JP2015156508A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2015156508A
JP2015156508A JP2015084868A JP2015084868A JP2015156508A JP 2015156508 A JP2015156508 A JP 2015156508A JP 2015084868 A JP2015084868 A JP 2015084868A JP 2015084868 A JP2015084868 A JP 2015084868A JP 2015156508 A JP2015156508 A JP 2015156508A
Authority
JP
Japan
Prior art keywords
transistor
oxide
insulating layer
oxide semiconductor
memory cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015084868A
Other languages
English (en)
Other versions
JP6010654B2 (ja
Inventor
隆徳 松嵜
Takanori Matsuzaki
隆徳 松嵜
修平 長塚
Shuhei Nagatsuka
修平 長塚
広樹 井上
Hiroki Inoue
広樹 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2015084868A priority Critical patent/JP6010654B2/ja
Publication of JP2015156508A publication Critical patent/JP2015156508A/ja
Application granted granted Critical
Publication of JP6010654B2 publication Critical patent/JP6010654B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/405Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with three charge-transfer gates, e.g. MOS transistors, per cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4085Word line control circuits, e.g. word line drivers, - boosters, - pull-up, - pull-down, - precharge
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0433Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and one or more separate select transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/4016Memory devices with silicon-on-insulator cells

Abstract

【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供する。
【解決手段】トランジスタのオフ電流を十分に小さくすることができる材料、例えば、ワイドギャップ半導体である酸化物半導体材料を用いて半導体装置を構成する。トランジスタのオフ電流を十分に小さくすることができる半導体材料を用いることで、長期間にわたって情報を保持する。また、書き込みワード線WWLに電気的に接続する容量素子250またはノイズ除去回路を設けることで、駆動回路192等からメモリセル170に入力されうる制御信号とは異なる短パルスやノイズ等の信号を低減または除去する。これにより、メモリセル170が有するトランジスタが瞬間的にオンすることでメモリセル170に書き込まれたデータが消失してしまう誤動作を防ぐ。
【選択図】図2

