2のゲート電極)が電源線52に電気的に接続されている。第10のトランジスタ40は、第1端子が第1の入力端子21に電気的に接続され、第2端子が第2の出力端子27に電気的に接続され、ゲート電極が第9のトランジスタ39の第2端子に電気的に接続されている。第11のトランジスタ41は、第1端子が電源線53に電気的に接続され、第2端子が第2の出力端子27に電気的に接続され、ゲート電極が第2のトランジスタ32のゲート電極及び第4のトランジスタ34のゲート電極に電気的に接続されている。第12のトランジスタ42は、第1端子が電源線53に電気的に接続され、第2端子が第2の出力端子27に電気的に接続され、ゲート電極が第7のトランジスタ37のゲート電極(第1のゲート電極及び第2のゲート電極)に電気的に接続されている。第13のトランジスタ43は、第1端子が電源線53に電気的に接続され、第2端子が第1の出力端子26に電気的に接続され、ゲート電極が第7のトランジスタ37のゲート電極(第1のゲート電極及び第2のゲート電極)に電気的に接続されている。
図9(D)において、第3のトランジスタ33のゲート電極、第10のトランジスタ40のゲート電極、及び第9のトランジスタ39の第2端子の接続箇所をノードAとする。また、第2のトランジスタ32のゲート電極、第4のトランジスタ34のゲート電極、第5のトランジスタ35の第2端子、第6のトランジスタ36の第2端子、第8のトランジスタ38の第1端子、及び第11のトランジスタ41のゲート電極との接続箇所をノードBとする。
図10(A)に、図9(D)で説明したパルス出力回路を第1のパルス出力回路10_1に適用した場合に、第1の入力端子21乃至第5の入力端子25と第1の出力端子26及び第2の出力端子27に入力または出力される信号を示している。
具体的には、第1の入力端子21に第1のクロック信号CK1が入力され、第2の入力端子22に第2のクロック信号CK2が入力され、第3の入力端子23に第3のクロック信号CK3が入力され、第4の入力端子24にスタートパルスが入力され、第5の入力端子25に後段信号OUT(3)が入力され、第1の出力端子26より第1の出力信号OUT(1)(SR)が出力され、第2の出力端子27より第2の出力信号OUT(1)が出力される。
なお、薄膜トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。また、ゲートと重畳した領域にチャネル領域が形成される半導体を有しており、ゲートの電位を制御することで、チャネル領域を介してドレインとソースの間に流れる電流を制御することが出来る。ここで、ソースとドレインとは、薄膜トランジスタの構造や動作条件等によって変わるため、いずれがソースまたはドレインであるかを限定することが困難である。そこで、ソース及びドレインとして機能する領域を、ソースもしくはドレインと呼ばない場合がある。その場合、一例としては、それぞれを第1端子、第2端子と表記する場合がある。
なお図9(D)、図10(A)において、ノードAを浮遊状態とすることによりブートストラップ動作を行うための、容量素子を別途設けても良い。またノードBの電位を保持するため、一方の電極をノードBに電気的に接続した容量素子を別途設けてもよい。
ここで、図10(A)に示したパルス出力回路を複数具備するシフトレジスタのタイミングチャートについて図10(B)に示す。なおシフトレジスタが走査線駆動回路である場合、図10(B)中の期間61は垂直帰線期間であり、期間62はゲート選択期間に相当する。
なお、図10(A)に示すように、ゲートに第2の電源電位VCCが印加される第9のトランジスタ39を設けておくことにより、ブートストラップ動作の前後において、以下のような利点がある。
ゲート電極に第2の電位VCCが印加される第9のトランジスタ39がない場合、ブートストラップ動作によりノードAの電位が上昇すると、第1のトランジスタ31の第2端子であるソースの電位が上昇していき、第1の電源電位VDDより大きくなる。そして、第1のトランジスタ31のソースが第1端子側、即ち電源線51側に切り替わる。そのため、第1のトランジスタ31においては、ゲートとソースの間、ゲートとドレインの間ともに、大きなバイアス電圧が印加されるために大きなストレスがかかり、トランジスタの劣化の要因となりうる。そこで、ゲート電極に第2の電源電位VCCが印加される第9のトランジスタ39を設けておくことにより、ブートストラップ動作によりノードAの電位は上昇するものの、第1のトランジスタ31の第2端子の電位の上昇を生じないようにすることができる。つまり、第9のトランジスタ39を設けることにより、第1のトランジスタ31のゲートとソースの間に印加される負のバイアス電圧の値を小さくすることができる。よって、本実施の形態の回路構成とすることにより、第1のトランジスタ31のゲートとソースの間に印加される負のバイアス電圧も小さくできるため、ストレスによる第1のトランジスタ31の劣化を抑制することができる。
なお、第9のトランジスタ39を設ける箇所については、第1のトランジスタ31の第2端子と第3のトランジスタ33のゲートとの間に第1端子と第2端子を介して接続されるように設ける構成であればよい。なお、本実施形態でのパルス出力回路を複数具備するシフトレジスタの場合、走査線駆動回路より段数の多い信号線駆動回路では、第9のトランジスタ39を省略してもよく、トランジスタ数を削減することが利点である。
なお第1のトランジスタ31乃至第13のトランジスタ43の半導体層として、酸化物半導体を用いることにより、薄膜トランジスタのオフ電流を低減すると共に、オン電流及び電界効果移動度を高めることができ、劣化の度合いを低減することが出来るため、回路内の誤動作を低減することができる。また酸化物半導体を用いたトランジスタは、アモルファスシリコンを用いたトランジスタに比べ、ゲート電極に高電位が印加されることによるトランジスタの劣化の程度が小さい。そのため、第2の電源電位VCCを供給する電源線に、第1の電源電位VDDを供給しても同様の動作が得られ、且つ回路間を引き回す電源線の数を低減することができるため、回路の小型化を図ることが出来る。
なお、第7のトランジスタ37のゲート電極(第1のゲート電極及び第2のゲート電極)に第3の入力端子23によって供給されるクロック信号、第8のトランジスタ38のゲート電極(第1のゲート電極及び第2のゲート電極)に第2の入力端子22によって供給されるクロック信号は、第7のトランジスタ37のゲート電極(第1のゲート電極及び第2のゲート電極)に第2の入力端子22によって供給されるクロック信号、第8のトランジスタ38のゲート電極(第1のゲート電極及び第2のゲート電極)に第3の入力端子23によって供給されるクロック信号となるように、結線関係を入れ替えても同様の作用を奏する。なお、図10(A)に示すシフトレジスタにおいて、第7のトランジスタ37及び第8のトランジスタ38が共にオンの状態から、第7のトランジスタ37がオフ、第8のトランジスタ38がオンの状態、次いで第7のトランジスタ37がオフ、第8のトランジスタ38がオフの状態とすることによって、第2の入力端子22及び第3の入力端子23の電位が低下することで生じる、ノードBの電位の低下が第7のトランジスタ37のゲート電極の電位の低下、及び第8のトランジスタ38のゲート電極の電位の低下に起因して2回生じることとなる。一方、図10(A)に示すシフトレジスタにおいて、第7のトランジスタ37及び第8のトランジスタ38が共にオンの状態から、第7のトランジスタ37がオン、第8のトランジスタ38がオフの状態、次いで、第7のトランジスタ37がオフ、第8のトランジスタ38がオフの状態とすることによって、第2の入力端子22及び第3の入力端子23の電位が低下することで生じるノードBの電位の低下を、第8のトランジスタ38のゲート電極の電位の低下による一回に低減することができる。そのため、第7のトランジスタ37のゲート電極(第1のゲート電極及び第2のゲート電極)に第3の入力端子23からクロック信号CK3が供給され、第8のトランジスタ38のゲート電極(第1のゲート電極及び第2のゲート電極)に第2の入力端子22からクロック信号CK2が供給される結線関係とすることが好適である。なぜなら、ノードBの電位の変動回数が低減され、ノイズを低減することが出来るからである。
このように、第1の出力端子26及び第2の出力端子27の電位をLレベルに保持する期間に、ノードBに定期的にHレベルの信号が供給される構成とすることにより、パルス出力回路の誤動作を抑制することができる。
実施の形態1に示す薄膜トランジスタの作製方法を用いて上記駆動回路の薄膜トランジスタを作製することにより、駆動回路部の薄膜トランジスタの高速動作を実現し、省電力化を図ることができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態3)
本実施の形態では、薄膜トランジスタを作製し、該薄膜トランジスタを画素部、さらには駆動回路に用いて表示機能を有する半導体装置(表示装置ともいう)を作製する場合について説明する。また、薄膜トランジスタを用いて、駆動回路の一部または全体を、画素部と同じ基板上に一体形成し、システムオンパネルを形成することができる。
表示装置は表示素子を含む。表示素子としては液晶素子(液晶表示素子ともいう)、発光素子(発光表示素子ともいう)を用いることができる。発光素子は、電流または電圧によって輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electro Luminescence)、有機EL等が含まれる。また、電子インクなど、電気的作用によりコントラストが変化する表示媒体も適用することができる。
また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラを含むIC等を実装した状態にあるモジュールとを含む。さらに表示装置は、該表示装置を作製する過程における、表示素子が完成する前の一形態に相当する素子基板に関し、該素子基板は、電流を表示素子に供給するための手段を複数の各画素に備える。素子基板は、具体的には、表示素子の画素電極のみが形成された状態であっても良いし、画素電極となる導電膜を成膜した後であって、エッチングして画素電極を形成する前の状態であっても良いし、あらゆる形態があてはまる。
なお、本明細書中における表示装置とは、画像表示デバイス、表示デバイス、もしくは光源(照明装置含む)を指す。また、コネクター、例えばFPC(Flexible printed circuit)もしくはTAB(Tape Automated Bonding)テープもしくはTCP(Tape Carrier Package)が取り付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュール、または表示素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも全て表示装置に含むものとする。
本実施の形態では、本発明の一形態である半導体装置として液晶表示装置の例を示す。まず、半導体装置の一形態に相当する液晶表示パネルの外観及び断面について、図11を用いて説明する。図11(A1)(A2)は、第1の基板4001上に形成されたIn−Ga−Zn−O系非単結晶膜を半導体層として含む信頼性の高い薄膜トランジスタ4010、4011、及び液晶素子4013を、第2の基板4006との間にシール材4005によって封止した、パネルの上面図であり、図11(B)は、図11(A1)(A2)のM−Nにおける断面図に相当する。
第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲むようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回路4004の上に第2の基板4006が設けられている。よって画素部4002と、走査線駆動回路4004とは、第1の基板4001とシール材4005と第2の基板4006とによって、液晶層4008と共に封止されている。また第1の基板4001上のシール材4005によって囲まれている領域とは異なる領域に、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜で形成された信号線駆動回路4003が実装されている。
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG方法、ワイヤボンディング方法、或いはTAB方法などを用いることができる。図11(A1)は、COG方法により信号線駆動回路4003を実装する例であり、図11(A2)は、TAB方法により信号線駆動回路4003を実装する例である。
また、第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004は、薄膜トランジスタを複数有しており、図11(B)では、画素部4002に含まれる薄膜トランジスタ4010と、走査線駆動回路4004に含まれる薄膜トランジスタ4011とを例示している。薄膜トランジスタ4010、4011上には絶縁層4020、4021が設けられている。
薄膜トランジスタ4010、4011は、実施の形態1で示した酸化物半導体層を含む信頼性の高い薄膜トランジスタを適用することができる。本実施の形態において、薄膜トランジスタ4010、4011はnチャネル型薄膜トランジスタである。
絶縁層4021上において、駆動回路用の薄膜トランジスタ4011の酸化物半導体層のチャネル形成領域と重なる位置に導電層4040が設けられている。導電層4040を酸化物半導体層のチャネル形成領域と重なる位置に設けることによって、BT試験前後における薄膜トランジスタ4011のしきい値電圧の変化量を低減することができる。また、導電層4040は、電位が薄膜トランジスタ4011のゲート電極層と同じでもよいし、異なっていても良く、第2のゲート電極層として機能させることもできる。また、導電層4040の電位がGND、0V、或いはフローティング状態であってもよい。
また、液晶素子4013が有する画素電極層4030は、薄膜トランジスタ4010と電気的に接続されている。そして液晶素子4013の対向電極層4031は第2の基板4006上に形成されている。画素電極層4030と対向電極層4031と液晶層4008とが重なっている部分が、液晶素子4013に相当する。なお、画素電極層4030、対向電極層4031はそれぞれ配向膜として機能する絶縁層4032、4033が設けられ、絶縁層4032、4033を介して液晶層4008を挟持している。
なお、第1の基板4001、第2の基板4006としては、ガラス、金属(代表的にはステンレス)、セラミックス、プラスチックを用いることができる。プラスチックとしては、FRP(Fiberglass−Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、ポリエステルフィルムまたはアクリル樹脂フィルムを用いることができる。また、アルミニウムホイルをPVFフィルムやポリエステルフィルムで挟んだ構造のシートを用いることもできる。
また、4035は絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであり、画素電極層4030と対向電極層4031との間の距離(セルギャップ)を制御するために設けられている。なお球状のスペーサを用いても良い。また、対向電極層4031は、薄膜トランジスタ4010と同一基板上に設けられる共通電位線と電気的に接続される。共通接続部を用いて、一対の基板間に配置される導電性粒子を介して対向電極層4031と共通電位線とを電気的に接続することができる。なお、導電性粒子はシール材4005に含有させる。
また、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために5重量%以上のカイラル剤を混合させた液晶組成物を液晶層4008に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が1msec以下と短く、光学的等方性であるため配向処理が不要であり、視野角依存性が小さい。
なお、本実施の形態で示す液晶表示装置は透過型液晶表示装置の例であるが、液晶表示装置は反射型液晶表示装置でも半透過型液晶表示装置でも適用できる。
また、本実施の形態で示す液晶表示装置では、基板の外側(視認側)に偏光板を設け、内側に着色層、表示素子に用いる電極層という順に設ける例を示すが、偏光板は基板の内側に設けてもよい。また、偏光板と着色層の積層構造も本実施の形態に限定されず、偏光板及び着色層の材料や作製工程条件によって適宜設定すればよい。また、必要に応じてブラックマトリクスとして機能する遮光膜を設けてもよい。
また、本実施の形態では、薄膜トランジスタの表面凹凸を低減するため、及び薄膜トランジスタの信頼性を向上させるため、薄膜トランジスタを保護膜や平坦化絶縁膜として機能する絶縁層(絶縁層4020、絶縁層4021)で覆う構成となっている。なお、保護膜は、大気中に浮遊する有機物や金属物、水蒸気などの汚染不純物の侵入を防ぐためのものであり、緻密な膜が好ましい。保護膜は、スパッタ法を用いて、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜、酸化窒化アルミニウム膜、又は窒化酸化アルミニウム膜の単層、又は積層で形成すればよい。本実施の形態では保護膜をスパッタ法で形成する例を示すが、特に限定されず種々の方法で形成すればよい。
ここでは、保護膜として積層構造の絶縁層4020を形成する。ここでは、絶縁層4020の一層目として、スパッタ法を用いて酸化シリコン膜を形成する。保護膜として酸化シリコン膜を用いると、ソース電極層及びドレイン電極層として用いるアルミニウム膜のヒロック防止に効果がある。
また、保護膜の二層目として絶縁層を形成する。ここでは、絶縁層4020の二層目として、スパッタ法を用いて窒化シリコン膜を形成する。保護膜として窒化シリコン膜を用いると、ナトリウム等のイオンが半導体領域中に侵入して、TFTの電気特性を変化させることを抑制することができる。
また、保護膜を形成した後に、半導体層のアニール(300℃〜400℃)を行ってもよい。
また、平坦化絶縁膜として絶縁層4021を形成する。絶縁層4021としては、ポリイミド、アクリル、ベンゾシクロブテン、ポリアミド、エポキシ等の、耐熱性を有する有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いることができる。なお、これらの材料で形成される絶縁膜を複数積層させることで、絶縁層4021を形成してもよい。
なおシロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi−O−Si結合を含む樹脂に相当する。シロキサン系樹脂は置換基としては有機基(例えばアルキル基やアリール基)やフルオロ基を用いても良い。また、有機基はフルオロ基を有していても良い。
