WO2022107568A1 - Ldhセパレータ及び亜鉛二次電池 - Google Patents

Ldhセパレータ及び亜鉛二次電池 Download PDF

Info

Publication number
WO2022107568A1
WO2022107568A1 PCT/JP2021/039863 JP2021039863W WO2022107568A1 WO 2022107568 A1 WO2022107568 A1 WO 2022107568A1 JP 2021039863 W JP2021039863 W JP 2021039863W WO 2022107568 A1 WO2022107568 A1 WO 2022107568A1
Authority
WO
WIPO (PCT)
Prior art keywords
ldh
ldh separator
hydroxide
separator
compound
Prior art date
Application number
PCT/JP2021/039863
Other languages
English (en)
French (fr)
Inventor
駿平 小野
翔 山本
直子 犬飼
昌平 横山
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2022563664A priority Critical patent/JPWO2022107568A1/ja
Publication of WO2022107568A1 publication Critical patent/WO2022107568A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an LDH separator and a zinc secondary battery.
  • Patent Document 1 International Publication No. 2013/118561 discloses that an LDH separator is provided between a positive electrode and a negative electrode in a nickel-zinc secondary battery.
  • Patent Document 2 International Publication No. 2016/076047 discloses a separator structure including an LDH separator fitted or bonded to a resin outer frame, and the LDH separator is gas impermeable and has a gas impermeable property. / Or it is disclosed that it has a high degree of density enough to have water impermeableness.
  • Patent Document 3 International Publication No. 2016/067884 discloses various methods for forming an LDH dense film on the surface of a porous substrate to obtain a composite material (LDH separator).
  • LDH separator a starting material that can give a starting point for LDH crystal growth is uniformly adhered to the porous base material, and the porous base material is subjected to hydrothermal treatment in an aqueous raw material solution to form an LDH dense film on the surface of the porous base material. It includes a step of forming the film.
  • Patent Document 4 International Publication No. 2019/124270
  • Patent Document 5 International Publication No. 2019/124212
  • Patent Document 5 includes a polymer porous base material and LDH filled in the porous base material, and is 0.03% or more and less than 1.0%. LDH separators with average porosity are disclosed.
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2015-095286 discloses an anionic conductive film containing a polymer having a predetermined polar group and a compound such as LDH. It is said that the polar group of the polymer preferably interacts with a compound such as LDH to increase the physical strength of this anionic conductive film.
  • the present inventors have now provided a surface layer on the surface of a porous substrate in which a hydroxide ion conductive layered compound which is an LDH and / or LDH-like compound and a binder resin are mixed in a predetermined ratio. It was found that an LDH separator having excellent ionic conductivity and further improved cycle characteristics can be provided.
  • an object of the present invention is to provide an LDH separator having excellent ionic conductivity and further improved cycle characteristics.
  • Porous substrate and A hydroxide ion conductive layered compound which is provided on at least one surface of the porous substrate and is a layered double hydroxide (LDH) and / or a layered double hydroxide (LDH) -like compound, and a binder resin.
  • a surface layer composed of a mixture and Equipped with LDH separators are provided in which the content ratio of the binder resin to the volume of the mixture in the surface layer is 1 to 60% by volume.
  • a zinc secondary battery provided with the LDH separator is provided.
  • a solid alkaline fuel cell provided with the LDH separator is provided.
  • FIG. 2 is a schematic cross-sectional view of a sample holder used in the measurement system shown in FIG. 2A and its peripheral configuration. It is a schematic cross-sectional view which shows the electrochemical measurement system used in Examples A1 to B7.
  • the LDH separator 10 of the present invention includes a porous base material 12 and a surface layer 14 provided on at least one surface of the porous base material 12.
  • the surface layer 14 is composed of a mixture of the hydroxide ion conductive layered compound 16 and the binder resin 18.
  • the hydroxide ion conductive layered compound 16 is a layered double hydroxide (LDH) and / or a layered double hydroxide (LDH) -like compound.
  • the content ratio of the binder resin 18 to the volume of the mixture in the surface layer 14 is 1 to 60% by volume.
  • LDH separator is a separator containing LDH and / or LDH-like compounds, and selectively selects hydroxide ions by utilizing the hydroxide ion conductivity of LDH and / or LDH-like compounds. It is defined as passing through.
  • LDH-like compound is a hydroxide and / or oxide having a layered crystal structure similar to LDH, although it may not be called LDH, and can be said to be an equivalent of LDH.
  • LDH can be interpreted as including LDH-like compounds as well as LDH.
  • the surface layer 14 in which the hydroxide ion conductive layered compound 16 which is an LDH and / or LDH-like compound and the binder resin 18 are mixed in a predetermined ratio on the surface of the porous base material 12. It is possible to provide the LDH separator 10 having excellent ionic conductivity and further improved cycle characteristics.
  • the content ratio of the binder resin 18 to the volume of the mixture (that is, the total volume of the hydroxide ion conductive layered compound 16 and the binder resin 18) in the surface layer 14 is 1 to 60% by volume, preferably 1 to 50% by volume. It is more preferably 1 to 40% by volume, and particularly preferably 3 to 40% by volume. Within these ranges, excellent ionic conductivity and improvement of cycle characteristics of the LDH separator 10 can be effectively realized. That is, the hydroxide ion conductivity of the surface layer 14 is ensured by the hydroxide ion conductive layered compound 16, and the penetration of the separator by the zinc dendrite can be reliably prevented by the surface layer 14.
  • the cycle characteristics of the LDH separator 10 can be improved.
  • the content ratio of the binder resin 18 exceeds 60% by volume, the ionic conductivity is remarkably lowered, and according to the present invention, high ionic conductivity can be realized.
  • the content ratio of the binder resin 18 to the volume of the mixture in the surface layer 14 is [Vb / (Vh + Vb), where Vh is the volume of the hydroxide ion conductive layered compound 16 and Vb is the volume of the binder resin 18.
  • X is a value calculated by 100.
  • the volume of the hydroxide ion conductive layered compound 16 and the binder resin 18 shall be analyzed by analyzing the surface layer 14 of the LDH separator 10 by cross-sectional FE-SEM (field emission scanning electron microscope) and EDS (energy dispersive X-ray analysis). Can be specified with.
  • Preferred examples of the binder resin 18 are polyolefin (for example, polypropylene or polyethylene), polystyrene, polyether sulfone, epoxy resin, polyphenylene sulfide, fluororesin, cellulose, nylon, acrylonitrile styrene, polysulphon, acrylonitrile butadiene styrene (ABS). ) Resins, polyvinyl chlorides, acetal resins, polyvinyl alcohol (PVA) resins, polyvinylidene chlorides, polyvinylidene fluorides, phenolic resins, allyl resins, furan resins, and any combinations thereof.
  • PVA polyvinyl alcohol
  • polyolefin is used from the viewpoint of improving the adhesion between the surface layer 14 and the porous base material 12 (particularly, the polymer porous base material).
  • the polymers or resins listed above may be non-denatured or modified.
  • the polyolefin may be a modified polyolefin.
  • the thickness of the surface layer 14 is preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 8 ⁇ m, still more preferably 0.05 to 8 ⁇ m, and particularly preferably 0.05 to 5 ⁇ m. Within these ranges, the surface layer 14 can more reliably prevent the penetration of the separator by zinc dendrites, and as a result, the cycle characteristics can be further improved.
  • the LDH separator 10 preferably has an ionic conductivity of 1.0 mS / cm or more, more preferably 1.5 mS / cm or more, still more preferably 2.0 mS / cm or more, and particularly preferably 2.5 mS / cm or more. Is.
  • the denseness of the LDH separator 10 can be evaluated by the He permeability. That is, the LDH separator 10 preferably has a He permeability per unit area of 10 cm / min ⁇ atm or less, more preferably 5.0 cm / min ⁇ atm or less, and further preferably 1.0 cm / min ⁇ atm or less. Is. It can be said that the LDH separator 10 having a He permeability within such a range has extremely high density. Therefore, a separator having a He permeability of 10 cm / min ⁇ atm or less can block the passage of substances other than hydroxide ions at a high level.
  • the permeation of Zn (typically the permeation of zinc ion or zincate ion) in the electrolytic solution can be suppressed extremely effectively.
  • the helium permeability is determined through a step of supplying a helium gas to one surface of the separator to allow the helium gas to permeate through the separator, and a step of calculating the helium permeability to evaluate the denseness of the hydroxide ion conduction separator. Be measured.
  • the He permeability is determined by the formula of F / (P ⁇ S) using the permeation amount F of the He gas per unit time, the differential pressure P applied to the separator when the He gas permeates, and the film area S through which the He gas permeates. calculate.
  • He gas has the smallest structural unit among the various atoms or molecules that can compose the gas, and its reactivity is extremely low. That is, He constitutes He gas by a single He atom without forming a molecule. In this respect, since hydrogen gas is composed of H 2 molecules, the single He atom is smaller as a gas constituent unit. In the first place, H 2 gas is dangerous because it is a flammable gas. Then, by adopting the index of He gas permeability defined by the above-mentioned formula, it is possible to easily perform an objective evaluation of the fineness regardless of the difference in various sample sizes and measurement conditions. In this way, it is possible to easily, safely and effectively evaluate whether or not the separator has sufficiently high density suitable for a separator for a zinc secondary battery.
  • the measurement of He permeability can be preferably performed according to the procedure shown in Evaluation 4 of Examples described later.
  • the LDH separator 10 is preferably filled with a mixture of the hydroxide ion conductive layered compound 16 and the binder resin 18 in the pores of the porous base material 12.
  • the hydroxide ion conductive layered compound 16 is connected between the upper surface and the lower surface of the porous base material 12, thereby ensuring the hydroxide ion conductivity of the LDH separator 10.
  • the mixture of the hydroxide ion conductive layered compound 16 and the binder resin 18 is incorporated over the entire thickness direction of the porous substrate 12.
  • the pores of the porous substrate 12 do not have to be completely closed, and residual pores may be slightly present.
  • the LDH separator 10 may not be filled with the mixture in the pores of the porous substrate 12.
  • the thickness of the LDH separator 10 (that is, the total thickness of the porous substrate 12 and the surface layer 14) is preferably 3 to 80 ⁇ m, more preferably 3 to 60 ⁇ m, and further preferably 3 to 40 ⁇ m.
  • LDH is composed of a plurality of hydroxide basic layers and an intermediate layer interposed between the plurality of hydroxide basic layers.
  • the basic hydroxide layer is mainly composed of metal elements (typically metal ions) and OH groups.
  • the middle layer of LDH is composed of anions and H2O .
  • the anion is a monovalent or higher anion, preferably a monovalent or divalent ion.
  • the anions in LDH contain OH - and / or CO 3-2- .
  • LDH also has excellent ionic conductivity due to its unique properties.
  • LDH is M 2+ 1-x M 3+ x (OH) 2 A n- x / n ⁇ mH 2 O (in the formula, M 2+ is a divalent cation and M 3+ is a trivalent cation. It is a cation, An- is an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is 0 or more). It is known as a representative.
  • M 2+ can be any divalent cation, but preferred examples include Mg 2+ , Ca 2+ and Zn 2+ , and more preferably Mg 2+ .
  • M 3+ can be any trivalent cation, with preferred examples being Al 3+ or Cr 3+ , more preferably Al 3+ .
  • An - can be any anion, but preferred examples include OH- and CO 32- . Therefore, in the above basic composition formula, it is preferable that M 2+ contains Mg 2+ , M 3+ contains Al 3+ , and An ⁇ contains OH ⁇ and / or CO 3 2- .
  • n is an integer of 1 or more, but is preferably 1 or 2.
  • x is 0.1 to 0.4, preferably 0.2 to 0.35.
  • m is any number that means the number of moles of water and is a real number greater than or equal to 0, typically greater than or equal to 0 or greater than or equal to 1.
  • the above-mentioned basic composition formula is merely a formula of the "basic composition” generally exemplified with respect to LDH, and the constituent ions can be appropriately replaced.
  • a part or all of M 3+ may be replaced with a cation having a valence of 4 or more (for example, Ti 4+ ), in which case the anion An ⁇ in the above general formula may be replaced.
  • the coefficient x / n of may be changed as appropriate.
  • the hydroxide basic layer of LDH contains Mg, Al, Ti and OH groups because it exhibits excellent alkali resistance.
  • the hydroxide basic layer may contain other elements or ions as long as it contains Mg, Al, Ti and OH groups.
  • the LDH or hydroxide basic layer may contain Y and / or Zn.
  • Al or Ti may not be contained in the LDH or the hydroxide basic layer.
  • the hydroxide basic layer preferably contains Mg, Al, Ti and OH groups as main components.
  • the hydroxide basic layer is mainly composed of Mg, Al, Ti and OH groups. Therefore, the hydroxide basic layer is typically composed of Mg, Al, Ti, OH groups and, in some cases, unavoidable impurities.
  • the atomic ratio of Ti / Al in LDH, as determined by Energy Dispersive X-ray Analysis (EDS), is preferably 0.5-12, more preferably 1.0-12.
  • the atomic ratio of Ti / (Mg + Ti + Al) in LDH is preferably 0.1 to 0.7, more preferably 0.2 to 0.7. It is 0.7.
  • the atomic ratio of Al / (Mg + Ti + Al) in LDH is preferably 0.05 to 0.4, more preferably 0.05 to 0.25.
  • the atomic ratio of Mg / (Mg + Ti + Al) in LDH is preferably 0.2 to 0.7, more preferably 0.2 to 0.6.
  • an EDS analyzer for example, X-act, manufactured by Oxford Instruments
  • X-act for example, X-act, manufactured by Oxford Instruments
  • the hydroxide basic layer of LDH may contain Ni, Al, Ti and OH groups.
  • the hydroxide basic layer may contain other elements or ions as long as it contains Ni, Al, Ti and OH groups.
  • the hydroxide basic layer preferably contains Ni, Al, Ti and OH groups as main components. That is, it is preferable that the hydroxide basic layer is mainly composed of Ni, Al, Ti and OH groups. Therefore, the hydroxide basic layer is typically composed of Ni, Al, Ti, OH groups and, in some cases, unavoidable impurities.
  • the atomic ratio of Ti / (Ni + Ti + Al) in LDH is preferably 0.10 to 0.90, more preferably 0.20 to 0.80. It is more preferably 0.25 to 0.70, and particularly preferably 0.30 to 0.61. Within the above range, both alkali resistance and ion conductivity can be improved. Therefore, the hydroxide ion conductive layered compound may contain not only LDH but also a large amount of Ti as a by-product of titanium. That is, the hydroxide ion conductive layered compound may further contain titania. It can be expected that the content of titania increases the hydrophilicity and the wettability with the electrolytic solution (that is, the conductivity is improved).
  • the LDH-like compound is a hydroxide and / or oxide having a layered crystal structure similar to LDH, although it may not be called LDH, and is preferably composed of (i) Mg and (ii) Ti, Y and Al. Includes at least one element selected from the group, including Ti.
  • LDH-like compound which is a hydroxide and / or an oxide having a layered crystal structure containing at least Mg and Ti as the hydroxide ion conductive substance instead of the conventional LDH, the alkali resistance is improved. It is possible to provide a hydroxide ion conduction separator which is excellent and can suppress a short circuit caused by zinc dendrite more effectively.
  • a preferred LDH-like compound is a hydroxide and / or a layered crystalline structure hydroxide containing (i) Mg and at least one element containing at least Ti selected from the group consisting of (ii) Ti, Y and Al. It is an oxide. Therefore, typical LDH-like compounds are composite hydroxides and / or composite oxides of Mg, Ti, optionally Y, and optionally Al, with particular preference for composite hydroxylation of Mg, Ti, Y and Al. It is a substance and / or a composite oxide. The above elements may be replaced with other elements or ions to the extent that the basic properties of the LDH-like compound are not impaired, but the LDH-like compound preferably does not contain Ni.
  • LDH-like compounds can be identified by X-ray diffraction. Specifically, when X-ray diffraction is performed on the surface of the LDH separator 10 on the surface layer 14 side, it is typically in the range of 5 ° ⁇ 2 ⁇ ⁇ 10 °, and more typically 7 ° ⁇ 2 ⁇ . Peaks derived from LDH-like compounds are detected in the range of ⁇ 10 °.
  • LDH is a substance having an alternating laminated structure in which exchangeable anions and H2O are present as an intermediate layer between the stacked hydroxide basic layers.
  • the interlayer distance of the layered crystal structure can be determined by the Bragg equation using 2 ⁇ corresponding to the peak derived from the LDH-like compound in X-ray diffraction.
  • the interlayer distance of the layered crystal structure constituting the LDH-like compound thus determined is typically 0.883 to 1.8 nm, and more typically 0.883 to 1.3 nm.
  • the atomic ratio of Mg / (Mg + Ti + Y + Al) in the LDH-like compound is preferably 0.03 to 0.25, more preferably 0.05 to 0.2. Is.
  • the atomic ratio of Ti / (Mg + Ti + Y + Al) in the LDH-like compound is preferably 0.40 to 0.97, more preferably 0.47 to 0.94.
  • the atomic ratio of Y / (Mg + Ti + Y + Al) in the LDH-like compound is preferably 0 to 0.45, more preferably 0 to 0.37.
  • the atomic ratio of Al / (Mg + Ti + Y + Al) in the LDH-like compound is preferably 0 to 0.05, more preferably 0 to 0.03. Within the above range, the alkali resistance is further excellent, and the effect of suppressing a short circuit caused by zinc dendrite (that is, dendrite resistance) can be more effectively realized.
  • LDH conventionally known for LDH separators has a general formula: M 2+ 1-x M 3+ x (OH) 2 Ann- x / n ⁇ mH 2 O (in the formula, M 2+ is a divalent cation, M.
  • LDH-like compounds generally have a composition ratio (atomic ratio) different from that of conventional LDH.
  • an EDS analyzer for example, X-act, manufactured by Oxford Instruments
  • X-act for example, X-act, manufactured by Oxford Instruments
  • the LDH separator 10 separates the positive electrode plate and the negative electrode plate so that they can conduct hydroxide ions when incorporated in a zinc secondary battery.
