JP2018058766A - 層状複水酸化物を含む機能層及び複合材料 - Google Patents

層状複水酸化物を含む機能層及び複合材料 Download PDF

Info

Publication number
JP2018058766A
JP2018058766A JP2017239899A JP2017239899A JP2018058766A JP 2018058766 A JP2018058766 A JP 2018058766A JP 2017239899 A JP2017239899 A JP 2017239899A JP 2017239899 A JP2017239899 A JP 2017239899A JP 2018058766 A JP2018058766 A JP 2018058766A
Authority
JP
Japan
Prior art keywords
functional layer
ldh
porous substrate
composite material
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017239899A
Other languages
English (en)
Inventor
翔 山本
Sho Yamamoto
翔 山本
昌平 横山
Shohei Yokoyama
昌平 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JP2018058766A publication Critical patent/JP2018058766A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/026Porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Laminated Bodies (AREA)
  • Hybrid Cells (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】イオン伝導度が有意に向上したLDH含有機能層及びそれを備えた複合材料を提供する。
【解決手段】 層状複水酸化物を含む機能層であって、前記層状複水酸化物が、Ni、Al、Ti及びZnを含み、エネルギー分散型X線分析(EDS)により決定される、Zn/(Ni+Ti+Al+Zn)の原子比が0.04以上である、機能層。
【選択図】図1