Description

本発明は、半導体素子を利用した半導体装置およびその駆動方法に関するものである。
半導体素子を利用した記憶装置は、電力の供給がなくなると記憶内容が失われる揮発性
のものと、電力の供給がなくなっても記憶内容は保持される不揮発性のものとに大別され
る。
揮発性記憶装置の代表的な例としては、DRAM(Dynamic Random A
ccess Memory)がある。DRAMは、記憶素子を構成するトランジスタを選
択してキャパシタに電荷を蓄積することで、情報を記憶する。
上述の原理から、DRAMでは、情報を読み出すとキャパシタの電荷は失われるため、
情報の読み出しの度に、再度の書き込み動作が必要となる。また、記憶素子を構成するト
ランジスタにおいてはオフ状態でのソースとドレイン間のリーク電流(オフ電流)等によ
って、トランジスタが選択されていない状況でも電荷が流出、または流入するため、デー
タの保持期間が短い。このため、所定の周期で再度の書き込み動作(リフレッシュ動作)
が必要であり、消費電力を十分に低減することは困難である。また、電力の供給がなくな
ると記憶内容が失われるため、長期間の記憶の保持には、磁性材料や光学材料を利用した
別の記憶装置が必要となる。
揮発性記憶装置の別の例としてはSRAM(Static Random Acces
s Memory)がある。SRAMは、フリップフロップなどの回路を用いて記憶内容
を保持するため、リフレッシュ動作が不要であり、この点においてはDRAMより有利で
ある。しかし、フリップフロップなどの回路を用いているため、記憶容量あたりの単価が
高くなるという問題がある。また、電力の供給がなくなると記憶内容が失われるという点
については、DRAMと変わるところはない。
不揮発性記憶装置の代表例としては、フラッシュメモリがある。フラッシュメモリは、
トランジスタのゲート電極とチャネル形成領域との間にフローティングゲートを有し、当
該フローティングゲートに電荷を保持させることで記憶を行うため、データの保持期間は
極めて長く(半永久的)、揮発性記憶装置で必要なリフレッシュ動作が不要であるという
利点を有している(例えば、特許文献1参照)。
しかし、書き込みの際に生じるトンネル電流によって記憶素子を構成するゲート絶縁層
が劣化するため、所定回数の書き込みによって記憶素子が機能しなくなるという問題が生
じる。この問題の影響を緩和するために、例えば、各記憶素子の書き込み回数を均一化す
る手法が採られるが、これを実現するためには、複雑な周辺回路が必要になってしまう。
そして、このような手法を採用しても、根本的な寿命の問題が解消するわけではない。つ
まり、フラッシュメモリは、情報の書き換え頻度が高い用途には不向きである。
また、フローティングゲートに電荷を注入させるため、または、その電荷を除去するた
めには、高い電圧が必要であり、また、そのための回路も必要である。さらに、電荷の注
入、または除去のためには比較的長い時間を要し、書き込み、消去の高速化が容易ではな
いという問題もある。
特開昭57−105889号公報
上述の問題に鑑み、本発明の一態様では、電力が供給されない状況でも記憶内容の保持
が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供すること
を目的の一とする。
本発明の一態様では、トランジスタのオフ電流を十分に小さくすることができる材料、
例えば、ワイドギャップ半導体である酸化物半導体材料を用いて半導体装置を構成する。
トランジスタのオフ電流を十分に小さくすることができる半導体材料を用いることで、長
期間にわたって情報を保持することが可能である。
また、書き込みワード線に電気的に接続する容量素子またはノイズ除去回路を設けるこ
とで、駆動回路等からメモリセルに入力されうる制御信号とは異なる短パルスやノイズ等
の信号を低減または除去することができる。これにより、メモリセルが有するトランジス
タが瞬間的にオンすることでメモリセルに書き込まれたデータが消失してしまう誤動作を
防ぐことが可能である。
より具体的には、例えば次のような構成を採用することができる。
本発明の一態様は、書き込みワード線と、読み出しワード線と、ビット線と、ソース線
と、信号線と、複数のメモリセルでなるメモリセルアレイと、第1の駆動回路と、第2の
駆動回路と、を有する半導体装置である。メモリセルの一は、第1のゲート電極、第1の
ソース電極、第1のドレイン電極、及び第1のチャネル形成領域を含む第1のトランジス
タと、第2のゲート電極、第2のソース電極、第2のドレイン電極、及び第2のチャネル
形成領域を含む第2のトランジスタと、第1の容量素子と、を有する。第1のチャネル形
成領域は、第2のチャネル形成領域とは異なる半導体材料を含んで構成されている。第1
のゲート電極と、第2のドレイン電極と、第1の容量素子の電極の一方と、は電気的に接
続されて電荷が保持されるノードを構成している。第1の駆動回路は、ビット線を介して
メモリセルが有する第1のドレイン電極と電気的に接続され、ソース線を介してメモリセ
ルが有する第1のソース電極と電気的に接続され、信号線を介してメモリセルが有する第
2のソース電極と電気的に接続されている。第2の駆動回路は、読み出しワード線を介し
てメモリセルが有する第1の容量素子の電極の他方と電気的に接続され、書き込みワード
線を介してメモリセルが有する第2のゲート電極と電気的に接続されている。そして、第
2の駆動回路とメモリセルアレイとの間に第2の容量素子を有し、第2の容量素子の電極
の一方は書き込みワード線に電気的に接続されている構成を有している。
また、本発明の一態様は、書き込みワード線と、読み出しワード線と、ビット線と、ソ
ース線と、信号線と、複数のメモリセルでなるメモリセルアレイと、第1の駆動回路と、
第2の駆動回路と、を有する半導体装置である。メモリセルの一は、第1のゲート電極、
第1のソース電極、第1のドレイン電極、及び第1のチャネル形成領域を含む第1のトラ
ンジスタと、第2のゲート電極、第2のソース電極、第2のドレイン電極、及び第2のチ
ャネル形成領域を含む第2のトランジスタと、第1の容量素子と、を有する。第1のチャ
ネル形成領域は、第2のチャネル形成領域とは異なる半導体材料を含んで構成されている
。第1のゲート電極と、第2のドレイン電極と、第1の容量素子の電極の一方と、は電気
的に接続されて電荷が保持されるノードを構成している。第1の駆動回路は、ビット線を
介してメモリセルが有する第1のドレイン電極と電気的に接続され、ソース線を介してメ
モリセルが有する第1のソース電極と電気的に接続され、信号線を介してメモリセルが有
する第2のソース電極と電気的に接続されている。第2の駆動回路は、読み出しワード線
を介してメモリセルが有する第1の容量素子の電極の他方と電気的に接続され、書き込み
ワード線を介してメモリセルが有する第2のゲート電極と電気的に接続されている。そし
て、第2の駆動回路とメモリセルアレイとの間に第2の容量素子および抵抗素子を有し、
第2の容量素子の電極の一方は書き込みワード線および抵抗素子の端子の一方に電気的に
接続され、抵抗素子の端子の他方は第2の駆動回路に電気的に接続されている構成を有し
ている。
また、本発明の一態様は、書き込みワード線と、読み出しワード線と、ビット線と、ソ
ース線と、信号線と、複数のメモリセルでなるメモリセルアレイと、第1の駆動回路と、
第2の駆動回路と、を有する半導体装置である。メモリセルの一は、第1のゲート電極、
第1のソース電極、第1のドレイン電極、及び第1のチャネル形成領域を含む第1のトラ
ンジスタと、第2のゲート電極、第2のソース電極、第2のドレイン電極、及び第2のチ
ャネル形成領域を含む第2のトランジスタと、容量素子と、を有する。第1のチャネル形
成領域は、第2のチャネル形成領域とは異なる半導体材料を含んで構成されている。第1
のゲート電極と、第2のドレイン電極と、容量素子の電極の一方と、は電気的に接続され
て電荷が保持されるノードを構成している。第1の駆動回路は、ビット線を介してメモリ
セルが有する第1のドレイン電極と電気的に接続され、ソース線を介してメモリセルが有
する第1のソース電極と電気的に接続され、信号線を介してメモリセルが有する第2のソ
ース電極と電気的に接続されている。第2の駆動回路は、読み出しワード線を介してメモ
リセルが有する容量素子の電極の他方と電気的に接続され、書き込みワード線を介してメ
モリセルが有する第2のゲート電極と電気的に接続されている。そして、第2の駆動回路
は、書き込みワード線に電気的に接続されるノイズ除去回路を有し、ノイズ除去回路は、
直列に接続した偶数個のインバータ回路と容量素子とを有している。
また、本発明の一態様は、書き込みワード線と、読み出しワード線と、ビット線と、ソ
ース線と、信号線と、複数のメモリセルでなるメモリセルアレイと、第1の駆動回路と、
第2の駆動回路と、を有する半導体装置である。メモリセルの一は、第1のゲート電極、
第1のソース電極、第1のドレイン電極、及び第1のチャネル形成領域を含む第1のトラ
ンジスタと、第2のゲート電極、第2のソース電極、第2のドレイン電極、及び第2のチ
ャネル形成領域を含む第2のトランジスタと、容量素子と、を有する。第1のチャネル形
成領域は、第2のチャネル形成領域とは異なる半導体材料を含んで構成されている。第1
のゲート電極と、第2のドレイン電極と、容量素子の電極の一方と、は電気的に接続され
て電荷が保持されるノードを構成している。第1の駆動回路は、ビット線を介してメモリ
セルが有する第1のドレイン電極と電気的に接続され、ソース線を介してメモリセルが有
する第1のソース電極と電気的に接続され、信号線を介してメモリセルが有する第2のソ
ース電極と電気的に接続されている。第2の駆動回路は、読み出しワード線を介してメモ
リセルが有する容量素子の電極の他方と電気的に接続され、書き込みワード線を介してメ
モリセルが有する第2のゲート電極と電気的に接続されている。そして、第2の駆動回路
は、書き込みワード線に電気的に接続されるノイズ除去回路を有し、ノイズ除去回路は、
直列に接続した偶数個のインバータ回路と抵抗素子とを有している。
また、本発明の一態様は、書き込みワード線と、読み出しワード線と、ビット線と、ソ
ース線と、信号線と、複数のメモリセルでなるメモリセルアレイと、第1の駆動回路と、
第2の駆動回路と、を有する半導体装置である。メモリセルの一は、第1のゲート電極、
第1のソース電極、第1のドレイン電極、及び第1のチャネル形成領域を含む第1のトラ
ンジスタと、第2のゲート電極、第2のソース電極、第2のドレイン電極、及び第2のチ
ャネル形成領域を含む第2のトランジスタと、容量素子と、を有する。第1のチャネル形
成領域は、第2のチャネル形成領域とは異なる半導体材料を含んで構成されている。第1
のゲート電極と、第2のドレイン電極と、容量素子の電極の一方と、は電気的に接続され
て電荷が保持されるノードを構成している。第1の駆動回路は、ビット線を介してメモリ
セルが有する第1のドレイン電極と電気的に接続され、ソース線を介してメモリセルが有
する第1のソース電極と電気的に接続され、信号線を介してメモリセルが有する第2のソ
ース電極と電気的に接続されている。第2の駆動回路は、読み出しワード線を介してメモ
リセルが有する容量素子の電極の他方と電気的に接続され、書き込みワード線を介してメ
モリセルが有する第2のゲート電極と電気的に接続されている。そして、第2の駆動回路
は、書き込みワード線に電気的に接続されるノイズ除去回路を有し、ノイズ除去回路は、
直列に接続した偶数個のインバータ回路と容量素子と抵抗素子とを有している。
上記ノイズ除去回路を有する構成において、ノイズ除去回路は、さらにAND回路を有
する構成とすることができる。
上記において、第2のトランジスタの第2のチャネル形成領域は、酸化物半導体を含ん
で構成される半導体装置である。
上記において、第1のトランジスタの第1のチャネル形成領域は、酸化物半導体以外の
材料を含んで構成される半導体装置である。
なお、上記において、酸化物半導体を用いてトランジスタを構成することがあるが、本
発明はこれに限定されない。酸化物半導体と同等のオフ電流特性が実現できる材料、例え
ば、炭化シリコンをはじめとするワイドギャップ材料(より具体的には、例えば、エネル
ギーギャップEgが3eVより大きい半導体材料)などを適用しても良い。
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に
限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり
、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「
配線」が一体となって形成されている場合なども含む。
また、「ソース」や「ドレイン」の機能は、異なる極性のトランジスタを採用する場合
や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このた
め、本明細書等においては、「ソース」や「ドレイン」の用語は、入れ替えて用いること
ができるものとする。
なお、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するも
の」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するも
の」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない
例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジス
タなどのスイッチング素子、抵抗素子、インダクタ、キャパシタ、その他の各種機能を有
する素子などが含まれる。
酸化物半導体を用いたトランジスタはオフ電流が極めて小さいため、これを用いること
により極めて長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ
動作が不要となるか、または、リフレッシュ動作の頻度を極めて低くすることが可能とな
るため、消費電力を十分に低減することができる。また、電力の供給がない場合(ただし
、電位は固定されていることが望ましい)であっても、長期にわたって記憶内容を保持す
ることが可能である。
また、本発明に係る半導体装置では、情報の書き込みに高い電圧を必要とせず、素子の
劣化の問題もない。例えば、従来の不揮発性メモリのように、フローティングゲートへの
電子の注入や、フローティングゲートからの電子の引き抜きを行う必要がないため、ゲー
ト絶縁層の劣化といった問題が全く生じない。すなわち、本発明に係る半導体装置では、
従来の不揮発性メモリで問題となっている書き換え可能回数に制限はなく、信頼性が飛躍
的に向上する。さらに、トランジスタのオン状態、オフ状態によって、情報の書き込みが
行われるため、高速な動作も容易に実現しうる。また、情報を消去するための動作が不要
であるというメリットもある。
また、本発明に係る半導体装置では、書き込みワード線に電気的に接続する容量素子ま
たはノイズ除去回路を設けることで、駆動回路等からメモリセルに入力されうる制御信号
とは異なる短パルスやノイズ等の信号を低減または除去することができる。これにより、
メモリセルが有するトランジスタが瞬間的にオンすることでメモリセルに書き込まれたデ
ータが消失してしまう誤動作を防ぐことが可能である。
また、酸化物半導体以外の材料を用いたトランジスタは、十分な高速動作が可能である
ため、これを、酸化物半導体を用いたトランジスタと組み合わせて用いることにより、半
導体装置の動作(例えば、情報の読み出し動作)の高速性を十分に確保することができる
。また、酸化物半導体以外の材料を用いたトランジスタにより、高速動作が要求される各
種回路(論理回路、駆動回路など)を好適に実現することが可能である。
このように、酸化物半導体以外の材料を用いたトランジスタ(換言すると、十分な高速
動作が可能なトランジスタ)と、酸化物半導体を用いたトランジスタ(より広義には、十
分にオフ電流が小さいトランジスタ)とを一体に備えることで、これまでにない特徴を有
する半導体装置を実現することができる。
半導体装置の回路図。 半導体装置のブロック図。 半導体装置のブロック図。 半導体装置の回路図。 半導体装置の回路図。 半導体装置の断面図および平面図。 半導体装置の断面図。 SOI基板の作製工程に係る断面図。 半導体装置の作製工程に係る断面図。 半導体装置の作製工程に係る断面図。 半導体装置の作製工程に係る断面図。 半導体装置の作製工程に係る断面図。 半導体装置の断面図。 半導体装置の断面図。 半導体装置の作製工程に係る断面図。 電子機器の図。
本発明の実施の形態の一例について、図面を用いて以下に説明する。但し、本発明は以
下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態およ
び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以
下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、図面等において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、
実際の位置、大きさ、範囲などを表していない場合がある。このため、本発明は、必ずし
も、図面等に開示された位置、大きさ、範囲などに限定されない。
なお、本明細書等における「第1」、「第2」、「第3」などの序数は、構成要素の混
同を避けるために付すものであり、数的に限定するものではないことを付記する。
(実施の形態1)
本実施の形態では、開示する発明の一態様に係る半導体装置の回路構成および動作につ
いて、図1、図2を参照して説明する。なお、回路図においては、酸化物半導体を用いた
トランジスタであることを示すために、OSの符号を併せて付す場合がある。
〈基本回路〉
はじめに、メモリセルの基本的な回路構成およびその動作について、図1を参照して説
明する。図1(A−1)に示すメモリセルを有する半導体装置において、ビット線BLと
トランジスタ160のソース電極(またはドレイン電極)とは、電気的に接続され、ソー
ス線SLとトランジスタ160のドレイン電極(またはソース電極)とは、電気的に接続
されている。また、信号線Sとトランジスタ162のソース電極(またはドレイン電極)
とは、電気的に接続され、書き込みワード線WWLと、トランジスタ162のゲート電極
とは、電気的に接続されている。そして、トランジスタ160のゲート電極と、トランジ
スタ162のドレイン電極(またはソース電極)は、容量素子164の電極の一方と電気
的に接続され、読み出しワード線RWLと、容量素子164の電極の他方は電気的に接続
されている。
ここで、トランジスタ162には、例えば、酸化物半導体を用いたトランジスタが適用
される。酸化物半導体を用いたトランジスタは、オフ電流が極めて小さいという特徴を有
している。このため、トランジスタ162をオフ状態とすることで、トランジスタ160
のゲート電極の電位を極めて長時間にわたって保持することが可能である。そして、容量
素子164を有することにより、トランジスタ160のゲート電極に与えられた電荷の保
持が容易になり、また、保持された情報の読み出しが容易になる。
なお、トランジスタ160の材料については特に限定されない。情報の読み出し速度を
向上させるという観点からは、例えば、単結晶シリコンを用いたトランジスタなど、スイ
ッチング速度の高いトランジスタを適用するのが好適である。
また、図1(B)に示すように、容量素子164を設けない構成とすることも可能であ
る。
図1(A−1)に示す半導体装置では、トランジスタ160のゲート電極の電位が保持
可能という特徴を生かすことで、次のように、情報の書き込み、保持、読み出しが可能で
ある。
はじめに、情報の書き込みおよび保持について説明する。まず、書き込みワード線WW
Lの電位を、トランジスタ162がオン状態となる電位にして、トランジスタ162をオ
ン状態とする。これにより、信号線Sの電位が、トランジスタ160のゲート電極、およ
び容量素子164に与えられる。すなわち、トランジスタ160のゲート電極には、所定
の電荷が与えられる(書き込み)。ここでは、異なる二つの電位を与える電荷(以下、低
電位を与える電荷を電荷Q、高電位を与える電荷を電荷Qという)のいずれかが与え
られるものとする。なお、異なる三つまたはそれ以上の電位を与える電荷を適用して、記
憶容量を向上させても良い。その後、書き込みワード線WWLの電位を、トランジスタ1
62がオフ状態となる電位にして、トランジスタ162をオフ状態とすることにより、ト
ランジスタ160のゲート電極に与えられた電荷が保持される(保持)。
トランジスタ162のオフ電流は極めて小さいから、トランジスタ160のゲート電極
の電荷は長時間にわたって保持される。
次に、情報の読み出しについて説明する。ソース線SLに所定の電位(定電位)を与え
た状態で、読み出しワード線RWLに適切な電位(読み出し電位)を与えると、トランジ
スタ160のゲート電極に保持された電荷量に応じて、ビット線BLは異なる電位をとる
。すなわち、トランジスタ160のコンダクタンスは、トランジスタ160のゲート電極
に保持される電荷によって制御される。
一般に、トランジスタ160をpチャネル型とすると、トランジスタ160のゲート電
極にQが与えられている場合の見かけのしきい値Vth_Hは、トランジスタ160の
ゲート電極にQが与えられている場合の見かけのしきい値Vth_Lより低くなる。
例えば、書き込みにおいてQが与えられた場合には、読み出しワード線RWLの電位
がV(Vth_HとVth_Lの中間の電位)となれば、トランジスタ160は「オン
状態」となる。Qが与えられた場合には、読み出しワード線RWLの電位がVとなっ
ても、トランジスタ160は「オフ状態」のままである。このため、ビット線BLの電位
を見ることで、保持されている情報を読み出すことができる。
なお、メモリセルをアレイ状に配置して用いる場合には、所望のメモリセルの情報のみ
を読み出せることが必要になる。このように、所定のメモリセルの情報を読み出し、それ
以外のメモリセルの情報を読み出さない場合には、読み出しの対象ではないメモリセルの
読み出しワード線RWLに対して、ゲート電極の状態にかかわらずトランジスタ160が
「オフ状態」となるような電位、つまり、Vth_Lより大きい電位を与えればよい。ま
たは、ゲート電極の状態にかかわらずトランジスタ160が「オン状態」となるような電
位、つまり、Vth_Hより小さい電位を読み出しワード線RWLに与えればよい。
次に、情報の書き換えについて説明する。情報の書き換えは、上記情報の書き込みおよ
び保持と同様に行われる。つまり、書き込みワード線WWLの電位を、トランジスタ16
2がオン状態となる電位にして、トランジスタ162をオン状態とする。これにより、信
号線Sの電位(新たな情報に係る電位)が、トランジスタ160のゲート電極および容量
素子164に与えられる。その後、書き込みワード線WWLの電位を、トランジスタ16
2がオフ状態となる電位にして、トランジスタ162をオフ状態とすることにより、トラ
ンジスタ160のゲート電極は、新たな情報に係る電荷が与えられた状態となる。
なお、上記ではトランジスタ160をpチャネル型として説明したが、トランジスタ1
60としてnチャネル型のトランジスタを用いてもよい。その場合には、各配線に与える
電位を適宜調節すればよい。
このように、開示する発明に係る半導体装置は、再度の情報の書き込みによって直接的
に情報を書き換えることが可能である。このためフラッシュメモリなどにおいて必要とさ
れる高電圧を用いてのフローティングゲートからの電荷の引き抜きが不要であり、消去動
作に起因する動作速度の低下を抑制することができる。つまり、半導体装置の高速動作が
実現される。
なお、トランジスタ162のドレイン電極(またはソース電極)は、トランジスタ16
0のゲート電極と電気的に接続されることにより、不揮発性メモリ素子として用いられる
フローティングゲート型トランジスタのフローティングゲートと同等の作用を奏する。以
下において、トランジスタ162のドレイン電極(またはソース電極)とトランジスタ1
60のゲート電極が電気的に接続される部位をノードFGと呼ぶ場合がある。トランジス
タ162がオフの場合、当該ノードFGは絶縁体中に埋設されたと見ることができ、ノー
ドFGには電荷が保持される。酸化物半導体を用いたトランジスタ162のオフ電流は、
シリコン半導体などで形成されるトランジスタの10万分の1以下であるため、トランジ
スタ162のリークによる、ノードFGに蓄積された電荷の消失を無視することが可能で
ある。つまり、酸化物半導体を用いたトランジスタ162により、電力の供給が無くても
情報の保持が可能な不揮発性の記憶装置を実現することが可能である。
例えば、トランジスタ162の室温(25℃)でのオフ電流が10zA(1zA(ゼプ
トアンペア)は1×10−21A)以下であり、容量素子164の容量値が10fF程度
である場合には、少なくとも10秒以上のデータ保持が可能である。なお、当該保持時
間が、トランジスタ特性や容量値によって変動することはいうまでもない。
また、開示する発明の半導体装置においては、従来のフローティングゲート型トランジ
スタにおいて指摘されているゲート絶縁膜(トンネル絶縁膜)の劣化という問題が存在し
ない。つまり、従来問題とされていた、電子をフローティングゲートに注入する際のゲー
ト絶縁膜の劣化という問題を解消することができる。これは、原理的な書き込み回数の制
限が存在しないことを意味するものである。また、従来のフローティングゲート型トラン
ジスタにおいて書き込みや消去の際に必要であった高電圧も不要である。
図1(A−1)に示す半導体装置は、当該半導体装置を構成するトランジスタなどの要
素が抵抗および容量を含むものとして、図1(A−2)のように考えることが可能である
。つまり、図1(A−2)では、トランジスタ160および容量素子164が、それぞれ
、抵抗および容量を含んで構成されると考えていることになる。R1およびC1は、それ
ぞれ、容量素子164の抵抗値および容量値であり、抵抗値R1は、容量素子164を構
成する絶縁層による抵抗値に相当する。また、R2およびC2は、それぞれ、トランジス
タ160の抵抗値および容量値であり、抵抗値R2はトランジスタ160がオン状態の時
のゲート絶縁層による抵抗値に相当し、容量値C2はいわゆるゲート容量(ゲート電極と
、ソース電極またはドレイン電極との間に形成される容量、及び、ゲート電極とチャネル
形成領域との間に形成される容量)の容量値に相当する。
トランジスタ162がオフ状態にある場合のソース電極とドレイン電極の間の抵抗値(
実効抵抗とも呼ぶ)をROSとすると、トランジスタ162のゲートリーク電流が十分に
小さい条件において、R1およびR2が、R1≧ROS、R2≧ROSを満たす場合には
、電荷の保持期間(情報の保持期間ということもできる)は、主としてトランジスタ16
2のオフ電流によって決定されることになる。
逆に、当該条件を満たさない場合には、トランジスタ162のオフ電流が十分に小さく
とも、保持期間を十分に確保することが困難になる。トランジスタ162のオフ電流以外
のリーク電流(例えば、トランジスタ160におけるソース電極とゲート電極の間におい
て生じるリーク電流等)が大きいためである。このことから、本実施の形態において開示
する半導体装置は、R1≧ROS、およびR2≧ROSの関係を満たすものであることが
望ましいといえる。
一方で、C1とC2は、C1≧C2の関係を満たすことが望ましい。C1を大きくする
ことで、読み出しワード線RWLによってノードFGの電位を制御する際に、読み出しワ
ード線RWLの電位を効率よくノードFGに与えることができるようになり、読み出しワ
ード線RWLに与える電位間(例えば、読み出しの電位と、非読み出しの電位)の電位差
を低く抑えることができるためである。
このように、上述の関係を満たすことで、より好適な半導体装置を実現することが可能
である。なお、R1およびR2は、トランジスタ160のゲート絶縁層や容量素子164
の絶縁層によって制御される。C1およびC2についても同様である。よって、トランジ
スタ160のゲート絶縁層や容量素子164の絶縁層の材料や厚さなどを適宜設定し、上
