WO2020121673A1 - Ldhセパレータ及び亜鉛二次電池 - Google Patents

Ldhセパレータ及び亜鉛二次電池 Download PDF

Info

Publication number
WO2020121673A1
WO2020121673A1 PCT/JP2019/042555 JP2019042555W WO2020121673A1 WO 2020121673 A1 WO2020121673 A1 WO 2020121673A1 JP 2019042555 W JP2019042555 W JP 2019042555W WO 2020121673 A1 WO2020121673 A1 WO 2020121673A1
Authority
WO
WIPO (PCT)
Prior art keywords
ldh
separator
ldh separator
hydroxide
zinc
Prior art date
Application number
PCT/JP2019/042555
Other languages
English (en)
French (fr)
Inventor
翔 山本
直子 犬飼
昌平 横山
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/045885 external-priority patent/WO2019124212A1/ja
Priority claimed from PCT/JP2018/045889 external-priority patent/WO2019124214A1/ja
Priority claimed from PCT/JP2018/045887 external-priority patent/WO2019124213A1/ja
Priority claimed from PCT/JP2018/046171 external-priority patent/WO2019124270A1/ja
Priority claimed from PCT/JP2018/047686 external-priority patent/WO2019131688A1/ja
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to DE112019004384.6T priority Critical patent/DE112019004384B4/de
Priority to CN201980057489.7A priority patent/CN113169419B/zh
Priority to JP2020559792A priority patent/JP6864789B2/ja
Publication of WO2020121673A1 publication Critical patent/WO2020121673A1/ja
Priority to US17/189,765 priority patent/US11211672B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an LDH separator and a zinc secondary battery.
  • a zinc-zinc secondary battery such as a nickel-zinc secondary battery or an air-zinc secondary battery
  • metal zinc is deposited in a dendrite form from the negative electrode during charging, reaches the positive electrode through the voids of a separator such as a nonwoven fabric, and as a result, It is known to cause short circuits.
  • Such a short circuit caused by zinc dendrite causes repeated shortening of charge/discharge life.
  • LDH layered double hydroxide
  • Patent Document 1 International Publication No. 2013/118561 discloses providing an LDH separator between a positive electrode and a negative electrode in a nickel-zinc secondary battery.
  • Patent Document 2 International Publication No.
  • Patent Document 3 International Publication No. 2016/067884 discloses various methods for forming a LDH dense film on the surface of a porous substrate to obtain a composite material (LDH separator).
  • a starting material that can give a starting point for LDH crystal growth is uniformly attached to a porous substrate, and the porous substrate is hydrothermally treated in an aqueous solution of the raw material to form an LDH dense film on the surface of the porous substrate. It includes a step of forming.
  • the LDHs disclosed in the examples of Patent Documents 1 to 3 are Mg, Al-LDH in which the hydroxide basic layer contains Mg and Al.
  • Patent Document 4 International Publication No. 2017/221989
  • Patent Document 5 International Publication No. WO 2017/2215311
  • a plurality of hydroxide basic layers composed of Ni, Ti and OH groups, and anions and anions existing between the plurality of hydroxide basic layers are disclosed.
  • An LDH-containing functional layer and a composite material that is, an LDH separator including an LDH composed of an intermediate layer composed of H 2 O are disclosed.
  • the present inventors have further effectively suppressed a short circuit caused by zinc dendrite by forming the hydroxide basic layer of LDH from a predetermined element or ion containing Mg, Al, Ti and OH groups.
  • a possible LDH separator can be provided.
  • an object of the present invention is to provide an LDH separator that can more effectively suppress a short circuit caused by zinc dendrite.
  • an LDH separator including a porous substrate and a layered double hydroxide (LDH) that closes pores of the porous substrate,
  • the LDH includes a plurality of hydroxide basic layers containing Mg, Al, Ti and OH groups, and an intermediate layer composed of anions and H 2 O interposed between the plurality of hydroxide basic layers.
  • An LDH separator is provided.
  • a zinc secondary battery including the LDH separator.
  • a solid alkaline fuel cell including the LDH separator.
  • FIG. 2B is a schematic cross-sectional view of a sample holder used in the measurement system shown in FIG. 2A and its peripheral configuration.
  • FIG. 6 is a schematic cross-sectional view showing an electrochemical measurement system used in Examples 1 to 5. It is a surface SEM image of the LDH separator produced in Example 1. 3 is an X-ray diffraction result of the LDH separator manufactured in Example 1. It is a surface SEM image of the LDH separator produced in Example 2. 6 is an X-ray diffraction result of the LDH separator manufactured in Example 2.
  • 6 is a surface SEM image of the LDH separator manufactured in Example 3.
  • 7 is an X-ray diffraction result of the LDH separator manufactured in Example 3. It is a surface SEM image of the LDH separator produced in Example 4. It is an X-ray-diffraction result of the LDH separator produced in Example 4. It is a surface SEM image of the LDH separator produced in Example 5 (comparative). It is an X-ray-diffraction result of the LDH separator produced in Example 5 (comparative). It is a surface SEM image of the LDH separator which has a crack.
  • 9B is a cross-sectional SEM image of the LDH separator shown in FIG. 9A.
  • the LDH separator 10 of the present invention includes a porous substrate 12 and a layered double hydroxide (LDH) 14.
  • LDH layered double hydroxide
  • the "LDH separator” is a separator containing LDH, and is defined as a separator that selectively utilizes hydroxide ion conductivity of LDH to selectively pass hydroxide ions. Note that, in FIG. 1, the region of the LDH 14 is drawn so as not to be connected between the upper surface and the lower surface of the LDH separator 10, but this is because it is drawn two-dimensionally as a cross section, and the depth is taken into consideration.
  • the LDH 14 is composed of a plurality of hydroxide basic layers and an intermediate layer interposed between the plurality of hydroxide basic layers.
  • the hydroxide base layer contains Mg, Al, Ti and OH groups.
  • the intermediate layer is composed of anions and H 2 O.
  • the alternating laminated structure of the hydroxide basic layer and the intermediate layer is basically the same as the generally known LDH alternating laminated structure, but in the present invention, the LDH hydroxide basic layer is composed of Mg, Al, Ti and By comprising a predetermined element or ion containing an OH group, it is possible to provide an LDH separator capable of further effectively suppressing a short circuit caused by zinc dendrite.
  • the hydroxide basic layer of the LDH 14 in the present invention contains Mg, Al, Ti and OH groups.
  • Mg in LDH14 may be in the form of magnesium ions.
  • the magnesium ion in LDH14 is considered to be typically Mg 2+ , but it is not particularly limited because it may have other valences.
  • Al in LDH 14 may take the form of aluminum ions.
  • the aluminum ion in LDH14 is considered to be typically Al 3+ , but is not particularly limited because it may have other valences.
  • Ti in LDH 14 may take the form of titanium ions.
  • the titanium ion in LDH14 is considered to be typically Ti 4+ , but it is not particularly limited because it may have other valences such as Ti 3+ .
  • the hydroxide basic layer may contain other elements or ions as long as it contains Mg, Al, Ti and OH groups.
  • the LDH 14 or hydroxide basic layer may contain Y and/or Zn.
  • Al or Ti may not be contained in the LDH or hydroxide basic layer.
  • the hydroxide basic layer preferably contains Mg, Al, Ti and OH groups as main constituent elements. That is, the hydroxide basic layer is preferably composed mainly of Mg, Al, Ti and OH groups. Therefore, the hydroxide base layer is typically composed of Mg, Al, Ti, OH groups and optionally unavoidable impurities.
  • the unavoidable impurities are arbitrary elements that can be unavoidably mixed in the manufacturing method, and can be mixed in the LDH 14 due to, for example, a raw material or a base material.
  • the intermediate layer of the LDH 14 included in the LDH separator 10 is composed of anions and H 2 O.
  • the anion is a monovalent or higher valent anion, preferably a monovalent or divalent ion.
  • the anions in LDH 14 include OH ⁇ and/or CO 3 2 ⁇ .
  • the hydroxide basic layer is mainly composed of Mg 2+ , Al 3+ , Ti 4+ and OH groups
  • the corresponding LDH has the general formula: Mg 2+ 1-xy Al 3+ x Ti 4+ y (OH) 2 A n ⁇ (x+2y)/n ⁇ mH 2 O (wherein A n ⁇ is an n-valent anion, n is an integer of 1 or more, preferably 1 or 2, and 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1, and m is 0 or more, and typically exceeds 0 or is a real number of 1 or more).
  • the LDH separator 10 preferably has a Ti/Al atomic ratio in the LDH 14 of 0.5 to 12, which is determined by energy dispersive X-ray analysis (EDS), and more preferably 1.0 to 12.
  • EDS energy dispersive X-ray analysis
  • the atomic ratio of Ti/(Mg+Ti+Al) in LDH14 determined by energy dispersive X-ray analysis (EDS) is preferably 0.1 to 0.7, and more preferably 0.2 to It is 0.7.
  • the atomic ratio of Al/(Mg+Ti+Al) in the LDH 14 is preferably 0.05 to 0.4, more preferably 0.05 to 0.25. Further, the atomic ratio of Mg/(Mg+Ti+Al) in the LDH 14 is preferably 0.2 to 0.7, more preferably 0.2 to 0.6.
  • the EDS analysis is carried out by using an EDS analyzer (eg, X-act, manufactured by Oxford Instruments), 1) capturing an image at an acceleration voltage of 20 kV and a magnification of 5,000, and 2) 5 ⁇ m in a point analysis mode. It is preferable to carry out three-point analysis with a certain interval, 3) repeating the above 1) and 2) once more, and 4) calculating an average value of 6 points in total.
  • EDS analyzer eg, X-act, manufactured by Oxford Instruments
  • the LDH separator 10 preferably has an ionic conductivity of 0.1 mS/cm or more, more preferably 1.0 mS/cm or more, still more preferably 1.5 mS/cm or more, and particularly preferably 2.0 mS/cm or more. is there. Within such a range, the LDH separator can exhibit a sufficient function as a hydroxide ion conductive separator. Since the higher the ionic conductivity, the better, the upper limit value is not particularly limited, but is, for example, 10 mS/cm. The ionic conductivity is calculated based on the resistance of the LDH separator and the thickness and area of the LDH separator.
  • the resistance of the LDH separator 10 is measured by using an electrochemical measuring system (potentiometer/galvanostat-frequency response analyzer) for the LDH separator 10 immersed in an aqueous KOH solution having a predetermined concentration (for example, 5.4 M). It can be determined by performing measurement at 1 MHz to 0.1 Hz and an applied voltage of 10 mV, and obtaining the intercept of the real number axis as the resistance of the LDH separator.
  • an electrochemical measuring system potentiometer/galvanostat-frequency response analyzer
  • the LDH separator 10 is a separator containing a layered double hydroxide (LDH) 14, and separates a positive electrode plate and a negative electrode plate so that hydroxide ion conduction is possible when incorporated in a zinc secondary battery. That is, the LDH separator 10 functions as a hydroxide ion conductive separator.
  • the preferred LDH separator 10 is gas impermeable and/or water impermeable. In other words, the LDH separator 10 is preferably densified to have gas impermeability and/or water impermeability.