絶縁層4021の形成法は、特に限定されず、その材料に応じて、スパッタ法、SOG法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリーン印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコーター等を用いることができる。絶縁層4021を材料液を用いて形成する場合、ベークする工程で同時に、半導体層のアニール(300℃〜400℃)を行ってもよい。絶縁層4021の焼成工程と半導体層のアニールを兼ねることで効率よく半導体装置を作製することが可能となる。
画素電極層4030、対向電極層4031は、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性材料を用いることができる。
また、画素電極層4030、対向電極層4031を、導電性高分子(導電性ポリマーともいう)を含む導電性組成物を用いて形成することができる。導電性組成物を用いて形成した画素電極は、シート抵抗が10000Ω/□以下、波長550nmにおける透光率が70%以上であることが好ましい。また、導電性組成物に含まれる導電性高分子の抵抗率が0.1Ω・cm以下であることが好ましい。
導電性高分子としては、いわゆるπ電子共役系導電性高分子が用いることができる。例えば、ポリアニリンまたはその誘導体、ポリピロールまたはその誘導体、ポリチオフェンまたはその誘導体、若しくはこれらの2種以上の共重合体などがあげられる。
また別途形成された信号線駆動回路4003と、走査線駆動回路4004または画素部4002に与えられる各種信号及び電位は、FPC4018から供給されている。
本実施の形態では、接続端子電極4015が、液晶素子4013が有する画素電極層4030と同じ導電膜から形成され、端子電極4016は、薄膜トランジスタ4010、4011のソース電極層及びドレイン電極層と同じ導電膜で形成されている。
接続端子電極4015は、FPC4018が有する端子と、異方性導電膜4019を介して電気的に接続されている。
また図11においては、信号線駆動回路4003を別途形成し、第1の基板4001に実装している例を示しているが、本実施の形態はこの構成に限定されない。走査線駆動回路を別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部のみを別途形成して実装しても良い。
図12は、半導体装置の一形態に相当する液晶表示モジュールにTFT基板2600を用いて構成する一例を示している。
図12は液晶表示モジュールの一例であり、TFT基板2600と対向基板2601がシール材2602により固着され、その間にTFT等を含む画素部2603、液晶層を含む表示素子2604、着色層2605が設けられ表示領域を形成している。着色層2605はカラー表示を行う場合に必要であり、RGB方式の場合は、赤、緑、青の各色に対応した着色層が各画素に対応して設けられている。TFT基板2600と対向基板2601の外側には偏光板2606、偏光板2607、拡散板2613が配設されている。光源は冷陰極管2610と反射板2611により構成され、回路基板2612は、フレキシブル配線基板2609によりTFT基板2600の配線回路部2608と接続され、コントロール回路や電源回路などの外部回路が組みこまれている。また偏光板と、液晶層との間に位相差板を有した状態で積層してもよい。
液晶表示モジュールには、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、MVA(Multi−domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optical Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モードなどを用いることができる。
以上の工程により、半導体装置として信頼性の高い液晶表示装置を作製することができる。
実施の形態1に示す薄膜トランジスタを用いて液晶表示装置の画素部の薄膜トランジスタを作製することにより、各画素の薄膜トランジスタのしきい値電圧のバラツキに起因する表示ムラを抑制することができる。
また、実施の形態1に示す薄膜トランジスタの作製方法を用いて液晶表示装置の駆動回路の薄膜トランジスタを作製することにより、駆動回路部の薄膜トランジスタの高速動作を実現し、省電力化を図ることができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態4)
半導体装置の一形態として電子ペーパーの例を示す。
実施の形態1の薄膜トランジスタは、スイッチング素子と電気的に接続する素子を利用して電子インクを駆動させる電子ペーパーに用いてもよい。電子ペーパーは、電気泳動表示装置(電気泳動ディスプレイ)とも呼ばれており、紙と同じ読みやすさ、他の表示装置に比べ低消費電力、薄くて軽い形状とすることが可能という利点を有している。
電気泳動ディスプレイは、様々な形態が考えられ得るが、プラスの電荷を有する第1の粒子と、マイナスの電荷を有する第2の粒子とを含むマイクロカプセルが溶媒または溶質に複数分散されたものであり、マイクロカプセルに電界を印加することによって、マイクロカプセル中の粒子を互いに反対方向に移動させて一方側に集合した粒子の色のみを表示するものである。なお、第1の粒子または第2の粒子は染料を含み、電界がない場合において移動しないものである。また、第1の粒子の色と第2の粒子の色は異なるもの(無色を含む)とする。
このように、電気泳動ディスプレイは、誘電定数の高い物質が高い電界領域に移動する、いわゆる誘電泳動的効果を利用したディスプレイである。
上記マイクロカプセルを溶媒中に分散させたものが電子インクと呼ばれるものであり、この電子インクはガラス、プラスチック、布、紙などの表面に印刷することができる。また、カラーフィルタや色素を有する粒子を用いることによってカラー表示も可能である。
また、アクティブマトリクス基板上に適宜、二つの電極の間に挟まれるように上記マイクロカプセルを複数配置すればアクティブマトリクス型の表示装置が完成し、マイクロカプセルに電界を印加すれば表示を行うことができる。例えば、実施の形態1の薄膜トランジスタによって得られるアクティブマトリクス基板を用いることができる。
なお、マイクロカプセル中の第1の粒子および第2の粒子は、導電体材料、絶縁体材料、半導体材料、磁性材料、液晶材料、強誘電性材料、エレクトロルミネセント材料、エレクトロクロミック材料、磁気泳動材料から選ばれた一種の材料、またはこれらの複合材料を用いればよい。
図13は、半導体装置の例としてアクティブマトリクス型の電子ペーパーを示す。半導体装置に用いられる薄膜トランジスタ581は、実施の形態1で示す薄膜トランジスタと同様に作製でき、酸化物半導体層を含む信頼性の高い薄膜トランジスタである。
図13の電子ペーパーは、ツイストボール表示方式を用いた表示装置の例である。ツイストボール表示方式とは、白と黒に塗り分けられた球形粒子を表示素子に用いる電極層である第1の電極層及び第2の電極層の間に配置し、第1の電極層及び第2の電極層に電位差を生じさせて球形粒子の向きを制御することにより、表示を行う方法である。
基板580上に形成された薄膜トランジスタ581はボトムゲート構造の薄膜トランジスタであり、半導体層と接する絶縁膜583に覆われている。薄膜トランジスタ581のソース電極層又はドレイン電極層は、第1の電極層587と、絶縁層583及び585に形成する開口で接しており電気的に接続している。第1の電極層587と基板596上に形成された第2の電極層588との間には黒色領域590a及び白色領域590bを有し、周りに液体で満たされているキャビティ594を含む球形粒子589が設けられており、球形粒子589の周囲は樹脂等の充填材595で充填されている(図13参照。)。第1の電極層587が画素電極に相当し、第2の電極層588が共通電極に相当する。第2の電極層588は、薄膜トランジスタ581と同一基板上に設けられる共通電位線と電気的に接続される。共通接続部を用いて、一対の基板間に配置される導電性粒子を介して第2の電極層588と共通電位線とを電気的に接続することができる。
また、ツイストボールの代わりに、電気泳動素子を用いることも可能である。透明な液体と、正に帯電した白い微粒子と負に帯電した黒い微粒子とを封入した直径10μm〜200μm程度のマイクロカプセルを用いる。第1の電極層と第2の電極層との間に設けられるマイクロカプセルは、第1の電極層と第2の電極層によって、電場が与えられると、白い微粒子と、黒い微粒子が逆の方向に移動し、白または黒を表示することができる。この原理を応用した表示素子が電気泳動表示素子であり、一般的に電子ペーパーとよばれている。電気泳動表示素子は、液晶表示素子に比べて反射率が高いため、補助ライトは不要であり、また消費電力が小さく、薄暗い場所でも表示部を認識することが可能である。また、表示部に電源が供給されない場合であっても、一度表示した像を保持することが可能であるため、電波発信源から表示機能付き半導体装置(単に表示装置、又は表示装置を具備する半導体装置ともいう)を遠ざけた場合であっても、表示された像を保存しておくことが可能となる。
以上の工程により、半導体装置として信頼性の高い電子ペーパーを作製することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態5)
半導体装置として発光表示装置の例を示す。表示装置の有する表示素子としては、ここではエレクトロルミネッセンスを利用する発光素子を用いて示す。エレクトロルミネッセンスを利用する発光素子は、発光材料が有機化合物であるか、無機化合物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子と呼ばれている。
有機EL素子は、発光素子に電圧を印加することにより、一対の電極から電子および正孔がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャリア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形成し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このような発光素子は、電流励起型の発光素子と呼ばれる。
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−アクセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明する。
図14は、半導体装置の例としてデジタル時間階調駆動を適用可能な画素構成の一例を示す図である。
デジタル時間階調駆動を適用可能な画素の構成及び画素の動作について説明する。ここでは酸化物半導体層をチャネル形成領域に用いるnチャネル型のトランジスタを1つの画素に2つ用いる例を示す。
画素6400は、スイッチング用トランジスタ6401、発光素子駆動用トランジスタ6402、発光素子6404及び容量素子6403を有している。スイッチング用トランジスタ6401はゲートが走査線6406に接続され、第1電極(ソース電極及びドレイン電極の一方)が信号線6405に接続され、第2電極(ソース電極及びドレイン電極の他方)が発光素子駆動用トランジスタ6402のゲートに接続されている。発光素子駆動用トランジスタ6402は、ゲートが容量素子6403を介して電源線6407に接続され、第1電極が電源線6407に接続され、第2電極が発光素子6404の第1電極(画素電極)に接続されている。発光素子6404の第2電極は共通電極6408に相当する。共通電極6408は、同一基板上に形成される共通電位線と電気的に接続される。
なお、発光素子6404の第2電極(共通電極6408)には低電源電位が設定されている。なお、低電源電位とは、電源線6407に設定される高電源電位を基準にして低電源電位<高電源電位を満たす電位であり、低電源電位としては例えばGND、0Vなどが設定されていても良い。この高電源電位と低電源電位との電位差を発光素子6404に印加して、発光素子6404に電流を流して発光素子6404を発光させるため、高電源電位と低電源電位との電位差が発光素子6404の順方向しきい値電圧以上となるようにそれぞれの電位を設定する。
なお、容量素子6403は発光素子駆動用トランジスタ6402のゲート容量を代用して省略することも可能である。発光素子駆動用トランジスタ6402のゲート容量については、チャネル領域とゲート電極との間で容量が形成されていてもよい。
ここで、電圧入力電圧駆動方式の場合には、発光素子駆動用トランジスタ6402のゲートには、発光素子駆動用トランジスタ6402が十分にオンするか、オフするかの二つの状態となるようなビデオ信号を入力する。つまり、発光素子駆動用トランジスタ6402は線形領域で動作させる。発光素子駆動用トランジスタ6402は線形領域で動作させるため、電源線6407の電圧よりも高い電圧を発光素子駆動用トランジスタ6402のゲートにかける。なお、信号線6405には、(電源線電圧+発光素子駆動用トランジスタ6402のVth)以上の電圧をかける。
また、デジタル時間階調駆動に代えて、アナログ階調駆動を行う場合、信号の入力を異ならせることで、図14と同じ画素構成を用いることができる。
アナログ階調駆動を行う場合、発光素子駆動用トランジスタ6402のゲートに発光素子6404の順方向電圧+発光素子駆動用トランジスタ6402のVth以上の電圧をかける。発光素子6404の順方向電圧とは、所望の輝度とする場合の電圧を指しており、少なくとも順方向しきい値電圧を含む。なお、発光素子駆動用トランジスタ6402が飽和領域で動作するようなビデオ信号を入力することで、発光素子6404に電流を流すことができる。発光素子駆動用トランジスタ6402を飽和領域で動作させるため、電源線6407の電位は、発光素子駆動用トランジスタ6402のゲート電位よりも高くする。ビデオ信号をアナログとすることで、発光素子6404にビデオ信号に応じた電流を流し、アナログ階調駆動を行うことができる。
なお、図14に示す画素構成は、これに限定されない。例えば、図14に示す画素に新たにスイッチ、抵抗素子、容量素子、トランジスタ又は論理回路などを追加してもよい。
次に、発光素子の構成について、図15を用いて説明する。ここでは、駆動用TFTがn型の場合を例に挙げて、画素の断面構造について説明する。図15(A)(B)(C)の半導体装置に用いられる発光素子駆動用TFTであるTFT7001、TFT7011、TFT7021は、実施の形態1で示す薄膜トランジスタと同様に作製でき、酸化物半導体層を含む信頼性の高い薄膜トランジスタである。
発光素子は発光を取り出すために少なくとも陽極又は陰極の一方が透明であればよい。そして、基板上に薄膜トランジスタ及び発光素子を形成し、基板とは逆側の面から発光を取り出す上面射出や、基板側の面から発光を取り出す下面射出や、基板側及び基板とは反対側の面から発光を取り出す両面射出構造の発光素子があり、画素構成はどの射出構造の発光素子にも適用することができる。
下面射出構造の発光素子について図15(A)を用いて説明する。
TFT7011がn型で、発光素子7012から発せられる光が陰極7013側に射出する場合の、画素の断面図を示す。図15(A)では、TFT7011と電気的に接続された透光性を有する導電膜7017上に、発光素子7012の陰極7013が形成されており、陰極7013上にEL層7014、陽極7015が順に積層されている。なお、透光性を有する導電膜7017は、酸化物絶縁層7031、オーバーコート層7034、及び保護絶縁層7035に形成されたコンタクトホールを介してTFT7011のドレイン電極層と電気的に接続されている。
透光性を有する導電膜7017としては、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いることができる。
また、陰極7013は様々な材料を用いることができるが、仕事関数が小さい材料、例えば、具体的には、LiやCs等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含む合金(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等が好ましい。図15(A)では、陰極7013の膜厚は、光を透過する程度(好ましくは、5nm〜30nm程度)とする。例えば20nmの膜厚を有するアルミニウム膜を、陰極7013として用いる。
なお、透光性を有する導電膜とアルミニウム膜を積層成膜した後、選択的にエッチングして透光性を有する導電膜7017と陰極7013を形成してもよく、この場合、同じマスクを用いてエッチングすることができ、好ましい。
また、陰極7013の周縁部は、隔壁7019で覆う。隔壁7019は、ポリイミド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。隔壁7019は、特に感光性の樹脂材料を用い、陰極7013上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。隔壁7019として感光性の樹脂材料を用いる場合、レジストマスクを形成する工程を省略することができる。
また、陰極7013及び隔壁7019上に形成するEL層7014は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。EL層7014が複数の層で構成されている場合、陰極7013上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積層する。なおこれらの層を全て設ける必要はない。
また、上記積層順に限定されず、陰極7013上にホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層してもよい。ただし、消費電力を比較する場合、陰極7013上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積層するほうが消費電力が少ないため好ましい。
また、EL層7014上に形成する陽極7015としては、様々な材料を用いることができるが、仕事関数が大きい材料、例えば、窒化チタン、ZrN、Ti、W、Ni、Pt、Cr等や、ITO、IZO(酸化インジウム酸化亜鉛)、ZnOなどの透明導電性材料が好ましい。また、陽極7015上に遮蔽膜7016、例えば光を遮光する金属、光を反射する金属等を形成する。本実施の形態では、陽極7015としてITO膜を用い、遮蔽膜7016としてTi膜を用いる。
陰極7013及び陽極7015で、EL層7014を挟んでいる領域が発光素子7012に相当する。図15(A)に示した素子構造の場合、発光素子7012から発せられる光は、矢印で示すように陰極7013側に射出する。
なお、図15(A)ではゲート電極層として透光性を有する導電膜を用いる例を示しており、発光素子7012から発せられる光は、カラーフィルタ層7033を通過し、TFT7011のゲート電極層やソース電極層を通過して射出させる。TFT7011のゲート電極層やソース電極層として透光性を有する導電膜を用い、開口率を向上することができる。
カラーフィルタ層7033はインクジェット法などの液滴吐出法や、印刷法、フォトリソグラフィ技術を用いたエッチング方法などでそれぞれ形成する。
