JP2020205423A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2020205423A
JP2020205423A JP2020125988A JP2020125988A JP2020205423A JP 2020205423 A JP2020205423 A JP 2020205423A JP 2020125988 A JP2020125988 A JP 2020125988A JP 2020125988 A JP2020125988 A JP 2020125988A JP 2020205423 A JP2020205423 A JP 2020205423A
Authority
JP
Japan
Prior art keywords
film
oxide semiconductor
insulating film
transistor
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020125988A
Other languages
English (en)
Other versions
JP6999758B2 (ja
Inventor
純一 肥塚
Junichi Hizuka
純一 肥塚
正美 神長
Masami Kaminaga
正美 神長
行徳 島
Yukinori Shima
行徳 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2020205423A publication Critical patent/JP2020205423A/ja
Priority to JP2021207862A priority Critical patent/JP7410110B2/ja
Application granted granted Critical
Publication of JP6999758B2 publication Critical patent/JP6999758B2/ja
Priority to JP2023215949A priority patent/JP2024050539A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/465Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/469Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After-treatment of these layers
    • H01L21/4757After-treatment
    • H01L21/47573Etching the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/477Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

【課題】酸化物半導体を有するトランジスタにおいて、電気特性の変動を抑制することで、信頼性を向上させる。【解決手段】トランジスタを有する半導体装置であって、トランジスタ100は、第1の絶縁膜104上の第1の酸化物半導体膜108と、第1の酸化物半導体膜上のゲート絶縁膜110と、ゲート絶縁膜上の第2の酸化物半導体膜112と、第1の酸化物半導体膜、及び第2の酸化物半導体膜上の第2の絶縁膜116と、を有する。第1の酸化物半導体膜は、ゲート絶縁膜と接する108iと、第2の絶縁膜と接するソース領域108sと、第2の絶縁膜と接するドレイン領域108dと、を有する。第2の酸化物半導体膜は、第1の酸化物半導体膜よりもキャリア密度が高い。【選択図】図1