  • having gas impermeability means that helium gas is brought into contact with one surface side of an object to be measured at a differential pressure of 0.5 atm in water as described in Patent Documents 2 and 3. However, it means that no bubbles are generated due to the helium gas from the other surface side.
  • having water impermeability means that water contacting one surface side of the measurement target does not permeate to the other surface side as described in Patent Documents 2 and 3. .. That is, the LDH separator 10 having gas impermeability and/or water impermeability means that the LDH separator 10 has a high degree of denseness that does not allow gas or water to pass therethrough.
  • the LDH separator 10 selectively passes only hydroxide ions due to its hydroxide ion conductivity, and can exhibit a function as a battery separator. Therefore, the structure is extremely effective in physically preventing the penetration of the separator by the zinc dendrite generated during charging to prevent a short circuit between the positive and negative electrodes. Since the LDH separator 10 has hydroxide ion conductivity, it is possible to efficiently move necessary hydroxide ions between the positive electrode plate and the negative electrode plate to realize a charge/discharge reaction in the positive electrode plate and the negative electrode plate. You can
  • the LDH separator 10 preferably has a He permeability of 10 cm/min ⁇ atm or less per unit area, more preferably 5.0 cm/min ⁇ atm or less, and further preferably 1.0 cm/min ⁇ atm or less. .. It can be said that the LDH separator 10 having the He permeability within such a range has extremely high density. Therefore, a separator having a He permeability of 10 cm/min ⁇ atm or less can block passage of substances other than hydroxide ions at a high level. For example, in the case of a zinc secondary battery, permeation of Zn (typically permeation of zinc ions or zincate ions) in the electrolytic solution can be suppressed very effectively.
  • Zn typically permeation of zinc ions or zincate ions
  • He permeability is a step of supplying He gas to one surface of the separator to allow He gas to permeate the separator, and a step of calculating He permeability to evaluate the compactness of the hydroxide ion conductive separator.
  • the He permeability is calculated by F/(P ⁇ S) using the permeation amount F of He gas per unit time, the differential pressure P applied to the separator at the time of He gas permeation, and the membrane area S through which He gas permeates. calculate.
  • He gas has the smallest constitutional unit among a wide variety of atoms or molecules that can form the gas and has extremely low reactivity. That is, He constitutes He gas with He atoms alone without forming molecules. In this respect, since hydrogen gas is composed of H 2 molecules, a simple He atom is smaller as a gas constituent unit. H 2 gas is dangerous because it is a flammable gas. Then, by adopting the He gas permeability index defined by the above-mentioned formula, it is possible to easily perform the objective evaluation of the compactness regardless of the difference in various sample sizes and measurement conditions. In this way, it is possible to easily, safely and effectively evaluate whether or not the separator has sufficiently high density suitable for a zinc secondary battery separator.
  • the He transmittance can be preferably measured according to the procedure shown in Evaluation 4 of Examples described later.
  • the LDH separator 10 includes the LDH 14 and the porous base material 12 (typically, the porous base material 12 and the LDH 14 are included), and the LDH separator 10 has hydroxide ion conductivity and gas impermeability. As it does (and therefore acts as an LDH separator that exhibits hydroxide ion conductivity), the LDH blocks the pores of the porous substrate. It is particularly preferable that the LDH 14 is incorporated over the entire area of the porous substrate 12 in the thickness direction.
  • the thickness of the LDH separator 10 is preferably 3 to 80 ⁇ m, more preferably 3 to 60 ⁇ m, and further preferably 3 to 40 ⁇ m.
  • the porous substrate 12 is preferably composed of at least one selected from the group consisting of ceramic materials, metallic materials, and polymeric materials, and more preferably selected from the group consisting of ceramic materials and polymeric materials. It is composed of at least one kind.
  • the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordierite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, and more preferable.
  • alumina, zirconia, titania, and any combination thereof particularly preferably alumina, zirconia (eg, yttria-stabilized zirconia (YSZ)), and combinations thereof. If these porous ceramics are used, it is easy to form an LDH separator having excellent denseness.
  • Preferred examples of the metallic material include aluminum, zinc, and nickel.
  • the porous substrate 12 is made of a polymer material.
  • the polymer porous substrate has 1) flexibility (thus, it is hard to be broken even if thinned), 2) easy to increase porosity, 3) easy to increase conductivity (while increasing porosity) (Because the thickness can be reduced), there is an advantage that it is easy to manufacture and handle. Further, there is also an advantage that 5) the LDH separator including a porous base material made of a polymer material can be easily bent or sealed and joined by utilizing the advantage derived from the flexibility of 1) above.
  • Preferred examples of the polymer material include polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, fluororesin (tetrafluorinated resin: PTFE, etc.), cellulose, nylon, polyethylene and any combination thereof. .. More preferably, from the viewpoint of a thermoplastic resin suitable for hot pressing, polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, fluororesin (tetrafluorinated resin: PTFE, etc.), nylon, polyethylene and any of them. And the like. All of the above-mentioned various preferable materials have alkali resistance as resistance to the electrolytic solution of the battery.
  • Particularly preferable polymer materials are polyolefins such as polypropylene and polyethylene, which are excellent in hot water resistance, acid resistance, and alkali resistance and are low in cost, and most preferably polypropylene or polyethylene.
  • the porous substrate 12 is made of a polymer material
  • the LDH 14 is incorporated throughout the thickness of the porous substrate 12 (for example, most or almost all of the pores inside the porous substrate 12 are LDH 14). Is particularly preferable).
  • a commercially available polymer microporous membrane can be preferably used as such a polymer porous substrate.
  • the manufacturing method of the LDH separator 10 is not particularly limited, and various conditions of the already known manufacturing method of the LDH-containing functional layer and the composite material (ie, LDH separator) (see, for example, Patent Documents 1 to 5) may be appropriately changed.
  • Mg 2+ magnesium ion
  • the LDH-containing functional layer and the composite material can be manufactured. Due to the presence of urea in the step (3), the pH value rises due to the generation of ammonia in the solution by utilizing the hydrolysis of urea, and the coexisting metal ions form a hydroxide, which results in LDH. Can be obtained. Further, since carbon dioxide is generated in the hydrolysis, LDH whose anion is carbonate ion type can be obtained.
  • the application of the mixed sol of alumina and titania to the base material is preferably carried out by such a method that the mixed sol is permeated into all or most of the inside of the base material. By doing so, finally most or almost all of the pores inside the porous substrate can be filled with LDH.
  • preferable coating methods include dip coating and filtration coating, and dip coating is particularly preferable.
  • the amount of the mixed sol attached can be adjusted by adjusting the number of times the dip coat or the like is applied.
  • the substrate coated with the mixed sol by dip coating or the like may be dried and then subjected to the steps (3) and (4).
  • the porous substrate 12 is composed of a polymer material
  • the pressing method may be, for example, roll pressing, uniaxial pressing, CIP (cold isotropic pressing) or the like, and is not particularly limited, but roll pressing is preferable. This pressing is preferably performed while heating, because the pores of the porous base material can be sufficiently filled with LDH by softening the porous polymer base material.
  • As the temperature for sufficiently softening for example, in the case of polypropylene or polyethylene, it is preferable to heat at 60 to 200°C.
  • the residual pores of the LDH separator can be significantly reduced.
  • the LDH separator can be extremely highly densified, and therefore, the short circuit caused by zinc dendrite can be suppressed more effectively.
  • the shape of the residual pores can be controlled by appropriately adjusting the roll gap and the roll temperature, whereby an LDH separator having a desired denseness can be obtained.
  • the LDH separator of the present invention is preferably applied to a zinc secondary battery. Therefore, according to a preferable aspect of the present invention, a zinc secondary battery provided with an LDH separator is provided.
  • a typical zinc secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution, and the positive electrode and the negative electrode are isolated from each other via an LDH separator.
  • the zinc secondary battery of the present invention is not particularly limited as long as it is a secondary battery using zinc as a negative electrode and an electrolytic solution (typically an alkali metal hydroxide aqueous solution). Therefore, it can be a nickel zinc secondary battery, a silver oxide zinc secondary battery, a manganese zinc oxide secondary battery, a zinc air secondary battery, and various other alkaline zinc secondary batteries.
  • the positive electrode contains nickel hydroxide and/or nickel oxyhydroxide, so that the zinc secondary battery forms a nickel zinc secondary battery.
  • the positive electrode may be an air electrode, so that the zinc secondary battery forms a zinc-air secondary battery.
  • the LDH separator of the present invention can also be applied to a solid alkaline fuel cell. That is, by using an LDH separator in which the pores of the porous substrate are closed with LDH to be highly densified, the effect of reducing the electromotive force due to the permeation of the fuel to the air electrode side (for example, methanol crossover) is effective. It is possible to provide a solid alkaline fuel cell that can be effectively suppressed. This is because it is possible to effectively suppress the permeation of fuel such as methanol through the LDH separator while exhibiting the hydroxide ion conductivity of the LDH separator.
  • a solid alkaline fuel cell comprising an LDH separator.
  • a typical solid alkaline fuel cell according to the present aspect includes an air electrode supplied with oxygen, a fuel electrode supplied with a liquid fuel and/or a gas fuel, and an LDH separator interposed between the fuel electrode and the air electrode.
  • the LDH separator of the present invention can be used not only in nickel-zinc batteries and solid alkaline fuel cells, but also in nickel-hydrogen batteries, for example. In this case, the LDH separator functions to block the nitride shuttle (migration of nitric acid group between electrodes), which is a factor of self-discharge of the battery.