  • the preferred LDH separator 10 has gas impermeable and / or water impermeable. In other words, it is preferable that the LDH separator 10 (particularly the surface layer 14) is densified to have gas impermeableness and / or water impermeableness.
  • "having gas impermeable" in the present specification means that helium gas is brought into contact with one side of an object to be measured in water with a differential pressure of 0.5 atm. However, it means that the generation of bubbles due to helium gas is not observed from the other side.
  • the LDH separator 10 has gas impermeableness and / or water impermeability means that the LDH separator 10 has a high degree of density so as not to allow gas or water to pass through, and is water permeable or gas. It means that it is not a permeable porous film or other porous material. By doing so, the LDH separator 10 selectively passes only hydroxide ions due to its hydroxide ion conductivity, and can exhibit a function as a battery separator.
  • the configuration is extremely effective in physically preventing the penetration of the separator by the zinc dendrite generated during charging to prevent a short circuit between the positive and negative electrodes. Since the LDH separator 10 has hydroxide ion conductivity, it is possible to efficiently move the required hydroxide ion between the positive electrode plate and the negative electrode plate, and to realize the charge / discharge reaction in the positive electrode plate and the negative electrode plate. Can be done.
  • the porous base material 12 is preferably composed of a polymer material.
  • the polymer porous substrate has 1) flexibility (hence, it is hard to break even if it is thinned), 2) easy to increase the porosity, and 3) easy to increase the conductivity (while increasing the porosity). It has the advantages of being easy to manufacture and handle) (because the thickness can be reduced). Further, by taking advantage of the flexibility of 1) above, 5) a hydroxide ion conduction separator containing a porous substrate made of a polymer material can be easily bent or sealed and bonded. There are also advantages.
  • Preferred examples of the polymer material include polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, fluororesin (tetrafluororesin: PTFE, etc.), cellulose, nylon, polyethylene and any combination thereof. .. More preferably, from the viewpoint of a thermoplastic resin suitable for heat pressing, polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, fluororesin (tetrafluororesin: PTFE, etc.), nylon, polyethylene and any of them. Examples include the combination of the above. All of the various preferred materials described above have alkali resistance as resistance to the electrolytic solution of the battery.
  • Particularly preferable polymer materials are polyolefins such as polypropylene and polyethylene, and most preferably polypropylene or polyethylene, because they are excellent in heat resistance, acid resistance and alkali resistance and are low in cost.
  • the mixture of the hydroxide ion conductive layered compound 16 and the binder resin 18 is incorporated over the entire thickness direction of the porous substrate 12 (for example, most or almost all the pores inside the polymer porous substrate are hydroxylated). It is particularly preferable that it is filled with the physical ion conductive layered compound 16 and the binder resin 18.
  • a commercially available polymer microporous membrane can be preferably used as such a polymer porous substrate.
  • the method for producing the LDH separator 10 is not particularly limited, and the LDH separator 10 is produced by appropriately changing the conditions of the already known LDH separator (or LDH-containing functional layer and composite material) production method (see, for example, Patent Documents 1 to 5). can do.
  • a porous substrate is prepared, and (2) a mixed sol of alumina and titania (in the case of forming LDH) or ii) titania sol (or further ittria sol and further) with respect to the porous substrate.
  • alumina sol when forming an LDH-like compound
  • a binder resin for example, an aqueous emulsion
  • the porous substrate is immersed in the aqueous solution of the raw material containing Y 3+ )), and (4) the porous substrate is hydrothermally heat-treated in the aqueous solution of the raw material to put the hydroxide ion conductive layered compound on the porous substrate and / or.
  • the LDH separator can be produced by forming it in a porous substrate.
  • the binder in the surface layer is adjusted by adjusting the weight ratio of the binder resin to the total weight of Ti, Al (if present) and Y (if present) contained in the mixed sol solution.
  • the resin content ratio can be controlled. Further, in the presence of urea in the above step (3), the pH value rises due to the generation of ammonia in the solution by utilizing the hydrolysis of urea, and the coexisting metal ions are hydroxide and / or oxidized. It is considered that a hydroxide ion conductive layered compound (that is, LDH and / or LDH-like compound) can be obtained by forming a substance. Since the hydrolysis is accompanied by the generation of carbon dioxide, when LDH is formed, the anion can obtain a carbonate ion type LDH.
  • the mixed sol solution in (2) above is prepared. It is preferable to apply the mixture to the substrate by a method in which the mixed sol solution permeates the entire or most of the inside of the substrate. By doing so, most or almost all the pores inside the porous substrate 12 can be finally filled with the mixture of the hydroxide ion conductive layered compound 16 and the binder resin 18.
  • the preferred coating method include a dip coat, a filtration coat and the like, and a dip coat is particularly preferable.
  • the amount of adhesion of the mixed sol solution can be adjusted.
  • the base material coated with the mixed sol solution by dip coating or the like may be dried and then the above steps (3) and (4) may be carried out.
  • the LDH separator obtained by the above method or the like may be pressed. By doing so, it is possible to obtain an LDH separator having even better compactness.
  • the pressing method may be, for example, a roll press, a uniaxial pressure press, a CIP (cold isotropic pressure pressurization), or the like, and is not particularly limited, but is preferably a roll press. This press is performed while heating by softening the polymer porous substrate, so that the pores of the polymer porous substrate can be sufficiently closed with a mixture of the hydroxide ion conductive layered compound 16 and the binder resin 18. It is preferable in that it can be done.
  • the temperature for sufficient softening for example, in the case of polypropylene or polyethylene, it is preferable to heat at 60 to 200 ° C.
  • a press such as a roll press in such a temperature range
  • the residual pores of the LDH separator can be significantly reduced.
  • the LDH separator can be extremely densified and, therefore, short circuits due to zinc dendrites can be suppressed even more effectively.
  • the morphology of the residual pores can be controlled by appropriately adjusting the roll gap and the roll temperature, whereby an LDH separator having a desired density can be obtained.
  • Zinc secondary battery The LDH separator of the present invention is preferably applied to a zinc secondary battery. Therefore, according to a preferred embodiment of the present invention, a zinc secondary battery provided with an LDH separator is provided.
  • a typical zinc secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution, and the positive electrode and the negative electrode are separated from each other via an LDH separator.
  • the zinc secondary battery of the present invention is not particularly limited as long as it is a secondary battery using zinc as a negative electrode and using an electrolytic solution (typically an alkali metal hydroxide aqueous solution).
  • the positive electrode contains nickel hydroxide and / or nickel oxyhydroxide, whereby the zinc secondary battery forms a nickel-zinc secondary battery.
  • the positive electrode may be an air electrode, whereby the zinc secondary battery may be a zinc air secondary battery.
  • Solid Alkaline Fuel Cell The LDH separator of the present invention can also be applied to a solid alkaline fuel cell. That is, by using a highly densified LDH separator, a solid alkaline fuel cell capable of effectively suppressing a decrease in electromotive force due to permeation of fuel to the air electrode side (for example, crossover of methanol) can be effectively suppressed. Can be provided. This is because the permeation of the LDH separator of a fuel such as methanol can be effectively suppressed while exhibiting the hydroxide ion conductivity of the LDH separator. Therefore, according to another preferred embodiment of the present invention, there is provided a solid alkaline fuel cell with an LDH separator.
  • a typical solid alkaline fuel cell according to this embodiment has an air electrode to which oxygen is supplied, a fuel electrode to which liquid fuel and / or gaseous fuel is supplied, and an LDH separator interposed between the fuel electrode and the air electrode. And.
  • the LDH separator of the present invention can be used not only for nickel-zinc batteries and solid alkaline fuel cells, but also for nickel-metal hydride batteries, for example.
  • the LDH separator functions to block the nitride shuttle (movement of nitric acid groups between electrodes), which is a factor of self-discharge of the battery.
  • the LDH separator of the present invention can also be used for a lithium battery (a battery having a negative electrode made of lithium metal), a lithium ion battery (a battery having a negative electrode made of carbon or the like), a lithium air battery or the like.
  • Evaluation 1 Observation of microstructure The surface microstructure of the LDH separator was observed with an acceleration voltage of 10 to 20 kV using a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL Ltd.).
  • Evaluation 2 Elemental analysis evaluation (EDS) A composition analysis was performed on the surface of the LDH separator using an EDS analyzer (device name: X-act, manufactured by Oxford Instruments), and it was confirmed that a predetermined element was incorporated into the crystal. In this analysis, 1) an image is captured at an acceleration voltage of 20 kV and a magnification of 5,000 times, 2) three-point analysis is performed at intervals of about 5 ⁇ m in the point analysis mode, and 3) 1) and 2) above are performed once more. I went repeatedly.
  • EDS Elemental analysis evaluation
  • Evaluation 3 Identification of hydroxide ion conduction layered compound Water with an X-ray diffractometer (RINT TTR III, manufactured by Rigaku Co., Ltd.) under measurement conditions of voltage: 50 kV, current value: 300 mA, and measurement range: 5 to 70 °. The crystal phase of the oxide ion conductive layered compound was measured to obtain an XRD profile.
  • He Permeation Measurement A He permeation test was conducted as follows in order to evaluate the denseness of the LDH separator from the viewpoint of He permeability.
  • the He permeability measuring system 310 shown in FIGS. 2A and 2B was constructed.
  • the He gas from the gas cylinder filled with the He gas is supplied to the sample holder 316 via the pressure gauge 312 and the flow meter 314 (digital flow meter), and the LDH held in the sample holder 316.
  • the separator 318 was configured to be permeated from one surface to the other surface and discharged.
  • the sample holder 316 has a structure including a gas supply port 316a, a closed space 316b, and a gas discharge port 316c, and was assembled as follows. First, the adhesive 322 was applied along the outer circumference of the LDH separator 318 and attached to a jig 324 (made of ABS resin) having an opening in the center. Packing made of butyl rubber is arranged as sealing members 326a and 326b at the upper and lower ends of the jig 324, and support members 328a and 328b (manufactured by PTFE) having an opening made of a flange from the outside of the sealing members 326a and 326b. ).
  • the sealed space 316b was partitioned by the LDH separator 318, the jig 324, the sealing member 326a, and the support member 328a.
  • the support members 328a and 328b were firmly fastened to each other by the fastening means 330 using screws so that He gas did not leak from the portion other than the gas discharge port 316c.
  • a gas supply pipe 334 was connected to the gas supply port 316a of the sample holder 316 thus assembled via a joint 332.
  • He gas was supplied to the He permeability measuring system 310 via the gas supply pipe 334, and was permeated through the LDH separator 318 held in the sample holder 316.
  • the gas supply pressure and the flow rate were monitored by the pressure gauge 312 and the flow meter 314.
  • the He permeation was calculated.
  • the He permeability is calculated by the permeation amount F (cm 3 / min) of the He gas per unit time, the differential pressure P (atm) applied to the LDH separator when the He gas permeates, and the film area S (cm) through which the He gas permeates. It was calculated by the formula of F / (P ⁇ S) using 2 ).
  • the permeation amount F (cm 3 / min) of He gas was read directly from the flow meter 314. Further, as the differential pressure P, the gauge pressure read from the pressure gauge 312 was used. The He gas was supplied so that the differential pressure P was in the range of 0.05 to 0.90 atm.
  • Evaluation 5 Measurement of ionic conductivity The conductivity of the LDH separator in the electrolytic solution was measured as follows using the electrochemical measurement system shown in FIG.
  • the LDH separator sample S was sandwiched between both sides with a 1 mm thick silicone packing 440 and incorporated into a PTFE flange type cell 442 having an inner diameter of 6 mm.
  • As the electrodes 446 a nickel wire mesh of # 100 mesh was incorporated into the cell 442 in a cylindrical shape having a diameter of 6 mm so that the distance between the electrodes was 2.2 mm.
  • As the electrolytic solution 444 a 6M KOH aqueous solution was filled in the cell 442.
  • the measurement was performed under the conditions of a frequency range of 1 MHz to 0.1 Hz and an applied voltage of 10 mV, and a section of the real number axis. was taken as the resistance of the LDH separator sample S.
  • the same measurement as above was performed without the LDH separator sample S, and the blank resistance was also determined.
  • the difference between the resistance of the LDH separator sample S and the blank resistance was taken as the resistance of the LDH separator.
  • the conductivity was determined using the resistance of the obtained LDH separator and the thickness and area of the LDH separator.
  • Evaluation 6 Evaluation of dendrite resistance (cycle test) A cycle test was conducted as follows to evaluate the effect of suppressing the short circuit (dendrite resistance) caused by the zinc dendrite of the LDH separator. First, each of the positive electrode (containing nickel hydroxide and / or nickel oxyhydroxide) and the negative electrode (containing zinc and / or zinc oxide) was wrapped in a non-woven fabric, and the current extraction terminal was welded. The positive electrode and the negative electrode thus prepared were opposed to each other via an LDH separator, sandwiched between laminated films provided with current extraction ports, and heat-sealed on three sides of the laminated film.
  • the positive electrode containing nickel hydroxide and / or nickel oxyhydroxide
  • the negative electrode containing zinc and / or zinc oxide
  • An electrolytic solution (a solution in which 0.4 M zinc oxide is dissolved in a 5.4 M KOH aqueous solution) is added to the cell container with an open top thus obtained, and the electrolytic solution is sufficiently applied to the positive electrode and the negative electrode by vacuuming or the like. Infiltrated. Then, the remaining one side of the laminated film was also heat-sealed to form a simple sealed cell.
  • a charging / discharging device TOSCAT3100, manufactured by Toyo System Co., Ltd.
  • chemical conversion was carried out for a simple sealed cell by 0.1C charging and 0.2C discharging. Then, a 1C charge / discharge cycle was carried out.
  • Example A1 to A7 LDH separators containing Mg- (Al, Ti) -LDH were prepared and evaluated as follows.
  • the content ratio of the binder resin shown in Table 2 is a value calculated on the assumption that all Ti and Al applied to the porous substrate are converted into the hydroxide ion conductive layered compound. This value corresponds to the content ratio of the binder resin specified by analyzing the surface layer of the LDH separator by cross-sectional FE-SEM (field emission scanning electron microscope) and EDS (energy dispersive X-ray analysis).
  • the substrate was removed from the closed container, washed with ion-exchanged water and dried overnight at room temperature to form LDH on the surface and in the pores of the porous substrate.
  • an LDH separator was obtained.
  • the LDH separator is sandwiched between a pair of PET films (Toray Industries, Inc., Lumirror (registered trademark), thickness 40 ⁇ m), roll rotation speed 3 mm / s, roller heating temperature 70 ° C.
  • a roll press was performed with a roll gap of 70 ⁇ m to obtain a further densified LDH separator.
  • Example A1 and A2 Comparative Example
  • the cycle characteristics were inferior because the short circuit caused by zinc dendrite occurred in less than 200 cycles.
  • Example A7 Comparative Example
  • the cycle test was not performed because the LDH separator has high resistance.
  • Example B1 to B7 The LDH separator containing the Mg- (Al, Ti, Y) -LDH-like compound was prepared and evaluated as follows.
  • a modified polyolefin resin was prepared by mixing in the weight ratios shown in Table 3. Dip coating was performed by immersing the substrate in 100 mL of the sol solution and then pulling it up vertically. Then, the dip-coated substrate was dried at room temperature for 1 hour.
  • the content ratio of the binder resin to the volume of the mixture (that is, the mixture of the hydroxide ion conductive layered compound and the binder resin) converted from the weight ratio of the modified polyolefin to the total weight of Ti, Al and Y in the dip solution (that is, the mixture of the hydroxide ion conductive layered compound and the binder resin).
  • Volume% is shown in Table 4.
  • the content ratio of the binder resin shown in Table 4 is a value calculated on the assumption that all Ti, Al and Y applied to the porous substrate are converted into the hydroxide ion conductive layered compound. .. This value corresponds to the content ratio of the binder resin specified by analyzing the surface layer of the LDH separator by cross-sectional FE-SEM (field emission scanning electron microscope) and EDS (energy dispersive X-ray analysis).
  • the substrate was removed from the closed container, washed with ion-exchanged water and dried overnight at room temperature to form LDH-like compounds on the surface and pores of the porous substrate.
  • an LDH separator was obtained.
  • the LDH separator is sandwiched between a pair of PET films (Toray Industries, Inc., Lumirror (registered trademark), thickness 40 ⁇ m), roll rotation speed 3 mm / s, roller heating temperature 70 ° C.
  • a roll press was performed with a roll gap of 70 ⁇ m to obtain a further densified LDH separator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)