Description

本発明の一態様は、酸化物半導体膜を有する半導体装置及び該半導体装置を有する表示
装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明
の一態様の技術分野は、物、方法、または、製造方法に関する。または、本発明は、プロ
セス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に
関する。特に、本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、記憶装
置、それらの駆動方法、またはそれらの製造方法に関する。
なお、本明細書等において、半導体装置とは、半導体特性を利用することで機能しうる
装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶
装置は、半導体装置の一態様である。撮像装置、表示装置、液晶表示装置、発光装置、電
気光学装置、発電装置(薄膜太陽電池、有機薄膜太陽電池等を含む)、及び電子機器は、
半導体装置を有している場合がある。
絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタ(電界効果トラ
ンジスタ(FET)、または薄膜トランジスタ(TFT)ともいう)を構成する技術が注
目されている。該トランジスタは集積回路(IC)や画像表示装置(表示装置)のような
電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコ
ンを代表とする半導体材料が広く知られているが、その他の材料として酸化物半導体が注
目されている。
例えば、酸化物半導体として、In、Zn、Ga、Snなどを含む非晶質酸化物を用い
てトランジスタを作製する技術が開示されている(特許文献1参照)。また、自己整列ト
ップゲート構造を有する酸化物薄膜のトランジスタを作製する技術が開示されている(特
許文献2参照)。
また、チャネルを形成する酸化物半導体層の下地絶縁層に、加熱により酸素を放出する
絶縁層を用い、該酸化物半導体層の酸素欠損を低減する半導体装置が開示されている(特
許文献3参照)。
特開2006−165529号公報 特開2009−278115号公報 特開2012−009836号公報
酸化物半導体膜を有するトランジスタとしては、例えば、逆スタガ型(ボトムゲート構
造ともいう)またはスタガ型(トップゲート構造ともいう)等が挙げられる。酸化物半導
体膜を有するトランジスタを表示装置に適用する場合、スタガ型のトランジスタよりも逆
スタガ型のトランジスタの方が、作製工程が比較的簡単であり製造コストを抑えられるた
め、利用される場合が多い。しかしながら、表示装置の画面の大型化、または表示装置の
画質の高精細化(例えば、4K×2K(水平方向画素数=3840画素、垂直方向画素数
=2160画素)または8K×4K(水平方向画素数=7680画素、垂直方向画素数=
4320画素)に代表される高精細な表示装置)が進むと、逆スタガ型のトランジスタで
は、ゲート電極とソース電極及びドレイン電極との間の寄生容量があるため、該寄生容量
によって信号遅延等が大きくなり、表示装置の画質が劣化するという問題があった。そこ
で、酸化物半導体膜を有するスタガ型のトランジスタについて、安定した半導体特性及び
高い信頼性を有する構造の開発が望まれている。
また、酸化物半導体膜をチャネル領域に用いてトランジスタを作製する場合、酸化物半
導体膜のチャネル領域中に形成される酸素欠損は、トランジスタ特性に影響を与えるため
問題となる。例えば、酸化物半導体膜のチャネル領域中に酸素欠損が形成されると、該酸
素欠損に起因してキャリアが生成される。酸化物半導体膜のチャネル領域中にキャリアが
生成されると、酸化物半導体膜をチャネル領域に有するトランジスタの電気特性の変動、
代表的にはしきい値電圧のシフトが生じる。また、トランジスタごとに電気特性がばらつ
くという問題がある。したがって、酸化物半導体膜のチャネル領域においては、酸素欠損
が少ないほど好ましい。一方で、酸化物半導体膜をチャネル領域に用いるトランジスタに
おいて、ソース電極及びドレイン電極と接する酸化物半導体膜としては、ソース電極及び
ドレイン電極との接触抵抗を低減するために酸素欠損が多く、抵抗が低い方が好ましい。
上記問題に鑑み、本発明の一態様は、酸化物半導体を有するトランジスタにおいて、電
気特性の変動を抑制すると共に、信頼性を向上させることを課題の1つとする。または、
本発明の一態様は、酸化物半導体を有するスタガ型のトランジスタを提供することを課題
の1つとする。または、本発明の一態様は、酸化物半導体を有するオン電流が大きいトラ
ンジスタを提供することを課題の1つとする。または、本発明の一態様は、酸化物半導体
を有するオフ電流が小さいトランジスタを提供することを課題の1つとする。または、本
発明の一態様は、消費電力が低減された半導体装置を提供することを課題の1つとする。
または、本発明の一態様は、新規な半導体装置を提供することを課題の1つとする。
なお、上記の課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一
態様は、必ずしも、これらの課題の全てを解決する必要はない。上記以外の課題は、明細
書等の記載から自ずと明らかになるものであり、明細書等の記載から上記以外の課題を抽
出することが可能である。
本発明の一態様は、トランジスタを有する半導体装置であって、トランジスタは、第1
の絶縁膜上の第1の酸化物半導体膜と、第1の酸化物半導体膜上のゲート絶縁膜と、ゲー
ト絶縁膜上の第2の酸化物半導体膜と、第1の酸化物半導体膜、及び第2の酸化物半導体
膜上の第2の絶縁膜と、を有し、第1の酸化物半導体膜は、ゲート絶縁膜と接するチャネ
ル領域と、第2の絶縁膜と接するソース領域と、第2の絶縁膜と接するドレイン領域と、
を有し、第2の酸化物半導体膜は、第1の酸化物半導体膜よりもキャリア密度が高い、半
導体装置である。
また、本発明の他の一態様は、トランジスタを有する半導体装置であって、トランジス
タは、第1の絶縁膜上の第1の酸化物半導体膜と、第1の酸化物半導体膜上のゲート絶縁
膜と、ゲート絶縁膜上の第2の酸化物半導体膜と、第2の酸化物半導体膜上の導電膜と、
第1の酸化物半導体膜、及び導電膜上の第2の絶縁膜と、を有し、第1の酸化物半導体膜
は、ゲート絶縁膜と接するチャネル領域と、第2の絶縁膜と接するソース領域と、第2の
絶縁膜と接するドレイン領域と、を有し、第2の酸化物半導体膜は、第1の酸化物半導体
膜よりもキャリア密度が高い、半導体装置である。
また、上記態様において、ゲート絶縁膜の上端部は、第2の酸化物半導体膜の下端部と
揃う領域、または第2の酸化物半導体膜の下端部よりも外側に位置する領域を有すると好
ましい。
また、上記態様において、第2の絶縁膜は、窒素または水素のいずれか一方または双方
を有すると好ましい。
また、上記態様において、トランジスタは、さらに、第2の絶縁膜上の第3の絶縁膜と
、第2の絶縁膜及び第3の絶縁膜に設けられた開口部を介して、ソース領域に接続するソ
ース電極と、第2の絶縁膜及び第3の絶縁膜に設けられた開口部を介して、ドレイン領域
に接続するドレイン電極と、を有すると好ましい。
また、上記態様において、ソース領域及びドレイン領域は、第2の酸化物半導体膜と水
素濃度が同じ領域を有すると好ましい。また、上記態様において、ソース領域及びドレイ
ン領域は、水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、または希ガスの1以上を有
すると好ましい。
また、上記態様において、第1の酸化物半導体膜、及び第2の酸化物半導体膜のいずれ
か一方または双方は、酸素と、Inと、Znと、M(MはAl、Ga、Y、またはSn)
とを有すると好ましい。また、上記態様において、第1の酸化物半導体膜、及び第2の酸
化物半導体膜のいずれか一方または双方は、結晶部を有し、結晶部は、c軸配向性を有す
ると好ましい。
また、本発明の他の一態様は、上記各態様にいずれか一つに記載の半導体装置と表示素
子とを有する表示装置である。また、本発明の他の一態様は、該表示装置とタッチセンサ
とを有する表示モジュールである。また、本発明の他の一態様は、上記各態様にいずれか
一つに記載の半導体装置、上記表示装置、または上記表示モジュールと、操作キーまたは
バッテリとを有する電子機器である。
本発明の一態様により、酸化物半導体を有するトランジスタにおいて、電気特性の変動
を抑制することで、信頼性を向上させることができる。または、本発明の一態様により、
酸化物半導体を有するスタガ型のトランジスタを提供することができる。または、本発明
の一態様により、酸化物半導体を有するオン電流が大きいトランジスタを提供することが
できる。または、本発明の一態様により、酸化物半導体を有するオフ電流が小さいトラン
ジスタを提供することができる。または、本発明の一態様により、消費電力が低減された
半導体装置を提供することができる。または、本発明の一態様により、新規な半導体装置
を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の
一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果
は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図
面、請求項などの記載から、これら以外の効果を抽出することが可能である。
半導体装置の上面及び断面を説明する図。 半導体装置の上面及び断面を説明する図。 半導体装置の上面及び断面を説明する図。 半導体装置の上面及び断面を説明する図。 半導体装置の上面及び断面を説明する図。 半導体装置の上面及び断面を説明する図。 半導体装置の断面を説明する図。 半導体装置の断面を説明する図。 半導体装置の断面を説明する図。 半導体装置の断面を説明する図。 半導体装置の断面を説明する図。 バンド構造を説明する図。 半導体装置の作製方法を説明する断面図。 半導体装置の作製方法を説明する断面図。 半導体装置の作製方法を説明する断面図。 半導体装置の作製方法を説明する断面図。 半導体装置の作製方法を説明する断面図。 半導体装置の作製方法を説明する断面図。 半導体装置の作製方法を説明する断面図。 CAAC−OSおよび単結晶酸化物半導体のXRDによる構造解析を説明する図、ならびにCAAC−OSの制限視野電子回折パターンを示す図。 CAAC−OSの断面TEM像、ならびに平面TEM像およびその画像解析像。 nc−OSの電子回折パターンを示す図、およびnc−OSの断面TEM像。 a−like OSの断面TEM像。 In−Ga−Zn酸化物の電子照射による結晶部の変化を示す図。 表示装置の一態様を示す上面図。 表示装置の一態様を示す断面図。 表示装置の一態様を示す断面図。 半導体装置の回路構成を説明する図。 画素回路の構成を説明する図、及び画素回路の動作を説明するタイミングチャート。 表示装置を説明するブロック図及び回路図。 表示モジュールを説明する図。 電子機器を説明する図。 実施例における、トランジスタのId−Vg特性を説明する図。 実施例における、トランジスタの断面TEM像を説明する図。 実施例における、比較用のトランジスタ構造を説明する上面図及び断面図。 実施例における、トランジスタの電気特性を説明する図。 実施例における、トランジスタの電気特性を説明する図。 実施例における、トランジスタの電気特性を説明する図。 実施例における、トランジスタの電気特性を説明する図。 実施例における、トランジスタの電気特性を説明する図。 実施例における、トランジスタのId変化率、ストレス試験前後のId−Vg特性、及びストレス試験前後のId−Vd特性を説明する図。 実施例における、トランジスタの断面TEM像を説明する図。
以下、実施の形態および実施例について図面を参照しながら説明する。但し、実施の形
態および実施例は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から
逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解
される。従って、本発明は、以下の実施の形態および実施例の記載内容に限定して解釈さ
れるものではない。
また、図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている
場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を
模式的に示したものであり、図面に示す形状又は値などに限定されない。
また、本明細書にて用いる「第1」、「第2」、「第3」という序数詞は、構成要素の
混同を避けるために付したものであり、数的に限定するものではないことを付記する。
また、本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位
置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関
係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明し
た語句に限定されず、状況に応じて適切に言い換えることができる。
また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含
む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイ
ン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間
にチャネル領域を有しており、ドレインとチャネル領域とソースとを介して電流を流すこ
とができるものである。なお、本明細書等において、チャネル領域とは、電流が主として
流れる領域をいう。
また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路
動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明
細書等においては、ソースやドレインの用語は、入れ替えて用いることができるものとす
る。
また、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するも
の」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するも
の」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない
。例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジス
タなどのスイッチング素子、抵抗素子、インダクタ、キャパシタ、その他の各種機能を有
する素子などが含まれる。
また、本明細書等において、「平行」とは、二つの直線が−10°以上10°以下の角
度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。ま
た、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態を
いう。したがって、85°以上95°以下の場合も含まれる。
また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ
替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変
更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」
という用語に変更することが可能な場合がある。
また、本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ
状態(非導通状態、遮断状態、ともいう)にあるときのドレイン電流をいう。オフ状態と
は、特に断りがない場合、nチャネル型トランジスタでは、ゲートとソースの間の電圧V
gsがしきい値電圧Vthよりも低い状態、pチャネル型トランジスタでは、ゲートとソ
ースの間の電圧Vgsがしきい値電圧Vthよりも高い状態をいう。例えば、nチャネル
型のトランジスタのオフ電流とは、ゲートとソースの間の電圧Vgsがしきい値電圧Vt
hよりも低いときのドレイン電流を言う場合がある。
トランジスタのオフ電流は、Vgsに依存する場合がある。従って、トランジスタのオ
フ電流がI以下である、とは、トランジスタのオフ電流がI以下となるVgsの値が存在
することを言う場合がある。トランジスタのオフ電流は、所定のVgsにおけるオフ状態
、所定の範囲内のVgsにおけるオフ状態、または、十分に低減されたオフ電流が得られ
るVgsにおけるオフ状態、等におけるオフ電流を指す場合がある。
一例として、しきい値電圧Vthが0.5Vであり、Vgsが0.5Vにおけるドレイ
ン電流が1×10−9Aであり、Vgsが0.1Vにおけるドレイン電流が1×10−1
Aであり、Vgsがー0.5Vにおけるドレイン電流が1×10−19Aであり、Vg
sがー0.8Vにおけるドレイン電流が1×10−22Aであるようなnチャネル型トラ
ンジスタを想定する。当該トランジスタのドレイン電流は、Vgsが−0.5Vにおいて
、または、Vgsが−0.5V乃至−0.8Vの範囲において、1×10−19A以下で
あるから、当該トランジスタのオフ電流は1×10−19A以下である、と言う場合があ
る。当該トランジスタのドレイン電流が1×10−22A以下となるVgsが存在するた
め、当該トランジスタのオフ電流は1×10−22A以下である、と言う場合がある。
また、本明細書等では、チャネル幅Wを有するトランジスタのオフ電流を、チャネル幅
Wあたりを流れる電流値で表す場合がある。また、所定のチャネル幅(例えば1μm)あ
たりを流れる電流値で表す場合がある。後者の場合、オフ電流の単位は、電流/長さの次
元を持つ単位(例えば、A/μm)で表される場合がある。
トランジスタのオフ電流は、温度に依存する場合がある。本明細書において、オフ電流
は、特に記載がない場合、室温、60℃、85℃、95℃、または125℃におけるオフ
電流を表す場合がある。または、当該トランジスタが含まれる半導体装置等の信頼性が保
証される温度、または、当該トランジスタが含まれる半導体装置等が使用される温度(例
えば、5℃乃至35℃のいずれか一の温度)におけるオフ電流、を表す場合がある。トラ
ンジスタのオフ電流がI以下である、とは、室温、60℃、85℃、95℃、125℃、
当該トランジスタが含まれる半導体装置等の信頼性が保証される温度、または、当該トラ
ンジスタが含まれる半導体装置等が使用される温度(例えば、5℃乃至35℃のいずれか
一の温度)、におけるトランジスタのオフ電流がI以下となるVgsの値が存在すること
を指す場合がある。
トランジスタのオフ電流は、ドレインとソースの間の電圧Vdsに依存する場合がある
。本明細書において、オフ電流は、特に記載がない場合、Vdsが0.1V、0.8V、
1V、1.2V、1.8V,2.5V,3V、3.3V、10V、12V、16V、また
は20Vにおけるオフ電流を表す場合がある。または、当該トランジスタが含まれる半導
体装置等の信頼性が保証されるVds、または、当該トランジスタが含まれる半導体装置
等において使用されるVdsにおけるオフ電流、を表す場合がある。トランジスタのオフ
電流がI以下である、とは、Vdsが0.1V、0.8V、1V、1.2V、1.8V,
2.5V,3V、3.3V、10V、12V、16V、20V、当該トランジスタが含ま
れる半導体装置等の信頼性が保証されるVds、または、当該トランジスタが含まれる半
導体装置等において使用されるVds、におけるトランジスタのオフ電流がI以下となる
Vgsの値が存在することを指す場合がある。
上記オフ電流の説明において、ドレインをソースと読み替えてもよい。つまり、オフ電
流は、トランジスタがオフ状態にあるときのソースを流れる電流を言う場合もある。
また、本明細書等では、オフ電流と同じ意味で、リーク電流と記載する場合がある。ま
た、本明細書等において、オフ電流とは、例えば、トランジスタがオフ状態にあるときに
、ソースとドレインとの間に流れる電流を指す場合がある。
(実施の形態1)
本実施の形態では、トランジスタを有する半導体装置、及び該半導体装置の作製方法の
一例について、図1乃至図19を用いて説明する。
<1−1.半導体装置の構成例1>
図1(A)(B)(C)に、トランジスタを有する半導体装置の一例を示す。なお、図
1(A)(B)(C)に示すトランジスタは、トップゲート構造である。
図1(A)は、トランジスタ100の上面図であり、図1(B)は図1(A)の一点鎖
線X1−X2間の断面図であり、図1(C)は図1(A)の一点鎖線Y1−Y2間の断面
図である。なお、図1(A)では、明瞭化のため、絶縁膜110などの構成要素を省略し
て図示している。なお、トランジスタの上面図においては、以降の図面においても図1(
A)と同様に、構成要素の一部を省略して図示する場合がある。また、一点鎖線X1−X
2方向をチャネル長(L)方向、一点鎖線Y1−Y2方向をチャネル幅(W)方向と呼称
する場合がある。
図1(A)(B)(C)に示すトランジスタ100は、基板102上に形成された絶縁
膜104と、絶縁膜104上の酸化物半導体膜108と、酸化物半導体膜108上の絶縁
膜110と、絶縁膜110上の酸化物半導体膜112と、絶縁膜104、酸化物半導体膜
108、及び酸化物半導体膜112上の絶縁膜116と、を有する。また、酸化物半導体
膜108は、酸化物半導体膜112が重畳し、且つ絶縁膜110と接するチャネル領域1
08iと、絶縁膜116と接するソース領域108sと、絶縁膜116と接するドレイン
領域108dと、を有する。
また、トランジスタ100は、絶縁膜116上の絶縁膜118と、絶縁膜116、11
8に設けられた開口部141aを介して、ソース領域108sに電気的に接続される導電
膜120aと、絶縁膜116、118に設けられた開口部141bを介して、ドレイン領
域108dに電気的に接続される導電膜120bと、を有していてもよい。
なお、本明細書等において、絶縁膜104を第1の絶縁膜と、絶縁膜116を第2の絶
縁膜と、絶縁膜118を第3の絶縁膜と、それぞれ呼称する場合がある。また、絶縁膜1
10は、ゲート絶縁膜としての機能を有し、酸化物半導体膜112は、ゲート電極として
の機能を有する。また、導電膜120aは、ソース電極としての機能を有し、導電膜12
0bは、ドレイン電極としての機能を有する。
また、絶縁膜116は、窒素または水素のいずれか一方または双方を有する。絶縁膜1
16が窒素または水素のいずれか一方または双方を有する構成とすることで、酸化物半導
体膜108、及び酸化物半導体膜112に窒素または水素のいずれか一方または双方を供
給することができる。
また、酸化物半導体膜112は、絶縁膜110に酸素を供給する機能を有する。酸化物
半導体膜112が、絶縁膜110に酸素を供給する機能を有することで、絶縁膜110中
に過剰酸素を含ませることが可能となる。絶縁膜110が過剰酸素領域を有することで、
酸化物半導体膜108、より具体的にはチャネル領域108i中に当該過剰酸素を供給す
ることができる。よって、信頼性の高い半導体装置を提供することができる。
なお、酸化物半導体膜108中に過剰酸素を供給させるためには、酸化物半導体膜10
8の下方に形成される絶縁膜104が過剰酸素を有していてもよい。ただし、絶縁膜10
4が過剰酸素を有する場合、絶縁膜104中に含まれる過剰酸素は、酸化物半導体膜10
8が有するソース領域108s、及びドレイン領域108dにも供給され得る。ソース領
域108s、及びドレイン領域108d中に過剰酸素が供給されると、ソース領域108
s、及びドレイン領域108d中の抵抗が高くなる場合がある。
一方で、酸化物半導体膜108の上方に形成される絶縁膜110が過剰酸素を有する構
成とすることで、チャネル領域108iにのみ選択的に過剰酸素を供給させることが可能
となる。あるいは、チャネル領域108i、ソース領域108s、及びドレイン領域10
8dに過剰酸素を供給させたのち、ソース領域108s、及びドレイン領域108dのキ
ャリア密度を選択的に高めればよい。
また、酸化物半導体膜112は、絶縁膜110に酸素を供給したのち、絶縁膜116か
ら窒素または水素のいずれか一方または双方が供給されることで、キャリア密度が高くな
る。別言すると、酸化物半導体膜112は、酸化物導電体(OC:Oxide Cond
uctor)としての機能も有する。したがって、酸化物半導体膜112は、酸化物半導
体膜108よりもキャリア密度が高くなる。
また、酸化物半導体膜108が有するソース領域108s、及びドレイン領域108d
、並びに酸化物半導体膜112は、それぞれ、酸素欠損を形成する元素を有していてもよ
い。上記酸素欠損を形成する元素としては、代表的には水素、ホウ素、炭素、窒素、フッ
素、リン、硫黄、塩素、希ガス等が挙げられる。また、希ガス元素の代表例としては、ヘ
リウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。
不純物元素が酸化物半導体膜に添加されると、酸化物半導体膜中の金属元素と酸素の結
合が切断され、酸素欠損が形成される。または、不純物元素が酸化物半導体膜に添加され
ると、酸化物半導体膜中の金属元素と結合していた酸素が不純物元素と結合し、金属元素
から酸素が脱離され、酸素欠損が形成される。これらの結果、酸化物半導体膜においてキ
ャリア密度が増加し、導電性が高くなる。
また、トランジスタ100において、絶縁膜110の側端部と、酸化物半導体膜112
の側端部とが、揃う領域を有すると好ましい。別言すると、トランジスタ100において
、絶縁膜110の上端部と、酸化物半導体膜112の下端部が概略揃う構成である。例え
ば、酸化物半導体膜112をマスクとして絶縁膜110を加工することで、上記構造とす
ることができる。
次に、図1(A)(B)(C)に示す半導体装置の構成要素の詳細について説明する。
[基板]
基板102としては、様々な基板を用いることができ、特定のものに限定されることは
ない。基板の一例としては、半導体基板(例えば単結晶基板またはシリコン基板)、SO
I基板、ガラス基板、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板
、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイル
を有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、または基材フ
ィルムなどがある。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホ
ウケイ酸ガラス、またはソーダライムガラスなどがある。可撓性基板、貼り合わせフィル
ム、基材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレン
テレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフ
ォン(PES)に代表されるプラスチックがある。または、一例としては、アクリル等の
合成樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ
化ビニル、ポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド
、アラミド、エポキシ、無機蒸着フィルム、または紙類などがある。特に、半導体基板、
単結晶基板、またはSOI基板などを用いてトランジスタを製造することによって、特性
、サイズ、または形状などのばらつきが少なく、電流能力が高く、サイズの小さいトラン
ジスタを製造することができる。このようなトランジスタによって回路を構成すると、回
路の低消費電力化、または回路の高集積化を図ることができる。
また、基板102として、可撓性基板を用い、可撓性基板上に直接、トランジスタを形
成してもよい。または、基板102とトランジスタの間に剥離層を設けてもよい。剥離層
は、その上に半導体装置を一部あるいは全部完成させた後、基板102より分離し、他の
基板に転載するのに用いることができる。その際、トランジスタを耐熱性の劣る基板や可
撓性の基板にも転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シ
リコン膜との無機膜の積層構造の構成、または基板上にポリイミド等の有機樹脂膜が形成
された構成等を用いることができる。
トランジスタが転載される基板の一例としては、上述したトランジスタを形成すること
が可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィ
ルム基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン
、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、
再生ポリエステル)などを含む)、皮革基板、またはゴム基板などがある。これらの基板
を用いることにより、特性のよいトランジスタの形成、消費電力の小さいトランジスタの
形成、壊れにくい装置の製造、耐熱性の付与、軽量化、または薄型化を図ることができる
[第1の絶縁膜]
絶縁膜104としては、スパッタリング法、CVD法、蒸着法、パルスレーザー堆積(
PLD)法、印刷法、塗布法等を適宜用いて形成することができる。また、絶縁膜104
としては、例えば、酸化物絶縁膜または窒化物絶縁膜を単層または積層して形成すること
ができる。なお、酸化物半導体膜108との界面特性を向上させるため、絶縁膜104に
おいて少なくとも酸化物半導体膜108と接する領域は酸化物絶縁膜で形成することが好
ましい。また、絶縁膜104として加熱により酸素を放出する酸化物絶縁膜を用いること
で、加熱処理により絶縁膜104に含まれる酸素を、酸化物半導体膜108に移動させる
ことが可能である。
絶縁膜104の厚さは、50nm以上、または100nm以上3000nm以下、また
は200nm以上1000nm以下とすることができる。絶縁膜104を厚くすることで
、絶縁膜104の酸素放出量を増加させることができると共に、絶縁膜104と酸化物半
導体膜108との界面における界面準位、並びに酸化物半導体膜108のチャネル領域1
08iに含まれる酸素欠損を低減することが可能である。
絶縁膜104として、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒
化シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはGa−Zn酸化物
などを用いればよく、単層または積層で設けることができる。本実施の形態では、絶縁膜
104として、窒化シリコン膜と、酸化窒化シリコン膜との積層構造を用いる。このよう
に、絶縁膜104を積層構造として、下層側に窒化シリコン膜を用い、上層側に酸化窒化
シリコン膜を用いることで、酸化物半導体膜108中に効率よく酸素を導入することがで
きる。
[酸化物半導体膜]
酸化物半導体膜108及び酸化物半導体膜112のいずれか一方または双方は、In−
M−Zn酸化物(MはAl、Ga、Y、またはSn)等の金属酸化物で形成される。また
、酸化物半導体膜108及び酸化物半導体膜112として、In−Ga酸化物、In−Z
n酸化物を用いてもよい。とくに、酸化物半導体膜108と、酸化物半導体膜112とは
、同じ構成元素からなる金属酸化物で形成されると、製造コストを低減できるため好まし
い。
なお、酸化物半導体膜108及び酸化物半導体膜112がIn−M−Zn酸化物の場合
、InとMの原子数比率は、In及びMの和を100atomic%としたときInが2
5atomic%より高く、Mが75atomic%未満、またはInが34atomi
c%より高く、Mが66atomic%未満とする。
酸化物半導体膜108及び酸化物半導体膜112は、エネルギーギャップが2eV以上
、または2.5eV以上、または3eV以上であると好ましい。
酸化物半導体膜108の厚さは、3nm以上200nm以下、好ましくは3nm以上1
00nm以下、さらに好ましくは3nm以上60nm以下である。また、酸化物半導体膜
112の厚さは、5nm以上500nm以下、好ましくは10nm以上300nm以下、
さらに好ましくは20nm以上100nm以下である。
酸化物半導体膜108、及び酸化物半導体膜112がIn−M−Zn酸化物の場合、I
n−M−Zn酸化物を成膜するために用いるスパッタリングターゲットの金属元素の原子
数比は、In≧M、Zn≧Mを満たすことが好ましい。このようなスパッタリングターゲ
ットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:
1:1.2、In:M:Zn=2:1:1.5、In:M:Zn=2:1:2.3、In
:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:4.
1、In:M:Zn=5:1:7等が好ましい。なお、成膜される酸化物半導体膜108
、及び酸化物半導体膜112の原子数比はそれぞれ、上記のスパッタリングターゲットに
含まれる金属元素の原子数比のプラスマイナス40%程度変動することがある。例えば、
スパッタリングターゲットとして、原子数比がIn:Ga:Zn=4:2:4.1を用い
る場合、成膜される酸化物半導体膜108、及び酸化物半導体膜112の原子数比は、I
n:Ga:Zn=4:2:3近傍となる場合がある。
また、酸化物半導体膜108において、第14族元素の一つであるシリコンや炭素が含
まれると、酸素欠損が増加し、n型となる場合がある。このため、酸化物半導体膜108
、特にチャネル領域108iにおいて、シリコンあるいは炭素の濃度(二次イオン質量分
析法により得られる濃度)を、2×1018atoms/cm以下、または2×10
atoms/cm以下とすることができる。この結果、トランジスタは、しきい値電
圧がプラスとなる電気特性(ノーマリーオフ特性ともいう。)を有する。
また、チャネル領域108iにおいて、二次イオン質量分析法により得られるアルカリ
金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、または2
×1016atoms/cm以下とすることができる。アルカリ金属及びアルカリ土類
金属は、酸化物半導体と結合するとキャリアを生成する場合があり、トランジスタのオフ
電流が増大してしまうことがある。このため、チャネル領域108iのアルカリ金属また
はアルカリ土類金属の濃度を低減することが好ましい。この結果、トランジスタは、しき
い値電圧がプラスとなる電気特性(ノーマリーオフ特性ともいう。)を有する。
また、チャネル領域108iに窒素が含まれていると、キャリアである電子が生じ、キ
ャリア密度が増加し、n型となる場合がある。この結果、窒素が含まれている酸化物半導
体膜を用いたトランジスタはノーマリーオン特性となりやすい。従って、チャネル領域1
08iにおいて、窒素はできる限り低減されていることが好ましい。例えば、二次イオン
質量分析法により得られる窒素濃度を、5×1018atoms/cm以下とすればよ
い。
また、チャネル領域108iにおいて、不純物元素を低減することで、酸化物半導体膜
のキャリア密度を低減することができる。このため、チャネル領域108iにおいては、
キャリア密度を1×1017個/cm以下、または1×1015個/cm以下、また
は1×1013個/cm以下、または1×1011個/cm以下とすることができる
チャネル領域108iとして、不純物濃度が低く、欠陥準位密度の低い酸化物半導体膜
を用いることで、さらに優れた電気特性を有するトランジスタを作製することができる。
ここでは、不純物濃度が低く、欠陥準位密度の低い(酸素欠損の少ない)ことを高純度真
性または実質的に高純度真性と呼ぶ。あるいは、真性、または実質的に真性と呼ぶ。高純
度真性または実質的に高純度真性である酸化物半導体は、キャリア発生源が少ないため、
キャリア密度を低くすることができる場合がある。従って、当該酸化物半導体膜にチャネ
ル領域が形成されるトランジスタは、しきい値電圧がプラスとなる電気特性(ノーマリー
オフ特性ともいう。)になりやすい。また、高純度真性または実質的に高純度真性である
酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、高純度真性または実質的に高純度真性である酸化物半導体膜は、オフ電流が著しく
小さい特性を得ることができる。従って、当該酸化物半導体膜にチャネル領域が形成され
るトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタとなる場合があ
る。
一方で、ソース領域108s、ドレイン領域108d、及び酸化物半導体膜112は、
絶縁膜116と接する。ソース領域108s、ドレイン領域108d、及び酸化物半導体
膜112が絶縁膜116と接することで、絶縁膜116からソース領域108s、ドレイ
ン領域108d、及び酸化物半導体膜112に水素及び窒素のいずれか一方または双方が
添加されるため、キャリア密度が高くなる。
また、酸化物半導体膜108、及び酸化物半導体膜112のいずれか一方または双方は
、非単結晶構造でもよい。非単結晶構造は、例えば、後述するCAAC−OS(C Ax
is Aligned Crystalline Oxide Semiconduct
or)、多結晶構造、後述する微結晶構造、または非晶質構造を含む。非単結晶構造にお
いて、非晶質構造は最も欠陥準位密度が高く、CAAC−OSは最も欠陥準位密度が低い
なお、酸化物半導体膜108が、非晶質構造の領域、微結晶構造の領域、多結晶構造の
領域、CAAC−OSの領域、及び単結晶構造の領域の二種以上を有する単層膜、あるい
はこの膜が積層された構造であってもよい。また、酸化物半導体膜112が、非晶質構造
の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、及び単結晶構造
の領域の二種以上を有する単層膜、あるいはこの膜が積層された構造であってもよい。
なお、酸化物半導体膜108において、チャネル領域108iと、ソース領域108s
及びドレイン領域108dとの結晶性が異なる場合がある。具体的には、酸化物半導体膜
108において、チャネル領域108iよりもソース領域108s及びドレイン領域10
8dの方が、結晶性が低い場合がある。これは、ソース領域108s及びドレイン領域1
08dに不純物元素が添加された際に、ソース領域108s及びドレイン領域108dに
ダメージが入ってしまい、結晶性が低下するためである。
[ゲート絶縁膜として機能する絶縁膜]
絶縁膜110は、酸化物絶縁膜または窒化物絶縁膜を単層または積層して形成すること
ができる。なお、酸化物半導体膜108との界面特性を向上させるため、絶縁膜110に
おいて少なくとも酸化物半導体膜108と接する領域は酸化物絶縁膜を用いて形成するこ
とが好ましい。絶縁膜110として、例えば酸化シリコン、酸化窒化シリコン、窒化酸化
シリコン、窒化シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはGa
−Zn酸化物などを用いればよく、単層または積層で設けることができる。
また、絶縁膜110として、酸素、水素、水等のブロッキング効果を有する絶縁膜を設
けることで、酸化物半導体膜108からの酸素の外部への拡散と、外部から酸化物半導体
膜108への水素、水等の侵入を防ぐことができる。酸素、水素、水等のブロッキング効
果を有する絶縁膜としては、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ガリウ
ム膜、酸化窒化ガリウム膜、酸化イットリウム膜、酸化窒化イットリウム膜、酸化ハフニ
ウム膜、酸化窒化ハフニウム膜等がある。
また、絶縁膜110として、ハフニウムシリケート(HfSiO)、窒素が添加され
たハフニウムシリケート(HfSi)、窒素が添加されたハフニウムアルミネ
ート(HfAl)、酸化ハフニウム、酸化イットリウムなどのhigh−k材
料を用いることでトランジスタのゲートリークを低減できる。
また、絶縁膜110として、加熱により酸素を放出する酸化物絶縁膜を用いることで、
加熱処理により絶縁膜110に含まれる酸素を、酸化物半導体膜108に移動させること
が可能である。
絶縁膜110の厚さは、5nm以上400nm以下、または5nm以上300nm以下
、または10nm以上250nm以下とすることができる。
[第2の絶縁膜]
絶縁膜116は、窒素または水素のいずれか一方または双方を有する。絶縁膜116と
しては、例えば、窒化物絶縁膜が挙げられる。該窒化物絶縁膜としては、窒化シリコン、
窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウム等を用いて形成することが
できる。絶縁膜116に含まれる水素濃度は、1×1022atoms/cm以上であ
ると好ましい。また、絶縁膜116は、酸化物半導体膜108のソース領域108s、及
びドレイン領域108dと接する。また、絶縁膜116は、酸化物半導体膜112と接す
る。したがって、絶縁膜116と接するソース領域108s、ドレイン領域108d、及
び酸化物半導体膜112中の水素濃度が高くなり、ソース領域108s、ドレイン領域1
08d、及び酸化物半導体膜112のキャリア密度を高めることができる。なお、ソース
領域108s、ドレイン領域108d、及び酸化物半導体膜112としては、それぞれ絶
縁膜116と接することで、膜中の水素濃度が同じ領域を有する場合がある。
[第3の絶縁膜]
絶縁膜118としては、酸化物絶縁膜または窒化物絶縁膜を単層または積層して形成す
ることができる。絶縁膜118として、例えば酸化シリコン、酸化窒化シリコン、窒化酸
化シリコン、窒化シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはG
a−Zn酸化物などを用いればよく、単層または積層で設けることができる。
また、絶縁膜118としては、外部からの水素、水等のバリア膜として機能する膜であ
ることが好ましい。
絶縁膜118の厚さは、30nm以上500nm以下、または100nm以上400n
m以下とすることができる。
[導電膜]
導電膜120a、120bとしては、スパッタリング法、真空蒸着法、パルスレーザー
堆積(PLD)法、熱CVD法等を用いて形成することができる。また、導電膜120a