Description

本発明は、層状複水酸化物を含む機能層及び複合材料に関するものである。
層状複水酸化物(以下、LDHともいう)は、積み重なった水酸化物基本層の間に、中間層として交換可能な陰イオン及びHOを有する物質であり、その特徴を活かして触媒や吸着剤、耐熱性向上のための高分子中の分散剤等として利用されている。
また、LDHは水酸化物イオンを伝導する材料としても注目され、アルカリ形燃料電池の電解質や亜鉛空気電池の触媒層への添加についても検討されている。特に、近年、ニッケル亜鉛二次電池、亜鉛空気二次電池等のアルカリ二次電池用の固体電解質セパレータとしてのLDHの利用も提案されており、かかるセパレータ用途に適したLDH含有機能層を備えた複合材料が知られている。例えば、特許文献1(国際公開第2015/098610号)には、多孔質基材と、多孔質基材上及び/又は中に形成される透水性を有しないLDH含有機能層とを備えた複合材料が開示されており、LDH含有機能層が、一般式:M2+ 1−x3+ (OH)n− x/n・mHO(式中、M2+はMg2+等の2価の陽イオン、M3+はAl3+等の3価の陽イオンであり、An−はOH、CO 2−等のn価の陰イオン、nは1以上の整数、xは0.1〜0.4であり、mは0以上である)で表されるLDHを含むことが記載されている。特許文献1に開示されるLDH含有機能層は、透水性を有しない程に緻密化されているため、セパレータとして用いた場合に、アルカリ亜鉛二次電池の実用化の障壁となっている亜鉛デンドライト進展や、亜鉛空気電池における空気極からの二酸化炭素の侵入を阻止することができる。
さらに、特許文献2(国際公開第2016/076047号)には、多孔質基材と複合化されたLDHセパレータを備えたセパレータ構造体が開示されており、LDHセパレータがガス不透過性及び/又は水不透過性を有する程の高い緻密性を有することが開示されている。この文献には、LDHセパレータは単位面積あたりのHe透過度で10cm/min・atm以下と評価される高い緻密性を有しうることも記載されている。
国際公開第2015/098610号 国際公開第2016/076047号
本発明者らは、今般、Ni、Al、Ti及びZnを含むLDHを採用し、かつ、Zn/(Ni+Ti+Al+Zn)の原子比を0.04以上とすることにより、イオン伝導度が有意に向上したLDH含有機能層を提供できるとの知見を得た。
したがって、本発明の目的は、イオン伝導度が有意に向上したLDH含有機能層及びそれを備えた複合材料を提供することにある。
本発明の一態様によれば、層状複水酸化物を含む機能層であって、
前記層状複水酸化物が、Ni、Al、Ti及びZnを含み、
エネルギー分散型X線分析(EDS)により決定される、Zn/(Ni+Ti+Al+Zn)の原子比が0.04以上である、機能層が提供される。
本発明の一態様によれば、多孔質基材と、
前記多孔質基材上に設けられ、且つ/又は前記多孔質基材中に組み込まれる、前記機能層と、
を含む、複合材料が提供される。
本発明の一態様によれば、前記機能層又は前記複合材料をセパレータとして備えた電池が提供される。
本発明のLDH含有複合材料の一態様を示す模式断面図である。 本発明のLDH含有複合材料の他の一態様を示す模式断面図である。 例1〜4で用いた電気化学測定系を示す模式断面図である。 例1〜4で使用されたHe透過度測定系の一例を示す概念図である。 図4Aに示される測定系に用いられる試料ホルダ及びその周辺構成の模式断面図である。
LDH含有機能層及び複合材料
本発明の機能層は、層状複水酸化物(LDH)を含む層である。機能層(特に機能層に含まれるLDH)は水酸化物イオン伝導性を有しうる。本発明の機能層におけるLDHはNi、Al、Ti及びZnを含み、Zn/(Ni+Ti+Al+Zn)の原子比が0.04以上であるものである。このように、Ni、Al、Ti及びZnを含むLDHを採用し、かつ、Zn/(Ni+Ti+Al+Zn)の原子比を0.04以上とすることにより、イオン伝導度が有意に向上したLDH含有機能層を提供することができる。したがって、本発明の機能層は、アルカリ二次電池用セパレータとしての使用に適した高いイオン伝導性を呈することができる。
本発明の機能層に含まれるLDHは、Ni、Ti、Al及びZnの合計量に占めるZnの割合、具体的にはZn/(Ni+Ti+Al+Zn)の原子比が0.04以上であり、好ましくは0.04〜0.30、より好ましくは0.04〜0.025、さらに好ましくは0.05〜0.25、特に好ましくは0.05〜0.20、最も好ましくは0.06〜0.15である。かかる範囲内であるとLDH含有機能層におけるイオン伝導度をより効果的に向上することができる。上記原子比はエネルギー分散型X線分析(EDS)により決定されるものである。すなわち、機能層表面に対してEDS分析装置(例えばX−act、オックスフォード・インストゥルメンツ社製)を用いて組成分析を行い、Zn/(Ni+Ti+Al+Zn)の原子比を算出すればよい。この分析は、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに2回繰り返し行い、4)合計9点の平均値を算出することにより行うのが好ましい。
好ましくは、機能層は2.6mS/cm以上のイオン伝導率を有する。イオン伝導率が高ければ高い方が良く、その上限値は特に限定されないが、例えば10mS/cmである。このように高いイオン伝導率であると電池用途に特に適する。例えば、LDHの実用化のためには薄膜化による低抵抗化が望まれるが、本態様によれば望ましく低抵抗なLDH含有機能層を提供できるので、亜鉛空気電池やニッケル亜鉛電池等のアルカリ二次電池へ固体電解質セパレータとしてLDHの適用においてとりわけ有利となる。
ところで、一般的に知られているように、LDHは、複数の水酸化物基本層と、これら複数の水酸化物基本層間に介在する中間層とから構成される。水酸化物基本層は主として金属元素(典型的には金属イオン)とOH基で構成される。機能層に含まれるLDHの中間層は、陰イオン及びHOで構成される。陰イオンは1価以上の陰イオン、好ましくは1価又は2価のイオンである。好ましくは、LDH中の陰イオンはOH及び/又はCO 2−を含む。ところで、LDHが適用されるアルカリ二次電池(例えば金属空気電池やニッケル亜鉛電池)の電解液には、高い水酸化物イオン伝導度が要求され、それ故、pHが14程度で強アルカリ性のKOH水溶液が用いられることが望まれる。このため、LDHにはこのような強アルカリ性電解液中においても殆ど劣化しないといった高度な耐アルカリ性が望まれる。したがって、本発明におけるLDHは後述するような耐アルカリ性評価により表面微構造及び結晶構造の変化が生じないものであるのが好ましい。また、上述したとおり、LDHはその固有の性質及び上述した組成に起因して優れたイオン伝導性を有する。
具体的には、機能層に含まれるLDHは、0.4mol/Lの濃度で酸化亜鉛を含む6mol/Lの水酸化カリウム水溶液中に70℃で3週間(すなわち504時間)浸漬させた場合に、表面微構造及び結晶構造の変化が生じないものが、耐アルカリ性に優れる点で好ましい。表面微構造の変化の有無はSEM(走査型電子顕微鏡)を用いた表面微構造により、結晶構造の変化の有無はXRD(X線回折)を用いた結晶構造解析(例えばLDH由来の(003)ピークのシフトの有無)により、好ましく行うことができる。水酸化カリウムは代表的な強アルカリ物質であり、上記水酸化カリウム水溶液の組成はアルカリ二次電池の代表的な強アルカリ電解液に相当するものである。したがって、かかる強アルカリ電解液に70℃もの高温で3週間もの長期間浸漬させるという上記評価手法は、過酷な耐アルカリ性試験であるといえる。アルカリ二次電池用LDHには強アルカリ性電解液中においても殆ど劣化しないといった高度な耐アルカリ性が望まれる。この点、本態様の機能層は、かかる過酷な耐アルカリ性試験によっても表面微構造及び結晶構造の変化が生じないという、優れた耐アルカリ性を有するものである。そうでありながらも、本態様の機能層は、LDH固有の性質に起因して、アルカリ二次電池用セパレータとしての使用に適した高いイオン伝導性も呈することができる。すなわち、本態様によれば、イオン伝導性のみならず耐アルカリ性にも優れたLDH含有機能層を提供することができる。
本発明の典型的な態様によれば、LDHの水酸化物基本層は、Ni、Al、Ti及びOH基を含む。Znは水酸化物基本層に含まれていてもよいし、水酸化物基本層間に含まれていてもよく、LDH内のいかなる箇所に存在していてもよい。中間層は、上述のとおり、陰イオン及びHOで構成される。水酸化物基本層と中間層の交互積層構造自体は一般的に知られるLDHの交互積層構造と基本的に同じであるが、本態様の機能層は、LDHの水酸化物基本層をNi、Al、Ti及びOH基を含む所定の元素ないしイオンで構成することで、優れた耐アルカリ性を呈することができる。その理由は必ずしも定かではないが、本態様のLDHは、従来はアルカリ溶液に溶出しやすいと考えられていたAlが、Ni及びTiとの何らかの相互作用によりアルカリ溶液に溶出しにくくなるためと考えられる。そうでありながらも、本態様の機能層は、アルカリ二次電池用セパレータとしての使用に適した高いイオン伝導性も呈することができる。LDH中のNiはニッケルイオンの形態を採りうる。LDH中のニッケルイオンは典型的にはNi2+であると考えられるが、Ni3+等の他の価数もありうるため、特に限定されない。LDH中のAlはアルミニウムイオンの形態を採りうる。LDH中のアルミニウムイオンは典型的にはAl3+であると考えられるが、他の価数もありうるため、特に限定されない。LDH中のTiはチタンイオンの形態を採りうる。LDH中のチタンイオンは典型的にはTi4+であると考えられるが、Ti3+等の他の価数もありうるため、特に限定されない。LDH中のZnは亜鉛イオンの形態を採りうる。LDH中の亜鉛イオンは典型的にはZn2+であると考えられるが、他の価数もありうるため、特に限定されない。水酸化物基本層は、Ni、Al、Ti及びOH基を含んでいさえすれば、他の元素ないしイオンを含んでいてもよい。例えば、水酸化物基本層はK(典型的にはK)をさらに含んでいてもよい。もっとも、水酸化物基本層は、Ni、Al、Ti、OH基、及び場合によりZnを主要構成要素として含むのが好ましい。すなわち、水酸化物基本層は、主としてNi、Al、Ti、OH基、及び場合によりZnからなるのが好ましい。したがって、水酸化物基本層は、Ni、Al、Ti、OH基及び場合によりZn、K及び/又は不可避不純物で構成されるのが典型的である。不可避不純物は製法上不可避的に混入されうる任意元素であり、例えば原料や基材に由来してLDH中に混入しうる。上記のとおり、Ni、Al、Ti及びZnの価数は必ずしも定かではないため、LDHを一般式で厳密に特定することは非実際的又は不可能である。仮に水酸化物基本層が主としてNi2+、Al3+、Ti4+、Zn2+及びOH基で構成されるものと想定した場合には、対応するLDHは、一般式:Ni2+ 1−x−yーzAl3+ Ti4+ Zn2+ (OH)n− (x+2y)/n・mHO(式中、An−はn価の陰イオン、nは1以上の整数、好ましくは1又は2であり、0<x<1、好ましくは0.01≦x≦0.5、0<y<1、0.04≦z<1、好ましくは0.01≦y≦0.5、0<x+y<1、0.04≦z≦0.25、mは0以上、典型的には0を超える又は1以上の実数である)なる基本組成で表すことができる。もっとも、上記一般式はあくまで「基本組成」と解されるべきであり、Ni2+、Al3+、Ti4+、Zn2+等の元素がLDHの基本的特性を損なわない程度に他の元素又はイオン(同じ元素の他の価数の元素又はイオンや製法上不可避的に混入されうる元素又はイオンを含む)で置き換え可能なものとして解されるべきである。