Abstract

イオン伝導性に優れ、かつ、サイクル特性がより一層向上したLDHセパレータが提供される。このLDHセパレータは、多孔質基材と、多孔質基材の少なくとも一方の表面に設けられ、層状複水酸化物(LDH)及び/又は層状複水酸化物(LDH)様化合物である水酸化物イオン伝導層状化合物と、バインダー樹脂との混合物で構成される、表面層とを備え、表面層における、混合物の体積に対するバインダー樹脂の含有割合が1~60体積%である。

Description

LDHセパレータ及び亜鉛二次電池
 本発明はLDHセパレータ及び亜鉛二次電池に関する。
 ニッケル亜鉛二次電池、空気亜鉛二次電池等の亜鉛二次電池では、充電時に負極から金属亜鉛がデンドライト状に析出し、不織布等のセパレータの空隙を貫通して正極に到達し、その結果、短絡を引き起こすことが知られている。このような亜鉛デンドライトに起因する短絡は繰り返し充放電寿命の短縮を招く。
 上記問題に対処すべく、水酸化物イオンを選択的に透過させながら、亜鉛デンドライトの貫通を阻止する、層状複水酸化物(LDH)セパレータを備えた電池が提案されている。例えば、特許文献1(国際公開第2013/118561号)には、ニッケル亜鉛二次電池においてLDHセパレータを正極及び負極間に設けることが開示されている。また、特許文献2(国際公開第2016/076047号)には、樹脂製外枠に嵌合又は接合されたLDHセパレータを備えたセパレータ構造体が開示されており、LDHセパレータがガス不透過性及び/又は水不透過性を有する程の高い緻密性を有することが開示されている。また、この文献にはLDHセパレータが多孔質基材と複合化されうることも開示されている。特許文献3(国際公開第2016/067884号)には多孔質基材の表面にLDH緻密膜を形成して複合材料(LDHセパレータ)を得るための様々な方法が開示されている。この方法は、多孔質基材にLDHの結晶成長の起点を与えうる起点物質を均一に付着させ、原料水溶液中で多孔質基材に水熱処理を施してLDH緻密膜を多孔質基材の表面に形成させる工程を含むものである。
 水熱処理を経て作製したLDH/多孔質基材の複合材料をロールプレスすることで更なる緻密化を実現したLDHセパレータも提案されている。例えば、特許文献4(国際公開第2019/124270号)には、高分子多孔質基材と、この多孔質基材に充填されるLDHとを含み、波長1000nmにおける直線透過率が1%以上である、LDHセパレータが開示されている。このLDHセパレータは多孔質基材の孔がLDHで十分に塞がれて透光性を帯びてくる程に緻密性を有しており、それ故、亜鉛デンドライトに起因する短絡をより一層効果的に抑制することができる。また、特許文献5(国際公開第2019/124212号)には、高分子多孔質基材と、この多孔質基材に充填されるLDHとを含み、0.03%以上1.0%未満の平均気孔率を有する、LDHセパレータが開示されている。
 ところで、アルカリ二次電池等のセパレータとして用いられるアニオン伝導膜にポリマーを含有させることにより、膜の物理的強度を増大させる技術も提案されている。例えば、特許文献6(特開2015-095286号公報)には、所定の極性基を有するポリマーとLDH等の化合物とを含む、アニオン伝導膜が開示されている。このアニオン伝導膜は、ポリマーの極性基がLDH等の化合物と好適に相互作用することで、物理的強度の増大がもたらされるとされている。
国際公開第2013/118561号 国際公開第2016/076047号 国際公開第2016/067884号 国際公開第2019/124270号 国際公開第2019/124212号 特開2015-095286号公報
 特許文献1~5に開示されるようなLDHセパレータを用いてニッケル亜鉛電池等の亜鉛二次電池を構成した場合、亜鉛デンドライトによる短絡等をある程度防止できる。しかしながら、サイクル特性(とりわけ充放電サイクルが繰り返された場合のデンドライト短絡防止特性)の更なる改善が望まれる。一方、LDHセパレータはLDH等の水酸化物イオン伝導層状化合物の水酸化物イオン伝導性を専ら利用して水酸化物イオンを選択的に通すものであるため、良好なイオン伝導性を確保することも望まれる。
 本発明者らは、今般、多孔質基材の表面に、LDH及び/又はLDH様化合物である水酸化物イオン伝導層状化合物とバインダー樹脂とが所定の比率で混合された表面層を設けることにより、イオン伝導性に優れ、かつ、サイクル特性がより一層向上したLDHセパレータを提供できるとの知見を得た。
 したがって、本発明の目的は、イオン伝導性に優れ、かつ、サイクル特性がより一層向上したLDHセパレータを提供することにある。
 本発明の一態様によれば、
 多孔質基材と、
 前記多孔質基材の少なくとも一方の表面に設けられ、層状複水酸化物(LDH)及び/又は層状複水酸化物(LDH)様化合物である水酸化物イオン伝導層状化合物と、バインダー樹脂との混合物で構成される、表面層と、
を備え、
 前記表面層における、前記混合物の体積に対する前記バインダー樹脂の含有割合が1~60体積%である、LDHセパレータが提供される。
 本発明の他の一態様によれば、前記LDHセパレータを備えた、亜鉛二次電池が提供される。
 本発明の他の一態様によれば、前記LDHセパレータを備えた、固体アルカリ型燃料電池が提供される。
本発明のLDHセパレータを概念的に示す模式断面図である。 例A1~B7で用いたHe透過度測定系の一例を示す概念図である。 図2Aに示される測定系に用いられる試料ホルダ及びその周辺構成の模式断面図である。 例A1~B7で用いた電気化学測定系を示す模式断面図である。
 LDHセパレータ
 図1に概念的に示されるように、本発明のLDHセパレータ10は、多孔質基材12と、多孔質基材12の少なくとも一方の表面に設けられる表面層14とを備える。表面層14は、水酸化物イオン伝導層状化合物16と、バインダー樹脂18との混合物で構成される。水酸化物イオン伝導層状化合物16は、層状複水酸化物(LDH)及び/又は層状複水酸化物(LDH)様化合物である。そして、表面層14における、上記混合物の体積に対するバインダー樹脂18の含有割合が1~60体積%である。本明細書において「LDHセパレータ」は、LDH及び/又はLDH様化合物を含むセパレータであって、専らLDH及び/又はLDH様化合物の水酸化物イオン伝導性を利用して水酸化物イオンを選択的に通すものとして定義される。本明細書において「LDH様化合物」は、LDHとは呼べないかもしれないがLDHに類する層状結晶構造の水酸化物及び/又は酸化物であり、LDHの均等物といえるものである。もっとも、広義の定義として、「LDH」はLDHのみならずLDH様化合物を包含するものとして解釈することも可能である。このように、多孔質基材12の表面に、LDH及び/又はLDH様化合物である水酸化物イオン伝導層状化合物16とバインダー樹脂18とが所定の比率で混合された表面層14を設けることにより、イオン伝導性に優れ、かつ、サイクル特性がより一層向上したLDHセパレータ10を提供することができる。
 表面層14における、混合物の体積(すなわち水酸化物イオン伝導層状化合物16及びバインダー樹脂18の合計体積)に対するバインダー樹脂18の含有割合は1~60体積%であり、好ましくは1~50体積%、さらに好ましくは1~40体積%、特に好ましくは3~40体積%である。これらの範囲内であると、LDHセパレータ10の優れたイオン伝導性とサイクル特性の向上とを効果的に実現できる。すなわち、表面層14の水酸化物イオン伝導性が水酸化物イオン伝導層状化合物16により確保されるとともに、亜鉛デンドライトによるセパレータの貫通を表面層14で確実に阻止することができる。特に、バインダー樹脂18の含有割合を1体積%以上とすることで、LDHセパレータ10のサイクル特性を向上することができる。一方、バインダー樹脂18の含有割合が60体積%を超える範囲ではイオン伝導率が著しく低下するところ、本発明によれば高いイオン伝導率を実現することができる。ここで、表面層14における、混合物の体積に対するバインダー樹脂18の含有割合は、水酸化物イオン伝導層状化合物16の体積をVh、バインダー樹脂18の体積をVbとしたとき、[Vb/(Vh+Vb)]×100により算出される値である。水酸化物イオン伝導層状化合物16及びバインダー樹脂18の体積は、LDHセパレータ10の表面層14を断面FE-SEM(電界放出形走査電子顕微鏡)及びEDS(エネルギー分散型X線分析)により分析することで特定することができる。
 バインダー樹脂18の好ましい例としては、ポリオレフィン(例えばポリプロピレンやポリエチレン)、ポリスチレン、ポリエーテルサルフォン、エポキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂、セルロース、ナイロン、アクリロニトリルスチレン、ポリスルフォン、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリ塩化ビニル、アセタール樹脂、ポリビニルアルコール(PVA)樹脂、ポリ塩化ビニリデン、ポリフッ化ビニリデン、フェノール樹脂、アリル樹脂、フラン樹脂、及びそれらの任意の組合せが挙げられる。より好ましくは、表面層14と多孔質基材12(とりわけ高分子多孔質基材)との密着性を向上させる観点から、ポリオレフィンが挙げられる。上記列挙したポリマーないし樹脂は非変性のものであってもよいし、変性物であってもよい。例えば、ポリオレフィンは、変性ポリオレフィンであってもよい。
 表面層14の厚さは、0.01~10μmが好ましく、より好ましくは0.01~8μm、さらに好ましくは0.05~8μm、特に好ましくは0.05~5μmである。これらの範囲内であると、亜鉛デンドライトによるセパレータの貫通を表面層14でより一層確実に阻止することができ、結果としてサイクル特性をより一層向上することができる。
 LDHセパレータ10は、1.0mS/cm以上のイオン伝導率を有するのが好ましく、より好ましくは1.5mS/cm以上、さらに好ましくは2.0mS/cm以上、特に好ましくは2.5mS/cm以上である。イオン伝導率は高ければ高い方が望ましいため、その上限は限定されないが、例えば10mS/cmである。
 LDHセパレータ10の緻密性は、He透過度により評価することができる。すなわち、LDHセパレータ10は、単位面積あたりのHe透過度が10cm/min・atm以下であるのが好ましく、より好ましくは5.0cm/min・atm以下、さらに好ましくは1.0cm/min・atm以下である。このような範囲内のHe透過度を有するLDHセパレータ10は緻密性が極めて高いといえる。したがって、He透過度が10cm/min・atm以下であるセパレータは、水酸化物イオン以外の物質の通過を高いレベルで阻止することができる。例えば、亜鉛二次電池の場合、電解液中においてZnの透過(典型的には亜鉛イオン又は亜鉛酸イオンの透過)を極めて効果的に抑制することができる。He透過度は、セパレータの一方の面にHeガスを供給してセパレータにHeガスを透過させる工程と、He透過度を算出して水酸化物イオン伝導セパレータの緻密性を評価する工程とを経て測定される。He透過度は、単位時間あたりのHeガスの透過量F、Heガス透過時にセパレータに加わる差圧P、及びHeガスが透過する膜面積Sを用いて、F/(P×S)の式により算出する。このようにHeガスを用いてガス透過性の評価を行うことにより、極めて高いレベルでの緻密性の有無を評価することができ、その結果、水酸化物イオン以外の物質(特に亜鉛デンドライト成長を引き起こすZn)を極力透過させない(極微量しか透過させない)といった高度な緻密性を効果的に評価することができる。これは、Heガスが、ガスを構成しうる多種多様な原子ないし分子の中でも最も小さい構成単位を有しており、しかも反応性が極めて低いためである。すなわち、Heは、分子を形成することなく、He原子単体でHeガスを構成する。この点、水素ガスはH分子により構成されるため、ガス構成単位としてはHe原子単体の方がより小さい。そもそもHガスは可燃性ガスのため危険である。そして、上述した式により定義されるHeガス透過度という指標を採用することで、様々な試料サイズや測定条件の相違を問わず、緻密性に関する客観的な評価を簡便に行うことができる。こうして、セパレータが亜鉛二次電池用セパレータに適した十分に高い緻密性を有するのか否かを簡便、安全かつ効果的に評価することができる。He透過度の測定は、後述する実施例の評価4に示される手順に従って好ましく行うことができる。