、120bとしては、例えば、アルミニウム、クロム、銅、タンタル、チタン、モリブデ
ン、ニッケル、鉄、コバルト、タングステンから選ばれた金属元素、または上述した金属
元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いて形成すること
ができる。また、マンガン、ジルコニウムのいずれか一または複数から選択された金属元
素を用いてもよい。また、導電膜120a、120bは、単層構造でも、二層以上の積層
構造としてもよい。例えば、シリコンを含むアルミニウム膜の単層構造、マンガンを含む
銅膜の単層構造、アルミニウム膜上にチタン膜を積層する二層構造、窒化チタン膜上にチ
タン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化
タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造、マンガン
を含む銅膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、チタン
膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成する三
層構造、マンガンを含む銅膜上に銅膜を積層し、さらにその上にマンガンを含む銅膜を形
成する三層構造等がある。また、アルミニウムに、チタン、タンタル、タングステン、モ
リブデン、クロム、ネオジム、スカンジウムから選ばれた一または複数を組み合わせた合
金膜、もしくは窒化膜を用いてもよい。
また、導電膜120a、120bは、インジウム錫酸化物(Indium Tin O
xide:ITO)、酸化タングステンを含むインジウム酸化物、酸化タングステンを含
むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジ
ウム錫酸化物、インジウム亜鉛酸化物、シリコンを含むインジウム錫酸化物(In−Sn
−Si酸化物:ITSOともいう)等の透光性を有する導電性材料を適用することもでき
る。また、上記透光性を有する導電性材料と、上記金属元素の積層構造とすることもでき
る。
導電膜120a、120bの厚さとしては、30nm以上500nm以下、または10
0nm以上400nm以下とすることができる。
<1−2.半導体装置の構成例2>
次に、図1(A)(B)(C)に示す半導体装置と異なる構成について、図2(A)(
B)(C)を用いて説明する。
図2(A)は、トランジスタ150の上面図であり、図2(B)は図2(A)の一点鎖
線X1−X2間の断面図であり、図2(C)は図2(A)の一点鎖線Y1−Y2間の断面
図である。
図2(A)(B)(C)に示すトランジスタ150は、基板102上に形成された絶縁
膜104と、絶縁膜104上の酸化物半導体膜108と、酸化物半導体膜108上の絶縁
膜110と、絶縁膜110上の酸化物半導体膜112と、酸化物半導体膜112上の導電
膜114と、絶縁膜104、酸化物半導体膜108、及び導電膜114上の絶縁膜116
と、を有する。また、酸化物半導体膜108は、酸化物半導体膜112が重畳し、且つ絶
縁膜110と接するチャネル領域108iと、絶縁膜116と接するソース領域108s
と、絶縁膜116と接するドレイン領域108dと、を有する。
また、トランジスタ150は、絶縁膜116上の絶縁膜118と、絶縁膜116、11
8に設けられた開口部141aを介して、ソース領域108sに電気的に接続される導電
膜120aと、絶縁膜116、118に設けられた開口部141bを介して、ドレイン領
域108dに電気的に接続される導電膜120bと、を有していてもよい。
なお、トランジスタ150においては、酸化物半導体膜112と、導電膜114とがゲ
ート電極としての機能を有する。また、導電膜114は、酸化物半導体膜112をn型に
する機能を有する。導電膜114が酸化物半導体膜112をn型にする機能を有する構成
とすることで、酸化物半導体膜112は、ゲート電極の一部として機能する。
また、絶縁膜116は、窒素または水素のいずれか一方または双方を有する。絶縁膜1
16が窒素または水素のいずれか一方または双方を有する構成とすることで、ソース領域
108s及びドレイン領域108dに窒素または水素のいずれか一方または双方を供給す
ることができる。
また、酸化物半導体膜112は、絶縁膜110に酸素を供給する機能を有する。酸化物
半導体膜112が、絶縁膜110に酸素を供給する機能を有することで、絶縁膜110中
に過剰酸素を含ませることが可能となる。絶縁膜110が過剰酸素領域を有することで、
チャネル領域108i中に当該過剰酸素を供給することができる。よって、信頼性の高い
半導体装置を提供することができる。
なお、酸化物半導体膜112は、絶縁膜110に酸素を供給したのち、キャリア密度が
高くなる。また、酸化物半導体膜112が導電膜114と接することによって、導電膜1
14の構成元素が酸化物半導体膜112へ拡散し、キャリア密度が高くなる場合がある。
別言すると、酸化物半導体膜112は、酸化物導電体(OC)としての機能も有する。し
たがって、製造工程を増加させることが無く、酸化物半導体膜112をゲート電極の一部
として機能させることが可能となる。
導電膜114としては、先に記載の導電膜120a、120bと同様の形成方法、及び
同様の材料を用いて形成される。特に導電膜114としては、チタン、銅、またはタング
ステンを用いて、スパッタリング法を用いて形成すると好適である。導電膜114にチタ
ン、銅、またはタングステンを用いることで、導電膜114と接する酸化物半導体膜11
2の導電性を向上させることができる。また、導電膜114を積層構造としてもよい。当
該積層構造としては、例えば、マンガンを含む銅膜上に銅膜を有する構造、または、タン
グステン膜上にアルミニウム膜を有する構造とすればよい。
<1−3.半導体装置の構成例3>
次に、図1(A)(B)(C)に示す半導体装置と異なる構成について、図3(A)(
B)(C)を用いて説明する。
図3(A)は、トランジスタ100Aの上面図であり、図3(B)は図3(A)の一点
鎖線X1−X2間の断面図であり、図3(C)は図3(A)の一点鎖線Y1−Y2間の断
面図である。
図3(A)(B)(C)に示すトランジスタ100Aは、基板102上に形成された導
電膜106と、導電膜106上の絶縁膜104と、絶縁膜104上の酸化物半導体膜10
8と、酸化物半導体膜108上の絶縁膜110と、絶縁膜110上の酸化物半導体膜11
2と、絶縁膜104、酸化物半導体膜108、及び酸化物半導体膜112上の絶縁膜11
6と、を有する。また、酸化物半導体膜108は、絶縁膜110と接するチャネル領域1
08iと、絶縁膜116と接するソース領域108sと、絶縁膜116と接するドレイン
領域108dと、を有する。
トランジスタ100Aは、先に示すトランジスタ100の構成に加え、導電膜106と
、開口部143と、を有する。
なお、開口部143は、絶縁膜104、110に設けられる。また、導電膜106は、
開口部143を介して、酸化物半導体膜112と、電気的に接続される。よって、導電膜
106と酸化物半導体膜112には、同じ電位が与えられる。また、開口部143を設け
ずに、導電膜106と、酸化物半導体膜112と、に異なる電位を与えてもよい。
なお、導電膜106は、第1のゲート電極(ボトムゲート電極ともいう)としての機能
を有し、酸化物半導体膜112は、第2のゲート電極(トップゲート電極ともいう)とし
ての機能を有する。また、絶縁膜104は、第1のゲート絶縁膜としての機能を有し、絶
縁膜110は、第2のゲート絶縁膜としての機能を有する。
このように、図3(A)(B)(C)に示すトランジスタ100Aは、先に説明したト
ランジスタ100と異なり、酸化物半導体膜108の上下にゲート電極として機能する導
電膜および酸化物半導体膜を有する構造である。トランジスタ100Aに示すように、本
発明の一態様の半導体装置には、2つ以上のゲート電極を設けてもよい。
また、図3(C)に示すように、酸化物半導体膜108は、第1のゲート電極として機
能する導電膜106と、第2のゲート電極として機能する酸化物半導体膜112のそれぞ
れと対向するように位置し、2つのゲート電極として機能する導電膜および酸化物半導体
膜に挟まれている。
また、酸化物半導体膜112のチャネル幅方向の長さは、酸化物半導体膜108のチャ
ネル幅方向の長さよりも長く、酸化物半導体膜108のチャネル幅方向全体は、絶縁膜1
10を介して酸化物半導体膜112に覆われている。また、酸化物半導体膜112と導電
膜106とは、絶縁膜104及び絶縁膜110に設けられる開口部143において接続さ
れるため、酸化物半導体膜108のチャネル幅方向の側面の一方は、酸化物半導体膜11
2と対向している。
別言すると、トランジスタ100Aのチャネル幅方向において、導電膜106及び酸化
物半導体膜112は、絶縁膜104及び絶縁膜110に設けられる開口部143において
接続すると共に、絶縁膜104及び絶縁膜110を介して酸化物半導体膜108を取り囲
む構成である。
このような構成を有することで、トランジスタ100Aに含まれる酸化物半導体膜10
8を、第1のゲート電極として機能する導電膜106及び第2のゲート電極として機能す
る酸化物半導体膜112の電界によって電気的に取り囲むことができる。トランジスタ1
00Aのように、第1のゲート電極及び第2のゲート電極の電界によって、チャネル領域
が形成される酸化物半導体膜108を電気的に取り囲むトランジスタのデバイス構造をS
urrounded channel(S−channel)構造と呼ぶことができる。
トランジスタ100Aは、S−channel構造を有するため、導電膜106または
酸化物半導体膜112によってチャネルを誘起させるための電界を効果的に酸化物半導体
膜108に印加することができるため、トランジスタ100Aの電流駆動能力が向上し、
高いオン電流特性を得ることが可能となる。また、オン電流を高くすることが可能である
ため、トランジスタ100Aを微細化することが可能となる。また、酸化物半導体膜10
8は、導電膜106、及び酸化物半導体膜112によって取り囲まれた構造を有するため
、酸化物半導体膜108の機械的強度を高めることができる。
なお、トランジスタ100Aのチャネル幅方向において、酸化物半導体膜108の開口
部143が形成されていない側面に、開口部143と異なる開口部を形成してもよい。
また、トランジスタ100Aに示すように、トランジスタが、半導体膜を間に挟んで存
在する一対のゲート電極を有している場合、一方のゲート電極には信号Aが、他方のゲー
ト電極には固定電位Vbが与えられてもよい。また、一方のゲート電極には信号Aが、他
方のゲート電極には信号Bが与えられてもよい。また、一方のゲート電極には固定電位V
aが、他方のゲート電極には固定電位Vbが与えられてもよい。
信号Aは、例えば、導通状態または非導通状態を制御するための信号である。信号Aは
、電位V1、または電位V2(V1>V2とする)の2種類の電位をとるデジタル信号で
あってもよい。例えば、電位V1を高電源電位とし、電位V2を低電源電位とすることが
できる。信号Aは、アナログ信号であってもよい。
固定電位Vbは、例えば、トランジスタのしきい値電圧VthAを制御するための電位
である。固定電位Vbは、電位V1、または電位V2であってもよい。固定電位Vbは、
電位V1、または電位V2と異なる電位であってもよい。固定電位Vbを低くすることで
、しきい値電圧VthAを高くできる場合がある。その結果、ゲートーソース間電圧Vg
sが0Vのときのドレイン電流を低減し、トランジスタを有する回路のリーク電流を低減
できる場合がある。例えば、固定電位Vbを低電源電位よりも低くしてもよい。固定電位
Vbを高くすることで、しきい値電圧VthAを低くできる場合がある。その結果、ゲー
トーソース間電圧VgsがVDDのときのドレイン電流を向上させ、トランジスタを有す
る回路の動作速度を向上できる場合がある。例えば、固定電位Vbを低電源電位よりも高
くしてもよい。
信号Bは、例えば、導通状態または非導通状態を制御するための信号である。信号Bは
、電位V3、または電位V4(V3>V4とする)の2種類の電位をとるデジタル信号で
あってもよい。例えば、電位V3を高電源電位とし、電位V4を低電源電位とすることが
できる。信号Bは、アナログ信号であってもよい。
信号Aと信号Bが共にデジタル信号である場合、信号Bは、信号Aと同じデジタル値を
持つ信号であってもよい。この場合、トランジスタのオン電流を向上し、トランジスタを
有する回路の動作速度を向上できる場合がある。このとき、信号Aにおける電位V1及び
電位V2は、信号Bにおける電位V3及び電位V4と、異なっていても良い。例えば、信
号Bが入力されるゲートに対応するゲート絶縁膜が、信号Aが入力されるゲートに対応す
るゲート絶縁膜よりも厚い場合、信号Bの電位振幅(V3−V4)を、信号Aの電位振幅
(V1−V2)より大きくしても良い。そうすることで、トランジスタの導通状態または
非導通状態に対して、信号Aが与える影響と、信号Bが与える影響と、を同程度とするこ
とができる場合がある。
信号Aと信号Bが共にデジタル信号である場合、信号Bは、信号Aと異なるデジタル値
を持つ信号であってもよい。この場合、トランジスタの制御を信号Aと信号Bによって別
々に行うことができ、より高い機能を実現できる場合がある。例えば、トランジスタがn
チャネル型である場合、信号Aが電位V1であり、かつ、信号Bが電位V3である場合の
み導通状態となる場合や、信号Aが電位V2であり、かつ、信号Bが電位V4である場合
のみ非導通状態となる場合には、一つのトランジスタでNAND回路やNOR回路等の機
能を実現できる場合がある。また、信号Bは、しきい値電圧VthAを制御するための信
号であってもよい。例えば、信号Bは、トランジスタを有する回路が動作している期間と
、当該回路が動作していない期間と、で電位が異なる信号であっても良い。信号Bは、回
路の動作モードに合わせて電位が異なる信号であってもよい。この場合、信号Bは信号A
ほど頻繁には電位が切り替わらない場合がある。
信号Aと信号Bが共にアナログ信号である場合、信号Bは、信号Aと同じ電位のアナロ
グ信号、信号Aの電位を定数倍したアナログ信号、または、信号Aの電位を定数だけ加算
もしくは減算したアナログ信号等であってもよい。この場合、トランジスタのオン電流が
向上し、トランジスタを有する回路の動作速度を向上できる場合がある。信号Bは、信号
Aと異なるアナログ信号であってもよい。この場合、トランジスタの制御を信号Aと信号
Bによって別々に行うことができ、より高い機能を実現できる場合がある。
信号Aがデジタル信号であり、信号Bがアナログ信号であってもよい。または信号Aが
アナログ信号であり、信号Bがデジタル信号であってもよい。
トランジスタの両方のゲート電極に固定電位を与える場合、トランジスタを、抵抗素子
と同等の素子として機能させることができる場合がある。例えば、トランジスタがnチャ
ネル型である場合、固定電位Vaまたは固定電位Vbを高く(低く)することで、トラン
ジスタの実効抵抗を低く(高く)することができる場合がある。固定電位Va及び固定電
位Vbを共に高く(低く)することで、一つのゲートしか有さないトランジスタによって
得られる実効抵抗よりも低い(高い)実効抵抗が得られる場合がある。
なお、トランジスタ100Aのその他の構成は、先に示すトランジスタ100と同様で
あり、同様の効果を奏する。
また、先に示すトランジスタ150においても、トランジスタ100Aと同様に、導電
膜106及び開口部143を設けてもよい。その場合の一例を図4(A)(B)(C)に
示す。図4(A)は、トランジスタ150Aの上面図であり、図4(B)は図4(A)の
一点鎖線X1−X2間の断面図であり、図4(C)は図4(A)の一点鎖線Y1−Y2間
の断面図である。
このように、本発明の一態様のトランジスタにおいては、先に説明するトランジスタを
適宜組み合わせて用いることができる。
<1−4.半導体装置の構成例4>
次に、図1(A)(B)(C)に示す半導体装置と異なる構成について、図5(A)(
B)(C)を用いて説明する。
図5(A)は、トランジスタ100Bの上面図であり、図5(B)は図5(A)の一点
鎖線X1−X2間の断面図であり、図5(C)は図5(A)の一点鎖線Y1−Y2間の断
面図である。
図5(A)(B)(C)に示すトランジスタ100Bは、先に示すトランジスタ100
Aと酸化物半導体膜112の形状が異なる。具体的には、トランジスタ100Bが有する
酸化物半導体膜112の下端部は、絶縁膜110の上端部よりも内側に形成される。別言
すると、絶縁膜110の側端部は、酸化物半導体膜112の側端部よりも外側に位置する
例えば、酸化物半導体膜112と、絶縁膜110と、を同じマスクで加工し、酸化物半
導体膜112をウエットエッチング法で、絶縁膜110をドライエッチング法で、それぞ
れ加工することで、上記構造とすることができる。
また、酸化物半導体膜112を上記の構造とすることで、酸化物半導体膜108中に、
領域108fが形成される場合がある。領域108fは、チャネル領域108iとソース
領域108sとの間、及びチャネル領域108iとドレイン領域108dとの間に形成さ
れる。
領域108fは、高抵抗領域あるいは低抵抗領域のいずれか一方として機能する。高抵
抗領域とは、チャネル領域108iと同等の抵抗を有し、ゲート電極として機能する酸化
物半導体膜112が重畳しない領域である。領域108fが高抵抗領域の場合、領域10
8fは、所謂オフセット領域として機能する。領域108fがオフセット領域として機能
する場合においては、トランジスタ100Bのオン電流の低下を抑制するために、チャネ
ル長(L)方向において、領域108fを1μm以下とすればよい。
また、低抵抗領域とは、チャネル領域108iよりも抵抗が低く、且つソース領域10
8s及びドレイン領域108dよりも抵抗が高い領域である。領域108fが低抵抗領域
の場合、領域108fは、所謂、LDD(Lightly Doped Drain)領
域として機能する。領域108fがLDD領域として機能する場合においては、ドレイン
領域の電界緩和が可能となるため、ドレイン領域の電界に起因したトランジスタのしきい
値電圧の変動を低減することができる。
なお、領域108fを低抵抗領域とする場合には、例えば、絶縁膜116から領域10
8fに水素または窒素のいずれか一方または双方を供給する、あるいは、絶縁膜110及
び酸化物半導体膜112をマスクとして、酸化物半導体膜112の上方から不純物元素を
添加することで、当該不純物が絶縁膜110を介し、酸化物半導体膜108に添加される
ことで領域108fが形成される。
また、先に示すトランジスタ150も、第2のゲート電極として機能する酸化物半導体
膜112の形状を変えることで、トランジスタ100Bと同様の構成とすることができる
。この場合の一例を図6(A)(B)(C)に示す。なお、図6(A)は、トランジスタ
150Bの上面図であり、図6(B)は図6(A)の一点鎖線X1−X2間の断面図であ
り、図6(C)は図6(A)の一点鎖線Y1−Y2間の断面図である。
<1−5.半導体装置の変形例1>
次に、図3(A)(B)(C)に示す半導体装置の変形例について、図7(A)(B)
を用いて説明する。
図7(A)(B)は、トランジスタ100Cの断面図である。トランジスタ100Cの
上面図としては、図5(A)に示すトランジスタ100Bと同様であるため、図5(A)
を援用して説明する。図7(A)は図5(A)の一点鎖線X1−X2間の断面図であり、
図7(B)は図5(A)の一点鎖線Y1−Y2間の断面図である。
トランジスタ100Cは、先に示すトランジスタ100Bに平坦化絶縁膜として機能す
る絶縁膜122が設けられている点が異なる。それ以外の構成については、先に示すトラ
ンジスタ100Bと同様の構成であり、同様の効果を奏する。
絶縁膜122は、トランジスタ等に起因する凹凸等を平坦化させる機能を有する。絶縁
膜122としては、絶縁性であればよく、無機材料または有機材料を用いて形成される。
該無機材料としては、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化
シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜等が挙げられる。該有機材料とし
ては、例えば、アクリル樹脂、またはポリイミド樹脂等の感光性の樹脂材料が挙げられる
なお、図7(A)(B)においては、絶縁膜122が有する開口部の大きさは、開口部
141a、141bよりも小さい形状としたが、これに限定されず、例えば、開口部14
1a、141bと同じ形状、または開口部141a、141bよりも大きい形状としても
よい。
また、図7(A)(B)においては、絶縁膜122上に導電膜120a、120bを設
ける構成について例示したがこれに限定されず、例えば、絶縁膜118上に導電膜120
a、120bを設け、導電膜120a、120b上に絶縁膜122を設ける構成としても
よい。
<1−6.半導体装置の変形例2>
次に、図1(A)(B)(C)に示す半導体装置の変形例について、図8及び図9を用
いて説明する。
図8(A)(B)は、トランジスタ100Dの断面図である。トランジスタ100Dの
上面図としては、図1(A)に示すトランジスタ100と同様であるため、図1(A)を
援用して説明する。図8(A)は図1(A)の一点鎖線X1−X2間の断面図であり、図
8(B)は図1(A)の一点鎖線Y1−Y2間の断面図である。
トランジスタ100Dは、先に示すトランジスタ100と絶縁膜110の形状が異なる
。それ以外の構成については、先に示すトランジスタ100と同様の構成であり、同様の
効果を奏する。
トランジスタ100Dが有する絶縁膜110は、酸化物半導体膜112よりも内側に位
置する。別言すると、絶縁膜110の側面は、酸化物半導体膜112の下端部よりも内側
に位置する。例えば、酸化物半導体膜112を加工したあとに、エッチャント等を用い絶
縁膜110をサイドエッチングすることで、図8(A)(B)に示す構成とすることがで
きる。なお、絶縁膜110を上記構造とすることで、酸化物半導体膜112の下方には、
中空領域147が形成される。
中空領域147は、空気を有し、ゲート絶縁膜の一部として機能する。なお、中空領域
147の比誘電率は、空気と同じく、概ね1となる。したがって、トランジスタ100D
の構造とすることで、ゲート電極として機能する酸化物半導体膜112に電圧が印加され
た場合、中空領域147の下方の酸化物半導体膜108に与えられる電圧が、絶縁膜11
0の下方の酸化物半導体膜108(チャネル領域108i)に与えられる電圧よりも低く
なる。よって、中空領域147の下方の酸化物半導体膜108は、実効的にオーバーラッ
プ領域(Lov領域ともいう)として機能する。酸化物半導体膜108中にLov領域を
設けることで、ソース端及びドレイン端に集中する電界を緩和することができる。なお、
Lov領域とは、ゲート電極として機能する酸化物半導体膜112と重なり、且つチャネ
ル領域108iよりも抵抗が低い領域である。
図9(A)(B)は、トランジスタ100Eの断面図である。トランジスタ100Eの
上面図としては、図1(A)に示すトランジスタ100と同様であるため、図1(A)を
援用して説明する。図9(A)は図1(A)の一点鎖線X1−X2間の断面図であり、図
9(B)は図1(A)の一点鎖線Y1−Y2間の断面図である。
トランジスタ100Eは、先に示すトランジスタ100と絶縁膜110と、絶縁膜11
6の形状が異なる。それ以外の構成については、先に示すトランジスタ100と同様の構
成であり、同様の効果を奏する。
トランジスタ100Eが有する絶縁膜110は、酸化物半導体膜112よりも内側に位
置する。別言すると、絶縁膜110の側面は、酸化物半導体膜112の下端部よりも内側
に位置する。例えば、酸化物半導体膜112を加工したあとに、エッチャント等を用い絶
縁膜110をサイドエッチングすることで、図9(A)(B)に示す構成とすることがで
きる。また、絶縁膜110を上記構造としたのち、絶縁膜116を形成することで、絶縁
膜116が、酸化物半導体膜112の下側にも入り込み、絶縁膜116が、酸化物半導体
膜112の下方に位置する酸化物半導体膜108と接する。
上記構成とすることで、ソース領域108s、及びドレイン領域108dは、酸化物半
導体膜112の下端部よりも内側に位置する。よって、トランジスタ100Eは、Lov
領域を有する。
トランジスタ100D、及びトランジスタ100EのようにLov領域を有する構造と
することで、チャネル領域108iと、ソース領域108s及びドレイン領域108dと
の間に高抵抗領域が形成されないため、トランジスタのオン電流を高めることが可能とな
る。
<1−7.半導体装置の変形例3>
次に、図3(A)(B)(C)に示す半導体装置の変形例について、図10乃至図12
を用いて説明する。
図10(A)(B)は、トランジスタ100Fの断面図である。トランジスタ100F
の上面図としては、図3(A)に示すトランジスタ100Aと同様であるため、図3(A
)を援用して説明する。図10(A)は図3(A)の一点鎖線X1−X2間の断面図であ
り、図10(B)は図3(A)の一点鎖線Y1−Y2間の断面図である。
トランジスタ100Fは、先に示すトランジスタ100Bと酸化物半導体膜108の構
造が異なる。それ以外の構成については、先に示すトランジスタ100Bと同様の構成で
あり、同様の効果を奏する。
トランジスタ100Fが有する酸化物半導体膜108は、絶縁膜116上の酸化物半導
体膜108_1と、酸化物半導体膜108_1上の酸化物半導体膜108_2と、酸化物
半導体膜108_2上の酸化物半導体膜108_3と、を有する。
また、チャネル領域108i、ソース領域108s、及びドレイン領域108dは、そ
れぞれ、酸化物半導体膜108_1、酸化物半導体膜108_2、及び酸化物半導体膜1
08_3の3層の積層構造である。
図11(A)(B)は、トランジスタ100Gの断面図である。トランジスタ100G
の上面図としては、図3(A)に示すトランジスタ100Aと同様であるため、図3(A
)を援用して説明する。図11(A)は図3(A)の一点鎖線X1−X2間の断面図であ
り、図11(B)は図3(A)の一点鎖線Y1−Y2間の断面図である。
トランジスタ100Gは、先に示すトランジスタ100Aと酸化物半導体膜108の構
造が異なる。それ以外の構成については、先に示すトランジスタ100Aと同様の構成で
あり、同様の効果を奏する。
トランジスタ100Gが有する酸化物半導体膜108は、絶縁膜116上の酸化物半導
体膜108_2と、酸化物半導体膜108_2上の酸化物半導体膜108_3と、を有す
る。
また、チャネル領域108i、ソース領域108s、及びドレイン領域108dは、そ
れぞれ、酸化物半導体膜108_2、及び酸化物半導体膜108_3の2層の積層構造で
ある。
<1−8.バンド構造>
ここで、絶縁膜104、酸化物半導体膜108_1、108_2、108_3、及び絶
縁膜110のバンド構造、並びに、絶縁膜104、酸化物半導体膜108_2、108_
3、及び絶縁膜110のバンド構造について、図12を用いて説明する。
図12(A)は、絶縁膜104、酸化物半導体膜108_1、108_2、108_3
、及び絶縁膜110を有する積層構造の膜厚方向のバンド構造の一例である。また、図1
2(B)は、絶縁膜104、酸化物半導体膜108_2、108_3、及び絶縁膜110
を有する積層構造の膜厚方向のバンド構造の一例である。なお、バンド構造は、理解を容
易にするため絶縁膜104、酸化物半導体膜108_1、108_2、108_3、及び
絶縁膜110の伝導帯下端のエネルギー準位(Ec)を示す。
また、図12(A)は、絶縁膜104、110として酸化シリコン膜を用い、酸化物半
導体膜108_1として金属元素の原子数比をIn:Ga:Zn=1:3:2の金属酸化
物ターゲットを用いて形成される酸化物半導体膜を用い、酸化物半導体膜108_2とし
て金属元素の原子数比をIn:Ga:Zn=4:2:4.1の金属酸化物ターゲットを用
いて形成される酸化物半導体膜を用い、酸化物半導体膜108_3として金属元素の原子
数比をIn:Ga:Zn=1:3:2の金属酸化物ターゲットを用いて形成される酸化物
半導体膜を用いる構成のバンド図である。
また、図12(B)は、絶縁膜104、110として酸化シリコン膜を用い、酸化物半
導体膜108_2として金属元素の原子数比をIn:Ga:Zn=4:2:4.1の金属
酸化物ターゲットを用いて形成される酸化物半導体膜を用い、酸化物半導体膜108_3
として金属元素の原子数比をIn:Ga:Zn=1:3:2の金属酸化物ターゲットを用
いて形成される酸化物半導体膜を用いる構成のバンド図である。
図12(A)に示すように、酸化物半導体膜108_1、108_2、108_3にお
いて、伝導帯下端のエネルギー準位はなだらかに変化する。また、図12(B)に示すよ
うに、酸化物半導体膜108_2、108_3において、伝導帯下端のエネルギー準位は
なだらかに変化する。換言すると、連続的に変化または連続接合するともいうことができ
る。このようなバンド構造を有するためには、酸化物半導体膜108_1と酸化物半導体
膜108_2との界面、または酸化物半導体膜108_2と酸化物半導体膜108_3と
の界面において、トラップ中心や再結合中心のような欠陥準位を形成するような不純物が
存在しないとする。
酸化物半導体膜108_1、108_2、108_3に連続接合を形成するためには、
ロードロック室を備えたマルチチャンバー方式の成膜装置(スパッタリング装置)を用い
て各膜を大気に触れさせることなく連続して積層することが必要となる。
図12(A)(B)に示す構成とすることで酸化物半導体膜108_2がウェル(井戸
)となり、上記積層構造を用いたトランジスタにおいて、チャネル領域が酸化物半導体膜
108_2に形成されることがわかる。
なお、酸化物半導体膜108_1、108_3を設けることにより、酸化物半導体膜1
08_2に形成されうるトラップ準位を酸化物半導体膜108_2より遠ざけることがで
きる。
また、トラップ準位がチャネル領域として機能する酸化物半導体膜108_2の伝導帯
下端のエネルギー準位(Ec)より真空準位から遠くなることがあり、トラップ準位に電
子が蓄積しやすくなってしまう。トラップ準位に電子が蓄積されることで、マイナスの固
定電荷となり、トランジスタのしきい値電圧はプラス方向にシフトしてしまう。したがっ
て、トラップ準位が酸化物半導体膜108_2の伝導帯下端のエネルギー準位(Ec)よ
り真空準位に近くなるような構成にすると好ましい。このようにすることで、トラップ準
位に電子が蓄積しにくくなり、トランジスタのオン電流を増大させることが可能であると
共に、電界効果移動度を高めることができる。
また、酸化物半導体膜108_1、108_3は、酸化物半導体膜108_2よりも伝
導帯下端のエネルギー準位が真空準位に近く、代表的には、酸化物半導体膜108_2の
伝導帯下端のエネルギー準位と、酸化物半導体膜108_1、108_3の伝導帯下端の
エネルギー準位との差が、0.15eV以上、または0.5eV以上、かつ2eV以下、
または1eV以下である。すなわち、酸化物半導体膜108_1、108_3の電子親和
力と、酸化物半導体膜108_2の電子親和力との差が、0.15eV以上、または0.
5eV以上、かつ2eV以下、または1eV以下である。
このような構成を有することで、酸化物半導体膜108_2が主な電流経路となる。す
なわち、酸化物半導体膜108_2は、チャネル領域としての機能を有し、酸化物半導体
膜108_1、108_3は、酸化物絶縁膜としての機能を有する。また、酸化物半導体
膜108_1、108_3は、チャネル領域が形成される酸化物半導体膜108_2を構
成する金属元素の一種以上から構成される酸化物半導体膜を用いると好ましい。このよう
な構成とすることで、酸化物半導体膜108_1と酸化物半導体膜108_2との界面、
または酸化物半導体膜108_2と酸化物半導体膜108_3との界面において、界面散
乱が起こりにくい。従って、該界面においてはキャリアの動きが阻害されないため、トラ
ンジスタの電界効果移動度が高くなる。
また、酸化物半導体膜108_1、108_3は、チャネル領域の一部として機能する
ことを防止するため、導電率が十分に低い材料を用いるものとする。そのため、酸化物半
導体膜108_1、108_3を、その物性及び/または機能から、それぞれ酸化物絶縁
膜とも呼べる。または、酸化物半導体膜108_1、108_3には、電子親和力(真空
準位と伝導帯下端のエネルギー準位との差)が酸化物半導体膜108_2よりも小さく、
伝導帯下端のエネルギー準位が酸化物半導体膜108_2の伝導帯下端エネルギー準位と
差分(バンドオフセット)を有する材料を用いるものとする。また、ドレイン電圧の大き
さに依存したしきい値電圧の差が生じることを抑制するためには、酸化物半導体膜108
_1、108_3の伝導帯下端のエネルギー準位が、酸化物半導体膜108_2の伝導帯
下端のエネルギー準位よりも真空準位に近い材料を用いると好適である。例えば、酸化物
半導体膜108_2の伝導帯下端のエネルギー準位と、酸化物半導体膜108_1、10
8_3の伝導帯下端のエネルギー準位との差が、0.2eV以上、好ましくは0.5eV
以上とすることが好ましい。
また、酸化物半導体膜108_1、108_3は、膜中にスピネル型の結晶構造が含ま
れないことが好ましい。酸化物半導体膜108_1、108_3の膜中にスピネル型の結
晶構造を含む場合、該スピネル型の結晶構造と他の領域との界面において、導電膜120
a、120bの構成元素が酸化物半導体膜108_2へ拡散してしまう場合がある。なお
、酸化物半導体膜108_1、108_3がCAAC−OSである場合、導電膜120a
、120bの構成元素、例えば、銅元素のブロッキング性が高くなり好ましい。
また、本実施の形態においては、酸化物半導体膜108_1、108_3として、金属
元素の原子数比をIn:Ga:Zn=1:3:2の金属酸化物ターゲットを用いて形成さ
れる酸化物半導体膜を用いる構成について例示したが、これに限定されない。例えば、酸
化物半導体膜108_1、108_3として、In:Ga:Zn=1:1:1[原子数比
]、In:Ga:Zn=1:1:1.2[原子数比]、In:Ga:Zn=1:3:4[
原子数比]、またはIn:Ga:Zn=1:3:6[原子数比]の金属酸化物ターゲット
を用いて形成される酸化物半導体膜を用いてもよい。
なお、酸化物半導体膜108_1、108_3として、In:Ga:Zn=1:1:1
[原子数比]の金属酸化物ターゲットを用いる場合、酸化物半導体膜108_1、108
_3は、In:Ga:Zn=1:β1(0<β1≦2):β2(0<β2≦2)となる場
合がある。また、酸化物半導体膜108_1、108_3として、In:Ga:Zn=1
:3:4[原子数比]の金属酸化物ターゲットを用いる場合、酸化物半導体膜108_1
、108_3は、In:Ga:Zn=1:β3(1≦β3≦5):β4(2≦β4≦6)
となる場合がある。また、酸化物半導体膜108_1、108_3として、In:Ga:
Zn=1:3:6[原子数比]の金属酸化物ターゲットを用いる場合、酸化物半導体膜1
08_1、108_3は、In:Ga:Zn=1:β5(1≦β5≦5):β6(4≦β
6≦8)となる場合がある。
<1−9.半導体装置の作製方法1>
次に、図1に示すトランジスタ100の作製方法の一例について、図13乃至図15を
用いて説明する。なお、図13乃至図15は、トランジスタ100の作製方法を説明する
チャネル長(L)方向、及びチャネル幅(W)方向の断面図である。
まず、基板102上に絶縁膜104を形成し、絶縁膜104上に酸化物半導体膜を形成
する。その後、当該酸化物半導体膜を島状に加工することで、酸化物半導体膜107を形
成する(図13(A)参照)。
絶縁膜104としては、スパッタリング法、CVD法、蒸着法、パルスレーザー堆積(
PLD)法、印刷法、塗布法等を適宜用いて形成することができる。本実施の形態におい
ては、絶縁膜104として、PECVD装置を用い、厚さ400nmの窒化シリコン膜と
、厚さ50nmの酸化窒化シリコン膜とを形成する。
また、絶縁膜104を形成した後、絶縁膜104に酸素を添加してもよい。絶縁膜10
4に添加する酸素としては、酸素ラジカル、酸素原子、酸素原子イオン、酸素分子イオン
等がある。また、添加方法としては、イオンドーピング法、イオン注入法、プラズマ処理
法等がある。また、絶縁膜上に酸素の脱離を抑制する膜を形成した後、該膜を介して絶縁
膜104に酸素を添加してもよい。
上述の酸素の脱離を抑制する膜として、インジウム、亜鉛、ガリウム、錫、アルミニウ
ム、クロム、タンタル、チタン、モリブデン、ニッケル、鉄、コバルト、タングステンか
ら選ばれた金属元素、上述した金属元素を成分とする合金、上述した金属元素を組み合わ
せた合金、上述した金属元素を有する金属窒化物、上述した金属元素を有する金属酸化物
、上述した金属元素を有する金属窒化酸化物等の導電性を有する材料を用いて形成するこ
とができる。
また、プラズマ処理で酸素の添加を行う場合、マイクロ波で酸素を励起し、高密度な酸
素プラズマを発生させることで、絶縁膜104への酸素添加量を増加させることができる
酸化物半導体膜107としては、スパッタリング法、塗布法、パルスレーザー蒸着法、
レーザーアブレーション法、熱CVD法等により形成することができる。なお、酸化物半
導体膜107への加工には、酸化物半導体膜上にリソグラフィ工程によりマスクを形成し
た後、該マスクを用いて酸化物半導体膜の一部をエッチングすること形成することができ
る。また、印刷法を用いて、島状の酸化物半導体膜107を直接形成してもよい。
スパッタリング法で酸化物半導体膜を形成する場合、プラズマを発生させるための電源
装置は、RF電源装置、AC電源装置、DC電源装置等を適宜用いることができる。また
、酸化物半導体膜を形成する場合のスパッタリングガスは、希ガス(代表的にはアルゴン
)、酸素、希ガス及び酸素の混合ガスを適宜用いる。なお、希ガス及び酸素の混合ガスの
場合、希ガスに対して酸素のガス比を高めることが好ましい。
なお、酸化物半導体膜を形成する際に、例えば、スパッタリング法を用いる場合、基板
温度を150℃以上750℃以下、または150℃以上450℃以下、または200℃以
上350℃以下として、酸化物半導体膜を成膜することで、結晶性を高めることができる
ため好ましい。
なお、本実施の形態においては、酸化物半導体膜107として、スパッタリング装置を
用い、スパッタリングターゲットとしてIn−Ga−Zn金属酸化物(In:Ga:Zn
=1:1:1.2[原子数比])を用いて、膜厚40nmの酸化物半導体膜を成膜する。
また、酸化物半導体膜107を形成した後、加熱処理を行い、酸化物半導体膜107の
脱水素化または脱水化をしてもよい。加熱処理の温度は、代表的には、150℃以上基板
歪み点未満、または250℃以上450℃以下、または300℃以上450℃以下である
加熱処理は、ヘリウム、ネオン、アルゴン、キセノン、クリプトン等の希ガス、または
窒素を含む不活性ガス雰囲気で行うことができる。または、不活性ガス雰囲気で加熱した
後、酸素雰囲気で加熱してもよい。なお、上記不活性雰囲気及び酸素雰囲気に水素、水な
どが含まれないことが好ましい。処理時間は3分以上24時間以下とすればよい。
該加熱処理は、電気炉、RTA装置等を用いることができる。RTA装置を用いること
で、短時間に限り、基板の歪み点以上の温度で熱処理を行うことができる。そのため加熱
処理時間を短縮することができる。
酸化物半導体膜を加熱しながら成膜する、または酸化物半導体膜を形成した後、加熱処
理を行うことで、酸化物半導体膜において、二次イオン質量分析法により得られる水素濃
度を5×1019atoms/cm以下、または1×1019atoms/cm以下
、5×1018atoms/cm以下、または1×1018atoms/cm以下、
または5×1017atoms/cm以下、または1×1016atoms/cm
下とすることができる。
次に、絶縁膜104及び酸化物半導体膜107上に絶縁膜110_0を形成する(図1
3(B)参照)。
絶縁膜110_0としては、酸化シリコン膜または酸化窒化シリコン膜を、PECVD
法を用いて形成することができる。この場合、原料ガスとしては、シリコンを含む堆積性
気体及び酸化性気体を用いることが好ましい。シリコンを含む堆積性気体の代表例として
は、シラン、ジシラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素
、オゾン、一酸化二窒素、二酸化窒素等がある。
また、絶縁膜110_0として、堆積性気体の流量に対して酸化性気体の流量を20倍
より大きく100倍未満、または40倍以上80倍以下とし、処理室内の圧力を100P
a未満、または50Pa以下とするPECVD法を用いることで、欠陥量の少ない酸化窒
化シリコン膜を形成することができる。
また、絶縁膜110_0として、PECVD装置の真空排気された処理室内に載置され
た基板を280℃以上400℃以下に保持し、処理室に原料ガスを導入して処理室内にお
ける圧力を20Pa以上250Pa以下、さらに好ましくは100Pa以上250Pa以
下とし、処理室内に設けられる電極に高周波電力を供給する条件により、緻密である酸化
シリコン膜または酸化窒化シリコン膜を形成することができる。
また、絶縁膜110_0を、マイクロ波を用いたPECVD法を用いて形成してもよい
。マイクロ波とは300MHzから300GHzの周波数域を指す。マイクロ波は、電子
温度が低く、電子エネルギーが小さい。また、マイクロ波を用いたPECVD装置を用い
ると、供給された電力のうちプラズマを生成する、すなわち分子の電離に用いられる電力
の割合が高く、電子の加速に用いられる電力の割合が少ない。したがって、密度の高いプ
ラズマ(高密度プラズマ)を励起することができる。このため、被成膜面及び堆積物への
プラズマダメージが少なく、欠陥の少ない絶縁膜110_0を形成することができる。
また、絶縁膜110_0を、有機シランガスを用いたCVD法を用いて形成することが
できる。有機シランガスとしては、珪酸エチル(TEOS:化学式Si(OC
)、テトラメチルシラン(TMS:化学式Si(CH)、テトラメチルシクロテト
ラシロキサン(TMCTS)、オクタメチルシクロテトラシロキサン(OMCTS)、ヘ
キサメチルジシラザン(HMDS)、トリエトキシシラン(SiH(OC)、
トリスジメチルアミノシラン(SiH(N(CH)などのシリコン含有化合物