  • the LDH separator of the present invention can also be used in lithium batteries (batteries in which lithium metal is the negative electrode), lithium ion batteries (batteries in which the negative electrode is carbon, etc.), lithium air batteries, and the like.
  • Evaluation 1 Observation of microstructure The surface microstructure of the LDH separator was observed with a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL) at an acceleration voltage of 10 to 20 kV.
  • SEM scanning electron microscope
  • Evaluation 2 Elemental analysis evaluation (EDS) The composition of the LDH separator surface was analyzed using an EDS analyzer (device name: X-act, manufactured by Oxford Instruments), and the composition ratio (atomic ratio) of Mg:Al:Ti and Ti/Al were determined. The atomic ratio of was calculated. In this analysis, 1) an image is captured at an accelerating voltage of 20 kV and a magnification of 5,000 times, 2) 3 points analysis is performed at intervals of about 5 ⁇ m in the point analysis mode, and 3) the above 1) and 2) are performed once more. Repeatedly, 4) It was performed by calculating an average value of 6 points in total.
  • EDS Elemental analysis evaluation
  • Evaluation 3 Identification of LDH An X-ray diffractometer (RINT TTR III manufactured by Rigaku Corporation) was used to measure the crystal phase of the LDH separator under the measurement conditions of voltage: 50 kV, current value: 300 mA, and measurement range: 5-40°. Then, an XRD profile was obtained. Regarding the obtained XRD profile, JCPDS card NO. Identification was carried out using the diffraction peak of LDH (hydrotalcite compound) described in 35-0964.
  • LDH hydrotalcite compound
  • He permeation measurement A He permeation test was performed as follows in order to evaluate the denseness of the LDH separator from the viewpoint of He permeation.
  • the He transmittance measurement system 310 shown in FIGS. 2A and 2B was constructed.
  • He gas from a gas cylinder filled with He gas is supplied to a sample holder 316 via a pressure gauge 312 and a flow meter 314 (digital flow meter), and the LDH held by this sample holder 316 is held.
  • the separator 318 is configured to be transmitted from one surface to the other surface and discharged.
  • the sample holder 316 has a structure including a gas supply port 316a, a closed space 316b, and a gas discharge port 316c, and was assembled as follows. First, the adhesive 322 was applied along the outer periphery of the LDH separator 318 and attached to a jig 324 (made of ABS resin) having an opening in the center. Packing made of butyl rubber is disposed as the sealing members 326a and 326b at the upper and lower ends of the jig 324, and the supporting members 328a and 328b (made of PTFE) having openings formed of flanges are provided from the outside of the sealing members 326a and 326b. ).
  • the LDH separator 318, the jig 324, the sealing member 326a, and the supporting member 328a partition the sealed space 316b.
  • the support members 328a and 328b were tightly fastened to each other by fastening means 330 using screws so as to prevent leakage of He gas from portions other than the gas discharge port 316c.
  • a gas supply pipe 334 was connected via a joint 332 to the gas supply port 316a of the sample holder 316 thus assembled.
  • He gas was supplied to the He permeability measurement system 310 via the gas supply pipe 334 and was transmitted to the LDH separator 318 held in the sample holder 316.
  • the gas supply pressure and the flow rate were monitored by the pressure gauge 312 and the flow meter 314.
  • the He permeability was calculated.
  • the He permeability is calculated by the permeation amount F (cm 3 /min) of He gas per unit time, the differential pressure P (atm) applied to the LDH separator at the time of He gas permeation, and the membrane area S (cm) through which He gas permeates. 2 ) was used to calculate by the formula of F/(P ⁇ S).
  • the He gas permeation amount F (cm 3 /min) was read directly from the flow meter 314.
  • the gauge pressure read from the pressure gauge 312 was used.
  • the He gas was supplied so that the differential pressure P was in the range of 0.05 to 0.90 atm.
  • Evaluation 5 Measurement of ionic conductivity The conductivity of the LDH separator in the electrolytic solution was measured as follows using the electrochemical measurement system shown in FIG.
  • the LDH separator sample S was sandwiched from both sides with a silicone packing 440 having a thickness of 1 mm, and incorporated in a PTFE flange type cell 442 having an inner diameter of 6 mm.
  • As the electrode 446 a #100 mesh nickel wire mesh was incorporated into the cell 442 in a cylindrical shape having a diameter of 6 mm so that the distance between the electrodes was 2.2 mm.
  • a 5.4 M KOH aqueous solution was filled in the cell 442 as the electrolytic solution 444.
  • the frequency range is 1 MHz to 0.1 Hz
  • the applied voltage is 10 mV
  • the real axis is intercepted.
  • the same measurement as described above was performed with the configuration without the LDH separator sample S, and the blank resistance was also obtained.
  • the difference between the resistance of the LDH separator sample S and the blank resistance was defined as the resistance of the LDH separator.
  • the conductivity was determined using the resistance of the obtained LDH separator and the thickness and area of the LDH separator.
  • Evaluation 6 Evaluation of dendrite resistance (cycle test) A cycle test was conducted as follows in order to evaluate the effect of suppressing the short circuit due to zinc dendrite of the LDH separator (dendrite resistance). First, each of the positive electrode (containing nickel hydroxide and/or nickel oxyhydroxide) and the negative electrode (containing zinc and/or zinc oxide) was wrapped with a non-woven fabric, and the current extraction terminal was welded. The positive electrode and the negative electrode thus prepared were opposed to each other with the LDH separator interposed therebetween and sandwiched between the laminate films provided with current outlets, and the three sides of the laminate film were heat-sealed.
  • the electrolytic solution (0.4 M zinc oxide dissolved in 5.4 M KOH aqueous solution) was added to the cell container thus opened, and the electrolytic solution was sufficiently converted into a positive electrode and a negative electrode by evacuation or the like. Permeated. After that, the remaining one side of the laminated film was also heat-sealed to form a simple closed cell. Using a charging/discharging device (TOSCAT3100 manufactured by Toyo System Co., Ltd.), the simple sealed cell was subjected to chemical formation by 0.1 C charge and 0.2 C discharge. Then, the 1C charge-discharge cycle was implemented.
  • TOSCAT3100 manufactured by Toyo System Co., Ltd.
  • Examples 1-4 Preparation of Polymeric Porous Substrate A commercially available polyethylene microporous membrane having a porosity of 50%, an average pore diameter of 0.1 ⁇ m and a thickness of 20 ⁇ m was prepared as a polymeric porous substrate, and was 2.0 cm ⁇ 2. It was cut out to have a size of 0 cm.
  • Alumina/titania sol coating on polymer porous substrate Amorphous alumina solution (Al-ML15, manufactured by Taki Chemical Co., Ltd.) and titanium oxide sol solution (M6, manufactured by Taki Chemical Co., Ltd.) are shown in Table 1.
  • the mixed sol was prepared by mixing so as to obtain a Ti/Al ratio (molar ratio).
  • the mixed sol was applied to the substrate prepared in (1) above by dip coating. The dip coating was performed by immersing the substrate in 100 ml of the mixed sol, pulling it up vertically, and drying it at room temperature for 3 hours.
  • magnesium nitrate hexahydrate Mg (NO 3) 2 ⁇ 6H 2 O, manufactured by Kanto Chemical Co., Inc.
  • urea (NH 2) 2 CO, manufactured by Sigma-Aldrich) I prepared.
  • Magnesium nitrate hexahydrate was weighed so as to be 0.03 mol/L and put in a beaker, and ion-exchanged water was added thereto to make the total amount 75 ml.
  • a Teflon (registered trademark) closed container autoclave container, internal capacity 100 ml, stainless steel jacket on the outside
  • the substrate was fixed by floating it from the bottom of a Teflon (registered trademark) closed container, and was installed vertically so that the solution was in contact with both surfaces of the substrate.
  • hydrothermal treatment was carried out at a hydrothermal temperature of 90° C. for 24 hours to form LDH on the surface and inside of the base material.
  • the base material was taken out from the closed container, washed with ion-exchanged water, and dried at 70° C. for 10 hours to form LDH in the pores of the porous base material.
  • an LDH separator was obtained.
  • -Evaluation 1 SEM images of the surface microstructures of the LDH separators (before roll pressing) obtained in Examples 1, 2, 3 and 4 were as shown in Figures 4A, 5A, 6A and 7A, respectively.
  • -Evaluation 2 As a result of EDS elemental analysis, LDH constituent elements Mg, Al and Ti were detected on the surface of the LDH separator. The atomic ratios of Mg, Al and Ti and the atomic ratios of Ti/Al on the surface of each LDH separator calculated by EDS elemental analysis were as shown in Table 1.
  • -Evaluation 3 Figures 4B, 5B, 6B and 7B show the XRD profiles obtained in Examples 1, 2, 3 and 4, respectively.
  • Example 5 (comparison) An LDH separator was prepared and evaluated in the same manner as in Example 1 except that in (2) above, the polymeric porous substrate was coated with alumina sol without adding titania sol.
  • -Evaluation 1 The SEM image of the surface microstructure of the LDH separator obtained in Example 5 was as shown in Figure 8A.
  • -Evaluation 2 As a result of the EDS elemental analysis, LDH constituent elements Mg and Al were detected on the LDH separator surface, but Ti was not detected.
  • the composition ratio (atomic ratio) of Mg and Al on the LDH separator surface calculated by EDS elemental analysis is as shown in Table 1.
  • -Evaluation 4 As shown in Table 1, it was confirmed that the He permeability was 0.0 cm/min ⁇ atm, which was an extremely high density.
  • -Evaluation 5 As shown in Table 1, high ionic conductivity was confirmed.
  • -Evaluation 6 As shown in Table 1, it was found that the dendrite resistance was inferior because a short circuit due to zinc dendrite occurred in less than 300 cycles.
  • cracks C may be present in the LDH surface layer 10a forming the surface of the LDH separator 10.
  • the crack C may exist in the width direction and/or the longitudinal direction of the LDH separator 10 or on the entire surface of the LDH separator 10 as long as it does not affect the strength of the LDH separator 10.
  • the crack C preferably has a depth of 0.1 to 5 ⁇ m and a width of 0.1 to 30 ⁇ m. By doing so, compatibility with the electrolytic solution is improved, and aging in the battery manufacturing process is unnecessary. The aging is usually performed after the battery is made compatible with the electrolytic solution to stabilize the ionic conductivity of the separator.
  • the LDH separator having cracks can be produced by performing rapid drying after applying the mixed sol solution to the porous substrate in the above-mentioned method for producing the LDH separator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Separators (AREA)
  • Fuel Cell (AREA)