 LDHセパレータ10は、多孔質基材12の孔に、水酸化物イオン伝導層状化合物16及びバインダー樹脂18の混合物が充填されているのが好ましい。かかる態様によれば、多孔質基材12の上面と下面の間で水酸化物イオン伝導層状化合物16が繋がっており、それによりLDHセパレータ10の水酸化物イオン伝導性が確保されている。水酸化物イオン伝導層状化合物16及びバインダー樹脂18の混合物は、多孔質基材12の厚さ方向の全域にわたって組み込まれているのが特に好ましい。もっとも、多孔質基材12の孔は完全に塞がれている必要はなく、残留気孔が僅かに存在していてもよい。あるいは、LDHセパレータ10は、多孔質基材12の孔に上記混合物が充填されていなくてもよい。LDHセパレータ10の厚さ(すなわち多孔質基材12及び表面層14の合計厚さ)は、好ましくは3~80μmであり、より好ましくは3~60μm、さらに好ましくは3~40μmである。
 LDHは、複数の水酸化物基本層と、これら複数の水酸化物基本層間に介在する中間層とから構成される。水酸化物基本層は主として金属元素(典型的には金属イオン)とOH基で構成される。LDHの中間層は、陰イオン及びHOで構成される。陰イオンは1価以上の陰イオン、好ましくは1価又は2価のイオンである。好ましくは、LDH中の陰イオンはOH及び/又はCO 2-を含む。また、LDHはその固有の性質に起因して優れたイオン伝導性を有する。一般的に、LDHは、M2+ 1-x3+ (OH)n- x/n・mHO(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An-はn価の陰イオンであり、nは1以上の整数であり、xは0.1~0.4であり、mは0以上である)の基本組成式で代表されるものとして知られている。上記基本組成式において、M2+は任意の2価の陽イオンでありうるが、好ましい例としてはMg2+、Ca2+及びZn2+が挙げられ、より好ましくはMg2+である。M3+は任意の3価の陽イオンでありうるが、好ましい例としてはAl3+又はCr3+が挙げられ、より好ましくはAl3+である。An-は任意の陰イオンでありうるが、好ましい例としてはOH及びCO 2-が挙げられる。したがって、上記基本組成式において、M2+がMg2+を含み、M3+がAl3+を含み、An-がOH及び/又はCO 2-を含むのが好ましい。nは1以上の整数であるが、好ましくは1又は2である。xは0.1~0.4であるが、好ましくは0.2~0.35である。mは水のモル数を意味する任意の数であり、0以上、典型的には0を超える又は1以上の実数である。もっとも、上記基本組成式は、一般にLDHに関して代表的に例示される「基本組成」の式にすぎず、構成イオンを適宜置き換え可能なものである。例えば、上記基本組成式においてM3+の一部または全部を4価またはそれ以上の価数の陽イオン(例えばTi4+)で置き換えてもよく、その場合は、上記一般式における陰イオンAn-の係数x/nは適宜変更されてよい。
 例えば、LDHの水酸化物基本層は、Mg、Al、Ti及びOH基を含むのが優れた耐アルカリ性を呈する点で特に好ましい。この場合、水酸化物基本層は、Mg、Al、Ti及びOH基を含んでいさえすれば、他の元素ないしイオンを含んでいてもよい。例えば、LDHないし水酸化物基本層には、Y及び/又はZnが含まれていてもよい。また、LDHないし水酸化物基本層にY及び/又はZnが含まれている場合、LDHないし水酸化物基本層にはAl又はTiが含まれていなくてもよい。もっとも、水酸化物基本層は、Mg、Al、Ti及びOH基を主要構成要素として含むのが好ましい。すなわち、水酸化物基本層は、主としてMg、Al、Ti及びOH基からなるのが好ましい。したがって、水酸化物基本層は、Mg、Al、Ti、OH基及び場合により不可避不純物で構成されるのが典型的である。エネルギー分散型X線分析(EDS)により決定される、LDHにおけるTi/Alの原子比が0.5~12であるのが好ましく、より好ましくは1.0~12である。上記範囲内であると、イオン伝導性を損なうことなく、亜鉛デンドライトに起因する短絡の抑制効果(すなわちデンドライト耐性)をより効果的に実現することができる。同様の理由から、エネルギー分散型X線分析(EDS)により決定される、LDHにおけるTi/(Mg+Ti+Al)の原子比は0.1~0.7であるのが好ましく、より好ましくは0.2~0.7である。また、LDHにおけるAl/(Mg+Ti+Al)の原子比は0.05~0.4であるのが好ましく、より好ましくは0.05~0.25である。さらに、LDHにおけるMg/(Mg+Ti+Al)の原子比は0.2~0.7であるのが好ましく、より好ましくは0.2~0.6である。なお、EDS分析は、EDS分析装置(例えばX-act、オックスフォード・インストゥルメンツ社製)を用いて、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに1回繰り返し行い、4)合計6点の平均値を算出することにより行うのが好ましい。
 あるいは、LDHの水酸化物基本層は、Ni、Al、Ti及びOH基を含むものであってもよい。この場合、水酸化物基本層は、Ni、Al、Ti及びOH基を含んでいさえすれば、他の元素ないしイオンを含んでいてもよい。もっとも、水酸化物基本層は、Ni、Al、Ti及びOH基を主要構成要素として含むのが好ましい。すなわち、水酸化物基本層は、主としてNi、Al、Ti及びOH基からなるのが好ましい。したがって、水酸化物基本層は、Ni、Al、Ti、OH基及び場合により不可避不純物で構成されるのが典型的である。エネルギー分散型X線分析(EDS)により決定される、LDHにおけるTi/(Ni+Ti+Al)の原子比が、0.10~0.90であるのが好ましく、より好ましくは0.20~0.80、さらに好ましくは0.25~0.70、特に好ましくは0.30~0.61である。上記範囲内であると、耐アルカリ性とイオン伝導性の両方を向上することができる。したがって、水酸化物イオン伝導層状化合物は、LDHのみならずチタニアを副生させるほど多くのTiを含んでいてもよい。すなわち、水酸化物イオン伝導層状化合物はチタニアをさらに含むものであってもよい。チタニアの含有により、親水性が上がり、電解液との濡れ性が向上する(すなわち伝導率が向上する)ことが期待できる。
 LDH様化合物は、LDHとは呼べないかもしれないがそれに類する層状結晶構造の水酸化物及び/又は酸化物であり、好ましくは、(i)Mgと、(ii)Ti、Y及びAlからなる群から選択される少なくともTiを含む1以上の元素とを含む。このように、従来のLDHの代わりに、水酸化物イオン伝導物質として、少なくともMg及びTiを含む層状結晶構造の水酸化物及び/又は酸化物であるLDH様化合物を用いることにより、耐アルカリ性に優れ、かつ、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能な水酸化物イオン伝導セパレータを提供することができる。したがって、好ましいLDH様化合物は、(i)Mgと、(ii)Ti、Y及びAlからなる群から選択される少なくともTiを含む1以上の元素とを含む層状結晶構造の水酸化物及び/又は酸化物である。したがって、典型的なLDH様化合物は、Mg、Ti、所望によりY、及び所望によりAlの複合水酸化物及び/又は複合酸化物であり、特に好ましくはMg、Ti、Y及びAlの複合水酸化物及び/又は複合酸化物である。LDH様化合物の基本的特性を損なわない程度に上記元素は他の元素又はイオンで置き換えられてもよいが、LDH様化合物はNiを含まないのが好ましい。
 LDH様化合物はX線回折により同定することができる。具体的には、LDHセパレータ10の表面層14側の表面に対してX線回折を行った場合、典型的には5°≦2θ≦10°の範囲に、より典型的には7°≦2θ≦10°の範囲にLDH様化合物に由来するピークが検出される。前述のとおり、LDHは積み重なった水酸化物基本層の間に、中間層として交換可能な陰イオン及びHOが存在する交互積層構造を有する物質である。この点、LDHをX線回折法により測定した場合、本来的には2θ=11~12°の位置にLDHの結晶構造に起因したピーク(すなわちLDHの(003)ピーク)が検出される。これに対して、LDH様化合物をX線回折法により測定した場合、典型的にはLDHの上記ピーク位置よりも低角側にシフトした上述の範囲でピークが検出される。また、X線回折におけるLDH様化合物に由来するピークに対応する2θを用いてBraggの式により、層状結晶構造の層間距離を決定することができる。こうして決定されるLDH様化合物を構成する層状結晶構造の層間距離は0.883~1.8nmであるのが典型的であり、より典型的には0.883~1.3nmである。
 エネルギー分散型X線分析(EDS)により決定される、LDH様化合物におけるMg/(Mg+Ti+Y+Al)の原子比が0.03~0.25であるのが好ましく、より好ましくは0.05~0.2である。また、LDH様化合物におけるTi/(Mg+Ti+Y+Al)の原子比は0.40~0.97であるのが好ましく、より好ましくは0.47~0.94である。さらに、LDH様化合物におけるY/(Mg+Ti+Y+Al)の原子比は0~0.45であるのが好ましく、より好ましくは0~0.37である。そして、LDH様化合物におけるAl/(Mg+Ti+Y+Al)の原子比は0~0.05であるのが好ましく、より好ましくは0~0.03である。上記範囲内であると、耐アルカリ性により一層優れ、かつ、亜鉛デンドライトに起因する短絡の抑制効果(すなわちデンドライト耐性)をより効果的に実現することができる。ところで、LDHセパレータに関して従来から知られるLDHは一般式:M2+ 1-x3+ (OH)n- x/n・mHO(式中、M2+は2価の陽イオン、M3+は3価の陽イオンであり、An-はn価の陰イオン、nは1以上の整数、xは0.1~0.4であり、mは0以上である)なる基本組成で表しうる。これに対して、LDH様化合物における上記原子比は、LDHの上記一般式から概して逸脱している。このため、LDH様化合物は、概して、従来のLDHとは異なる組成比(原子比)を有するといえる。なお、EDS分析は、EDS分析装置(例えばX-act、オックスフォード・インストゥルメンツ社製)を用いて、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに1回繰り返し行い、4)合計6点の平均値を算出することにより行うのが好ましい。
 LDHセパレータ10は、亜鉛二次電池に組み込まれた場合に、正極板と負極板とを水酸化物イオン伝導可能に隔離するものである。好ましいLDHセパレータ10はガス不透過性及び/又は水不透過性を有する。換言すれば、LDHセパレータ10(とりわけ表面層14)はガス不透過性及び/又は水不透過性を有するほどに緻密化されているのが好ましい。なお、本明細書において「ガス不透過性を有する」とは、特許文献2及び3に記載されるように、水中で測定対象物の一面側にヘリウムガスを0.5atmの差圧で接触させても他面側からヘリウムガスに起因する泡の発生がみられないことを意味する。また、本明細書において「水不透過性を有する」とは、特許文献2及び3に記載されるように、測定対象物の一面側に接触した水が他面側に透過しないことを意味する。すなわち、LDHセパレータ10がガス不透過性及び/又は水不透過性を有するということは、LDHセパレータ10が気体又は水を通さない程の高度な緻密性を有することを意味し、透水性又はガス透過性を有する多孔性フィルムやその他の多孔質材料ではないことを意味する。こうすることで、LDHセパレータ10は、その水酸化物イオン伝導性に起因して水酸化物イオンのみを選択的に通すものとなり、電池用セパレータとしての機能を呈することができる。このため、充電時に生成する亜鉛デンドライトによるセパレータの貫通を物理的に阻止して正負極間の短絡を防止するのに極めて効果的な構成となっている。LDHセパレータ10は水酸化物イオン伝導性を有するため、正極板と負極板との間で必要な水酸化物イオンの効率的な移動を可能として正極板及び負極板における充放電反応を実現することができる。