述の関係を満たすようにすることが望ましい。
本実施の形態で示す半導体装置においては、ノードFGが、フラッシュメモリ等のフロ
ーティングゲート型トランジスタのフローティングゲートと同等の作用をするが、本実施
の形態のノードFGは、フラッシュメモリ等のフローティングゲートと本質的に異なる特
徴を有している。
フラッシュメモリでは、コントロールゲートに印加される電位が高いため、その電位が
、隣接するセルのフローティングゲートに影響を与えないように、セルとセルとの間隔を
ある程度保つ必要が生じる。このことは、半導体装置の高集積化を阻害する要因の一つで
ある。そして、当該要因は、高電界をかけてトンネル電流を発生させるというフラッシュ
メモリの根本的な原理に起因するものである。
一方、本実施の形態に係る半導体装置は、酸化物半導体を用いたトランジスタのスイッ
チングによって動作し、上述のようなトンネル電流による電荷注入の原理を用いない。す
なわち、フラッシュメモリのような、電荷を注入するための高電界が不要である。これに
より、隣接セルに対する、コントロールゲートによる高電界の影響を考慮する必要がない
ため、高集積化が容易になる。
また、高電界が不要であり、大型の周辺回路(昇圧回路など)が不要である点も、フラ
ッシュメモリに対するアドバンテージである。例えば、本実施の形態に係るメモリセルに
印加される電圧(メモリセルの各端子に同時に印加される電位の最大のものと最小のもの
の差)の最大値は、2段階(1ビット)の情報を書き込む場合、一つのメモリセルにおい
て、5V以下、好ましくは3V以下とすることができる。
さらに、容量素子164を構成する絶縁層の比誘電率εr1と、トランジスタ160を
構成する絶縁層の比誘電率εr2とを異ならせる場合には、容量素子164を構成する絶
縁層の面積S1と、トランジスタ160においてゲート容量を構成する絶縁層の面積S2
とが、2・S2≧S1(望ましくはS2≧S1)を満たしつつ、C1≧C2を実現するこ
とが容易である。すなわち、容量素子164を構成する絶縁層の面積を小さくしつつ、C
1≧C2を実現することが容易である。具体的には、例えば、容量素子164を構成する
絶縁層においては、酸化ハフニウムなどのhigh−k材料でなる膜、または酸化ハフニ
ウムなどのhigh−k材料でなる膜と酸化物半導体でなる膜との積層構造を採用してε
r1を10以上、好ましくは15以上とし、トランジスタ160のゲート容量を構成する
絶縁層においては、酸化シリコンを採用して、εr2=3〜4とすることができる。
このような構成を併せて用いることで、開示する発明に係る半導体装置の、より一層の
高集積化が可能である。
なお、半導体装置の記憶容量を大きくするためには、高集積化以外に、多値化の手法を
採ることもできる。例えば、メモリセルの一に3段階以上の情報を書き込む構成とするこ
とで、2段階(1ビット)の情報を書き込む場合と比較して記憶容量を増大させることが
できる。例えば、上述のような、低電位を与える電荷Q、高電位を与える電荷Qに加
え、他の電位を与える電荷Qをトランジスタ160のゲート電極に与えることで、多値化
を実現することができる。この場合、比較的規模の大きい回路構成(例えば、15F
50Fなど:Fは最小加工寸法)を採用しても十分な記憶容量を確保することができる
〈応用例〉
次に、図1に示すメモリセルの回路を応用したより具体的な回路構成および動作につい
て、図2を参照して説明する。
図2(A)は、(m×n)個のメモリセル170を有する半導体装置の回路図の一例で
ある。図2(A)中のメモリセル170の構成は、図1(A−1)と同様である。ただし
、図2(A)では、第1行目のメモリセル170のみがビット線BLと直接接続し、第m
行目のメモリセル170のみがソース線SLと直接接続する構成を示している。他の行の
メモリセル170は、同じ列の他のメモリセル170を介してビット線BLおよびソース
線SLと電気的に接続される。
図2(A)に示す半導体装置は、m本(mは2以上の整数)の書き込みワード線WWL
と、m本の読み出しワード線RWLと、n本(nは2以上の整数)のソース線SLと、n
本のビット線BLと、n本の信号線Sと、メモリセル170が縦m個(行)×横n個(列
)のマトリクス状に配置されたメモリセルアレイ201と、n本のビット線BLおよびn
本の信号線Sに接続する第1の駆動回路190と、m本の書き込みワード線WWLおよび
m本の読み出しワード線RWLに接続する第2の駆動回路192と、を有する。
図2(A)に示す半導体装置は、第2の駆動回路192とメモリセルアレイ201との
間に、容量素子250を有する。例えば、図2(B)に示す容量素子250を用いること
ができる。図2(B)に示すように、容量素子250は、容量素子250の電極の一方が
書き込みワード線WWLに電気的に接続する構成を有する。
または、図2(A)に示す半導体装置は、第2の駆動回路192とメモリセルアレイ2
01との間に、容量素子250および抵抗素子251(図2(A)では図示せず)を有す
る構成としてもよい。例えば、図2(C)に示す容量素子250および抵抗素子251を
用いることができる。図2(C)に示すように、容量素子250および抵抗素子251は
、容量素子250の電極の一方が書き込みワード線WWLおよび抵抗素子251の端子の
一方に電気的に接続する構成を有する。抵抗素子251の端子の他方は第2の駆動回路1
92に電気的に接続する構成を有する。
なお、読み出しワード線RWL側には、容量素子250、または容量素子250および
抵抗素子251を設けなくてよい。または、書き込みワード線WWL側と同様に読み出し
ワード線RWL側にも、容量素子250、または容量素子250および抵抗素子251を
設けてもよい。
データの書き込み、保持、および読み出しは、基本的に図1の場合と同様である。つま
り、具体的な書き込みの動作は以下のようになる。なお、ここでは一例として、ノードF
Gに電位V1(電源電位VDDより低い電位)または基準電位GNDのいずれかを与える
場合について説明するが、ノードFGに与える電位の関係はこれに限られない。また、ノ
ードFGに電位V1を与えた場合に保持されるデータをデータ”1”、ノードFGに基準
電位GNDを与えた場合に保持されるデータをデータ”0”とする。また、ソース線SL
の電位はVDDまたはVDDより幾らか低い電位(VR)とする。ただし、動作に問題が
なければ、ソース線SLの電位を一時的に変化させても良い。
まず、メモリセル170に接続される読み出しワード線RWLの電位をGNDとし、書
き込みワード線WWLの電位をV2(V1より高い電位、例えばVDD)としてメモリセ
ル170を選択する。
メモリセル170にデータ”0”を書き込む場合には、信号線SにはGNDを与え、メ
モリセル170にデータ”1”を書き込む場合には、信号線SにはV1を与える。ここで
は書き込みワード線WWLの電位をV2としているため、ノードFGにV1を与えること
が可能である。
データの保持は、読み出しワード線RWLの電位および書き込みワード線WWLの電位
を、GNDとすることにより行われる。
読み出しワード線RWLの電位をGNDに固定すると、ノードFGの電位は書き込み時
の電位に固定される。つまり、ノードFGにデータ”1”であるV1が与えられている場
合、ノードFGの電位はV1となり、ノードFGにデータ”0”であるGNDが与えられ
ていれば、ノードFGの電位はGNDとなる。
書き込みワード線WWLにはGNDが与えられているため、データ”1”とデータ”0
”のいずれが書き込まれた場合でも、トランジスタ162はオフ状態となる。トランジス
タ162のオフ電流は極めて小さいから、トランジスタ160のゲート電極の電荷は長時
間にわたって保持される。
データの読み出しは、読み出し対象のメモリセル170に接続される読み出しワード線
RWLの電位および書き込みワード線WWLの電位をGNDとし、また、読み出し対象で
はないメモリセル170に接続される読み出しワード線RWLの電位をV1とし、かつ、
書き込みワード線WWLの電位をGNDとすることにより行われる。
読み出し対象のメモリセル170に接続される読み出しワード線RWLの電位をGND
とすると、読み出し対象のメモリセル170のノードFGにデータ”1”であるV1が与
えられている場合、トランジスタ160はオフ状態となる。一方で、ノードFGにデータ
”0”であるGNDが与えられていれば、トランジスタ160はオン状態となる。
また、読み出し対象ではないメモリセル170に接続される読み出しワード線RWLの
電位をV1とし、かつ、書き込みワード線WWLの電位をGNDとすると、読み出し対象
ではないメモリセル170にデータ”1”が書き込まれている場合、および、データ”0
”が書き込まれている場合のいずれにおいても、トランジスタ160はオフ状態となる。
つまり、上述の読み出し動作により、読み出し対象のメモリセル170にデータ”1”
が書き込まれている場合には、トランジスタ160がオフ状態となり、読み出し開始時の
ビット線BLの電位が維持されるか、低くなる。また、データ”0”が書き込まれている
場合には、トランジスタ160がオン状態となり、ビット線BLの電位が高くなる。
なお、上記ではトランジスタ160をpチャネル型として説明したが、トランジスタ1
60としてnチャネル型のトランジスタを用いてもよい。その場合には、各配線に与える
電位を適宜調節すればよい。
上述したとおり、開示する発明の半導体装置は、トランジスタ162のスイッチングに
よって動作し、トランジスタ162のオフ電流が極めて小さいことを利用してノードFG
の電荷を長時間保持するものである。したがって、トランジスタ162のゲート電極に電
気的に接続する書き込みワード線WWLに制御信号とは異なる短パルスやノイズ等の信号
が入力され、トランジスタ162が瞬間的にオンすることがあると、メモリセル170に
書き込まれたデータが消失するおそれがある。
開示する発明の半導体装置では、第2の駆動回路192とメモリセルアレイ201との
間に、書き込みワード線WWLに電気的に接続する容量素子250、または容量素子25
0および抵抗素子251を設けることで、制御信号とは異なる短パルスやノイズ等の信号
を低減または除去することができる。これにより、メモリセル170が有するトランジス
タ162が瞬間的にオンすることでメモリセル170に書き込まれたデータが消失してし
まう誤動作を防ぐことが可能である。
なお、制御信号とは異なる短パルスやノイズ等の信号には、第2の駆動回路192から
入力されてくる信号の他、電源投入時および電源切断時のときのように電位が不安定にな
る際に発生する電位変化に起因した信号等も含まれる。
以上のように、第2の駆動回路192とメモリセルアレイ201との間に、書き込みワ
ード線WWLに電気的に接続する容量素子250、または容量素子250および抵抗素子
251を設けることで、制御信号とは異なる短パルスやノイズ等の信号を低減または除去
することができる。これにより、メモリセル170が有するトランジスタ162が瞬間的
にオンすることでメモリセル170に書き込まれたデータが消失してしまう誤動作を防ぐ
ことが可能である。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと
適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、図1に示すメモリセルの回路を応用した回路構成であって、図2に
示す回路構成とは異なる回路構成について、図3、図4を参照して説明する。
図3(A)は、(m×n)個のメモリセル170を有する半導体装置の回路図の一例で
ある。図3(A)中のメモリセル170の構成は、図1(A−1)および図2(A)と同
様であるため、詳細な説明は省略する。
図3(A)に示す半導体装置は、メモリセル170が縦m個(行)×横n個(列)のマ
トリクス状に配置されたメモリセルアレイ201と、n本のビット線BLおよびn本の信
号線Sに接続する第1の駆動回路190と、m本の書き込みワード線WWLおよびm本の
読み出しワード線RWLに接続する第2の駆動回路192と、を有する。
図3(A)に示す半導体装置は、第2の駆動回路192が、書き込みワード線WWLに
電気的に接続するノイズ除去回路260を有する。例えば、図3(B)に示すノイズ除去
回路260を用いることができる。図3(B)に示すノイズ除去回路260は、直列に接
続した偶数個のインバータ回路と容量素子とを有する。例えば、第1のインバータ回路と
、第2のインバータ回路と、容量素子とを有し、容量素子の電極の一方が第1のインバー
タ回路の出力端子および第2のインバータ回路の入力端子に電気的に接続する構成を有す
る。なお、図では2個のインバータ回路を用いる構成を示しているが、偶数個のインバー
タ回路を用いる構成であればその数は限定されない。その場合には、容量素子の前後に少
なくとも1個ずつインバータ回路を有していればよい。
または、図3(A)に示す半導体装置において、図3(C)に示すノイズ除去回路26
0を用いてもよい。図3(C)に示すノイズ除去回路260は、直列に接続した偶数個の
インバータ回路と抵抗素子とを有する。例えば、第1のインバータ回路と、第2のインバ
ータ回路と、抵抗素子とを有し、抵抗素子の端子の一方が第1のインバータ回路の出力端
子に電気的に接続し、抵抗素子の端子の他方が第2のインバータ回路の入力端子に電気的
に接続する構成を有する。なお、図では2個のインバータ回路を用いる構成を示している
が、偶数個のインバータ回路を用いる構成であればその数は限定されない。その場合には
、抵抗素子の前後に少なくとも1個ずつインバータ回路を有していればよい。
または、図3(A)に示す半導体装置において、図3(D)に示すノイズ除去回路26
0を用いてもよい。図3(D)に示すノイズ除去回路260は、直列に接続した偶数個の
インバータ回路と容量素子と抵抗素子とを有する。例えば、第1のインバータ回路と、第
2のインバータ回路と、容量素子と、抵抗素子とを有し、抵抗素子の端子の一方が第1の
インバータ回路の出力端子に電気的に接続し、抵抗素子の端子の他方および容量素子の電
極の一方が第2のインバータ回路の入力端子に電気的に接続する構成を有する。なお、図
では2個のインバータ回路を用いる構成を示しているが、偶数個のインバータ回路を用い
る構成であればその数は限定されない。その場合には、容量素子と抵抗素子の前後に少な
くとも1個ずつインバータ回路を有していればよい。
または、図3(A)に示す半導体装置において、図4(A)に示すノイズ除去回路26
0を用いてもよい。図4(A)に示すノイズ除去回路260は、直列に接続した2個のバ
ッファ回路と容量素子とを有する。例えば、第1のバッファ回路と、第2のバッファ回路
と、容量素子とを有し、容量素子の電極の一方が第1のバッファ回路の出力端子および第
2のバッファ回路の入力端子に電気的に接続する構成を有する。なお、図では2個のバッ
ファ回路を用いる構成を示しているが、複数個のバッファ回路を用いる構成であればその
数は限定されない。その場合には、容量素子の前後に少なくとも1個ずつバッファ回路を
有していればよい。
または、図3(A)に示す半導体装置において、図4(B)に示すノイズ除去回路26
0を用いてもよい。図4(B)に示すノイズ除去回路260は、直列に接続した複数個の
バッファ回路と抵抗素子とを有する。例えば、第1のバッファ回路と、第2のバッファ回
路と、抵抗素子とを有し、抵抗素子の端子の一方が第1のバッファ回路の出力端子に電気
的に接続し、抵抗素子の端子の他方が第2のバッファ回路の入力端子に電気的に接続する
構成を有する。なお、図では2個のバッファ回路を用いる構成を示しているが、複数個の
バッファ回路を用いる構成であればその数は限定されない。その場合には、抵抗素子の前
後に少なくとも1個ずつバッファ回路を有していればよい。
または、図3(A)に示す半導体装置において、図4(C)に示すノイズ除去回路26
0を用いてもよい。図4(C)に示すノイズ除去回路260は、直列に接続した複数個の
バッファ回路と容量素子と抵抗素子とを有する。例えば、第1のバッファ回路と、第2の
バッファ回路と、容量素子と、抵抗素子とを有し、抵抗素子の端子の一方が第1のバッフ
ァ回路の出力端子に電気的に接続し、抵抗素子の端子の他方および容量素子の電極の一方
が第2のバッファ回路の入力端子に電気的に接続する構成を有する。なお、図では2個の
バッファ回路を用いる構成を示しているが、複数個のバッファ回路を用いる構成であれば
その数は限定されない。その場合には、容量素子と抵抗素子の前後に少なくとも1個ずつ
バッファ回路を有していればよい。
または、図3(A)に示す半導体装置において、図4(D)に示すノイズ除去回路26
0を用いてもよい。図4(D)に示すノイズ除去回路260は、バッファ回路と容量素子
とAND回路とを有し、バッファ回路の出力端子がAND回路の入力端子の一方および他
方ならびに容量素子の電極の一方に電気的に接続する構成を有する。なお、図では1個の
バッファ回路を用いる構成を示しているが、複数個のバッファ回路を用いてもよい。
または、図3(A)に示す半導体装置において、図4(E)に示すノイズ除去回路26
0を用いてもよい。図4(E)に示すノイズ除去回路260は、バッファ回路と抵抗素子
とAND回路とを有し、バッファ回路の出力端子がAND回路の入力端子の一方および抵
抗素子の端子の一方に電気的に接続し、抵抗素子の端子の他方がAND回路の入力端子の
他方に電気的に接続する構成を有する。なお、図では1個のバッファ回路を用いる構成を
示しているが、複数個のバッファ回路を用いてもよい。
または、図3(A)に示す半導体装置において、図4(F)に示すノイズ除去回路26
0を用いてもよい。図4(F)に示すノイズ除去回路260は、バッファ回路と容量素子
と抵抗素子とAND回路とを有し、バッファ回路の出力端子がAND回路の入力端子の一
方および抵抗素子の端子の一方に電気的に接続し、抵抗素子の端子の他方が容量素子の電
極の一方およびAND回路の入力端子の他方に電気的に接続する構成を有する。なお、図
では1個のバッファ回路を用いる構成を示しているが、複数個のバッファ回路を用いても
よい。
上記において、バッファ回路は偶数個のインバータ回路を用いて構成することができる
なお、読み出しワード線RWL側には、ノイズ除去回路260を設けなくてよい。また
は、書き込みワード線WWL側と同様に読み出しワード線RWL側にも、ノイズ除去回路
260を設けてもよい。
データの書き込み、保持、および読み出しは、基本的に図1、図2の場合と同様である
すなわち、開示する発明の半導体装置は、トランジスタ162のスイッチングによって
動作し、トランジスタ162のオフ電流が極めて小さいことを利用してノードFGの電荷
を長時間保持するものである。したがって、トランジスタ162のゲート電極に電気的に
接続する書き込みワード線WWLに制御信号とは異なる短パルスやノイズ等の信号が入力
され、トランジスタ162が瞬間的にオンすることがあると、メモリセル170に書き込
まれたデータが消失するおそれがある。
開示する発明の半導体装置では、書き込みワード線WWLに電気的に接続するノイズ除
去回路260を設けることで、制御信号とは異なる短パルスやノイズ等の信号を低減また
は除去することができる。これにより、メモリセル170が有するトランジスタ162が
瞬間的にオンすることでメモリセル170に書き込まれたデータが消失してしまう誤動作
を防ぐことが可能である。
また、図3(B)乃至図3(D)に示したインバータ回路、または図4(A)乃至図4
(F)に示したバッファ回路を構成するインバータ回路として、データ反転位置を変更し
たインバータ回路を用いてもよい。インバータ回路におけるデータ反転位置の変更は、例
えば、インバータ回路に用いるPチャネル型トランジスタのサイズ(チャネル長、チャネ
ル幅)またはNチャネル型トランジスタのサイズ(チャネル長、チャネル幅)を変更する
ことで行うことができる。または、インバータ回路におけるデータ反転位置の変更は、ヒ
ステリシス特性を持った回路(ヒステリシス型のインバータ回路、ヒステリシス型のAN
D回路)を用いて行ってもよい。データ反転位置を変更することで制御信号とは異なる短
パルスやノイズ等の信号を低減または除去する効果を高めることができる。
以上のように、書き込みワード線WWLに電気的に接続するノイズ除去回路260を設
けることで、制御信号とは異なる短パルスやノイズ等の信号を低減または除去することが
できる。これにより、メモリセル170が有するトランジスタ162が瞬間的にオンする
ことでメモリセル170に書き込まれたデータが消失してしまう誤動作を防ぐことが可能
である。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと
適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、開示する発明の一態様に係る半導体装置の応用例について、図5を
用いて説明する。ここでは、半導体装置が有するメモリセルアレイの一部または全部の構
成について説明する。なお、回路図においては、酸化物半導体を用いたトランジスタであ
ることを示すために、OSの符号を併せて付す場合がある。
図5(A)、図5(B)および図5(C)は、図1(A−1)に示す半導体装置(以下
、メモリセルとも記載する。)を複数用いて形成されるメモリセルアレイの一部または全
部の回路図である。図5(A)および図5(B)は、メモリセルが直列に接続された、い
わゆるNAND型の半導体装置の回路図であり、図5(C)は、メモリセルが並列に接続
された、いわゆるNOR型の半導体装置の回路図である。
図5(A)に示す半導体装置は、ソース線SL、ビット線BL、信号線S、m本の書き
込みワード線WWL、m本の読み出しワード線RWL、m個のメモリセルを有する。図5
(A)では、ソース線SLおよびビット線BLを1本ずつ有する構成となっているが、こ
れに限られることなく、ソース線SLおよびビット線BLを複数本有する構成としてもよ
い。
各メモリセル(代表として、メモリセル170(i)を考える。ここで、iは1以上m
以下の整数)において、トランジスタ160(i)のゲート電極と、トランジスタ162
(i)のドレイン電極(またはソース電極)と、容量素子164(i)の電極の一方とは
、電気的に接続されている。また、信号線Sとトランジスタ162(i)のソース電極(
またはドレイン電極)とは、電気的に接続され、書き込みワード線WWL(i)と、トラ
ンジスタ162(i)のゲート電極とは、電気的に接続されている。そして、読み出しワ
ード線RWL(i)と、容量素子164(i)の電極の他方は電気的に接続されている。
また、メモリセル170(i)が有するトランジスタ160(i)のドレイン電極は、
隣接するメモリセル170(i−1)が有するトランジスタ160(i−1)のソース電
極と電気的に接続され、メモリセル170(i)が有するトランジスタ160(i)のソ
ース電極は、隣接するメモリセル170(i+1)が有するトランジスタ160(i+1
)のドレイン電極と電気的に接続される。ただし、直列に接続されたm個のメモリセルの
うち、メモリセル170(1)が有するトランジスタ160(1)のドレイン電極は、ビ
ット線BLと電気的に接続される。また、直列に接続されたm個のメモリセルのうち、メ
モリセル170(m)が有するトランジスタ160(m)のソース電極は、ソース線SL
と電気的に接続される。
メモリセル170(1)が有するトランジスタ160(1)は、選択トランジスタを介
してビット線BLと電気的に接続されていてもよい(図示せず)。この場合、選択トラン
ジスタのゲート電極には、選択線G1が接続される。また、メモリセル170(m)が有
するトランジスタ160(m)も、選択トランジスタを介してソース線SLと電気的に接
続されていてもよい(図示せず)。この場合、選択トランジスタのゲート電極には、選択
線G2が接続される。
図5(A)に示す半導体装置では、行ごとの書き込み動作および読み出し動作を行う。
書き込み動作は次のように行われる。書き込みを行う行(例えば第i行)の書き込みワー
ド線WWL(i)にトランジスタ162(i)がオン状態となる電位を与え、書き込みを
行う行のトランジスタ162(i)をオン状態にする。これにより、指定した行のトラン
ジスタ160(i)のゲート電極に信号線Sの電位が与えられ、該ゲート電極に所定の電
荷が与えられる。このようにして、指定した行のメモリセルにデータを書き込むことがで
きる。
また、読み出し動作は次のように行われる。読み出しを行う行(例えば、第i行)以外
の読み出しワード線RWLに、トランジスタ160のゲート電極に与えられた電荷によら
ず、読み出しを行う行以外のトランジスタ160がオン状態となるような電位を与え、読
み出しを行う行以外のトランジスタ160をオン状態とする。それから、読み出しを行う
行の読み出しワード線RWL(i)に、トランジスタ160(i)のゲート電極が有する
電荷がどのデータに対応するかによって、トランジスタ160(i)のオン状態またはオ
フ状態が選択されるような電位(読み出し電位)を与える。また、ソース線SLに定電位
を与え、ビット線BLに接続されている読み出し回路(図示しない)を動作状態とする。
ここで、ソース線SL−ビット線BL間の複数のトランジスタ160(1)〜160(m
)のうち、読み出しを行う行のトランジスタ160(i)を除いてオン状態となっている
ため、ソース線SL−ビット線BL間のコンダクタンスの大小は、読み出しを行う行のト
ランジスタ160(i)の状態(オン状態またはオフ状態)によって決定される。読み出
しを行う行のトランジスタ160(i)のゲート電極が有する電荷がどのデータに対応す
るかによって、トランジスタの状態(オン状態またはオフ状態)は異なるから、それに応
じて、ビット線BLの電位は異なる値をとることになる。ビット線BLの電位を読み出し
回路によって読み出すことで、指定した行のメモリセルから情報を読み出すことができる
図5(B)に示す半導体装置は、図5(A)と一部構成が異なる半導体装置である。
図5(B)に示す半導体装置と図5(A)に示す半導体装置との相違点の一として、図
5(B)に示す半導体装置では、ビット線BLと、メモリセル170(1)が有するトラ
ンジスタ160(1)のドレイン電極とが、選択トランジスタ530を介して電気的に接
続されている点が挙げられる。選択トランジスタ530はゲート電極において、選択トラ
ンジスタ530のオンオフを切り替えるための選択線G1と電気的に接続されている。
また、図5(B)に示す半導体装置と図5(A)に示す半導体装置との相違点の一とし
て、図5(A)に示す半導体装置においては、各メモリセルのトランジスタ162はソー
ス電極(またはドレイン電極)が信号線Sに接続されているのに対して、図5(B)に示
す半導体装置においては、各メモリセルのトランジスタ162は直列に接続されている点
が挙げられる。つまり、メモリセル170(i)が有するトランジスタ162(i)のソ
ース電極は、隣接するメモリセル170(i−1)が有するトランジスタ162(i−1
)のドレイン電極と電気的に接続され、メモリセル170(i)が有するトランジスタ1
62(i)のドレイン電極は、隣接するメモリセル170(i+1)が有するトランジス
タ162(i+1)のソース電極と電気的に接続される。ただし、直列に接続されたm個
のメモリセルのうち、メモリセル170(1)が有するトランジスタ162(1)のソー
ス電極は、信号線Sと電気的に接続される。また、直列に接続された各メモリセルにおい
て、トランジスタ162(i)のドレイン電極は、図5(A)に示す半導体装置と同様に
、トランジスタ160(i)のゲート電極と、容量素子164(i)の電極の一方と電気
的に接続される。
図5(B)に示す半導体装置の他の部分の構成については、図5(A)に示す半導体装
置と同様なので、詳細については上述の記載を参照することができる。
なお、図5(B)に示す半導体装置において、信号線Sとビット線BLは別々に設けら
れているが、開示する発明はこれに限られるものではなく、信号線Sとビット線BLを同
一の配線とする構成としても良い。
図5(B)に示す半導体装置でも、行ごとの書き込み動作および読み出し動作を行う。
書き込み動作は次のように行われる。
書き込み動作は、行ごとに第m行から順番に行われる。第i行(i=1〜m)の書き込
みを行う場合には、書き込みを行う行(第i行)の書き込みワード線WWL(i)にトラ