また、カラーフィルタ層7033はオーバーコート層7034で覆われ、さらに保護絶縁層7035によって覆う。なお、図15(A)ではオーバーコート層7034は薄い膜厚で図示したが、オーバーコート層7034は、カラーフィルタ層7033に起因する凹凸を平坦化する機能を有している。
また、酸化物絶縁層7031、オーバーコート層7034、及び保護絶縁層7035に形成され、且つ、ドレイン電極層に達するコンタクトホールは、隔壁7019と重なる位置に配置する。図15(A)では、ドレイン電極層に達するコンタクトホールと、隔壁7019と、を重ねるレイアウトとすることで開口率の向上を図ることができる。
次に、両面射出構造の発光素子について、図15(B)を用いて説明する。
図15(B)では、TFT7021と電気的に接続された透光性を有する導電膜7027上に、発光素子7022の陰極7023が形成されており、陰極7023上にEL層7024、陽極7025が順に積層されている。なお、透光性を有する導電膜7027は酸化物絶縁層7041、オーバーコート層7044、及び保護絶縁層7045に形成されたコンタクトホールを介してTFT7021のドレイン電極層と電気的に接続されている。
透光性を有する導電膜7027としては、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いることができる。
また、陰極7023は様々な材料を用いることができるが、仕事関数が小さい材料、例えば、具体的には、LiやCs等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含む合金(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等が好ましい。本実施の形態では、陰極7023の膜厚は、光を透過する程度(好ましくは、5nm〜30nm程度)とする。例えば20nmの膜厚を有するアルミニウム膜を、陰極7023として用いる。
なお、透光性を有する導電膜とアルミニウム膜を積層成膜した後、選択的にエッチングして透光性を有する導電膜7027と陰極7023を形成してもよく、この場合、同じマスクを用いてエッチングすることができ、好ましい。
また、陰極7023の周縁部は、隔壁7029で覆う。隔壁7029は、ポリイミド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。隔壁7029は、特に感光性の樹脂材料を用い、陰極7023上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。隔壁7029として感光性の樹脂材料を用いる場合、レジストマスクを形成する工程を省略することができる。
また、陰極7023及び隔壁7029上に形成するEL層7024は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。EL層7024が複数の層で構成されている場合、陰極7023上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積層する。なおこれらの層を全て設ける必要はない。
また、上記積層順に限定されず、陰極7023上にホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層してもよい。ただし、消費電力を比較した場合、陰極7023上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積層するほうが消費電力が少ないため好ましい。
また、EL層7024上に形成する陽極7025としては、様々な材料を用いることができるが、仕事関数が大きい材料、例えば、ITO、IZO、ZnOなどの透明導電性材料が好ましい。本実施の形態では、陽極7025として酸化珪素を含むITO膜を用いる。
陰極7023及び陽極7025で、EL層7024を挟んでいる領域が発光素子7022に相当する。図15(B)に示した素子構造の場合、発光素子7022から発せられる光は、矢印で示すように陽極7025側と陰極7023側の両方に射出する。
なお、図15(B)ではゲート電極層として透光性を有する導電膜を用いる例を示しており、発光素子7022から陰極7023側に発せられる光は、カラーフィルタ層7043を通過し、TFT7021のゲート電極層やソース電極層を通過して射出させる。TFT7021のゲート電極層やソース電極層として透光性を有する導電膜を用いることで、陽極7025側の開口率と陰極7023側の開口率をほぼ同一とすることができる。
カラーフィルタ層7043はインクジェット法などの液滴吐出法や、印刷法、フォトリソグラフィ技術を用いたエッチング方法などでそれぞれ形成する。
また、カラーフィルタ層7043はオーバーコート層7044で覆われ、さらに保護絶縁層7045によって覆う。
また、酸化物絶縁層7041、オーバーコート層7044、及び保護絶縁層7045に形成され、且つ、ドレイン電極層に達するコンタクトホールは、隔壁7029と重なる位置に配置する。ドレイン電極層に達するコンタクトホールと、隔壁7029とを重ねるレイアウトとすることで陽極7025側の開口率と陰極7023側の開口率をほぼ同一とすることができる。
ただし、両面射出構造の発光素子を用い、どちらの表示面もフルカラー表示とする場合、陽極7025側からの光はカラーフィルタ層7043を通過しないため、別途カラーフィルタ層を備えた封止基板を陽極7025上方に設けることが好ましい。
次に、上面射出構造の発光素子について、図15(C)を用いて説明する。
図15(C)に、駆動用TFTであるTFT7001がn型で、発光素子7002から発せられる光が陽極7005側に抜ける場合の、画素の断面図を示す。図15(C)では、TFT7001と電気的に接続された発光素子7002の陰極7003が形成されており、陰極7003上にEL層7004、陽極7005が順に積層されている。
また、陰極7003は様々な材料を用いることができるが、仕事関数が小さい材料、例えば、具体的には、LiやCs等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含む合金(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等が好ましい。
また、陰極7003の周縁部は、隔壁7009で覆う。隔壁7009は、ポリイミド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。隔壁7009は、特に感光性の樹脂材料を用い、陰極7003上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。隔壁7009として感光性の樹脂材料を用いる場合、レジストマスクを形成する工程を省略することができる。
また、陰極7003及び隔壁7009上に形成するEL層7004は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。EL層7004が複数の層で構成されている場合、陰極7003上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積層する。なおこれらの層を全て設ける必要はない。
また、上記積層順に限定されず、陰極7003上にホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層してもよい。この順に積層する場合は、陰極7003は陽極として機能することとなる。
図15(C)ではTi膜、アルミニウム膜、Ti膜の順に積層した積層膜上に、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層し、その上にMg:Ag合金薄膜とITOとの積層を形成する。
ただし、消費電力を比較した場合、陰極7003上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積層するほうが消費電力が少ないため好ましい。
陽極7005は光を透過する透光性を有する導電性材料を用いて形成し、例えば酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いても良い。
陰極7003及び陽極7005でEL層7004を挟んでいる領域が発光素子7002に相当する。図15(C)に示した画素の場合、発光素子7002から発せられる光は、矢印で示すように陽極7005側に射出する。
また、図15(C)において、TFT7001は薄膜トランジスタ150を用いる例を示しているが、特に限定されず、薄膜トランジスタ160、170、180を用いることができる。
また、図15(C)において、陰極7003は、酸化物絶縁層7051、平坦化絶縁層7053、及び絶縁層7055に形成されたコンタクトホールを介してTFT7001のドレイン電極層と電気的に接続されている。平坦化絶縁層7053は、ポリイミド、アクリル、ベンゾシクロブテン、ポリアミド、エポキシ等の樹脂材料を用いることができる。また上記樹脂材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いることができる。なお、これらの材料で形成される絶縁膜を複数積層させることで、平坦化絶縁層7053を形成してもよい。平坦化絶縁層7053の形成法は、特に限定されず、その材料に応じて、スパッタ法、SOG法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリーン印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコーター等を用いることができる。
また、陰極7003と、隣り合う画素の陰極とを絶縁するために隔壁7009を設ける。隔壁7009は、ポリイミド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。隔壁7009は、特に感光性の樹脂材料を用い、陰極7003上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。
また、図15(C)の構造においては、フルカラー表示を行う場合、例えば発光素子7002として緑色発光素子とし、隣り合う一方の発光素子を赤色発光素子とし、もう一方の発光素子を青色発光素子とする。また、3種類の発光素子だけでなく白色素子を加えた4種類の発光素子でフルカラー表示ができる発光表示装置を作製してもよい。
また、図15(C)の構造においては、配置する複数の発光素子を全て白色発光素子として、発光素子7002上方にカラーフィルタなどを有する封止基板を配置する構成とし、フルカラー表示ができる発光表示装置を作製してもよい。白色などの単色の発光を示す材料を形成し、カラーフィルタや色変換層を組み合わせることによりフルカラー表示を行うことができる。
もちろん単色発光の表示を行ってもよい。例えば、白色発光を用いて照明装置を形成してもよいし、単色発光を用いてエリアカラータイプの発光装置を形成してもよい。
また、必要があれば、円偏光板などの偏光フィルムなどの光学フィルムを設けてもよい。
なお、ここでは、発光素子として有機EL素子について述べたが、発光素子として無機EL素子を設けることも可能である。
なお、発光素子の駆動を制御する薄膜トランジスタ(駆動用TFT)と発光素子が電気的に接続されている例を示したが、駆動用TFTと発光素子との間に電流制御用TFTが接続されている構成であってもよい。
次に、半導体装置の一形態に相当する発光表示パネル(発光パネルともいう)の外観及び断面について、図16を用いて説明する。図16(A)は、第1の基板上に形成された薄膜トランジスタ及び発光素子を、第2の基板との間にシール材によって封止した、パネルの平面図であり、図16(B)は、図16(A)のH−Iにおける断面図に相当する。
第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bを囲むようにして、シール材4505が設けられている。また画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bの上に第2の基板4506が設けられている。よって画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは、第1の基板4501とシール材4505と第2の基板4506とによって、充填材4507と共に密封されている。このように外気に曝されないように気密性が高く、脱ガスの少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィルム等)やカバー材でパッケージング(封入)することが好ましい。
また第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは、薄膜トランジスタを複数有しており、図16(B)では、画素部4502に含まれる薄膜トランジスタ4510と、信号線駆動回路4503aに含まれる薄膜トランジスタ4509とを例示している。
薄膜トランジスタ4509、4510は、実施の形態1で示した酸化物半導体層を含む信頼性の高い薄膜トランジスタを適用することができる。本実施の形態において、薄膜トランジスタ4509、4510はnチャネル型薄膜トランジスタである。
絶縁層4544上において駆動回路用の薄膜トランジスタ4509の酸化物半導体層のチャネル形成領域と重なる位置に導電層4540が設けられている。導電層4540を酸化物半導体層のチャネル形成領域と重なる位置に設けることによって、BT試験前後における薄膜トランジスタ4509のしきい値電圧の変化量を低減することができる。また、導電層4540は、電位が薄膜トランジスタ4509のゲート電極層と同じでもよいし、異なっていても良く、第2のゲート電極層として機能させることもできる。また、導電層4540の電位がGND、0V、或いはフローティング状態であってもよい。
薄膜トランジスタ4509には、保護絶縁膜としてチャネル形成領域を含む半導体層に接して絶縁層4541が形成されている。絶縁層4541は実施の形態1で示した保護絶縁層107と同様な材料及び方法で形成すればよい。また、薄膜トランジスタの表面凹凸を低減するため平坦化絶縁膜として機能する絶縁層4544で覆う構成となっている。ここでは、絶縁層4541として、実施の形態1に示す保護絶縁層107と同様に、スパッタ法により酸化珪素膜を形成する。
また、平坦化絶縁膜として絶縁層4544を形成する。絶縁層4544としては、実施の形態2で示した絶縁層4021と同様な材料及び方法で形成すればよい。ここでは、絶縁層4544としてアクリルを用いる。
また4511は発光素子に相当し、発光素子4511が有する画素電極である第1の電極層4517は、薄膜トランジスタ4510のソース電極層またはドレイン電極層と電気的に接続されている。なお発光素子4511の構成は、第1の電極層4517、電界発光層4512、第2の電極層4513の積層構造であるが、示した構成に限定されない。発光素子4511から取り出す光の方向などに合わせて、発光素子4511の構成は適宜変えることができる。
隔壁4520は、有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。特に感光性の材料を用い、第1の電極層4517上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。
電界発光層4512は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。
発光素子4511に酸素、水素、水分、二酸化炭素等が侵入しないように、第2の電極層4513及び隔壁4520上に保護膜を形成してもよい。保護膜としては、窒化珪素膜、窒化酸化珪素膜、DLC膜等を形成することができる。
また、信号線駆動回路4503a、4503b、走査線駆動回路4504a、4504b、または画素部4502に与えられる各種信号及び電位は、FPC4518a、FPC4518bから供給されている。
接続端子電極4515が、発光素子4511が有する第1の電極層4517と同じ導電膜から形成され、端子電極4516は、薄膜トランジスタ4509、4510が有するソース電極層及びドレイン電極層と同じ導電膜から形成されている。
接続端子電極4515は、FPC4518aが有する端子と、異方性導電膜4519を介して電気的に接続されている。
発光素子4511からの光の取り出し方向に位置する基板は、透光性でなければならない。その場合には、ガラス板、プラスチック板、ポリエステルフィルムまたはアクリルフィルムのような透光性を有する材料を用いる。
また、充填材4507としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)を用いることができる。例えば充填材として窒素を用いればよい。
また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよい。また、偏光板又は円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜によって形成された駆動回路で実装されていてもよい。また、信号線駆動回路のみ、或いは一部、又は走査線駆動回路のみ、或いは一部のみを別途形成して実装しても良く、図16の構成に限定されない。
以上の工程により、半導体装置として信頼性の高い発光表示装置(表示パネル)を作製することができる。
実施の形態1に示す薄膜トランジスタの作製方法を用いて発光表示装置の画素部の薄膜トランジスタを作製することにより、各画素の薄膜トランジスタのしきい値電圧のバラツキに起因する表示ムラを抑制することができる。
また、実施の形態1に示す薄膜トランジスタの作製方法を用いて発光表示装置の駆動回路の薄膜トランジスタを作製することにより、駆動回路部の薄膜トランジスタの高速動作を実現し、省電力化を図ることができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態6)
本実施の形態では、半導体装置の一形態として、実施の形態1で示す薄膜トランジスタを有する液晶素子を用いた液晶表示装置の例を図17乃至図20を用いて説明する。図17乃至図20の液晶表示装置に用いられるTFT628、TFT629は、実施の形態1で示す薄膜トランジスタを適用することができ、実施の形態1で示す工程と同様に作製できる電気特性及び信頼性の高い薄膜トランジスタである。TFT628及びTFT629は、酸化物半導体層をチャネル形成領域とする薄膜トランジスタである。図17乃至図20では、薄膜トランジスタの一例として図2(C)に示す薄膜トランジスタを用いる場合について説明するが、これに限定されるものではない。
以下、VA(Vertical Alignment)型の液晶表示装置について示す。VA型の液晶表示装置とは、液晶表示パネルの液晶分子の配列を制御する方式の一種である。VA型の液晶表示装置は、電圧が印加されていないときにパネル面に対して液晶分子が垂直方向を向く方式である。本実施の形態では、特に画素(ピクセル)をいくつかの領域(サブピクセル)に分け、それぞれ別の方向に分子を倒すよう工夫されている。これをマルチドメイン化あるいはマルチドメイン設計という。以下の説明では、マルチドメイン設計が考慮された液晶表示装置について説明する。