 多孔質基材12は高分子材料で構成されるのが好ましい。高分子多孔質基材には、1)可撓性を有する(それ故薄くしても割れにくい)、2)気孔率を高くしやすい、3)伝導率を高くしやすい(気孔率を高めながら厚さを薄くできるため)、4)製造及びハンドリングしやすいといった利点がある。また、上記1)の可撓性に由来する利点を活かして、5)高分子材料製の多孔質基材を含む水酸化物イオン伝導セパレータを簡単に折り曲げる又は封止接合することができるとの利点もある。高分子材料の好ましい例としては、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂(四フッ素化樹脂:PTFE等)、セルロース、ナイロン、ポリエチレン及びそれらの任意の組合せが挙げられる。より好ましくは、加熱プレスに適した熱可塑性樹脂という観点から、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂(四フッ素化樹脂:PTFE等)、ナイロン、ポリエチレン及びそれらの任意の組合せ等が挙げられる。上述した各種の好ましい材料はいずれも電池の電解液に対する耐性として耐アルカリ性を有するものである。特に好ましい高分子材料は、耐熱水性、耐酸性及び耐アルカリ性に優れ、しかも低コストである点から、ポリプロピレン、ポリエチレン等のポリオレフィンであり、最も好ましくはポリプロピレン又はポリエチレンである。水酸化物イオン伝導層状化合物16及びバインダー樹脂18の混合物は多孔質基材12の厚さ方向の全域にわたって組み込まれている(例えば高分子多孔質基材内部の大半又はほぼ全部の孔が水酸化物イオン伝導層状化合物16及びバインダー樹脂18で埋まっている)のが特に好ましい。このような高分子多孔質基材として、市販の高分子微多孔膜を好ましく用いることができる。
 LDHセパレータ10の製造方法は特に限定されず、既に知られるLDHセパレータ(あるいはLDH含有機能層及び複合材料)の製造方法(例えば特許文献1~5を参照)の諸条件を適宜変更することにより作製することができる。例えば、(1)多孔質基材を用意し、(2)多孔質基材に対して、i)アルミナ及びチタニアの混合ゾル(LDHを形成する場合)、又はii)チタニアゾル(あるいはさらにイットリアゾル及び/又はアルミナゾル)(LDH様化合物を形成する場合)に、バインダー樹脂(例えば水系エマルジョン)を混合した溶液を塗布して乾燥させ、(3)マグネシウムイオン(Mg2+)及び尿素(あるいはさらにイットリウムイオン(Y3+))を含む原料水溶液に多孔質基材を浸漬させ、(4)原料水溶液中で多孔質基材を水熱処理して、水酸化物イオン伝導層状化合物を多孔質基材上及び/又は多孔質基材中に形成させることにより、LDHセパレータを製造することができる。このとき、上記工程(2)において、混合ゾル溶液に含まれるTi、Al(存在する場合)及びY(存在する場合)の合計重量に対するバインダー樹脂の重量比を調整することによって、表面層におけるバインダー樹脂の含有割合を制御することができる。また、上記工程(3)において尿素が存在することで、尿素の加水分解を利用してアンモニアが溶液中に発生することによりpH値が上昇し、共存する金属イオンが水酸化物及び/又は酸化物を形成することにより水酸化物イオン伝導層状化合物(すなわちLDH及び/又はLDH様化合物)を得ることができるものと考えられる。そして、加水分解に二酸化炭素の発生を伴うため、LDHを形成する場合には、陰イオンが炭酸イオン型のLDHを得ることができる。
 特に、水酸化物イオン伝導層状化合物16及びバインダー樹脂18の混合物が多孔質基材12の厚さ方向の全域にわたって組み込まれているLDHセパレータ10を作製する場合、上記(2)における混合ゾル溶液の基材への塗布を、混合ゾル溶液を基材内部の全体又は大部分に浸透させるような手法で行うのが好ましい。こうすることで最終的に多孔質基材12内部の大半又はほぼ全部の孔を水酸化物イオン伝導層状化合物16及びバインダー樹脂18の混合物で埋めることができる。好ましい塗布手法の例としては、ディップコート、ろ過コート等が挙げられ、特に好ましくはディップコートである。ディップコート等の塗布回数を調整することで、混合ゾル溶液の付着量を調整することができる。ディップコート等により混合ゾル溶液が塗布された基材は、乾燥させた後、上記(3)及び(4)の工程を実施すればよい。
 上記方法等によって得られたLDHセパレータに対してプレス処理を施してもよい。こうすることで、緻密性により一層優れたLDHセパレータを得ることができる。プレス手法は、例えばロールプレス、一軸加圧プレス、CIP(冷間等方圧加圧)等であってよく、特に限定されないが、好ましくはロールプレスである。このプレスは加熱しながら行うのが高分子多孔質基材を軟化させることで、高分子多孔質基材の孔を水酸化物イオン伝導層状化合物16及びバインダー樹脂18の混合物で十分に塞ぐことができる点で好ましい。十分に軟化する温度として、例えば、ポリプロピレンやポリエチレンの場合は60~200℃で加熱するのが好ましい。このような温度域でロールプレス等のプレスを行うことで、LDHセパレータの残留気孔を大幅に低減することができる。その結果、LDHセパレータを極めて高度に緻密化することができ、それ故、亜鉛デンドライトに起因する短絡をより一層効果的に抑制することができる。ロールプレスを行う際、ロールギャップ及びロール温度を適宜調整することで残留気孔の形態を制御することができ、それにより所望の緻密性のLDHセパレータを得ることができる。
 亜鉛二次電池
 本発明のLDHセパレータは亜鉛二次電池に適用されるのが好ましい。したがって、本発明の好ましい態様によれば、LDHセパレータを備えた、亜鉛二次電池が提供される。典型的な亜鉛二次電池は、正極と、負極と、電解液とを備え、LDHセパレータを介して正極と負極が互いに隔離されるものである。本発明の亜鉛二次電池は、亜鉛を負極として用い、かつ、電解液(典型的にはアルカリ金属水酸化物水溶液)を用いた二次電池であれば特に限定されない。したがって、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、亜鉛空気二次電池、その他各種のアルカリ亜鉛二次電池であることができる。例えば、正極が水酸化ニッケル及び/又はオキシ水酸化ニッケルを含み、それにより亜鉛二次電池がニッケル亜鉛二次電池をなすのが好ましい。あるいは、正極が空気極であり、それにより亜鉛二次電池が亜鉛空気二次電池をなしてもよい。
 固体アルカリ形燃料電池
 本発明のLDHセパレータは固体アルカリ形燃料電池に適用することも可能である。すなわち、高度に緻密化させたLDHセパレータを用いることで、燃料の空気極側への透過(例えばメタノールのクロスオーバー)に起因する起電力の低下を効果的に抑制可能な、固体アルカリ形燃料電池を提供できる。LDHセパレータの有する水酸化物イオン伝導性を発揮させながら、メタノール等の燃料のLDHセパレータの透過を効果的に抑制できるためである。したがって、本発明の別の好ましい態様によれば、LDHセパレータを備えた、固体アルカリ形燃料電池が提供される。本態様による典型的な固体アルカリ形燃料電池は、酸素が供給される空気極と、液体燃料及び/又は気体燃料が供給される燃料極と、燃料極と空気極の間に介在されるLDHセパレータとを備える。
 その他の電池
 本発明のLDHセパレータはニッケル亜鉛電池や固体アルカリ形燃料電池の他、例えばニッケル水素電池にも使用することができる。この場合、LDHセパレータは当該電池の自己放電の要因であるナイトライドシャトル(nitride shuttle)(硝酸基の電極間移動)をブロックする機能を果たす。また、本発明のLDHセパレータは、リチウム電池(リチウム金属が負極の電池)、リチウムイオン電池(負極がカーボン等の電池)あるいはリチウム空気電池等にも使用可能である。
 本発明を以下の例によってさらに具体的に説明する。なお、以下の例で作製されるLDHセパレータの評価方法は以下のとおりとした。
 評価1:微構造の観察
 LDHセパレータの表面微構造を走査型電子顕微鏡(SEM、JSM-6610LV、JEOL社製)を用いて10~20kVの加速電圧で観察した。
 評価2:元素分析評価(EDS)
 LDHセパレータ表面に対してEDS分析装置(装置名:X-act、オックスフォード・インストゥルメンツ社製)を用いて組成分析を行い、所定の元素が結晶に取り込まれていることを確認した。この分析は、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに1回繰り返し行った。
 評価3:水酸化物イオン伝導層状化合物の同定
 X線回折装置(リガク社製、RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:5~70°の測定条件で、水酸化物イオン伝導層状化合物の結晶相を測定してXRDプロファイルを得た。
 評価4:He透過測定
 He透過性の観点からLDHセパレータの緻密性を評価すべくHe透過試験を以下のとおり行った。まず、図2A及び図2Bに示されるHe透過度測定系310を構築した。He透過度測定系310は、Heガスを充填したガスボンベからのHeガスが圧力計312及び流量計314(デジタルフローメーター)を介して試料ホルダ316に供給され、この試料ホルダ316に保持されたLDHセパレータ318の一方の面から他方の面に透過させて排出させるように構成した。
 試料ホルダ316は、ガス供給口316a、密閉空間316b及びガス排出口316cを備えた構造を有するものであり、次のようにして組み立てた。まず、LDHセパレータ318の外周に沿って接着剤322を塗布して、中央に開口部を有する治具324(ABS樹脂製)に取り付けた。この治具324の上端及び下端に密封部材326a,326bとしてブチルゴム製のパッキンを配設し、さらに密封部材326a,326bの外側から、フランジからなる開口部を備えた支持部材328a,328b(PTFE製)で挟持した。こうして、LDHセパレータ318、治具324、密封部材326a及び支持部材328aにより密閉空間316bを区画した。支持部材328a,328bを、ガス排出口316c以外の部分からHeガスの漏れが生じないように、ネジを用いた締結手段330で互いに堅く締め付けた。こうして組み立てられた試料ホルダ316のガス供給口316aに、継手332を介してガス供給管334を接続した。
 次いで、He透過度測定系310にガス供給管334を経てHeガスを供給し、試料ホルダ316内に保持されたLDHセパレータ318に透過させた。このとき、圧力計312及び流量計314によりガス供給圧と流量をモニタリングした。Heガスの透過を1~30分間行った後、He透過度を算出した。He透過度の算出は、単位時間あたりのHeガスの透過量F(cm/min)、Heガス透過時にLDHセパレータに加わる差圧P(atm)、及びHeガスが透過する膜面積S(cm)を用いて、F/(P×S)の式により算出した。Heガスの透過量F(cm/min)は流量計314から直接読み取った。また、差圧Pは圧力計312から読み取ったゲージ圧を用いた。なお、Heガスは差圧Pが0.05~0.90atmの範囲内となるように供給された。
 評価5:イオン伝導率の測定