を用いることができる。有機シランガスを用いたCVD法を用いることで、被覆性の高い
絶縁膜110_0を形成することができる。
本実施の形態では絶縁膜110_0として、PECVD装置を用い、厚さ100nmの
酸化窒化シリコン膜を形成する。
次に、絶縁膜110_0上に酸化物半導体膜112_0を形成する。なお、酸化物半導
体膜112_0の形成時において、酸化物半導体膜112_0から絶縁膜110_0中に
酸素が添加される(図13(C)参照)。
酸化物半導体膜112_0の形成方法としては、スパッタリング法を用い、形成時に酸
素ガスを含む雰囲気で形成すると好ましい。形成時に酸素ガスを含む雰囲気で酸化物半導
体膜112_0を形成することで、絶縁膜110_0中に酸素を好適に添加することがで
きる。
なお、図13(C)において、絶縁膜110_0中に添加される酸素を矢印で模式的に
表している。また、酸化物半導体膜112_0としては、先に記載の酸化物半導体膜10
7の材料と同様の材料を用いることができる。
本実施の形態においては、酸化物半導体膜112_0として、スパッタリング装置を用
い、スパッタリングターゲットとしてIn−Ga−Zn金属酸化物(In:Ga:Zn=
4:2:4.1[原子数比])を用いて、膜厚100nmの酸化物半導体膜を成膜する。
次に、酸化物半導体膜112_0上の所望の位置に、リソグラフィ工程によりマスク1
40を形成する(図13(D)参照)。
次に、マスク140上から、エッチングを行うことで、酸化物半導体膜112_0と、
絶縁膜110_0と、を加工したのち、マスク140を除去することで、島状の酸化物半
導体膜112と、島状の絶縁膜110とを形成する(図14(A)参照)。
本実施の形態においては、酸化物半導体膜112_0、及び絶縁膜110_0の加工と
しては、ドライエッチング法を用いて行う。
なお、酸化物半導体膜112と、絶縁膜110との加工の際に、酸化物半導体膜112
が重畳しない領域の酸化物半導体膜107の膜厚が薄くなる場合がある。または、酸化物
半導体膜112と、絶縁膜110との加工の際に、酸化物半導体膜107が重畳しない領
域の絶縁膜104の膜厚が薄くなる場合がある。
次に、絶縁膜104、酸化物半導体膜107、及び酸化物半導体膜112上から、不純
物元素145の添加を行う(図14(B)参照)。
不純物元素145の添加方法としては、イオンドーピング法、イオン注入法、プラズマ
処理法等がある。プラズマ処理法の場合、添加する不純物元素を含むガス雰囲気にてプラ
ズマを発生させて、プラズマ処理を行うことによって、不純物元素を添加することができ
る。上記プラズマを発生させる装置としては、ドライエッチング装置、アッシング装置、
PECVD装置、高密度PECVD装置等を用いることができる。
なお、不純物元素145の原料ガスとして、B、PH、CH、N、NH
、AlH、AlCl、SiH、Si、F、HF、H及び希ガス(例えば
アルゴン)の一以上を用いることができる。または、希ガスで希釈されたB、PH
、N、NH、AlH、AlCl、F、HF、及びHの一以上を用いること
ができる。希ガスで希釈されたB、PH、N、NH、AlH、AlCl
、F、HF、及びHの一以上を用いて不純物元素145を酸化物半導体膜107及び
酸化物半導体膜112に添加することで、希ガス、水素、ホウ素、炭素、窒素、フッ素、
リン、硫黄、及び塩素の一以上を酸化物半導体膜107及び酸化物半導体膜112に添加
することができる。
または、不純物元素145は、希ガスを原料ガスとして添加した後、B、PH
、CH、N、NH、AlH、AlCl、SiH、Si、F、HF、
及びHの一以上を原料ガスとして酸化物半導体膜107及び酸化物半導体膜112に添
加してもよい。
または、不純物元素145は、B、PH、CH、N、NH、AlH
AlCl、SiH、Si、F、HF、及びHの一以上を原料ガスとして添
加した後、希ガスを原料ガスとして酸化物半導体膜107及び酸化物半導体膜112に添
加してもよい。
不純物元素145の添加は、加速電圧、ドーズ量などの注入条件を適宜設定して制御す
ればよい。例えば、イオン注入法でアルゴンの添加を行う場合、加速電圧10kV以上1
00kV以下、ドーズ量は1×1013ions/cm以上1×1016ions/c
以下とすればよく、例えば、1×1014ions/cmとすればよい。また、イ
オン注入法でリンイオンの添加を行う場合、加速電圧30kV、ドーズ量は1×1013
ions/cm以上5×1016ions/cm以下とすればよく、例えば、1×1
15ions/cmとすればよい。
また、本実施の形態においては、マスク140を除去してから、不純物元素145を添
加する構成について例示したが、これに限定されず、例えば、マスク140を残したまま
の状態で不純物元素145の添加を行ってもよい。
また、本実施の形態においては、不純物元素145として、ドーピング装置を用いて、
アルゴンを酸化物半導体膜107及び酸化物半導体膜112に添加する。なお、本実施の
形態においては、不純物元素145を添加する構成について例示したがこれに限定されず
、例えば、不純物元素145を添加する工程を行わなくてもよい。
次に、絶縁膜104、酸化物半導体膜107、及び酸化物半導体膜112上に絶縁膜1
16を形成する。なお、絶縁膜116を形成することで、絶縁膜116と接する酸化物半
導体膜107は、ソース領域108s及びドレイン領域108dとなる。また、絶縁膜1
16と接しない酸化物半導体膜107、別言すると絶縁膜110と接する酸化物半導体膜
107はチャネル領域108iとなる。これにより、チャネル領域108i、ソース領域
108s、及びドレイン領域108dを有する酸化物半導体膜108が形成される(図1
4(C)参照)。
絶縁膜116としては、先に記載の材料を選択することで形成できる。本実施の形態に
おいては、絶縁膜116として、PECVD装置を用い、厚さ100nmの窒化シリコン
膜を形成する。
絶縁膜116として、窒化シリコン膜を用いることで、絶縁膜116に接する酸化物半
導体膜112、ソース領域108s、及びドレイン領域108dに窒化シリコン膜中の水
素が入り込み、酸化物半導体膜112、ソース領域108s、及びドレイン領域108d
のキャリア密度を高めることができる。
次に、絶縁膜116上に絶縁膜118を形成する(図14(D)参照)。
絶縁膜118としては、先に記載の材料を選択することで形成できる。本実施の形態に
おいては、絶縁膜118として、PECVD装置を用い、厚さ300nmの酸化窒化シリ
コン膜を形成する。
次に、絶縁膜118の所望の位置に、リソグラフィ工程によりマスクを形成した後、絶
縁膜118及び絶縁膜116の一部をエッチングすることで、ソース領域108sに達す
る開口部141aと、ドレイン領域108dに達する開口部141bと、を形成する(図
15(A)参照)。
絶縁膜118及び絶縁膜116をエッチングする方法としては、ウエットエッチング法
及び/またはドライエッチング法を適宜用いることができる。本実施の形態においては、
ドライエッチング法を用い、絶縁膜118、及び絶縁膜116を加工する。
次に、開口部141a、141bを覆うように、絶縁膜118上に導電膜120を形成
する(図15(B)参照)。
導電膜120としては、導電膜120a、120bに用いることのできる材料を選択す
ることで形成できる。本実施の形態においては、導電膜120として、スパッタリング装
置を用い、厚さ50nmのチタン膜と、厚さ400nmのアルミニウム膜と、厚さ100
nmのチタン膜の積層膜を形成する。
次に、導電膜120上の所望の位置に、リソグラフィ工程によりマスクを形成した後、
導電膜120の一部をエッチングすることで、導電膜120a、120bを形成する(図
15(C)参照)。
導電膜120の加工方法としては、ウエットエッチング法及び/またはドライエッチン
グ法を適宜用いることができる。本実施の形態では、ドライエッチング法を用い、導電膜
120を加工し、導電膜120a、120bを形成する。
以上の工程により、図1に示すトランジスタ100を作製することができる。
なお、トランジスタ100を構成する膜(絶縁膜、酸化物半導体膜、導電膜等)は、ス
パッタリング法、化学気相堆積(CVD)法、真空蒸着法、パルスレーザー堆積(PLD
)法、ALD(原子層成膜)法を用いて形成することができる。あるいは、塗布法や印刷
法で形成することができる。成膜方法としては、スパッタリング法、プラズマ化学気相堆
積(PECVD)法が代表的であるが、熱CVD法でもよい。熱CVD法の例として、M
OCVD(有機金属化学気相堆積)法が挙げられる。
熱CVD法は、チャンバー内を大気圧または減圧下とし、原料ガスと酸化剤を同時にチ
ャンバー内に送り、基板近傍または基板上で反応させて基板上に堆積させることで成膜を
行う。このように、熱CVD法は、プラズマを発生させない成膜方法であるため、プラズ
マダメージにより欠陥が生成されることが無いという利点を有する。
また、ALD法は、チャンバー内を大気圧または減圧下とし、反応のための原料ガスを
チャンバーに導入・反応させ、これを繰り返すことで成膜を行う。原料ガスと一緒に不活
性ガス(アルゴン、或いは窒素など)をキャリアガスとして導入しても良い。例えば2種
類以上の原料ガスを順番にチャンバーに供給してもよい。その際、複数種の原料ガスが混
ざらないように第1の原料ガスの反応後、不活性ガスを導入し、第2の原料ガスを導入す
る。あるいは、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出し
た後、第2の原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着・反応して
第1の層を成膜し、後から導入される第2の原料ガスが吸着・反応して、第2の層が第1
の層上に積層されて薄膜が形成される。このガス導入順序を制御しつつ所望の厚さになる
まで複数回繰り返すことで、段差被覆性に優れた薄膜を形成することができる。薄膜の厚
さは、ガス導入を繰り返す回数によって調節することができるため、精密な膜厚調節が可
能であり、微細なFETを作製する場合に適している。
MOCVD法などの熱CVD法は、上記記載の導電膜、絶縁膜、酸化物半導体膜などの
膜を形成することができ、例えば、In−Ga−Zn−O膜を成膜する場合には、トリメ
チルインジウム(In(CH)、トリメチルガリウム(Ga(CH)、及び
ジメチル亜鉛(Zn(CH)を用いる。これらの組み合わせに限定されず、トリメ
チルガリウムに代えてトリエチルガリウム(Ga(C)を用いることもでき、
ジメチル亜鉛に代えてジエチル亜鉛(Zn(C)を用いることもできる。
例えば、ALDを利用する成膜装置により酸化ハフニウム膜を形成する場合には、溶媒
とハフニウム前駆体を含む液体(ハフニウムアルコキシドや、テトラキスジメチルアミド
ハフニウム(TDMAH、Hf[N(CH)やテトラキス(エチルメチルアミ
ド)ハフニウムなどのハフニウムアミド)を気化させた原料ガスと、酸化剤としてオゾン
(O)の2種類のガスを用いる。
例えば、ALDを利用する成膜装置により酸化アルミニウム膜を形成する場合には、溶
媒とアルミニウム前駆体を含む液体(トリメチルアルミニウム(TMA、Al(CH
)など)を気化させた原料ガスと、酸化剤としてHOの2種類のガスを用いる。他の
材料としては、トリス(ジメチルアミド)アルミニウム、トリイソブチルアルミニウム、
アルミニウムトリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナート)な
どがある。
例えば、ALDを利用する成膜装置により酸化シリコン膜を形成する場合には、ヘキサ
クロロジシランを被成膜面に吸着させ、酸化性ガス(O、一酸化二窒素)のラジカルを
供給して吸着物と反応させる。
例えば、ALDを利用する成膜装置によりタングステン膜を成膜する場合には、WF
ガスとBガスを順次導入して初期タングステン膜を形成し、その後、WFガスと
ガスとを用いてタングステン膜を形成する。なお、Bガスに代えてSiH
スを用いてもよい。
例えば、ALDを利用する成膜装置により酸化物半導体膜、例えばIn−Ga−Zn−
O膜を成膜する場合には、In(CHガスとOガスを用いてIn−O層を形成し
、その後、Ga(CHガスとOガスとを用いてGa−O層を形成し、更にその後
Zn(CHガスとOガスとを用いてZn−O層を形成する。なお、これらの層の
順番はこの例に限らない。また、これらのガスを用いてIn−Ga−O層やIn−Zn−
O層、Ga−Zn−O層などの混合化合物層を形成しても良い。なお、Oガスに変えて
Ar等の不活性ガスで水をバブリングして得られたHOガスを用いても良いが、Hを含
まないOガスを用いる方が好ましい。
<1−10.半導体装置の作製方法2>
次に、図7に示すトランジスタ100Cの作製方法の一例について、図16乃至図19
を用いて説明する。なお、図16乃至図19は、トランジスタ100Cの作製方法を説明
するチャネル長(L)方向、及びチャネル幅(W)方向の断面図である。
まず、基板102上に導電膜106を形成する。次に、基板102、及び導電膜106
上に絶縁膜104を形成し、絶縁膜104上に酸化物半導体膜を形成する。その後、当該
酸化物半導体膜を島状に加工することで、酸化物半導体膜107を形成する(図16(A
)参照)。
導電膜106としては、酸化物半導体膜112または導電膜120a、120bと同様
の材料、及び同様の手法により形成することができる。本実施の形態においては、導電膜
106として、厚さ100nmのタングステン膜をスパッタリング法により形成する。
次に、絶縁膜104及び酸化物半導体膜107上に絶縁膜110_0を形成する(図1
6(B)参照)。
次に、絶縁膜110_0上の所望の位置に、リソグラフィによりマスクを形成した後、
絶縁膜110_0及び絶縁膜104の一部をエッチングすることで、導電膜106に達す
る開口部143を形成する(図16(C)参照)。
開口部143の形成方法としては、ウエットエッチング法及び/またはドライエッチン
グ法を適宜用いることができる。本実施の形態においては、ドライエッチング法を用い、
開口部143を形成する。
次に、開口部143を覆うように、絶縁膜110_0上に酸化物半導体膜112_0を
形成する。なお、酸化物半導体膜112_0の形成時において、酸化物半導体膜112_
0から絶縁膜110_0中に酸素が添加される(図16(D)参照)。
なお、図16(D)において、絶縁膜110_0中に添加される酸素を矢印で模式的に
表している。また、開口部143を覆うように、酸化物半導体膜112_0を形成するこ
とで、導電膜106と、酸化物半導体膜112_0とが電気的に接続される。
次に、酸化物半導体膜112_0上の所望の位置に、リソグラフィ工程によりマスク1
40を形成する(図17(A)参照)。
次に、マスク140上から、エッチングを行うことで酸化物半導体膜112_0を加工
し、島状の酸化物半導体膜112を形成する(図17(B)参照)。
本実施の形態においては、ウエットエッチング法を用い、酸化物半導体膜112_0を
加工する。
続けて、マスク140上から、エッチングを行うことで絶縁膜110_0を加工し、島
状の絶縁膜110を形成する(図17(C)参照)。
本実施の形態においては、ドライエッチング法を用い、絶縁膜110_0を加工する。
次に、マスク140を除去した後、絶縁膜104、酸化物半導体膜107、及び酸化物
半導体膜112上から、不純物元素145の添加を行う(図17(D)参照)。
なお、不純物元素145の添加の際に、酸化物半導体膜107の表面が露出している領
域(後にソース領域108s、及びドレイン領域108dとなる領域)には、多くの不純
物が添加される。一方で、酸化物半導体膜107の酸化物半導体膜112が重畳しなく、
且つ絶縁膜110が重畳する領域(後に領域108fとなる領域)には、絶縁膜110を
介して不純物元素145が添加されるため、ソース領域108s、及びドレイン領域10
8dよりも不純物元素145の添加量が少なくなる。
また、本実施の形態においては、不純物元素145として、ドーピング装置を用いて、
アルゴンを酸化物半導体膜107及び酸化物半導体膜112に添加する。
なお、本実施の形態においては、不純物元素145として、アルゴンを添加する構成に
ついて例示したがこれに限定されず、例えば、不純物元素145を添加する工程を行わな
くてもよい。不純物元素145を添加する工程を行わない場合、領域108fは、チャネ
ル領域108iと同等の不純物濃度となる。
次に、絶縁膜104、酸化物半導体膜107、絶縁膜110、及び酸化物半導体膜11
2上に絶縁膜116を形成する。なお、絶縁膜116を形成することで、絶縁膜116と
接する酸化物半導体膜107は、ソース領域108s及びドレイン領域108dとなる。
また、絶縁膜116と接しない酸化物半導体膜107、別言すると絶縁膜110と接する
酸化物半導体膜107はチャネル領域108iとなる。これにより、チャネル領域108
i、ソース領域108s、及びドレイン領域108dを有する酸化物半導体膜108が形
成される(図18(A)参照)。
なお、チャネル領域108iと、ソース領域108sとの間、及びチャネル領域108
iと、ドレイン領域108dとの間には、領域108fが形成される。
次に、絶縁膜116上に絶縁膜118を形成する(図18(B)参照)。
次に、絶縁膜118の所望の位置に、リソグラフィ工程によりマスクを形成した後、絶
縁膜118及び絶縁膜116の一部をエッチングすることで、ソース領域108sに達す
る開口部141aと、ドレイン領域108dに達する開口部141bと、を形成する(図
18(C)参照)。
次に、絶縁膜118上に絶縁膜122を形成する(図18(D)参照)。
なお、絶縁膜122は、平坦化絶縁膜としての機能を有する。また、絶縁膜122は、
開口部141a、及び開口部141bに重畳する位置に開口部を有する。
本実施の形態としては、絶縁膜122として、スピンコーター装置を用いて感光性のア
クリル系樹脂を塗布し、その後該アクリル系樹脂の所望の領域を感光させることで、開口
部を有する絶縁膜122を形成する。
次に、開口部141a、141bを覆うように、絶縁膜122上に導電膜120を形成
する(図19(A)参照)。
次に、導電膜120上の所望の位置に、リソグラフィ工程によりマスクを形成した後、
導電膜120の一部をエッチングすることで、導電膜120a、120bを形成する(図
19(B)参照)。
本実施の形態においては、導電膜120の加工にはドライエッチング法を用いる。また
、導電膜120の加工の際に、絶縁膜122の上部の一部が除去される場合がある。
以上の工程により、図7に示すトランジスタ100Cを作製することができる。
なお、上記のトランジスタ100Cの作製時において、絶縁膜104、酸化物半導体膜
107、絶縁膜110_0、酸化物半導体膜112_0、不純物元素145、絶縁膜11
6、絶縁膜118、開口部141a、141b、及び導電膜120としては、<1−9.
半導体装置の作製方法1>に記載の内容を援用することで形成することができる。
また、本実施の形態において、トランジスタが酸化物半導体膜を有する場合の例を示し
たが、本発明の一態様は、これに限定されない。本発明の一態様では、トランジスタが酸
化物半導体膜を有さなくてもよい。一例としては、トランジスタのチャネル領域、チャネ
ル領域の近傍、ソース領域、またはドレイン領域において、Si(シリコン)、Ge(ゲ
ルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、などを
有する材料で形成してもよい。
以上、本実施の形態で示す構成、方法は、他の実施の形態または実施例で示す構成、方
法と適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態においては、酸化物半導体の構造等について、図20乃至図24を参照し
て説明する。
<2−1.酸化物半導体の構造>
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分け
られる。非単結晶酸化物半導体としては、CAAC−OS(c−axis−aligne
d crystalline oxide semiconductor)、多結晶酸化
物半導体、nc−OS(nanocrystalline oxide semicon
ductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−
like oxide semiconductor)および非晶質酸化物半導体などが
ある。
また別の観点では、酸化物半導体は、非晶質酸化物半導体と、それ以外の結晶性酸化物
半導体と、に分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC
−OS、多結晶酸化物半導体およびnc−OSなどがある。
非晶質構造は、一般に、等方的であって不均質構造を持たない、準安定状態で原子の配
置が固定化していない、結合角度が柔軟である、短距離秩序は有するが長距離秩序を有さ
ない、などといわれている。
逆の見方をすると、安定な酸化物半導体を完全な非晶質(completely am
orphous)酸化物半導体とは呼べない。また、等方的でない(例えば、微小な領域
において周期構造を有する)酸化物半導体を、完全な非晶質酸化物半導体とは呼べない。
一方、a−like OSは、等方的でないが、鬆(ボイドともいう。)を有する不安定
な構造である。不安定であるという点では、a−like OSは、物性的に非晶質酸化
物半導体に近い。
<2−2.CAAC−OS>
まずは、CAAC−OSについて説明する。
CAAC−OSは、c軸配向した複数の結晶部(ペレットともいう。)を有する酸化物
半導体の一種である。
CAAC−OSをX線回折(XRD:X−Ray Diffraction)によって
解析した場合について説明する。例えば、空間群R−3mに分類されるInGaZnO
の結晶を有するCAAC−OSに対し、out−of−plane法による構造解析を行
うと、図20(A)に示すように回折角(2θ)が31°近傍にピークが現れる。このピ
ークは、InGaZnOの結晶の(009)面に帰属されることから、CAAC−OS
では、結晶がc軸配向性を有し、c軸がCAAC−OSの膜を形成する面(被形成面とも
いう。)、または上面に略垂直な方向を向いていることが確認できる。なお、2θが31
°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°
近傍のピークは、空間群Fd−3mに分類される結晶構造に起因する。そのため、CAA
C−OSは、該ピークを示さないことが好ましい。
一方、CAAC−OSに対し、被形成面に平行な方向からX線を入射させるin−pl
ane法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、
InGaZnOの結晶の(110)面に帰属される。そして、2θを56°近傍に固定
し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(φスキャン)
を行っても、図20(B)に示すように明瞭なピークは現れない。一方、単結晶InGa
ZnOに対し、2θを56°近傍に固定してφスキャンした場合、図20(C)に示す
ように(110)面と等価な結晶面に帰属されるピークが6本観察される。したがって、
XRDを用いた構造解析から、CAAC−OSは、a軸およびb軸の配向が不規則である
ことが確認できる。
次に、電子回折によって解析したCAAC−OSについて説明する。例えば、InGa
ZnOの結晶を有するCAAC−OSに対し、CAAC−OSの被形成面に平行にプロ
ーブ径が300nmの電子線を入射させると、図20(D)に示すような回折パターン(
制限視野電子回折パターンともいう。)が現れる場合がある。この回折パターンには、I
nGaZnOの結晶の(009)面に起因するスポットが含まれる。したがって、電子
回折によっても、CAAC−OSに含まれるペレットがc軸配向性を有し、c軸が被形成
面または上面に略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面
に垂直にプローブ径が300nmの電子線を入射させたときの回折パターンを図20(E
)に示す。図20(E)より、リング状の回折パターンが確認される。したがって、プロ
ーブ径が300nmの電子線を用いた電子回折によっても、CAAC−OSに含まれるペ
レットのa軸およびb軸は配向性を有さないことがわかる。なお、図20(E)における
第1リングは、InGaZnOの結晶の(010)面および(100)面などに起因す
ると考えられる。また、図20(E)における第2リングは(110)面などに起因する
と考えられる。
また、透過型電子顕微鏡(TEM:Transmission Electron M
icroscope)によって、CAAC−OSの明視野像と回折パターンとの複合解析
像(高分解能TEM像ともいう。)を観察すると、複数のペレットを確認することができ
る。一方、高分解能TEM像であってもペレット同士の境界、即ち結晶粒界(グレインバ
ウンダリーともいう。)を明確に確認することができない場合がある。そのため、CAA
C−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
図21(A)に、試料面と略平行な方向から観察したCAAC−OSの断面の高分解能
TEM像を示す。高分解能TEM像の観察には、球面収差補正(Spherical A
berration Corrector)機能を用いた。球面収差補正機能を用いた高
分解能TEM像を、特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像は
、例えば、日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fなどに
よって観察することができる。
図21(A)より、金属原子が層状に配列している領域であるペレットを確認すること
ができる。ペレット一つの大きさは1nm以上のものや、3nm以上のものがあることが
わかる。したがって、ペレットを、ナノ結晶(nc:nanocrystal)と呼ぶこ
ともできる。また、CAAC−OSを、CANC(C−Axis Aligned na
nocrystals)を有する酸化物半導体と呼ぶこともできる。ペレットは、CAA
C−OSの膜を被形成面または上面の凹凸を反映しており、CAAC−OSの被形成面ま
たは上面と平行となる。
また、図21(B)および図21(C)に、試料面と略垂直な方向から観察したCAA
C−OSの平面のCs補正高分解能TEM像を示す。図21(D)および図21(E)は
、それぞれ図21(B)および図21(C)を画像処理した像である。以下では、画像処
理の方法について説明する。まず、図21(B)を高速フーリエ変換(FFT:Fast
Fourier Transform)処理することでFFT像を取得する。次に、取
得したFFT像において原点を基準に、2.8nm−1から5.0nm−1の間の範囲を
残すマスク処理する。次に、マスク処理したFFT像を、逆高速フーリエ変換(IFFT
:Inverse Fast Fourier Transform)処理することで画
像処理した像を取得する。こうして取得した像をFFTフィルタリング像と呼ぶ。FFT
フィルタリング像は、Cs補正高分解能TEM像から周期成分を抜き出した像であり、格
子配列を示している。
図21(D)では、格子配列の乱れた箇所を破線で示している。破線で囲まれた領域が
、一つのペレットである。そして、破線で示した箇所がペレットとペレットとの連結部で
ある。破線は、六角形状であるため、ペレットが六角形状であることがわかる。なお、ペ
レットの形状は、正六角形状とは限らず、非正六角形状である場合が多い。
図21(E)では、格子配列の揃った領域と、別の格子配列の揃った領域と、の間を点
線で示している。点線近傍においても、明確な結晶粒界を確認することはできない。点線
近傍の格子点を中心に周囲の格子点を繋ぐと、歪んだ六角形が形成できる。即ち、格子配
列を歪ませることによって結晶粒界の形成を抑制していることがわかる。これは、CAA
C−OSが、a−b面方向において原子配列が稠密でないことや、金属元素が置換するこ
とで原子間の結合距離が変化することなどによって、歪みを許容することができるためと
考えられる。
以上に示すように、CAAC−OSは、c軸配向性を有し、かつa−b面方向において
複数のペレット(ナノ結晶)が連結し、歪みを有した結晶構造となっている。よって、C
AAC−OSを、CAA crystal(c−axis−aligned a−b−p
lane−anchored crystal)を有する酸化物半導体と称することもで
きる。
CAAC−OSは結晶性の高い酸化物半導体である。酸化物半導体の結晶性は不純物の
混入や欠陥の生成などによって低下する場合があるため、逆の見方をするとCAAC−O
Sは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。
なお、不純物は、酸化物半導体の主成分以外の元素で、水素、炭素、シリコン、遷移金
属元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸
素との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列
を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、
二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列
を乱し、結晶性を低下させる要因となる。
酸化物半導体が不純物や欠陥を有する場合、光や熱などによって特性が変動する場合が
ある。例えば、酸化物半導体に含まれる不純物は、キャリアトラップとなる場合や、キャ
リア発生源となる場合がある。例えば、酸化物半導体中の酸素欠損は、キャリアトラップ
となる場合や、水素を捕獲することによってキャリア発生源となる場合がある。
不純物および酸素欠損の少ないCAAC−OSは、キャリア密度の低い酸化物半導体で
ある。具体的には、8×1011個/cm未満、好ましくは1×1011/cm未満
、さらに好ましくは1×1010個/cm未満であり、1×10−9個/cm以上の
キャリア密度の酸化物半導体とすることができる。そのような酸化物半導体を、高純度真
性または実質的に高純度真性な酸化物半導体と呼ぶ。CAAC−OSは、不純物濃度が低
く、欠陥準位密度が低い。即ち、安定な特性を有する酸化物半導体であるといえる。
<2−3.nc−OS>
次に、nc−OSについて説明する。
nc−OSをXRDによって解析した場合について説明する。例えば、nc−OSに対
し、out−of−plane法による構造解析を行うと、配向性を示すピークが現れな
い。即ち、nc−OSの結晶は配向性を有さない。
また、例えば、InGaZnOの結晶を有するnc−OSを薄片化し、厚さが34n
mの領域に対し、被形成面に平行にプローブ径が50nmの電子線を入射させると、図2
2(A)に示すようなリング状の回折パターン(ナノビーム電子回折パターン)が観測さ
れる。また、同じ試料にプローブ径が1nmの電子線を入射させたときの回折パターン(
ナノビーム電子回折パターン)を図22(B)に示す。図22(B)より、リング状の領
域内に複数のスポットが観測される。したがって、nc−OSは、プローブ径が50nm
の電子線を入射させることでは秩序性が確認されないが、プローブ径が1nmの電子線を
入射させることでは秩序性が確認される。
また、厚さが10nm未満の領域に対し、プローブ径が1nmの電子線を入射させると
、図22(C)に示すように、スポットが略正六角状に配置された電子回折パターンを観
測される場合がある。したがって、厚さが10nm未満の範囲において、nc−OSが秩
序性の高い領域、即ち結晶を有することがわかる。なお、結晶が様々な方向を向いている
ため、規則的な電子回折パターンが観測されない領域もある。
図22(D)に、被形成面と略平行な方向から観察したnc−OSの断面のCs補正高
分解能TEM像を示す。nc−OSは、高分解能TEM像において、補助線で示す箇所な
どのように結晶部を確認することのできる領域と、明確な結晶部を確認することのできな
い領域と、を有する。nc−OSに含まれる結晶部は、1nm以上10nm以下の大きさ
であり、特に1nm以上3nm以下の大きさであることが多い。なお、結晶部の大きさが
10nmより大きく100nm以下である酸化物半導体を微結晶酸化物半導体(micr
o crystalline oxide semiconductor)と呼ぶことが
ある。nc−OSは、例えば、高分解能TEM像では、結晶粒界を明確に確認できない場
合がある。なお、ナノ結晶は、CAAC−OSにおけるペレットと起源を同じくする可能
性がある。そのため、以下ではnc−OSの結晶部をペレットと呼ぶ場合がある。
このように、nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特
に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OS
は、異なるペレット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見
られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶
質酸化物半導体と区別が付かない場合がある。
なお、ペレット(ナノ結晶)間で結晶方位が規則性を有さないことから、nc−OSを
、RANC(Random Aligned nanocrystals)を有する酸化
物半導体、またはNANC(Non−Aligned nanocrystals)を有
する酸化物半導体と呼ぶこともできる。
nc−OSは、非晶質酸化物半導体よりも規則性の高い酸化物半導体である。そのため
、nc−OSは、a−like OSや非晶質酸化物半導体よりも欠陥準位密度が低くな
る。ただし、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのた
め、nc−OSは、CAAC−OSと比べて欠陥準位密度が高くなる。
<2−4.a−like OS>
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物
半導体である。
図23に、a−like OSの高分解能断面TEM像を示す。ここで、図23(A)
は電子照射開始時におけるa−like OSの高分解能断面TEM像である。図23(
B)は4.3×10/nmの電子(e)照射後におけるa−like OSの
高分解能断面TEM像である。図23(A)および図23(B)より、a−like O
Sは電子照射開始時から、縦方向に延伸する縞状の明領域が観察されることがわかる。ま
た、明領域は、電子照射後に形状が変化することがわかる。なお、明領域は、鬆または低
密度領域と推測される。
鬆を有するため、a−like OSは、不安定な構造である。以下では、a−lik
e OSが、CAAC−OSおよびnc−OSと比べて不安定な構造であることを示すた
め、電子照射による構造の変化を示す。
試料として、a−like OS、nc−OSおよびCAAC−OSを準備する。いず
れの試料もIn−Ga−Zn酸化物である。
まず、各試料の高分解能断面TEM像を取得する。高分解能断面TEM像により、各試
料は、いずれも結晶部を有する。
なお、InGaZnOの結晶の単位格子は、In−O層を3層有し、またGa−Zn
−O層を6層有する、計9層がc軸方向に層状に重なった構造を有することが知られてい
る。これらの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と
同程度であり、結晶構造解析からその値は0.29nmと求められている。したがって、
以下では、格子縞の間隔が0.28nm以上0.30nm以下である箇所を、InGaZ
nOの結晶部と見なした。なお、格子縞は、InGaZnOの結晶のa−b面に対応
する。
図24は、各試料の結晶部(22箇所から30箇所)の平均の大きさを調査した例であ
る。なお、上述した格子縞の長さを結晶部の大きさとしている。図24より、a−lik
e OSは、TEM像の取得などに係る電子の累積照射量に応じて結晶部が大きくなって
いくことがわかる。図24より、TEMによる観察初期においては1.2nm程度の大き
さだった結晶部(初期核ともいう。)が、電子(e)の累積照射量が4.2×10
/nmにおいては1.9nm程度の大きさまで成長していることがわかる。一方、n
c−OSおよびCAAC−OSは、電子照射開始時から電子の累積照射量が4.2×10
/nmまでの範囲で、結晶部の大きさに変化が見られないことがわかる。図24
より、電子の累積照射量によらず、nc−OSおよびCAAC−OSの結晶部の大きさは
、それぞれ1.3nm程度および1.8nm程度であることがわかる。なお、電子線照射
およびTEMの観察は、日立透過電子顕微鏡H−9000NARを用いた。電子線照射条
件は、加速電圧を300kV、電流密度を6.7×10/(nm・s)、照射領
域の直径を230nmとした。
このように、a−like OSは、電子照射によって結晶部の成長が見られる場合が
ある。一方、nc−OSおよびCAAC−OSは、電子照射による結晶部の成長がほとん
ど見られない。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて
、不安定な構造であることがわかる。
また、鬆を有するため、a−like OSは、nc−OSおよびCAAC−OSと比
べて密度の低い構造である。具体的には、a−like OSの密度は、同じ組成の単結
晶の密度の78.6%以上92.3%未満となる。また、nc−OSの密度およびCAA
C−OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満となる。単結
晶の密度の78%未満となる酸化物半導体は、成膜すること自体が困難である。
例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、
菱面体晶構造を有する単結晶InGaZnOの密度は6.357g/cmとなる。よ
って、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体におい
て、a−like OSの密度は5.0g/cm以上5.9g/cm未満となる。ま
た、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において
、nc−OSの密度およびCAAC−OSの密度は5.9g/cm以上6.3g/cm
未満となる。
なお、同じ組成の単結晶が存在しない場合、任意の割合で組成の異なる単結晶を組み合
わせることにより、所望の組成における単結晶に相当する密度を見積もることができる。
所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わせる割合に対して
、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少ない種類の単結晶を
組み合わせて見積もることが好ましい。
以上のように、酸化物半導体は、様々な構造をとり、それぞれが様々な特性を有する。
なお、酸化物半導体は、例えば、非晶質酸化物半導体、a−like OS、nc−OS
、CAAC−OSのうち、二種以上を有する積層膜であってもよい。
以上、本実施の形態に示す構成は、他の実施の形態または実施例に示す構成と適宜、組
み合わせて用いることができる。
(実施の形態3)
本実施の形態においては、先の実施の形態で例示したトランジスタを有する表示装置の
一例について、図25乃至図27を用いて以下説明を行う。
図25は、表示装置の一例を示す上面図である。図25に示す表示装置700は、第1
の基板701上に設けられた画素部702と、第1の基板701に設けられたソースドラ
イバ回路部704及びゲートドライバ回路部706と、画素部702、ソースドライバ回
路部704、及びゲートドライバ回路部706を囲むように配置されるシール材712と
、第1の基板701に対向するように設けられる第2の基板705と、を有する。なお、
第1の基板701と第2の基板705は、シール材712によって封止されている。すな
わち、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706は
、第1の基板701とシール材712と第2の基板705によって封止されている。なお
、図25には図示しないが、第1の基板701と第2の基板705の間には表示素子が設
けられる。
また、表示装置700は、第1の基板701上のシール材712によって囲まれている
領域とは異なる領域に、画素部702、ソースドライバ回路部704、及びゲートドライ
バ回路部706と、それぞれ電気的に接続されるFPC端子部708(FPC:Flex
ible printed circuit)が設けられる。また、FPC端子部708
には、FPC716が接続され、FPC716によって画素部702、ソースドライバ回
路部704、及びゲートドライバ回路部706に各種信号等が供給される。また、画素部
702、ソースドライバ回路部704、ゲートドライバ回路部706、及びFPC端子部
708には、信号線710が各々接続されている。FPC716により供給される各種信
号等は、信号線710を介して、画素部702、ソースドライバ回路部704、ゲートド
ライバ回路部706、及びFPC端子部708に与えられる。
また、表示装置700にゲートドライバ回路部706を複数設けてもよい。また、表示
装置700としては、ソースドライバ回路部704、及びゲートドライバ回路部706を
画素部702と同じ第1の基板701に形成している例を示しているが、この構成に限定
されない。例えば、ゲートドライバ回路部706のみを第1の基板701に形成しても良
い、またはソースドライバ回路部704のみを第1の基板701に形成しても良い。この
場合、ソースドライバ回路またはゲートドライバ回路等が形成された基板(例えば、単結
晶半導体膜、多結晶半導体膜で形成された駆動回路基板)を、第1の基板701に実装す
る構成としても良い。なお、別途形成した駆動回路基板の接続方法は、特に限定されるも
のではなく、COG(Chip On Glass)方法、ワイヤボンディング方法など
を用いることができる。
また、表示装置700が有する画素部702、ソースドライバ回路部704及びゲート