好ましくは、機能層は、多孔質基材上に設けられ、且つ/又は多孔質基材中に組み込まれる。すなわち、本発明の好ましい態様によれば、多孔質基材と、多孔質基材上に設けられ且つ/又は多孔質基材中に組み込まれる機能層とを含む、複合材料が提供される。例えば、図1に示される複合材料10のように、機能層14は、その一部が多孔質基材12中に組み込まれ、残りの部分が多孔質基材12上に設けられてもよい。このとき、機能層14のうち多孔質基材12上の部分がLDH膜からなる膜状部であり、機能層14のうち多孔質基材12に組み込まれる部分が多孔質基材とLDHで構成される複合部であるといえる。複合部は、典型的には、多孔質基材12の孔内がLDHで充填された形態となる。また、図2に示される複合材料10’のように、機能層14’の全体が多孔質基材12中に組み込まれる場合には、機能層14’は主として多孔質基材12及びLDHで構成されるといえる。図2に示される複合材料10’及び機能層14’は、図1に示される複合材料10から機能層14における膜状部(LDH膜)を研磨、切削等の公知の手法により除去することにより得ることができる。図1及び2では多孔質基材12,12’の表面近傍の一部にのみ機能層14,14’が組み込まれているが、多孔質基材のいかなる箇所に機能層が組み込まれていてもよく、多孔質基材の全体又は全厚にわたって機能層が組み込まれていてもよい。
本発明の複合材料における多孔質基材は、その上及び/又は中にLDH含有機能層を形成できるものが好ましく、その材質や多孔構造は特に限定されない。多孔質基材上及び/又は中にLDH含有機能層を形成するのが典型的ではあるが、無孔質基材上にLDH含有機能層を成膜し、その後公知の種々の手法により無孔質基材を多孔化してもよい。いずれにしても、多孔質基材は透水性を有する多孔構造を有するのが、電池用セパレータとして電池に組み込まれた場合に電解液を機能層に到達可能に構成できる点で好ましい。
多孔質基材は、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成されるのが好ましく、より好ましくはセラミックス材料及び高分子材料からなる群から選択される少なくとも1種で構成される。多孔質基材は、セラミックス材料で構成されるのがより好ましい。この場合、セラミックス材料の好ましい例としては、アルミナ、ジルコニア、チタニア、マグネシア、スピネル、カルシア、コージライト、ゼオライト、ムライト、フェライト、酸化亜鉛、炭化ケイ素、及びそれらの任意の組合せが挙げられ、より好ましくは、アルミナ、ジルコニア、チタニア、及びそれらの任意の組合せであり、特に好ましくはアルミナ、ジルコニア(例えばイットリア安定化ジルコニア(YSZ))、及びその組合せである。これらの多孔質セラミックスを用いると緻密性に優れたLDH含有機能層を形成しやすい。金属材料の好ましい例としては、アルミニウム、亜鉛、及びニッケルが挙げられる。高分子材料の好ましい例としては、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、親水化したフッ素樹脂(四フッ素化樹脂:PTFE等)、セルロース、ナイロン、ポリエチレン及びそれらの任意の組合せが挙げられる。上述した各種の好ましい材料はいずれも電池の電解液に対する耐性として耐アルカリ性を有するものである。
多孔質基材は、最大100μm以下の平均気孔径を有するのが好ましく、より好ましくは最大50μm以下であり、例えば、典型的には0.001〜1.5μm、より典型的には0.001〜1.25μm、さらに典型的には0.001〜1.0μm、特に典型的には0.001〜0.75μm、最も典型的には0.001〜0.5μmである。これらの範囲内とすることで多孔質基材に所望の透水性、及び支持体としての強度を確保しながら、透水性を有しない程に緻密なLDH含有機能層を形成することができる。本発明において、平均気孔径の測定は多孔質基材の表面の電子顕微鏡画像をもとに気孔の最長距離を測長することにより行うことができる。この測定に用いる電子顕微鏡画像の倍率は20000倍以上であり、得られた全ての気孔径をサイズ順に並べて、その平均値から近い順に上位15点及び下位15点、合わせて1視野あたり30点で2視野分の平均値を算出して、平均気孔径を得ることができる。測長には、SEMのソフトウェアの測長機能や画像解析ソフト(例えば、Photoshop、Adobe社製)等を用いることができる。
多孔質基材は、10〜60%の気孔率を有するのが好ましく、より好ましくは15〜55%、さらに好ましくは20〜50%である。これらの範囲内とすることで多孔質基材に所望の透水性、及び支持体としての強度を確保しながら、透水性を有しない程に緻密なLDH含有機能層を形成することができる。多孔質基材の気孔率はアルキメデス法により好ましく測定することができる。
機能層は通気性を有しないのが好ましい。すなわち、機能層は通気性を有しない程にまでLDHで緻密化されているのが好ましい。なお、本明細書において「通気性を有しない」とは、特許文献2(国際公開第2016/076047号)に記載されるように、水中で測定対象物(すなわち機能層ないし複合材料)の一面側にヘリウムガスを0.5atmの差圧で接触させても他面側からヘリウムガスに起因する泡の発生がみられないことを意味する。こうすることで、機能層又は複合材料は、全体として、その水酸化物イオン伝導性に起因して水酸化物イオンのみを選択的に通すものとなり、電池用セパレータとしての機能を呈することができる。電池用固体電解質セパレータとしてLDHの適用を考えた場合、バルク形態のLDH緻密体では高抵抗であるとの問題があったが、本発明の好ましい態様においては、多孔質基材により強度を付与できるため、LDH含有機能層を薄くして低抵抗化を図ることができる。その上、多孔質基材は透水性及び通気性を有しうるため、電池用固体電解質セパレータとして使用された際に電解液がLDH含有機能層に到達可能な構成となりうる。すなわち、本発明のLDH含有機能層及び複合材料は、金属空気電池(例えば亜鉛空気電池)及びその他各種亜鉛二次電池(例えばニッケル亜鉛電池)等の各種電池用途に適用可能な固体電解質セパレータとして、極めて有用な材料となりうる。
機能層又はそれを備えた複合材料は、単位面積あたりのHe透過度が10cm/min・atm以下であるのが好ましく、より好ましくは5.0cm/min・atm以下、さらに好ましくは1.0cm/min・atm以下である。このような範囲内のHe透過度を有する機能層は緻密性が極めて高いといえる。したがって、He透過度が10cm/min・atm以下である機能層は、アルカリ二次電池においてセパレータとして適用した場合に、水酸化物イオン以外の物質の通過を高いレベルを阻止することができる。例えば、亜鉛二次電池の場合、電解液中において亜鉛イオン又は亜鉛酸イオンの透過を極めて効果的に抑制することができる。こうしてZn透過が顕著に抑制されることで、亜鉛二次電池に用いた場合に亜鉛デンドライトの成長を効果的に抑制できるものと原理的に考えられる。He透過度は、機能層の一方の面にHeガスを供給して機能層にHeガスを透過させる工程と、He透過度を算出して機能層の緻密性を評価する工程とを経て測定される。He透過度は、単位時間あたりのHeガスの透過量F、Heガス透過時に機能層に加わる差圧P、及びHeガスが透過する膜面積Sを用いて、F/(P×S)の式により算出する。このようにHeガスを用いてガス透過性の評価を行うことにより、極めて高いレベルでの緻密性の有無を評価することができ、その結果、水酸化物イオン以外の物質(特に亜鉛デンドライト成長を引き起こすZn)を極力透過させない(極微量しか透過させない)といった高度な緻密性を効果的に評価することができる。これは、Heガスが、ガスを構成しうる多種多様な原子ないし分子の中でも最も小さい構成単位を有しており、しかも反応性が極めて低いためである。すなわち、Heは、分子を形成することなく、He原子単体でHeガスを構成する。この点、水素ガスはH分子により構成されるため、ガス構成単位としてはHe原子単体の方がより小さい。そもそもHガスは可燃性ガスのため危険である。そして、上述した式により定義されるHeガス透過度という指標を採用することで、様々な試料サイズや測定条件の相違を問わず、緻密性に関する客観的な評価を簡便に行うことができる。こうして、機能層が亜鉛二次電池用セパレータに適した十分に高い緻密性を有するのか否かを簡便、安全かつ効果的に評価することができる。He透過度の測定は、後述する実施例の評価3に示される手順に従って好ましく行うことができる。
機能層は100μm以下の厚さを有するのが好ましく、より好ましくは75μm以下、さらに好ましくは50μm以下、特に好ましくは25μm以下、最も好ましくは5μm以下である。このように薄いことで機能層の低抵抗化を実現できる。機能層が多孔質基材上にLDH膜として形成される場合、機能層の厚さはLDH膜からなる膜状部の厚さに相当する。また、機能層が多孔質基材中に組み込まれて形成される場合には、機能層の厚さは多孔質基材及びLDHからなる複合部の厚さに相当する。なお、機能層が多孔質基材上及び中にまたがって形成される場合には膜状部(LDH膜)と複合部(多孔質基材及びLDH)の合計厚さに相当する。いずれにしても、上記のような厚さであると、電池用途等への実用化に適した所望の低抵抗を実現することができる。LDH配向膜の厚さの下限値は用途に応じて異なるため特に限定されないが、セパレータ等の機能膜として望まれるある程度の堅さを確保するためには厚さ1μm以上であるのが好ましく、より好ましくは2μm以上である。
LDH含有機能層及び複合材料の製造方法は特に限定されず、既に知られるLDH含有機能層及び複合材料の製造方法(例えば特許文献1及び2を参照)の諸条件を適宜変更することにより作製することができる。例えば、(1)多孔質基材を用意し、(2)多孔質基材に酸化チタンゾル或いはアルミナ及びチタニアの混合ゾルを塗布して熱処理することで酸化チタン層或いはアルミナ・チタニア層を形成させ、(3)ニッケルイオン(Ni2+)及び尿素を含む原料水溶液に多孔質基材を浸漬させ、(4)原料水溶液中で多孔質基材を水熱処理して、LDH含有機能層を多孔質基材上及び/又は多孔質基材中に形成させ、(5)LDH含有機能層をZn含有溶液(例えば亜鉛イオン及び/又は亜鉛酸イオンを含む水溶液)に浸漬させてZnをLDHに導入することにより、LDH含有機能層及び複合材料を製造することができる。特に、上記工程(2)において酸化チタン層或いはアルミナ・チタニア層を多孔質基材に形成することで、LDHの原料を与えるのみならず、LDH結晶成長の起点として機能させて多孔質基材の表面に高度に緻密化されたLDH含有機能層をムラなく均一に形成することができる。また、上記工程(3)において尿素が存在することで、尿素の加水分解を利用してアンモニアが溶液中に発生することによりpH値が上昇し、共存する金属イオンが水酸化物を形成することによりLDHを得ることができる。また、加水分解に二酸化炭素の発生を伴うため、陰イオンが炭酸イオン型のLDHを得ることができる。上記工程(5)においてはLDH含有機能層のZn含有溶液への浸漬後に水熱処理を行ってもよい。