図18及び図19は、それぞれ画素電極及び対向電極を示している。なお、図18は画素電極が形成される基板側の平面図であり、図中に示す切断線E−Fに対応する断面構造を図17に表している。また、図19は対向電極が形成される基板側の平面図である。以下の説明ではこれらの図を参照して説明する。
図17は、TFT628とそれに接続する画素電極層624、及び保持容量部630が形成された基板600と、対向電極層640等が形成される対向基板601とが重ね合わせられ、液晶が注入された状態を示している。
また、図示していないが、基板600及び対向基板601の間に、突起644の高さよりも高い柱状のスペーサを形成して、画素電極層624と対向電極層640の距離(セルギャップ)を一定とする。なお、画素電極層624上には配向膜648が形成され、同様に対向電極層640上にも配向膜646が形成されている。この間に液晶層650が形成されている。
スペーサはここでは柱状スペーサを用いて説明したがビーズスペーサを散布してもよい。さらには、スペーサを基板600上に形成される画素電極層624上に形成してもよい。
基板600上には、TFT628とそれに接続する画素電極層624、及び保持容量部630が形成される。画素電極層624は、TFT628、配線616、及び保持容量部630を覆う絶縁膜620、絶縁膜620を覆う絶縁膜622をそれぞれ貫通するコンタクトホール623で、配線618と接続する。TFT628は実施の形態1で示す薄膜トランジスタを適宜用いることができる。また、保持容量部630は、TFT628のゲート配線602と同時に形成した第1の容量配線である容量配線604と、ゲート絶縁膜606と、配線616、618と同時に形成した第2の容量配線である容量配線617で構成される。
画素電極層624と液晶層650と対向電極層640が重なり合うことで、液晶素子が形成されている。
図18に基板600上の平面構造を示す。画素電極層624は、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性材料を用いることができる。
また、画素電極層624として、導電性高分子(導電性ポリマーともいう)を含む導電性組成物を用いて形成することができる。導電性組成物を用いて形成した画素電極は、シート抵抗が10000Ω/□以下、波長550nmにおける透光率が70%以上であることが好ましい。また、導電性組成物に含まれる導電性高分子の抵抗率が0.1Ω・cm以下であることが好ましい。
導電性高分子としては、いわゆるπ電子共役系導電性高分子が用いることができる。例えば、ポリアニリンまたはその誘導体、ポリピロールまたはその誘導体、ポリチオフェンまたはその誘導体、若しくはこれらの2種以上の共重合体などがあげられる。
画素電極層624にはスリット625を設ける。スリット625は液晶の配向を制御するためのものである。
図18に示すTFT629とそれに接続する画素電極層626及び保持容量部631は、それぞれTFT628、画素電極層624及び保持容量部630と同様に形成することができる。TFT628とTFT629は共に配線616と接続している。この液晶表示パネルの画素(ピクセル)は、画素電極層624と画素電極層626により構成されている。画素電極層624と画素電極層626はサブピクセルを構成する。
図19に対向基板側の平面構造を示す。対向電極層640は、画素電極層624と同様の材料を用いて形成することが好ましい。対向電極層640上には液晶の配向を制御する突起644が形成されている。
この画素構造の等価回路を図20に示す。TFT628とTFT629は、共にゲート配線602、配線616と接続している。この場合、容量配線604と容量配線605の電位を異ならせることで、液晶素子651と液晶素子652の動作を異ならせることができる。すなわち、容量配線604と容量配線605の電位を個別に制御することにより液晶の配向を精密に制御して視野角を広げている。
スリット625を設けた画素電極層624に電圧を印加すると、スリット625の近傍には電界の歪み(斜め電界)が発生する。このスリット625と、対向基板601側の突起644とを交互に咬み合うように配置することで、斜め電界が効果的に発生させて液晶の配向を制御することで、液晶が配向する方向を場所によって異ならせている。すなわち、マルチドメイン化して液晶表示パネルの視野角を広げている。
次に、上記とは異なるVA型の液晶表示装置について、図21乃至図24を用いて説明する。
図21と図22は、VA型液晶表示パネルの画素構造を示している。図22は基板600の平面図であり、図中に示す切断線Y−Zに対応する断面構造を図21に表している。以下の説明ではこの両図を参照して説明する。
この画素構造は、一つの画素に複数の画素電極が有り、それぞれの画素電極にTFTが接続されている。各TFTは、異なるゲート信号で駆動されるように構成されている。すなわち、マルチドメイン設計された画素において、個々の画素電極に印加する信号を、独立して制御する構成を有している。
画素電極層624はコンタクトホール623において、配線618でTFT628と接続している。また、画素電極層626はコンタクトホール627において、配線619でTFT629と接続している。TFT628のゲート配線602と、TFT629のゲート配線603には、異なるゲート信号を与えることができるように分離されている。一方、データ線として機能する配線616は、TFT628とTFT629で共通に用いられている。TFT628とTFT629は実施の形態1で示す薄膜トランジスタを適宜用いることができる。また、容量配線690が設けられている。
画素電極層624と画素電極層626の形状は異なっており、V字型に広がる画素電極層624の外側を囲むように画素電極層626が形成されている。画素電極層624と画素電極層626に印加する電圧を、TFT628及びTFT629により異ならせることで、液晶の配向を制御している。この画素構造の等価回路を図24に示す。TFT628はゲート配線602と接続し、TFT629はゲート配線603と接続している。また、TFT628とTFT629は、共に配線616と接続している。ゲート配線602とゲート配線603に印加される信号を個別に制御することにより、液晶素子651と液晶素子652に印加される電圧を異ならせることができる。すなわち、TFT628とTFT629の動作を個別に制御することにより、液晶素子651と液晶素子652で異なる液晶の配向を実現し、視野角を広げることができる。
対向基板601には、着色膜636、対向電極層640が形成されている。また、着色膜636と対向電極層640の間には平坦化膜637が形成され、液晶の配向乱れを防いでいる。図23に対向基板側の構造を示す。対向電極層640は異なる画素間で共通化されている電極であるが、スリット641が形成されている。このスリット641と、画素電極層624及び画素電極層626側のスリット625とを交互に咬み合うように配置することで、斜め電界を効果的に発生させて液晶の配向を制御することができる。これにより、液晶が配向する方向を場所によって異ならせることができ、視野角を広げている。なお、図23に基板600上に形成される画素電極層624及び画素電極層626を破線で示し、対向電極層640と、画素電極層624及び画素電極層626が重なり合って配置されている様子を示している。
画素電極層624及び画素電極層626上には配向膜648が形成され、同様に対向電極層640上にも配向膜646が形成されている。基板600と対向基板601の間に液晶層650が形成されている。また、画素電極層624と液晶層650と対向電極層640が重なり合うことで、第1の液晶素子が形成されている。また、画素電極層626と液晶層650と対向電極層640が重なり合うことで、第2の液晶素子が形成されている。図21乃至図24で説明する表示パネルの画素構造は、一画素に第1の液晶素子と第2の液晶素子が設けられたマルチドメイン構造となっている。
本実施の形態では、実施の形態1で示す薄膜トランジスタを有する液晶表示装置としてVA型の液晶表示装置について説明したが、IPS型の液晶表示装置や、TN型の液晶表示装置などについても適用可能である。
実施の形態1に示す薄膜トランジスタの作製方法を用いて上記液晶表示装置の画素部の薄膜トランジスタを作製することにより、各画素の薄膜トランジスタのしきい値電圧のバラツキに起因する表示ムラを抑制することができる。
(実施の形態7)
本明細書に開示する半導体装置は、電子ペーパーとして適用することができる。電子ペーパーは、情報を表示するものであればあらゆる分野の電子機器に用いることが可能である。例えば、電子ペーパーを用いて、電子書籍(電子ブック)、ポスター、電車などの乗り物の車内広告、クレジットカード等の各種カードにおける表示等に適用することができる。電子機器の一例を図25に示す。
図25は、電子書籍の一例を示している。例えば、電子書籍2700は、筐体2701および筐体2703の2つの筐体で構成されている。筐体2701および筐体2703は、軸部2711により一体とされており、該軸部2711を軸として開閉動作を行うことができる。このような構成により、紙の書籍のような動作を行うことが可能となる。
筐体2701には表示部2705が組み込まれ、筐体2703には表示部2707が組み込まれている。表示部2705および表示部2707は、続き画面を表示する構成としてもよいし、異なる画面を表示する構成としてもよい。異なる画面を表示する構成とすることで、例えば右側の表示部(図25では表示部2705)に文章を表示し、左側の表示部(図25では表示部2707)に画像を表示することができる。
また、図25では、筐体2701に操作部などを備えた例を示している。例えば、筐体2701において、電源2721、操作キー2723、スピーカ2725などを備えている。操作キー2723により、頁を送ることができる。なお、筐体の表示部と同一面にキーボードやポインティングデバイスなどを備える構成としてもよい。また、筐体の裏面や側面に、外部接続用端子(イヤホン端子、USB端子、またはACアダプタおよびUSBケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構成としてもよい。さらに、電子書籍2700は、電子辞書としての機能を持たせた構成としてもよい。
また、電子書籍2700は、無線で情報を送受信できる構成としてもよい。無線により、電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすることも可能である。
(実施の形態8)
本明細書に開示する半導体装置は、さまざまな電子機器(遊技機も含む)に適用することができる。電子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラなどのカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
図26(A)は、テレビジョン装置の一例を示している。テレビジョン装置9600は、筐体9601に表示部9603が組み込まれている。表示部9603により、映像を表示することが可能である。また、ここでは、スタンド9605により筐体9601を支持した構成を示している。
テレビジョン装置9600の操作は、筐体9601が備える操作スイッチや、別体のリモコン操作機9610により行うことができる。リモコン操作機9610が備える操作キー9609により、チャンネルや音量の操作を行うことができ、表示部9603に表示される映像を操作することができる。また、リモコン操作機9610に、当該リモコン操作機9610から出力する情報を表示する表示部9607を設ける構成としてもよい。
なお、テレビジョン装置9600は、受信機やモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図26(B)は、デジタルフォトフレームの一例を示している。例えば、デジタルフォトフレーム9700は、筐体9701に表示部9703が組み込まれている。表示部9703は、各種画像を表示することが可能であり、例えばデジタルカメラなどで撮影した画像データを表示させることで、通常の写真立てと同様に機能させることができる。
なお、デジタルフォトフレーム9700は、操作部、外部接続用端子(USB端子、USBケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構成とする。これらの構成は、表示部と同一面に組み込まれていてもよいが、側面や裏面に備えるとデザイン性が向上するため好ましい。例えば、デジタルフォトフレームの記録媒体挿入部に、デジタルカメラで撮影した画像データを記憶したメモリを挿入して画像データを取り込み、取り込んだ画像データを表示部9703に表示させることができる。
また、デジタルフォトフレーム9700は、無線で情報を送受信できる構成としてもよい。無線により、所望の画像データを取り込み、表示させる構成とすることもできる。
図27(A)は携帯型遊技機であり、筐体9881と筐体9891の2つの筐体で構成されており、連結部9893により、開閉可能に連結されている。筐体9881には表示部9882が組み込まれ、筐体9891には表示部9883が組み込まれている。また、図27(A)に示す携帯型遊技機は、その他、スピーカ部9884、記録媒体挿入部9886、LEDランプ9890、入力手段(操作キー9885、接続端子9887、センサ9888(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9889)等を備えている。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも本明細書に開示する半導体装置を備えた構成であればよく、その他付属設備が適宜設けられた構成とすることができる。図27(A)に示す携帯型遊技機は、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能や、他の携帯型遊技機と無線通信を行って情報を共有する機能を有する。なお、図27(A)に示す携帯型遊技機が有する機能はこれに限定されず、様々な機能を有することができる。
図27(B)は大型遊技機であるスロットマシンの一例を示している。スロットマシン9900は、筐体9901に表示部9903が組み込まれている。また、スロットマシン9900は、その他、スタートレバーやストップスイッチなどの操作手段、コイン投入口、スピーカなどを備えている。もちろん、スロットマシン9900の構成は上述のものに限定されず、少なくとも本明細書に開示する半導体装置を備えた構成であればよく、その他付属設備が適宜設けられた構成とすることができる。
図28(A)は携帯型のコンピュータの一例を示す斜視図である。
図28(A)の携帯型のコンピュータは、上部筐体9301と下部筐体9302とを接続するヒンジユニットを閉状態として表示部9303を有する上部筐体9301と、キーボード9304を有する下部筐体9302とを重ねた状態とすることができ、持ち運ぶことが便利であるとともに、使用者がキーボード入力する場合には、ヒンジユニットを開状態として、表示部9303を見て入力操作を行うことができる。
また、下部筐体9302はキーボード9304の他に入力操作を行うポインティングデバイス9306を有する。また、表示部9303をタッチ入力パネルとすれば、表示部の一部に触れることで入力操作を行うこともできる。また、下部筐体9302はCPUやハードディスク等の演算機能部を有している。また、下部筐体9302は他の機器、例えばUSBの通信規格に準拠した通信ケーブルが差し込まれる外部接続ポート9305を有している。
上部筐体9301には更に上部筐体9301内部にスライドさせて収納可能な表示部9307を有しており、広い表示画面を実現することができる。また、収納可能な表示部9307の画面の向きを使用者は調節できる。また、収納可能な表示部9307をタッチ入力パネルとすれば、収納可能な表示部の一部に触れることで入力操作を行うこともできる。
表示部9303または収納可能な表示部9307は、液晶表示パネル、有機発光素子または無機発光素子などの発光表示パネルなどの映像表示装置を用いる。
また、図28(A)の携帯型のコンピュータは、受信機などを備えた構成として、テレビ放送を受信して映像を表示部9303または表示部9307に表示することができる。また、上部筐体9301と下部筐体9302とを接続するヒンジユニットを閉状態としたまま、表示部9307をスライドさせて画面全面を露出させ、画面角度を調節して使用者がテレビ放送を見ることもできる。この場合には、ヒンジユニットを開状態として表示部9303を表示させず、さらにテレビ放送を表示するだけの回路の起動のみを行うため、最小限の消費電力とすることができ、バッテリー容量の限られている携帯型のコンピュータにおいて有用である。
また、図28(B)は、腕時計のように使用者の腕に装着可能な形態を有している携帯電話の一例を示す斜視図である。
この携帯電話は、少なくとも電話機能を有する通信装置及びバッテリーを有する本体、本体を腕に装着するためのバンド部、腕に対するバンド部の固定状態を調節する調節部9205、表示部9201、スピーカ9207、及びマイク9208から構成されている。
また、本体は、操作スイッチ9203を有し、電源入力スイッチや、表示切り替えスイッチや、撮像開始指示スイッチの他、例えばボタンを押すとインタネット用のプログラムが起動される。
この携帯電話の入力操作は、表示部9201に指や入力ペンなどで触れること、又は操作スイッチ9203の操作、またはマイク9208への音声入力により行われる。なお、図28(B)では、表示部9201に表示された表示ボタン9202を図示しており、指などで触れることにより入力を行うことができる。
また、本体は、撮影レンズを通して結像される被写体像を電子画像信号に変換する撮像手段を有するカメラ部9206を有する。なお、特にカメラ部は設けなくともよい。
また、図28(B)に示す携帯電話は、テレビ放送の受信機などを備えた構成として、テレビ放送を受信して映像を表示部9201に表示することができ、さらにメモリなどの記憶装置などを備えた構成として、テレビ放送をメモリに録画できる。また、図28(B)に示す携帯電話は、GPSなどの位置情報を収集できる機能を有していてもよい。
表示部9201は、液晶表示パネル、有機発光素子または無機発光素子などの発光表示パネルなどの映像表示装置を用いる。図28(B)に示す携帯電話は、小型、且つ、軽量であるため、バッテリー容量が限られており、表示部9201に用いる表示装置は低消費電力で駆動できるパネルを用いることが好ましい。
なお、図28(B)では”腕”に装着するタイプの電子機器を図示したが、特に限定されず、携行できる形状を有しているものであればよい。
本実施例では、実施の形態1に示した作製方法を用いて薄膜トランジスタを作製し、室温(25℃)乃至180℃の環境下における薄膜トランジスタ特性を評価した結果を示す。
本実施例では、同一基板上にチャネル長Lの長さを3μm、5μm、10μmとする薄膜トランジスタを複数作製し、室温以上180℃以下の環境下における薄膜トランジスタ特性を評価した。なお、チャネル幅Wはすべて20μmとした。まず、薄膜トランジスタの作製方法について説明する。