ンジスタ162(i)がオン状態となる電位を与え、書き込みを行う行のトランジスタ1
62(i)をオン状態にする。ここで、トランジスタ162(i)と信号線Sとの間にト
ランジスタ162(1)乃至トランジスタ162(i−1)が存在する場合には、書き込
みを行う行までのトランジスタ162(1)乃至162(i−1)もオン状態として、書
き込みを行う行のメモリセル170(i)に信号線Sの電位が与えられるようにする。こ
れにより、指定した行のトランジスタ160(i)のゲート電極に信号線Sの電位が与え
られ、該ゲート電極に所定の電荷が与えられる。それから、書き込みワード線WWL(i
)の電位をGNDに固定すると、トランジスタ160(i)のゲート電極に蓄積された電
荷が保持される。このようにして、指定した行(第i行)のメモリセルにデータを書き込
むことができる。
なお、図5(B)に示す半導体装置では、各メモリセル170を構成するトランジスタ
162を直列に接続するため、任意の行のデータのみを書き換えることは困難である。そ
のため、駆動方法として、複数行の一括消去動作を設けることが好ましい。例えば、第1
行から第m行までをブロックとして、ブロック毎の消去を行うことが好ましい。所定のブ
ロックのデータを書き換える場合には、まず当該ブロックのデータを消去して、第m行か
ら順番にデータを書き込むとよい。なお、直前に書き込んだ行のデータを書き換える場合
には、消去動作は不要である。
また、読み出し動作は次のように行われる。まず、選択線G1に電位を与えることによ
り、選択トランジスタをオンにする。なお、選択線G1に接続される選択トランジスタと
、選択線G2に接続される選択トランジスタがある場合には、2つのトランジスタをオン
状態とする。また、読み出しを行う行(例えば、第i行)以外の読み出しワード線RWL
に、トランジスタ160のゲート電極に与えられた電荷によらず、読み出しを行う行以外
のトランジスタ160がオン状態となるような電位を与え、読み出しを行う行以外のトラ
ンジスタ160をオン状態とする。それから、読み出しを行う行の読み出しワード線RW
L(i)に、トランジスタ160(i)のゲート電極が有する電荷がどのデータに対応す
るかによって、トランジスタ160(i)のオン状態またはオフ状態が選択されるような
電位(読み出し電位)を与える。また、ソース線SLに定電位を与え、ビット線BLに接
続されている読み出し回路(図示しない)を動作状態とする。ここで、ソース線SL−ビ
ット線BL間の複数のトランジスタ160(1)〜160(m)のうち、読み出しを行う
行のトランジスタ160(i)を除いてオン状態となっているため、ソース線SL−ビッ
ト線BL間のコンダクタンスの大小は、読み出しを行う行のトランジスタ160(i)の
状態(オン状態またはオフ状態)によって決定される。読み出しを行う行のトランジスタ
160(i)のゲート電極が有する電荷がどのデータに対応するかによって、トランジス
タの状態(オン状態またはオフ状態)は異なるから、それに応じて、ビット線BLの電位
は異なる値をとることになる。ビット線BLの電位を読み出し回路によって読み出すこと
で、指定した行のメモリセルから情報を読み出すことができる。
図5(C)に示す半導体装置は、ソース線SL、ビット線BLおよび信号線Sをそれぞ
れn本有し、書き込みワード線WWLおよび読み出しワード線RWLをそれぞれm数本有
し、複数のメモリセル170(1、1)〜170(m、n)を有する。
各メモリセル(代表として、メモリセル170(i、j)を考える。ここで、iは1以
上m以下の整数、jは1以上n以下の整数)は、トランジスタ160(i、j)のゲート
電極と、トランジスタ162(i、j)のドレイン電極(またはソース電極)と、容量素
子164(i、j)の電極の一方とは、電気的に接続されている。また、ソース線SL(
j)とトランジスタ160(i、j)のソース電極とは、電気的に接続され、ビット線B
L(j)とトランジスタ160(i、j)のドレイン電極とは、電気的に接続されている
。また、信号線S(j)とトランジスタ162(i、j)のソース電極(またはドレイン
電極)とは、電気的に接続され、書き込みワード線WWL(i)と、トランジスタ162
(i、j)のゲート電極とは、電気的に接続されている。そして、読み出しワード線RW
L(i)と、容量素子164(i、j)の電極の他方は電気的に接続されている。
図5(C)に示す半導体装置では、行ごとの書き込み動作および読み出し動作を行う。
書き込み動作は、上述の図5(A)に示す半導体装置と同様の方法で行われる。読み出し
動作は次のように行われる。まず、読み出しを行う行(例えば、第i行のメモリセル(i
、1)〜(i、n))以外の読み出しワード線RWLに、トランジスタ160(i、1)
〜(i、n)のゲート電極に与えられた電荷がどのデータに対応するかによらず、読み出
しを行う行以外のトランジスタ160がオフ状態となるような電位を与え、読み出しを行
う行以外のトランジスタ160をオフ状態とする。それから、読み出しを行う行の読み出
しワード線RWL(i)に、トランジスタ160(i、1)〜(i、n)のゲート電極が
有する電荷がどのデータに対応するかによってトランジスタ160(i、1)〜(i、n
)のオン状態またはオフ状態が選択されるような電位(読み出し電位)を与える。また、
ソース線SL(j)に定電位を与え、ビット線BL(j)に接続されている読み出し回路
(図示しない)を動作状態とする。ここで、ソース線SL(j)−ビット線BL(j)間
のコンダクタンスの大小は、読み出しを行う行のトランジスタ160(i、1)〜(i、
n)の状態(オン状態またはオフ状態)によって決定される。つまり、読み出しを行う行
のトランジスタ160(i、1)〜(i、n)のゲート電極が有する電荷がどのデータに
対応するかによって、ビット線BL(j)の電位は異なる値をとることになる。ビット線
BL(j)の電位を読み出し回路によって読み出すことで、指定した行のメモリセルから
情報を読み出すことができる。
なお、上記においては、各メモリセル170に保持させる情報量を1ビットとしたが、
本実施の形態に示す半導体装置の構成はこれに限られない。書き込み時に各トランジスタ
160のゲート電極に与える電位を3種類以上用意して、各メモリセル170が保持する
情報量を増加させても良い。例えば、書き込み時に各トランジスタ160のゲート電極に
あたえる電位を4種類とする場合には、各メモリセルに2ビットの情報を保持させること
ができる。
図5において、信号線Sとビット線BLは、兼用してもよい。信号線Sとビット線BL
を兼用することにより、配線数を低減することができる。また、図5(C)において、ソ
ース線SLは共通化してもよい。
図2(A)または図3(A)に示したメモリセルアレイ201の代わりとして、図5(
A)または図5(B)に示したNAND型の半導体装置を用いてもよい。その場合、図5
(A)または図5(B)に示したNAND型の半導体装置をn列並べて用いてもよい。ま
た、図2(A)または図3(A)に示したメモリセルアレイ201の代わりとして、図5
(C)に示したNOR型の半導体装置を用いてもよい。
開示する発明の半導体装置は、トランジスタ162のスイッチングによって動作し、ト
ランジスタ162のオフ電流が極めて小さいことを利用してノードFGの電荷を長時間保
持するものである。したがって、トランジスタ162のゲート電極に電気的に接続する書
き込みワード線WWLに制御信号とは異なる短パルスやノイズ等の信号が入力され、トラ
ンジスタ162が瞬間的にオンすることがあると、メモリセル170に書き込まれたデー
タが消失するおそれがある。
開示する発明の半導体装置では、図2乃至図4で説明したように、書き込みワード線W
WLに電気的に接続する容量素子250またはノイズ除去回路260を設けることで、制
御信号とは異なる短パルスやノイズ等の信号を低減または除去することができる。これに
より、メモリセル170が有するトランジスタ162が瞬間的にオンすることでメモリセ
ル170に書き込まれたデータが消失してしまう誤動作を防ぐことが可能である。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと
適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、開示する発明の一態様に係る半導体装置の構成およびその作製方法
について図6乃至図14を参照して説明する。
〈半導体装置の断面構成および平面構成〉
図6は、半導体装置が有するメモリセルの構成の一例である。図6(A)には、半導体
装置が有するメモリセルの断面を、図6(B)には、半導体装置が有するメモリセルの平
面を、それぞれ示す。ここで、図6(A)は、図6(B)のA1−A2およびB1−B2
における断面に相当する。図6(A)および図6(B)に示す半導体装置は、下部に第1
の半導体材料を用いたトランジスタ160を有し、上部に第2の半導体材料を用いたトラ
ンジスタ162を有する。ここで、第1の半導体材料と第2の半導体材料とは異なる材料
とすることが望ましい。例えば、第1の半導体材料を酸化物半導体以外の半導体材料とし
、第2の半導体材料を酸化物半導体とすることができる。酸化物半導体以外の半導体材料
としては、例えば、シリコン、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、ま
たはガリウムヒ素等を用いることができ、単結晶半導体を用いることが好ましい。他に、
有機半導体材料などを用いてもよい。このような半導体材料を用いたトランジスタは、高
速動作が容易である。一方で、酸化物半導体を用いたトランジスタは、その特性により長
時間の電荷保持を可能とする。図6に示す半導体装置は、メモリセルとして用いることが
できる。
なお、開示する発明の技術的な本質は、情報を保持するために酸化物半導体のようなオ
フ電流を十分に低減することが可能な半導体材料をトランジスタ162に用いる点にある
から、半導体装置に用いられる材料や半導体装置の構造など、半導体装置の具体的な構成
をここで示すものに限定する必要はない。
図6におけるトランジスタ160は、半導体基板500上の半導体層中に設けられたチ
ャネル形成領域134と、チャネル形成領域134を挟むように設けられた不純物領域1
32(ソース領域およびドレイン領域とも記す)と、チャネル形成領域134上に設けら
れたゲート絶縁層122aと、ゲート絶縁層122a上にチャネル形成領域134と重畳
するように設けられたゲート電極128aと、を有する。なお、図において、明示的には
ソース電極やドレイン電極を有しない場合があるが、便宜上、このような状態を含めてト
ランジスタと呼ぶ場合がある。また、この場合、トランジスタの接続関係を説明するため
に、ソース領域やドレイン領域を含めてソース電極やドレイン電極と表現することがある
。つまり、本明細書において、ソース電極との記載には、ソース領域が含まれうる。
また、半導体基板500上の半導体層中に設けられた不純物領域126には、導電層1
28bが接続されている。ここで、導電層128bは、トランジスタ160のソース電極
やドレイン電極としても機能する。また、不純物領域132と不純物領域126との間に
は、不純物領域130が設けられている。また、トランジスタ160を覆うように絶縁層
136、絶縁層138、および絶縁層140が設けられている。なお、高集積化を実現す
るためには、図6に示すようにトランジスタ160がサイドウォール絶縁層を有しない構
成とすることが望ましい。一方で、トランジスタ160の特性を重視する場合には、ゲー
ト電極128aの側面にサイドウォール絶縁層を設け、不純物濃度が異なる領域を含む不
純物領域132を設けても良い。
図6におけるトランジスタ162は、絶縁層140などの上に設けられた酸化物半導体
層144と、酸化物半導体層144と電気的に接続されているソース電極(またはドレイ
ン電極)142a、およびドレイン電極(またはソース電極)142bと、酸化物半導体
層144、ソース電極142aおよびドレイン電極142bを覆うゲート絶縁層146と
、ゲート絶縁層146上に酸化物半導体層144と重畳するように設けられたゲート電極
148aと、を有する。
ここで、酸化物半導体層144は水素などの不純物が十分に除去されることにより、ま
たは、十分な酸素が供給されることにより、高純度化されたものであることが望ましい。
具体的には、例えば、酸化物半導体層144の水素濃度は5×1019atoms/cm
以下、望ましくは5×1018atoms/cm以下、より望ましくは5×1017
atoms/cm以下とする。なお、上述の酸化物半導体層144中の水素濃度は、二
次イオン質量分析法(SIMS:Secondary Ion Mass Spectr
oscopy)で測定されるものである。このように、水素濃度が十分に低減されて高純
度化され、十分な酸素の供給により酸素欠乏に起因するエネルギーギャップ中の欠陥準位
が低減された酸化物半導体層144では、キャリア濃度が1×1012/cm未満、望
ましくは、1×1011/cm未満、より望ましくは1.45×1010/cm未満
となる。例えば、室温(25℃)でのオフ電流(ここでは、単位チャネル幅(1μm)あ
たりの値)は100zA(1zA(ゼプトアンペア)は1×10−21A)以下、望まし
くは10zA以下となる。このように、i型化(真性化)または実質的にi型化された酸
化物半導体を用いることで、極めて優れたオフ電流特性のトランジスタ162を得ること
ができる。
また、酸化物半導体層144は、アルカリ金属、及びアルカリ土類金属の濃度が充分に
低減されたものであることが望ましい。SIMS分析法により測定されるアルカリ金属又
はアルカリ土類金属の濃度は、例えば、Naの場合、5×1016cm−3以下、好まし
くは1×1016cm−3以下、さらに好ましくは1×1015cm−3以下、Liの場
合、5×1015cm−3以下、好ましくは1×1015cm−3以下、Kの場合、5×
1015cm−3以下、好ましくは1×1015cm−3以下とする。
酸化物半導体は不純物に対して鈍感であり、膜中にはかなりの金属不純物が含まれてい
ても問題がなく、ナトリウムのようなアルカリ金属が多量に含まれる廉価なソーダ石灰ガ
ラスも使えると指摘されている(神谷、野村、細野、「アモルファス酸化物半導体の物性
とデバイス開発の現状」、固体物理、2009年9月号、Vol.44、p.621−6
33)。しかし、このような指摘は適切でない。アルカリ金属、及びアルカリ土類金属は
酸化物半導体にとっては悪性の不純物であり、少ないほうがよい。特にアルカリ金属のう
ち、Naは酸化物半導体に接する絶縁膜が酸化物であった場合、その中に拡散し、Na
となる。また、酸化物半導体内において、金属と酸素の結合を分断し、あるいは結合中に
割り込む。その結果、トランジスタ特性の劣化(例えば、ノーマリーオン化(しきい値の
負へのシフト)、移動度の低下等)をもたらす。加えて、特性のばらつきの原因ともなる
。このような問題は、特に酸化物半導体中の水素の濃度が十分に低い場合において顕著と
なる。したがって、酸化物半導体中の水素の濃度が5×1019cm−3以下、特に5×
1018cm−3以下である場合には、アルカリ金属の濃度を上記の値にすることが強く
求められる。
また、酸化物半導体はフェルミ準位(Ef)と真性フェルミ準位(Ei)とが等しい(
Ef=Ei)、又はフェルミ準位(Ef)より真性フェルミ準位(Ei)が大きい(Ef
<Ei)、所謂p−−型であることが好ましい。例えば、酸化物半導体に、ドーパントと
して錫を添加することによってp−−型の酸化物半導体とすることができる。なお、酸化
物半導体がi型(真性)または実質的にi型であると、不純物の添加によるフェルミ準位
(Ef)の制御がより容易となるため、好ましい。さらにゲート電極として仕事関数(φ
)が大きい材料を用いることが好ましい。上記構成とすると、トランジスタのノーマリ
ーオフが可能となり、さらにトランジスタに逆バイアスを加えると効果的である。よって
、85℃においてはオフ電流値が1yA以下、室温においてはオフ電流値が0.1yA以
下というオフ電流の低いトランジスタを得ることができるため、該トランジスタをメモリ
素子に用いることによって、データの保持特性(メモリリテンション)が向上された半導
体装置とすることができる。
なお、図6のトランジスタ162では、微細化に起因して素子間に生じるリークを抑制
するために、島状に加工された酸化物半導体層144を用いているが、島状に加工されて
いない構成を採用しても良い。酸化物半導体層を島状に加工しない場合には、加工の際の
エッチングによる酸化物半導体層144の汚染を防止できる。
図6における容量素子164は、ドレイン電極142b、ゲート絶縁層146、および
導電層148b、とで構成される。すなわち、ドレイン電極142bは、容量素子164
の一方の電極として機能し、導電層148bは、容量素子164の他方の電極として機能
することになる。このような構成とすることにより、十分な容量を確保することができる
。また、酸化物半導体層144とゲート絶縁層146とを積層させる場合には、ドレイン
電極142bと、導電層148bとの絶縁性を十分に確保することができる。さらに、容
量が不要の場合は、容量素子164を設けない構成とすることもできる。
本実施の形態では、トランジスタ162および容量素子164が、トランジスタ160
と少なくとも一部が重畳するように設けられている。このような平面レイアウトを採用す
ることにより、高集積化を図ることができる。例えば、最小加工寸法をFとして、メモリ
セルの占める面積を15F〜25Fとすることが可能である。
トランジスタ162および容量素子164の上には、絶縁層150が設けられている。
そして、ゲート絶縁層146および絶縁層150に形成された開口には、配線154が設
けられている。配線154は、メモリセルの一と他のメモリセルとを接続する配線であり
、図1乃至図3の回路図におけるビット線BLおよび信号線Sを兼用した配線に相当する
。配線154は、ソース電極142aと、導電層128bとを介して、不純物領域126
に接続されている。これにより、トランジスタ160におけるソース領域またはドレイン
領域と、トランジスタ162におけるソース電極142aと、をそれぞれ異なる配線に接
続する場合と比較して、配線の数を削減することができるため、半導体装置の集積度を向
上させることができる。
また、導電層128bを設けることにより、不純物領域126とソース電極142aの
接続する位置と、ソース電極142aと配線154との接続する位置を、重畳して設ける
ことができる。このような平面レイアウトを採用することにより、コンタクト領域に起因
する素子面積の増大を抑制することができる。つまり、半導体装置の集積度を高めること
ができる。
また、半導体装置が図2に示す構成である場合において、書き込みワード線WWLに電
気的に接続する容量素子250の断面の一例を図7に示す。
図7に示す容量素子250は、半導体層中に設けられた不純物領域126、ゲート絶縁
層122aと同層に設けられた絶縁層122、ゲート電極128aと同層に設けられた導
電層128c、ソース電極142aおよびドレイン電極142bと同層に設けられた導電
層142c、およびゲート電極148aと同層に設けられた導電層148cで構成される
。導電層128c、導電層142cおよび導電層148cは電気的に接続され、容量素子
250の電極の一方として機能し、不純物領域126は、容量素子250の電極の他方と
して機能し、絶縁層122は容量素子250の誘電体として機能する。このような構成と
することにより、十分な容量を確保することができる。なお、容量素子250は上記構成
に限定されない。図6に示す半導体装置を構成する半導体層、絶縁層および導電層のいず
れかを用いて、容量素子250を形成すればよい。例えば、容量素子250として、図6
に示す容量素子164と同様の構成を採用してもよい。
〈SOI基板の作製方法〉
次に、上記半導体装置の作製に用いられるSOI基板の作製方法の一例について、図8
を参照して説明する。
まず、ベース基板として半導体基板500を準備する(図8(A)参照)。半導体基板
500としては、単結晶シリコン基板、単結晶ゲルマニウム基板などの半導体基板を用い
ることができる。また、半導体基板として、太陽電池級シリコン(SOG−Si:Sol
ar Grade Silicon)基板などを用いても良い。また、多結晶半導体基板
を用いても良い。太陽電池級シリコンや、多結晶半導体基板などを用いる場合には、単結
晶シリコン基板などを用いる場合と比較して、製造コストを抑制することができる。
なお、半導体基板500に代えて、アルミノシリケートガラス、アルミノホウケイ酸ガ
ラス、バリウムホウケイ酸ガラスのような電子工業用に使われる各種ガラス基板、石英基
板、セラミック基板、サファイア基板などを用いても良い。また、窒化シリコンと酸化ア
ルミニウムを主成分とした熱膨張係数がシリコンに近いセラミック基板を用いてもよい。
半導体基板500は、その表面をあらかじめ洗浄しておくことが好ましい。具体的には
、半導体基板500に対して、塩酸過酸化水素水混合溶液(HPM)、硫酸過酸化水素水
混合溶液(SPM)、アンモニア過酸化水素水混合溶液(APM)、希フッ酸(DHF)
等を用いて洗浄を行うのが好ましい。
次に、ボンド基板を準備する。ここでは、ボンド基板として単結晶半導体基板510を
用いる(図8(B)参照)。なお、ここでは、ボンド基板として単結晶のものを用いるが
、ボンド基板の結晶性を単結晶に限る必要はない。
単結晶半導体基板510としては、例えば、単結晶シリコン基板、単結晶ゲルマニウム
基板、単結晶シリコンゲルマニウム基板など、第14族元素でなる単結晶半導体基板を用
いることができる。また、ガリウムヒ素やインジウムリン等の化合物半導体基板を用いる
こともできる。市販のシリコン基板としては、直径5インチ(125mm)、直径6イン
チ(150mm)、直径8インチ(200mm)、直径12インチ(300mm)、直径
16インチ(400mm)サイズの円形のものが代表的である。なお、単結晶半導体基板
510の形状は円形に限らず、例えば、矩形等に加工したものであっても良い。また、単
結晶半導体基板510は、CZ(チョクラルスキー)法やFZ(フローティングゾーン)
法を用いて作製することができる。
単結晶半導体基板510の表面には酸化膜512を形成する(図8(C)参照)。なお
、汚染物除去の観点から、酸化膜512の形成前に、塩酸過酸化水素水混合溶液(HPM
)、硫酸過酸化水素水混合溶液(SPM)、アンモニア過酸化水素水混合溶液(APM)
、希フッ酸(DHF)、FPM(フッ酸、過酸化水素水、純水の混合液)等を用いて単結
晶半導体基板510の表面を洗浄しておくことが好ましい。希フッ酸とオゾン水を交互に
吐出して洗浄してもよい。
酸化膜512は、例えば、酸化シリコン膜、酸化窒化シリコン膜等を単層で、または積
層させて形成することができる。上記酸化膜512の作製方法としては、熱酸化法、CV
D法、スパッタリング法などがある。また、CVD法を用いて酸化膜512を形成する場
合、良好な貼り合わせを実現するためには、テトラエトキシシラン(略称;TEOS:化
学式Si(OC)等の有機シランを用いて酸化シリコン膜を形成することが好
ましい。
本実施の形態では、単結晶半導体基板510に熱酸化処理を行うことにより酸化膜51
2(ここでは、SiO膜)を形成する。熱酸化処理は、酸化性雰囲気中にハロゲンを添
加して行うことが好ましい。
例えば、塩素(Cl)が添加された酸化性雰囲気中で単結晶半導体基板510に熱酸化
処理を行うことにより、塩素酸化された酸化膜512を形成することができる。この場合
、酸化膜512は、塩素原子を含有する膜となる。このような塩素酸化により、外因性の
不純物である重金属(例えば、Fe、Cr、Ni、Mo等)を捕集して金属の塩化物を形
成し、これが気化することによって単結晶半導体基板510の汚染を低減させることがで
きる。
なお、酸化膜512に含有させるハロゲン原子は塩素原子に限られない。酸化膜512
にはフッ素原子を含有させてもよい。単結晶半導体基板510表面をフッ素酸化する方法
としては、HF溶液に浸漬させた後に酸化性雰囲気中で熱酸化処理を行う方法や、NF
を酸化性雰囲気に添加して熱酸化処理を行う方法などがある。
次に、イオンを電界で加速して単結晶半導体基板510に照射し、添加することで、単
結晶半導体基板510の所定の深さに結晶構造が損傷した脆化領域514を形成する(図
8(D)参照)。
脆化領域514が形成される領域の深さは、イオンの運動エネルギー、イオンの質量と
電荷、イオンの入射角などによって調節することができる。また、脆化領域514は、イ
オンの平均侵入深さとほぼ同じ深さの領域に形成される。このため、イオンを添加する深
さで、単結晶半導体基板510から分離される単結晶半導体層の厚さを調節することがで
きる。例えば、単結晶半導体層の厚さが、10nm以上500nm以下、好ましくは50
nm以上200nm以下程度となるように平均侵入深さを調節すれば良い。
当該イオンの照射処理は、イオンドーピング装置やイオン注入装置を用いて行うことが
できる。イオンドーピング装置の代表例としては、プロセスガスをプラズマ励起して生成
された全てのイオン種を被処理体に照射する非質量分離型の装置がある。当該装置では、
プラズマ中のイオン種を質量分離しないで被処理体に照射することになる。これに対して
、イオン注入装置は質量分離型の装置である。イオン注入装置では、プラズマ中のイオン
種を質量分離し、ある特定の質量のイオン種を被処理体に照射する。
本実施の形態では、イオンドーピング装置を用いて、水素を単結晶半導体基板510に
添加する例について説明する。ソースガスとしては水素を含むガスを用いる。照射するイ
オンについては、H の比率を高くすると良い。具体的には、H、H 、H
総量に対してH の割合が50%以上(より好ましくは80%以上)となるようにする
。H の割合を高めることで、イオン照射の効率を向上させることができる。
なお、添加するイオンは水素に限定されない。ヘリウムなどのイオンを添加しても良い
。また、添加するイオンは一種類に限定されず、複数種類のイオンを添加しても良い。例
えば、イオンドーピング装置を用いて水素とヘリウムとを同時に照射する場合には、異な
る工程で照射する場合と比較して工程数を低減することができると共に、後の単結晶半導
体層の表面荒れを抑えることが可能である。
なお、イオンドーピング装置を用いて脆化領域514を形成する場合には、重金属も同
時に添加されるおそれがあるが、ハロゲン原子を含有する酸化膜512を介してイオンの
照射を行うことによって、これら重金属による単結晶半導体基板510の汚染を防ぐこと
ができる。
次に、半導体基板500と、単結晶半導体基板510とを対向させ、酸化膜512を介
して密着させる。これにより、半導体基板500と、単結晶半導体基板510とが貼り合
わされる(図8(E)参照)。なお、単結晶半導体基板510と貼り合わせる半導体基板
500の表面に酸化膜または窒化膜を成膜してもよい。
貼り合わせの際には、半導体基板500または単結晶半導体基板510の一箇所に、0
.001N/cm以上100N/cm以下、例えば、1N/cm以上20N/cm
以下の圧力を加えることが望ましい。圧力を加えて、貼り合わせ面を接近、密着させる
と、密着させた部分において半導体基板500と酸化膜512の接合が生じ、当該部分を
始点として自発的な接合がほぼ全面におよぶ。この接合には、ファンデルワールス力や水
素結合が作用しており、常温で行うことができる。
なお、単結晶半導体基板510と半導体基板500とを貼り合わせる前には、貼り合わ
せに係る表面につき、表面処理を行うことが好ましい。表面処理を行うことで、単結晶半
導体基板510と半導体基板500との界面での接合強度を向上させることができる。
表面処理としては、ウェット処理、ドライ処理、またはウェット処理とドライ処理の組
み合わせ、を用いることができる。また、異なるウェット処理どうしを組み合わせて用い
ても良いし、異なるドライ処理どうしを組み合わせて用いても良い。
なお、貼り合わせの後には、接合強度を増加させるための熱処理を行ってもよい。この
熱処理の温度は、脆化領域514における分離が生じない温度(例えば、室温以上400
℃未満)とする。また、この温度範囲で加熱しながら、半導体基板500と酸化膜512