ドライバ回路部706は、複数のトランジスタを有しており、本発明の一態様の半導体装
置であるトランジスタを適用することができる。
また、表示装置700は、様々な素子を有することが出来る。該素子の一例としては、
例えば、エレクトロルミネッセンス(EL)素子(有機物及び無機物を含むEL素子、有
機EL素子、無機EL素子、LEDなど)、発光トランジスタ(電流に応じて発光するト
ランジスタ)、電子放出素子、液晶素子、電子インク素子、電気泳動素子、エレクトロウ
ェッティング素子、プラズマディスプレイ(PDP)、MEMS(マイクロ・エレクトロ
・メカニカル・システム)ディスプレイ(例えば、グレーティングライトバルブ(GLV
)、デジタルマイクロミラーデバイス(DMD)、デジタル・マイクロ・シャッター(D
MS)素子、インターフェアレンス・モジュレーション(IMOD)素子など)、圧電セ
ラミックディスプレイなどが挙げられる。
また、EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子
放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FE
D)又はSED方式平面型ディスプレイ(SED:Surface−conductio
n Electron−emitter Display)などがある。液晶素子を用い
た表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶
ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプ
レイ)などがある。電子インク素子又は電気泳動素子を用いた表示装置の一例としては、
電子ペーパーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを
実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するよ
うにすればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを
有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路
を設けることも可能である。これにより、さらに、消費電力を低減することができる。
なお、表示装置700における表示方式は、プログレッシブ方式やインターレース方式
等を用いることができる。また、カラー表示する際に画素で制御する色要素としては、R
GB(Rは赤、Gは緑、Bは青を表す)の三色に限定されない。例えば、Rの画素とGの
画素とBの画素とW(白)の画素の四画素から構成されてもよい。または、ペンタイル配
列のように、RGBのうちの2色分で一つの色要素を構成し、色要素によって、異なる2
色を選択して構成してもよい。またはRGBに、イエロー、シアン、マゼンタ等を一色以
上追加してもよい。なお、色要素のドット毎にその表示領域の大きさが異なっていてもよ
い。ただし、開示する発明はカラー表示の表示装置に限定されるものではなく、モノクロ
表示の表示装置に適用することもできる。
また、バックライト(有機EL素子、無機EL素子、LED、蛍光灯など)に白色発光
(W)を用いて表示装置をフルカラー表示させるために、着色層(カラーフィルタともい
う。)を用いてもよい。着色層は、例えば、レッド(R)、グリーン(G)、ブルー(B
)、イエロー(Y)などを適宜組み合わせて用いることができる。着色層を用いることで
、着色層を用いない場合と比べて色の再現性を高くすることができる。このとき、着色層
を有する領域と、着色層を有さない領域と、を配置することによって、着色層を有さない
領域における白色光を直接表示に利用しても構わない。一部に着色層を有さない領域を配
置することで、明るい表示の際に、着色層による輝度の低下を少なくでき、消費電力を2
割から3割程度低減できる場合がある。ただし、有機EL素子や無機EL素子などの自発
光素子を用いてフルカラー表示する場合、R、G、B、Y、Wを、それぞれの発光色を有
する素子から発光させても構わない。自発光素子を用いることで、着色層を用いた場合よ
りも、さらに消費電力を低減できる場合がある。
また、カラー化方式としては、上述の白色発光からの発光の一部をカラーフィルタを通
すことで赤色、緑色、青色に変換する方式(カラーフィルタ方式)の他、赤色、緑色、青
色の発光をそれぞれ用いる方式(3色方式)、または青色発光からの発光の一部を赤色や
緑色に変換する方式(色変換方式、量子ドット方式)を適用してもよい。
本実施の形態においては、表示素子として液晶素子及びEL素子を用いる構成について
、図26及び図27を用いて説明する。なお、図26は、図25に示す一点鎖線Q−Rに
おける断面図であり、表示素子として液晶素子を用いた構成である。また、図27は、図
25に示す一点鎖線Q−Rにおける断面図であり、表示素子としてEL素子を用いた構成
である。
まず、図26及び図27に示す共通部分について最初に説明し、次に異なる部分につい
て以下説明する。
<3−1.表示装置の共通部分に関する説明>
図26及び図27に示す表示装置700は、引き回し配線部711と、画素部702と
、ソースドライバ回路部704と、FPC端子部708と、を有する。また、引き回し配
線部711は、信号線710を有する。また、画素部702は、トランジスタ750及び
容量素子790を有する。また、ソースドライバ回路部704は、トランジスタ752を
有する。
トランジスタ750及びトランジスタ752は、先に示すトランジスタ100と同様の
構成である。なお、トランジスタ750及びトランジスタ752の構成については、先の
実施の形態に示す、その他のトランジスタを用いてもよい。
本実施の形態で用いるトランジスタは、高純度化し、酸素欠損の形成を抑制した酸化物
半導体膜を有する。該トランジスタは、オフ電流を低くすることができる。よって、画像
信号等の電気信号の保持時間を長くすることができ、電源オン状態では書き込み間隔も長
く設定できる。よって、リフレッシュ動作の頻度を少なくすることができるため、消費電
力を抑制する効果を奏する。
また、本実施の形態で用いるトランジスタは、比較的高い電界効果移動度が得られるた
め、高速駆動が可能である。例えば、このような高速駆動が可能なトランジスタを液晶表
示装置に用いることで、画素部のスイッチングトランジスタと、駆動回路部に使用するド
ライバトランジスタを同一基板上に形成することができる。すなわち、別途駆動回路とし
て、シリコンウェハ等により形成された半導体装置を用いる必要がないため、半導体装置
の部品点数を削減することができる。また、画素部においても、高速駆動が可能なトラン
ジスタを用いることで、高画質な画像を提供することができる。
容量素子790は、下部電極と、上部電極と、を有する。下部電極は酸化物半導体膜を
加工する工程を経て形成される。酸化物半導体膜及びトランジスタ750が有する第1の
酸化物半導体膜は同一工程を経て形成される。上部電極は導電膜を加工する工程を経て形
成される。導電膜およびトランジスタ750が有するソース電極及びドレイン電極として
機能する導電膜は同一工程を経て形成される。また、下部電極と上部電極との間には、ト
ランジスタ750が有する第2の絶縁膜として機能する絶縁膜、及び第3の絶縁膜として
機能する絶縁膜が設けられる。すなわち、容量素子790は、一対の電極間に誘電体とし
て機能する絶縁膜が挟持された積層型の構造である。
また、図26及び図27において、トランジスタ750、トランジスタ752、及び容
量素子790上に平坦化絶縁膜770が設けられている。
平坦化絶縁膜770としては、ポリイミド樹脂、アクリル樹脂、ポリイミドアミド樹脂
、ベンゾシクロブテン樹脂、ポリアミド樹脂、エポキシ樹脂等の耐熱性を有する有機材料
を用いることができる。なお、これらの材料で形成される絶縁膜を複数積層させることで
、平坦化絶縁膜770を形成してもよい。また、平坦化絶縁膜770を設けない構成とし
てもよい。
また、信号線710は、トランジスタ750、752のソース電極及びドレイン電極と
して機能する導電膜と同じ工程を経て形成される。なお、信号線710は、トランジスタ
750、752のソース電極及びドレイン電極と異なる工程を経て形成された導電膜、例
えば、ゲート電極として機能する酸化物半導体膜と同じ工程を経て形成される酸化物半導
体膜を用いてもよい。信号線710として、例えば、銅元素を含む材料を用いた場合、配
線抵抗に起因する信号遅延等が少なく、大画面での表示が可能となる。
また、FPC端子部708は、接続電極760、異方性導電膜780、及びFPC71
6を有する。なお、接続電極760は、トランジスタ750、752のソース電極及びド
レイン電極として機能する導電膜と同じ工程を経て形成される。また、接続電極760は
、FPC716が有する端子と異方性導電膜780を介して、電気的に接続される。
また、第1の基板701及び第2の基板705としては、例えばガラス基板を用いるこ
とができる。また、第1の基板701及び第2の基板705として、可撓性を有する基板
を用いてもよい。該可撓性を有する基板としては、例えばプラスチック基板等が挙げられ
る。
また、第1の基板701と第2の基板705の間には、構造体778が設けられる。構
造体778は、絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであり、
第1の基板701と第2の基板705の間の距離(セルギャップ)を制御するために設け
られる。なお、構造体778として、球状のスペーサを用いていても良い。
また、第2の基板705側には、ブラックマトリクスとして機能する遮光膜738と、
カラーフィルタとして機能する着色膜736と、遮光膜738及び着色膜736に接する
絶縁膜734が設けられる。
<3−2.液晶素子を用いる表示装置の構成例>
図26に示す表示装置700は、液晶素子775を有する。液晶素子775は、導電膜
772、導電膜774、及び液晶層776を有する。導電膜774は、第2の基板705
側に設けられ、対向電極としての機能を有する。図26に示す表示装置700は、導電膜
772と導電膜774に印加される電圧によって、液晶層776の配向状態が変わること
によって光の透過、非透過が制御され画像を表示することができる。
また、導電膜772は、トランジスタ750が有するソース電極及びドレイン電極とし
て機能する導電膜に接続される。導電膜772は、平坦化絶縁膜770上に形成され画素
電極、すなわち表示素子の一方の電極として機能する。また、導電膜772は、反射電極
としての機能を有する。図26に示す表示装置700は、外光を利用し導電膜772で光
を反射して着色膜736を介して表示する、所謂反射型のカラー液晶表示装置である。
導電膜772としては、可視光において透光性のある導電膜、または可視光において反
射性のある導電膜を用いることができる。可視光において透光性のある導電膜としては、
例えば、インジウム(In)、亜鉛(Zn)、錫(Sn)の中から選ばれた一種を含む材
料を用いるとよい。可視光において反射性のある導電膜としては、例えば、アルミニウム
、または銀を含む材料を用いるとよい。本実施の形態においては、導電膜772として、
可視光において、反射性のある導電膜を用いる。
また、図26に示す表示装置700においては、画素部702の平坦化絶縁膜770の
一部に凹凸が設けられている。該凹凸は、例えば、平坦化絶縁膜770を樹脂膜で形成し
、該樹脂膜の表面に凹凸を設けることで形成することができる。また、反射電極として機
能する導電膜772は、上記凹凸に沿って形成される。したがって、外光が導電膜772
に入射した場合において、導電膜772の表面で光を乱反射することが可能となり、視認
性を向上させることができる。
なお、図26に示す表示装置700は、反射型のカラー液晶表示装置について例示した
が、これに限定されない、例えば、導電膜772を可視光において、透光性のある導電膜
を用いることで透過型のカラー液晶表示装置としてもよい。透過型のカラー液晶表示装置
の場合、平坦化絶縁膜770に設けられる凹凸については、設けない構成としてもよい。
なお、図26において図示しないが、導電膜772、774の液晶層776と接する側
に、それぞれ配向膜を設ける構成としてもよい。また、図26において図示しないが、偏
光部材、位相差部材、反射防止部材などの光学部材(光学基板)などは適宜設けてもよい
。例えば、偏光基板及び位相差基板による円偏光を用いてもよい。また、光源としてバッ
クライト、サイドライトなどを用いてもよい。
表示素子として液晶素子を用いる場合、サーモトロピック液晶、低分子液晶、高分子液
晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これら
の液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイ
ラルネマチック相、等方相等を示す。
また、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよ
い。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリ
ック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発
現しないため、温度範囲を改善するために数重量%以上のカイラル剤を混合させた液晶組
成物を液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速
度が短く、光学的等方性であるため配向処理が不要である。また配向膜を設けなくてもよ
いのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を
防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる。
また、ブルー相を示す液晶材料は、視野角依存性が小さい。
また、表示素子として液晶素子を用いる場合、TN(Twisted Nematic
)モード、IPS(In−Plane−Switching)モード、FFS(Frin
ge Field Switching)モード、ASM(Axially Symme
tric aligned Micro−cell)モード、OCB(Optical
Compensated Birefringence)モード、FLC(Ferroe
lectric Liquid Crystal)モード、AFLC(AntiFerr
oelectric Liquid Crystal)モードなどを用いることができる
また、ノーマリーブラック型の液晶表示装置、例えば垂直配向(VA)モードを採用し
た透過型の液晶表示装置としてもよい。垂直配向モードとしては、いくつか挙げられるが
、例えば、MVA(Multi−Domain Vertical Alignment
)モード、PVA(Patterned Vertical Alignment)モー
ド、ASVモードなどを用いることができる。
<3−3.発光素子を用いる表示装置>
図27に示す表示装置700は、発光素子782を有する。発光素子782は、導電膜
784、EL層786、及び導電膜788を有する。図27に示す表示装置700は、発
光素子782が有するEL層786が発光することによって、画像を表示することができ
る。
また、導電膜784は、トランジスタ750が有するソース電極及びドレイン電極とし
て機能する導電膜に接続される。導電膜784は、平坦化絶縁膜770上に形成され画素
電極、すなわち表示素子の一方の電極として機能する。導電膜784としては、可視光に
おいて透光性のある導電膜、または可視光において反射性のある導電膜を用いることがで
きる。可視光において透光性のある導電膜としては、例えば、インジウム(In)、亜鉛
(Zn)、錫(Sn)の中から選ばれた一種を含む材料を用いるとよい。可視光において
反射性のある導電膜としては、例えば、アルミニウム、または銀を含む材料を用いるとよ
い。
また、図27に示す表示装置700には、平坦化絶縁膜770及び導電膜784上に絶
縁膜730が設けられる。絶縁膜730は、導電膜784の一部を覆う。なお、発光素子
782はトップエミッション構造である。したがって、導電膜788は透光性を有し、E
L層786が発する光を透過する。なお、本実施の形態においては、トップエミッション
構造について、例示するが、これに限定されない。例えば、導電膜784側に光を射出す
るボトムエミッション構造や、導電膜784及び導電膜788の双方に光を射出するデュ
アルエミッション構造にも適用することができる。
また、発光素子782と重なる位置に、着色膜736が設けられ、絶縁膜730と重な
る位置、引き回し配線部711、及びソースドライバ回路部704に遮光膜738が設け
られている。また、着色膜736及び遮光膜738は、絶縁膜734で覆われている。ま
た、発光素子782と絶縁膜734の間は封止膜732で充填されている。なお、図27
に示す表示装置700においては、着色膜736を設ける構成について例示したが、これ
に限定されない。例えば、EL層786を塗り分けにより形成する場合においては、着色
膜736を設けない構成としてもよい。
本実施の形態に示す構成は、他の実施の形態または実施例に示す構成と適宜組み合わせ
て用いることができる。
(実施の形態4)
本実施の形態では、電力が供給されない状況でも記憶内容の保持が可能で、且つ書き込
み回数にも制限が無い半導体装置の回路構成の一例について図28を用いて説明する。
<4−1.回路構成>
図28は、半導体装置の回路構成を説明する図である。図28において、第1の配線(
1st Line)と、p型トランジスタ1280aのソース電極またはドレイン電極の
一方とは、電気的に接続されている。また、p型トランジスタ1280aのソース電極ま
たはドレイン電極の他方と、n型トランジスタ1280bのソース電極またはドレイン電
極の一方とは、電気的に接続されている。また、n型トランジスタ1280bのソース電
極またはドレイン電極の他方と、n型トランジスタ1280cのソース電極またはドレイ
ン電極の一方とは、電気的に接続されている。
また、第2の配線(2nd Line)と、トランジスタ1282のソース電極または
ドレイン電極の一方とは、電気的に接続されている。また、トランジスタ1282のソー
ス電極またはドレイン電極の他方と、容量素子1281の電極の一方及びn型トランジス
タ1280cのゲート電極とは、電気的に接続されている。
また、第3の配線(3rd Line)と、p型トランジスタ1280a及びn型トラ
ンジスタ1280bのゲート電極とは、電気的に接続されている。また、第4の配線(4
th Line)と、トランジスタ1282のゲート電極とは、電気的に接続されている
。また、第5の配線(5th Line)と、容量素子1281の電極の他方及びn型ト
ランジスタ1280cのソース電極またはドレイン電極の他方とは、電気的に接続されて
いる。また、第6の配線(6th Line)と、p型トランジスタ1280aのソース
電極またはドレイン電極の他方及びn型トランジスタ1280bのソース電極またはドレ
イン電極の一方とは、電気的に接続されている。
なお、トランジスタ1282は、酸化物半導体(OS:Oxide Semicond
uctor)により形成することができる。したがって、図28において、トランジスタ
1282に「OS」の記号を付記してある。なお、トランジスタ1282を酸化物半導体
以外の材料により形成してもよい。
また、図28において、トランジスタ1282のソース電極またはドレイン電極の他方
と、容量素子1281の電極の一方と、n型トランジスタ1280cのゲート電極と、の
接続箇所には、フローティングノード(FN)を付記してある。トランジスタ1282を
オフ状態とすることで、フローティングノード、容量素子1281の電極の一方、及びn
型トランジスタ1280cのゲート電極に与えられた電位を保持することができる。
図28に示す回路構成では、n型トランジスタ1280cのゲート電極の電位が保持可
能という特徴を生かすことで、次のように、情報の書き込み、保持、読み出しが可能であ
る。
<4−2.情報の書き込み及び保持>
まず、情報の書き込み及び保持について説明する。第4の配線の電位を、トランジスタ
1282がオン状態となる電位にして、トランジスタ1282をオン状態とする。これに
より、第2の配線の電位がn型トランジスタ1280cのゲート電極、及び容量素子12
81に与えられる。すなわち、n型トランジスタ1280cのゲート電極には、所定の電
荷が与えられる(書き込み)。その後、第4の配線の電位を、トランジスタ1282がオ
フ状態となる電位にして、トランジスタ1282をオフ状態とする。これにより、n型ト
ランジスタ1280cのゲート電極に与えられた電荷が保持される(保持)。
トランジスタ1282のオフ電流は極めて小さいため、n型トランジスタ1280cの
ゲート電極の電荷は長時間にわたって保持される。
<4−3.情報の読み出し>
次に、情報の読み出しについて説明する。第3の配線の電位をLowレベル電位とした
際、p型トランジスタ1280aがオン状態となり、n型トランジスタ1280bがオフ
状態となる。この時、第1の配線の電位は第6の配線に与えられる。一方、第3の配線の
電位をHighレベル電位とした際、p型トランジスタ1280aがオフ状態となり、n
型トランジスタ1280bがオン状態となる。この時、フローティングノード(FN)に
保持された電荷量に応じて、第6の配線は異なる電位をとる。このため、第6の配線の電
位をみることで、保持されている情報を読み出すことができる(読み出し)。
また、トランジスタ1282は、酸化物半導体をチャネル形成領域に用いるため、極め
てオフ電流が小さいトランジスタである。酸化物半導体を用いたトランジスタ1282の
オフ電流は、シリコン半導体などで形成されるトランジスタの10万分の1以下のオフ電
流であるため、トランジスタ1282のリークによる、フローティングノード(FN)に
蓄積される電荷の消失を無視することが可能である。つまり、酸化物半導体を用いたトラ
ンジスタ1282により、電力の供給が無くても情報の保持が可能な不揮発性の記憶回路
を実現することが可能である。
また、このような回路構成を用いた半導体装置を、レジスタやキャッシュメモリなどの
記憶装置に用いることで、電源電圧の供給停止による記憶装置内のデータの消失を防ぐこ
とができる。また、電源電圧の供給を再開した後、短時間で電源供給停止前の状態に復帰
することができる。よって、記憶装置全体、もしくは記憶装置を構成する一または複数の
論理回路において、待機状態のときに短い時間でも電源停止を行うことができるため、消
費電力を抑えることができる。
以上、本実施の形態に示す構成、方法などは、他の実施の形態または実施例に示す構成
、方法などと適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、本発明の一態様の半導体装置に用いることのできる画素回路の構成
について、図29(A)を用いて以下説明を行う。
<5−1.画素回路の構成>
図29(A)は、画素回路の構成を説明する図である。図29(A)に示す回路は、光
電変換素子1360、トランジスタ1351、トランジスタ1352、トランジスタ13
53、及びトランジスタ1354を有する。
光電変換素子1360のアノードは配線1316に接続され、カソードはトランジスタ
1351のソース電極またはドレイン電極の一方と接続される。トランジスタ1351の
ソース電極またはドレイン電極の他方は電荷蓄積部(FD)と接続され、ゲート電極は配
線1312(TX)と接続される。トランジスタ1352のソース電極またはドレイン電
極の一方は配線1314(GND)と接続され、ソース電極またはドレイン電極の他方は
トランジスタ1354のソース電極またはドレイン電極の一方と接続され、ゲート電極は
電荷蓄積部(FD)と接続される。トランジスタ1353のソース電極またはドレイン電
極の一方は電荷蓄積部(FD)と接続され、ソース電極またはドレイン電極の他方は配線
1317と接続され、ゲート電極は配線1311(RS)と接続される。トランジスタ1
354のソース電極またはドレイン電極の他方は配線1315(OUT)と接続され、ゲ
ート電極は配線1313(SE)に接続される。なお、上記接続は全て電気的な接続とす
る。
なお、配線1314には、GND、VSS、VDDなどの電位が供給されていてもよい
。ここで、電位や電圧は相対的なものである。そのため、GNDの電位の大きさは、必ず
しも、0ボルトであるとは限らないものとする。
光電変換素子1360は受光素子であり、画素回路に入射した光に応じた電流を生成す
る機能を有する。トランジスタ1353は、光電変換素子1360による電荷蓄積部(F
D)への電荷蓄積を制御する機能を有する。トランジスタ1354は、電荷蓄積部(FD
)の電位に応じた信号を出力する機能を有する。トランジスタ1352は、電荷蓄積部(
FD)の電位のリセットする機能を有する。トランジスタ1352は、読み出し時に画素
回路の選択を制御する機能を有する。
なお、電荷蓄積部(FD)は、電荷保持ノードであり、光電変換素子1360が受ける
光の量に応じて変化する電荷を保持する。
なお、トランジスタ1352とトランジスタ1354とは、配線1315と配線131
4との間で、直列接続されていればよい。したがって、配線1314、トランジスタ13
52、トランジスタ1354、配線1315の順で並んでもよいし、配線1314、トラ
ンジスタ1354、トランジスタ1352、配線1315の順で並んでもよい。
配線1311(RS)は、トランジスタ1353を制御するための信号線としての機能
を有する。配線1312(TX)は、トランジスタ1351を制御するための信号線とし
ての機能を有する。配線1313(SE)は、トランジスタ1354を制御するための信
号線としての機能を有する。配線1314(GND)は、基準電位(例えばGND)を設
定する信号線としての機能を有する。配線1315(OUT)は、トランジスタ1352
から出力される信号を読み出すための信号線としての機能を有する。配線1316は電荷
蓄積部(FD)から光電変換素子1360を介して電荷を出力するための信号線としての
機能を有し、図29(A)の回路においては低電位線である。また、配線1317は電荷
蓄積部(FD)の電位をリセットするための信号線としての機能を有し、図29(A)の
回路においては高電位線である。
次に、図29(A)に示す各素子の構成について説明する。
<5−2.光電変換素子>
光電変換素子1360には、セレンまたはセレンを含む化合物(以下、セレン系材料と
する)を有する素子、あるいはシリコンを有する素子(例えば、pin型の接合が形成さ
れた素子)を用いることができる。また、酸化物半導体を用いたトランジスタと、セレン
系材料を用いた光電変換素子とを組み合わせることで信頼性を高くすることができるため
好ましい。
<5−3.トランジスタ>
トランジスタ1351、トランジスタ1352、トランジスタ1353、およびトラン
ジスタ1354は、非晶質シリコン、微結晶シリコン、多結晶シリコン、単結晶シリコン
などのシリコン半導体を用いて形成することも可能であるが、酸化物半導体を用いたトラ
ンジスタで形成することが好ましい。酸化物半導体でチャネル形成領域を形成したトラン
ジスタは、極めてオフ電流が低い特性を示す特徴を有している。また、酸化物半導体でチ
ャネル形成領域を形成したトランジスタとしては、例えば、実施の形態1に示すトランジ
スタを用いることができる。
特に、電荷蓄積部(FD)と接続されているトランジスタ1351、及びトランジスタ
1353のリーク電流が大きいと、電荷蓄積部(FD)に蓄積された電荷が保持できる時
間が十分でなくなる。したがって、少なくとも当該二つのトランジスタに酸化物半導体を
用いたトランジスタを使用することで、電荷蓄積部(FD)からの不要な電荷の流出を防
止することができる。
また、トランジスタ1352、及びトランジスタ1354においても、リーク電流が大
きいと、配線1314または配線1315に不必要な電荷の出力が起こるため、これらの
トランジスタとして、酸化物半導体でチャネル形成領域を形成したトランジスタを用いる
ことが好ましい。
また、図29(A)において、ゲート電極が一つの構成のトランジスタについて例示し
たが、これに限定されず、例えば、複数のゲート電極を有する構成としてもよい。複数の
ゲート電極を有するトランジスタとしては、例えば、チャネル形成領域が形成される半導
体膜と重なる、第1のゲート電極と、第2のゲート電極(バックゲート電極ともいう)と
、を有する構成とすればよい。バックゲート電極としては、例えば、第1のゲート電極と
同じ電位、フローティング電位、または第1のゲート電極と異なる電位を与えればよい。
<5−4.回路動作のタイミングチャート>
次に、図29(A)に示す回路の回路動作の一例について図29(B)に示すタイミン
グチャートを用いて説明する。
図29(B)では簡易に説明するため、各配線の電位は、二値変化する信号として与え
る。ただし、各電位はアナログ信号であるため、実際には状況に応じて二値に限らず種々
の値を取り得る。なお、図29(B)に示す信号1401は配線1311(RS)の電位
、信号1402は配線1312(TX)の電位、信号1403は配線1313(SE)の
電位、信号1404は電荷蓄積部(FD)の電位、信号1405は配線1315(OUT
)の電位に相当する。なお、配線1316の電位は常時”Low”、配線1317の電位
は常時”High”とする。
時刻Aにおいて、配線1311の電位(信号1401)を”High”、配線1312
の電位(信号1402)を”High”とすると、電荷蓄積部(FD)の電位(信号14
04)は配線1317の電位(”High”)に初期化され、リセット動作が開始される
。なお、配線1315の電位(信号1405)は、”High”にプリチャージしておく
時刻Bにおいて、配線1311の電位(信号1401)を”Low”とするとリセット
動作が終了し、蓄積動作が開始される。ここで、光電変換素子1360には逆方向バイア
スが印加されるため、逆方向電流により、電荷蓄積部(FD)の電位(信号1404)が
低下し始める。光電変換素子1360は、光が照射されると逆方向電流が増大するので、
照射される光の量に応じて電荷蓄積部(FD)の電位(信号1404)の低下速度は変化
する。すなわち、光電変換素子1360に照射する光の量に応じて、トランジスタ135
4のソースとドレイン間のチャネル抵抗が変化する。
時刻Cにおいて、配線1312の電位(信号1402)を”Low”とすると蓄積動作
が終了し、電荷蓄積部(FD)の電位(信号1404)は一定となる。ここで、当該電位
は、蓄積動作中に光電変換素子1360が生成した電荷量により決まる。すなわち、光電
変換素子1360に照射されていた光の量に応じて変化する。また、トランジスタ135
1およびトランジスタ1353は、酸化膜半導体でチャネル形成領域を形成したオフ電流
が極めて低いトランジスタで構成されているため、後の選択動作(読み出し動作)を行う
まで、電荷蓄積部(FD)の電位を一定に保つことが可能である。
なお、配線1312の電位(信号1402)を”Low”とする際に、配線1312と
電荷蓄積部(FD)との間における寄生容量により、電荷蓄積部(FD)の電位に変化が
生じることがある。当該電位の変化量が大きい場合は、蓄積動作中に光電変換素子136
0が生成した電荷量を正確に取得できないことになる。当該電位の変化量を低減するには
、トランジスタ1351のゲート電極−ソース電極(もしくはゲート電極−ドレイン電極
)間容量を低減する、トランジスタ1352のゲート容量を増大する、電荷蓄積部(FD
)に保持容量を設ける、などの対策が有効である。なお、本実施の形態では、これらの対
策により当該電位の変化を無視できるものとしている。
時刻Dに、配線1313の電位(信号1403)を”High”にすると、トランジス
タ1354が導通して選択動作が開始され、配線1314と配線1315が、トランジス
タ1352とトランジスタ1354とを介して導通する。そして、配線1315の電位(
信号1405)は、低下していく。なお、配線1315のプリチャージは、時刻D以前に
終了しておけばよい。ここで、配線1315の電位(信号1405)が低下する速さは、
トランジスタ1352のソース電極とドレイン電極間の電流に依存する。すなわち、蓄積
動作中に光電変換素子1360に照射されている光の量に応じて変化する。
時刻Eにおいて、配線1313の電位(信号1403)を”Low”にすると、トラン
ジスタ1354が遮断されて選択動作は終了し、配線1315の電位(信号1405)は
、一定値となる。ここで、一定値となる値は、光電変換素子1360に照射されていた光
の量に応じて変化する。したがって、配線1315の電位を取得することで、蓄積動作中
に光電変換素子1360に照射されていた光の量を知ることができる。
より具体的には、光電変換素子1360に照射されている光が強いと、電荷蓄積部(F
D)の電位、すなわちトランジスタ1352のゲート電圧は低下する。そのため、トラン
ジスタ1352のソース電極−ドレイン電極間に流れる電流は小さくなり、配線1315
の電位(信号1405)はゆっくりと低下する。したがって、配線1315からは比較的
高い電位を読み出すことができる。
逆に、光電変換素子1360に照射されている光が弱いと、電荷蓄積部(FD)の電位
、すなわち、トランジスタ1352のゲート電圧は高くなる。そのため、トランジスタ1
352のソース電極−ドレイン電極間に流れる電流は大きくなり、配線1315の電位(
信号1405)は速く低下する。したがって、配線1315からは比較的低い電位を読み
出すことができる。
本実施の形態に示す構成は、他の実施の形態または実施例に示す構成と適宜組み合わせ
て用いることが可能である。
(実施の形態6)
本実施の形態では、本発明の一態様の半導体装置を有する表示装置について、図30を
用いて説明を行う。
<6.表示装置の回路構成>
図30(A)に示す表示装置は、画素を有する領域(以下、画素部502という)と、
画素部502の外側に配置され、画素を駆動するための回路を有する回路部(以下、駆動
回路部504という)と、素子の保護機能を有する回路(以下、保護回路506という)
と、端子部507と、を有する。なお、保護回路506は、設けない構成としてもよい。
駆動回路部504の一部、または全部は、画素部502と同一基板上に形成されている
ことが望ましい。これにより、部品数や端子数を減らすことが出来る。駆動回路部504
の一部、または全部が、画素部502と同一基板上に形成されていない場合には、駆動回
路部504の一部、または全部は、COGやTAB(Tape Automated B
onding)によって、実装することができる。
画素部502は、X行(Xは2以上の自然数)Y列(Yは2以上の自然数)に配置され
た複数の表示素子を駆動するための回路(以下、画素回路501という)を有し、駆動回
路部504は、画素を選択する信号(走査信号)を出力する回路(以下、ゲートドライバ
504aという)、画素の表示素子を駆動するための信号(データ信号)を供給するため
の回路(以下、ソースドライバ504b)などの駆動回路を有する。
ゲートドライバ504aは、シフトレジスタ等を有する。ゲートドライバ504aは、
端子部507を介して、シフトレジスタを駆動するための信号が入力され、信号を出力す
る。例えば、ゲートドライバ504aは、スタートパルス信号、クロック信号等が入力さ
れ、パルス信号を出力する。ゲートドライバ504aは、走査信号が与えられる配線(以
下、走査線GL_1乃至GL_Xという)の電位を制御する機能を有する。なお、ゲート
ドライバ504aを複数設け、複数のゲートドライバ504aにより、走査線GL_1乃
至GL_Xを分割して制御してもよい。または、ゲートドライバ504aは、初期化信号
を供給することができる機能を有する。ただし、これに限定されず、ゲートドライバ50
4aは、別の信号を供給することも可能である。
ソースドライバ504bは、シフトレジスタ等を有する。ソースドライバ504bは、
端子部507を介して、シフトレジスタを駆動するための信号の他、データ信号の元とな
る信号(画像信号)が入力される。ソースドライバ504bは、画像信号を元に画素回路
501に書き込むデータ信号を生成する機能を有する。また、ソースドライバ504bは
、スタートパルス、クロック信号等が入力されて得られるパルス信号に従って、データ信
号の出力を制御する機能を有する。また、ソースドライバ504bは、データ信号が与え
られる配線(以下、データ線DL_1乃至DL_Yという)の電位を制御する機能を有す
る。または、ソースドライバ504bは、初期化信号を供給することができる機能を有す
る。ただし、これに限定されず、ソースドライバ504bは、別の信号を供給することも
可能である。
ソースドライバ504bは、例えば複数のアナログスイッチなどを用いて構成される。
ソースドライバ504bは、複数のアナログスイッチを順次オン状態にすることにより、
画像信号を時分割した信号をデータ信号として出力できる。また、シフトレジスタなどを
用いてソースドライバ504bを構成してもよい。
複数の画素回路501のそれぞれは、走査信号が与えられる複数の走査線GLの一つを
介してパルス信号が入力され、データ信号が与えられる複数のデータ線DLの一つを介し
てデータ信号が入力される。また、複数の画素回路501のそれぞれは、ゲートドライバ
504aによりデータ信号のデータの書き込み及び保持が制御される。例えば、m行n列
目の画素回路501は、走査線GL_m(mはX以下の自然数)を介してゲートドライバ
504aからパルス信号が入力され、走査線GL_mの電位に応じてデータ線DL_n(
nはY以下の自然数)を介してソースドライバ504bからデータ信号が入力される。
図30(A)に示す保護回路506は、例えば、ゲートドライバ504aと画素回路5
01の間の配線である走査線GLに接続される。または、保護回路506は、ソースドラ
イバ504bと画素回路501の間の配線であるデータ線DLに接続される。または、保
護回路506は、ゲートドライバ504aと端子部507との間の配線に接続することが
できる。または、保護回路506は、ソースドライバ504bと端子部507との間の配
線に接続することができる。なお、端子部507は、外部の回路から表示装置に電源及び
制御信号、及び画像信号を入力するための端子が設けられた部分をいう。
保護回路506は、自身が接続する配線に一定の範囲外の電位が与えられたときに、該
配線と別の配線とを導通状態にする回路である。
図30(A)に示すように、画素部502と駆動回路部504にそれぞれ保護回路50
6を設けることにより、ESD(Electro Static Discharge:
静電気放電)などにより発生する過電流に対する表示装置の耐性を高めることができる。
ただし、保護回路506の構成はこれに限定されず、例えば、ゲートドライバ504aに
保護回路506を接続した構成、またはソースドライバ504bに保護回路506を接続
した構成とすることもできる。あるいは、端子部507に保護回路506を接続した構成
とすることもできる。
また、図30(A)においては、ゲートドライバ504aとソースドライバ504bに
よって駆動回路部504を形成している例を示しているが、この構成に限定されない。例
えば、ゲートドライバ504aのみを形成し、別途用意されたソースドライバ回路が形成
された基板(例えば、単結晶半導体膜、多結晶半導体膜で形成された駆動回路基板)を実
装する構成としても良い。
また、図30(A)に示す複数の画素回路501は、例えば、図30(B)に示す構成
とすることができる。
図30(B)に示す画素回路501は、液晶素子570と、トランジスタ550と、容
量素子560と、を有する。トランジスタ550に先の実施の形態に示すトランジスタを
適用することができる。
液晶素子570の一対の電極の一方の電位は、画素回路501の仕様に応じて適宜設定
される。液晶素子570は、書き込まれるデータにより配向状態が設定される。なお、複
数の画素回路501のそれぞれが有する液晶素子570の一対の電極の一方に共通の電位
(コモン電位)を与えてもよい。また、各行の画素回路501の液晶素子570の一対の
電極の一方に異なる電位を与えてもよい。
例えば、液晶素子570を備える表示装置の駆動方法としては、TNモード、STNモ
ード、VAモード、ASM(Axially Symmetric Aligned M
icro−cell)モード、OCB(Optically Compensated
Birefringence)モード、FLC(Ferroelectric Liqu
id Crystal)モード、AFLC(AntiFerroelectric Li
quid Crystal)モード、MVAモード、PVA(Patterned Ve
rtical Alignment)モード、IPSモード、FFSモード、又はTBA
(Transverse Bend Alignment)モードなどを用いてもよい。
また、表示装置の駆動方法としては、上述した駆動方法の他、ECB(Electric
ally Controlled Birefringence)モード、PDLC(P
olymer Dispersed Liquid Crystal)モード、PNLC
(Polymer Network Liquid Crystal)モード、ゲストホ
ストモードなどがある。ただし、これに限定されず、液晶素子及びその駆動方式として様
々なものを用いることができる。
m行n列目の画素回路501において、トランジスタ550のソース電極またはドレイ
ン電極の一方は、データ線DL_nに電気的に接続され、他方は液晶素子570の一対の
電極の他方に電気的に接続される。また、トランジスタ550のゲート電極は、走査線G
L_mに電気的に接続される。トランジスタ550は、オン状態またはオフ状態になるこ
とにより、データ信号のデータの書き込みを制御する機能を有する。
容量素子560の一対の電極の一方は、電位が供給される配線(以下、電位供給線VL
)に電気的に接続され、他方は、液晶素子570の一対の電極の他方に電気的に接続され
る。なお、電位供給線VLの電位の値は、画素回路501の仕様に応じて適宜設定される
。容量素子560は、書き込まれたデータを保持する保持容量としての機能を有する。
例えば、図30(B)の画素回路501を有する表示装置では、例えば、図30(A)