 電解液中でのLDHセパレータの伝導率を図3に示される電気化学測定系を用いて以下のようにして測定した。LDHセパレータ試料Sを両側から厚み1mmシリコーンパッキン440で挟み、内径6mmのPTFE製フランジ型セル442に組み込んだ。電極446として、#100メッシュのニッケル金網をセル442内に直径6mmの円筒状にして組み込み、電極間距離が2.2mmになるようにした。電解液444として、6MのKOH水溶液をセル442内に充填した。電気化学測定システム(ポテンショ/ガルバノスタット -周波数応答アナライザ、ソーラトロン社製1287A型及び1255B型)を用い、周波数範囲は1MHz~0.1Hz、印加電圧は10mVの条件で測定を行い、実数軸の切片をLDHセパレータ試料Sの抵抗とした。上記同様の測定をLDHセパレータ試料S無しの構成で行い、ブランク抵抗も求めた。LDHセパレータ試料Sの抵抗とブランク抵抗の差をLDHセパレータの抵抗とした。得られたLDHセパレータの抵抗と、LDHセパレータの厚み及び面積を用いて伝導率を求めた。
 評価6:デンドライト耐性の評価(サイクル試験)
 LDHセパレータの亜鉛デンドライトに起因する短絡の抑制効果(デンドライト耐性)を評価すべくサイクル試験を以下のとおり行った。まず、正極(水酸化ニッケル及び/又はオキシ水酸化ニッケルを含む)と負極(亜鉛及び/又は酸化亜鉛を含む)の各々を不織布で包むとともに、電流取り出し端子を溶接した。こうして準備された正極及び負極を、LDHセパレータを介して対向させ、電流取り出し口が設けられたラミネートフィルムに挟んで、ラミネートフィルムの3辺を熱融着した。こうして得られた上部開放されたセル容器に電解液(5.4MのKOH水溶液中に0.4Mの酸化亜鉛を溶解させたもの)を加え、真空引き等により電解液を十分に正極及び負極に浸透させた。その後、ラミネートフィルムの残りの1辺も熱融着して、簡易密閉セルとした。充放電装置(東洋システム株式会社製、TOSCAT3100)を用いて、簡易密閉セルに対し、0.1C充電及び0.2C放電で化成を実施した。その後、1C充放電サイクルを実施した。同一条件で繰り返し充放電サイクルを実施しながら、正極及び負極間の電圧を電圧計でモニタリングし、正極及び負極間における亜鉛デンドライトに起因する短絡に伴う急激な電圧低下(具体的には直前にプロットされた電圧に対して5mV以上の電圧低下)の有無を調べ、以下の基準で評価した。
・短絡なし:所定サイクル後も充電中に上記急激な電圧低下が見られなかった。
・短絡あり:所定サイクル未満で充電中に上記急激な電圧低下が見られた。
 例A1~A7
 Mg-(Al,Ti)-LDHを含むLDHセパレータの作製及び評価を以下のようにして行った。
(1)高分子多孔質基材の準備
 気孔率50%、平均気孔径0.1μm及び厚さ10μmの市販のポリエチレン微多孔膜を高分子多孔質基材として用意し、5.0cm×5.0cmの大きさになるように切り出した。
(2)高分子多孔質基材への樹脂含有アルミナ・チタニアゾルコート
 無定形アルミナ溶液(Al-L7、多木化学株式会社製)とチタニアゾル溶液(AM-15、多木化学株式会社製)と変性ポリオレフィン樹脂(アウローレン(登録商標)AE-202、日本製紙株式会社製)を上記(1)で用意された基材へディップコートにより塗布した。ディップ液は、無定形アルミナ溶液とチタニアゾル溶液をTi/Al(mol比)=2となるように混合し、それに対して変性ポリオレフィン樹脂を表1に示される重量比で混合させることにより、調製した。ディップコートは、ゾル溶液100mLに基材を浸漬させてから垂直に引き上げることにより行った。その後、ディップコートされた基材を室温で1時間乾燥させた。ここで、ディップ液におけるTi及びAlの合計重量に対する変性ポリオレフィンの重量比から換算した、混合物(すなわち水酸化物イオン伝導層状化合物とバインダー樹脂との混合物)の体積に対するバインダー樹脂の含有割合(体積%)を表2に示す。なお、表2に示されるバインダー樹脂の含有割合は、多孔質基材に塗布されたTi及びAlが全て水酸化物イオン伝導層状化合物に変換されるものと仮定して算出した値である。この値は、LDHセパレータの表面層を断面FE-SEM(電界放出形走査電子顕微鏡)及びEDS(エネルギー分散型X線分析)により分析することで特定されるバインダー樹脂の含有割合に対応する。
(3)原料水溶液の調製
 原料として、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)及び尿素((NHCO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.015mol/L、尿素/NO (mol比)=32となるように原料を秤量してビーカーに入れ、そこにイオン交換水を加えて全量を80mLとした。その後、攪拌して原料水溶液を得た。
(4)水熱処理による成膜
 テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100mL、外側がステンレス製ジャケット)に原料水溶液とディップコートされた基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、水熱温度90℃で16時間水熱処理を施すことにより基材表面と内部にLDHの形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、室温で一晩乾燥させて、多孔質基材の表面及び孔内にLDHを形成させた。こうして、LDHセパレータを得た。
(5)ロールプレスによる緻密化
 上記LDHセパレータを、1対のPETフィルム(東レ株式会社製、ルミラー(登録商標)、厚さ40μm)で挟み、ロール回転速度3mm/s、ローラ加熱温度70℃、ロールギャップ70μmにてロールプレスを行い、さらに緻密化されたLDHセパレータを得た。
(6)各種評価
 得られたLDHセパレータに対して評価1~6の評価を行った。結果は以下のとおりであった。
‐評価1:LDH特有の板状結晶が多数確認された。
‐評価2:EDS元素分析の結果、LDHの構成元素であるMg、Al及びTiが検出された。すなわち、これらの元素が取り込まれ、水酸化物イオン伝導層状化合物として結晶化していることを確認した。
‐評価3:XRDプロファイルにおいて、2θ=11.5°付近にピークが検出され、LDH(ハイドロタルサイト類化合物)と同定された。この同定は、JCPDSカードNO.35-0964に記載されるLDH(ハイドロタルサイト類化合物)の回折ピークを用いて行った。
‐評価4:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価5:表2に示されるとおり、例A1~A6において、例A7(比較例)よりも、高いイオン伝導率が確認された。
-評価6:表2に示されるとおり、例A3~A6において、200サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたサイクル特性(デンドライト耐性)が確認された。一方、例A1及びA2(比較例)では、200サイクル未満で亜鉛デンドライトに起因する短絡が生じたことから、サイクル特性に劣ることが判明した。なお、例A7(比較例)については、LDHセパレータが高抵抗のため、サイクル試験を実施しなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 例B1~B7
 Mg-(Al,Ti,Y)-LDH様化合物を含むLDHセパレータの作製及び評価を以下のようにして行った。
(1)高分子多孔質基材の準備
 気孔率50%、平均気孔径0.1μm及び厚さ10μmの市販のポリエチレン微多孔膜を高分子多孔質基材として用意し、5.0cm×5.0cmの大きさになるように切り出した。
(2)高分子多孔質基材への樹脂含有アルミナ・チタニア・イットリアゾルコート
 無定形アルミナ溶液(Al-L7、多木化学株式会社製)とチタニア溶液(AM-15、多木化学株式会社製)とイットリアゾルと変性ポリオレフィン樹脂(アウローレン(登録商標)AE-202、日本製紙株式会社製)とを上記(1)で用意された基材へディップコートにより塗布した。ディップ液は、無定形アルミナ溶液とチタニア溶液とイットリアゾルをTi/(Y+Al)(mol比)=2、及びY/Al(mol比)=8となるように混合し、それに対して変性ポリオレフィン樹脂を表3に示される重量比で混合させることにより、調製した。ディップコートは、ゾル溶液100mLに基材を浸漬させてから垂直に引き上げることにより行った。その後、ディップコートされた基材を室温で1時間乾燥させた。ここで、ディップ液におけるTi、Al及びYの合計重量に対する変性ポリオレフィンの重量比から換算した、混合物(すなわち水酸化物イオン伝導層状化合物とバインダー樹脂との混合物)の体積に対するバインダー樹脂の含有割合(体積%)を表4に示す。なお、表4に示されるバインダー樹脂の含有割合は、多孔質基材に塗布されたTi、Al及びYが全て水酸化物イオン伝導層状化合物に変換されるものと仮定して算出した値である。この値は、LDHセパレータの表面層を断面FE-SEM(電界放出形走査電子顕微鏡)及びEDS(エネルギー分散型X線分析)により分析することで特定されるバインダー樹脂の含有割合に対応する。
(3)原料水溶液の調製
 原料として、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)及び尿素((NHCO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.0075mol/L、尿素/NO (mol比)=96となるように原料を秤量してビーカーに入れ、そこにイオン交換水を加えて全量を80mLとした。その後、攪拌して原料水溶液を得た。
(4)水熱処理による成膜
 テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100mL、外側がステンレス製ジャケット)に原料水溶液とディップコートされた基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、水熱温度120℃で16時間水熱処理を施すことにより基材表面と内部にLDH様化合物の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、室温で一晩乾燥させて、多孔質基材の表面及び孔内にLDH様化合物を形成させた。こうして、LDHセパレータを得た。
(5)ロールプレスによる緻密化
 上記LDHセパレータを、1対のPETフィルム(東レ株式会社製、ルミラー(登録商標)、厚さ40μm)で挟み、ロール回転速度3mm/s、ローラ加熱温度70℃、ロールギャップ70μmにてロールプレスを行い、さらに緻密化されたLDHセパレータを得た。
(6)各種評価
 得られたLDHセパレータに対して評価1~6の評価を行った。結果は以下のとおりであった。
‐評価1:LDH特有の板状形状が多数確認された。
‐評価2:EDS元素分析の結果、LDH様化合物の構成元素であるMg、Al、Ti及びYが検出された。すなわち、これらの元素が取り込まれ、水酸化物イオン伝導層状化合物として結晶化していることを確認した。
‐評価3:XRDプロファイルにおいて、5°≦2θ≦10°の範囲にLDH様化合物に由来するピークが検出された。通常、LDHの(003)ピーク位置は、2θ=11~12°に観察されるため、上記ピークはLDHの(003)ピークが低角側にシフトしたものであると考えられる。このため、上記ピークはLDHとは呼べないもののそれに類する化合物(すなわちLDH様化合物)に由来するピークであることを示唆するものである。
‐評価4:表4に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価5:表4に示されるとおり、例B1~B6において、例B7(比較例)よりも、高いイオン伝導率が確認された。
-評価6:表4に示されるとおり、例B3~B6において、400サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。一方、例B1及びB2(比較例)では、400サイクル未満で亜鉛デンドライトに起因する短絡が生じたことから、デンドライト耐性に劣ることが判明した。なお、例B7(比較例)については、LDHセパレータが高抵抗のため、サイクル試験を実施しなかった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (15)