まず、ガラス基板上に下地膜として、CVD法により膜厚100nmの酸化窒化珪素膜を形成し、酸化窒化珪素膜上にゲート電極層としてスパッタ法により膜厚150nmのタングステン膜を形成した。ここで、タングステン膜を選択的にエッチングしてゲート電極層を形成した。
次に、ゲート電極層上にゲート絶縁層としてCVD法により膜厚100nmの酸化窒化珪素膜を形成した。
次に、ゲート絶縁層上に、In−Ga−Zn−O系酸化物半導体ターゲット(In:Ga:ZnO=1:1:1)を用いて、基板とターゲットの間との距離を60mm、圧力0.4Pa、直流(DC)電源0.5kW、アルゴン及び酸素(アルゴン:酸素=30sccm:15sccm)雰囲気下、室温(25℃)で成膜を行い、膜厚50nmの酸化物半導体層を形成した。ここで、酸化物半導体層を選択的にエッチングし、島状の酸化物半導体層を形成した。
次に、酸化物半導体層を窒素雰囲気下、450℃で1時間、第1の熱処理を行った。
次に、酸化物半導体層上にソース電極層及びドレイン電極層として、チタン膜(膜厚50nm)、アルミニウム膜(膜厚100nm)、及びチタン膜(膜厚50nm)を積層した導電膜を、スパッタ法により室温(25℃)で形成した。ここで、導電膜を選択的にエッチングしてソース電極層及びドレイン電極層を形成し、薄膜トランジスタのチャネル長Lの長さが3μm、5μm、10μm、それぞれのチャネル幅Wが20μmとなるようにした。
次に、酸化物半導体層に接するように保護絶縁層としてスパッタ法により膜厚300nmの酸化珪素膜を100℃で形成した。ここで、保護層である酸化珪素膜を選択的にエッチングし、ゲート電極層、ソース電極層及びドレイン電極層上に開口部を形成した。
次に、測定用電極層としてチタン膜(膜厚50nm)、アルミニウム膜(膜厚100nm)、及びチタン膜(膜厚5nm)の積層を、スパッタ法により室温(25℃)で形成した。ここで、測定用電極層を選択的にエッチングし、前述した開口部を介して、ゲート電極層に電気的に接続する測定用電極層、ソース電極層に電気的に接続する測定用電極層、ドレイン電極層に電気的に接続する測定用電極層を形成した。その後、窒素雰囲気下、250℃で1時間、第2の熱処理を行った。
以上の工程により、チャネル幅Wの長さを20μm、チャネル長Lの長さを3μm、5μm、10μmとする薄膜トランジスタを同一基板上に作製した。
つづいて、各薄膜トランジスタの電流電圧特性を測定した。図4に、薄膜トランジスタの、ソースとゲートの間の電圧(以下、ゲート電圧もしくはVgという)の変化に対するソースとドレインの間を流れる電流(以下、ドレイン電流もしくはIdという)の変化を示すVg−Id曲線を示す。図4(A)はチャネル長Lの長さを3μmとした薄膜トランジスタのVg−Id曲線であり、図4(B)はチャネル長Lの長さを5μmとした薄膜トランジスタのVg−Id曲線であり、図4(C)はチャネル長Lの長さを10μmとした薄膜トランジスタのVg−Id曲線である。図4(A)乃至図4(C)とも、横軸はゲート電圧をリニアスケールで示しており、縦軸はドレイン電流をログスケールで示している。
電流電圧特性の測定は、ソースとドレインの間の電圧を10Vとし、ゲート電圧を−20から20Vまで変化させて行った。また、測定時の基板温度を、室温(25℃)、40℃、75℃、100℃、125℃、150℃、180℃と変化させ、それぞれの基板温度(動作温度)における電流電圧特性を測定した。なお、図4(A)乃至(C)は、測定時の基板温度とVg−Id曲線の関係をわかりやすくするため、ゲート電圧が−10Vから10Vとなる範囲のみを示している。
図4(A)乃至(C)に示す、曲線201、曲線211及び曲線221は、測定時の基板温度が室温(25℃)の時のVg−Id曲線を示している。測定時の基板温度が上昇するに従い、Vg−Id曲線が図4に向かって左方向、すなわち、Vgのマイナス方向に順にシフトし、トランジスタがノーマリーオンとなっている。図を見やすくするため、全てのVg−Id曲線に符号をつけていないが、最も左に位置している曲線207、曲線217及び曲線227が、測定時の基板温度が180℃の時のVg−Id曲線である。
得られたVg−Id曲線から、それぞれのしきい値電圧算出した。なお、本明細書中には詳述していないが、前述した全ての測定条件において、ゲート絶縁層の比誘電率を4.1として計算した電界効果移動度の最大値は、20cm/Vs以上が得られている。
ここで、本明細書におけるVthの定義について説明しておく。図6の横軸はゲート電圧をリニアスケールで示しており、縦軸はドレイン電流の平方根(以下、√Idともいう)をリニアスケールで示している。曲線501は、ゲート電圧の変化に対するドレイン電流の平方根を示しており、Vdを10Vとして測定したVg−Id曲線のIdを、その平方根で表した曲線(以下、√Id曲線ともいう)である。
まず、Vdを10Vとして測定したVg−Id曲線から√Id曲線(曲線501)を求める。次に、√Id曲線上のVgが5Vの点502と、Vgが20Vの点503を通る直線504を求める。次に、直線504を延伸し、直線504上でIdが0Aとなる時のVg、すなわち直線504とゲート電圧軸との切片505の値をVthとして定義している。
図5(A)は、図4(A)乃至図4(C)に示したVg−Id曲線から求めたVthをまとめた表である。図5(A)中、TFT303欄はチャネル長Lが3μmの薄膜トランジスタのVthを、TFT305欄はチャネル長Lが5μmの薄膜トランジスタのVthを、TFT310欄はチャネル長Lが10μmの薄膜トランジスタのVthを示している。また、Vth変動幅は、各薄膜トランジスタの測定温度範囲内におけるVthの最大値と最小値の差を示している。
図5(B)は、図5(A)をグラフとして示した図である。横軸の測定温度は、薄膜トランジスタの電流電圧特性測定時の基板温度(動作温度)であり、縦軸のVthは、各基板温度におけるしきい値電圧である。図中「○」で示しているしきい値313は、チャネル長Lの長さを3μmとした薄膜トランジスタのしきい値であり、図中「□」で示しているしきい値315は、チャネル長Lの長さを5μmとした薄膜トランジスタのしきい値であり、図中「×」で示しているしきい値320は、チャネル長Lの長さを10μmとした薄膜トランジスタのしきい値である。
本実施例で作製した薄膜トランジスタは、室温以上180℃以下の環境下において、しきい値の変動幅が3V以下であることが確認できた。
本実施例では、実施の形態1に示した作製方法を用いて薄膜トランジスタを作製し、−25℃乃至150℃の環境下における薄膜トランジスタ特性を評価した結果を示す。
本実施例では、同一基板上にチャネル長Lが3μmで、チャネル幅Wが50μmである薄膜トランジスタと、チャネル長Lが20μmで、チャネル幅Wが20μmである薄膜トランジスタを作製し、−25℃以上150℃以下の環境下における薄膜トランジスタ特性を評価した。まず、薄膜トランジスタの作製方法について説明する。
まず、ガラス基板上に下地膜として、CVD法により膜厚100nmの酸化窒化珪素膜を形成し、酸化窒化珪素膜上にゲート電極層としてスパッタ法により膜厚150nmのタングステン膜を形成した。ここで、タングステン膜を選択的にエッチングしてゲート電極層を形成した。
次に、ゲート電極層上にゲート絶縁層としてCVD法により膜厚100nmの酸化窒化珪素膜を形成した。
次に、ゲート絶縁層上に、In−Ga−Zn−O系酸化物半導体ターゲット(In:Ga:ZnO=1:1:1)を用いて、基板とターゲットの間との距離を60mm、圧力0.4Pa、直流(DC)電源0.5kW、アルゴン及び酸素(アルゴン:酸素=30sccm:15sccm)雰囲気下、室温(25℃)で成膜し、膜厚50nmの酸化物半導体層を形成した。ここで、酸化物半導体層を選択的にエッチングし、島状の酸化物半導体層を形成した。
次に、酸化物半導体層を窒素雰囲気下、450℃で1時間、第1の熱処理を行った。
次に、酸化物半導体層上にソース電極層及びドレイン電極層として、チタン膜(膜厚100nm)、アルミニウム膜(膜厚200nm)、及びチタン膜(膜厚50nm)を積層した導電膜を、スパッタ法により室温(25℃)で形成した。ここで、導電膜を選択的にエッチングしてソース電極層及びドレイン電極層を形成し、薄膜トランジスタのチャネル長Lの長さが3μm、20μm、チャネル幅Wが50μm、20μmとなるようにした。
次に、酸化物半導体層に接するように保護絶縁層としてスパッタ法により膜厚300nmの酸化珪素膜を100℃で形成した。ここで、保護層である酸化珪素膜を選択的にエッチングし、ゲート電極層、ソース電極層及びドレイン電極層上に開口部を形成した。
次に、測定用電極層としてITO膜(膜厚110nm)を、スパッタ法により室温(25℃)で形成した。ここで、測定用電極層を選択的にエッチングし、前述した開口部を介して、ゲート電極層に電気的に接続する測定用電極層、ソース電極層に電気的に接続する測定用電極層、ドレイン電極層に電気的に接続する測定用電極層を形成した。その後、窒素雰囲気下、250℃で1時間、第2の熱処理を行った。
以上の工程により、チャネル長Lが3μmで、チャネル幅Wが50μmである薄膜トランジスタと、チャネル長Lが20μmで、チャネル幅Wが20μmである薄膜トランジスタを同一基板上に作製した。
つづいて、各薄膜トランジスタの電流電圧特性を測定した。図34に、薄膜トランジスタの、ソースとゲートの間の電圧(以下、ゲート電圧もしくはVgという)の変化に対するソースとドレインの間を流れる電流(以下、ドレイン電流もしくはIdという)の変化を示すVg−Id曲線を示す。図34(A)はチャネル長Lが3μmでチャネル幅Wが50μmである薄膜トランジスタのVg−Id曲線であり、図34(B)はチャネル長Lが20μmでチャネル幅Wが20μmである薄膜トランジスタのVg−Id曲線である。図34(A)及び図34(B)とも、横軸はゲート電圧をリニアスケールで示しており、縦軸はドレイン電流をログスケールで示している。
電流電圧特性の測定は、ソースとドレインの間の電圧を10Vとし、ゲート電圧を−20から20Vまで変化させて行った。また、測定時の基板温度を、−25℃、0℃、室温(25℃)、40℃、85℃、100℃、125℃、150℃と変化させ、それぞれの基板温度(動作温度)における電流電圧特性を測定した。なお、図34(A)及び図34(B)は、測定時の基板温度とVg−Id曲線の関係をわかりやすくするため、ゲート電圧が−10から10Vとなる範囲のみを示している。
図34(A)及び図34(B)に示す、曲線251、及び曲線261は、測定時の基板温度が−25℃の時のVg−Id曲線を示している。測定時の基板温度が上昇するに従い、Vg−Id曲線が図34に向かって左方向、すなわち、Vgのマイナス方向に順にシフトしている。特に、図34(A)では、測定時の基板温度が上昇するに従い、トランジスタがノーマリオフ(Vgが0Vの時に、Idがほとんど流れない状態)から、ノーマリオンとなる傾向を示している。図を見やすくするため、全てのVg−Id曲線に符号をつけていないが、最も左に位置している曲線258、及び曲線268が、測定時の基板温度が150℃の時のVg−Id曲線である。
図34(A)及び図34(B)のVgがマイナスの領域において、Idが1×1012A以下の値で検出されているが、これは測定時に混入したノイズであることがわかっている。なお、このノイズは、Vthの算出には影響がないことを附記しておく。
得られたVg−Id曲線から、実施例1と同様の方法によりそれぞれのVthを算出した。
図35(A)は、図34(A)及び図34(B)に示したVg−Id曲線から求めたVthをまとめた表である。図35(A)中、TFT331欄はチャネル長Lが3μmで、チャネル幅Wが50μmの薄膜トランジスタのVthを、TFT332欄はチャネル長Lが20μmで、チャネル幅Wが20μmの薄膜トランジスタのVthを示している。また、Vth変動幅は、各薄膜トランジスタの測定温度範囲内におけるVthの最大値と最小値の差を示している。
図35(B)は、図35(A)をグラフとして示した図である。横軸の測定温度は、薄膜トランジスタの電流電圧特性測定時の基板温度(動作温度)であり、縦軸のVthは、各基板温度におけるしきい値電圧である。図中「●」で示しているしきい値341は、チャネル長Lが3μmで、チャネル幅Wが50μmの薄膜トランジスタのしきい値であり、図中「△」で示しているしきい値342は、チャネル長Lが20μmで、チャネル幅Wが20μmの薄膜トランジスタのしきい値である。
本実施例で作製した薄膜トランジスタは、−25℃以上150℃以下の環境下において、しきい値の変動幅が2V以下であることが確認できた。
10 パルス出力回路
11 配線
12 配線
13 配線
14 配線
15 配線
21 入力端子
22 入力端子
23 入力端子
24 入力端子
25 入力端子
26 出力端子
27 出力端子
28 薄膜トランジスタ
31 トランジスタ
32 トランジスタ
33 トランジスタ
34 トランジスタ
35 トランジスタ
36 トランジスタ
37 トランジスタ
38 トランジスタ
39 トランジスタ
40 トランジスタ
41 トランジスタ
42 トランジスタ
43 トランジスタ
51 電源線
52 電源線
53 電源線
61 期間
62 期間
100 基板
101 ゲート電極層
102 ゲート絶縁層
103 酸化物半導体層
107 保護絶縁層
110 チャネル保護層
150 薄膜トランジスタ
160 薄膜トランジスタ
170 薄膜トランジスタ
180 薄膜トランジスタ
201 曲線
207 曲線
211 曲線
217 曲線
221 曲線
227 曲線
251 曲線
258 曲線
261 曲線
268 曲線
303 TFT
305 TFT
310 TFT
313 値
315 値
320 値
331 TFT
332 TFT
341 値
342 値
400 ガラス基板
401 酸化窒化絶縁層
402 In−Ga−Zn−O系酸化物半導体層
403 分析方向
411 酸素イオン強度プロファイル
412 水素濃度プロファイル
413 水素濃度プロファイル
501 曲線
502 点
503 点
504 直線
505 切片
580 基板
581 薄膜トランジスタ
583 絶縁膜
585 絶縁層
587 電極層
588 電極層
589 球形粒子
594 キャビティ
595 充填材
596 基板
600 基板
601 対向基板
602 ゲート配線
603 ゲート配線
604 容量配線
605 容量配線
606 ゲート絶縁膜
616 配線
617 容量配線
618 配線
619 配線
620 絶縁膜
622 絶縁膜
623 コンタクトホール
624 画素電極層
625 スリット
626 画素電極層
627 コンタクトホール
628 TFT
629 TFT
630 保持容量部
631 保持容量部
636 着色膜
637 平坦化膜
640 対向電極層
641 スリット
644 突起
646 配向膜
648 配向膜
650 液晶層
651 液晶素子
652 液晶素子
690 容量配線
701 ゲート電極層
702 ゲート絶縁層
703 チャネル
801 ガラス基板
802 ゲート電極層
803 ゲート絶縁層
804 酸化物半導体層
805 ソース電極層
806 ドレイン電極層
811 曲線
818 曲線
821 曲線
828 曲線
831 曲線
832 曲線
833 曲線
850 薄膜トランジスタ
911 曲線
918 曲線
2600 TFT基板
2601 対向基板
2602 シール材
2603 画素部
2604 表示素子
2605 着色層
2606 偏光板
2607 偏光板
2608 配線回路部
2609 フレキシブル配線基板
2610 冷陰極管
2611 反射板
2612 回路基板
2613 拡散板
2700 電子書籍
2701 筐体
2703 筐体
2705 表示部
2707 表示部
2711 軸部
2721 電源
2723 操作キー
2725 スピーカ
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4008 液晶層
4010 薄膜トランジスタ
4011 薄膜トランジスタ
4013 液晶素子
4015 接続端子電極
4016 端子電極
4018 FPC
4019 異方性導電膜
4020 絶縁層
4021 絶縁層
4030 画素電極層
4031 対向電極層
4032 絶縁層
4040 導電層
4501 基板
4502 画素部
4505 シール材
4506 基板
4507 充填材
4509 薄膜トランジスタ
4510 薄膜トランジスタ
4511 発光素子
4512 電界発光層
4513 電極層
4515 接続端子電極
4516 端子電極
4517 電極層
4519 異方性導電膜
4520 隔壁
4540 導電層
4541 絶縁層
4544 絶縁層
5300 基板
5301 画素部
5302 走査線駆動回路
5303 走査線駆動回路
5304 信号線駆動回路
5305 タイミング制御回路
5601 シフトレジスタ
5602 スイッチング回路
5603 薄膜トランジスタ
5604 配線
5605 配線
6400 画素
6401 スイッチング用トランジスタ
6402 発光素子駆動用トランジスタ
6403 容量素子
6404 発光素子
6405 信号線
6406 走査線
6407 電源線
6408 共通電極
7001 TFT
7002 発光素子
7003 陰極
7004 EL層
7005 陽極
7009 隔壁
7011 TFT
7012 発光素子
7013 陰極
7014 EL層
7015 陽極
7016 遮蔽膜
7017 導電膜
7019 隔壁
7021 TFT
7022 発光素子
7023 陰極
7024 EL層
7025 陽極
7026 陽極
7027 導電膜
7029 隔壁
7031 酸化物絶縁層
7033 カラーフィルタ層
7034 オーバーコート層
7035 保護絶縁層
7041 酸化物絶縁層
7043 カラーフィルタ層
7044 オーバーコート層
7045 保護絶縁層
7051 酸化物絶縁層
7053 平坦化絶縁層
7055 絶縁層
9201 表示部
9202 表示ボタン
9203 操作スイッチ
9205 調節部
9206 カメラ部
9207 スピーカ
9208 マイク
9301 上部筐体
9302 下部筐体
9303 表示部
9304 キーボード
9305 外部接続ポート
9306 ポインティングデバイス
9307 表示部
9600 テレビジョン装置
9601 筐体
9603 表示部
9605 スタンド
9607 表示部
9609 操作キー
9610 リモコン操作機
9700 デジタルフォトフレーム
9701 筐体
9703 表示部
9881 筐体
9882 表示部
9883 表示部
9884 スピーカ部
9885 操作キー
9886 記録媒体挿入部
9887 接続端子
9888 センサ
9889 マイクロフォン
9890 LEDランプ
9891 筐体
9893 連結部
9900 スロットマシン
9901 筐体
9903 表示部
105a ソース電極層
105b ドレイン電極層
4503a 信号線駆動回路
4504a 走査線駆動回路
4518a FPC
4518b FPC
590a 黒色領域
590b 白色領域
704a ドレイン電極層
704b ソース電極層
705a N+領域
705b N+領域