本発明を以下の例によってさらに具体的に説明する。
例1(比較)
Ni、Al及びTi含有LDHを含む各種機能層及び複合材料を以下の手順により作製し、評価した。
(1)多孔質基材の作製
ジルコニア粉末(東ソー社製、TZ−8YS)100重量部に対して、分散媒(キシレン:ブタノール=1:1)70重量部、バインダー(ポリビニルブチラール:積水化学工業株式会社製BM−2)11.1重量部、可塑剤(DOP:黒金化成株式会社製)5.5重量部、及び分散剤(花王株式会社製レオドールSP−O30)2.9重量部を混合し、この混合物を減圧下で攪拌して脱泡することにより、スラリーを得た。このスラリーを、テープ成型機を用いてPETフィルム上に、乾燥後膜厚が220μmとなるようにシート状に成型してシート成形体を得た。得られた成形体を2.0cm×2.0cm×厚さ0.022cmの大きさになるよう切り出し、1100℃で2時間焼成して、ジルコニア製多孔質基材を得た。
得られた多孔質基材について、多孔質基材の気孔率をアルキメデス法により測定したところ、40%であった。
また、多孔質基材の平均気孔径を測定したところ0.2μmであった。この平均気孔径の測定は多孔質基材の表面の電子顕微鏡(SEM)画像をもとに気孔の最長距離を測長することにより行った。この測定に用いた電子顕微鏡(SEM)画像の倍率は20000倍であり、得られた全ての気孔径をサイズ順に並べて、その平均値から近い順に上位15点及び下位15点、合わせて1視野あたり30点で2視野分の平均値を算出して、平均気孔径を得た。測長には、SEMのソフトウェアの測長機能を用いた。
(2)多孔質基材へのアルミナ・チタニアゾルコート
無定形アルミナ溶液(Al−ML15、多木化学株式会社製)と酸化チタンゾル溶液(M−6、多木化学株式会社製)を溶液の重量比が1:1となるように混合して混合ゾルを作製した。混合ゾル0.2mlを上記(1)で得られたジルコニア製多孔質基材上へスピンコートにより塗布した。スピンコートは、回転数8000rpmで回転した基材へ混合ゾルを滴下してから5秒後に回転を止め、100℃に加熱したホットプレートへ基材を静置し、1分間乾燥させた。その後、電気炉にて150℃で熱処理を行った。こうして形成された層の厚さは1μm程度であった。
(3)原料水溶液の作製
原料として、硝酸ニッケル六水和物(Ni(NO・6HO、関東化学株式会社製、及び尿素((NHCO、シグマアルドリッチ製)を用意した。0.03mol/Lとなるように、硝酸ニッケル六水和物を秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO (モル比)=16の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
(4)水熱処理による成膜
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に上記(3)で作製した原料水溶液と上記(2)で作製した基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように水平に設置した。その後、水熱温度120℃で20時間水熱処理を施すことにより基材表面と内部にLDHの形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、室温で12時間放置し、乾燥させて、LDHを含む機能層を、その一部が多孔質基材中に組み込まれた形で得た。得られた機能層の厚さは(多孔質基材に組み込まれた部分の厚さを含めて)約5μmであった。
例2〜4
例1の(1)〜(4)と同様の手順により機能層及び複合材料を作製した。得られた機能層及び複合材料に対して下記(5)の手順を行って、Znが導入された機能層及び複合材料を作製した。
(5)Zn含有溶液への浸漬によるZn導入
7mol/Lの水酸化カリウム水溶液に酸化亜鉛を溶解させて、0.6mol/Lの濃度で酸化亜鉛を含む水酸化カリウム水溶液を得た。こうして得られた水酸化カリウム水溶液15mlをテフロン(登録商標)製密閉容器に入れた。(4)で得られた機能層を含む複合材料を機能層が上を向くように密閉容器の底に設置し、蓋を閉めた。その後、30℃で1日(約24時間)(例2)、3日(約72時間)(例3)又は7日(約168時間)(例4)保持した後、複合材料を密閉容器から取り出した。複合材料を取り出した後、イオン交換水が入った容器の中に複合材料を10秒間浸漬させ、その後、複合材料を取り出した。複合材料のイオン交換水中への浸漬をさらに2回繰り返した。取り出した複合材料を室温で1晩乾燥させた。
<評価>
得られた機能層ないし複合材料に対して以下の各種評価を行った。
評価1:元素分析評価(EDS)I
機能層表面に対してEDS分析装置(装置名:X−act、オックスフォード・インストゥルメンツ社製)を用いて組成分析を行い、Zn/(Ni+Ti+Al+Zn)の原子比を算出した。この分析は、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに2回繰り返し行い、4)合計9点の平均値を算出することにより行った。結果は表1に示されるとおりであった。
評価2:イオン伝導率の測定
電解液中での機能層の伝導率を図3に示される電気化学測定系を用いて以下のようにして測定した。複合材料試料S(LDH膜付き多孔質基材)を両側から厚み1mmシリコーンパッキン40で挟み、内径6mmのPTFE製フランジ型セル42に組み込んだ。電極46として、#100メッシュのニッケル金網をセル42内に直径6mmの円筒状にして組み込み、電極間距離が2.2mmになるようにした。電解液44として、6MのKOH水溶液をセル42内に充填した。電気化学測定システム(ポテンショ/ガルバノスタット−周波数応答アナライザ、ソーラトロン社製1287A型及び1255B型)を用い、周波数範囲は1MHz〜0.1Hz、印加電圧は10mVの条件で測定を行い、実数軸の切片を複合材料試料S(LDH膜付き多孔質基材)の抵抗とした。上記同様の測定をLDH膜の付いていない多孔質基材のみに対しても行い、多孔質基材のみの抵抗も求めた。複合材料試料S(LDH膜付き多孔質基材)の抵抗と基材のみの抵抗の差をLDH膜の抵抗とした。LDH膜の抵抗と、LDHの膜厚及び面積を用いて伝導率を求めた。結果は表1に示されるとおりであった。
評価3:機能層の同定
X線回折装置(リガク社製 RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:10〜70°の測定条件で、機能層の結晶相を測定してXRDプロファイルを得た。得られたXRDプロファイルについて、JCPDSカードNO.35−0964に記載されるLDH(ハイドロタルサイト類化合物)の回折ピークを用いて同定を行った。その結果、例1〜4で得られた機能層はいずれもLDH(ハイドロタルサイト類化合物)であることが同定された。
評価4:元素分析評価(EDS)II
クロスセクションポリッシャ(CP)により、機能層を断面研磨した。FE−SEM(ULTRA55、カールツァイス製)により、機能層の断面イメージを10000倍の倍率で1視野取得した。この断面イメージの基材表面のLDH膜と基材内部のLDH部分(点分析)についてEDS分析装置(NORAN System SIX、サーモフィッシャーサイエンティフィック製)により、加速電圧15kVの条件にて、元素分析を行った。その結果、例1で得られた機能層に含まれるLDHから、LDH構成元素であるC、Al、Ti及びNiが検出された。また、例2〜4で得られた機能層に含まれるLDHから、LDH構成元素であるC、Al、Ti、Ni及びZnが検出された。すなわち、Al、Ti及びNiは水酸化物基本層の構成元素である一方、CはLDHの中間層を構成する陰イオンであるCO 2−に対応する。Znは水酸化物基本層を構成しうると考えられるが、水酸化物基本層間に存在する可能性もある。
評価5:耐アルカリ性評価
6mol/Lの水酸化カリウム水溶液に酸化亜鉛を溶解させて、0.4mol/Lの濃度で酸化亜鉛を含む6mol/Lの水酸化カリウム水溶液を得た。こうして得られた水酸化カリウム水溶液15mlをテフロン(登録商標)製密閉容器に入れた。1cm×0.6cmのサイズの複合材料を機能層が上を向くように密閉容器の底に設置し、蓋を閉めた。その後、70℃で3週間(すなわち504時間)保持した後、複合材料を密閉容器から取り出した。取り出した複合材料に対して、室温で1晩乾燥させた。得られた試料をSEMによる微構造観察およびXRDによる結晶構造観察を行った。このとき、結晶構造の変化を、XRDプロファイルにおいてLDH由来の(003)ピークのシフトの有無により判定した。その結果、例1〜4のいずれにおいても、表面微構造及び結晶構造に変化はみられなかった。
評価6:He透過測定
He透過性の観点から機能層の緻密性を評価すべくHe透過試験を以下のとおり行った。まず、図4A及び図4Bに示されるHe透過度測定系310を構築した。He透過度測定系310は、Heガスを充填したガスボンベからのHeガスが圧力計312及び流量計314(デジタルフローメーター)を介して試料ホルダ316に供給され、この試料ホルダ316に保持された機能層318の一方の面から他方の面に透過させて排出させるように構成した。
試料ホルダ316は、ガス供給口316a、密閉空間316b及びガス排出口316cを備えた構造を有するものであり、次のようにして組み立てた。まず、機能層318の外周に沿って接着剤322を塗布して、中央に開口部を有する治具324(ABS樹脂製)に取り付けた。この治具324の上端及び下端に密封部材326a,326bとしてブチルゴム製のパッキンを配設し、さらに密封部材326a,326bの外側から、フランジからなる開口部を備えた支持部材328a,328b(PTFE製)で挟持した。こうして、機能層318、治具324、密封部材326a及び支持部材328aにより密閉空間316bを区画した。なお、機能層318は多孔質基材320上に形成された複合材料の形態であるが、機能層318側がガス供給口316aに向くように配置した。支持部材328a,328bを、ガス排出口316c以外の部分からHeガスの漏れが生じないように、ネジを用いた締結手段330で互いに堅く締め付けた。こうして組み立てられた試料ホルダ316のガス供給口316aに、継手332を介してガス供給管334を接続した。
次いで、He透過度測定系310にガス供給管334を経てHeガスを供給し、試料ホルダ316内に保持された機能層318に透過させた。このとき、圧力計312及び流量計314によりガス供給圧と流量をモニタリングした。Heガスの透過を1〜30分間行った後、He透過度を算出した。He透過度の算出は、単位時間あたりのHeガスの透過量F(cm/min)、Heガス透過時に機能層に加わる差圧P(atm)、及びHeガスが透過する膜面積S(cm)を用いて、F/(P×S)の式により算出した。Heガスの透過量F(cm/min)は流量計314から直接読み取った。また、差圧Pは圧力計312から読み取ったゲージ圧を用いた。なお、Heガスは差圧Pが0.05〜0.90atmの範囲内となるように供給された。その結果、例1〜4の機能層及び複合材料のHe透過度はいずれも1.0cm/min・atm以下であった。
Figure 2018058766

Claims (12)

  1. 層状複水酸化物を含む機能層であって、
    前記層状複水酸化物が、Ni、Al、Ti及びZnを含み、
    エネルギー分散型X線分析(EDS)により決定される、Zn/(Ni+Ti+Al+Zn)の原子比が0.04以上である、機能層。
  2. 前記Zn/(Ni+Ti+Al+Zn)の原子比が0.04〜0.25である、請求項1に記載の機能層。
  3. 前記機能層が水酸化物イオン伝導性を有する、請求項1又は2に記載の機能層。
  4. 前記機能層が2.6mS/cm以上のイオン伝導率を有する、請求項1〜3のいずれか一項に記載の機能層。
  5. 前記層状複水酸化物は、0.4mol/Lの濃度で酸化亜鉛を含む6mol/Lの水酸化カリウム水溶液中に70℃で3週間浸漬させた場合に、表面微構造及び結晶構造の変化が生じない、請求項1〜4のいずれか一項に記載の機能層。
  6. 前記機能層は、単位面積あたりのHe透過度が10cm/min・atm以下である、請求項1〜5のいずれか一項に記載の機能層。
  7. 前記機能層が100μm以下の厚さを有する、請求項1〜6のいずれか一項に記載の機能層。
  8. 前記機能層が50μm以下の厚さを有する、請求項1〜6のいずれか一項に記載の機能層。
  9. 前記機能層が5μm以下の厚さを有する、請求項1〜6のいずれか一項に記載の機能層。
  10. 多孔質基材と、
    前記多孔質基材上に設けられ、且つ/又は前記多孔質基材中に組み込まれる、請求項1〜9のいずれか一項に記載の機能層と、
    を含む、複合材料。
  11. 前記多孔質基材が、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成される、請求項10に記載の複合材料。
  12. 請求項1〜9のいずれか一項に記載の機能層又は請求項10又は11に記載の複合材料をセパレータとして備えた電池。
JP2017239899A 2016-06-24 2017-12-14 層状複水酸化物を含む機能層及び複合材料 Pending JP2018058766A (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016125531 2016-06-24
JP2016125562 2016-06-24
JP2016125531 2016-06-24
JP2016125562 2016-06-24
JP2016125554 2016-06-24
JP2016125554 2016-06-24
JPPCT/JP2017/003333 2017-01-31
PCT/JP2017/003333 WO2017221451A1 (ja) 2016-06-24 2017-01-31 層状複水酸化物を含む機能層及び複合材料

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017535930A Division JP6262921B1 (ja) 2016-06-24 2017-03-27 層状複水酸化物を含む機能層及び複合材料

Publications (1)

Publication Number Publication Date
JP2018058766A true JP2018058766A (ja) 2018-04-12

Family

ID=60784615

Family Applications (10)

Application Number Title Priority Date Filing Date
JP2017535931A Active JP6282787B1 (ja) 2016-06-24 2017-03-27 層状複水酸化物を含む機能層及び複合材料
JP2017535932A Active JP6259548B1 (ja) 2016-06-24 2017-03-27 層状複水酸化物を含む機能層及び複合材料
JP2017535930A Active JP6262921B1 (ja) 2016-06-24 2017-03-27 層状複水酸化物を含む機能層及び複合材料
JP2018524148A Active JP6617200B2 (ja) 2016-06-24 2017-06-21 層状複水酸化物を含む機能層及び複合材料
JP2018524146A Active JP6448861B2 (ja) 2016-06-24 2017-06-21 層状複水酸化物を含む機能層及び複合材料
JP2018524147A Active JP6448862B2 (ja) 2016-06-24 2017-06-21 層状複水酸化物を含む機能層及び複合材料
JP2017232140A Active JP6933569B2 (ja) 2016-06-24 2017-12-01 層状複水酸化物を含む機能層及び複合材料
JP2017239899A Pending JP2018058766A (ja) 2016-06-24 2017-12-14 層状複水酸化物を含む機能層及び複合材料
JP2018226808A Active JP6557771B2 (ja) 2016-06-24 2018-12-03 層状複水酸化物を含む機能層及び複合材料
JP2018226806A Pending JP2019075379A (ja) 2016-06-24 2018-12-03 層状複水酸化物を含む機能層及び複合材料

Family Applications Before (7)

Application Number Title Priority Date Filing Date
JP2017535931A Active JP6282787B1 (ja) 2016-06-24 2017-03-27 層状複水酸化物を含む機能層及び複合材料
JP2017535932A Active JP6259548B1 (ja) 2016-06-24 2017-03-27 層状複水酸化物を含む機能層及び複合材料
JP2017535930A Active JP6262921B1 (ja) 2016-06-24 2017-03-27 層状複水酸化物を含む機能層及び複合材料
JP2018524148A Active JP6617200B2 (ja) 2016-06-24 2017-06-21 層状複水酸化物を含む機能層及び複合材料
JP2018524146A Active JP6448861B2 (ja) 2016-06-24 2017-06-21 層状複水酸化物を含む機能層及び複合材料
JP2018524147A Active JP6448862B2 (ja) 2016-06-24 2017-06-21 層状複水酸化物を含む機能層及び複合材料
JP2017232140A Active JP6933569B2 (ja) 2016-06-24 2017-12-01 層状複水酸化物を含む機能層及び複合材料

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2018226808A Active JP6557771B2 (ja) 2016-06-24 2018-12-03 層状複水酸化物を含む機能層及び複合材料
JP2018226806A Pending JP2019075379A (ja) 2016-06-24 2018-12-03 層状複水酸化物を含む機能層及び複合材料

Country Status (5)

Country Link
US (6) US11850837B2 (ja)
EP (6) EP3477737B1 (ja)
JP (10) JP6282787B1 (ja)
CN (5) CN109314213B (ja)
WO (2) WO2017221451A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255856A1 (ja) * 2019-06-19 2020-12-24 日本碍子株式会社 水酸化物イオン伝導セパレータ及び亜鉛二次電池
JP2021150070A (ja) * 2020-03-17 2021-09-27 日本碍子株式会社 電気化学セル
JP2021150060A (ja) * 2020-03-17 2021-09-27 日本碍子株式会社 電気化学セル
JP2021150061A (ja) * 2020-03-17 2021-09-27 日本碍子株式会社 電解質材料及び電気化学セル