  1.  多孔質基材と、
     前記多孔質基材の少なくとも一方の表面に設けられ、層状複水酸化物(LDH)及び/又は層状複水酸化物(LDH)様化合物である水酸化物イオン伝導層状化合物と、バインダー樹脂との混合物で構成される、表面層と、
    を備え、
     前記表面層における、前記混合物の体積に対する前記バインダー樹脂の含有割合が1~60体積%である、LDHセパレータ。
  2.  前記表面層における、前記混合物の体積に対する前記バインダー樹脂の含有割合が1~50体積%である、請求項1に記載のLDHセパレータ。
  3.  前記表面層における、前記混合物の体積に対する前記バインダー樹脂の含有割合が1~40体積%である、請求項1に記載のLDHセパレータ。
  4.  前記多孔質基材の孔に前記混合物が充填されている、請求項1~3のいずれか一項に記載のLDHセパレータ。
  5.  前記バインダー樹脂が、ポリオレフィン、ポリスチレン、ポリエーテルサルフォン、エポキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂、セルロース、ナイロン、アクリロニトリルスチレン、ポリスルフォン、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリ塩化ビニル、アセタール樹脂、ポリビニルアルコール(PVA)樹脂、ポリ塩化ビニリデン、ポリフッ化ビニリデン、フェノール樹脂、アリル樹脂、及びフラン樹脂からなる群から選択される少なくとも1種である、請求項1~4のいずれか一項に記載のLDHセパレータ。
  6.  前記水酸化物イオン伝導層状化合物がLDH様化合物であり、前記LDH様化合物が、(i)Mgと、(ii)Ti、Y及びAlからなる群から選択される少なくともTiを含む1以上の元素とを含む層状結晶構造の水酸化物及び/又は酸化物である、請求項1~5のいずれか一項に記載のLDHセパレータ。
  7.  前記LDHセパレータの前記表面層側の表面に対してX線回折を行った場合に、5°≦2θ≦10°の範囲に前記LDH様化合物に由来するピークが検出される、請求項6に記載のLDHセパレータ。
  8.  前記水酸化物イオン伝導層状化合物がLDHであり、前記LDHが、Mg、Al、Ti及びOH基を含む複数の水酸化物基本層と、前記複数の水酸化物基本層間に介在する、陰イオン及びHOで構成される中間層とから構成される、請求項1~5のいずれか一項に記載のLDHセパレータ。
  9.  前記表面層の厚さが0.01~10μmである、請求項1~8のいずれか一項に記載のLDHセパレータ。
  10.  前記LDHセパレータの厚さが3~80μmである、請求項1~9のいずれか一項に記載のLDHセパレータ。
  11.  前記多孔質基材が高分子材料で構成される、請求項1~10のいずれか一項に記載のLDHセパレータ。
  12.  前記LDHセパレータのイオン伝導率が2.0mS/cm以上である、請求項1~11のいずれか一項に記載のLDHセパレータ。
  13.  前記LDHセパレータの単位面積あたりのHe透過度が10cm/min・atm以下である、請求項1~12のいずれか一項に記載のLDHセパレータ。
  14.  請求項1~13のいずれか一項に記載のLDHセパレータを備えた、亜鉛二次電池。
  15.  請求項1~13のいずれか一項に記載のLDHセパレータを備えた、固体アルカリ形燃料電池。