Claims (2)

  1. 絶縁表面を有する基板上に、ゲート電極層を有し、
    前記ゲート電極層上にゲート絶縁層を有し、
    前記ゲート絶縁層上に酸化物半導体層を有し、
    前記酸化物半導体層上に、ソース電極層及びドレイン電極層を有し、
    前記ゲート絶縁層、前記酸化物半導体層、前記ソース電極層及び前記ドレイン電極層上に前記酸化物半導体層の一部と接する保護絶縁層を有し、
    室温以上180℃以下の温度範囲において、しきい値の変動幅が3V以下であることを特徴とする半導体装置。
  2. 絶縁表面を有する基板上に、ゲート電極層を有し、
    前記ゲート電極層上にゲート絶縁層を有し、
    前記ゲート絶縁層上に酸化物半導体層を有し、
    前記酸化物半導体層上に、ソース電極層及びドレイン電極層を有し、
    前記ゲート絶縁層、前記酸化物半導体層、前記ソース電極層及び前記ドレイン電極層上に前記酸化物半導体層の一部と接する保護絶縁層を有し、
    −25℃以上150℃以下の温度範囲において、しきい値の変動幅が3V以下であることを特徴とする半導体装置。
JP2010207653A 2009-09-16 2010-09-16 半導体装置 Active JP5618724B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010207653A JP5618724B2 (ja) 2009-09-16 2010-09-16 半導体装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009215077 2009-09-16
JP2009215077 2009-09-16
JP2010035349 2010-02-19
JP2010035349 2010-02-19
JP2010207653A JP5618724B2 (ja) 2009-09-16 2010-09-16 半導体装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2014016383A Division JP5886505B2 (ja) 2009-09-16 2014-01-31 半導体装置の作製方法
JP2014186007A Division JP2015053486A (ja) 2009-09-16 2014-09-12 半導体装置