とを接合させてもよい。上記熱処理には、拡散炉、抵抗加熱炉などの加熱炉、RTA(瞬
間熱アニール、Rapid Thermal Anneal)装置、マイクロ波加熱装置
などを用いることができる。なお、上記温度条件はあくまで一例に過ぎず、開示する発明
の一態様がこれに限定して解釈されるものではない。
次に、熱処理を行うことにより、単結晶半導体基板510を脆化領域において分離して
、半導体基板500上に、酸化膜512を介して単結晶半導体層516を形成する(図8
(F)参照)。
なお、上記分離の際の熱処理温度は、できる限り低いものであることが望ましい。分離
の際の温度が低いほど、単結晶半導体層516の表面荒れを抑制できるためである。具体
的には、例えば、上記分離の際の熱処理温度は、300℃以上600℃以下とすればよく
、500℃以下(400℃以上)とすると、より効果的である。
なお、単結晶半導体基板510を分離した後には、単結晶半導体層516に対して、5
00℃以上の温度で熱処理を行い、単結晶半導体層516中に残存する水素の濃度を低減
させてもよい。
次に、単結晶半導体層516の表面にレーザー光を照射することによって、表面の平坦
性を向上させ、かつ欠陥を低減させた単結晶半導体層518を形成する(図8(G)参照
)。なお、レーザー光の照射処理に代えて、熱処理を行っても良い。
なお、本実施の形態においては、単結晶半導体層516の分離に係る熱処理の直後に、
レーザー光の照射処理を行っているが、本発明の一態様はこれに限定して解釈されない。
単結晶半導体層516の分離に係る熱処理の後にエッチング処理を施して、単結晶半導体
層516表面の欠陥が多い領域を除去してから、レーザー光の照射処理を行っても良いし
、単結晶半導体層516表面の平坦性を向上させてからレーザー光の照射処理を行っても
よい。なお、上記エッチング処理としては、ウェットエッチング、ドライエッチングのい
ずれを用いてもよい。また、本実施の形態においては、上述のようにレーザー光を照射し
た後、単結晶半導体層516の膜厚を小さくする薄膜化工程を行ってもよい。単結晶半導
体層516の薄膜化には、ドライエッチングまたはウェットエッチングの一方、または双
方を用いればよい。
以上の工程により、良好な特性の単結晶半導体層518を有するSOI基板を得ること
ができる(図8(G)参照)。
〈半導体装置の作製方法〉
次に、上記のSOI基板を用いた半導体装置の作製方法について、図9乃至図12を参
照して説明する。
〈下部のトランジスタの作製方法〉
はじめに下部のトランジスタ160の作製方法について、図9および図10を参照して
説明する。なお、図9および図10は、図8に示す方法で作成したSOI基板の一部であ
って、図6(A)に示す下部のトランジスタに相当する断面工程図である。
まず、単結晶半導体層518を島状に加工して、半導体層120を形成する(図9(A
)参照)。なお、この工程の前後において、トランジスタのしきい値電圧を制御するため
に、n型の導電性を付与する不純物元素や、p型の導電性を付与する不純物元素を半導体
層に添加してもよい。半導体がシリコンの場合、n型の導電性を付与する不純物元素とし
ては、例えば、リンや砒素などを用いることができる。また、p型の導電性を付与する不
純物元素としては、例えば、硼素、アルミニウム、ガリウムなどを用いることができる。
次に、半導体層120を覆うように絶縁層122を形成する(図9(B)参照)。絶縁
層122は、後にゲート絶縁層となるものである。絶縁層122は、例えば、半導体層1
20表面の熱処理(熱酸化処理や熱窒化処理など)によって形成することができる。熱処
理に代えて、高密度プラズマ処理を適用しても良い。高密度プラズマ処理は、例えば、H
e、Ar、Kr、Xeなどの希ガス、酸素、酸化窒素、アンモニア、窒素、水素などのう
ちいずれかの混合ガスを用いて行うことができる。もちろん、CVD法やスパッタリング
法等を用いて絶縁層を形成しても良い。当該絶縁層122は、酸化シリコン、酸化窒化シ
リコン、窒化シリコン、酸化ハフニウム、酸化アルミニウム、酸化タンタル、酸化イット
リウム、ハフニウムシリケート(HfSixOy(x>0、y>0))、窒素が添加され
たハフニウムシリケート(HfSixOy(x>0、y>0))、窒素が添加されたハフ
ニウムアルミネート(HfAlxOy(x>0、y>0))等を含む単層構造または積層
構造とすることが望ましい。また、絶縁層122の厚さは、例えば、1nm以上100n
m以下、好ましくは10nm以上50nm以下とすることができる。ここでは、プラズマ
CVD法を用いて、酸化シリコンを含む絶縁層を単層で形成することとする。
次に、絶縁層122上にマスク124を形成し、一導電性を付与する不純物元素を半導
体層120に添加して、不純物領域126を形成する(図9(C)参照)。なお、ここで
は、不純物元素を添加した後、マスク124は除去する。
次に、絶縁層122上にマスクを形成し、絶縁層122が不純物領域126と重畳する
領域の一部を除去することにより、ゲート絶縁層122aを形成する(図9(D)参照)
。絶縁層122の除去方法として、ウェットエッチングまたはドライエッチングなどのエ
ッチング処理を用いることができる。
次に、ゲート絶縁層122a上にゲート電極(これと同じ層で形成される配線を含む)
を形成するための導電層を形成し、当該導電層を加工して、ゲート電極128aおよび導
電層128bを形成する(図9(E)参照)。
ゲート電極128aおよび導電層128bに用いる導電層としては、アルミニウムや銅
、チタン、タンタル、タングステン等の金属材料を用いて形成することができる。また、
多結晶シリコンなどの半導体材料を用いて、導電層を形成しても良い。形成方法も特に限
定されず、蒸着法、CVD法、スパッタリング法、スピンコート法などの各種成膜方法を
用いることができる。また、導電層の加工は、レジストマスクを用いたエッチングによっ
て行うことができる。
次に、ゲート電極128aおよび導電層128bをマスクとして、一導電型を付与する
不純物元素を半導体層に添加して、チャネル形成領域134、不純物領域132、および
不純物領域130を形成する(図10(A)参照)。ここでは、p型トランジスタを形成
するために、ボロン(B)などの不純物元素を添加する。または、n型トランジスタを形
成する場合には、リン(P)やヒ素(As)などの不純物元素を添加する。ここで、添加
される不純物元素の濃度は適宜設定することができる。また、不純物元素を添加した後に
は、活性化のための熱処理を行う。ここで、不純物領域の濃度は、不純物領域126、不
純物領域132、不純物領域130の順に高くなる。
次に、ゲート絶縁層122a、ゲート電極128a、導電層128bを覆うように、絶
縁層136、絶縁層138および絶縁層140を形成する(図10(B)参照)。
絶縁層136、絶縁層138、絶縁層140は、酸化シリコン、酸化窒化シリコン、窒
化酸化シリコン、窒化シリコン、酸化アルミニウム等の無機絶縁材料を含む材料を用いて
形成することができる。特に、絶縁層136、絶縁層138、絶縁層140に誘電率の低
い(low−k)材料を用いることで、各種電極や配線の重なりに起因する容量を十分に
低減することが可能になるため好ましい。なお、絶縁層136、絶縁層138、絶縁層1
40には、これらの材料を用いた多孔性の絶縁層を適用しても良い。多孔性の絶縁層では
、密度の高い絶縁層と比較して誘電率が低下するため、電極や配線に起因する容量をさら
に低減することが可能である。また、絶縁層136や絶縁層138、絶縁層140は、ポ
リイミド、アクリル等の有機絶縁材料を用いて形成することも可能である。本実施の形態
では、絶縁層136として酸化窒化シリコン、絶縁層138として窒化酸化シリコン、絶
縁層140として酸化シリコンを用いる場合について説明する。なお、ここでは、絶縁層
136、絶縁層138および絶縁層140の積層構造としているが、開示する発明の一態
様はこれに限定されない。1層または2層としても良いし、4層以上の積層構造としても
良い。
次に、絶縁層138および絶縁層140にCMP(化学的機械研磨)処理やエッチング
処理を行うことにより、絶縁層138および絶縁層140を平坦化する(図10(C)参
照)。ここでは、絶縁層138が一部露出されるまで、CMP処理を行う。絶縁層138
に窒化酸化シリコンを用い、絶縁層140に酸化シリコンを用いた場合、絶縁層138は
エッチングストッパとして機能する。
次に、絶縁層138および絶縁層140にCMP処理やエッチング処理を行うことによ
り、ゲート電極128aおよび導電層128bの上面を露出させる(図10(D)参照)
。ここでは、ゲート電極128aおよび導電層128bが一部露出されるまで、エッチン
グ処理を行う。当該エッチング処理は、ドライエッチングを用いることが好適であるが、
ウェットエッチングを用いてもよい。ゲート電極128aおよび導電層128bの一部を
露出させる工程において、後に形成されるトランジスタ162の特性を向上させるために
、絶縁層136、絶縁層138、絶縁層140の表面は可能な限り平坦にしておくことが
好ましい。
以上の工程により、下部のトランジスタ160を形成することができる(図10(D)
参照)。
なお、上記の各工程の前後には、さらに電極や配線、半導体層、絶縁層などを形成する
工程を含んでいても良い。例えば、配線の構造として、絶縁層および導電層の積層構造で
なる多層配線構造を採用して、高度に集積化した半導体装置を実現することも可能である
〈上部のトランジスタの作製方法〉
次に、上部のトランジスタ162の作製方法について、図11および図12を参照して
説明する。
まず、ゲート電極128a、導電層128b、絶縁層136、絶縁層138、絶縁層1
40などの上に酸化物半導体層を形成し、当該酸化物半導体層を加工して、酸化物半導体
層144を形成する(図11(A)参照)。なお、酸化物半導体層を形成する前に、絶縁
層136、絶縁層138、絶縁層140の上に、下地として機能する絶縁層を設けても良
い。当該絶縁層は、スパッタリング法をはじめとするPVD法やプラズマCVD法などの
CVD法などを用いて形成することができる。
酸化物半導体層に用いる材料としては、四元系金属酸化物であるIn−Sn−Ga−Z
n−O系の材料や、三元系金属酸化物であるIn−Ga−Zn−O系の材料、In−Sn
−Zn−O系の材料、In−Al−Zn−O系の材料、Sn−Ga−Zn−O系の材料、
Al−Ga−Zn−O系の材料、Sn−Al−Zn−O系の材料、In−Hf−Zn−O
系の材料、In−La−Zn−O系の材料、In−Ce−Zn−O系の材料、In−Pr
−Zn−O系の材料、In−Nd−Zn−O系の材料、In−Sm−Zn−O系の材料、
In−Eu−Zn−O系の材料、In−Gd−Zn−O系の材料、In−Tb−Zn−O
系の材料、In−Dy−Zn−O系の材料、In−Ho−Zn−O系の材料、In−Er
−Zn−O系の材料、In−Tm−Zn−O系の材料、In−Yb−Zn−O系の材料、
In−Lu−Zn−O系の材料や、二元系金属酸化物であるIn−Zn−O系の材料、S
n−Zn−O系の材料、Al−Zn−O系の材料、Zn−Mg−O系の材料、Sn−Mg
−O系の材料、In−Mg−O系の材料、In−Ga−O系の材料や、In−O系の材料
、Sn−O系の材料、Zn−O系の材料などを用いることができる。また、上記の材料に
SiOを含ませてもよい。ここで、例えば、In−Ga−Zn−O系の材料とは、イン
ジウム(In)、ガリウム(Ga)、亜鉛(Zn)を有する酸化物膜、という意味であり
、その組成比は特に問わない。また、InとGaとZn以外の元素を含んでいてもよい。
また、酸化物半導体層は、化学式InMO(ZnO)(m>0)で表記される材料
を用いた薄膜とすることができる。ここで、Mは、Ga、Al、MnおよびCoから選ば
れた一または複数の金属元素を示す。例えば、Mとして、Ga、GaおよびAl、Gaお
よびMn、またはGaおよびCoなどを用いることができる。
また、酸化物半導体層の厚さは、3nm以上30nm以下とするのが望ましい。酸化物
半導体層を厚くしすぎると(例えば、膜厚を50nm以上)、トランジスタがノーマリー
オンとなってしまう恐れがあるためである。
酸化物半導体層は、水素、水、水酸基又は水素化物などの不純物が混入しにくい方法で
作製するのが望ましい。例えば、スパッタリング法などを用いて作製することができる。
本実施の形態では、酸化物半導体層を、In−Ga−Zn−O系の酸化物ターゲットを
用いたスパッタリング法により形成する。
In−Ga−Zn−O系の酸化物ターゲットとしては、例えば、組成比として、In
:Ga:ZnO=1:1:1[mol数比]の酸化物ターゲットを用いること
ができる。なお、ターゲットの材料および組成を上述に限定する必要はない。例えば、I
:Ga:ZnO=1:1:2[mol数比]の組成比の酸化物ターゲット
を用いることもできる。
酸化物ターゲットの充填率は、90%以上100%以下、好ましくは95%以上99.
9%以下とする。充填率の高い金属酸化物ターゲットを用いることにより、成膜した酸化
物半導体層を緻密な膜とすることができるためである。
成膜の雰囲気は、希ガス(代表的にはアルゴン)雰囲気下、酸素雰囲気下、または、希
ガスと酸素の混合雰囲気下などとすればよい。また、酸化物半導体層への水素、水、水酸
基、水素化物などの混入を防ぐために、水素、水、水酸基、水素化物などの不純物が十分
に除去された高純度ガスを用いた雰囲気とすることが望ましい。
例えば、酸化物半導体層は、次のように形成することができる。
まず、減圧状態に保持された成膜室内に基板を保持し、基板温度が、200℃を超えて
500℃以下、好ましくは300℃を超えて500℃以下、より好ましくは350℃以上
450℃以下となるように加熱する。
次に、成膜室内の残留水分を除去しつつ、水素、水、水酸基、水素化物などの不純物が
十分に除去された高純度ガスを導入し、上記ターゲットを用いて基板上に酸化物半導体層
を成膜する。成膜室内の残留水分を除去するためには、排気手段として、クライオポンプ
、イオンポンプ、チタンサブリメーションポンプなどの吸着型の真空ポンプを用いること
が望ましい。また、排気手段は、ターボポンプにコールドトラップを加えたものであって
もよい。クライオポンプを用いて排気した成膜室は、例えば、水素、水、水酸基または水
素化物などの不純物(より好ましくは炭素原子を含む化合物も)などが除去されているた
め、当該成膜室で成膜した酸化物半導体層に含まれる水素、水、水酸基または水素化物な
どの不純物の濃度を低減することができる。
成膜中の基板温度が低温(例えば、100℃以下)の場合、酸化物半導体に水素原子を
含む物質が混入するおそれがあるため、基板を上述の温度で加熱することが好ましい。基
板を上述の温度で加熱して、酸化物半導体層の成膜を行うことにより、基板温度は高温と
なるため、水素結合は熱により切断され、水素原子を含む物質が酸化物半導体層に取り込
まれにくい。したがって、基板が上述の温度で加熱された状態で、酸化物半導体層の成膜
を行うことにより、酸化物半導体層に含まれる水素、水、水酸基または水素化物などの不
純物の濃度を十分に低減することができる。また、スパッタリングによる損傷を軽減する
ことができる。
成膜条件の一例として、基板とターゲットの間との距離を60mm、圧力を0.4Pa
、直流(DC)電源を0.5kW、基板温度を400℃、成膜雰囲気を酸素(酸素流量比
率100%)雰囲気とする。なお、パルス直流電源を用いると、成膜時に発生する粉状物
質(パーティクル、ごみともいう)が軽減でき、膜厚分布も均一となるため好ましい。
なお、酸化物半導体層をスパッタリング法により形成する前に、アルゴンガスを導入し
てプラズマを発生させる逆スパッタを行い、酸化物半導体層の被形成表面に付着している
粉状物質(パーティクル、ごみともいう)を除去することが好ましい。逆スパッタとは、
基板に電圧を印加し、基板近傍にプラズマを形成して、基板側の表面を改質する方法であ
る。なお、アルゴンに代えて、窒素、ヘリウム、酸素などのガスを用いてもよい。
酸化物半導体層の加工は、所望の形状のマスクを酸化物半導体層上に形成した後、当該
酸化物半導体層をエッチングすることによって行うことができる。上述のマスクは、フォ
トリソグラフィなどの方法を用いて形成することができる。または、インクジェット法な
どの方法を用いてマスクを形成しても良い。なお、酸化物半導体層のエッチングは、ドラ
イエッチングでもウェットエッチングでもよい。もちろん、これらを組み合わせて用いて
もよい。
その後、酸化物半導体層144に対して、熱処理(第1の熱処理)を行ってもよい。熱
処理を行うことによって、酸化物半導体層144中に含まれる水素原子を含む物質をさら
に除去し、酸化物半導体層144の構造を整え、エネルギーギャップ中の欠陥準位を低減
することができる。熱処理の温度は、不活性ガス雰囲気下、250℃以上700℃以下、
好ましくは450℃以上600℃以下、または基板の歪み点未満とする。不活性ガス雰囲
気としては、窒素、または希ガス(ヘリウム、ネオン、アルゴン等)を主成分とする雰囲
気であって、水、水素などが含まれない雰囲気を適用するのが望ましい。例えば、熱処理
装置に導入する窒素や、ヘリウム、ネオン、アルゴン等の希ガスの純度を、6N(99.
9999%)以上、好ましくは7N(99.99999%)以上(すなわち、不純物濃度
が1ppm以下、好ましくは0.1ppm以下)とする。
熱処理は、例えば、抵抗発熱体などを用いた電気炉に被処理物を導入し、窒素雰囲気下
、450℃、1時間の条件で行うことができる。この間、酸化物半導体層144は大気に
触れさせず、水や水素の混入が生じないようにする。
熱処理を行うことによって不純物を低減し、i型(真性半導体)またはi型に限りなく
近い酸化物半導体層を形成することで、極めて優れた特性のトランジスタを実現すること
ができる。
ところで、上述の熱処理には水素や水などを除去する効果があるため、当該熱処理を、
脱水化処理や、脱水素化処理などと呼ぶこともできる。当該熱処理は、例えば、酸化物半
導体層を島状に加工する前、ゲート絶縁膜の形成後などのタイミングにおいて行うことも
可能である。また、このような脱水化処理、脱水素化処理は、一回に限らず複数回行って
も良い。
次に、酸化物半導体層144などの上に、ソース電極およびドレイン電極(これと同じ
層で形成される配線を含む)を形成するための導電層を形成し、当該導電層を加工して、
ソース電極142a、ドレイン電極142bを形成する(図11(B)参照)。
導電層は、PVD法や、CVD法を用いて形成することができる。また、導電層の材料
としては、アルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステンか
ら選ばれた元素や、上述した元素を成分とする合金等を用いることができる。マンガン、
マグネシウム、ジルコニウム、ベリリウム、ネオジム、スカンジウムのいずれか、または
これらを複数組み合わせた材料を用いてもよい。
導電層は、単層構造であっても良いし、2層以上の積層構造としてもよい。例えば、チ
タン膜や窒化チタン膜の単層構造、シリコンを含むアルミニウム膜の単層構造、アルミニ
ウム膜上にチタン膜が積層された2層構造、窒化チタン膜上にチタン膜が積層された2層
構造、チタン膜とアルミニウム膜とチタン膜とが積層された3層構造などが挙げられる。
なお、導電層を、チタン膜や窒化チタン膜の単層構造とする場合には、テーパー形状を有
するソース電極142aおよびドレイン電極142bへの加工が容易であるというメリッ
トがある。
また、導電層は、導電性の金属酸化物を用いて形成しても良い。導電性の金属酸化物と
しては酸化インジウム(In)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸
化インジウム酸化スズ合金(In―SnO、ITOと略記する場合がある)、酸
化インジウム酸化亜鉛合金(In―ZnO)、または、これらの金属酸化物材料に
シリコン若しくは酸化シリコンを含有させたものを用いることができる。
導電層のエッチングは、形成されるソース電極142aおよびドレイン電極142bの
端部が、テーパー形状となるように行うことが好ましい。ここで、テーパー角は、例えば
、30°以上60°以下であることが好ましい。ソース電極142a、ドレイン電極14
2bの端部をテーパー形状となるようにエッチングすることにより、後に形成されるゲー
ト絶縁層146の被覆性を向上し、段切れを防止することができる。
上部のトランジスタのチャネル長(L)は、ソース電極142a、およびドレイン電極
142bの下端部の間隔によって決定される。なお、チャネル長(L)が25nm未満の
トランジスタを形成する場合に用いるマスク形成の露光を行う際には、数nm〜数10n
mと波長の短い超紫外線(Extreme Ultraviolet)を用いるのが望ま
しい。超紫外線による露光は、解像度が高く焦点深度も大きい。従って、後に形成される
トランジスタのチャネル長(L)を、10nm以上1000nm(1μm)以下とするこ
とも可能であり、回路の動作速度を高めることが可能である。また、微細化によって、半
導体装置の消費電力を低減することも可能である。
また、図11(B)とは別の一例として、酸化物半導体層144とソース電極およびド
レイン電極との間に、ソース領域およびドレイン領域として酸化物導電層を設けることが
できる。
例えば、酸化物半導体層144上に酸化物導電膜を形成し、その上に導電層を形成し、
酸化物導電膜および導電層を同じフォトリソグラフィ工程によって加工して、ソース領域
およびドレイン領域となる酸化物導電層、ソース電極142a、ドレイン電極142bを
形成することができる。
また、酸化物半導体膜と酸化物導電膜の積層を形成し、酸化物半導体膜と酸化物導電膜
との積層を同じフォトリソグラフィ工程によって形状を加工して島状の酸化物半導体層1
44と酸化物導電膜を形成する。ソース電極142a、ドレイン電極142bを形成した
後、ソース電極142a、ドレイン電極142bをマスクとして、さらに島状の酸化物導
電膜をエッチングし、ソース領域およびドレイン領域となる酸化物導電層を形成すること
もできる。
なお、酸化物導電層の形状を加工するためのエッチング処理の際、酸化物半導体層が過
剰にエッチングされないように、エッチング条件(エッチング剤の種類、濃度、エッチン
グ時間等)を適宜調整する。
酸化物導電層の材料としては、酸化亜鉛を成分として含むものが好ましく、酸化インジ
ウムを含まないものであることが好ましい。そのような酸化物導電層して、酸化亜鉛、酸
化亜鉛アルミニウム、酸窒化亜鉛アルミニウム、酸化亜鉛ガリウムなどを適用することが
できる。
酸化物導電層を酸化物半導体層とソース電極及びドレイン電極との間に設けることで、
ソース領域及びドレイン領域の低抵抗化を図ることができ、トランジスタの高速動作をす
ることができる。
酸化物半導体層144、酸化物導電層、金属材料からなるドレイン電極の構成とするこ
とによって、よりトランジスタの耐圧を向上させることができる。
ソース領域及びドレイン領域として酸化物導電層を用いることは、周辺回路(駆動回路
)の周波数特性を向上させるために有効である。金属電極(モリブデン、タングステン等
)と酸化物半導体層との接触に比べ、金属電極(モリブデン、タングステン等)と酸化物
導電層との接触は、接触抵抗を下げることができるからである。酸化物半導体層とソース
電極及びドレイン電極との間に酸化物導電層を介在させることで接触抵抗を低減でき、周
辺回路(駆動回路)の周波数特性を向上させることができる。
次に、ソース電極142a、ドレイン電極142bを覆い、かつ、酸化物半導体層14
4の一部と接するように、ゲート絶縁層146を形成する(図11(C)参照)。
ゲート絶縁層146は、CVD法やスパッタリング法等を用いて形成することができる
。また、ゲート絶縁層146は、酸化シリコン、窒化シリコン、酸窒化シリコン、酸化ガ
リウム、酸化アルミニウム、酸化タンタル、酸化ハフニウム、酸化イットリウム、ハフニ
ウムシリケート(HfSixOy(x>0、y>0))、窒素が添加されたハフニウムシ
リケート(HfSixOy(x>0、y>0))、窒素が添加されたハフニウムアルミネ
ート(HfAlxOy(x>0、y>0))、などを含むように形成するのが好適である
。ゲート絶縁層146は、単層構造としても良いし、上記の材料を組み合わせて積層構造
としても良い。また、その厚さは特に限定されないが、半導体装置を微細化する場合には
、トランジスタの動作を確保するために薄くするのが望ましい。例えば、酸化シリコンを
用いる場合には、1nm以上100nm以下、好ましくは10nm以上50nm以下とす
ることができる。
上述のように、ゲート絶縁層を薄くすると、トンネル効果などに起因するゲートリーク
が問題となる。ゲートリークの問題を解消するには、ゲート絶縁層146に、酸化ハフニ
ウム、酸化タンタル、酸化イットリウム、ハフニウムシリケート(HfSixOy(x>
0、y>0))、窒素が添加されたハフニウムシリケート(HfSixOy(x>0、y
>0))、窒素が添加されたハフニウムアルミネート(HfAlxOy(x>0、y>0
))、などの高誘電率(high−k)材料を用いると良い。high−k材料をゲート
絶縁層146に用いることで、電気的特性を確保しつつ、ゲートリークを抑制するために
膜厚を大きくすることが可能になる。なお、high−k材料を含む膜と、酸化シリコン
、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウムなどのいずれ
かを含む膜との積層構造としてもよい。
また、酸化物半導体層144に接する絶縁層(本実施の形態においては、ゲート絶縁層
146)は、第13族元素および酸素を含む絶縁材料としてもよい。酸化物半導体材料に
は第13族元素を含むものが多く、第13族元素を含む絶縁材料は酸化物半導体との相性
が良く、これを酸化物半導体層に接する絶縁層に用いることで、酸化物半導体層との界面
の状態を良好に保つことができる。
ここで、第13族元素を含む絶縁材料とは、絶縁材料に一または複数の第13族元素を
含むことを意味する。第13族元素を含む絶縁材料としては、例えば、酸化ガリウム、酸
化アルミニウム、酸化アルミニウムガリウム、酸化ガリウムアルミニウムなどがある。こ
こで、酸化アルミニウムガリウムとは、ガリウムの含有量(原子%)よりアルミニウムの
含有量(原子%)が多いものを示し、酸化ガリウムアルミニウムとは、ガリウムの含有量
(原子%)がアルミニウムの含有量(原子%)以上のものを示す。
例えば、ガリウムを含有する酸化物半導体層に接してゲート絶縁層を形成する場合に、
ゲート絶縁層に酸化ガリウムを含む材料を用いることで酸化物半導体層とゲート絶縁層の
界面特性を良好に保つことができる。また、酸化物半導体層と酸化ガリウムを含む絶縁層
とを接して設けることにより、酸化物半導体層と絶縁層の界面における水素のパイルアッ
プを低減することができる。なお、絶縁層に酸化物半導体の成分元素と同じ族の元素を用
いる場合には、同様の効果を得ることが可能である。例えば、酸化アルミニウムを含む材
料を用いて絶縁層を形成することも有効である。なお、酸化アルミニウムは、水を透過さ
せにくいという特性を有しているため、当該材料を用いることは、酸化物半導体層への水
の侵入防止という点においても好ましい。
また、酸化物半導体層144に接する絶縁層は、酸素雰囲気下による熱処理や、酸素ド
ープなどにより、絶縁材料を化学量論的組成比より酸素が多い状態とすることが好ましい
。酸素ドープとは、酸素をバルクに添加することをいう。なお、当該バルクの用語は、酸
素を薄膜表面のみでなく薄膜内部に添加することを明確にする趣旨で用いている。また、
酸素ドープには、プラズマ化した酸素をバルクに添加する酸素プラズマドープが含まれる
。また、酸素ドープは、イオン注入法またはイオンドーピング法を用いて行ってもよい。
例えば、酸化物半導体層144に接する絶縁層として酸化ガリウムを用いた場合、酸素
雰囲気下による熱処理や、酸素ドープを行うことにより、酸化ガリウムの組成をGa
(X=3+α、0<α<1)とすることができる。また、酸化物半導体層144に接す
る絶縁層として酸化アルミニウムを用いた場合、酸素雰囲気下による熱処理や、酸素ドー
プを行うことにより、酸化アルミニウムの組成をAl(X=3+α、0<α<1)
とすることができる。または、酸化物半導体層144に接する絶縁層として酸化ガリウム