     
PCT/JP2021/039863 2020-11-20 2021-10-28 Ldhセパレータ及び亜鉛二次電池 WO2022107568A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022563664A JPWO2022107568A1 (ja) 2020-11-20 2021-10-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020193714 2020-11-20
JP2020-193714 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022107568A1 true WO2022107568A1 (ja) 2022-05-27

Family

ID=81708724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039863 WO2022107568A1 (ja) 2020-11-20 2021-10-28 Ldhセパレータ及び亜鉛二次電池

Country Status (2)

Country Link
JP (1) JPWO2022107568A1 (ja)
WO (1) WO2022107568A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095286A (ja) * 2013-11-08 2015-05-18 株式会社日本触媒 アニオン伝導膜及び電池
JP2017024949A (ja) * 2015-07-24 2017-02-02 日本碍子株式会社 層状複水酸化物含有複合材料
JP2018147738A (ja) * 2017-03-06 2018-09-20 日立化成株式会社 亜鉛負極二次電池用セパレータの製造方法及び亜鉛負極二次電池用セパレータ
JP2020007574A (ja) * 2018-07-02 2020-01-16 株式会社日本触媒 無機有機複合膜、及び、電気化学素子用隔膜
JP2020176210A (ja) * 2019-04-18 2020-10-29 日立化成株式会社 多孔膜及び亜鉛電池
JP2021077473A (ja) * 2019-11-06 2021-05-20 昭和電工マテリアルズ株式会社 多層膜及び亜鉛電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017445B2 (ja) * 2017-12-27 2022-02-08 日本碍子株式会社 亜鉛二次電池用負極構造体
JP6993246B2 (ja) * 2018-01-19 2022-02-04 日本碍子株式会社 亜鉛二次電池
CN113169419B (zh) * 2018-12-13 2022-11-04 日本碍子株式会社 Ldh隔板及锌二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095286A (ja) * 2013-11-08 2015-05-18 株式会社日本触媒 アニオン伝導膜及び電池
JP2017024949A (ja) * 2015-07-24 2017-02-02 日本碍子株式会社 層状複水酸化物含有複合材料
JP2018147738A (ja) * 2017-03-06 2018-09-20 日立化成株式会社 亜鉛負極二次電池用セパレータの製造方法及び亜鉛負極二次電池用セパレータ
JP2020007574A (ja) * 2018-07-02 2020-01-16 株式会社日本触媒 無機有機複合膜、及び、電気化学素子用隔膜
JP2020176210A (ja) * 2019-04-18 2020-10-29 日立化成株式会社 多孔膜及び亜鉛電池
JP2021077473A (ja) * 2019-11-06 2021-05-20 昭和電工マテリアルズ株式会社 多層膜及び亜鉛電池

Also Published As

Publication number Publication date
JPWO2022107568A1 (ja) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2020255856A1 (ja) 水酸化物イオン伝導セパレータ及び亜鉛二次電池
WO2019131688A1 (ja) Ldhセパレータ及び亜鉛二次電池
US11211672B2 (en) LDH separator and zinc secondary battery
JP6949142B2 (ja) Ldhセパレータ及び亜鉛二次電池
US20240222793A1 (en) Ldh separator, manufacturing method therefor, and rechargeable zinc battery
WO2019124214A1 (ja) Ldhセパレータ及び亜鉛二次電池
US20230045074A1 (en) Ldh separator and zinc secondary battery
WO2019124212A1 (ja) Ldhセパレータ及び亜鉛二次電池
WO2022107568A1 (ja) Ldhセパレータ及び亜鉛二次電池
JP2023038786A (ja) Ldhセパレータ及び亜鉛二次電池
WO2022034803A1 (ja) Ldhセパレータ
WO2021229917A1 (ja) Ldhセパレータ及び亜鉛二次電池
WO2022113446A1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池
JP7057867B1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池
WO2022113448A1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池
WO2024202370A1 (ja) Ldhセパレータ及び亜鉛二次電池
JP7057866B1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池
WO2022118503A1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池
JP7048830B1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池
JP7048831B1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池
WO2022118504A1 (ja) Ldh様化合物セパレータ及び亜鉛二次電池
JP2024140241A (ja) Ldhセパレータ及び亜鉛二次電池
JP6905085B2 (ja) Ldhセパレータ及び亜鉛二次電池
JP2024140384A (ja) Ldhセパレータ及び亜鉛二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894442

Country of ref document: EP

Kind code of ref document: A1