Publications (3)

Publication Number Publication Date
JP2011192958A JP2011192958A (ja) 2011-09-29
JP2011192958A5 JP2011192958A5 (ja) 2013-08-08
JP5618724B2 true JP5618724B2 (ja) 2014-11-05

Family

ID=43729606

Family Applications (12)

Application Number Title Priority Date Filing Date
JP2010207653A Active JP5618724B2 (ja) 2009-09-16 2010-09-16 半導体装置
JP2014016383A Active JP5886505B2 (ja) 2009-09-16 2014-01-31 半導体装置の作製方法
JP2014186007A Withdrawn JP2015053486A (ja) 2009-09-16 2014-09-12 半導体装置
JP2017016543A Active JP6138391B1 (ja) 2009-09-16 2017-02-01 半導体装置の作製方法
JP2017017447A Active JP6437023B2 (ja) 2009-09-16 2017-02-02 液晶表示装置の作製方法、及び発光装置の作製方法
JP2018212719A Active JP6700367B2 (ja) 2009-09-16 2018-11-13 液晶表示装置の作製方法
JP2019185733A Withdrawn JP2020034922A (ja) 2009-09-16 2019-10-09 液晶表示装置
JP2020201796A Withdrawn JP2021057601A (ja) 2009-09-16 2020-12-04 表示装置の作製方法
JP2022021039A Active JP7132449B2 (ja) 2009-09-16 2022-02-15 半導体装置
JP2022130346A Active JP7360516B2 (ja) 2009-09-16 2022-08-18 液晶表示装置
JP2023169176A Active JP7390520B1 (ja) 2009-09-16 2023-09-29 トランジスタ、発光表示装置、半導体装置
JP2023196863A Pending JP2024028719A (ja) 2009-09-16 2023-11-20 トランジスタ、発光表示装置、半導体装置

Family Applications After (11)

Application Number Title Priority Date Filing Date
JP2014016383A Active JP5886505B2 (ja) 2009-09-16 2014-01-31 半導体装置の作製方法
JP2014186007A Withdrawn JP2015053486A (ja) 2009-09-16 2014-09-12 半導体装置
JP2017016543A Active JP6138391B1 (ja) 2009-09-16 2017-02-01 半導体装置の作製方法
JP2017017447A Active JP6437023B2 (ja) 2009-09-16 2017-02-02 液晶表示装置の作製方法、及び発光装置の作製方法
JP2018212719A Active JP6700367B2 (ja) 2009-09-16 2018-11-13 液晶表示装置の作製方法
JP2019185733A Withdrawn JP2020034922A (ja) 2009-09-16 2019-10-09 液晶表示装置
JP2020201796A Withdrawn JP2021057601A (ja) 2009-09-16 2020-12-04 表示装置の作製方法
JP2022021039A Active JP7132449B2 (ja) 2009-09-16 2022-02-15 半導体装置
JP2022130346A Active JP7360516B2 (ja) 2009-09-16 2022-08-18 液晶表示装置
JP2023169176A Active JP7390520B1 (ja) 2009-09-16 2023-09-29 トランジスタ、発光表示装置、半導体装置
JP2023196863A Pending JP2024028719A (ja) 2009-09-16 2023-11-20 トランジスタ、発光表示装置、半導体装置

Country Status (6)

Country Link
US (4) US20110062435A1 (ja)
EP (1) EP2478563B1 (ja)
JP (12) JP5618724B2 (ja)
KR (6) KR101785745B1 (ja)
CN (4) CN105789322B (ja)
WO (1) WO2011033993A1 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789322B (zh) * 2009-09-16 2018-09-28 株式会社半导体能源研究所 半导体器件及其制造方法
WO2011043206A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101402294B1 (ko) * 2009-10-21 2014-06-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작방법
KR20120102653A (ko) 2009-10-30 2012-09-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작방법
US8947337B2 (en) * 2010-02-11 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Display device
JP5699628B2 (ja) * 2010-07-26 2015-04-15 住友電気工業株式会社 半導体装置
KR101940570B1 (ko) * 2011-05-13 2019-01-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 El 표시 장치 및 그 전자 기기
JP6110075B2 (ja) * 2011-05-13 2017-04-05 株式会社半導体エネルギー研究所 表示装置
JP2013168926A (ja) 2012-01-18 2013-08-29 Semiconductor Energy Lab Co Ltd 回路、センサ回路及びセンサ回路を用いた半導体装置
JP6088253B2 (ja) * 2012-01-23 2017-03-01 株式会社半導体エネルギー研究所 半導体装置
JP6063757B2 (ja) * 2012-02-03 2017-01-18 株式会社半導体エネルギー研究所 トランジスタ及び半導体装置
KR20130092848A (ko) * 2012-02-13 2013-08-21 삼성전자주식회사 박막 트랜지스터 및 이를 채용한 디스플레이 패널
US20160315196A1 (en) * 2012-04-13 2016-10-27 The Governors Of The University Of Alberta Buried source schottky barrier thin film transistor and method of manufacture
JP6059566B2 (ja) 2012-04-13 2017-01-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP6199583B2 (ja) * 2012-04-27 2017-09-20 株式会社半導体エネルギー研究所 半導体装置
US8995607B2 (en) 2012-05-31 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
CN107026089B (zh) * 2012-06-29 2021-12-03 株式会社半导体能源研究所 用于制造半导体装置的方法
JP6117022B2 (ja) * 2012-07-06 2017-04-19 株式会社半導体エネルギー研究所 半導体装置
JP6142151B2 (ja) 2012-07-31 2017-06-07 株式会社Joled 表示装置および電子機器
JP6142200B2 (ja) * 2013-09-30 2017-06-07 株式会社Joled 薄膜半導体装置及びその製造方法
JP6277356B2 (ja) * 2013-11-06 2018-02-14 株式会社Joled 薄膜トランジスタ及びその製造方法
JP6330595B2 (ja) * 2014-09-15 2018-05-30 株式会社デンソー 荷重センサ
US9633710B2 (en) 2015-01-23 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Method for operating semiconductor device
CN112436021A (zh) * 2015-02-04 2021-03-02 株式会社半导体能源研究所 半导体装置的制造方法
CN106684125B (zh) * 2015-11-05 2020-05-08 群创光电股份有限公司 显示设备
CN105870201B (zh) * 2016-06-08 2019-01-22 深圳市华星光电技术有限公司 Tft器件结构及其制作方法
WO2018155347A1 (ja) * 2017-02-23 2018-08-30 シャープ株式会社 駆動回路、マトリックス基板および表示装置
KR102597945B1 (ko) 2017-09-15 2023-11-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
CN109616065A (zh) * 2018-12-29 2019-04-12 武汉华星光电技术有限公司 显示面板的显示方法
CN110767084B (zh) * 2019-02-01 2022-07-08 云谷(固安)科技有限公司 显示面板及其制作方法和显示装置
US11626520B2 (en) * 2019-02-06 2023-04-11 Japan Display Inc. Semiconductor substrate and display device
KR102103986B1 (ko) * 2019-03-14 2020-04-24 삼성전자주식회사 박막 트랜지스터 및 이를 채용한 디스플레이 패널
CN110046611B (zh) * 2019-04-29 2021-05-07 上海天马微电子有限公司 一种显示面板和显示装置
CN110568220B (zh) * 2019-08-27 2021-04-30 华东光电集成器件研究所 一种抗干扰耐过载mems加速度计
US11379231B2 (en) 2019-10-25 2022-07-05 Semiconductor Energy Laboratory Co., Ltd. Data processing system and operation method of data processing system
US11823739B2 (en) 2020-04-06 2023-11-21 Crossbar, Inc. Physically unclonable function (PUF) generation involving high side programming of bits
CN115273934A (zh) 2020-04-06 2022-11-01 昕原半导体(上海)有限公司 利用芯片上电阻存储器阵列的不可克隆特性的独特芯片标识符
JP2021196397A (ja) * 2020-06-09 2021-12-27 武漢天馬微電子有限公司 表示装置