Abstract

亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能なLDHセパレータが提供される。このLDHセパレータは、多孔質基材と、多孔質基材の孔を塞ぐ層状複水酸化物(LDH)とを含む。LDHは、Mg、Al、Ti及びOH基を含む複数の水酸化物基本層と、複数の水酸化物基本層間に介在する、陰イオン及びH2Oで構成される中間層とから構成される。

Description

LDHセパレータ及び亜鉛二次電池
 本発明はLDHセパレータ及び亜鉛二次電池に関する。
 ニッケル亜鉛二次電池、空気亜鉛二次電池等の亜鉛二次電池では、充電時に負極から金属亜鉛がデンドライト状に析出し、不織布等のセパレータの空隙を貫通して正極に到達し、その結果、短絡を引き起こすことが知られている。このような亜鉛デンドライトに起因する短絡は繰り返し充放電寿命の短縮を招く。
 上記問題に対処すべく、水酸化物イオンを選択的に透過させながら、亜鉛デンドライトの貫通を阻止する、層状複水酸化物(LDH)セパレータを備えた電池が提案されている。層状複水酸化物(LDH)は、積み重なった水酸化物基本層の間に、中間層として交換可能な陰イオン及びHOを有する物質である。例えば、特許文献1(国際公開第2013/118561号)には、ニッケル亜鉛二次電池においてLDHセパレータを正極及び負極間に設けることが開示されている。また、特許文献2(国際公開第2016/076047号)には、樹脂製外枠に嵌合又は接合されたLDHセパレータを備えたセパレータ構造体が開示されており、LDHセパレータがガス不透過性及び/又は水不透過性を有する程の高い緻密性を有することが開示されている。また、この文献にはLDHセパレータが多孔質基材と複合化されうることも開示されている。さらに、特許文献3(国際公開第2016/067884号)には多孔質基材の表面にLDH緻密膜を形成して複合材料(LDHセパレータ)を得るための様々な方法が開示されている。この方法は、多孔質基材にLDHの結晶成長の起点を与えうる起点物質を均一に付着させ、原料水溶液中で多孔質基材に水熱処理を施してLDH緻密膜を多孔質基材の表面に形成させる工程を含むものである。特許文献1~3の実施例に開示されるLDHはいずれも、水酸化物基本層がMg及びAlを含むMg,Al-LDHである。
 一方、特許文献4(国際公開第2017/221989号)には、Ni、Al及びTi及びOH基を含む複数の水酸化物基本層と、複数の水酸化物基本層間に介在する、陰イオン及びHOで構成される中間層とから構成されるLDHを含む、LDH含有機能層及び複合材料(すなわちLDHセパレータ)が開示されている。また、特許文献5(国際公開第2017/221531号)には、Ni、Ti及びOH基で構成される複数の水酸化物基本層と、複数の水酸化物基本層間に介在する、陰イオン及びHOで構成される中間層とから構成されるLDHを含む、LDH含有機能層及び複合材料(すなわちLDHセパレータ)が開示されている。
国際公開第2013/118561号 国際公開第2016/076047号 国際公開第2016/067884号 国際公開第2017/221989号 国際公開第2017/221531号
 上述したようなLDHセパレータを用いてニッケル亜鉛電池等の亜鉛二次電池を構成した場合、亜鉛デンドライトによる短絡等をある程度防止できる。しかしながら、デンドライト短絡防止効果の更なる改善が望まれる。
 本発明者らは、今般、LDHの水酸化物基本層をMg、Al、Ti及びOH基を含む所定の元素ないしイオンで構成することにより、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能なLDHセパレータを提供できるとの知見を得た。
 したがって、本発明の目的は、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能なLDHセパレータを提供することにある。
 本発明の一態様によれば、多孔質基材と、前記多孔質基材の孔を塞ぐ層状複水酸化物(LDH)とを含む、LDHセパレータであって、
 前記LDHが、Mg、Al、Ti及びOH基を含む複数の水酸化物基本層と、前記複数の水酸化物基本層間に介在する、陰イオン及びHOで構成される中間層とから構成される、LDHセパレータが提供される。
 本発明の他の一態様によれば、前記LDHセパレータを備えた、亜鉛二次電池が提供される。
 本発明の他の一態様によれば、前記LDHセパレータを備えた、固体アルカリ型燃料電池が提供される。
本発明のLDHセパレータを概念的に示す模式断面図である。 例1~5で使用されたHe透過度測定系の一例を示す概念図である。 図2Aに示される測定系に用いられる試料ホルダ及びその周辺構成の模式断面図である。 例1~5で用いた電気化学測定系を示す模式断面図である。 例1において作製されたLDHセパレータの表面SEM像である。 例1において作製されたLDHセパレータのX線回折結果である。 例2において作製されたLDHセパレータの表面SEM像である。 例2において作製されたLDHセパレータのX線回折結果である。 例3において作製されたLDHセパレータの表面SEM像である。 例3において作製されたLDHセパレータのX線回折結果である。 例4において作製されたLDHセパレータの表面SEM像である。 例4において作製されたLDHセパレータのX線回折結果である。 例5(比較)において作製されたLDHセパレータの表面SEM像である。 例5(比較)において作製されたLDHセパレータのX線回折結果である。 クラックを有するLDHセパレータの表面SEM像である。 図9Aで示されるLDHセパレータの断面SEM像である。
 LDHセパレータ
 図1に模式断面図が概念的に示されるように、本発明のLDHセパレータ10は、多孔質基材12と、層状複水酸化物(LDH)14とを含む。なお、本明細書において「LDHセパレータ」は、LDHを含むセパレータであって、専らLDHの水酸化物イオン伝導性を利用して水酸化物イオンを選択的に通すものとして定義される。なお、図1においてLDHセパレータ10の上面と下面の間でLDH14の領域が繋がっていないように描かれているが、これは断面として二次元的に描かれているためであり、奥行きを考慮した三次元的にはLDHセパレータ10の上面と下面の間でLDH14の領域が繋がっており、それによりLDHセパレータ10の水酸化物イオン伝導性が確保されている。LDHセパレータ10において、多孔質基材12の孔をLDH14が塞いでいる。もっとも、多孔質基材12の孔は完全に塞がれている必要はなく、残留気孔Pが僅かに存在していてもよい。このLDH14は、複数の水酸化物基本層と、これら複数の水酸化物基本層間に介在する中間層とから構成される。水酸化物基本層は、Mg、Al、Ti及びOH基を含む。中間層は、陰イオン及びHOで構成される。水酸化物基本層と中間層の交互積層構造自体は一般的に知られるLDHの交互積層構造と基本的に同じであるが、本発明ではLDHの水酸化物基本層をMg、Al、Ti及びOH基を含む所定の元素ないしイオンで構成することにより、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能なLDHセパレータを提供できる。
 前述のとおり、本発明におけるLDH14の水酸化物基本層は、Mg、Al、Ti及びOH基を含む。LDH14中のMgはマグネシウムイオンの形態を採りうる。LDH14中のマグネシウムイオンは典型的にはMg2+であると考えられるが、他の価数もありうるため、特に限定されない。LDH14中のAlはアルミニウムイオンの形態を採りうる。LDH14中のアルミニウムイオンは典型的にはAl3+であると考えられるが、他の価数もありうるため、特に限定されない。LDH14中のTiはチタンイオンの形態を採りうる。LDH14中のチタンイオンは典型的にはTi4+であると考えられるが、Ti3+等の他の価数もありうるため、特に限定されない。水酸化物基本層は、Mg、Al、Ti及びOH基を含んでいさえすれば、他の元素ないしイオンを含んでいてもよい。例えば、LDH14ないし水酸化物基本層には、Y及び/又はZnが含まれていてもよい。また、LDHないし水酸化物基本層にY及び/又はZnが含まれている場合、LDHないし水酸化物基本層にはAl又はTiが含まれていなくてもよい。もっとも、水酸化物基本層は、Mg、Al、Ti及びOH基を主要構成要素として含むのが好ましい。すなわち、水酸化物基本層は、主としてMg、Al、Ti及びOH基からなるのが好ましい。したがって、水酸化物基本層は、Mg、Al、Ti、OH基及び場合により不可避不純物で構成されるのが典型的である。不可避不純物は製法上不可避的に混入されうる任意元素であり、例えば原料や基材に由来してLDH14中に混入しうる。LDHセパレータ10に含まれるLDH14の中間層は、陰イオン及びHOで構成される。陰イオンは1価以上の陰イオン、好ましくは1価又は2価のイオンである。好ましくは、LDH14中の陰イオンはOH及び/又はCO 2-を含む。上記のとおり、Mg、Al及びTiの価数は必ずしも定かではないため、LDHを一般式で厳密に特定することは非実際的又は不可能である。仮に水酸化物基本層が主としてMg2+、Al3+、Ti4+及びOH基で構成されるものと想定した場合には、対応するLDHは、一般式:Mg2+ 1-x-yAl3+ Ti4+ (OH)n- (x+2y)/n・mHO(式中、An-はn価の陰イオン、nは1以上の整数、好ましくは1又は2であり、0<x<1、0<y<1、0<x+y<1、mは0以上、典型的には0を超える又は1以上の実数である)なる基本組成で表すことができる。もっとも、上記一般式はあくまで「基本組成」と解されるべきであり、Mg2+、Al3+、Ti4+等の元素がLDHの基本的特性を損なわない程度に他の元素又はイオン(同じ元素の他の価数の元素又はイオンや製法上不可避的に混入されうる元素又はイオンを含む)で置き換え可能なものとして解されるべきである。