アルミニウム(酸化アルミニウムガリウム)を用いた場合、酸素雰囲気下による熱処理や
、酸素ドープを行うことにより、酸化ガリウムアルミニウム(酸化アルミニウムガリウム
)の組成をGaAl2−X3+α(0<X<2、0<α<1)とすることができる。
酸素ドープ処理等を行うことにより、化学量論的組成比より酸素が多い領域を有する絶
縁層を形成することができる。このような領域を備える絶縁層と酸化物半導体層が接する
ことにより、絶縁層中の過剰な酸素が酸化物半導体層に供給され、酸化物半導体層中、ま
たは酸化物半導体層と絶縁層の界面における酸素不足欠陥を低減し、酸化物半導体層をI
型化またはI型に限りなく近い酸化物半導体とすることができる。
なお、化学量論的組成比より酸素が多い領域を有する絶縁層は、ゲート絶縁層146に
代えて、酸化物半導体層144の下地膜として形成する絶縁層に適用しても良く、ゲート
絶縁層146および下地絶縁層の双方に適用しても良い。
ゲート絶縁層146の形成後には、不活性ガス雰囲気下、または酸素雰囲気下で第2の
熱処理を行うのが望ましい。熱処理の温度は、200℃以上450℃以下、望ましくは2
50℃以上350℃以下である。例えば、窒素雰囲気下で250℃、1時間の熱処理を行
えばよい。第2の熱処理を行うことによって、トランジスタの電気的特性のばらつきを軽
減することができる。また、ゲート絶縁層146が酸素を含む場合、酸化物半導体層14
4に酸素を供給し、該酸化物半導体層144の酸素欠損を補填して、i型(真性半導体)
またはi型に限りなく近い酸化物半導体層を形成することもできる。
なお、本実施の形態では、ゲート絶縁層146の形成後に第2の熱処理を行っているが
、第2の熱処理のタイミングはこれに限定されない。例えば、ゲート電極の形成後に第2
の熱処理を行っても良い。また、第1の熱処理に続けて第2の熱処理を行っても良いし、
第1の熱処理に第2の熱処理を兼ねさせても良いし、第2の熱処理に第1の熱処理を兼ね
させても良い。
上述のように、第1の熱処理と第2の熱処理の少なくとも一方を適用することで、酸化
物半導体層144を、その水素原子を含む物質が極力含まれないように高純度化すること
ができる。
次に、ゲート電極(これと同じ層で形成される配線を含む)を形成するための導電層を
形成し、当該導電層を加工して、ゲート電極148aおよび導電層148bを形成する(
図11(D)参照)。
ゲート電極148aおよび導電層148bは、モリブデン、チタン、タンタル、タング
ステン、アルミニウム、銅、ネオジム、スカンジウム等の金属材料またはこれらを主成分
とする合金材料を用いて形成することができる。なお、ゲート電極148aおよび導電層
148bは、単層構造としても良いし、積層構造としても良い。
次に、ゲート絶縁層146、ゲート電極148a、および導電層148b上に、絶縁層
150を形成する(図12(A)参照)。絶縁層150は、PVD法やCVD法などを用
いて形成することができる。また、酸化シリコン、酸窒化シリコン、窒化シリコン、酸化
ハフニウム、酸化ガリウム、酸化アルミニウム等の無機絶縁材料を含む材料を用いて形成
することができる。なお、絶縁層150には、誘電率の低い材料や、誘電率の低い構造(
多孔性の構造など)を用いることが望ましい。絶縁層150の誘電率を低くすることによ
り、配線や電極などの間に生じる容量を低減し、動作の高速化を図ることができるためで
ある。なお、本実施の形態では、絶縁層150の単層構造としているが、開示する発明の
一態様はこれに限定されず、2層以上の積層構造としても良い。
次に、ゲート絶縁層146、絶縁層150に、ソース電極142aにまで達する開口を
形成する。その後、絶縁層150上にソース電極142aと接する配線154を形成する
(図12(B)参照)。なお、当該開口の形成は、マスクなどを用いた選択的なエッチン
グにより行われる。
配線154は、PVD法や、CVD法を用いて導電層を形成した後、当該導電層をパタ
ーニングすることによって形成される。また、導電層の材料としては、アルミニウム、ク
ロム、銅、タンタル、チタン、モリブデン、タングステンから選ばれた元素や、上述した
元素を成分とする合金等を用いることができる。マンガン、マグネシウム、ジルコニウム
、ベリリウム、ネオジム、スカンジウムのいずれか、またはこれらを複数組み合わせた材
料を用いてもよい。
より具体的には、例えば、絶縁層150の開口を含む領域にPVD法によりチタン膜を
薄く(5nm程度)形成した後に、開口に埋め込むようにアルミニウム膜を形成する方法
を適用することができる。ここで、PVD法により形成されるチタン膜は、被形成面の酸
化膜(自然酸化膜など)を還元し、下部電極など(ここではソース電極142a)との接
触抵抗を低減させる機能を有する。また、アルミニウム膜のヒロックを防止することがで
きる。また、チタンや窒化チタンなどによるバリア膜を形成した後に、メッキ法により銅
膜を形成してもよい。
絶縁層150に形成する開口は、導電層128bと重畳する領域に形成することが望ま
しい。このような領域に開口を形成することで、コンタクト領域に起因する素子面積の増
大を抑制することができる。
ここで、導電層128bを用いずに、不純物領域126とソース電極142aとの接続
と、ソース電極142aと配線154との接続とを重畳させる場合について説明する。こ
の場合、不純物領域126上に形成された絶縁層136、絶縁層138および絶縁層14
0に開口(下部のコンタクトと呼ぶ)を形成し、下部のコンタクトにソース電極142a
を形成した後、ゲート絶縁層146および絶縁層150において、下部のコンタクトと重
畳する領域に開口(上部のコンタクトと呼ぶ)を形成し、配線154を形成することにな
る。下部のコンタクトと重畳する領域に上部のコンタクトを形成する際に、エッチングに
より下部のコンタクトに形成されたソース電極142aが断線してしまうおそれがある。
これを避けるために、下部のコンタクトと上部のコンタクトが重畳しないように形成する
ことにより、素子面積が増大するという問題がおこる。
本実施の形態に示すように、導電層128bを用いることにより、ソース電極142a
を断線させることなく、上部のコンタクトの形成が可能となる。これにより、下部のコン
タクトと上部のコンタクトを重畳させて設けることができるため、コンタクト領域に起因
する素子面積の増大を抑制することができる。つまり、半導体装置の集積度を高めること
ができる。
次に、配線154を覆うように絶縁層156を形成する(図12(C)参照)。
以上により、高純度化された酸化物半導体層144を用いたトランジスタ162、およ
び容量素子164が完成する(図12(C)参照)。
なお、図7に示す容量素子250が有する不純物領域126、絶縁層122、導電層1
28c、導電層142cおよび導電層148cは、トランジスタ160、トランジスタ1
62、および容量素子164の不純物領域126、ゲート絶縁層122a、ゲート電極1
28a、ソース電極142aおよびドレイン電極142b、およびゲート電極148aと
同時に形成される。
次に、図6に示すトランジスタ162として適用することができる、トランジスタの例
を示す。
図6に示すトランジスタ162の酸化物半導体層144とソース電極142a、ドレイ
ン電極142bとの間に、ソース領域及びドレイン領域として機能する酸化物導電層をバ
ッファ層として設けてもよい。図6に示すトランジスタ162に酸化物導電層を設けたト
ランジスタ441、442を図13(A)(B)に示す。
図13(A)(B)のトランジスタ441、442は、酸化物半導体層144とソース
電極142a、ドレイン電極142bとの間に、ソース領域及びドレイン領域として機能
する酸化物導電層404a、404bが形成されている。図13(A)(B)のトランジ
スタ441、442は作製工程により酸化物導電層404a、404bの形状が異なる例
である。
図13(A)のトランジスタ441では、酸化物半導体膜と酸化物導電膜の積層を形成
し、酸化物半導体膜と酸化物導電膜との積層を同じフォトリソグラフィ工程によって形状
を加工して島状の酸化物半導体層144と酸化物導電膜を形成する。酸化物半導体層及び
酸化物導電膜上にソース電極142a、ドレイン電極142bを形成した後、ソース電極
142a、ドレイン電極142bをマスクとして、島状の酸化物導電膜をエッチングし、
ソース領域およびドレイン領域となる酸化物導電層404a、404bを形成する。
図13(B)のトランジスタ442では、酸化物半導体層144上に酸化物導電膜を形
成し、その上に金属導電膜を形成し、酸化物導電膜および金属導電膜を同じフォトリソグ
ラフィ工程によって加工して、ソース領域およびドレイン領域となる酸化物導電層404
a、404b、ソース電極142a、ドレイン電極142bを形成する。
なお、酸化物導電層の形状を加工するためのエッチング処理の際、酸化物半導体層が過
剰にエッチングされないように、エッチング条件(エッチング剤の種類、濃度、エッチン
グ時間等)を適宜調整する。
酸化物導電層404a、404bの成膜方法は、スパッタリング法や真空蒸着法(電子
ビーム蒸着法など)や、アーク放電イオンプレーティング法や、スプレー法を用いる。酸
化物導電層の材料としては、酸化亜鉛、酸化亜鉛アルミニウム、酸窒化亜鉛アルミニウム
、酸化亜鉛ガリウム、酸化珪素を含むインジウム錫酸化物などを適用することができる。
また、上記材料に酸化珪素を含ませてもよい。
ソース領域及びドレイン領域として、酸化物導電層を酸化物半導体層144とソース電
極142a、ドレイン電極142bとの間に設けることで、ソース領域及びドレイン領域
の低抵抗化を図ることができ、トランジスタ441、442が高速動作をすることができ
る。
また、酸化物半導体層144、酸化物導電層404a、404b、ソース電極142a
、ドレイン電極142bの構成とすることによって、トランジスタ441、442の耐圧
を向上させることができる。
次に、図6に示すトランジスタ162の構造として、トップゲート構造を示したが、本
発明の一態様は、これに限定されず、ボトムゲート構造とすることができる。図14にボ
トムゲート構造の例について示す。
図14(A)に示すトランジスタ410は、ゲート電極401上に、ゲート絶縁層40
2が設けられ、ゲート絶縁層402上に酸化物半導体層403が設けられ、酸化物半導体
層403と接続されるソース電極405a、ドレイン電極405bが設けられている。な
お、ゲート電極401と、酸化物半導体層403と、ゲート絶縁層402と、ソース電極
405aと、ドレイン電極405bは、図6に示すゲート電極148aと、酸化物半導体
層144と、ゲート絶縁層146と、ソース電極142aと、ドレイン電極142bに相
当する。なお、絶縁層400は、絶縁層136、絶縁層138、絶縁層140などに相当
する。
図14(B)に示すトランジスタ420は、ゲート電極401と、ゲート絶縁層402
と、酸化物半導体層403と、ソース電極405aと、ドレイン電極405bとが設けら
れている点において図14(A)と同様である。図14(A)と異なる点は、酸化物半導
体層403に接して絶縁層427が設けられている点にある。
図14(C)に示すトランジスタ430は、ゲート電極401と、ゲート絶縁層402
と、酸化物半導体層403と、ソース電極405aと、ドレイン電極405bとが設けら
れている点において図14(A)と同様である。図14(A)と異なる点は、酸化物半導
体層403に接するソース電極405aとドレイン電極405bの位置である。つまり、
図14(A)に示すトランジスタ410は、酸化物半導体層403の上でソース電極40
5aとドレイン電極405bが接するのに対し、図14(C)に示すトランジスタ430
は、酸化物半導体層403の下でソース電極405aとドレイン電極405bが接してい
る。
本実施の形態において示すトランジスタ162では、酸化物半導体層144が高純度化
されているため、その水素濃度は、5×1019atoms/cm以下、望ましくは5
×1018atoms/cm以下、より望ましくは5×1017atoms/cm
下である。また、酸化物半導体層144のキャリア密度は、一般的なシリコンウェハにお
けるキャリア密度(1×1014/cm程度)と比較して、十分に小さい値(例えば、
1×1012/cm未満、より好ましくは、1.45×1010/cm未満)をとる
。そして、トランジスタ162のオフ電流も十分に小さくなる。例えば、トランジスタ1
62の室温(25℃)でのオフ電流(ここでは、単位チャネル幅(1μm)あたりの値)
は100zA(1zA(ゼプトアンペア)は1×10−21A)以下、望ましくは10z
A以下となる。
このように高純度化され、真性化された酸化物半導体層144を用いることで、トラン
ジスタのオフ電流を十分に低減することが容易になる。そして、このようなトランジスタ
を用いることで、極めて長期にわたり記憶内容を保持することが可能な半導体装置が得ら
れる。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと
適宜組み合わせて用いることができる。
(実施の形態5)
上記実施の形態において、トランジスタの半導体層に用いることのできる酸化物半導体
層の一形態を、図15を用いて説明する。
本実施の形態の酸化物半導体層は、第1の結晶性酸化物半導体層上に第1の結晶性酸化
物半導体層よりも厚い第2の結晶性酸化物半導体層を有する積層構造である。
絶縁層400上に絶縁層437を形成する。本実施の形態では、絶縁層437として、
PCVD法またはスパッタリング法を用いて、50nm以上600nm以下の膜厚の酸化
物絶縁層を形成する。例えば、酸化シリコン膜、酸化ガリウム膜、酸化アルミニウム膜、
窒化シリコン膜、酸化窒化シリコン膜、酸化窒化アルミニウム膜、または窒化酸化シリコ
ン膜から選ばれた一層またはこれらの積層を用いることができる。なお、絶縁層400は
、絶縁層136、絶縁層138、絶縁層140などに相当する。
次に、絶縁層437上に膜厚1nm以上10nm以下の第1の酸化物半導体膜を形成す
る。第1の酸化物半導体膜の形成は、スパッタリング法を用い、そのスパッタリング法に
よる成膜時における基板温度は200℃以上400℃以下とする。
本実施の形態では、酸化物半導体用ターゲット(In−Ga−Zn−O系酸化物半導体
用ターゲット(In:Ga:ZnO=1:1:2[mol数比])を用いて
、基板とターゲットの間との距離を170mm、基板温度250℃、圧力0.4Pa、直
流(DC)電源0.5kW、酸素のみ、アルゴンのみ、又はアルゴン及び酸素雰囲気下で
膜厚5nmの第1の酸化物半導体膜を成膜する。
次いで、基板を配置するチャンバー雰囲気を窒素、または乾燥空気とし、第1の加熱処
理を行う。第1の加熱処理の温度は、400℃以上750℃以下とする。第1の加熱処理
によって第1の結晶性酸化物半導体層450aを形成する(図15(A)参照)。
第1の加熱処理の温度にもよるが、第1の加熱処理によって、膜表面から結晶化が起こ
り、膜の表面から内部に向かって結晶成長し、C軸配向した結晶が得られる。第1の加熱
処理によって、亜鉛と酸素が膜表面に多く集まり、上平面が六角形をなす亜鉛と酸素から
なるグラフェンタイプの二次元結晶が最表面に1層または複数層形成され、これが膜厚方
向に成長して重なり積層となる。加熱処理の温度を上げると表面から内部、そして内部か
ら底部と結晶成長が進行する。
第1の加熱処理によって、酸化物絶縁層である絶縁層437中の酸素を第1の結晶性酸
化物半導体層450aとの界面またはその近傍(界面からプラスマイナス5nm)に拡散
させて、第1の結晶性酸化物半導体層の酸素欠損を低減する。従って、下地絶縁層として
用いられる絶縁層437は、膜中(バルク中)、第1の結晶性酸化物半導体層450aと
絶縁層437の界面、のいずれかには少なくとも化学量論比を超える量の酸素が存在する
ことが好ましい。
次いで、第1の結晶性酸化物半導体層450a上に10nmよりも厚い第2の酸化物半
導体膜を形成する。第2の酸化物半導体膜の形成は、スパッタリング法を用い、その成膜
時における基板温度は200℃以上400℃以下とする。成膜時における基板温度を20
0℃以上400℃以下とすることにより、第1の結晶性酸化物半導体層の表面上に接して
成膜する酸化物半導体層にプリカーサの整列が起き、所謂、秩序性を持たせることができ
る。
本実施の形態では、酸化物半導体用ターゲット(In−Ga−Zn−O系酸化物半導体
用ターゲット(In:Ga:ZnO=1:1:2[mol数比])を用いて
、基板とターゲットの間との距離を170mm、基板温度400℃、圧力0.4Pa、直
流(DC)電源0.5kW、酸素のみ、アルゴンのみ、又はアルゴン及び酸素雰囲気下で
膜厚25nmの第2の酸化物半導体膜を成膜する。
次いで、基板を配置するチャンバー雰囲気を窒素、または乾燥空気とし、第2の加熱処
理を行う。第2の加熱処理の温度は、400℃以上750℃以下とする。第2の加熱処理
によって第2の結晶性酸化物半導体層450bを形成する(図15(B)参照)。第2の
加熱処理は、窒素雰囲気下、酸素雰囲気下、或いは窒素と酸素の混合雰囲気下で行うこと
により、第2の結晶性酸化物半導体層の高密度化及び欠陥数の減少を図る。第2の加熱処
理によって、第1の結晶性酸化物半導体層450aを核として膜厚方向、即ち底部から内
部に結晶成長が進行して第2の結晶性酸化物半導体層450bが形成される。
また、絶縁層437の形成から第2の加熱処理までの工程を大気に触れることなく連続
的に行うことが好ましい。絶縁層437の形成から第2の加熱処理までの工程は、水素及
び水分をほとんど含まない雰囲気(不活性雰囲気、減圧雰囲気、乾燥空気雰囲気など)下
に制御することが好ましく、例えば、水分については露点−40℃以下、好ましくは露点
−50℃以下の乾燥窒素雰囲気とする。
次いで、第1の結晶性酸化物半導体層450aと第2の結晶性酸化物半導体層450b
からなる酸化物半導体積層を加工して島状の酸化物半導体積層からなる酸化物半導体層4
53を形成する(図15(C)参照)。図では、第1の結晶性酸化物半導体層450aと
第2の結晶性酸化物半導体層450bの界面を点線で示し、酸化物半導体積層と説明して
いるが、明確な界面が存在しているのではなく、あくまで分かりやすく説明するために図
示している。
酸化物半導体積層の加工は、所望の形状のマスクを酸化物半導体積層上に形成した後、
当該酸化物半導体積層をエッチングすることによって行うことができる。上述のマスクは
、フォトリソグラフィなどの方法を用いて形成することができる。または、インクジェッ
ト法などの方法を用いてマスクを形成しても良い。
なお、酸化物半導体積層のエッチングは、ドライエッチングでもウェットエッチングで
もよい。もちろん、これらを組み合わせて用いてもよい。
また、上記作製方法により、得られる第1の結晶性酸化物半導体層及び第2の結晶性酸
化物半導体層は、C軸配向を有していることを特徴の一つとしている。ただし、第1の結
晶性酸化物半導体層及び第2の結晶性酸化物半導体層は、単結晶構造ではなく、非晶質構
造でもない構造であり、C軸配向を有した結晶(C Axis Aligned Cry
stal; CAACとも呼ぶ)を含む酸化物を有する。なお、第1の結晶性酸化物半導
体層及び第2の結晶性酸化物半導体層は、一部に結晶粒界を有している。
なお、第1及び第2の結晶性酸化物半導体層は、少なくともZnを有する酸化物材料で
あり、四元系金属酸化物であるIn−Al−Ga−Zn−O系の材料や、In−Ga−B
−Zn−O系の材料や、In−Sn−Ga−Zn−O系の材料や、三元系金属酸化物であ
るIn−Ga−Zn−O系の材料、In−Al−Zn−O系の材料、In−Sn−Zn−
O系の材料、Sn−Ga−Zn−O系の材料、Al−Ga−Zn−O系の材料、Sn−A
l−Zn−O系の材料、In−Hf−Zn−O系の材料、In−La−Zn−O系の材料
、In−Ce−Zn−O系の材料、In−Pr−Zn−O系の材料、In−Nd−Zn−
O系の材料、In−Sm−Zn−O系の材料、In−Eu−Zn−O系の材料、In−G
d−Zn−O系の材料、In−Tb−Zn−O系の材料、In−Dy−Zn−O系の材料
、In−Ho−Zn−O系の材料、In−Er−Zn−O系の材料、In−Tm−Zn−
O系の材料、In−Yb−Zn−O系の材料、In−Lu−Zn−O系の材料や、二元系
金属酸化物であるIn−Zn−O系の材料、Sn−Zn−O系の材料、Al−Zn−O系
の材料、Zn−Mg−O系の材料や、Zn−O系の材料などがある。また、In−Si−
Ga−Zn−O系の材料や、In−Ga−B−Zn−O系の材料や、In−B−Zn−O
系の材料を用いてもよい。また、上記の材料にSiOを含ませてもよい。ここで、例え
ば、In−Ga−Zn−O系の材料とは、インジウム(In)、ガリウム(Ga)、亜鉛
(Zn)を有する酸化物膜、という意味であり、その組成比は特に問わない。また、In
とGaとZn以外の元素を含んでいてもよい。
また、第1の結晶性酸化物半導体層上に第2の結晶性酸化物半導体層を形成する2層構
造に限定されず、第2の結晶性酸化物半導体層の形成後に第3の結晶性酸化物半導体層を
形成するための成膜と加熱処理のプロセスを繰り返し行って、3層以上の積層構造として
もよい。
上記作製方法で形成された酸化物半導体積層からなる酸化物半導体層453を、本明細
書に開示する半導体装置に適用できるトランジスタ(例えば、実施の形態1乃至実施の形
態4におけるトランジスタ162、実施の形態4におけるトランジスタ410、420、
430、441、442)に、適宜用いることができる。
また、酸化物半導体層403として本実施の形態の酸化物半導体積層を用いた実施の形
態4におけるトランジスタ162においては、酸化物半導体層の一方の面から他方の面に
電界が印加されることはなく、また、電流が酸化物半導体積層の厚さ方向(一方の面から
他方の面に流れる方向、具体的に図6に示すトランジスタ162では上下方向)に流れる
構造ではない。電流は、主として、酸化物半導体積層の界面を流れるトランジスタ構造で
あるため、トランジスタに光照射が行われ、またはBTストレスが与えられても、トラン
ジスタ特性の劣化は抑制される、または低減される。
酸化物半導体層453のような第1の結晶性酸化物半導体層と第2の結晶性酸化物半導
体層の積層をトランジスタに用いることで、安定した電気的特性を有し、且つ、信頼性の
高いトランジスタを実現できる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可
能である。
(実施の形態6)
本実施の形態では、上述の実施の形態で説明した半導体装置を電子機器に適用する場合
について、図16を用いて説明する。本実施の形態では、コンピュータ、携帯電話機(携
帯電話、携帯電話装置ともいう)、携帯情報端末(携帯型ゲーム機、音響再生装置なども
含む)、デジタルカメラ、デジタルビデオカメラなどのカメラ、電子ペーパー、テレビジ
ョン装置(テレビ、またはテレビジョン受信機ともいう)などの電子機器に、上述の半導
体装置を適用する場合について説明する。
図16(A)は、ノート型のパーソナルコンピュータであり、筐体701、筐体702
、表示部703、キーボード704などによって構成されている。筐体701と筐体70
2の少なくとも一には、先の実施の形態に示す半導体装置が設けられている。そのため、
情報の書き込みおよび読み出しが高速で、長期間の記憶保持が可能で、且つ消費電力が十
分に低減されたノート型のパーソナルコンピュータが実現される。
図16(B)は、携帯情報端末(PDA)であり、本体711には、表示部713と、
外部インターフェイス715と、操作ボタン714等が設けられている。また、携帯情報
端末を操作するスタイラス712などを備えている。本体711内には、先の実施の形態
に示す半導体装置が設けられている。そのため、情報の書き込みおよび読み出しが高速で
、長期間の記憶保持が可能で、且つ消費電力が十分に低減された携帯情報端末が実現され
る。
図16(C)は、電子ペーパーを実装した電子書籍720であり、筐体721と筐体7
23の2つの筐体で構成されている。筐体721および筐体723には、それぞれ表示部
725および表示部727が設けられている。筐体721と筐体723は、軸部737に
より接続されており、該軸部737を軸として開閉動作を行うことができる。また、筐体
721は、電源731、操作キー733、スピーカー735などを備えている。筐体72
1、筐体723の少なくとも一には、先の実施の形態に示す半導体装置が設けられている
。そのため、情報の書き込みおよび読み出しが高速で、長期間の記憶保持が可能で、且つ
消費電力が十分に低減された電子書籍が実現される。
図16(D)は、携帯電話機であり、筐体740と筐体741の2つの筐体で構成され
ている。さらに、筐体740と筐体741は、スライドし、図16(D)のように展開し
ている状態から重なり合った状態とすることができ、携帯に適した小型化が可能である。
また、筐体741は、表示パネル742、スピーカー743、マイクロフォン744、操
作キー745、ポインティングデバイス746、カメラ用レンズ747、外部接続端子7
48などを備えている。また、筐体740は、携帯電話機の充電を行う太陽電池セル74
9、外部メモリスロット750などを備えている。また、アンテナは、筐体741に内蔵
されている。筐体740と筐体741の少なくとも一には、先の実施の形態に示す半導体
装置が設けられている。そのため、情報の書き込みおよび読み出しが高速で、長期間の記
憶保持が可能で、且つ消費電力が十分に低減された携帯電話機が実現される。
図16(E)は、デジタルカメラであり、本体761、表示部767、接眼部763、
操作スイッチ764、表示部765、バッテリー766などによって構成されている。本
体761内には、先の実施の形態に示す半導体装置が設けられている。そのため、情報の
書き込みおよび読み出しが高速で、長期間の記憶保持が可能で、且つ消費電力が十分に低
減されたデジタルカメラが実現される。
図16(F)は、テレビジョン装置770であり、筐体771、表示部773、スタン
ド775などで構成されている。テレビジョン装置770の操作は、筐体771が備える
スイッチや、リモコン操作機780により行うことができる。筐体771およびリモコン
操作機780には、先の実施の形態に示す半導体装置が搭載されている。そのため、情報
の書き込みおよび読み出しが高速で、長期間の記憶保持が可能で、且つ消費電力が十分に
低減されたテレビジョン装置が実現される。
以上のように、本実施の形態に示す電子機器には、先の実施の形態に係る半導体装置が
搭載されている。このため、消費電力を低減した電子機器が実現される。
120 半導体層
122 絶縁層
122a ゲート絶縁層
124 マスク
126 不純物領域
128a ゲート電極
128b 導電層
130 不純物領域
132 不純物領域
134 チャネル形成領域
136 絶縁層
138 絶縁層
140 絶縁層
142a ソース電極
142b ドレイン電極
144 酸化物半導体層
146 ゲート絶縁層
148a ゲート電極
148b 導電層
150 絶縁層
154 配線
156 絶縁層
160 トランジスタ
162 トランジスタ
164 容量素子
170 メモリセル
190 駆動回路
192 駆動回路
201 メモリセルアレイ
250 容量素子
251 抵抗素子
260 ノイズ除去回路
500 半導体基板
510 単結晶半導体基板
512 酸化膜
514 脆化領域
516 単結晶半導体層
518 単結晶半導体層
701 筐体
702 筐体
703 表示部
704 キーボード
711 本体
712 スタイラス
713 表示部
714 操作ボタン
715 外部インターフェイス
720 電子書籍
721 筐体
723 筐体
725 表示部
727 表示部
731 電源
733 操作キー
735 スピーカー
737 軸部
740 筐体
741 筐体
742 表示パネル
743 スピーカー
744 マイクロフォン
745 操作キー
746 ポインティングデバイス
747 カメラ用レンズ
748 外部接続端子
749 太陽電池セル
750 外部メモリスロット
761 本体
763 接眼部
764 操作スイッチ
765 表示部
766 バッテリー
767 表示部
770 テレビジョン装置
771 筐体
773 表示部
775 スタンド
780 リモコン操作機