に示すゲートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ
550をオン状態にしてデータ信号のデータを書き込む。
データが書き込まれた画素回路501は、トランジスタ550がオフ状態になることで
保持状態になる。これを行毎に順次行うことにより、画像を表示できる。
また、図30(A)に示す複数の画素回路501は、例えば、図30(C)に示す構成
とすることができる。
また、図30(C)に示す画素回路501は、トランジスタ552、554と、容量素
子562と、発光素子572と、を有する。トランジスタ552及びトランジスタ554
のいずれか一方または双方に先の実施の形態に示すトランジスタを適用することができる
トランジスタ552のソース電極及びドレイン電極の一方は、データ信号が与えられる
配線(以下、データ線DL_nという)に電気的に接続される。さらに、トランジスタ5
52のゲート電極は、ゲート信号が与えられる配線(以下、走査線GL_mという)に電
気的に接続される。
トランジスタ552は、オン状態またはオフ状態になることにより、データ信号のデー
タの書き込みを制御する機能を有する。
容量素子562の一対の電極の一方は、電位が与えられる配線(以下、電位供給線VL
_aという)に電気的に接続され、他方は、トランジスタ552のソース電極及びドレイ
ン電極の他方に電気的に接続される。
容量素子562は、書き込まれたデータを保持する保持容量としての機能を有する。
トランジスタ554のソース電極及びドレイン電極の一方は、電位供給線VL_aに電
気的に接続される。さらに、トランジスタ554のゲート電極は、トランジスタ552の
ソース電極及びドレイン電極の他方に電気的に接続される。
発光素子572のアノード及びカソードの一方は、電位供給線VL_bに電気的に接続
され、他方は、トランジスタ554のソース電極及びドレイン電極の他方に電気的に接続
される。
発光素子572としては、例えば有機エレクトロルミネセンス素子(有機EL素子とも
いう)などを用いることができる。ただし、発光素子572としては、これに限定されず
、無機材料からなる無機EL素子を用いても良い。
なお、電位供給線VL_a及び電位供給線VL_bの一方には、高電源電位VDDが与
えられ、他方には、低電源電位VSSが与えられる。
図30(C)の画素回路501を有する表示装置では、例えば、図30(A)に示すゲ
ートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ552を
オン状態にしてデータ信号のデータを書き込む。
データが書き込まれた画素回路501は、トランジスタ552がオフ状態になることで
保持状態になる。さらに、書き込まれたデータ信号の電位に応じてトランジスタ554の
ソース電極とドレイン電極の間に流れる電流量が制御され、発光素子572は、流れる電
流量に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。
本実施の形態に示す構成は、他の実施の形態または実施例に示す構成と適宜組み合わせ
て用いることができる。
(実施の形態7)
本実施の形態では、本発明の一態様の半導体装置を有する表示モジュール及び電子機器
について、図31及び図32を用いて説明を行う。
<7−1.表示モジュール>
図31に示す表示モジュール8000は、上部カバー8001と下部カバー8002と
の間に、FPC8003に接続されたタッチパネル8004、FPC8005に接続され
た表示パネル8006、バックライト8007、フレーム8009、プリント基板801
0、バッテリ8011を有する。
本発明の一態様の半導体装置は、例えば、表示パネル8006に用いることができる。
上部カバー8001及び下部カバー8002は、タッチパネル8004及び表示パネル
8006のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチパネル8004は、抵抗膜方式または静電容量方式のタッチパネルを表示パネル
8006に重畳して用いることができる。また、表示パネル8006の対向基板(封止基
板)に、タッチパネル機能を持たせるようにすることも可能である。また、表示パネル8
006の各画素内に光センサを設け、光学式のタッチパネルとすることも可能である。
バックライト8007は、光源8008を有する。なお、図31において、バックライ
ト8007上に光源8008を配置する構成について例示したが、これに限定さない。例
えば、バックライト8007の端部に光源8008を配置し、さらに光拡散板を用いる構
成としてもよい。なお、有機EL素子等の自発光型の発光素子を用いる場合、または反射
型パネル等の場合においては、バックライト8007を設けない構成としてもよい。
フレーム8009は、表示パネル8006の保護機能の他、プリント基板8010の動
作により発生する電磁波を遮断するための電磁シールドとしての機能を有する。またフレ
ーム8009は、放熱板としての機能を有していてもよい。
プリント基板8010は、電源回路、ビデオ信号及びクロック信号を出力するための信
号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であって
も良いし、別途設けたバッテリ8011による電源であってもよい。バッテリ8011は
、商用電源を用いる場合には、省略可能である。
また、表示モジュール8000は、偏光板、位相差板、プリズムシートなどの部材を追
加して設けてもよい。
<7−2.電子機器>
図32(A)乃至図32(G)は、電子機器を示す図である。これらの電子機器は、筐
体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、又
は操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、
加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電
場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する
機能を含むもの)、マイクロフォン9008、等を有することができる。
図32(A)乃至図32(G)に示す電子機器は、様々な機能を有することができる。
例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッ
チパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(
プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々な
コンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信ま
たは受信を行う機能、記録媒体に記録されているプログラムまたはデータを読み出して表
示部に表示する機能、等を有することができる。なお、図32(A)乃至図32(G)に
示す電子機器が有することのできる機能はこれらに限定されず、様々な機能を有すること
ができる。また、図32(A)乃至図32(G)には図示していないが、電子機器には、
複数の表示部を有する構成としてもよい。また、該電子機器にカメラ等を設け、静止画を
撮影する機能、動画を撮影する機能、撮影した画像を記録媒体(外部またはカメラに内蔵
)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
図32(A)乃至図32(G)に示す電子機器の詳細について、以下説明を行う。
図32(A)は、テレビジョン装置9100を示す斜視図である。テレビジョン装置9
100は、例えば、50インチ以上、または100インチ以上の大画面の表示部9001
を組み込むことが可能である。
図32(B)は、携帯情報端末9101を示す斜視図である。携帯情報端末9101は
、例えば電話機、手帳又は情報閲覧装置等から選ばれた一つ又は複数の機能を有する。具
体的には、スマートフォンとして用いることができる。なお、携帯情報端末9101は、
スピーカ、接続端子、センサ等を設けてもよい。また、携帯情報端末9101は、文字や
画像情報をその複数の面に表示することができる。例えば、3つの操作ボタン9050(
操作アイコンまたは単にアイコンともいう)を表示部9001の一の面に表示することが
できる。また、破線の矩形で示す情報9051を表示部9001の他の面に表示すること
ができる。なお、情報9051の一例としては、電子メールやSNS(ソーシャル・ネッ
トワーキング・サービス)や電話などの着信を知らせる表示、電子メールやSNSなどの
題名、電子メールやSNSなどの送信者名、日時、時刻、バッテリの残量、アンテナ受信
の強度などがある。または、情報9051が表示されている位置に、情報9051の代わ
りに、操作ボタン9050などを表示してもよい。
図32(C)は、携帯情報端末9102を示す斜視図である。携帯情報端末9102は
、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、
情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば、携
帯情報端末9102の使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状
態で、その表示(ここでは情報9053)を確認することができる。具体的には、着信し
た電話の発信者の電話番号又は氏名等を、携帯情報端末9102の上方から観察できる位
置に表示する。使用者は、携帯情報端末9102をポケットから取り出すことなく、表示
を確認し、電話を受けるか否かを判断できる。
図32(D)は、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末
9200は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信
、コンピュータゲームなどの種々のアプリケーションを実行することができる。また、表
示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うこと
ができる。また、携帯情報端末9200は、通信規格された近距離無線通信を実行するこ
とが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハン
ズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006を
有し、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。ま
た接続端子9006を介して充電を行うこともできる。なお、充電動作は接続端子900
6を介さずに無線給電により行ってもよい。
図32(E)(F)(G)は、折り畳み可能な携帯情報端末9201を示す斜視図であ
る。また、図32(E)が携帯情報端末9201を展開した状態の斜視図であり、図32
(F)が携帯情報端末9201を展開した状態または折り畳んだ状態の一方から他方に変
化する途中の状態の斜視図であり、図32(G)が携帯情報端末9201を折り畳んだ状
態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開し
た状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末92
01が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000
に支持されている。ヒンジ9055を介して2つの筐体9000間を屈曲させることによ
り、携帯情報端末9201を展開した状態から折りたたんだ状態に可逆的に変形させるこ
とができる。例えば、携帯情報端末9201は、曲率半径1mm以上150mm以下で曲
げることができる。
本実施の形態において述べた電子機器は、何らかの情報を表示するための表示部を有す
ることを特徴とする。ただし、本発明の一態様の半導体装置は、表示部を有さない電子機
器にも適用することができる。
本実施の形態に示す構成は、他の実施の形態または実施例に示す構成と適宜組み合わせ
て用いることができる。
本実施例においては、本発明の一態様のトランジスタを作製し、当該トランジスタの電
気特性の測定、及び断面形状の観察を行った。
なお、本実施例においては、試料A1を作製した。まず、試料A1の作製方法について
、以下説明を行う。なお、試料A1は、図7(A)(B)に示すトランジスタ100Cに
相当するトランジスタが形成された試料である。なお、以下の説明においては、図7(A
)(B)に示すトランジスタ100Cが有する構成と同様の構成については、同様の符号
を用いて説明する。
<1−1.試料A1の作製方法>
まず、基板102を準備した。基板102としては、ガラス基板を用いた。次に、基板
102上に導電膜106を形成した。導電膜106としては、厚さ100nmのタングス
テン膜を、スパッタリング装置を用いて形成した。
次に、基板102及び導電膜106上に絶縁膜104を形成した。なお、本実施例にお
いては、絶縁膜104として、絶縁膜104_1と、絶縁膜104_2と、絶縁膜104
_3と、絶縁膜104_4(図7(A)(B)では図示しない)とを順に、PECVD装
置を用いて、真空中で連続して形成した。なお、絶縁膜104_1としては、厚さ50n
mの窒化シリコン膜とした。また、絶縁膜104_2としては、厚さ300nmの窒化シ
リコン膜とした。また、絶縁膜104_3としては、厚さ50nmの窒化シリコン膜とし
た。また、絶縁膜104_4としては、厚さ50nmの酸化窒化シリコン膜とした。
次に、絶縁膜104上に酸化物半導体膜を形成し、当該酸化物半導体膜を島状に加工す
ることで、酸化物半導体膜108を形成した。酸化物半導体膜108としては、厚さ40
nmの酸化物半導体膜を形成した。なお、酸化物半導体膜108としては、スパッタリン
グ装置を用い、In:Ga:Zn=1:1:1.2[原子数比]の金属酸化物をスパッタ
リングターゲットとし、該スパッタリングターゲットに印加する電源としてはAC電源を
用いて形成した。また、酸化物半導体膜108の加工には、ウエットエッチング法を用い
た。
次に、絶縁膜104及び酸化物半導体膜108上に、後に絶縁膜110となる絶縁膜を
形成した。当該絶縁膜としては、厚さ10nmの酸化窒化シリコン膜と、厚さ90nmの
酸化窒化シリコン膜とを、PECVD装置を用いて真空中で連続して形成した。
次に、熱処理を行った。当該熱処理としては、窒素と酸素との混合ガス雰囲気下で、3
50℃ 1時間の熱処理とした。
次に、絶縁膜上に酸化物半導体膜を形成し、当該酸化物半導体膜を島状に加工すること
で、酸化物半導体膜112を形成した。また、酸化物半導体膜112を形成後、続けて、
酸化物半導体膜112の下側に接する絶縁膜を加工することで、絶縁膜110を形成した
なお、酸化物半導体膜112の加工には、ウエットエッチング法を用い、絶縁膜110
の加工にはドライエッチング法を用いた。
次に、絶縁膜104、酸化物半導体膜108、絶縁膜110、及び酸化物半導体膜11
2上から不純物元素の添加処理を行った。不純物元素の添加処理としては、ドーピング装
置を用い、不純物元素としてはアルゴンを用いた。
次に、絶縁膜104、酸化物半導体膜108、絶縁膜110、及び酸化物半導体膜11
2上に絶縁膜116を形成した。絶縁膜116としては、厚さ100nmの窒化シリコン
膜を、PECVD装置を用いて形成した。
次に、絶縁膜116上に絶縁膜118を形成した。絶縁膜118としては、厚さ300
nmの酸化窒化シリコン膜を、PECVD装置を用いて形成した。
次に、絶縁膜118上にマスクを形成し、当該マスクを用いて、絶縁膜116、118
に開口部141a、141bを形成した。なお、開口部141a、141bの加工にはド
ライエッチング装置を用いた。
次に、絶縁膜118上に絶縁膜122を形成した。絶縁膜122としては、厚さ1.5
μmのアクリル系の感光性樹脂膜を用いた。なお、絶縁膜122としては、開口部141
a、141bと重なる領域に開口部を設けた。
次に、絶縁膜122上に開口部141a、141bを充填するように、導電膜を形成し
、当該導電膜を島状に加工することで、導電膜120a、120bを形成した。
導電膜120a、120bとしては、厚さ50nmのチタン膜と、厚さ400nmのア
ルミニウム膜と、厚さ100nmのチタン膜と、スパッタリング装置を用いて真空中で連
続して形成した。
以上の工程により、図7(A)(B)に示すトランジスタ100Cに相当するトランジ
スタを作製した。
なお、本実施例においては、トランジスタ100Cに相当するトランジスタとして、チ
ャネル幅Wを50μmとし、チャネル長Lを1.5μm、2.0μm、及び3.0μmと
した。なお、各チャネル幅Lのトランジスタを、それぞれ20個ずつ基板上に形成した。
<1−2.トランジスタの電気特性>
図33(A)(B)(C)に、本実施例で作製した試料A1のトランジスタのドレイン
電流−ゲート電圧(Id−Vg)特性結果を示す。
なお、図33(A)は、W/L=50μm/1.5μmサイズの特性結果であり、図3
3(B)は、W/L=50μm/2.0μmサイズの特性結果であり、図33(C)は、
W/L=50μm/3.0μmサイズの特性結果である。また、図33(A)(B)(C
)において、第1縦軸がId[A]を、第2縦軸が電界効果移動度(μFE[cm/V
s])を、横軸がVg[V]を、それぞれ表す。
なお、トランジスタのId−Vg特性の測定条件としては、トランジスタの第1のゲー
ト電極として機能する導電膜106に印加する電圧(以下、ゲート電圧(Vg)ともいう
)、及び第2のゲート電極として機能する酸化物半導体膜112に印加する電圧(以下、
バックゲート電圧(Vbg)ともいう)としては、−15Vから+20Vまで0.25V
のステップで印加した。また、ソース電極として機能する導電膜120aに印加する電圧
(以下、ソース電圧(Vs)ともいう)を0V(comm)とし、ドレイン電極として機
能する導電膜120bに印加する電圧(以下、ドレイン電圧(Vd)ともいう)を、1V
及び10Vとした。ただし、W/L=50μm/1.5μmサイズのトランジスタにおい
ては、Vg及びVbgとしては、−15Vから+15Vとした。
図33(A)(B)(C)に示すように、本実施例で作製した試料A1は、チャネル長
(L)の長さに起因せずに、良好な電気特性であることが示された。
次に、上記作製したW/L=50μm/2.0μmサイズのトランジスタの断面観察を
行った。当該トランジスタの断面観察の結果を図34(A)(B)に示す。なお、断面観
察としては、透過型電子顕微鏡(TEM:Transmission Electron
Microscope)を用いた。
また、図34(A)は、図7(A)に示す一点鎖線X1−X2方向の断面に相当し、図
34(B)は、図7(A)に示す一点鎖線Y1−Y2方向の断面に相当する。
図34(A)(B)に示すように、本実施例で作製した試料A1は、良好な断面形状で
あった。
以上、本実施例に示す構成、方法などは、他の実施例または実施の形態に示す構成、方
法などと適宜組み合わせて用いることができる。
本実施例においては、図3に示すトランジスタ100Aに相当するトランジスタを作製
し評価を行った。なお、当該評価としては、トランジスタの電気特性、及びトランジスタ
の信頼性試験とした。
また、本実施例においては、図3に示すトランジスタ100Aに相当するトランジスタ
が形成された試料として、試料B1乃至B3を作製した。試料B1のトランジスタサイズ
は、チャネル長Lを3μm、チャネル幅Wを50μmとし、試料B2のトランジスタサイ
ズは、チャネル長Lを2μm、チャネル幅Wを50μmとし、試料B3のトランジスタサ
イズは、チャネル長Lを1.5μm、チャネル幅Wを3μmとした。
なお、試料B1との比較のために、比較用のトランジスタ300Aが形成された試料C
1を作製した。比較用のトランジスタ300Aの構造を、図35(A)(B)(C)に示
す。
図3に示すトランジスタ100Aがスタガ型のトランジスタ構造であるのに対し、比較
用のトランジスタ300Aは、逆スタガ型のトランジスタ構造である。
図35(A)は、トランジスタ300Aの上面図であり、図35(B)は、図35(A
)に示す一点鎖線X1−X2間における切断面の断面図に相当し、図35(C)は、図3
5(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相当する。
トランジスタ300Aは、基板302上の第1のゲート電極として機能する導電膜30
4と、基板302及び導電膜304上の絶縁膜306と、絶縁膜306上の絶縁膜307
と、絶縁膜307上の酸化物半導体膜308と、酸化物半導体膜308に電気的に接続さ
れるソース電極として機能する導電膜312aと、酸化物半導体膜308に電気的に接続
されるドレイン電極として機能する導電膜312bと、酸化物半導体膜308、及び導電
膜312a、312b上の絶縁膜314と、絶縁膜314上の絶縁膜316と、絶縁膜3
16上の絶縁膜318と、絶縁膜318上の導電膜320と、を有する。なお、酸化物半
導体膜308は、酸化物半導体膜308_2と、酸化物半導体膜308_2上の酸化物半
導体膜308_3との積層構造とした。
また、トランジスタ300Aにおいて、絶縁膜314、316、318は、第2のゲー
ト絶縁膜としての機能を有する。
また、トランジスタ300Aにおいて、導電膜320は、第2のゲート電極(バックゲ
ート電極ともいう)として機能する。なお、図35(C)に示すように導電膜320は絶
縁膜306、307に設けられる開口部341と、絶縁膜314、316、318に設け
られる開口部342において、導電膜312cを介して、第1のゲート電極として機能す
る導電膜304に接続される。よって、導電膜320と導電膜304とは、同じ電位が与
えられる。なお、トランジスタ300Aは、先に説明のS−channel構造を有する
また、試料C1のトランジスタサイズは、チャネル長Lを3μm、チャネル幅Wを50
μmとした。なお、本実施例において、試料B1乃至B3、及び試料C1には、それぞれ
、10個のトランジスタを形成した。
<2−1.試料B1乃至B3の作製方法>
本実施例で用いた試料B1乃至B3の作製方法について、以下説明を行う。なお、以下
の説明においては、図3(A)(B)に示すトランジスタ100Aが有する構成と同様の
構成については、同様の符号を用いて説明する。
まず、基板102を準備した。基板102としては、ガラス基板を用いた。次に、基板
102上に導電膜106を形成した。導電膜106としては、厚さ100nmのタングス
テン膜を、スパッタリング装置を用いて形成した。
次に、基板102及び導電膜106上に絶縁膜104を形成した。なお、本実施例にお
いては、絶縁膜104として、絶縁膜104_1と、絶縁膜104_2と、絶縁膜104
_3と、絶縁膜104_4とを順に、PECVD装置を用いて、真空中で連続して形成し
た。なお、絶縁膜104_1としては、厚さ50nmの窒化シリコン膜とした。また、絶
縁膜104_2としては、厚さ300nmの窒化シリコン膜とした。また、絶縁膜104
_3としては、厚さ50nmの窒化シリコン膜とした。また、絶縁膜104_4としては
、厚さ50nmの酸化窒化シリコン膜とした。
次に、絶縁膜104上に酸化物半導体膜を形成し、当該酸化物半導体膜を島状に加工す
ることで、酸化物半導体膜108を形成した。酸化物半導体膜108としては、厚さ40
nmの酸化物半導体膜を形成した。なお、酸化物半導体膜108としては、スパッタリン
グ装置を用い、In:Ga:Zn=4:2:4.1[原子数比]の金属酸化物をスパッタ
リングターゲットとし、該スパッタリングターゲットに印加する電源としてはAC電源を
用いて形成した。また、酸化物半導体膜108の加工には、ウエットエッチング法を用い
た。
次に、絶縁膜104及び酸化物半導体膜108上に、後に絶縁膜110となる絶縁膜を
形成した。当該絶縁膜としては、厚さ30nmの酸化窒化シリコン膜と、厚さ100nm
の酸化窒化シリコン膜と、厚さ20nmの酸化窒化シリコン膜とを、PECVD装置を用
いて真空中で連続して形成した。
次に、熱処理を行った。当該熱処理としては、窒素雰囲気下で、350℃ 1時間の熱
処理とした。
次に、開口部143を形成した。開口部143の加工には、ドライエッチング法を用い
た。
次に、絶縁膜上に酸化物半導体膜を形成し、当該酸化物半導体膜を島状に加工すること
で、酸化物半導体膜112を形成した。酸化物半導体膜112としては、厚さ100nm
の酸化物半導体膜とした。なお、酸化物半導体膜112の組成としては、先に記載の酸化
物半導体膜108と同じとした。また、酸化物半導体膜112を形成後、続けて、絶縁膜
を加工することで、島状の絶縁膜110を形成した。
なお、酸化物半導体膜112の加工には、ウエットエッチング法を用い、絶縁膜110
の加工にはドライエッチング法を用いた。
次に、絶縁膜104、酸化物半導体膜108、絶縁膜110、及び酸化物半導体膜11
2上から不純物元素の添加処理を行った。不純物元素の添加処理としては、ドーピング装
置を用い、不純物元素としてはアルゴンを用いた。
次に、絶縁膜104、酸化物半導体膜108、及び酸化物半導体膜112上に絶縁膜1
16を形成した。絶縁膜116としては、厚さ100nmの窒化シリコン膜を、PECV
D装置を用いて形成した。
次に、絶縁膜116上に絶縁膜118を形成した。絶縁膜118としては、厚さ300
nmの酸化窒化シリコン膜を、PECVD装置を用いて形成した。
次に、絶縁膜118上にマスクを形成し、当該マスクを用いて、絶縁膜116、118
に開口部141a、141bを形成した。なお、開口部141a、141bの加工にはド
ライエッチング装置を用いた。
次に、絶縁膜118上に開口部141a、141bを充填するように、導電膜を形成し
、当該導電膜を島状に加工することで、導電膜120a、120bを形成した。
導電膜120a、120bとしては、厚さ50nmのチタン膜と、厚さ400nmのア
ルミニウム膜と、厚さ100nmのチタン膜と、スパッタリング装置を用いて真空中で連
続して形成した。
次に、熱処理を行った。当該熱処理としては、窒素雰囲気下で、250℃ 1時間の熱
処理とした。
以上の工程により、試料B1乃至B3を作製した。
<2−2.試料C1の作製方法>
次に、本実施例で用いた試料C1の作製方法について、以下説明を行う。
まず、基板302を準備した。基板302としては、ガラス基板を用いた。次に、基板
302上に導電膜304を形成した。導電膜304としては、厚さ100nmのタングス
テン膜を、スパッタリング装置を用いて形成した。
次に、基板302及び導電膜304上に絶縁膜306、307を形成した。なお、本実
施例においては、絶縁膜306として、第1の絶縁膜と、第2の絶縁膜と、第3の絶縁膜
とを順に、PECVD装置を用いて、真空中で連続して形成した。なお、第1の絶縁膜と
しては、厚さ50nmの窒化シリコン膜とした。また、第2の絶縁膜としては、厚さ30
0nmの窒化シリコン膜とした。また、第3の絶縁膜としては、厚さ50nmの窒化シリ
コン膜とした。また、絶縁膜307としては、厚さ50nmの酸化窒化シリコン膜とした
次に、絶縁膜307上に酸化物半導体膜を形成し、当該酸化物半導体膜を島状に加工す
ることで、酸化物半導体膜308を形成した。酸化物半導体膜308としては、厚さ10
nmの酸化物半導体膜308_2と、厚さ15nmの酸化物半導体膜308_3との、積
層構造とした。なお、酸化物半導体膜308_2としては、スパッタリング装置を用い、
In:Ga:Zn=4:2:4.1[原子数比]の金属酸化物をスパッタリングターゲッ
トとし、該スパッタリングターゲットに印加する電源としてはAC電源を用いて形成した
。また、酸化物半導体膜308_3としては、スパッタリング装置を用い、In:Ga:
Zn=1:1:1.2[原子数比]の金属酸化物をスパッタリングターゲットとし、該ス
パッタリングターゲットに印加する電源としてはAC電源を用いて形成した。また、酸化
物半導体膜308の加工には、ウエットエッチング法を用いた。
次に、絶縁膜306及び絶縁膜307に開口部341を形成した。開口部341として
は、ドライエッチング装置を用いて加工した。
次に、絶縁膜307、及び酸化物半導体膜308上に導電膜を形成し、当該導電膜を島
状に加工することで、導電膜312a、312bを形成した。導電膜312a、312b
、312cとしては、スパッタリング装置を用いて、厚さ50nmのタングステン膜と、
厚さ400nmのアルミニウム膜と、厚さ100nmのチタン膜とを順に積層した。
次に、酸化物半導体膜308の表面(バックチャネル側)を洗浄した。当該洗浄として
は、スピン洗浄装置を用いて、リン酸(濃度が85体積%)を水で1/100に希釈した
リン酸水溶液を、酸化物半導体膜308及び導電膜312a、312b上から塗布した。
なお、洗浄の時間としては15秒とした。
次に、酸化物半導体膜308、及び導電膜312a、312b上に絶縁膜314、31
6を形成した。絶縁膜314としては、厚さ40nmの酸化窒化シリコン膜を、PECV
D装置を用いて形成した。また、絶縁膜316としては、厚さ400nmの酸化窒化シリ
コン膜を、PECVD装置を用いて形成した。
次に、熱処理を行った。当該熱処理としては、窒素雰囲気下で、350℃ 1時間の熱
処理とした。
次に、絶縁膜316上に、厚さ5nmのITSO膜を、スパッタリング装置を用いて形
成した。続けて、ITSO膜を介して、酸化物半導体膜308、及び絶縁膜306、30
7に酸素添加処理を行った。該酸素添加処理としては、アッシング装置を用い、基板温度
を40℃とし、流量250sccmの酸素ガスをチャンバー内に導入し、圧力を15Pa
とし、基板側にバイアスが印加されるように、アッシング装置内に設置された平行平板の
電極間に4500WのRF電力を120sec供給して行った。
次に、ITSO膜を除去し、絶縁膜316を露出させた。ITSO膜の除去方法として
は、ウエットエッチング装置を用い、濃度5%のシュウ酸水溶液を用いて、300sec
のエッチングを行った後、濃度0.5%のフッ化水素酸を用いて、15secのエッチン
グを行った。
次に、絶縁膜316上に絶縁膜318を形成した。絶縁膜318としては、厚さ100
nmの窒化シリコン膜を、PECVD装置を用いて形成した。
次に、導電膜312cに達する開口部342を形成した。開口部342としては、ドラ
イエッチング装置を用いて加工した。
次に、開口部342を覆うように、導電膜312c及び絶縁膜318上の所望の位置に
導電膜を形成することで、導電膜320を形成した。導電膜320としては、厚さ100
nmのITSO膜を、スパッタリング装置を用いて形成した。
次に、熱処理を行った。当該熱処理としては、窒素雰囲気下で250℃ 1時間とした
以上の工程で比較用の試料C1を作製した。
<2−3.トランジスタの電気特性>
上記作製した試料B1乃至試料B3のトランジスタのドレイン電流−ゲート電圧(Id
−Vg)特性、及び試料C1のトランジスタのId−Vg特性結果を、図36乃至図40
に示す。なお、図36は試料B1のトランジスタの特性結果であり、図37は試料B2の
トランジスタの特性結果であり、図38は試料B3のトランジスタの特性結果である。ま
た、図39は試料B1のトランジスタの特性結果であり、図40は試料C1のトランジス
タの特性結果である。なお、図39は、図36に示すId−Vg特性結果に、電界効果移
動度を重ねて表示させた図である。また、図36乃至図40において、合計10個のトラ
ンジスタのデータを、それぞれ重ねて示している。
図36乃至図38において、縦軸がId[A]を、横軸がVg[V]を、それぞれ表す
。また、図39及び図40において、第1縦軸がId[A]を、第2縦軸が電界効果移動
度(μFE[cm/Vs])を、横軸がVg[V]を、それぞれ表す。
また、試料B1において、トランジスタのId−Vg特性の測定条件としては、トラン
ジスタの第1のゲート電極として機能する導電膜106に印加する電圧(以下、バックゲ
ート電圧(Vbg)ともいう)、及び第2のゲート電極として機能する酸化物半導体膜1
12に印加する電圧(以下、ゲート電圧(Vg)ともいう)としては、−15Vから+2
0Vまで0.25Vのステップで印加した。また、試料B2において、トランジスタのI
d−Vg特性の測定条件としては、バックゲート電圧(Vbg)、及びゲート電圧(Vg
)としては、−15Vから+15Vまで0.25Vのステップで印加した。また、試料B
3において、トランジスタのId−Vg特性の測定条件としては、バックゲート電圧(V
bg)、及びゲート電圧(Vg)としては、−15Vから+10Vまで0.25Vのステ
ップで印加した。また、試料C1において、トランジスタのId−Vg特性の測定条件と
しては、トランジスタの第1のゲート電極として機能する導電膜304に印加する電圧(
ゲート電圧(Vg))、及びトランジスタの第2のゲート電極として機能する導電膜32
0に印加する電圧(バックゲート電圧(Vbg))としては、−15Vから+15Vまで
0.25Vのステップで印加した。
試料B1乃至B3、及び試料C1において、ソース電極として機能する導電膜(導電膜
120a、または導電膜312a)に印加する電圧(以下、ソース電圧(Vs)ともいう
)を0V(comm)とし、ドレイン電極として機能する導電膜(導電膜120b、また
は導電膜312b)に印加する電圧(以下、ドレイン電圧(Vd)ともいう)を、0.1
V及び20Vとした。
図36乃至図38に示す結果より、本発明の一態様のトランジスタは、チャネル長を1
.5μmまで短くしても、ノーマリーオフであった。また、基板面内でバラツキの少ない
結果であることが確認された。
図39及び図40に示す結果より、試料B1及び試料C1のトランジスタともに、電界
効果移動度が30cm/Vsを超える。ただし、試料B1と試料C1とを比較した場合
、本発明の一態様である試料B1の方が、電界効果移動度が高い結果であった。
<2−5.定電流ストレス試験>
次に、上記作製した試料B1及び試料C1に対し、定電流ストレス試験を行った。なお
、定電流ストレス試験としては、大気雰囲気下、暗状態(dark)で行った。
なお、Id−Vg特性の測定は、ドレイン電圧を0.1V及び10Vとし、ゲート電圧
を−15Vから15Vの範囲で掃引したときのドレイン電流を測定することで行った。
試料B1の定電流ストレス試験では、まず基板の温度を室温として、1回目のId−V
g特性、及びId−Vd特性の測定を行った。その後、基板の温度を60℃とし、ソース
電位を接地電位(GND)、ドレイン電位を10V、ゲート電位を1.88Vとし、48
時間保持した。その後、2回目のId−Vg特性、及びId−Vd特性の測定を行った。
また、試料C1の定電流ストレス試験では、まず基板の温度を室温として、1回目のI
d−Vg特性、及びId−Vd特性の測定を行った。その後、基板の温度を60℃とし、
ソース電位を接地電位(GND)、ドレイン電位を10V、ゲート電位を1.99Vとし
、24時間保持した。その後、2回目のId−Vg特性、及びId−Vd特性の測定を行
った。
図41(A)(B)(C)に試料B1及び試料C1の定電流ストレス試験の結果を示す
。なお、図41(A)は、試料B1及び試料C1のストレス時間に対するドレイン電流(
Id)の変化率を説明する図である。また、図41(B)は、試料B1のストレス試験前
後のId−Vg特性結果であり、図41(C)は、試料B1のストレス試験前後のId−
Vd特性結果である。
なお、図41(A)において、黒色の実線が試料B1の測定結果であり、灰色の実線が
試料C1の測定結果である。また、図41(B)において、実線がストレス試験前、破線
がストレス試験後のId−Vg特性結果である。また、図41(C)において、実線がス
トレス試験前、破線がストレス試験後のId−Vd特性結果である。
図41(A)(B)(C)より、本発明の一態様の試料B1は、ストレス試験前後での
ドレイン電流の変化が小さいことがわかる。以上のことから、本発明の一態様のトランジ
スタを有する半導体装置は信頼性が高いことが示された。
以上、本実施例に示す構成、方法などは、他の実施例または実施の形態に示す構成、方
法などと適宜組み合わせて用いることができる。
本実施例においては、本発明の一態様のトランジスタが形成された試料D1を作製し、
試料D1の断面形状の観察を行った。
<3−1.断面観察>
なお、試料D1としては、図3に示すトランジスタ100Aに相当するトランジスタ上
に平坦化絶縁膜を形成した。なお、試料D1のトランジスタサイズとしては、チャネル長
Lを2μm、チャネル幅Wを50μmのサイズとした。
試料D1の構造について、図3に示すトランジスタ100Aの符号等を用いて、以下説
明する。
導電膜106として、スパッタリング装置を用いて、厚さ10nmの窒化タンタル膜と
、厚さ100nmの銅膜との積層膜を形成した。また、絶縁膜104として、PECVD
装置を用いて、厚さ400nmの窒化酸化シリコン膜と、厚さ50nmの酸化窒化シリコ
ン膜とを形成した。また、酸化物半導体膜108として、厚さ40nmのIn−Ga−Z
n酸化物を形成した。なお、当該In−Ga−Zn酸化物としては、スパッタリング装置
を用い、In:Ga:Zn=1:1:1.2[原子数比]の金属酸化物をスパッタリング
ターゲットとし、該スパッタリングターゲットに印加する電源としてはAC電源を用いて
形成した。また、絶縁膜110として、PECVD装置を用いて、厚さ100nmの酸化
窒化シリコン膜を形成した。また、酸化物半導体膜112として、スパッタリング装置を
用いて、厚さ100nmのIn−Ga−Zn酸化物を形成した。なお、当該In−Ga−
Zn酸化物としては、スパッタリング装置を用い、In:Ga:Zn=4:2:4.1[
原子数比]の金属酸化物をスパッタリングターゲットとし、該スパッタリングターゲット
に印加する電源としてはAC電源を用いて形成した。また、絶縁膜116として、PEC
VD装置を用いて、厚さ100nmの窒化シリコン膜を形成した。また、絶縁膜118と
して、PECVD装置を用いて、厚さ400nmの酸化窒化シリコン膜を形成した。また
、導電膜120a、120bとして、スパッタリング装置を用い、厚さ50nmの銅合金
(Cu−Mn)膜と、厚さ100nmの銅膜を形成した。
また、試料D1においては、絶縁膜118及び導電膜120a、120b上に、絶縁膜
158として、厚さ1.5μmのアクリル系の樹脂膜を形成した。
上記作製した試料D1の断面観察結果を図42に示す。図42に示す通り、本実施例で
作製した試料D1は良好な断面形状であることが確認された。特に、チャネル長Lが2.
01μmであり、第1のゲート電極として機能する導電膜106と、ソース電極及びドレ
イン電極として機能する導電膜120a、120bとの間の距離が長いため、寄生容量が
小さいことが示唆される。
以上、本実施例に示す構成は、他の実施例または実施の形態に示す構成と適宜組み合わ
せて用いることができる。
100 トランジスタ
100A トランジスタ
100B トランジスタ
100C トランジスタ
100D トランジスタ
100E トランジスタ
100F トランジスタ
100G トランジスタ
102 基板
104 絶縁膜
104_1 絶縁膜
104_2 絶縁膜
104_3 絶縁膜
104_4 絶縁膜
106 導電膜
107 酸化物半導体膜
108 酸化物半導体膜
108_1 酸化物半導体膜
108_2 酸化物半導体膜
108_3 酸化物半導体膜
108d ドレイン領域
108f 領域
108i チャネル領域
108s ソース領域
110 絶縁膜
110_0 絶縁膜
112 酸化物半導体膜
112_0 酸化物半導体膜
114 導電膜
116 絶縁膜
118 絶縁膜
120 導電膜
120a 導電膜
120b 導電膜
122 絶縁膜
140 マスク
141a 開口部
141b 開口部
143 開口部
145 不純物元素
147 中空領域
150 トランジスタ
150A トランジスタ
150B トランジスタ
158 絶縁膜
300A トランジスタ
302 基板
304 導電膜
306 絶縁膜
307 絶縁膜
308 酸化物半導体膜
308_2 酸化物半導体膜
308_3 酸化物半導体膜
312a 導電膜
312b 導電膜
312c 導電膜
314 絶縁膜
316 絶縁膜
318 絶縁膜
320 導電膜
341 開口部
342 開口部
501 画素回路
502 画素部
504 駆動回路部
504a ゲートドライバ
504b ソースドライバ
506 保護回路
507 端子部
550 トランジスタ
552 トランジスタ
554 トランジスタ
560 容量素子
562 容量素子
570 液晶素子
572 発光素子
700 表示装置
701 基板
702 画素部
704 ソースドライバ回路部
705 基板
706 ゲートドライバ回路部
708 FPC端子部
710 信号線
711 配線部
712 シール材
716 FPC
730 絶縁膜
732 封止膜
734 絶縁膜
736 着色膜
738 遮光膜
750 トランジスタ
752 トランジスタ
760 接続電極
770 平坦化絶縁膜
772 導電膜
774 導電膜
775 液晶素子
776 液晶層
778 構造体
780 異方性導電膜
782 発光素子
784 導電膜
786 EL層
788 導電膜
790 容量素子
1280a p型トランジスタ
1280b n型トランジスタ
1280c n型トランジスタ
1281 容量素子
1282 トランジスタ
1311 配線
1312 配線
1313 配線
1314 配線
1315 配線
1316 配線
1317 配線
1351 トランジスタ
1352 トランジスタ
1353 トランジスタ
1354 トランジスタ
1360 光電変換素子
1401 信号
1402 信号
1403 信号
1404 信号
1405 信号
8000 表示モジュール
8001 上部カバー
8002 下部カバー
8003 FPC
8004 タッチパネル
8005 FPC
8006 表示パネル
8007 バックライト
8008 光源
8009 フレーム
8010 プリント基板
8011 バッテリ
9000 筐体
9001 表示部
9003 スピーカ
9005 操作キー
9006 接続端子
9007 センサ
9008 マイクロフォン
9050 操作ボタン
9051 情報
9052 情報
9053 情報
9054 情報
9055 ヒンジ
9100 テレビジョン装置
9101 携帯情報端末
9102 携帯情報端末
9200 携帯情報端末
9201 携帯情報端末

Claims (6)

  1. トランジスタを有する半導体装置であって、
    酸化物半導体膜と、
    前記酸化物半導体膜上に設けられ、且つ、酸化シリコン、酸化窒化シリコン、又は窒化酸化シリコンを有するゲート絶縁膜と、
    前記ゲート絶縁膜上の金属酸化物膜と、
    前記金属酸化物膜上に設けられ、且つ、前記ゲート絶縁膜及び前記金属酸化物膜を介して、前記酸化物半導体膜と重なる領域を有する第1の導電膜と、
    前記第1の導電膜上の水素を有する絶縁膜と、
    前記水素を有する絶縁膜上に設けられ、且つ、前記酸化物半導体膜と電気的に接続された、第2の導電膜及び第3の導電膜と、を有し、
    前記第1の導電膜は、ゲート電極としての機能を有し、
    前記酸化物半導体膜の上面は、前記水素を有する絶縁膜の一部と接する第1の領域と、前記水素を有する絶縁膜の他の一部と接する第2の領域と、前記第1の領域と前記第2の領域の間に前記ゲート絶縁膜と接する第3の領域と、を有し、
    前記金属酸化物膜は、ナノビーム電子線回折パターンにより、リング状に複数のスポットが観察される結晶部を有する、半導体装置。
  2. トランジスタを有する半導体装置であって、
    酸化物半導体膜と、
    前記酸化物半導体膜上に設けられ、且つ、酸化シリコン、酸化窒化シリコン、又は窒化酸化シリコンを有するゲート絶縁膜と、
    前記ゲート絶縁膜上の金属酸化物膜と、
    前記金属酸化物膜上に設けられ、且つ、前記ゲート絶縁膜及び前記金属酸化物膜を介して、前記酸化物半導体膜と重なる領域を有する第1の導電膜と、
    前記第1の導電膜上の水素を有する絶縁膜と、
    前記水素を有する絶縁膜上に設けられ、且つ、前記酸化物半導体膜と電気的に接続された、第2の導電膜及び第3の導電膜と、を有し、
    前記第1の導電膜は、ゲート電極としての機能を有し、
    前記酸化物半導体膜の上面は、前記水素を有する絶縁膜の一部と接する第1の領域と、前記水素を有する絶縁膜の他の一部と接する第2の領域と、前記第1の領域と前記第2の領域の間に前記ゲート絶縁膜と接する第3の領域と、を有し、
    前記金属酸化物膜は、複数の結晶部を有し、
    前記複数の結晶部の一と、前記複数の結晶部の他の一との間で、結晶方位が異なる、半導体装置。
  3. 請求項1又は2において、
    前記金属酸化物膜は、高分解能TEM像で結晶粒界が観察されない、半導体装置。
  4. トランジスタを有する半導体装置であって、
    酸化物半導体膜と、
    前記酸化物半導体膜上に設けられ、且つ、酸化シリコン、酸化窒化シリコン、又は窒化酸化シリコンを有するゲート絶縁膜と、
    前記ゲート絶縁膜上の金属酸化物膜と、
    前記金属酸化物膜上に設けられ、且つ、前記ゲート絶縁膜及び前記金属酸化物膜を介して、前記酸化物半導体膜と重なる領域を有する第1の導電膜と、
    前記第1の導電膜上の水素を有する絶縁膜と、
    前記水素を有する絶縁膜上に設けられ、且つ、前記酸化物半導体膜と電気的に接続された、第2の導電膜及び第3の導電膜と、を有し、
    前記第1の導電膜は、ゲート電極としての機能を有し、
    前記トランジスタのチャネル長方向における断面視において、前記ゲート絶縁膜の幅は、前記金属酸化物膜の幅よりも大きく、
    前記ゲート絶縁膜の上面は、前記水素を有する絶縁膜の第1の部分と接する第1の領域と、前記水素を有する絶縁膜の第2の部分と接する第2の領域と、前記第1の領域と前記第2の領域との間に前記金属酸化物膜と接する第3の領域と、を有し、
    前記酸化物半導体膜の上面は、前記水素を有する絶縁膜の第3の部分と接する第4の領域と、前記水素を有する絶縁膜の第4の部分と接する第5の領域と、前記第4の領域と前記第5の領域の間に前記ゲート絶縁膜と接する第6の領域と、を有する、半導体装置。
  5. トランジスタを有する半導体装置であって、
    第1の導電膜と、
    前記第1の導電膜上の第1のゲート絶縁膜と、
    前記第1のゲート絶縁膜上の酸化物半導体膜と、
    前記酸化物半導体膜上に設けられ、且つ、酸化シリコン、酸化窒化シリコン、又は窒化酸化シリコンを有する第2のゲート絶縁膜と、
    前記第2のゲート絶縁膜上の金属酸化物膜と、
    前記金属酸化物膜上に設けられ、且つ、前記第2のゲート絶縁膜及び前記金属酸化物膜を介して、前記酸化物半導体膜と重なる領域を有する第2の導電膜と、
    前記第2の導電膜上の水素を有する絶縁膜と、
    前記水素を有する絶縁膜上に設けられ、且つ、前記酸化物半導体膜と電気的に接続された、第3の導電膜及び第4の導電膜と、を有し、
    前記第1の導電膜及び前記第2の導電膜の各々は、ゲート電極としての機能を有し、
    前記トランジスタのチャネル長方向における断面視において、前記第2のゲート絶縁膜の幅は、前記金属酸化物膜の幅よりも大きく、且つ前記第1の導電膜の幅よりも小さく、
    前記第2のゲート絶縁膜の上面は、前記水素を有する絶縁膜の第1の部分と接する第1の領域と、前記水素を有する絶縁膜の第2の部分と接する第2の領域と、前記第1の領域と前記第2の領域との間に前記金属酸化物膜と接する第3の領域と、を有し、
    前記酸化物半導体膜の上面は、前記水素を有する絶縁膜の第3の部分と接する第4の領域と、前記水素を有する絶縁膜の第4の部分と接する第5の領域と、前記第4の領域と前記第5の領域の間に前記第2のゲート絶縁膜と接する第6の領域と、を有する、半導体装置。
  6. 請求項1乃至5のいずれか一において、
    前記酸化物半導体膜及び前記金属酸化物膜の各々は、In、Ga、及びZnを有する、半導体装置。
JP2020125988A 2015-05-22 2020-07-24 半導体装置 Active JP6999758B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021207862A JP7410110B2 (ja) 2015-05-22 2021-12-22 半導体装置
JP2023215949A JP2024050539A (ja) 2015-05-22 2023-12-21 半導体装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015104502 2015-05-22
JP2015104502 2015-05-22
JP2015150231 2015-07-30
JP2015150231 2015-07-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019136908A Division JP2019197917A (ja) 2015-05-22 2019-07-25 トランジスタ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021207862A Division JP7410110B2 (ja) 2015-05-22 2021-12-22 半導体装置