 LDHセパレータ10は、エネルギー分散型X線分析(EDS)により決定される、LDH14におけるTi/Alの原子比が0.5~12であるのが好ましく、より好ましくは1.0~12である。上記範囲内であると、イオン伝導性を損なうことなく、亜鉛デンドライトに起因する短絡の抑制効果(すなわちデンドライト耐性)をより効果的に実現することができる。同様の理由から、エネルギー分散型X線分析(EDS)により決定される、LDH14におけるTi/(Mg+Ti+Al)の原子比は0.1~0.7であるのが好ましく、より好ましくは0.2~0.7である。また、LDH14におけるAl/(Mg+Ti+Al)の原子比は0.05~0.4であるのが好ましく、より好ましくは0.05~0.25である。さらに、LDH14におけるMg/(Mg+Ti+Al)の原子比は0.2~0.7であるのが好ましく、より好ましくは0.2~0.6である。なお、EDS分析は、EDS分析装置(例えばX-act、オックスフォード・インストゥルメンツ社製)を用いて、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに1回繰り返し行い、4)合計6点の平均値を算出することにより行うのが好ましい。
 LDHセパレータ10はイオン伝導率が0.1mS/cm以上であるのが好ましく、より好ましくは1.0mS/cm以上、さらに好ましくは1.5mS/cm以上、特に好ましくは2.0mS/cm以上である。このような範囲内であるとLDHセパレータが水酸化物イオン伝導セパレータとしての十分な機能を呈することができる。イオン伝導率は高ければ高い方が良いため、その上限値は特に限定されないが、例えば10mS/cmである。イオン伝導率は、LDHセパレータの抵抗、並びにLDHセパレータの厚み及び面積に基づいて算出される。LDHセパレータ10の抵抗は、所定濃度(例えば5.4M)のKOH水溶液中に浸漬させたLDHセパレータ10に対して、電気化学測定システム(ポテンショ/ガルバノスタット-周波数応答アナライザ)を用いて、周波数範囲1MHz~0.1Hz及び印加電圧10mVで測定を行い、実数軸の切片をLDHセパレータの抵抗として求めることにより決定することができる。
 LDHセパレータ10は層状複水酸化物(LDH)14を含むセパレータであり、亜鉛二次電池に組み込まれた場合に、正極板と負極板とを水酸化物イオン伝導可能に隔離するものである。すなわち、LDHセパレータ10は水酸化物イオン伝導セパレータとしての機能を呈する。好ましいLDHセパレータ10はガス不透過性及び/又は水不透過性を有する。換言すれば、LDHセパレータ10はガス不透過性及び/又は水不透過性を有するほどに緻密化されているのが好ましい。なお、本明細書において「ガス不透過性を有する」とは、特許文献2及び3に記載されるように、水中で測定対象物の一面側にヘリウムガスを0.5atmの差圧で接触させても他面側からヘリウムガスに起因する泡の発生がみられないことを意味する。また、本明細書において「水不透過性を有する」とは、特許文献2及び3に記載されるように、測定対象物の一面側に接触した水が他面側に透過しないことを意味する。すなわち、LDHセパレータ10がガス不透過性及び/又は水不透過性を有するということは、LDHセパレータ10が気体又は水を通さない程の高度な緻密性を有することを意味し、透水性又はガス透過性を有する多孔性フィルムやその他の多孔質材料ではないことを意味する。こうすることで、LDHセパレータ10は、その水酸化物イオン伝導性に起因して水酸化物イオンのみを選択的に通すものとなり、電池用セパレータとしての機能を呈することができる。このため、充電時に生成する亜鉛デンドライトによるセパレータの貫通を物理的に阻止して正負極間の短絡を防止するのに極めて効果的な構成となっている。LDHセパレータ10は水酸化物イオン伝導性を有するため、正極板と負極板との間で必要な水酸化物イオンの効率的な移動を可能として正極板及び負極板における充放電反応を実現することができる。
 LDHセパレータ10は、単位面積あたりのHe透過度が10cm/min・atm以下であるのが好ましく、より好ましくは5.0cm/min・atm以下、さらに好ましくは1.0cm/min・atm以下である。このような範囲内のHe透過度を有するLDHセパレータ10は緻密性が極めて高いといえる。したがって、He透過度が10cm/min・atm以下であるセパレータは、水酸化物イオン以外の物質の通過を高いレベルで阻止することができる。例えば、亜鉛二次電池の場合、電解液中においてZnの透過(典型的には亜鉛イオン又は亜鉛酸イオンの透過)を極めて効果的に抑制することができる。He透過度は、セパレータの一方の面にHeガスを供給してセパレータにHeガスを透過させる工程と、He透過度を算出して水酸化物イオン伝導セパレータの緻密性を評価する工程とを経て測定される。He透過度は、単位時間あたりのHeガスの透過量F、Heガス透過時にセパレータに加わる差圧P、及びHeガスが透過する膜面積Sを用いて、F/(P×S)の式により算出する。このようにHeガスを用いてガス透過性の評価を行うことにより、極めて高いレベルでの緻密性の有無を評価することができ、その結果、水酸化物イオン以外の物質(特に亜鉛デンドライト成長を引き起こすZn)を極力透過させない(極微量しか透過させない)といった高度な緻密性を効果的に評価することができる。これは、Heガスが、ガスを構成しうる多種多様な原子ないし分子の中でも最も小さい構成単位を有しており、しかも反応性が極めて低いためである。すなわち、Heは、分子を形成することなく、He原子単体でHeガスを構成する。この点、水素ガスはH分子により構成されるため、ガス構成単位としてはHe原子単体の方がより小さい。そもそもHガスは可燃性ガスのため危険である。そして、上述した式により定義されるHeガス透過度という指標を採用することで、様々な試料サイズや測定条件の相違を問わず、緻密性に関する客観的な評価を簡便に行うことができる。こうして、セパレータが亜鉛二次電池用セパレータに適した十分に高い緻密性を有するのか否かを簡便、安全かつ効果的に評価することができる。He透過度の測定は、後述する実施例の評価4に示される手順に従って好ましく行うことができる。
 前述したとおり、LDHセパレータ10はLDH14と多孔質基材12とを含み(典型的には多孔質基材12及びLDH14からなり)、LDHセパレータ10は水酸化物イオン伝導性及びガス不透過性を呈するように(それ故水酸化物イオン伝導性を呈するLDHセパレータとして機能するように)LDHが多孔質基材の孔を塞いでいる。LDH14は多孔質基材12の厚さ方向の全域にわたって組み込まれているのが特に好ましい。LDHセパレータ10の厚さは、好ましくは3~80μmであり、より好ましくは3~60μm、さらに好ましくは3~40μmである。
 多孔質基材12は、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成されるのが好ましく、より好ましくはセラミックス材料及び高分子材料からなる群から選択される少なくとも1種で構成される。この場合、セラミックス材料の好ましい例としては、アルミナ、ジルコニア、チタニア、マグネシア、スピネル、カルシア、コージライト、ゼオライト、ムライト、フェライト、酸化亜鉛、炭化ケイ素、及びそれらの任意の組合せが挙げられ、より好ましくは、アルミナ、ジルコニア、チタニア、及びそれらの任意の組合せであり、特に好ましくはアルミナ、ジルコニア(例えばイットリア安定化ジルコニア(YSZ))、及びその組合せである。これらの多孔質セラミックスを用いると緻密性に優れたLDHセパレータを形成しやすい。金属材料の好ましい例としては、アルミニウム、亜鉛、及びニッケルが挙げられる。