Claims (3)

  1. メモリセルと、
    駆動回路と、
    容量素子と、
    を有し、
    前記メモリセルは、
    第1のトランジスタと、
    前記第1のトランジスタ上方の第1の絶縁層と、
    前記第1の絶縁層上方の第2のトランジスタと、
    を有し、
    前記第1のトランジスタは、第1のゲート電極、第1のソース電極、第1のドレイン電極、及び第1のチャネル形成領域を有し、
    前記第2のトランジスタは、第2のゲート電極、第2のソース電極、第2のドレイン電極、及び第2のチャネル形成領域を有し、
    前記第1のチャネル形成領域は、シリコンを有し、
    前記第2のチャネル形成領域は、酸化物半導体を有し、
    前記第1のゲート電極は、前記第2のドレイン電極と電気的に接続され、
    前記駆動回路は、前記第2のゲート電極と電気的に接続され、
    前記容量素子は、前記駆動回路と前記メモリセルの間に設けられ、
    前記容量素子の一方の電極は、前記第2のゲート電極と電気的に接続されていることを特徴とする半導体装置。
  2. 請求項1において、
    前記第2のトランジスタのオフ電流は、室温(25℃)において10zA以下であることを特徴とする半導体装置。
  3. 請求項1又は2において、
    前記容量素子は、第1の導電層と、前記第1の導電層上の第2の絶縁層と、前記第2の絶縁層上の第2の導電層と、前記第2の導電層に接する第3の導電層と、前記第3の導電層に接する第4の導電層と、を有し、
    前記第1の導電層は、シリコンを有し、
    前記第2の絶縁層は、前記第1のトランジスタのゲート絶縁膜と同一層に設けられ、
    前記第2の導電層は、前記第1のゲート電極と同一層に設けられ、
    前記第3の導電層は、前記第2のソース電極及び前記第2のドレイン電極と同一層に設けられ、
    前記第4の導電層は、前記第2のゲート電極と同一層に設けられていることを特徴とする半導体装置。
JP2015084868A 2010-09-13 2015-04-17 半導体装置 Expired - Fee Related JP6010654B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015084868A JP6010654B2 (ja) 2010-09-13 2015-04-17 半導体装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010204419 2010-09-13
JP2010204419 2010-09-13
JP2015084868A JP6010654B2 (ja) 2010-09-13 2015-04-17 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011191379A Division JP5798415B2 (ja) 2010-09-13 2011-09-02 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016181267A Division JP6229026B2 (ja) 2010-09-13 2016-09-16 半導体装置