Family Cites Families (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3711155A1 (de) * 1987-04-02 1988-10-13 Bayer Ag Verfahren zur herstellung von maleinsaeuredimethylester
DE69107101T2 (de) * 1990-02-06 1995-05-24 Semiconductor Energy Lab Verfahren zum Herstellen eines Oxydfilms.
CN1136067A (zh) * 1995-02-22 1996-11-20 智索公司 酯衍生物、液晶组合物和液晶显示元件
WO1997006554A2 (en) * 1995-08-03 1997-02-20 Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3625598B2 (ja) * 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
CN1153296C (zh) * 1998-05-27 2004-06-09 世界先进积体电路股份有限公司 堆叠栅极存储单元的结构及其制造方法
JP2000150861A (ja) * 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) * 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
KR20020038482A (ko) * 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) * 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP4761643B2 (ja) * 2001-04-13 2011-08-31 東芝モバイルディスプレイ株式会社 シフトレジスタ、駆動回路、電極基板及び平面表示装置
JP4090716B2 (ja) * 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
US7061014B2 (en) * 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
KR100415617B1 (ko) * 2001-12-06 2004-01-24 엘지.필립스 엘시디 주식회사 에천트와 이를 이용한 금속배선 제조방법 및박막트랜지스터의 제조방법
JP4083486B2 (ja) * 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) * 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) * 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
JP2004022625A (ja) * 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) * 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
JP2004095671A (ja) * 2002-07-10 2004-03-25 Seiko Epson Corp 薄膜トランジスタ、スイッチング回路、アクティブ素子基板、電気光学装置、電子機器、サーマルヘッド、液滴吐出ヘッド、印刷装置、薄膜トランジスタ駆動発光表示装置
US7067843B2 (en) * 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4460822B2 (ja) * 2002-11-29 2010-05-12 東芝モバイルディスプレイ株式会社 双方向シフトレジスタ、これを用いた駆動回路、平面表示装置
US7262463B2 (en) * 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7145174B2 (en) * 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7282782B2 (en) * 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
CN102867855B (zh) * 2004-03-12 2015-07-15 独立行政法人科学技术振兴机构 薄膜晶体管及其制造方法
US7297977B2 (en) * 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
JP4299717B2 (ja) * 2004-04-14 2009-07-22 Nec液晶テクノロジー株式会社 薄膜トランジスタとその製造方法
US7211825B2 (en) * 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
ATE414118T1 (de) * 2004-07-07 2008-11-15 Promerus Llc Lichtempfindliche dielektrische harzzusammensetzungen und ihre verwendungen
TWI247930B (en) * 2004-08-10 2006-01-21 Ind Tech Res Inst Mask reduction of LTPS-TFT array by use of photo-sensitive low-k dielectrics
JP2006100760A (ja) * 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) * 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
JP4543315B2 (ja) * 2004-09-27 2010-09-15 カシオ計算機株式会社 画素駆動回路及び画像表示装置
US7298084B2 (en) * 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7829444B2 (en) * 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
JP5118810B2 (ja) * 2004-11-10 2013-01-16 キヤノン株式会社 電界効果型トランジスタ
CN102945857B (zh) * 2004-11-10 2015-06-03 佳能株式会社 无定形氧化物和场效应晶体管
US7453065B2 (en) * 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7791072B2 (en) * 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
WO2006051994A2 (en) * 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device
CA2585071A1 (en) * 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
US7453156B2 (en) * 2004-11-12 2008-11-18 Chippac, Inc. Wire bond interconnection
US7417254B2 (en) * 2005-01-14 2008-08-26 Au Optronics Corp. Switching device for a pixel electrode and methods for fabricating the same
US7579224B2 (en) * 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI390735B (zh) * 2005-01-28 2013-03-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI412138B (zh) * 2005-01-28 2013-10-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) * 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) * 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) * 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) * 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) * 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) * 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) * 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
US7402506B2 (en) * 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
KR100711890B1 (ko) * 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) * 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4870404B2 (ja) * 2005-09-02 2012-02-08 財団法人高知県産業振興センター 薄膜トランジスタの製法
JP4870403B2 (ja) * 2005-09-02 2012-02-08 財団法人高知県産業振興センター 薄膜トランジスタの製法
JP2007073705A (ja) * 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP5116225B2 (ja) * 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4280736B2 (ja) * 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP4560502B2 (ja) * 2005-09-06 2010-10-13 キヤノン株式会社 電界効果型トランジスタ
JP5006598B2 (ja) * 2005-09-16 2012-08-22 キヤノン株式会社 電界効果型トランジスタ
EP3614442A3 (en) * 2005-09-29 2020-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufactoring method thereof
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP5037808B2 (ja) * 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
WO2007058329A1 (en) * 2005-11-15 2007-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7432737B2 (en) * 2005-12-28 2008-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic device
TWI292281B (en) * 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) * 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) * 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) * 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) * 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
JP5110803B2 (ja) * 2006-03-17 2012-12-26 キヤノン株式会社 酸化物膜をチャネルに用いた電界効果型トランジスタ及びその製造方法
KR100785038B1 (ko) * 2006-04-17 2007-12-12 삼성전자주식회사 비정질 ZnO계 TFT
JP2007311404A (ja) * 2006-05-16 2007-11-29 Fuji Electric Holdings Co Ltd 薄膜トランジスタの製造方法
JP4609797B2 (ja) * 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) * 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4404881B2 (ja) * 2006-08-09 2010-01-27 日本電気株式会社 薄膜トランジスタアレイ、その製造方法及び液晶表示装置
JP2008053617A (ja) * 2006-08-28 2008-03-06 Canon Inc 電流モデル作成方法および電子回路
JP4332545B2 (ja) * 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) * 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) * 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP4932415B2 (ja) * 2006-09-29 2012-05-16 株式会社半導体エネルギー研究所 半導体装置
US7622371B2 (en) * 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
JP5116290B2 (ja) * 2006-11-21 2013-01-09 キヤノン株式会社 薄膜トランジスタの製造方法
US7772021B2 (en) * 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) * 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
JP5305630B2 (ja) * 2006-12-05 2013-10-02 キヤノン株式会社 ボトムゲート型薄膜トランジスタの製造方法及び表示装置の製造方法
KR101303578B1 (ko) * 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) * 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
TWI478347B (zh) * 2007-02-09 2015-03-21 Idemitsu Kosan Co A thin film transistor, a thin film transistor substrate, and an image display device, and an image display device, and a semiconductor device
KR100858088B1 (ko) * 2007-02-28 2008-09-10 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법
JP5121254B2 (ja) * 2007-02-28 2013-01-16 キヤノン株式会社 薄膜トランジスタおよび表示装置
KR100851215B1 (ko) * 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
JP5306179B2 (ja) * 2007-03-20 2013-10-02 出光興産株式会社 スパッタリングターゲット、酸化物半導体膜及び半導体デバイス
JP2008276211A (ja) * 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置およびパターニング方法
JP2008276212A (ja) * 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置
WO2008126879A1 (en) * 2007-04-09 2008-10-23 Canon Kabushiki Kaisha Light-emitting apparatus and production method thereof
JP5197058B2 (ja) * 2007-04-09 2013-05-15 キヤノン株式会社 発光装置とその作製方法
JP2009031742A (ja) * 2007-04-10 2009-02-12 Fujifilm Corp 有機電界発光表示装置
KR100991559B1 (ko) 2007-04-13 2010-11-04 주식회사 엘지화학 박막트랜지스터 제조방법 및 이에 의해 제조된박막트랜지스터
US7795613B2 (en) * 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) * 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) * 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) * 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
JP5408842B2 (ja) * 2007-04-27 2014-02-05 キヤノン株式会社 発光装置およびその製造方法
KR20080099084A (ko) * 2007-05-08 2008-11-12 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법
JP5261979B2 (ja) * 2007-05-16 2013-08-14 凸版印刷株式会社 画像表示装置
KR101334182B1 (ko) * 2007-05-28 2013-11-28 삼성전자주식회사 ZnO 계 박막 트랜지스터의 제조방법
JP5241143B2 (ja) * 2007-05-30 2013-07-17 キヤノン株式会社 電界効果型トランジスタ
JP5406449B2 (ja) * 2007-05-30 2014-02-05 キヤノン株式会社 酸化物半導体を用いた薄膜トランジスタの製造方法および表示装置
KR101415561B1 (ko) * 2007-06-14 2014-08-07 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그의 제조 방법
US7897971B2 (en) * 2007-07-26 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Display device
US8330887B2 (en) * 2007-07-27 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
KR101270172B1 (ko) * 2007-08-29 2013-05-31 삼성전자주식회사 산화물 박막 트랜지스터 및 그 제조 방법
JP5354999B2 (ja) * 2007-09-26 2013-11-27 キヤノン株式会社 電界効果型トランジスタの製造方法
JP4759598B2 (ja) * 2007-09-28 2011-08-31 キヤノン株式会社 薄膜トランジスタ、その製造方法及びそれを用いた表示装置
US20090090915A1 (en) * 2007-10-05 2009-04-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor, and method for manufacturing the same
JP2009092841A (ja) * 2007-10-05 2009-04-30 Sharp Corp 液晶表示装置
JP2009099847A (ja) * 2007-10-18 2009-05-07 Canon Inc 薄膜トランジスタとその製造方法及び表示装置
US7982216B2 (en) * 2007-11-15 2011-07-19 Fujifilm Corporation Thin film field effect transistor with amorphous oxide active layer and display using the same
KR101375831B1 (ko) * 2007-12-03 2014-04-02 삼성전자주식회사 산화물 반도체 박막 트랜지스터를 이용한 디스플레이 장치
JP5377940B2 (ja) * 2007-12-03 2013-12-25 株式会社半導体エネルギー研究所 半導体装置
JP5213421B2 (ja) * 2007-12-04 2013-06-19 キヤノン株式会社 酸化物半導体薄膜トランジスタ
US8384077B2 (en) * 2007-12-13 2013-02-26 Idemitsu Kosan Co., Ltd Field effect transistor using oxide semicondutor and method for manufacturing the same
JP5215158B2 (ja) * 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
KR101516034B1 (ko) * 2007-12-25 2015-05-04 이데미쓰 고산 가부시키가이샤 산화물 반도체 전계효과형 트랜지스터 및 그의 제조 방법
KR20090069806A (ko) * 2007-12-26 2009-07-01 삼성전자주식회사 표시 기판, 이를 포함하는 표시 장치 및 표시 기판의 제조방법
US20100295042A1 (en) * 2008-01-23 2010-11-25 Idemitsu Kosan Co., Ltd. Field-effect transistor, method for manufacturing field-effect transistor, display device using field-effect transistor, and semiconductor device
JP4626659B2 (ja) * 2008-03-13 2011-02-09 ソニー株式会社 表示装置
JP5305730B2 (ja) * 2008-05-12 2013-10-02 キヤノン株式会社 半導体素子の製造方法ならびにその製造装置
JP5430248B2 (ja) * 2008-06-24 2014-02-26 富士フイルム株式会社 薄膜電界効果型トランジスタおよび表示装置
US8795554B2 (en) * 2008-06-27 2014-08-05 Idemitsu Kosan Co., Ltd. Sputtering target for oxide semiconductor, comprising InGaO3(ZnO) crystal phase and process for producing the sputtering target
KR100963026B1 (ko) * 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
KR100963027B1 (ko) * 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
JP5511157B2 (ja) * 2008-07-03 2014-06-04 キヤノン株式会社 発光表示装置
TWI469354B (zh) * 2008-07-31 2015-01-11 Semiconductor Energy Lab 半導體裝置及其製造方法
KR101539354B1 (ko) * 2008-09-02 2015-07-29 삼성디스플레이 주식회사 액정 표시 장치
KR101542840B1 (ko) * 2008-09-09 2015-08-07 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 이의 제조 방법
JP5339825B2 (ja) * 2008-09-09 2013-11-13 富士フイルム株式会社 薄膜電界効果型トランジスタおよびそれを用いた表示装置
JP5552753B2 (ja) * 2008-10-08 2014-07-16 ソニー株式会社 薄膜トランジスタおよび表示装置
JP4752927B2 (ja) * 2009-02-09 2011-08-17 ソニー株式会社 薄膜トランジスタおよび表示装置
US8450144B2 (en) * 2009-03-26 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5322787B2 (ja) * 2009-06-11 2013-10-23 富士フイルム株式会社 薄膜トランジスタ及びその製造方法、電気光学装置、並びにセンサー
JP5528734B2 (ja) * 2009-07-09 2014-06-25 富士フイルム株式会社 電子素子及びその製造方法、表示装置、並びにセンサー
WO2011027467A1 (ja) * 2009-09-04 2011-03-10 株式会社 東芝 薄膜トランジスタ及びその製造方法
CN105789322B (zh) * 2009-09-16 2018-09-28 株式会社半导体能源研究所 半导体器件及其制造方法
US9715845B2 (en) * 2009-09-16 2017-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
WO2011043206A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
CN105609565B (zh) 2019-02-22
CN105609565A (zh) 2016-05-25
JP2015053486A (ja) 2015-03-19
KR20190141023A (ko) 2019-12-20
JP2024028719A (ja) 2024-03-05
CN105789322A (zh) 2016-07-20
JP2022084585A (ja) 2022-06-07
JP2011192958A (ja) 2011-09-29
EP2478563A4 (en) 2013-01-30
JP6138391B1 (ja) 2017-05-31
KR102293198B1 (ko) 2021-08-24
EP2478563B1 (en) 2021-04-07
CN105609566B (zh) 2018-10-26
US20210005755A1 (en) 2021-01-07
JP7390520B1 (ja) 2023-12-01
CN105609566A (zh) 2016-05-25
CN102511082A (zh) 2012-06-20
WO2011033993A1 (en) 2011-03-24
CN105789322B (zh) 2018-09-28
JP2021057601A (ja) 2021-04-08
KR20120091082A (ko) 2012-08-17
KR101785745B1 (ko) 2017-10-16
JP7132449B2 (ja) 2022-09-06
JP7360516B2 (ja) 2023-10-12
JP2020034922A (ja) 2020-03-05
EP2478563A1 (en) 2012-07-25
CN102511082B (zh) 2016-04-27
JP2017120919A (ja) 2017-07-06
KR102157249B1 (ko) 2020-09-17
KR20200108928A (ko) 2020-09-21
KR20170116246A (ko) 2017-10-18
JP6437023B2 (ja) 2018-12-12
JP6700367B2 (ja) 2020-05-27
KR20180122753A (ko) 2018-11-13
US20220328693A1 (en) 2022-10-13
US20110062435A1 (en) 2011-03-17
JP2019057720A (ja) 2019-04-11
JP2022174076A (ja) 2022-11-22
US20240038899A1 (en) 2024-02-01
JP2014131056A (ja) 2014-07-10
JP2023178324A (ja) 2023-12-14
JP5886505B2 (ja) 2016-03-16
KR20210104938A (ko) 2021-08-25
KR102057221B1 (ko) 2019-12-18
JP2017120918A (ja) 2017-07-06

Similar Documents

Publication Publication Date Title
JP6437023B2 (ja) 液晶表示装置の作製方法、及び発光装置の作製方法
JP6229085B2 (ja) 液晶表示装置及びその作製方法
JP5649379B2 (ja) 半導体装置の作製方法
JP6707688B2 (ja) 発光表示パネル

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140916

R150 Certificate of patent or registration of utility model

Ref document number: 5618724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250