 多孔質基材12は、高分子材料で構成されるのが特に好ましい。高分子多孔質基材には、1)可撓性を有する(それ故薄くしても割れにくい)、2)気孔率を高くしやすい、3)伝導率を高くしやすい(気孔率を高めながら厚さを薄くできるため)、4)製造及びハンドリングしやすいといった利点がある。また、上記1)の可撓性に由来する利点を活かして、5)高分子材料製の多孔質基材を含むLDHセパレータを簡単に折り曲げる又は封止接合することができるとの利点もある。高分子材料の好ましい例としては、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂(四フッ素化樹脂:PTFE等)、セルロース、ナイロン、ポリエチレン及びそれらの任意の組合せが挙げられる。より好ましくは、加熱プレスに適した熱可塑性樹脂という観点から、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂(四フッ素化樹脂:PTFE等)、ナイロン、ポリエチレン及びそれらの任意の組合せ等が挙げられる。上述した各種の好ましい材料はいずれも電池の電解液に対する耐性として耐アルカリ性を有するものである。特に好ましい高分子材料は、耐熱水性、耐酸性及び耐アルカリ性に優れ、しかも低コストである点から、ポリプロピレン、ポリエチレン等のポリオレフィンであり、最も好ましくはポリプロピレン又はポリエチレンである。多孔質基材12が高分子材料で構成される場合、LDH14が多孔質基材12の厚さ方向の全域にわたって組み込まれている(例えば多孔質基材12内部の大半又はほぼ全部の孔がLDH14で埋まっている)のが特に好ましい。このような高分子多孔質基材として、市販の高分子微多孔膜を好ましく用いることができる。
 製造方法
 LDHセパレータ10の製造方法は特に限定されず、既に知られるLDH含有機能層及び複合材料(すなわちLDHセパレータ)の製造方法(例えば特許文献1~5を参照)の諸条件を適宜変更することにより作製することができる。例えば、(1)多孔質基材を用意し、(2)多孔質基材にアルミナ及びチタニアの混合ゾルを塗布して乾燥することでアルミナ・チタニア層を形成させ、(3)マグネシウムイオン(Mg2+)及び尿素を含む原料水溶液に多孔質基材を浸漬させ、(4)原料水溶液中で多孔質基材を水熱処理して、LDH含有機能層を多孔質基材上及び/又は多孔質基材中に形成させることにより、LDH含有機能層及び複合材料(すなわちLDHセパレータ)を製造することができる。上記工程(3)において尿素が存在することで、尿素の加水分解を利用してアンモニアが溶液中に発生することによりpH値が上昇し、共存する金属イオンが水酸化物を形成することによりLDHを得ることができる。また、加水分解に二酸化炭素の発生を伴うため、陰イオンが炭酸イオン型のLDHを得ることができる。
 特に、多孔質基材12が高分子材料で構成され、LDH14が多孔質基材12の厚さ方向の全域にわたって組み込まれている複合材料(すなわちLDHセパレータ)を作製する場合、上記(2)におけるアルミナ及びチタニアの混合ゾルの基材への塗布を、混合ゾルを基材内部の全体又は大部分に浸透させるような手法で行うのが好ましい。こうすることで最終的に多孔質基材内部の大半又はほぼ全部の孔をLDHで埋めることができる。好ましい塗布手法の例としては、ディップコート、ろ過コート等が挙げられ、特に好ましくはディップコートである。ディップコート等の塗布回数を調整することで、混合ゾルの付着量を調整することができる。ディップコート等により混合ゾルが塗布された基材は、乾燥させた後、上記(3)及び(4)の工程を実施すればよい。
 多孔質基材12が高分子材料で構成される場合、上記方法等によって得られたLDHセパレータに対してプレス処理を施すのが好ましい。こうすることで、緻密性により一層優れたLDHセパレータを得ることができる。プレス手法は、例えばロールプレス、一軸加圧プレス、CIP(冷間等方圧加圧)等であってよく、特に限定されないが、好ましくはロールプレスである。このプレスは加熱しながら行うのが高分子多孔質基材を軟化させることで、多孔質基材の孔をLDHで十分に塞ぐことができる点で好ましい。十分に軟化する温度として、例えば、ポリプロピレンやポリエチレンの場合は60~200℃で加熱するのが好ましい。このような温度域でロールプレス等のプレスを行うことで、LDHセパレータの残留気孔を大幅に低減することができる。その結果、LDHセパレータを極めて高度に緻密化することができ、それ故、亜鉛デンドライトに起因する短絡をより一層効果的に抑制することができる。ロールプレスを行う際、ロールギャップ及びロール温度を適宜調整することで残留気孔の形態を制御することができ、それにより所望の緻密性のLDHセパレータを得ることができる。
 亜鉛二次電池
 本発明のLDHセパレータは亜鉛二次電池に適用されるのが好ましい。したがって、本発明の好ましい態様によれば、LDHセパレータを備えた、亜鉛二次電池が提供される。典型的な亜鉛二次電池は、正極と、負極と、電解液とを備え、LDHセパレータを介して正極と負極が互いに隔離されるものである。本発明の亜鉛二次電池は、亜鉛を負極として用い、かつ、電解液(典型的にはアルカリ金属水酸化物水溶液)を用いた二次電池であれば特に限定されない。したがって、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、亜鉛空気二次電池、その他各種のアルカリ亜鉛二次電池であることができる。例えば、正極が水酸化ニッケル及び/又はオキシ水酸化ニッケルを含み、それにより亜鉛二次電池がニッケル亜鉛二次電池をなすのが好ましい。あるいは、正極が空気極であり、それにより亜鉛二次電池が亜鉛空気二次電池をなしてもよい。
 固体アルカリ形燃料電池
 本発明のLDHセパレータは固体アルカリ形燃料電池に適用することも可能である。すなわち、多孔質基材の孔をLDHで塞いで高度に緻密化させたLDHセパレータを用いることで、燃料の空気極側への透過(例えばメタノールのクロスオーバー)に起因する起電力の低下を効果的に抑制可能な、固体アルカリ形燃料電池を提供できる。LDHセパレータの有する水酸化物イオン伝導性を発揮させながら、メタノール等の燃料のLDHセパレータの透過を効果的に抑制できるためである。したがって、本発明の別の好ましい態様によれば、LDHセパレータを備えた、固体アルカリ形燃料電池が提供される。本態様による典型的な固体アルカリ形燃料電池は、酸素が供給される空気極と、液体燃料及び/又は気体燃料が供給される燃料極と、燃料極と空気極の間に介在されるLDHセパレータとを備える。
 その他の電池
 本発明のLDHセパレータはニッケル亜鉛電池や固体アルカリ形燃料電池の他、例えばニッケル水素電池にも使用することができる。この場合、LDHセパレータは当該電池の自己放電の要因であるナイトライドシャトル(nitride shuttle)(硝酸基の電極間移動)をブロックする機能を果たす。また、本発明のLDHセパレータは、リチウム電池(リチウム金属が負極の電池)、リチウムイオン電池(負極がカーボン等の電池)あるいはリチウム空気電池等にも使用可能である。
 本発明を以下の例によってさらに具体的に説明する。なお、以下の例で作製されるLDHセパレータの評価方法は以下のとおりとした。
 評価1:微構造の観察
 LDHセパレータの表面微構造を走査型電子顕微鏡(SEM、JSM-6610LV、JEOL社製)を用いて10~20kVの加速電圧で観察した。
 評価2:元素分析評価(EDS)
 LDHセパレータ表面に対してEDS分析装置(装置名:X-act、オックスフォード・インストゥルメンツ社製)を用いて組成分析を行い、Mg:Al:Tiの組成比(原子比)、並びにTi/Alの原子比を算出した。この分析は、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに1回繰り返し行い、4)合計6点の平均値を算出することにより行った。
 評価3:LDHの同定
 X線回折装置(リガク社製、RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:5~40°の測定条件で、LDHセパレータの結晶相を測定してXRDプロファイルを得た。得られたXRDプロファイルについて、JCPDSカードNO.35-0964に記載されるLDH(ハイドロタルサイト類化合物)の回折ピークを用いて同定を行った。
 評価4:He透過測定
 He透過性の観点からLDHセパレータの緻密性を評価すべくHe透過試験を以下のとおり行った。まず、図2A及び図2Bに示されるHe透過度測定系310を構築した。He透過度測定系310は、Heガスを充填したガスボンベからのHeガスが圧力計312及び流量計314(デジタルフローメーター)を介して試料ホルダ316に供給され、この試料ホルダ316に保持されたLDHセパレータ318の一方の面から他方の面に透過させて排出させるように構成した。
 試料ホルダ316は、ガス供給口316a、密閉空間316b及びガス排出口316cを備えた構造を有するものであり、次のようにして組み立てた。まず、LDHセパレータ318の外周に沿って接着剤322を塗布して、中央に開口部を有する治具324(ABS樹脂製)に取り付けた。この治具324の上端及び下端に密封部材326a,326bとしてブチルゴム製のパッキンを配設し、さらに密封部材326a,326bの外側から、フランジからなる開口部を備えた支持部材328a,328b(PTFE製)で挟持した。こうして、LDHセパレータ318、治具324、密封部材326a及び支持部材328aにより密閉空間316bを区画した。支持部材328a,328bを、ガス排出口316c以外の部分からHeガスの漏れが生じないように、ネジを用いた締結手段330で互いに堅く締め付けた。こうして組み立てられた試料ホルダ316のガス供給口316aに、継手332を介してガス供給管334を接続した。
 次いで、He透過度測定系310にガス供給管334を経てHeガスを供給し、試料ホルダ316内に保持されたLDHセパレータ318に透過させた。このとき、圧力計312及び流量計314によりガス供給圧と流量をモニタリングした。Heガスの透過を1~30分間行った後、He透過度を算出した。He透過度の算出は、単位時間あたりのHeガスの透過量F(cm/min)、Heガス透過時にLDHセパレータに加わる差圧P(atm)、及びHeガスが透過する膜面積S(cm)を用いて、F/(P×S)の式により算出した。Heガスの透過量F(cm/min)は流量計314から直接読み取った。また、差圧Pは圧力計312から読み取ったゲージ圧を用いた。なお、Heガスは差圧Pが0.05~0.90atmの範囲内となるように供給された。
 評価5:イオン伝導率の測定
 電解液中でのLDHセパレータの伝導率を図3に示される電気化学測定系を用いて以下のようにして測定した。LDHセパレータ試料Sを両側から厚み1mmシリコーンパッキン440で挟み、内径6mmのPTFE製フランジ型セル442に組み込んだ。電極446として、#100メッシュのニッケル金網をセル442内に直径6mmの円筒状にして組み込み、電極間距離が2.2mmになるようにした。電解液444として、5.4MのKOH水溶液をセル442内に充填した。電気化学測定システム(ポテンショ/ガルバノスタット-周波数応答アナライザ、ソーラトロン社製1287A型及び1255B型)を用い、周波数範囲は1MHz~0.1Hz、印加電圧は10mVの条件で測定を行い、実数軸の切片をLDHセパレータ試料Sの抵抗とした。上記同様の測定をLDHセパレータ試料S無しの構成で行い、ブランク抵抗も求めた。LDHセパレータ試料Sの抵抗とブランク抵抗の差をLDHセパレータの抵抗とした。得られたLDHセパレータの抵抗と、LDHセパレータの厚み及び面積を用いて伝導率を求めた。
 評価6:デンドライト耐性の評価(サイクル試験)
 LDHセパレータの亜鉛デンドライトに起因する短絡の抑制効果(デンドライト耐性)を評価すべくサイクル試験を以下のとおり行った。まず、正極(水酸化ニッケル及び/又はオキシ水酸化ニッケルを含む)と負極(亜鉛及び/又は酸化亜鉛を含む)の各々を不織布で包むとともに、電流取り出し端子を溶接した。こうして準備された正極及び負極を、LDHセパレータを介して対向させ、電流取り出し口が設けられたラミネートフィルムに挟んで、ラミネートフィルムの3辺を熱融着した。こうして得られた上部開放されたセル容器に電解液(5.4MのKOH水溶液中に0.4Mの酸化亜鉛を溶解させたもの)を加え、真空引き等により電解液を十分に正極及び負極に浸透させた。その後、ラミネートフィルムの残りの1辺も熱融着して、簡易密閉セルとした。充放電装置(東洋システム株式会社製、TOSCAT3100)を用いて、簡易密閉セルに対し、0.1C充電及び0.2C放電で化成を実施した。その後、1C充放電サイクルを実施した。同一条件で繰り返し充放電サイクルを実施しながら、正極及び負極間の電圧を電圧計でモニタリングし、正極及び負極間における亜鉛デンドライトに起因する短絡に伴う急激な電圧低下(具体的には直前にプロットされた電圧に対して5mV以上の電圧低下)の有無を調べ、以下の基準で評価した。
・短絡なし:300サイクル後も充電中に上記急激な電圧低下が見られなかった
・短絡あり:300サイクル未満で充電中に上記急激な電圧低下が見られた
 例1~4
(1)高分子多孔質基材の準備
 気孔率50%、平均気孔径0.1μm及び厚さ20μmの市販のポリエチレン微多孔膜を高分子多孔質基材として用意し、2.0cm×2.0cmの大きさになるように切り出した。
(2)高分子多孔質基材へのアルミナ・チタニアゾルコート
 無定形アルミナ溶液(Al-ML15、多木化学株式会社製)と酸化チタンゾル溶液(M6、多木化学株式会社製)を表1に示されるTi/Al比(モル比)となるように混合して混合ゾルを作製した。混合ゾルを、上記(1)で用意された基材へディップコートにより塗布した。ディップコートは、混合ゾル100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
(3)原料水溶液の作製
 原料として、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)、及び尿素((NHCO、シグマアルドリッチ製)を用意した。0.03mol/Lとなるように、硝酸マグネシウム六水和物を秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO (モル比)=8の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
(4)水熱処理による成膜
 テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液とディップコートされた基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、水熱温度90℃で24時間水熱処理を施すことにより基材表面と内部にLDHの形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、多孔質基材の孔内にLDHを形成させた。こうして、LDHセパレータを得た。
(5)ロールプレスによる緻密化
 上記LDHセパレータを、1対のPETフィルム(東レ株式会社製、ルミラー(登録商標)、厚さ40μm)で挟み、ロール回転速度3mm/s、ローラ加熱温度70℃、ロールギャップ70μmにてロールプレスを行い、さらに緻密化されたLDHセパレータを得た。
(6)評価結果
 得られたLDHセパレータに対して評価1~6を行った。結果は以下のとおりであった。
‐評価1:例1、2、3及び4で得られたLDHセパレータ(ロールプレス前)の表面微構造のSEM画像は図4A、5A、6A、7Aにそれぞれ示されるとおりであった。
‐評価2:EDS元素分析の結果、LDHセパレータ表面において、LDH構成元素であるMg、Al及びTiが検出された。また、EDS元素分析により算出された、各LDHセパレータ表面のMg、Al及びTiの原子比、並びにTi/Alの原子比は表1に示されるとおりであった。
‐評価3:図4B、5B、6B及び7Bに、例1、2、3及び4で得られたXRDプロファイルをそれぞれ示す。得られたXRDプロファイルにおける2θ=11.5°付近のピークから、例1~4で得られたLDHセパレータの多孔質基材以外の部分は、LDH(ハイドロタルサイト類化合物)であることが同定された。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。
‐評価4:表1に示されるとおり、例1~4のいずれにおいても、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価5:表1に示されるとおり、例1~4のいずれにおいても、高いイオン伝導率が確認された。
‐評価6:表1に示されるとおり、例1~4のいずれにおいても、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
 例5(比較)
 上記(2)において、チタニアゾルを添加せずに高分子多孔質基材へのアルミナゾルコートを行ったこと以外は、例1と同様にしてLDHセパレータを作製し、同様に評価した。
‐評価1:例5で得られたLDHセパレータの表面微構造のSEM画像は図8Aに示されるとおりであった。
‐評価2:EDS元素分析の結果、LDHセパレータ表面において、LDH構成元素であるMg及びAlが検出されたが、Tiは検出されなかった。EDS元素分析により算出された、LDHセパレータ表面のMg及びAlの組成比(原子比)は表1に示されるとおりであった。
‐評価3:図8Bに、例5で得られたXRDプロファイルを示す。得られたXRDプロファイルにおける2θ=11.5°付近のピークから、例5で得られたLDHセパレータの多孔質基材以外の部分はLDH(ハイドロタルサイト類化合物)であることが同定された。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。
‐評価4:結果は表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価5:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価6:表1に示されるとおり、300サイクル未満で亜鉛デンドライトに起因する短絡が生じたことから、デンドライト耐性に劣ることが判明した。
Figure JPOXMLDOC01-appb-T000001
 ところで、図9A及び図9Bに示されるように、LDHセパレータ10の表面を構成するLDH表面層10aにはクラックCが存在してもよい。クラックCは、LDHセパレータ10の強度に影響しない限りにおいて、LDHセパレータ10の幅方向及び/又は長手方向、或いはLDHセパレータ10の表面全体に存在してもよい。このクラックCは深さ0.1~5μm、幅0.1~30μmであるのが好ましい。こうすることで、電解液との馴染みが良くなり、電池作製工程におけるエージングが不要となる。なお、エージングは、通常、電池作製後に電解液と馴染ませてセパレータのイオン伝導性を安定させるために行われるものである。クラックを有するLDHセパレータは、上述したLDHセパレータの製造方法において、多孔質基材に混合ゾル溶液を塗布した後の乾燥を、急速乾燥により行うことで作製することができる。