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020093081A1 (en) * 2018-11-05 2020-05-14 Newsouth Innovations Pty Limited Trimetallic layered double hydroxide composition
WO2020121673A1 (ja) 2018-12-13 2020-06-18 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
JP7289134B2 (ja) 2019-07-08 2023-06-09 国立研究開発法人物質・材料研究機構 複合体、複合体の製造方法、及び、分離デバイス
CN115151512B (zh) 2020-03-02 2024-02-06 日本碍子株式会社 层状双氢氧化物及其制造方法、以及采用了该层状双氢氧化物的空气极及金属空气二次电池
JP7441308B2 (ja) * 2020-05-11 2024-02-29 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
JP2023009501A (ja) * 2021-07-07 2023-01-20 日本バイリーン株式会社 アルカリ電池用セパレータ
US20230092781A1 (en) * 2021-09-20 2023-03-23 Apple Inc. Porous oxide for improved titanium-polymer bonding
CN114380987B (zh) * 2022-03-23 2022-05-27 中化学科学技术研究有限公司 一种钛基纳米片、包括该钛基纳米片的催化剂及其制备方法和应用

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69503561T2 (de) * 1994-04-15 1998-12-17 Toshiba Kawasaki Kk Nickelwasserstoff Sekundärbatterie
JP3060009B2 (ja) * 1997-11-12 2000-07-04 東京工業大学長 複合酸化物膜の製造方法、金属複合体、複合酸化物膜及び機能性導電材料
JP2000113904A (ja) * 1998-10-07 2000-04-21 Matsushita Electric Ind Co Ltd アルカリ蓄電池
JP2001302944A (ja) * 2000-04-25 2001-10-31 Nts:Kk 塗膜形成組成物及びその製造方法並びにコーティング膜
JP2003277646A (ja) * 2002-01-17 2003-10-02 Yasushi Kubo 耐溶出性着色フレーク顔料
US7645543B2 (en) * 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US7166362B2 (en) * 2003-03-25 2007-01-23 Fuji Photo Film Co., Ltd. Film-forming composition, production process therefor, and porous insulating film
CN1318455C (zh) * 2003-06-05 2007-05-30 中国科学技术大学 聚合物/层状双氢氧化物插层纳米复合材料及其制备方法
TW200520292A (en) * 2003-08-08 2005-06-16 Rovcal Inc High capacity alkaline cell
JP4702512B2 (ja) * 2003-09-19 2011-06-15 戸田工業株式会社 ハイドロタルサイト類化合物粒子粉末及び該ハイドロタルサイト類化合物粒子粉末を含有する水系分散体
US8541129B1 (en) * 2004-01-07 2013-09-24 U.S. Department Of Energy Active membrane having uniform physico-chemically functionalized ion channels
TWI251366B (en) * 2004-01-19 2006-03-11 High Tech Battery Inc Alkaline polyvinyl alcohol doped polyepichlorohydrin polymer electrolyte thin film and its application
US8703330B2 (en) * 2005-04-26 2014-04-22 Powergenix Systems, Inc. Nickel zinc battery design
US7896949B2 (en) * 2005-09-28 2011-03-01 General Electric Company Membranes for separation of carbon dioxide
TW200844152A (en) * 2006-10-30 2008-11-16 Asahi Kasei Chemicals Corp Polyolefin microporous membrane
PL1967195T3 (pl) * 2006-12-20 2012-03-30 Kyowa Chem Ind Co Ltd Środek zobojętniający kwas
TWI379860B (en) * 2008-06-24 2012-12-21 Univ Chung Yuan Christian Modified clay and clay-polymer composite
JP2010059005A (ja) * 2008-09-02 2010-03-18 Kanazawa Inst Of Technology 複合体および複合体の製造方法
TWI401325B (zh) * 2008-10-21 2013-07-11 Ulvac Inc 光罩及使用光罩之成膜方法
JP5568726B2 (ja) * 2009-03-09 2014-08-13 名古屋市 酸化チタン/層状複水酸化物複合体及びその製造方法
JP5213186B2 (ja) * 2009-09-15 2013-06-19 国立大学法人信州大学 積層体及びその製造方法
CN102035044B (zh) * 2009-09-25 2013-04-10 比亚迪股份有限公司 一种凝胶聚合物电解质及其制备方法和一种聚合物电池
KR101260741B1 (ko) * 2011-04-20 2013-05-06 한국과학기술원 가시광선 영역하에서 물을 산화하는 티타늄이 삽입된 레이어드 더블 하이드록사이드 광촉매의 제조방법
DE102011106036A1 (de) * 2011-06-30 2013-01-03 Dechema Gesellschaft Für Chemische Technik Und Biotechnologie E.V. Verfahren zur Herstellung von alkalischen Polymerelektrolyt-Membranen für galvanische Elemente
JP6190101B2 (ja) * 2011-08-23 2017-08-30 株式会社日本触媒 ゲル電解質又は負極合剤、及び、該ゲル電解質又は負極合剤を使用した電池
WO2013027767A1 (ja) * 2011-08-23 2013-02-28 株式会社日本触媒 負極合剤又はゲル電解質、及び、該負極合剤又はゲル電解質を使用した電池
CN102489323B (zh) * 2011-11-23 2013-04-10 北京化工大学 基于光催化分解水制备氢气的水滑石光催化剂及其制备方法
JP5600815B2 (ja) * 2012-02-06 2014-10-01 日本碍子株式会社 亜鉛二次電池
JP5953576B2 (ja) * 2012-03-26 2016-07-20 国立大学法人北海道大学 金属−空気二次電池用空気極触媒層
PT106256A (pt) 2012-04-17 2013-10-17 Chemetall Gmbh Processo de revestimento de superfícies metálicas com revestimentos contendo partículas de hidróxido duplo lamelar.
GB201217348D0 (en) 2012-09-28 2012-11-14 Scg Chemicals Co Ltd Modification of layered double hydroxides
JP6167428B2 (ja) * 2012-12-20 2017-07-26 国立大学法人信州大学 結晶膜形成体及びその製造方法
CN103964391B (zh) * 2013-01-28 2015-10-14 北京化工大学 一种片状结构层状复合氢氧化物及其制备方法
JP6292906B2 (ja) * 2013-02-01 2018-03-14 株式会社日本触媒 アニオン伝導性材料及び電池
JP5703420B2 (ja) * 2013-03-25 2015-04-22 日本碍子株式会社 層状複水酸化物緻密体及びその製造方法
CN104425788B (zh) * 2013-08-28 2017-05-03 比亚迪股份有限公司 一种锂离子电池隔膜及其制备方法和含有该隔膜的锂离子电池
JPWO2015034080A1 (ja) * 2013-09-09 2017-03-02 宇部興産株式会社 セパレータ及びそれを用いた蓄電デバイス
JP6244174B2 (ja) * 2013-11-08 2017-12-06 株式会社日本触媒 アニオン伝導膜及び電池
KR101631427B1 (ko) * 2013-12-27 2016-06-16 엔지케이 인슐레이터 엘티디 층형 복수산화물 배향막 및 그 제조 방법
JP5824186B1 (ja) * 2013-12-27 2015-11-25 日本碍子株式会社 層状複水酸化物含有複合材料及びその製造方法
GB201405543D0 (en) * 2014-03-27 2014-05-14 Isis Innovation High surface area layered double hydroxides
JP6284818B2 (ja) * 2014-04-24 2018-02-28 株式会社ダイセル 微細孔と取り扱い強度を有した多孔膜積層体及びその製造方法
EP3159163B1 (en) * 2014-06-20 2023-05-10 Toray Industries, Inc. Polyolefin multilayer microporous film, method for producing same, and cell separator
JP5838371B1 (ja) * 2014-06-30 2016-01-06 パナソニックIpマネジメント株式会社 動線分析システム、カメラ装置及び動線分析方法
CN106463785B (zh) 2014-07-09 2019-11-22 日本碍子株式会社 镍锌电池
JP2016033897A (ja) * 2014-07-31 2016-03-10 日本碍子株式会社 リチウム空気電池用セパレータ及びリチウム空気電池
EP3203546B1 (en) 2014-10-01 2019-06-19 NGK Insulators, Ltd. Battery using layered double hydroxide
JP6408878B2 (ja) * 2014-10-01 2018-10-17 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP2016084264A (ja) * 2014-10-28 2016-05-19 日本碍子株式会社 層状複水酸化物緻密膜の形成方法
JP6043442B2 (ja) 2014-10-28 2016-12-14 日本碍子株式会社 層状複水酸化物含有複合材料
JP2016084263A (ja) * 2014-10-28 2016-05-19 日本碍子株式会社 層状複水酸化物緻密膜の形成方法
CN108352580A (zh) * 2014-11-13 2018-07-31 日本碍子株式会社 用于锌二次电池的隔板结构体
CN107004928B (zh) * 2014-12-02 2020-05-26 日本碍子株式会社 锌空气二次电池
JP6429378B2 (ja) * 2014-12-15 2018-11-28 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
CN107001061B (zh) 2014-12-17 2019-05-17 日本碍子株式会社 层状双氢氧化物膜及含有层状双氢氧化物的复合材料
WO2016096990A1 (en) * 2014-12-19 2016-06-23 Basf Se Process for the preparation of oxide materials, layered double hydroxide materials, hydroxide materials and carbonate-based materials
JP2016194990A (ja) * 2015-03-31 2016-11-17 日本碍子株式会社 亜鉛二次電池用セパレータ及び亜鉛二次電池
CN104874427B (zh) * 2015-04-03 2018-04-03 南京理工大学 一种燃料电池用碱性阴离子交换复合膜及其制备方法
JP6765855B2 (ja) 2015-10-29 2020-10-07 株式会社日本触媒 アニオン伝導性膜