Publications (2)

Publication Number Publication Date
JP2020205423A true JP2020205423A (ja) 2020-12-24
JP6999758B2 JP6999758B2 (ja) 2022-01-19

Family

ID=57325750

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2016097633A Active JP6563853B2 (ja) 2015-05-22 2016-05-16 トランジスタ
JP2019136908A Withdrawn JP2019197917A (ja) 2015-05-22 2019-07-25 トランジスタ
JP2020125988A Active JP6999758B2 (ja) 2015-05-22 2020-07-24 半導体装置
JP2021207862A Active JP7410110B2 (ja) 2015-05-22 2021-12-22 半導体装置
JP2023215949A Pending JP2024050539A (ja) 2015-05-22 2023-12-21 半導体装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2016097633A Active JP6563853B2 (ja) 2015-05-22 2016-05-16 トランジスタ
JP2019136908A Withdrawn JP2019197917A (ja) 2015-05-22 2019-07-25 トランジスタ

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021207862A Active JP7410110B2 (ja) 2015-05-22 2021-12-22 半導体装置
JP2023215949A Pending JP2024050539A (ja) 2015-05-22 2023-12-21 半導体装置

Country Status (4)

Country Link
US (5) US9837547B2 (ja)
JP (5) JP6563853B2 (ja)
TW (2) TWI799800B (ja)
WO (1) WO2016189411A1 (ja)

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024725B2 (en) 2015-07-24 2021-06-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including metal oxide film
US11189736B2 (en) * 2015-07-24 2021-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN106409919A (zh) 2015-07-30 2017-02-15 株式会社半导体能源研究所 半导体装置以及包括该半导体装置的显示装置
US9893202B2 (en) 2015-08-19 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
WO2017064590A1 (en) 2015-10-12 2017-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR20180084819A (ko) 2015-11-20 2018-07-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 상기 반도체 장치를 가지는 표시 장치, 및 상기 반도체 장치를 가지는 전자 기기
KR102629293B1 (ko) 2015-11-20 2024-01-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 이 반도체 장치의 제작 방법, 또는 이 반도체 장치를 가지는 표시 장치
WO2017122110A1 (ja) * 2016-01-15 2017-07-20 株式会社半導体エネルギー研究所 表示装置、表示モジュール、および電子機器
KR102655935B1 (ko) * 2016-02-12 2024-04-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 상기 반도체 장치를 포함하는 표시 장치
US9772817B2 (en) 2016-02-22 2017-09-26 Sonos, Inc. Room-corrected voice detection
US9947316B2 (en) 2016-02-22 2018-04-17 Sonos, Inc. Voice control of a media playback system
US10142754B2 (en) * 2016-02-22 2018-11-27 Sonos, Inc. Sensor on moving component of transducer
US10509626B2 (en) 2016-02-22 2019-12-17 Sonos, Inc Handling of loss of pairing between networked devices
US10264030B2 (en) 2016-02-22 2019-04-16 Sonos, Inc. Networked microphone device control
US9965247B2 (en) 2016-02-22 2018-05-08 Sonos, Inc. Voice controlled media playback system based on user profile
US10095470B2 (en) 2016-02-22 2018-10-09 Sonos, Inc. Audio response playback
US9978390B2 (en) 2016-06-09 2018-05-22 Sonos, Inc. Dynamic player selection for audio signal processing
US10152969B2 (en) 2016-07-15 2018-12-11 Sonos, Inc. Voice detection by multiple devices
US10134399B2 (en) 2016-07-15 2018-11-20 Sonos, Inc. Contextualization of voice inputs
US10115400B2 (en) 2016-08-05 2018-10-30 Sonos, Inc. Multiple voice services
US9942678B1 (en) 2016-09-27 2018-04-10 Sonos, Inc. Audio playback settings for voice interaction
US9743204B1 (en) 2016-09-30 2017-08-22 Sonos, Inc. Multi-orientation playback device microphones
US10181323B2 (en) 2016-10-19 2019-01-15 Sonos, Inc. Arbitration-based voice recognition
JP7126823B2 (ja) 2016-12-23 2022-08-29 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102447148B1 (ko) * 2017-03-13 2022-09-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
US11183181B2 (en) 2017-03-27 2021-11-23 Sonos, Inc. Systems and methods of multiple voice services
CN107369716B (zh) * 2017-07-17 2021-02-12 京东方科技集团股份有限公司 薄膜晶体管及制作方法、显示装置
US10475449B2 (en) 2017-08-07 2019-11-12 Sonos, Inc. Wake-word detection suppression
US10048930B1 (en) 2017-09-08 2018-08-14 Sonos, Inc. Dynamic computation of system response volume
US10446165B2 (en) 2017-09-27 2019-10-15 Sonos, Inc. Robust short-time fourier transform acoustic echo cancellation during audio playback
US10482868B2 (en) 2017-09-28 2019-11-19 Sonos, Inc. Multi-channel acoustic echo cancellation
US10051366B1 (en) 2017-09-28 2018-08-14 Sonos, Inc. Three-dimensional beam forming with a microphone array
US10621981B2 (en) 2017-09-28 2020-04-14 Sonos, Inc. Tone interference cancellation
US10466962B2 (en) 2017-09-29 2019-11-05 Sonos, Inc. Media playback system with voice assistance
US10880650B2 (en) 2017-12-10 2020-12-29 Sonos, Inc. Network microphone devices with automatic do not disturb actuation capabilities
US10818290B2 (en) 2017-12-11 2020-10-27 Sonos, Inc. Home graph
KR20240137109A (ko) * 2017-12-22 2024-09-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US11322442B2 (en) 2018-01-05 2022-05-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor with oxide semiconductor and method for manufacturing the semiconductor device
US11343614B2 (en) 2018-01-31 2022-05-24 Sonos, Inc. Device designation of playback and network microphone device arrangements
KR102491653B1 (ko) * 2018-03-08 2023-01-25 삼성디스플레이 주식회사 스트레처블 표시 장치
JP7242633B2 (ja) * 2018-03-16 2023-03-20 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
US11362215B2 (en) * 2018-03-30 2022-06-14 Intel Corporation Top-gate doped thin film transistor
JP7180989B2 (ja) * 2018-03-30 2022-11-30 株式会社ジャパンディスプレイ 半導体装置および表示装置
US11257956B2 (en) 2018-03-30 2022-02-22 Intel Corporation Thin film transistor with selectively doped oxide thin film
US11175880B2 (en) 2018-05-10 2021-11-16 Sonos, Inc. Systems and methods for voice-assisted media content selection
US10847178B2 (en) 2018-05-18 2020-11-24 Sonos, Inc. Linear filtering for noise-suppressed speech detection
US10959029B2 (en) 2018-05-25 2021-03-23 Sonos, Inc. Determining and adapting to changes in microphone performance of playback devices
US10681460B2 (en) 2018-06-28 2020-06-09 Sonos, Inc. Systems and methods for associating playback devices with voice assistant services
WO2020012276A1 (ja) 2018-07-09 2020-01-16 株式会社半導体エネルギー研究所 半導体装置
TW202032242A (zh) * 2018-08-03 2020-09-01 日商半導體能源研究所股份有限公司 半導體裝置
KR102612577B1 (ko) 2018-08-13 2023-12-08 엘지디스플레이 주식회사 박막 트랜지스터 기판, 쉬프트 레지스터 및 표시장치
US11076035B2 (en) 2018-08-28 2021-07-27 Sonos, Inc. Do not disturb feature for audio notifications
US10461710B1 (en) 2018-08-28 2019-10-29 Sonos, Inc. Media playback system with maximum volume setting
US10587430B1 (en) 2018-09-14 2020-03-10 Sonos, Inc. Networked devices, systems, and methods for associating playback devices based on sound codes
US10878811B2 (en) 2018-09-14 2020-12-29 Sonos, Inc. Networked devices, systems, and methods for intelligently deactivating wake-word engines
US11024331B2 (en) 2018-09-21 2021-06-01 Sonos, Inc. Voice detection optimization using sound metadata
US10811015B2 (en) 2018-09-25 2020-10-20 Sonos, Inc. Voice detection optimization based on selected voice assistant service
US11100923B2 (en) 2018-09-28 2021-08-24 Sonos, Inc. Systems and methods for selective wake word detection using neural network models
US10692518B2 (en) 2018-09-29 2020-06-23 Sonos, Inc. Linear filtering for noise-suppressed speech detection via multiple network microphone devices
US11899519B2 (en) 2018-10-23 2024-02-13 Sonos, Inc. Multiple stage network microphone device with reduced power consumption and processing load
EP3654249A1 (en) 2018-11-15 2020-05-20 Snips Dilated convolutions and gating for efficient keyword spotting
US11183183B2 (en) 2018-12-07 2021-11-23 Sonos, Inc. Systems and methods of operating media playback systems having multiple voice assistant services
US11132989B2 (en) 2018-12-13 2021-09-28 Sonos, Inc. Networked microphone devices, systems, and methods of localized arbitration
US10602268B1 (en) 2018-12-20 2020-03-24 Sonos, Inc. Optimization of network microphone devices using noise classification
US11107929B2 (en) * 2018-12-21 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2020161775A1 (ja) * 2019-02-04 2020-08-13 シャープ株式会社 表示装置
US10867604B2 (en) 2019-02-08 2020-12-15 Sonos, Inc. Devices, systems, and methods for distributed voice processing
US11315556B2 (en) 2019-02-08 2022-04-26 Sonos, Inc. Devices, systems, and methods for distributed voice processing by transmitting sound data associated with a wake word to an appropriate device for identification
US11120794B2 (en) 2019-05-03 2021-09-14 Sonos, Inc. Voice assistant persistence across multiple network microphone devices
US10586540B1 (en) 2019-06-12 2020-03-10 Sonos, Inc. Network microphone device with command keyword conditioning
US11361756B2 (en) 2019-06-12 2022-06-14 Sonos, Inc. Conditional wake word eventing based on environment
US11200894B2 (en) 2019-06-12 2021-12-14 Sonos, Inc. Network microphone device with command keyword eventing
US11138969B2 (en) 2019-07-31 2021-10-05 Sonos, Inc. Locally distributed keyword detection
US11138975B2 (en) 2019-07-31 2021-10-05 Sonos, Inc. Locally distributed keyword detection
US10871943B1 (en) 2019-07-31 2020-12-22 Sonos, Inc. Noise classification for event detection
US11189286B2 (en) 2019-10-22 2021-11-30 Sonos, Inc. VAS toggle based on device orientation
JP7534083B2 (ja) * 2019-11-26 2024-08-14 株式会社ジャパンディスプレイ 薄膜トランジスタの製造方法
US11200900B2 (en) 2019-12-20 2021-12-14 Sonos, Inc. Offline voice control
US11562740B2 (en) 2020-01-07 2023-01-24 Sonos, Inc. Voice verification for media playback
US11556307B2 (en) 2020-01-31 2023-01-17 Sonos, Inc. Local voice data processing
US11308958B2 (en) 2020-02-07 2022-04-19 Sonos, Inc. Localized wakeword verification
KR102293405B1 (ko) * 2020-02-24 2021-08-26 연세대학교 산학협력단 스트레처블 발광소재를 이용한 유기전계 발광소자 및 그 제조방법
US11308962B2 (en) 2020-05-20 2022-04-19 Sonos, Inc. Input detection windowing
US11727919B2 (en) 2020-05-20 2023-08-15 Sonos, Inc. Memory allocation for keyword spotting engines
US11482224B2 (en) 2020-05-20 2022-10-25 Sonos, Inc. Command keywords with input detection windowing
US11698771B2 (en) 2020-08-25 2023-07-11 Sonos, Inc. Vocal guidance engines for playback devices
US11984123B2 (en) 2020-11-12 2024-05-14 Sonos, Inc. Network device interaction by range
US11551700B2 (en) 2021-01-25 2023-01-10 Sonos, Inc. Systems and methods for power-efficient keyword detection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033836A (ja) * 2010-08-03 2012-02-16 Canon Inc トップゲート型薄膜トランジスタ及びこれを備えた表示装置
JP2012119667A (ja) * 2010-11-11 2012-06-21 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2012129511A (ja) * 2010-11-26 2012-07-05 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP2014199428A (ja) * 2013-01-30 2014-10-23 株式会社半導体エネルギー研究所 半導体装置
JP2015079946A (ja) * 2013-09-13 2015-04-23 株式会社半導体エネルギー研究所 半導体装置の作製方法

Family Cites Families (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2009101A (en) 1932-08-19 1935-07-23 Bendix Aviat Corp Brake
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
JPH11505377A (ja) 1995-08-03 1999-05-18 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 半導体装置
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7015471B2 (en) * 2002-09-25 2006-03-21 North Carolina State University Surface plasmon resonance systems and methods having a variable charge density layer
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
CN102354658B (zh) 2004-03-12 2015-04-01 独立行政法人科学技术振兴机构 薄膜晶体管的制造方法
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
JP5138163B2 (ja) 2004-11-10 2013-02-06 キヤノン株式会社 電界効果型トランジスタ
RU2358355C2 (ru) 2004-11-10 2009-06-10 Кэнон Кабусики Кайся Полевой транзистор
EP1810335B1 (en) 2004-11-10 2020-05-27 Canon Kabushiki Kaisha Light-emitting device
EP1812969B1 (en) 2004-11-10 2015-05-06 Canon Kabushiki Kaisha Field effect transistor comprising an amorphous oxide
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI505473B (zh) 2005-01-28 2015-10-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
EP1998374A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP4367393B2 (ja) * 2005-09-30 2009-11-18 日立電線株式会社 透明導電膜を備えた半導体発光素子
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101117948B1 (ko) 2005-11-15 2012-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 디스플레이 장치 제조 방법
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
JP5305630B2 (ja) * 2006-12-05 2013-10-02 キヤノン株式会社 ボトムゲート型薄膜トランジスタの製造方法及び表示装置の製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
JP5111867B2 (ja) 2007-01-16 2013-01-09 株式会社ジャパンディスプレイイースト 表示装置
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
US8274078B2 (en) 2007-04-25 2012-09-25 Canon Kabushiki Kaisha Metal oxynitride semiconductor containing zinc
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
JP5704790B2 (ja) 2008-05-07 2015-04-22 キヤノン株式会社 薄膜トランジスタ、および、表示装置
US20090278120A1 (en) * 2008-05-09 2009-11-12 Korea Institute Of Science And Technology Thin Film Transistor
KR101496148B1 (ko) 2008-05-15 2015-02-27 삼성전자주식회사 반도체소자 및 그 제조방법
JP2010056541A (ja) * 2008-07-31 2010-03-11 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
TWI637444B (zh) * 2008-08-08 2018-10-01 半導體能源研究所股份有限公司 半導體裝置的製造方法
JP5345456B2 (ja) * 2008-08-14 2013-11-20 富士フイルム株式会社 薄膜電界効果型トランジスタ
TWI569454B (zh) * 2008-09-01 2017-02-01 半導體能源研究所股份有限公司 半導體裝置的製造方法
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
KR101329849B1 (ko) * 2009-11-28 2013-11-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
KR101872927B1 (ko) 2010-05-21 2018-06-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9443984B2 (en) * 2010-12-28 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP5975635B2 (ja) * 2010-12-28 2016-08-23 株式会社半導体エネルギー研究所 半導体装置
WO2012090973A1 (en) * 2010-12-28 2012-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9048142B2 (en) 2010-12-28 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6005401B2 (ja) 2011-06-10 2016-10-12 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP6009226B2 (ja) 2011-06-10 2016-10-19 株式会社半導体エネルギー研究所 半導体装置の作製方法
US8748886B2 (en) 2011-07-08 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
TWI567985B (zh) 2011-10-21 2017-01-21 半導體能源研究所股份有限公司 半導體裝置及其製造方法
WO2013061895A1 (en) * 2011-10-28 2013-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2013089115A1 (en) 2011-12-15 2013-06-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2013149953A (ja) * 2011-12-20 2013-08-01 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
US9653614B2 (en) * 2012-01-23 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9735280B2 (en) 2012-03-02 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, and method for forming oxide film
KR20130107937A (ko) 2012-03-23 2013-10-02 삼성디스플레이 주식회사 박막 트랜지스터, 이를 포함하는 표시 장치, 및 이의 제조 방법
JP2013247270A (ja) * 2012-05-28 2013-12-09 Sony Corp 撮像装置および撮像表示システム
KR20130136063A (ko) 2012-06-04 2013-12-12 삼성디스플레이 주식회사 박막 트랜지스터, 이를 포함하는 박막 트랜지스터 표시판 및 그 제조 방법
TWI596778B (zh) * 2012-06-29 2017-08-21 半導體能源研究所股份有限公司 半導體裝置及半導體裝置的製造方法
KR102141977B1 (ko) * 2012-07-20 2020-08-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제조 방법
JP2014056963A (ja) * 2012-09-13 2014-03-27 Toshiba Corp 薄膜トランジスタおよび固体撮像装置
JP6033045B2 (ja) 2012-10-17 2016-11-30 株式会社半導体エネルギー研究所 半導体装置
TWI649794B (zh) 2012-11-08 2019-02-01 日商半導體能源研究所股份有限公司 金屬氧化物膜及形成金屬氧化物膜的方法
KR102211596B1 (ko) 2012-12-28 2021-02-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP6405100B2 (ja) * 2013-03-08 2018-10-17 株式会社半導体エネルギー研究所 半導体装置
US9577107B2 (en) 2013-03-19 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and method for forming oxide semiconductor film
TWI809225B (zh) * 2013-05-16 2023-07-21 日商半導體能源研究所股份有限公司 半導體裝置
JP2015195327A (ja) * 2013-06-05 2015-11-05 株式会社半導体エネルギー研究所 半導体装置
WO2015009768A1 (en) * 2013-07-15 2015-01-22 Polyera Corporation Photopatternable materials and related electronic devices and methods
JP6322503B2 (ja) * 2013-07-16 2018-05-09 株式会社半導体エネルギー研究所 半導体装置
KR102244553B1 (ko) * 2013-08-23 2021-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 용량 소자 및 반도체 장치
US9443987B2 (en) * 2013-08-23 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2015037500A1 (en) 2013-09-13 2015-03-19 Semiconductor Energy Laboratory Co., Ltd. Display device
JP6383616B2 (ja) 2013-09-25 2018-08-29 株式会社半導体エネルギー研究所 半導体装置
KR20160074514A (ko) * 2013-10-22 2016-06-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
JP6433757B2 (ja) 2013-10-31 2018-12-05 株式会社半導体エネルギー研究所 半導体装置、表示装置、電子機器
US9577110B2 (en) 2013-12-27 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including an oxide semiconductor and the display device including the semiconductor device
US9443876B2 (en) 2014-02-05 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic device including the semiconductor device, the display device, and the display module
US9929279B2 (en) * 2014-02-05 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9640669B2 (en) 2014-03-13 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic appliance including the semiconductor device, the display device, and the display module
US9887291B2 (en) * 2014-03-19 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic device including the semiconductor device, the display device, or the display module
US10043913B2 (en) 2014-04-30 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor device, display device, module, and electronic device
US20150329371A1 (en) 2014-05-13 2015-11-19 Semiconductor Energy Laboratory Co., Ltd. Oxide, semiconductor device, module, and electronic device
US10002971B2 (en) 2014-07-03 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
CN114695562A (zh) 2015-05-22 2022-07-01 株式会社半导体能源研究所 半导体装置以及包括该半导体装置的显示装置
WO2017208119A1 (en) * 2016-06-03 2017-12-07 Semiconductor Energy Laboratory Co., Ltd. Metal oxide and field-effect transistor
TW202224189A (zh) * 2016-10-21 2022-06-16 日商半導體能源研究所股份有限公司 複合氧化物及電晶體

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033836A (ja) * 2010-08-03 2012-02-16 Canon Inc トップゲート型薄膜トランジスタ及びこれを備えた表示装置
JP2012119667A (ja) * 2010-11-11 2012-06-21 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2012129511A (ja) * 2010-11-26 2012-07-05 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP2014199428A (ja) * 2013-01-30 2014-10-23 株式会社半導体エネルギー研究所 半導体装置
JP2015079946A (ja) * 2013-09-13 2015-04-23 株式会社半導体エネルギー研究所 半導体装置の作製方法

Also Published As

Publication number Publication date
TW201711205A (zh) 2017-03-16
TWI799800B (zh) 2023-04-21
JP2022058387A (ja) 2022-04-12
US11695078B2 (en) 2023-07-04
US20210119056A1 (en) 2021-04-22
US20180076333A1 (en) 2018-03-15
JP2017028252A (ja) 2017-02-02
JP6563853B2 (ja) 2019-08-21
US20200373432A1 (en) 2020-11-26
TW202349725A (zh) 2023-12-16
TW202127676A (zh) 2021-07-16
JP6999758B2 (ja) 2022-01-19
US10903368B2 (en) 2021-01-26
TWI721985B (zh) 2021-03-21
WO2016189411A1 (en) 2016-12-01
US20190245091A1 (en) 2019-08-08
JP2024050539A (ja) 2024-04-10
US10861981B2 (en) 2020-12-08
US20160343866A1 (en) 2016-11-24
US9837547B2 (en) 2017-12-05
JP2019197917A (ja) 2019-11-14
JP7410110B2 (ja) 2024-01-09
US10319861B2 (en) 2019-06-11

Similar Documents

Publication Publication Date Title
JP6999758B2 (ja) 半導体装置
JP6803682B2 (ja) 半導体装置の作製方法
KR102348907B1 (ko) 표시 장치, 표시 모듈, 및 전자 기기
JP6608633B2 (ja) 半導体装置
JP2022031732A (ja) 半導体装置、表示装置、表示モジュール、及び電子機器
JP2022008388A (ja) 半導体装置の作製方法
JP2023009058A (ja) 半導体装置
JP2017034251A (ja) 半導体装置、該半導体装置を有する表示装置
JP6942845B2 (ja) 半導体装置
JP2017108065A (ja) 半導体装置の作製方法および該半導体装置を有する表示装置の作製方法
JP2017005064A (ja) 半導体装置、該半導体装置を有する表示装置
JP7026717B2 (ja) 半導体装置
WO2017122110A1 (ja) 表示装置、表示モジュール、および電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211222

R150 Certificate of patent or registration of utility model

Ref document number: 6999758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150