 

Claims (12)

  1.  多孔質基材と、前記多孔質基材の孔を塞ぐ層状複水酸化物(LDH)とを含む、LDHセパレータであって、
     前記LDHが、Mg、Al、Ti及びOH基を含む複数の水酸化物基本層と、前記複数の水酸化物基本層間に介在する、陰イオン及びHOで構成される中間層とから構成される、LDHセパレータ。
  2.  前記LDHが、Mg、Al、Ti及びOH基で構成される、又はMg、Al、Ti、OH基及び不可避不純物で構成される、請求項1に記載のLDHセパレータ。
  3.  エネルギー分散型X線分析(EDS)により決定される、前記LDHにおけるTi/Alの原子比が0.5~12である、請求項1又は2に記載のLDHセパレータ。
  4.  エネルギー分散型X線分析(EDS)により決定される、前記LDHにおけるTi/(Mg+Ti+Al)の原子比が0.1~0.7である、請求項1~3のいずれか一項に記載のLDHセパレータ。
  5.  エネルギー分散型X線分析(EDS)により決定される、前記LDHにおけるAl/(Mg+Ti+Al)の原子比が0.05~0.4である、請求項1~4のいずれか一項に記載のLDHセパレータ。
  6.  エネルギー分散型X線分析(EDS)により決定される、前記LDHにおけるMg/(Mg+Ti+Al)の原子比が0.2~0.7である、請求項1~5のいずれか一項に記載のLDHセパレータ。
  7.  前記多孔質基材が高分子材料で構成される、請求項1~6のいずれか一項に記載のLDHセパレータ。
  8.  前記高分子材料が、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂、セルロース、ナイロン、及びポリエチレンからなる群から選択される、請求項7に記載のLDHセパレータ。
  9.  前記LDHセパレータのイオン伝導率が2.0mS/cm以上である、請求項1~8のいずれか一項に記載のLDHセパレータ。
  10.  前記LDHセパレータの単位面積あたりのHe透過度が10cm/min・atm以下である、請求項1~9のいずれか一項に記載のLDHセパレータ。
  11.  請求項1~10のいずれか一項に記載のLDHセパレータを備えた、亜鉛二次電池。
  12.  請求項1~10のいずれか一項に記載のLDHセパレータを備えた、固体アルカリ形燃料電池。
PCT/JP2019/042555 2018-12-13 2019-10-30 Ldhセパレータ及び亜鉛二次電池 WO2020121673A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112019004384.6T DE112019004384B4 (de) 2018-12-13 2019-10-30 Ldh-separator und zink-sekundärelement
CN201980057489.7A CN113169419B (zh) 2018-12-13 2019-10-30 Ldh隔板及锌二次电池
JP2020559792A JP6864789B2 (ja) 2018-12-13 2019-10-30 Ldhセパレータ及び亜鉛二次電池
US17/189,765 US11211672B2 (en) 2018-12-13 2021-03-02 LDH separator and zinc secondary battery

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/045889 2018-12-13
JPPCT/JP2018/045887 2018-12-13
PCT/JP2018/045885 WO2019124212A1 (ja) 2017-12-18 2018-12-13 Ldhセパレータ及び亜鉛二次電池
PCT/JP2018/045889 WO2019124214A1 (ja) 2017-12-18 2018-12-13 Ldhセパレータ及び亜鉛二次電池
PCT/JP2018/045887 WO2019124213A1 (ja) 2017-12-18 2018-12-13 Ldhセパレータ及び亜鉛二次電池
JPPCT/JP2018/045885 2018-12-13
JPPCT/JP2018/046171 2018-12-14
PCT/JP2018/046171 WO2019124270A1 (ja) 2017-12-18 2018-12-14 Ldhセパレータ及び亜鉛二次電池
JPPCT/JP2018/047686 2018-12-25
PCT/JP2018/047686 WO2019131688A1 (ja) 2017-12-27 2018-12-25 Ldhセパレータ及び亜鉛二次電池
JP2019111515 2019-06-14
JP2019-111515 2019-06-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/189,765 Continuation US11211672B2 (en) 2018-12-13 2021-03-02 LDH separator and zinc secondary battery

Publications (1)

Publication Number Publication Date
WO2020121673A1 true WO2020121673A1 (ja) 2020-06-18

Family

ID=71075777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042555 WO2020121673A1 (ja) 2018-12-13 2019-10-30 Ldhセパレータ及び亜鉛二次電池

Country Status (6)

Country Link
US (1) US11211672B2 (ja)
JP (1) JP6864789B2 (ja)
CN (1) CN113169419B (ja)
DE (1) DE112019004384B4 (ja)
TW (1) TWI829813B (ja)
WO (1) WO2020121673A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6889340B1 (ja) * 2019-06-19 2021-06-18 日本碍子株式会社 水酸化物イオン伝導セパレータ及び亜鉛二次電池
WO2022034803A1 (ja) * 2020-08-11 2022-02-17 日本碍子株式会社 Ldhセパレータ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115540A (ja) * 2014-12-15 2016-06-23 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
WO2017221498A1 (ja) * 2016-06-24 2017-12-28 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
WO2018135117A1 (ja) * 2017-01-19 2018-07-26 日本碍子株式会社 セパレータ構造体、ニッケル亜鉛二次電池及び亜鉛空気二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5600815B2 (ja) 2012-02-06 2014-10-01 日本碍子株式会社 亜鉛二次電池
WO2013161516A1 (ja) 2012-04-26 2013-10-31 日本碍子株式会社 リチウム空気二次電池
KR101631427B1 (ko) * 2013-12-27 2016-06-16 엔지케이 인슐레이터 엘티디 층형 복수산화물 배향막 및 그 제조 방법
JP5824186B1 (ja) * 2013-12-27 2015-11-25 日本碍子株式会社 層状複水酸化物含有複合材料及びその製造方法
JP6615111B2 (ja) 2014-10-28 2019-12-04 日本碍子株式会社 層状複水酸化物緻密膜の形成方法
CN108352580A (zh) 2014-11-13 2018-07-31 日本碍子株式会社 用于锌二次电池的隔板结构体
CN107001061B (zh) 2014-12-17 2019-05-17 日本碍子株式会社 层状双氢氧化物膜及含有层状双氢氧化物的复合材料
WO2017221451A1 (ja) 2016-06-24 2017-12-28 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
WO2017221531A1 (ja) 2016-06-24 2017-12-28 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
CN111201661B (zh) * 2017-10-20 2021-09-14 日本碍子株式会社 锌二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115540A (ja) * 2014-12-15 2016-06-23 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
WO2017221498A1 (ja) * 2016-06-24 2017-12-28 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
WO2017221497A1 (ja) * 2016-06-24 2017-12-28 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
WO2018135117A1 (ja) * 2017-01-19 2018-07-26 日本碍子株式会社 セパレータ構造体、ニッケル亜鉛二次電池及び亜鉛空気二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6889340B1 (ja) * 2019-06-19 2021-06-18 日本碍子株式会社 水酸化物イオン伝導セパレータ及び亜鉛二次電池
WO2022034803A1 (ja) * 2020-08-11 2022-02-17 日本碍子株式会社 Ldhセパレータ
JP7381764B2 (ja) 2020-08-11 2023-11-16 日本碍子株式会社 Ldhセパレータ

Also Published As

Publication number Publication date
US20210218112A1 (en) 2021-07-15
DE112019004384B4 (de) 2024-03-14
CN113169419A (zh) 2021-07-23
TWI829813B (zh) 2024-01-21
JPWO2020121673A1 (ja) 2021-03-11
US11211672B2 (en) 2021-12-28
JP6864789B2 (ja) 2021-04-28
CN113169419B (zh) 2022-11-04
DE112019004384T5 (de) 2021-05-20
TW202029557A (zh) 2020-08-01

Similar Documents

Publication Publication Date Title
JP6889340B1 (ja) 水酸化物イオン伝導セパレータ及び亜鉛二次電池
JP6949142B2 (ja) Ldhセパレータ及び亜鉛二次電池
WO2019131688A1 (ja) Ldhセパレータ及び亜鉛二次電池
JP6905086B2 (ja) Ldhセパレータ及び亜鉛二次電池
US11211672B2 (en) LDH separator and zinc secondary battery
WO2019124212A1 (ja) Ldhセパレータ及び亜鉛二次電池
JP7441308B2 (ja) Ldhセパレータ及び亜鉛二次電池
JPWO2019077952A1 (ja) 亜鉛二次電池
JP7441309B2 (ja) Ldhセパレータ及び亜鉛二次電池
JP7381764B2 (ja) Ldhセパレータ
JP7057866B1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池
JP6905085B2 (ja) Ldhセパレータ及び亜鉛二次電池
JP7048831B1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池
JP7057867B1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池
WO2022113448A1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池
WO2022107568A1 (ja) Ldhセパレータ及び亜鉛二次電池
JP7048830B1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池
WO2022113446A1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池
WO2023058268A1 (ja) Ldhセパレータ及びその製造方法、並びに亜鉛二次電池
WO2022118504A1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池
WO2022118503A1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020559792

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19896025

Country of ref document: EP

Kind code of ref document: A1