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255856A1 (ja) * 2019-06-19 2020-12-24 日本碍子株式会社 水酸化物イオン伝導セパレータ及び亜鉛二次電池
JP6889340B1 (ja) * 2019-06-19 2021-06-18 日本碍子株式会社 水酸化物イオン伝導セパレータ及び亜鉛二次電池
US11431034B2 (en) 2019-06-19 2022-08-30 Ngk Insulators, Ltd. Hydroxide ion conductive separator and zinc secondary battery
JP2021150070A (ja) * 2020-03-17 2021-09-27 日本碍子株式会社 電気化学セル
JP2021150060A (ja) * 2020-03-17 2021-09-27 日本碍子株式会社 電気化学セル
JP2021150061A (ja) * 2020-03-17 2021-09-27 日本碍子株式会社 電解質材料及び電気化学セル

Also Published As

Publication number Publication date
US20190126590A1 (en) 2019-05-02
JP6282787B1 (ja) 2018-02-21
WO2017221990A1 (ja) 2017-12-28
US20190131606A1 (en) 2019-05-02
US20190126589A1 (en) 2019-05-02
EP3477741A4 (en) 2020-06-24
CN109314215A (zh) 2019-02-05
CN109314213A (zh) 2019-02-05
JPWO2017221497A1 (ja) 2018-06-21
US20190126588A1 (en) 2019-05-02
US10994511B2 (en) 2021-05-04
US10940668B2 (en) 2021-03-09
JP6448861B2 (ja) 2019-01-09
EP3477740A4 (en) 2020-02-19
JP2018080104A (ja) 2018-05-24
JPWO2017221989A1 (ja) 2019-01-10
US20190123322A1 (en) 2019-04-25
CN109314215B (zh) 2021-12-03
EP3477737A4 (en) 2020-06-24
CN109314214A (zh) 2019-02-05
JP6259548B1 (ja) 2018-01-10
CN109314211A (zh) 2019-02-05
US11850837B2 (en) 2023-12-26
EP3477738A4 (en) 2020-01-15
JP6262921B1 (ja) 2018-01-17
CN109314210A (zh) 2019-02-05
JPWO2017221498A1 (ja) 2018-06-21
JP6448862B2 (ja) 2019-01-09
JPWO2017221499A1 (ja) 2018-06-21
JPWO2017221988A1 (ja) 2019-01-17
JP2019079815A (ja) 2019-05-23
EP3477741A1 (en) 2019-05-01
JP6933569B2 (ja) 2021-09-08
EP3477736B1 (en) 2023-09-20
CN109314214B (zh) 2021-09-10
US20190131605A1 (en) 2019-05-02
JP6557771B2 (ja) 2019-08-07
EP3477739A1 (en) 2019-05-01
EP3477737B1 (en) 2023-08-16
JP2019075379A (ja) 2019-05-16
JPWO2017221990A1 (ja) 2019-02-21
EP3477736A1 (en) 2019-05-01
EP3477740A1 (en) 2019-05-01
EP3477737A1 (en) 2019-05-01
CN109314213B (zh) 2021-09-21
JP6617200B2 (ja) 2019-12-11
US10773486B2 (en) 2020-09-15
EP3477739A4 (en) 2020-02-19
EP3477738B1 (en) 2021-08-11
WO2017221451A1 (ja) 2017-12-28
EP3477738A1 (en) 2019-05-01
EP3477736A4 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
JP6262921B1 (ja) 層状複水酸化物を含む機能層及び複合材料
WO2017221497A1 (ja) 層状複水酸化物を含む機能層及び複合材料
JPWO2020255856A1 (ja) 水酸化物イオン伝導セパレータ及び亜鉛二次電池
JP6864758B2 (ja) 層状複水酸化物を含む機能層及び複合材料
WO2017221988A1 (ja) 層状複水酸化物を含む機能層及び複合材料
JP6243583B1 (ja) 層状複水酸化物を含む機能層及び複合材料
WO2017221531A1 (ja) 層状複水酸化物を含む機能層及び複合材料
JP6864789B2 (ja) Ldhセパレータ及び亜鉛二次電池
WO2017221526A1 (ja) 層状複水酸化物を含む機能層及び複合材料
JP2017024949A (ja) 層状複水酸化物含有複合材料
JP6614728B2 (ja) 層状複水酸化物含有複合材料及び電池