Publications (2)

Publication Number Publication Date
JP2015156508A true JP2015156508A (ja) 2015-08-27
JP6010654B2 JP6010654B2 (ja) 2016-10-19

Family

ID=44534128

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2011191379A Expired - Fee Related JP5798415B2 (ja) 2010-09-13 2011-09-02 半導体装置
JP2015084868A Expired - Fee Related JP6010654B2 (ja) 2010-09-13 2015-04-17 半導体装置
JP2016181267A Active JP6229026B2 (ja) 2010-09-13 2016-09-16 半導体装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011191379A Expired - Fee Related JP5798415B2 (ja) 2010-09-13 2011-09-02 半導体装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016181267A Active JP6229026B2 (ja) 2010-09-13 2016-09-16 半導体装置

Country Status (5)

Country Link
US (2) US8767442B2 (ja)
EP (1) EP2428959B1 (ja)
JP (3) JP5798415B2 (ja)
KR (1) KR101932577B1 (ja)
TW (2) TWI543166B (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101861980B1 (ko) 2009-11-06 2018-05-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
TWI543166B (zh) * 2010-09-13 2016-07-21 半導體能源研究所股份有限公司 半導體裝置
US9117701B2 (en) 2011-05-06 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8654562B2 (en) * 2012-01-17 2014-02-18 Texas Instruments Incorporated Static random access memory cell with single-sided buffer and asymmetric construction
US20130187150A1 (en) 2012-01-20 2013-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5826716B2 (ja) * 2012-06-19 2015-12-02 株式会社東芝 半導体装置及びその製造方法
US9245958B2 (en) * 2012-08-10 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9929276B2 (en) 2012-08-10 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6220597B2 (ja) * 2012-08-10 2017-10-25 株式会社半導体エネルギー研究所 半導体装置
JP6211843B2 (ja) * 2012-08-10 2017-10-11 株式会社半導体エネルギー研究所 半導体装置
CN104584229B (zh) * 2012-08-10 2018-05-15 株式会社半导体能源研究所 半导体装置及其制造方法
TWI631711B (zh) * 2013-05-01 2018-08-01 半導體能源研究所股份有限公司 半導體裝置
US9196582B2 (en) * 2013-11-22 2015-11-24 Taiwan Semiconductor Manufacturing Company, Ltd. Word line coupling prevention using 3D integrated circuit
DE112014006046T5 (de) 2013-12-27 2016-09-15 Semiconductor Energy Laboratory Co., Ltd. Licht emittierende Vorrichtung
JP6333580B2 (ja) * 2014-03-07 2018-05-30 株式会社半導体エネルギー研究所 半導体装置
US9716100B2 (en) * 2014-03-14 2017-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for driving semiconductor device, and electronic device
WO2016055894A1 (en) * 2014-10-06 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
WO2016092416A1 (en) * 2014-12-11 2016-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, and electronic device
JP2017108397A (ja) 2015-11-30 2017-06-15 株式会社半導体エネルギー研究所 信号処理回路、及び該信号処理回路を有する半導体装置
JP6906940B2 (ja) 2015-12-28 2021-07-21 株式会社半導体エネルギー研究所 半導体装置
US10083991B2 (en) 2015-12-28 2018-09-25 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US10109633B2 (en) * 2016-04-27 2018-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and authentication system
EP3422413A1 (en) * 2017-06-26 2019-01-02 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Photodetector array and method of manufacturing the same, as well as an imaging device including the photodetector array
US11488650B2 (en) 2020-04-06 2022-11-01 Memryx Incorporated Memory processing unit architecture
US10998037B2 (en) 2019-05-07 2021-05-04 Memryx Incorporated Memory processing units and methods of computing dot products
US10853066B1 (en) 2019-05-07 2020-12-01 Memryx Incorporated Memory processing units and methods of computing DOT products including zero bit skipping
JP7262325B2 (ja) 2019-07-03 2023-04-21 ヤマシンフィルタ株式会社 タンク装置
TWI778928B (zh) * 2022-04-15 2022-09-21 環宇積體電路股份有限公司 記憶體裝置及其操作方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274773A (ja) * 1986-05-23 1987-11-28 Hitachi Ltd 半導体記憶装置
JPS6370558A (ja) * 1986-09-12 1988-03-30 Nec Corp 半導体メモリセル
JPS63268184A (ja) * 1987-04-24 1988-11-04 Sony Corp 半導体メモリ装置
JP2001053167A (ja) * 1999-08-04 2001-02-23 Sony Corp 半導体記憶装置
JP2001307485A (ja) * 2000-04-24 2001-11-02 Nec Corp 半導体記憶装置
WO2002009118A1 (fr) * 2000-07-26 2002-01-31 Nec Corporation Memoire a semi-conducteurs et procede de commande
JP2002368226A (ja) * 2001-06-11 2002-12-20 Sharp Corp 半導体装置、半導体記憶装置及びその製造方法、並びに携帯情報機器
JP2006294116A (ja) * 2005-04-08 2006-10-26 Renesas Technology Corp 半導体記憶装置
WO2009139482A1 (en) * 2008-05-12 2009-11-19 Canon Kabushiki Kaisha Method for controlling threshold voltage of semiconductor element

Family Cites Families (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034199B2 (ja) 1980-12-20 1985-08-07 株式会社東芝 半導体記憶装置
DE3171836D1 (en) 1980-12-08 1985-09-19 Toshiba Kk Semiconductor memory device
JPS5979488A (ja) 1982-10-28 1984-05-08 Nec Corp Mosメモリ回路
US4546273A (en) 1983-01-11 1985-10-08 Burroughs Corporation Dynamic re-programmable PLA
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
US4639622A (en) * 1984-11-19 1987-01-27 International Business Machines Corporation Boosting word-line clock circuit for semiconductor memory
JPS6319847A (ja) * 1986-07-14 1988-01-27 Oki Electric Ind Co Ltd 半導体記憶装置
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JP2775040B2 (ja) 1991-10-29 1998-07-09 株式会社 半導体エネルギー研究所 電気光学表示装置およびその駆動方法
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3128425B2 (ja) 1994-04-08 2001-01-29 株式会社東芝 半導体記憶装置
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
WO1997006554A2 (en) 1995-08-03 1997-02-20 Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4103968B2 (ja) 1996-09-18 2008-06-18 株式会社半導体エネルギー研究所 絶縁ゲイト型半導体装置
KR100248205B1 (ko) * 1997-06-25 2000-03-15 김영환 반도체 메모리 디바이스 및 그 형성방법
US5883829A (en) * 1997-06-27 1999-03-16 Texas Instruments Incorporated Memory cell having negative differential resistance devices
US6327289B1 (en) * 1997-09-02 2001-12-04 Matsushita Electric Industrial Co., Ltd. Wavelength-variable semiconductor laser, optical integrated device utilizing the same, and production method thereof
DE19823956A1 (de) * 1998-05-28 1999-12-02 Siemens Ag Anordnung zur Übersprechdämpfung in Wortleitungen von DRAM-Schaltungen
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000113683A (ja) * 1998-10-02 2000-04-21 Hitachi Ltd 半導体装置
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
KR100619580B1 (ko) * 1999-05-14 2006-09-05 가부시키가이샤 히타치세이사쿠쇼 반도체 집적회로장치
US6762951B2 (en) * 2001-11-13 2004-07-13 Hitachi, Ltd. Semiconductor integrated circuit device
JP2001093988A (ja) * 1999-07-22 2001-04-06 Sony Corp 半導体記憶装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP3921331B2 (ja) * 2000-05-26 2007-05-30 富士通株式会社 半導体装置
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
JP2002093924A (ja) * 2000-09-20 2002-03-29 Sony Corp 半導体記憶装置
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
WO2003040441A1 (en) 2001-11-05 2003-05-15 Japan Science And Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US6845059B1 (en) * 2003-06-26 2005-01-18 International Business Machines Corporation High performance gain cell architecture
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
DE10344604B4 (de) * 2003-09-25 2011-08-11 Infineon Technologies AG, 81669 Speichereinheit mit Sammelelektroden
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
KR101078509B1 (ko) 2004-03-12 2011-10-31 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 박막 트랜지스터의 제조 방법
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
CN102938420B (zh) 2004-11-10 2015-12-02 佳能株式会社 无定形氧化物和场效应晶体管
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
JP5053537B2 (ja) 2004-11-10 2012-10-17 キヤノン株式会社 非晶質酸化物を利用した半導体デバイス
WO2006051994A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
CA2585071A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI472037B (zh) 2005-01-28 2015-02-01 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
JP4999351B2 (ja) * 2005-04-20 2012-08-15 株式会社半導体エネルギー研究所 半導体装置及び表示装置
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
EP1995787A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method therof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
CN101707212B (zh) 2005-11-15 2012-07-11 株式会社半导体能源研究所 半导体器件及其制造方法
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
JP2010034091A (ja) * 2006-11-27 2010-02-12 Iwate Univ 有機複合電子素子及びその製造方法、及び該有機複合電子素子を用いる有機半導体メモリ
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
KR20080088284A (ko) * 2007-03-29 2008-10-02 삼성전자주식회사 플래시 메모리 소자
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
CN101663762B (zh) 2007-04-25 2011-09-21 佳能株式会社 氧氮化物半导体
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
US8354674B2 (en) 2007-06-29 2013-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein a property of a first semiconductor layer is different from a property of a second semiconductor layer
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
JP5291928B2 (ja) * 2007-12-26 2013-09-18 株式会社日立製作所 酸化物半導体装置およびその製造方法
JP5121478B2 (ja) 2008-01-31 2013-01-16 株式会社ジャパンディスプレイウェスト 光センサー素子、撮像装置、電子機器、およびメモリー素子
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
WO2010038601A1 (en) 2008-09-30 2010-04-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5781720B2 (ja) 2008-12-15 2015-09-24 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
JP2010204419A (ja) 2009-03-04 2010-09-16 Yokogawa Electric Corp 地図画像生成装置および地図画像生成方法
SG10201910510UA (en) 2009-10-29 2020-01-30 Semiconductor Energy Lab Semiconductor device
KR101861980B1 (ko) 2009-11-06 2018-05-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
EP2887395B1 (en) 2009-11-20 2019-05-08 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
KR20200096317A (ko) 2009-11-20 2020-08-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101662359B1 (ko) 2009-11-24 2016-10-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 메모리 셀을 포함하는 반도체 장치
KR101803254B1 (ko) 2009-11-27 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
EP2513966B1 (en) 2009-12-18 2020-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101777624B1 (ko) 2009-12-25 2017-09-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
CN103985760B (zh) 2009-12-25 2017-07-18 株式会社半导体能源研究所 半导体装置
KR102198144B1 (ko) 2009-12-28 2021-01-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 기억 장치와 반도체 장치
KR101762316B1 (ko) 2009-12-28 2017-07-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
CN102714184B (zh) 2009-12-28 2016-05-18 株式会社半导体能源研究所 半导体器件
TWI543166B (zh) * 2010-09-13 2016-07-21 半導體能源研究所股份有限公司 半導體裝置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274773A (ja) * 1986-05-23 1987-11-28 Hitachi Ltd 半導体記憶装置
JPS6370558A (ja) * 1986-09-12 1988-03-30 Nec Corp 半導体メモリセル
JPS63268184A (ja) * 1987-04-24 1988-11-04 Sony Corp 半導体メモリ装置
JP2001053167A (ja) * 1999-08-04 2001-02-23 Sony Corp 半導体記憶装置
JP2001307485A (ja) * 2000-04-24 2001-11-02 Nec Corp 半導体記憶装置
JP2002042460A (ja) * 2000-07-26 2002-02-08 Nec Corp 半導体記憶装置
WO2002009118A1 (fr) * 2000-07-26 2002-01-31 Nec Corporation Memoire a semi-conducteurs et procede de commande
EP1329896A1 (en) * 2000-07-26 2003-07-23 NEC Electronics Corporation Semiconductor memory and control method
US20030151964A1 (en) * 2000-07-26 2003-08-14 Hiroyuki Takahashi Semiconductor memory and control method
JP2002368226A (ja) * 2001-06-11 2002-12-20 Sharp Corp 半導体装置、半導体記憶装置及びその製造方法、並びに携帯情報機器
JP2006294116A (ja) * 2005-04-08 2006-10-26 Renesas Technology Corp 半導体記憶装置
WO2009139482A1 (en) * 2008-05-12 2009-11-19 Canon Kabushiki Kaisha Method for controlling threshold voltage of semiconductor element
JP2009277702A (ja) * 2008-05-12 2009-11-26 Canon Inc 半導体素子の閾値電圧の制御方法
US20110076790A1 (en) * 2008-05-12 2011-03-31 Canon Kabushiki Kaisha Method for controlling threshold voltage of semiconductor element

Also Published As

Publication number Publication date
US20140264521A1 (en) 2014-09-18
JP6229026B2 (ja) 2017-11-08
JP6010654B2 (ja) 2016-10-19
TWI543166B (zh) 2016-07-21
TW201222550A (en) 2012-06-01
TWI608486B (zh) 2017-12-11
KR101932577B1 (ko) 2018-12-26
EP2428959B1 (en) 2018-05-30
US8767442B2 (en) 2014-07-01
TW201631588A (zh) 2016-09-01
EP2428959A1 (en) 2012-03-14
JP2012084851A (ja) 2012-04-26
KR20120028229A (ko) 2012-03-22
JP5798415B2 (ja) 2015-10-21
JP2017022401A (ja) 2017-01-26
US10453846B2 (en) 2019-10-22
US20120063205A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP6229026B2 (ja) 半導体装置
JP6116737B2 (ja) 半導体装置及び半導体装置の作製方法
JP5731283B2 (ja) 半導体装置
TWI552315B (zh) 半導體裝置及其驅動方法
JP5774413B2 (ja) 半導体装置の駆動方法
JP5779451B2 (ja) 半導体装置
JP6329232B2 (ja) 半導体装置
JP5800631B2 (ja) 半導体装置
JP5767880B2 (ja) 半導体装置
JP5781865B2 (ja) 半導体装置
JP2011216879A (ja) 半導体装置
JP6012450B2 (ja) 半導体装置の駆動方法
JP2012084215A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160916

R150 Certificate of patent or registration of utility model

Ref document number: 6010654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees